blob: b559ff5b78e79454a2979dc147cb698d2c01589e [file] [log] [blame]
Georg Brandl8ec7f652007-08-15 14:28:01 +00001
Raymond Hettinger13a70752008-02-10 07:21:09 +00002:mod:`decimal` --- Decimal fixed point and floating point arithmetic
3====================================================================
Georg Brandl8ec7f652007-08-15 14:28:01 +00004
5.. module:: decimal
6 :synopsis: Implementation of the General Decimal Arithmetic Specification.
7
8
9.. moduleauthor:: Eric Price <eprice at tjhsst.edu>
10.. moduleauthor:: Facundo Batista <facundo at taniquetil.com.ar>
11.. moduleauthor:: Raymond Hettinger <python at rcn.com>
12.. moduleauthor:: Aahz <aahz at pobox.com>
13.. moduleauthor:: Tim Peters <tim.one at comcast.net>
14
15
16.. sectionauthor:: Raymond D. Hettinger <python at rcn.com>
17
Georg Brandl8ec7f652007-08-15 14:28:01 +000018.. versionadded:: 2.4
19
Georg Brandl9f662322008-03-22 11:47:10 +000020.. import modules for testing inline doctests with the Sphinx doctest builder
Georg Brandl17baef02008-03-22 10:56:23 +000021.. testsetup:: *
22
Georg Brandl9f662322008-03-22 11:47:10 +000023 import decimal
24 import math
Georg Brandl17baef02008-03-22 10:56:23 +000025 from decimal import *
Georg Brandl9f662322008-03-22 11:47:10 +000026 # make sure each group gets a fresh context
27 setcontext(Context())
Georg Brandl17baef02008-03-22 10:56:23 +000028
Georg Brandl8ec7f652007-08-15 14:28:01 +000029The :mod:`decimal` module provides support for decimal floating point
Facundo Batista7c82a3e92007-09-14 18:58:34 +000030arithmetic. It offers several advantages over the :class:`float` datatype:
Georg Brandl8ec7f652007-08-15 14:28:01 +000031
Raymond Hettinger13a70752008-02-10 07:21:09 +000032* Decimal "is based on a floating-point model which was designed with people
33 in mind, and necessarily has a paramount guiding principle -- computers must
34 provide an arithmetic that works in the same way as the arithmetic that
35 people learn at school." -- excerpt from the decimal arithmetic specification.
36
Georg Brandl8ec7f652007-08-15 14:28:01 +000037* Decimal numbers can be represented exactly. In contrast, numbers like
Mark Dickinson6b87f112009-11-24 14:27:02 +000038 :const:`1.1` and :const:`2.2` do not have an exact representations in binary
39 floating point. End users typically would not expect ``1.1 + 2.2`` to display
40 as :const:`3.3000000000000003` as it does with binary floating point.
Georg Brandl8ec7f652007-08-15 14:28:01 +000041
42* The exactness carries over into arithmetic. In decimal floating point, ``0.1
Facundo Batista7c82a3e92007-09-14 18:58:34 +000043 + 0.1 + 0.1 - 0.3`` is exactly equal to zero. In binary floating point, the result
Georg Brandl8ec7f652007-08-15 14:28:01 +000044 is :const:`5.5511151231257827e-017`. While near to zero, the differences
45 prevent reliable equality testing and differences can accumulate. For this
Raymond Hettinger13a70752008-02-10 07:21:09 +000046 reason, decimal is preferred in accounting applications which have strict
Georg Brandl8ec7f652007-08-15 14:28:01 +000047 equality invariants.
48
49* The decimal module incorporates a notion of significant places so that ``1.30
50 + 1.20`` is :const:`2.50`. The trailing zero is kept to indicate significance.
51 This is the customary presentation for monetary applications. For
52 multiplication, the "schoolbook" approach uses all the figures in the
53 multiplicands. For instance, ``1.3 * 1.2`` gives :const:`1.56` while ``1.30 *
54 1.20`` gives :const:`1.5600`.
55
56* Unlike hardware based binary floating point, the decimal module has a user
Facundo Batista7c82a3e92007-09-14 18:58:34 +000057 alterable precision (defaulting to 28 places) which can be as large as needed for
Georg Brandl17baef02008-03-22 10:56:23 +000058 a given problem:
Georg Brandl8ec7f652007-08-15 14:28:01 +000059
60 >>> getcontext().prec = 6
61 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +000062 Decimal('0.142857')
Georg Brandl8ec7f652007-08-15 14:28:01 +000063 >>> getcontext().prec = 28
64 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +000065 Decimal('0.1428571428571428571428571429')
Georg Brandl8ec7f652007-08-15 14:28:01 +000066
67* Both binary and decimal floating point are implemented in terms of published
68 standards. While the built-in float type exposes only a modest portion of its
69 capabilities, the decimal module exposes all required parts of the standard.
70 When needed, the programmer has full control over rounding and signal handling.
Raymond Hettinger13a70752008-02-10 07:21:09 +000071 This includes an option to enforce exact arithmetic by using exceptions
72 to block any inexact operations.
73
74* The decimal module was designed to support "without prejudice, both exact
75 unrounded decimal arithmetic (sometimes called fixed-point arithmetic)
76 and rounded floating-point arithmetic." -- excerpt from the decimal
77 arithmetic specification.
Georg Brandl8ec7f652007-08-15 14:28:01 +000078
79The module design is centered around three concepts: the decimal number, the
80context for arithmetic, and signals.
81
82A decimal number is immutable. It has a sign, coefficient digits, and an
83exponent. To preserve significance, the coefficient digits do not truncate
Facundo Batista7c82a3e92007-09-14 18:58:34 +000084trailing zeros. Decimals also include special values such as
Georg Brandl8ec7f652007-08-15 14:28:01 +000085:const:`Infinity`, :const:`-Infinity`, and :const:`NaN`. The standard also
86differentiates :const:`-0` from :const:`+0`.
87
88The context for arithmetic is an environment specifying precision, rounding
89rules, limits on exponents, flags indicating the results of operations, and trap
90enablers which determine whether signals are treated as exceptions. Rounding
91options include :const:`ROUND_CEILING`, :const:`ROUND_DOWN`,
92:const:`ROUND_FLOOR`, :const:`ROUND_HALF_DOWN`, :const:`ROUND_HALF_EVEN`,
Facundo Batista7c82a3e92007-09-14 18:58:34 +000093:const:`ROUND_HALF_UP`, :const:`ROUND_UP`, and :const:`ROUND_05UP`.
Georg Brandl8ec7f652007-08-15 14:28:01 +000094
95Signals are groups of exceptional conditions arising during the course of
96computation. Depending on the needs of the application, signals may be ignored,
97considered as informational, or treated as exceptions. The signals in the
98decimal module are: :const:`Clamped`, :const:`InvalidOperation`,
99:const:`DivisionByZero`, :const:`Inexact`, :const:`Rounded`, :const:`Subnormal`,
100:const:`Overflow`, and :const:`Underflow`.
101
102For each signal there is a flag and a trap enabler. When a signal is
Mark Dickinson1840c1a2008-05-03 18:23:14 +0000103encountered, its flag is set to one, then, if the trap enabler is
Georg Brandl8ec7f652007-08-15 14:28:01 +0000104set to one, an exception is raised. Flags are sticky, so the user needs to
105reset them before monitoring a calculation.
106
107
108.. seealso::
109
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000110 * IBM's General Decimal Arithmetic Specification, `The General Decimal Arithmetic
Raymond Hettingerf345a212009-03-10 01:07:30 +0000111 Specification <http://speleotrove.com/decimal/>`_.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000112
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000113 * IEEE standard 854-1987, `Unofficial IEEE 854 Text
Mark Dickinsonff6672f2008-02-07 01:14:23 +0000114 <http://754r.ucbtest.org/standards/854.pdf>`_.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000115
Georg Brandlb19be572007-12-29 10:57:00 +0000116.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +0000117
118
119.. _decimal-tutorial:
120
121Quick-start Tutorial
122--------------------
123
124The usual start to using decimals is importing the module, viewing the current
125context with :func:`getcontext` and, if necessary, setting new values for
Georg Brandl9f662322008-03-22 11:47:10 +0000126precision, rounding, or enabled traps::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000127
128 >>> from decimal import *
129 >>> getcontext()
130 Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
Georg Brandl9f662322008-03-22 11:47:10 +0000131 capitals=1, flags=[], traps=[Overflow, DivisionByZero,
132 InvalidOperation])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000133
134 >>> getcontext().prec = 7 # Set a new precision
135
136Decimal instances can be constructed from integers, strings, or tuples. To
137create a Decimal from a :class:`float`, first convert it to a string. This
138serves as an explicit reminder of the details of the conversion (including
139representation error). Decimal numbers include special values such as
140:const:`NaN` which stands for "Not a number", positive and negative
Georg Brandl17baef02008-03-22 10:56:23 +0000141:const:`Infinity`, and :const:`-0`.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000142
Facundo Batista8e1c52a2008-06-21 17:30:06 +0000143 >>> getcontext().prec = 28
Georg Brandl8ec7f652007-08-15 14:28:01 +0000144 >>> Decimal(10)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000145 Decimal('10')
146 >>> Decimal('3.14')
147 Decimal('3.14')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000148 >>> Decimal((0, (3, 1, 4), -2))
Raymond Hettingerabe32372008-02-14 02:41:22 +0000149 Decimal('3.14')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000150 >>> Decimal(str(2.0 ** 0.5))
Raymond Hettingerabe32372008-02-14 02:41:22 +0000151 Decimal('1.41421356237')
152 >>> Decimal(2) ** Decimal('0.5')
153 Decimal('1.414213562373095048801688724')
154 >>> Decimal('NaN')
155 Decimal('NaN')
156 >>> Decimal('-Infinity')
157 Decimal('-Infinity')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000158
159The significance of a new Decimal is determined solely by the number of digits
160input. Context precision and rounding only come into play during arithmetic
Georg Brandl17baef02008-03-22 10:56:23 +0000161operations.
162
163.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +0000164
165 >>> getcontext().prec = 6
166 >>> Decimal('3.0')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000167 Decimal('3.0')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000168 >>> Decimal('3.1415926535')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000169 Decimal('3.1415926535')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000170 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000171 Decimal('5.85987')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000172 >>> getcontext().rounding = ROUND_UP
173 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000174 Decimal('5.85988')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000175
176Decimals interact well with much of the rest of Python. Here is a small decimal
Georg Brandl9f662322008-03-22 11:47:10 +0000177floating point flying circus:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000178
Georg Brandl838b4b02008-03-22 13:07:06 +0000179.. doctest::
180 :options: +NORMALIZE_WHITESPACE
181
Georg Brandl8ec7f652007-08-15 14:28:01 +0000182 >>> data = map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split())
183 >>> max(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000184 Decimal('9.25')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000185 >>> min(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000186 Decimal('0.03')
Georg Brandl838b4b02008-03-22 13:07:06 +0000187 >>> sorted(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000188 [Decimal('0.03'), Decimal('1.00'), Decimal('1.34'), Decimal('1.87'),
189 Decimal('2.35'), Decimal('3.45'), Decimal('9.25')]
Georg Brandl8ec7f652007-08-15 14:28:01 +0000190 >>> sum(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000191 Decimal('19.29')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000192 >>> a,b,c = data[:3]
193 >>> str(a)
194 '1.34'
195 >>> float(a)
Mark Dickinson6b87f112009-11-24 14:27:02 +0000196 1.34
Georg Brandl8ec7f652007-08-15 14:28:01 +0000197 >>> round(a, 1) # round() first converts to binary floating point
198 1.3
199 >>> int(a)
200 1
201 >>> a * 5
Raymond Hettingerabe32372008-02-14 02:41:22 +0000202 Decimal('6.70')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000203 >>> a * b
Raymond Hettingerabe32372008-02-14 02:41:22 +0000204 Decimal('2.5058')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000205 >>> c % a
Raymond Hettingerabe32372008-02-14 02:41:22 +0000206 Decimal('0.77')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000207
Georg Brandl9f662322008-03-22 11:47:10 +0000208And some mathematical functions are also available to Decimal:
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000209
Facundo Batista8e1c52a2008-06-21 17:30:06 +0000210 >>> getcontext().prec = 28
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000211 >>> Decimal(2).sqrt()
Raymond Hettingerabe32372008-02-14 02:41:22 +0000212 Decimal('1.414213562373095048801688724')
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000213 >>> Decimal(1).exp()
Raymond Hettingerabe32372008-02-14 02:41:22 +0000214 Decimal('2.718281828459045235360287471')
215 >>> Decimal('10').ln()
216 Decimal('2.302585092994045684017991455')
217 >>> Decimal('10').log10()
218 Decimal('1')
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000219
Georg Brandl8ec7f652007-08-15 14:28:01 +0000220The :meth:`quantize` method rounds a number to a fixed exponent. This method is
221useful for monetary applications that often round results to a fixed number of
Georg Brandl9f662322008-03-22 11:47:10 +0000222places:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000223
224 >>> Decimal('7.325').quantize(Decimal('.01'), rounding=ROUND_DOWN)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000225 Decimal('7.32')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000226 >>> Decimal('7.325').quantize(Decimal('1.'), rounding=ROUND_UP)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000227 Decimal('8')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000228
229As shown above, the :func:`getcontext` function accesses the current context and
230allows the settings to be changed. This approach meets the needs of most
231applications.
232
233For more advanced work, it may be useful to create alternate contexts using the
234Context() constructor. To make an alternate active, use the :func:`setcontext`
235function.
236
237In accordance with the standard, the :mod:`Decimal` module provides two ready to
238use standard contexts, :const:`BasicContext` and :const:`ExtendedContext`. The
239former is especially useful for debugging because many of the traps are
Georg Brandl9f662322008-03-22 11:47:10 +0000240enabled:
241
242.. doctest:: newcontext
243 :options: +NORMALIZE_WHITESPACE
Georg Brandl8ec7f652007-08-15 14:28:01 +0000244
245 >>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)
246 >>> setcontext(myothercontext)
247 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000248 Decimal('0.142857142857142857142857142857142857142857142857142857142857')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000249
250 >>> ExtendedContext
251 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
252 capitals=1, flags=[], traps=[])
253 >>> setcontext(ExtendedContext)
254 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000255 Decimal('0.142857143')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000256 >>> Decimal(42) / Decimal(0)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000257 Decimal('Infinity')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000258
259 >>> setcontext(BasicContext)
260 >>> Decimal(42) / Decimal(0)
261 Traceback (most recent call last):
262 File "<pyshell#143>", line 1, in -toplevel-
263 Decimal(42) / Decimal(0)
264 DivisionByZero: x / 0
265
266Contexts also have signal flags for monitoring exceptional conditions
267encountered during computations. The flags remain set until explicitly cleared,
268so it is best to clear the flags before each set of monitored computations by
269using the :meth:`clear_flags` method. ::
270
271 >>> setcontext(ExtendedContext)
272 >>> getcontext().clear_flags()
273 >>> Decimal(355) / Decimal(113)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000274 Decimal('3.14159292')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000275 >>> getcontext()
276 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
Georg Brandl9f662322008-03-22 11:47:10 +0000277 capitals=1, flags=[Rounded, Inexact], traps=[])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000278
279The *flags* entry shows that the rational approximation to :const:`Pi` was
280rounded (digits beyond the context precision were thrown away) and that the
281result is inexact (some of the discarded digits were non-zero).
282
283Individual traps are set using the dictionary in the :attr:`traps` field of a
Georg Brandl9f662322008-03-22 11:47:10 +0000284context:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000285
Georg Brandl9f662322008-03-22 11:47:10 +0000286.. doctest:: newcontext
287
288 >>> setcontext(ExtendedContext)
Georg Brandl8ec7f652007-08-15 14:28:01 +0000289 >>> Decimal(1) / Decimal(0)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000290 Decimal('Infinity')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000291 >>> getcontext().traps[DivisionByZero] = 1
292 >>> Decimal(1) / Decimal(0)
293 Traceback (most recent call last):
294 File "<pyshell#112>", line 1, in -toplevel-
295 Decimal(1) / Decimal(0)
296 DivisionByZero: x / 0
297
298Most programs adjust the current context only once, at the beginning of the
299program. And, in many applications, data is converted to :class:`Decimal` with
300a single cast inside a loop. With context set and decimals created, the bulk of
301the program manipulates the data no differently than with other Python numeric
302types.
303
Georg Brandlb19be572007-12-29 10:57:00 +0000304.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +0000305
306
307.. _decimal-decimal:
308
309Decimal objects
310---------------
311
312
313.. class:: Decimal([value [, context]])
314
Georg Brandlb19be572007-12-29 10:57:00 +0000315 Construct a new :class:`Decimal` object based from *value*.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000316
Mark Dickinson59bc20b2008-01-12 01:56:00 +0000317 *value* can be an integer, string, tuple, or another :class:`Decimal`
Raymond Hettingerabe32372008-02-14 02:41:22 +0000318 object. If no *value* is given, returns ``Decimal('0')``. If *value* is a
Mark Dickinson59bc20b2008-01-12 01:56:00 +0000319 string, it should conform to the decimal numeric string syntax after leading
320 and trailing whitespace characters are removed::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000321
322 sign ::= '+' | '-'
323 digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
324 indicator ::= 'e' | 'E'
325 digits ::= digit [digit]...
326 decimal-part ::= digits '.' [digits] | ['.'] digits
327 exponent-part ::= indicator [sign] digits
328 infinity ::= 'Infinity' | 'Inf'
329 nan ::= 'NaN' [digits] | 'sNaN' [digits]
330 numeric-value ::= decimal-part [exponent-part] | infinity
Georg Brandlc62ef8b2009-01-03 20:55:06 +0000331 numeric-string ::= [sign] numeric-value | [sign] nan
Georg Brandl8ec7f652007-08-15 14:28:01 +0000332
Mark Dickinson4326ad82009-08-02 10:59:36 +0000333 If *value* is a unicode string then other Unicode decimal digits
334 are also permitted where ``digit`` appears above. These include
335 decimal digits from various other alphabets (for example,
336 Arabic-Indic and Devanāgarī digits) along with the fullwidth digits
337 ``u'\uff10'`` through ``u'\uff19'``.
338
Georg Brandl8ec7f652007-08-15 14:28:01 +0000339 If *value* is a :class:`tuple`, it should have three components, a sign
340 (:const:`0` for positive or :const:`1` for negative), a :class:`tuple` of
341 digits, and an integer exponent. For example, ``Decimal((0, (1, 4, 1, 4), -3))``
Raymond Hettingerabe32372008-02-14 02:41:22 +0000342 returns ``Decimal('1.414')``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000343
344 The *context* precision does not affect how many digits are stored. That is
345 determined exclusively by the number of digits in *value*. For example,
Raymond Hettingerabe32372008-02-14 02:41:22 +0000346 ``Decimal('3.00000')`` records all five zeros even if the context precision is
Georg Brandl8ec7f652007-08-15 14:28:01 +0000347 only three.
348
349 The purpose of the *context* argument is determining what to do if *value* is a
350 malformed string. If the context traps :const:`InvalidOperation`, an exception
351 is raised; otherwise, the constructor returns a new Decimal with the value of
352 :const:`NaN`.
353
354 Once constructed, :class:`Decimal` objects are immutable.
355
Mark Dickinson59bc20b2008-01-12 01:56:00 +0000356 .. versionchanged:: 2.6
357 leading and trailing whitespace characters are permitted when
358 creating a Decimal instance from a string.
359
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000360 Decimal floating point objects share many properties with the other built-in
361 numeric types such as :class:`float` and :class:`int`. All of the usual math
362 operations and special methods apply. Likewise, decimal objects can be
363 copied, pickled, printed, used as dictionary keys, used as set elements,
364 compared, sorted, and coerced to another type (such as :class:`float` or
365 :class:`long`).
Georg Brandl8ec7f652007-08-15 14:28:01 +0000366
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000367 In addition to the standard numeric properties, decimal floating point
368 objects also have a number of specialized methods:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000369
370
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000371 .. method:: adjusted()
Georg Brandl8ec7f652007-08-15 14:28:01 +0000372
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000373 Return the adjusted exponent after shifting out the coefficient's
374 rightmost digits until only the lead digit remains:
375 ``Decimal('321e+5').adjusted()`` returns seven. Used for determining the
376 position of the most significant digit with respect to the decimal point.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000377
378
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000379 .. method:: as_tuple()
Georg Brandl8ec7f652007-08-15 14:28:01 +0000380
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000381 Return a :term:`named tuple` representation of the number:
382 ``DecimalTuple(sign, digits, exponent)``.
Georg Brandle3c3db52008-01-11 09:55:53 +0000383
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000384 .. versionchanged:: 2.6
385 Use a named tuple.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000386
387
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000388 .. method:: canonical()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000389
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000390 Return the canonical encoding of the argument. Currently, the encoding of
391 a :class:`Decimal` instance is always canonical, so this operation returns
392 its argument unchanged.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000393
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000394 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000395
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000396 .. method:: compare(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000397
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000398 Compare the values of two Decimal instances. This operation behaves in
399 the same way as the usual comparison method :meth:`__cmp__`, except that
400 :meth:`compare` returns a Decimal instance rather than an integer, and if
401 either operand is a NaN then the result is a NaN::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000402
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000403 a or b is a NaN ==> Decimal('NaN')
404 a < b ==> Decimal('-1')
405 a == b ==> Decimal('0')
406 a > b ==> Decimal('1')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000407
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000408 .. method:: compare_signal(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000409
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000410 This operation is identical to the :meth:`compare` method, except that all
411 NaNs signal. That is, if neither operand is a signaling NaN then any
412 quiet NaN operand is treated as though it were a signaling NaN.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000413
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000414 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000415
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000416 .. method:: compare_total(other)
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000417
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000418 Compare two operands using their abstract representation rather than their
419 numerical value. Similar to the :meth:`compare` method, but the result
420 gives a total ordering on :class:`Decimal` instances. Two
421 :class:`Decimal` instances with the same numeric value but different
422 representations compare unequal in this ordering:
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000423
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000424 >>> Decimal('12.0').compare_total(Decimal('12'))
425 Decimal('-1')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000426
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000427 Quiet and signaling NaNs are also included in the total ordering. The
428 result of this function is ``Decimal('0')`` if both operands have the same
429 representation, ``Decimal('-1')`` if the first operand is lower in the
430 total order than the second, and ``Decimal('1')`` if the first operand is
431 higher in the total order than the second operand. See the specification
432 for details of the total order.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000433
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000434 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000435
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000436 .. method:: compare_total_mag(other)
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000437
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000438 Compare two operands using their abstract representation rather than their
439 value as in :meth:`compare_total`, but ignoring the sign of each operand.
440 ``x.compare_total_mag(y)`` is equivalent to
441 ``x.copy_abs().compare_total(y.copy_abs())``.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000442
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000443 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000444
Facundo Batista8e1c52a2008-06-21 17:30:06 +0000445 .. method:: conjugate()
446
447 Just returns self, this method is only to comply with the Decimal
448 Specification.
449
450 .. versionadded:: 2.6
451
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000452 .. method:: copy_abs()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000453
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000454 Return the absolute value of the argument. This operation is unaffected
455 by the context and is quiet: no flags are changed and no rounding is
456 performed.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000457
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000458 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000459
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000460 .. method:: copy_negate()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000461
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000462 Return the negation of the argument. This operation is unaffected by the
463 context and is quiet: no flags are changed and no rounding is performed.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000464
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000465 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000466
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000467 .. method:: copy_sign(other)
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000468
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000469 Return a copy of the first operand with the sign set to be the same as the
470 sign of the second operand. For example:
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000471
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000472 >>> Decimal('2.3').copy_sign(Decimal('-1.5'))
473 Decimal('-2.3')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000474
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000475 This operation is unaffected by the context and is quiet: no flags are
476 changed and no rounding is performed.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000477
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000478 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000479
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000480 .. method:: exp([context])
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000481
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000482 Return the value of the (natural) exponential function ``e**x`` at the
483 given number. The result is correctly rounded using the
484 :const:`ROUND_HALF_EVEN` rounding mode.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000485
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000486 >>> Decimal(1).exp()
487 Decimal('2.718281828459045235360287471')
488 >>> Decimal(321).exp()
489 Decimal('2.561702493119680037517373933E+139')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000490
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000491 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000492
Raymond Hettingerf4d85972009-01-03 19:02:23 +0000493 .. method:: from_float(f)
494
495 Classmethod that converts a float to a decimal number, exactly.
496
497 Note `Decimal.from_float(0.1)` is not the same as `Decimal('0.1')`.
498 Since 0.1 is not exactly representable in binary floating point, the
499 value is stored as the nearest representable value which is
500 `0x1.999999999999ap-4`. That equivalent value in decimal is
501 `0.1000000000000000055511151231257827021181583404541015625`.
502
503 .. doctest::
504
505 >>> Decimal.from_float(0.1)
506 Decimal('0.1000000000000000055511151231257827021181583404541015625')
507 >>> Decimal.from_float(float('nan'))
508 Decimal('NaN')
509 >>> Decimal.from_float(float('inf'))
510 Decimal('Infinity')
511 >>> Decimal.from_float(float('-inf'))
512 Decimal('-Infinity')
513
514 .. versionadded:: 2.7
515
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000516 .. method:: fma(other, third[, context])
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000517
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000518 Fused multiply-add. Return self*other+third with no rounding of the
519 intermediate product self*other.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000520
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000521 >>> Decimal(2).fma(3, 5)
522 Decimal('11')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000523
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000524 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000525
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000526 .. method:: is_canonical()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000527
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000528 Return :const:`True` if the argument is canonical and :const:`False`
529 otherwise. Currently, a :class:`Decimal` instance is always canonical, so
530 this operation always returns :const:`True`.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000531
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000532 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000533
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000534 .. method:: is_finite()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000535
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000536 Return :const:`True` if the argument is a finite number, and
537 :const:`False` if the argument is an infinity or a NaN.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000538
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000539 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000540
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000541 .. method:: is_infinite()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000542
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000543 Return :const:`True` if the argument is either positive or negative
544 infinity and :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000545
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000546 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000547
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000548 .. method:: is_nan()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000549
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000550 Return :const:`True` if the argument is a (quiet or signaling) NaN and
551 :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000552
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000553 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000554
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000555 .. method:: is_normal()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000556
Raymond Hettingereecd1dc62009-03-10 04:40:24 +0000557 Return :const:`True` if the argument is a *normal* finite non-zero
558 number with an adjusted exponent greater than or equal to *Emin*.
559 Return :const:`False` if the argument is zero, subnormal, infinite or a
560 NaN. Note, the term *normal* is used here in a different sense with
561 the :meth:`normalize` method which is used to create canonical values.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000562
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000563 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000564
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000565 .. method:: is_qnan()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000566
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000567 Return :const:`True` if the argument is a quiet NaN, and
568 :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000569
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000570 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000571
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000572 .. method:: is_signed()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000573
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000574 Return :const:`True` if the argument has a negative sign and
575 :const:`False` otherwise. Note that zeros and NaNs can both carry signs.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000576
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000577 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000578
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000579 .. method:: is_snan()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000580
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000581 Return :const:`True` if the argument is a signaling NaN and :const:`False`
582 otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000583
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000584 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000585
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000586 .. method:: is_subnormal()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000587
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000588 Return :const:`True` if the argument is subnormal, and :const:`False`
Raymond Hettingereecd1dc62009-03-10 04:40:24 +0000589 otherwise. A number is subnormal is if it is nonzero, finite, and has an
590 adjusted exponent less than *Emin*.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000591
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000592 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000593
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000594 .. method:: is_zero()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000595
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000596 Return :const:`True` if the argument is a (positive or negative) zero and
597 :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000598
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000599 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000600
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000601 .. method:: ln([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000602
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000603 Return the natural (base e) logarithm of the operand. The result is
604 correctly rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000605
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000606 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000607
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000608 .. method:: log10([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000609
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000610 Return the base ten logarithm of the operand. The result is correctly
611 rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000612
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000613 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000614
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000615 .. method:: logb([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000616
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000617 For a nonzero number, return the adjusted exponent of its operand as a
618 :class:`Decimal` instance. If the operand is a zero then
619 ``Decimal('-Infinity')`` is returned and the :const:`DivisionByZero` flag
620 is raised. If the operand is an infinity then ``Decimal('Infinity')`` is
621 returned.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000622
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000623 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000624
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000625 .. method:: logical_and(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000626
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000627 :meth:`logical_and` is a logical operation which takes two *logical
628 operands* (see :ref:`logical_operands_label`). The result is the
629 digit-wise ``and`` of the two operands.
630
631 .. versionadded:: 2.6
632
Georg Brandl3d5c87a2009-06-30 16:15:43 +0000633 .. method:: logical_invert([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000634
Georg Brandl3d5c87a2009-06-30 16:15:43 +0000635 :meth:`logical_invert` is a logical operation. The
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000636 result is the digit-wise inversion of the operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000637
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000638 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000639
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000640 .. method:: logical_or(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000641
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000642 :meth:`logical_or` is a logical operation which takes two *logical
643 operands* (see :ref:`logical_operands_label`). The result is the
644 digit-wise ``or`` of the two operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000645
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000646 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000647
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000648 .. method:: logical_xor(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000649
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000650 :meth:`logical_xor` is a logical operation which takes two *logical
651 operands* (see :ref:`logical_operands_label`). The result is the
652 digit-wise exclusive or of the two operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000653
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000654 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000655
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000656 .. method:: max(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000657
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000658 Like ``max(self, other)`` except that the context rounding rule is applied
659 before returning and that :const:`NaN` values are either signaled or
660 ignored (depending on the context and whether they are signaling or
661 quiet).
Georg Brandl8ec7f652007-08-15 14:28:01 +0000662
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000663 .. method:: max_mag(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000664
Georg Brandl9fa61bb2009-07-26 14:19:57 +0000665 Similar to the :meth:`.max` method, but the comparison is done using the
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000666 absolute values of the operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000667
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000668 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000669
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000670 .. method:: min(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000671
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000672 Like ``min(self, other)`` except that the context rounding rule is applied
673 before returning and that :const:`NaN` values are either signaled or
674 ignored (depending on the context and whether they are signaling or
675 quiet).
Georg Brandl8ec7f652007-08-15 14:28:01 +0000676
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000677 .. method:: min_mag(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000678
Georg Brandl9fa61bb2009-07-26 14:19:57 +0000679 Similar to the :meth:`.min` method, but the comparison is done using the
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000680 absolute values of the operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000681
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000682 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000683
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000684 .. method:: next_minus([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000685
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000686 Return the largest number representable in the given context (or in the
687 current thread's context if no context is given) that is smaller than the
688 given operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000689
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000690 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000691
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000692 .. method:: next_plus([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000693
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000694 Return the smallest number representable in the given context (or in the
695 current thread's context if no context is given) that is larger than the
696 given operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000697
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000698 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000699
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000700 .. method:: next_toward(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000701
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000702 If the two operands are unequal, return the number closest to the first
703 operand in the direction of the second operand. If both operands are
704 numerically equal, return a copy of the first operand with the sign set to
705 be the same as the sign of the second operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000706
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000707 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000708
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000709 .. method:: normalize([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000710
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000711 Normalize the number by stripping the rightmost trailing zeros and
712 converting any result equal to :const:`Decimal('0')` to
713 :const:`Decimal('0e0')`. Used for producing canonical values for members
714 of an equivalence class. For example, ``Decimal('32.100')`` and
715 ``Decimal('0.321000e+2')`` both normalize to the equivalent value
716 ``Decimal('32.1')``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000717
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000718 .. method:: number_class([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000719
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000720 Return a string describing the *class* of the operand. The returned value
721 is one of the following ten strings.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000722
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000723 * ``"-Infinity"``, indicating that the operand is negative infinity.
724 * ``"-Normal"``, indicating that the operand is a negative normal number.
725 * ``"-Subnormal"``, indicating that the operand is negative and subnormal.
726 * ``"-Zero"``, indicating that the operand is a negative zero.
727 * ``"+Zero"``, indicating that the operand is a positive zero.
728 * ``"+Subnormal"``, indicating that the operand is positive and subnormal.
729 * ``"+Normal"``, indicating that the operand is a positive normal number.
730 * ``"+Infinity"``, indicating that the operand is positive infinity.
731 * ``"NaN"``, indicating that the operand is a quiet NaN (Not a Number).
732 * ``"sNaN"``, indicating that the operand is a signaling NaN.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000733
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000734 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000735
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000736 .. method:: quantize(exp[, rounding[, context[, watchexp]]])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000737
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000738 Return a value equal to the first operand after rounding and having the
739 exponent of the second operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000740
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000741 >>> Decimal('1.41421356').quantize(Decimal('1.000'))
742 Decimal('1.414')
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000743
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000744 Unlike other operations, if the length of the coefficient after the
745 quantize operation would be greater than precision, then an
746 :const:`InvalidOperation` is signaled. This guarantees that, unless there
747 is an error condition, the quantized exponent is always equal to that of
748 the right-hand operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000749
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000750 Also unlike other operations, quantize never signals Underflow, even if
751 the result is subnormal and inexact.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000752
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000753 If the exponent of the second operand is larger than that of the first
754 then rounding may be necessary. In this case, the rounding mode is
755 determined by the ``rounding`` argument if given, else by the given
756 ``context`` argument; if neither argument is given the rounding mode of
757 the current thread's context is used.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000758
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000759 If *watchexp* is set (default), then an error is returned whenever the
760 resulting exponent is greater than :attr:`Emax` or less than
761 :attr:`Etiny`.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000762
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000763 .. method:: radix()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000764
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000765 Return ``Decimal(10)``, the radix (base) in which the :class:`Decimal`
766 class does all its arithmetic. Included for compatibility with the
767 specification.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000768
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000769 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000770
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000771 .. method:: remainder_near(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000772
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000773 Compute the modulo as either a positive or negative value depending on
774 which is closest to zero. For instance, ``Decimal(10).remainder_near(6)``
775 returns ``Decimal('-2')`` which is closer to zero than ``Decimal('4')``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000776
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000777 If both are equally close, the one chosen will have the same sign as
778 *self*.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000779
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000780 .. method:: rotate(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000781
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000782 Return the result of rotating the digits of the first operand by an amount
783 specified by the second operand. The second operand must be an integer in
784 the range -precision through precision. The absolute value of the second
785 operand gives the number of places to rotate. If the second operand is
786 positive then rotation is to the left; otherwise rotation is to the right.
787 The coefficient of the first operand is padded on the left with zeros to
788 length precision if necessary. The sign and exponent of the first operand
789 are unchanged.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000790
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000791 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000792
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000793 .. method:: same_quantum(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000794
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000795 Test whether self and other have the same exponent or whether both are
796 :const:`NaN`.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000797
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000798 .. method:: scaleb(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000799
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000800 Return the first operand with exponent adjusted by the second.
801 Equivalently, return the first operand multiplied by ``10**other``. The
802 second operand must be an integer.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000803
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000804 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000805
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000806 .. method:: shift(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000807
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000808 Return the result of shifting the digits of the first operand by an amount
809 specified by the second operand. The second operand must be an integer in
810 the range -precision through precision. The absolute value of the second
811 operand gives the number of places to shift. If the second operand is
812 positive then the shift is to the left; otherwise the shift is to the
813 right. Digits shifted into the coefficient are zeros. The sign and
814 exponent of the first operand are unchanged.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000815
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000816 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000817
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000818 .. method:: sqrt([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000819
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000820 Return the square root of the argument to full precision.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000821
822
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000823 .. method:: to_eng_string([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000824
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000825 Convert to an engineering-type string.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000826
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000827 Engineering notation has an exponent which is a multiple of 3, so there
828 are up to 3 digits left of the decimal place. For example, converts
829 ``Decimal('123E+1')`` to ``Decimal('1.23E+3')``
Georg Brandl8ec7f652007-08-15 14:28:01 +0000830
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000831 .. method:: to_integral([rounding[, context]])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000832
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000833 Identical to the :meth:`to_integral_value` method. The ``to_integral``
834 name has been kept for compatibility with older versions.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000835
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000836 .. method:: to_integral_exact([rounding[, context]])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000837
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000838 Round to the nearest integer, signaling :const:`Inexact` or
839 :const:`Rounded` as appropriate if rounding occurs. The rounding mode is
840 determined by the ``rounding`` parameter if given, else by the given
841 ``context``. If neither parameter is given then the rounding mode of the
842 current context is used.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000843
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000844 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000845
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000846 .. method:: to_integral_value([rounding[, context]])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000847
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000848 Round to the nearest integer without signaling :const:`Inexact` or
849 :const:`Rounded`. If given, applies *rounding*; otherwise, uses the
850 rounding method in either the supplied *context* or the current context.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000851
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000852 .. versionchanged:: 2.6
853 renamed from ``to_integral`` to ``to_integral_value``. The old name
854 remains valid for compatibility.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000855
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000856.. _logical_operands_label:
857
858Logical operands
859^^^^^^^^^^^^^^^^
860
861The :meth:`logical_and`, :meth:`logical_invert`, :meth:`logical_or`,
862and :meth:`logical_xor` methods expect their arguments to be *logical
863operands*. A *logical operand* is a :class:`Decimal` instance whose
864exponent and sign are both zero, and whose digits are all either
865:const:`0` or :const:`1`.
866
Georg Brandlb19be572007-12-29 10:57:00 +0000867.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +0000868
869
870.. _decimal-context:
871
872Context objects
873---------------
874
875Contexts are environments for arithmetic operations. They govern precision, set
876rules for rounding, determine which signals are treated as exceptions, and limit
877the range for exponents.
878
879Each thread has its own current context which is accessed or changed using the
880:func:`getcontext` and :func:`setcontext` functions:
881
882
883.. function:: getcontext()
884
885 Return the current context for the active thread.
886
887
888.. function:: setcontext(c)
889
890 Set the current context for the active thread to *c*.
891
892Beginning with Python 2.5, you can also use the :keyword:`with` statement and
893the :func:`localcontext` function to temporarily change the active context.
894
895
896.. function:: localcontext([c])
897
898 Return a context manager that will set the current context for the active thread
899 to a copy of *c* on entry to the with-statement and restore the previous context
900 when exiting the with-statement. If no context is specified, a copy of the
901 current context is used.
902
903 .. versionadded:: 2.5
904
905 For example, the following code sets the current decimal precision to 42 places,
906 performs a calculation, and then automatically restores the previous context::
907
Georg Brandl8ec7f652007-08-15 14:28:01 +0000908 from decimal import localcontext
909
910 with localcontext() as ctx:
911 ctx.prec = 42 # Perform a high precision calculation
912 s = calculate_something()
913 s = +s # Round the final result back to the default precision
914
915New contexts can also be created using the :class:`Context` constructor
916described below. In addition, the module provides three pre-made contexts:
917
918
919.. class:: BasicContext
920
921 This is a standard context defined by the General Decimal Arithmetic
922 Specification. Precision is set to nine. Rounding is set to
923 :const:`ROUND_HALF_UP`. All flags are cleared. All traps are enabled (treated
924 as exceptions) except :const:`Inexact`, :const:`Rounded`, and
925 :const:`Subnormal`.
926
927 Because many of the traps are enabled, this context is useful for debugging.
928
929
930.. class:: ExtendedContext
931
932 This is a standard context defined by the General Decimal Arithmetic
933 Specification. Precision is set to nine. Rounding is set to
934 :const:`ROUND_HALF_EVEN`. All flags are cleared. No traps are enabled (so that
935 exceptions are not raised during computations).
936
Mark Dickinson3a94ee02008-02-10 15:19:58 +0000937 Because the traps are disabled, this context is useful for applications that
Georg Brandl8ec7f652007-08-15 14:28:01 +0000938 prefer to have result value of :const:`NaN` or :const:`Infinity` instead of
939 raising exceptions. This allows an application to complete a run in the
940 presence of conditions that would otherwise halt the program.
941
942
943.. class:: DefaultContext
944
945 This context is used by the :class:`Context` constructor as a prototype for new
946 contexts. Changing a field (such a precision) has the effect of changing the
947 default for new contexts creating by the :class:`Context` constructor.
948
949 This context is most useful in multi-threaded environments. Changing one of the
950 fields before threads are started has the effect of setting system-wide
951 defaults. Changing the fields after threads have started is not recommended as
952 it would require thread synchronization to prevent race conditions.
953
954 In single threaded environments, it is preferable to not use this context at
955 all. Instead, simply create contexts explicitly as described below.
956
957 The default values are precision=28, rounding=ROUND_HALF_EVEN, and enabled traps
958 for Overflow, InvalidOperation, and DivisionByZero.
959
960In addition to the three supplied contexts, new contexts can be created with the
961:class:`Context` constructor.
962
963
964.. class:: Context(prec=None, rounding=None, traps=None, flags=None, Emin=None, Emax=None, capitals=1)
965
966 Creates a new context. If a field is not specified or is :const:`None`, the
967 default values are copied from the :const:`DefaultContext`. If the *flags*
968 field is not specified or is :const:`None`, all flags are cleared.
969
970 The *prec* field is a positive integer that sets the precision for arithmetic
971 operations in the context.
972
973 The *rounding* option is one of:
974
975 * :const:`ROUND_CEILING` (towards :const:`Infinity`),
976 * :const:`ROUND_DOWN` (towards zero),
977 * :const:`ROUND_FLOOR` (towards :const:`-Infinity`),
978 * :const:`ROUND_HALF_DOWN` (to nearest with ties going towards zero),
979 * :const:`ROUND_HALF_EVEN` (to nearest with ties going to nearest even integer),
980 * :const:`ROUND_HALF_UP` (to nearest with ties going away from zero), or
981 * :const:`ROUND_UP` (away from zero).
Georg Brandlc62ef8b2009-01-03 20:55:06 +0000982 * :const:`ROUND_05UP` (away from zero if last digit after rounding towards zero
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000983 would have been 0 or 5; otherwise towards zero)
Georg Brandl8ec7f652007-08-15 14:28:01 +0000984
985 The *traps* and *flags* fields list any signals to be set. Generally, new
986 contexts should only set traps and leave the flags clear.
987
988 The *Emin* and *Emax* fields are integers specifying the outer limits allowable
989 for exponents.
990
991 The *capitals* field is either :const:`0` or :const:`1` (the default). If set to
992 :const:`1`, exponents are printed with a capital :const:`E`; otherwise, a
993 lowercase :const:`e` is used: :const:`Decimal('6.02e+23')`.
994
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000995 .. versionchanged:: 2.6
996 The :const:`ROUND_05UP` rounding mode was added.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000997
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000998 The :class:`Context` class defines several general purpose methods as well as
999 a large number of methods for doing arithmetic directly in a given context.
1000 In addition, for each of the :class:`Decimal` methods described above (with
1001 the exception of the :meth:`adjusted` and :meth:`as_tuple` methods) there is
Mark Dickinson6d8effb2010-02-18 14:27:02 +00001002 a corresponding :class:`Context` method. For example, for a :class:`Context`
1003 instance ``C`` and :class:`Decimal` instance ``x``, ``C.exp(x)`` is
1004 equivalent to ``x.exp(context=C)``. Each :class:`Context` method accepts a
1005 Python integer (an instance of :class:`int` or :class:`long`) anywhere that a
1006 Decimal instance is accepted.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001007
1008
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001009 .. method:: clear_flags()
Georg Brandl8ec7f652007-08-15 14:28:01 +00001010
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001011 Resets all of the flags to :const:`0`.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001012
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001013 .. method:: copy()
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001014
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001015 Return a duplicate of the context.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001016
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001017 .. method:: copy_decimal(num)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001018
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001019 Return a copy of the Decimal instance num.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001020
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001021 .. method:: create_decimal(num)
Georg Brandl9f662322008-03-22 11:47:10 +00001022
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001023 Creates a new Decimal instance from *num* but using *self* as
1024 context. Unlike the :class:`Decimal` constructor, the context precision,
1025 rounding method, flags, and traps are applied to the conversion.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001026
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001027 This is useful because constants are often given to a greater precision
1028 than is needed by the application. Another benefit is that rounding
1029 immediately eliminates unintended effects from digits beyond the current
1030 precision. In the following example, using unrounded inputs means that
1031 adding zero to a sum can change the result:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001032
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001033 .. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001034
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001035 >>> getcontext().prec = 3
1036 >>> Decimal('3.4445') + Decimal('1.0023')
1037 Decimal('4.45')
1038 >>> Decimal('3.4445') + Decimal(0) + Decimal('1.0023')
1039 Decimal('4.44')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001040
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001041 This method implements the to-number operation of the IBM specification.
1042 If the argument is a string, no leading or trailing whitespace is
1043 permitted.
1044
Georg Brandlaa5bb322009-01-03 19:44:48 +00001045 .. method:: create_decimal_from_float(f)
Raymond Hettingerf4d85972009-01-03 19:02:23 +00001046
1047 Creates a new Decimal instance from a float *f* but rounding using *self*
Georg Brandla24067e2009-01-03 20:15:14 +00001048 as the context. Unlike the :meth:`Decimal.from_float` class method,
Raymond Hettingerf4d85972009-01-03 19:02:23 +00001049 the context precision, rounding method, flags, and traps are applied to
1050 the conversion.
1051
1052 .. doctest::
1053
Georg Brandlaa5bb322009-01-03 19:44:48 +00001054 >>> context = Context(prec=5, rounding=ROUND_DOWN)
1055 >>> context.create_decimal_from_float(math.pi)
1056 Decimal('3.1415')
1057 >>> context = Context(prec=5, traps=[Inexact])
1058 >>> context.create_decimal_from_float(math.pi)
1059 Traceback (most recent call last):
1060 ...
1061 Inexact: None
Raymond Hettingerf4d85972009-01-03 19:02:23 +00001062
1063 .. versionadded:: 2.7
1064
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001065 .. method:: Etiny()
1066
1067 Returns a value equal to ``Emin - prec + 1`` which is the minimum exponent
1068 value for subnormal results. When underflow occurs, the exponent is set
1069 to :const:`Etiny`.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001070
1071
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001072 .. method:: Etop()
Georg Brandl8ec7f652007-08-15 14:28:01 +00001073
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001074 Returns a value equal to ``Emax - prec + 1``.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001075
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001076 The usual approach to working with decimals is to create :class:`Decimal`
1077 instances and then apply arithmetic operations which take place within the
1078 current context for the active thread. An alternative approach is to use
1079 context methods for calculating within a specific context. The methods are
1080 similar to those for the :class:`Decimal` class and are only briefly
1081 recounted here.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001082
1083
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001084 .. method:: abs(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001085
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001086 Returns the absolute value of *x*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001087
1088
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001089 .. method:: add(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001090
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001091 Return the sum of *x* and *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001092
1093
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001094 .. method:: canonical(x)
1095
1096 Returns the same Decimal object *x*.
1097
1098
1099 .. method:: compare(x, y)
1100
1101 Compares *x* and *y* numerically.
1102
1103
1104 .. method:: compare_signal(x, y)
1105
1106 Compares the values of the two operands numerically.
1107
1108
1109 .. method:: compare_total(x, y)
1110
1111 Compares two operands using their abstract representation.
1112
1113
1114 .. method:: compare_total_mag(x, y)
1115
1116 Compares two operands using their abstract representation, ignoring sign.
1117
1118
1119 .. method:: copy_abs(x)
1120
1121 Returns a copy of *x* with the sign set to 0.
1122
1123
1124 .. method:: copy_negate(x)
1125
1126 Returns a copy of *x* with the sign inverted.
1127
1128
1129 .. method:: copy_sign(x, y)
1130
1131 Copies the sign from *y* to *x*.
1132
1133
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001134 .. method:: divide(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001135
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001136 Return *x* divided by *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001137
1138
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001139 .. method:: divide_int(x, y)
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001140
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001141 Return *x* divided by *y*, truncated to an integer.
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001142
1143
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001144 .. method:: divmod(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001145
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001146 Divides two numbers and returns the integer part of the result.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001147
1148
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001149 .. method:: exp(x)
1150
1151 Returns `e ** x`.
1152
1153
1154 .. method:: fma(x, y, z)
1155
1156 Returns *x* multiplied by *y*, plus *z*.
1157
1158
1159 .. method:: is_canonical(x)
1160
1161 Returns True if *x* is canonical; otherwise returns False.
1162
1163
1164 .. method:: is_finite(x)
1165
1166 Returns True if *x* is finite; otherwise returns False.
1167
1168
1169 .. method:: is_infinite(x)
1170
1171 Returns True if *x* is infinite; otherwise returns False.
1172
1173
1174 .. method:: is_nan(x)
1175
1176 Returns True if *x* is a qNaN or sNaN; otherwise returns False.
1177
1178
1179 .. method:: is_normal(x)
1180
1181 Returns True if *x* is a normal number; otherwise returns False.
1182
1183
1184 .. method:: is_qnan(x)
1185
1186 Returns True if *x* is a quiet NaN; otherwise returns False.
1187
1188
1189 .. method:: is_signed(x)
1190
1191 Returns True if *x* is negative; otherwise returns False.
1192
1193
1194 .. method:: is_snan(x)
1195
1196 Returns True if *x* is a signaling NaN; otherwise returns False.
1197
1198
1199 .. method:: is_subnormal(x)
1200
1201 Returns True if *x* is subnormal; otherwise returns False.
1202
1203
1204 .. method:: is_zero(x)
1205
1206 Returns True if *x* is a zero; otherwise returns False.
1207
1208
1209 .. method:: ln(x)
1210
1211 Returns the natural (base e) logarithm of *x*.
1212
1213
1214 .. method:: log10(x)
1215
1216 Returns the base 10 logarithm of *x*.
1217
1218
1219 .. method:: logb(x)
1220
1221 Returns the exponent of the magnitude of the operand's MSD.
1222
1223
1224 .. method:: logical_and(x, y)
1225
Georg Brandle92818f2009-01-03 20:47:01 +00001226 Applies the logical operation *and* between each operand's digits.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001227
1228
1229 .. method:: logical_invert(x)
1230
1231 Invert all the digits in *x*.
1232
1233
1234 .. method:: logical_or(x, y)
1235
Georg Brandle92818f2009-01-03 20:47:01 +00001236 Applies the logical operation *or* between each operand's digits.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001237
1238
1239 .. method:: logical_xor(x, y)
1240
Georg Brandle92818f2009-01-03 20:47:01 +00001241 Applies the logical operation *xor* between each operand's digits.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001242
1243
1244 .. method:: max(x, y)
1245
1246 Compares two values numerically and returns the maximum.
1247
1248
1249 .. method:: max_mag(x, y)
1250
1251 Compares the values numerically with their sign ignored.
1252
1253
1254 .. method:: min(x, y)
1255
1256 Compares two values numerically and returns the minimum.
1257
1258
1259 .. method:: min_mag(x, y)
1260
1261 Compares the values numerically with their sign ignored.
1262
1263
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001264 .. method:: minus(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001265
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001266 Minus corresponds to the unary prefix minus operator in Python.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001267
1268
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001269 .. method:: multiply(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001270
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001271 Return the product of *x* and *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001272
1273
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001274 .. method:: next_minus(x)
1275
1276 Returns the largest representable number smaller than *x*.
1277
1278
1279 .. method:: next_plus(x)
1280
1281 Returns the smallest representable number larger than *x*.
1282
1283
1284 .. method:: next_toward(x, y)
1285
1286 Returns the number closest to *x*, in direction towards *y*.
1287
1288
1289 .. method:: normalize(x)
1290
1291 Reduces *x* to its simplest form.
1292
1293
1294 .. method:: number_class(x)
1295
1296 Returns an indication of the class of *x*.
1297
1298
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001299 .. method:: plus(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001300
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001301 Plus corresponds to the unary prefix plus operator in Python. This
1302 operation applies the context precision and rounding, so it is *not* an
1303 identity operation.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001304
1305
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001306 .. method:: power(x, y[, modulo])
Georg Brandl8ec7f652007-08-15 14:28:01 +00001307
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001308 Return ``x`` to the power of ``y``, reduced modulo ``modulo`` if given.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001309
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001310 With two arguments, compute ``x**y``. If ``x`` is negative then ``y``
1311 must be integral. The result will be inexact unless ``y`` is integral and
1312 the result is finite and can be expressed exactly in 'precision' digits.
1313 The result should always be correctly rounded, using the rounding mode of
1314 the current thread's context.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001315
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001316 With three arguments, compute ``(x**y) % modulo``. For the three argument
1317 form, the following restrictions on the arguments hold:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001318
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001319 - all three arguments must be integral
1320 - ``y`` must be nonnegative
1321 - at least one of ``x`` or ``y`` must be nonzero
1322 - ``modulo`` must be nonzero and have at most 'precision' digits
Georg Brandl8ec7f652007-08-15 14:28:01 +00001323
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001324 The result of ``Context.power(x, y, modulo)`` is identical to the result
1325 that would be obtained by computing ``(x**y) % modulo`` with unbounded
1326 precision, but is computed more efficiently. It is always exact.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001327
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001328 .. versionchanged:: 2.6
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001329 ``y`` may now be nonintegral in ``x**y``.
1330 Stricter requirements for the three-argument version.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001331
1332
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001333 .. method:: quantize(x, y)
1334
1335 Returns a value equal to *x* (rounded), having the exponent of *y*.
1336
1337
1338 .. method:: radix()
1339
1340 Just returns 10, as this is Decimal, :)
1341
1342
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001343 .. method:: remainder(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001344
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001345 Returns the remainder from integer division.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001346
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001347 The sign of the result, if non-zero, is the same as that of the original
1348 dividend.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001349
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001350 .. method:: remainder_near(x, y)
1351
Georg Brandle92818f2009-01-03 20:47:01 +00001352 Returns ``x - y * n``, where *n* is the integer nearest the exact value
1353 of ``x / y`` (if the result is 0 then its sign will be the sign of *x*).
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001354
1355
1356 .. method:: rotate(x, y)
1357
1358 Returns a rotated copy of *x*, *y* times.
1359
1360
1361 .. method:: same_quantum(x, y)
1362
1363 Returns True if the two operands have the same exponent.
1364
1365
1366 .. method:: scaleb (x, y)
1367
1368 Returns the first operand after adding the second value its exp.
1369
1370
1371 .. method:: shift(x, y)
1372
1373 Returns a shifted copy of *x*, *y* times.
1374
1375
1376 .. method:: sqrt(x)
1377
1378 Square root of a non-negative number to context precision.
1379
1380
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001381 .. method:: subtract(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001382
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001383 Return the difference between *x* and *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001384
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001385
1386 .. method:: to_eng_string(x)
1387
1388 Converts a number to a string, using scientific notation.
1389
1390
1391 .. method:: to_integral_exact(x)
1392
1393 Rounds to an integer.
1394
1395
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001396 .. method:: to_sci_string(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001397
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001398 Converts a number to a string using scientific notation.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001399
Georg Brandlb19be572007-12-29 10:57:00 +00001400.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001401
1402
1403.. _decimal-signals:
1404
1405Signals
1406-------
1407
1408Signals represent conditions that arise during computation. Each corresponds to
1409one context flag and one context trap enabler.
1410
Mark Dickinson1840c1a2008-05-03 18:23:14 +00001411The context flag is set whenever the condition is encountered. After the
Georg Brandl8ec7f652007-08-15 14:28:01 +00001412computation, flags may be checked for informational purposes (for instance, to
1413determine whether a computation was exact). After checking the flags, be sure to
1414clear all flags before starting the next computation.
1415
1416If the context's trap enabler is set for the signal, then the condition causes a
1417Python exception to be raised. For example, if the :class:`DivisionByZero` trap
1418is set, then a :exc:`DivisionByZero` exception is raised upon encountering the
1419condition.
1420
1421
1422.. class:: Clamped
1423
1424 Altered an exponent to fit representation constraints.
1425
1426 Typically, clamping occurs when an exponent falls outside the context's
1427 :attr:`Emin` and :attr:`Emax` limits. If possible, the exponent is reduced to
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001428 fit by adding zeros to the coefficient.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001429
1430
1431.. class:: DecimalException
1432
1433 Base class for other signals and a subclass of :exc:`ArithmeticError`.
1434
1435
1436.. class:: DivisionByZero
1437
1438 Signals the division of a non-infinite number by zero.
1439
1440 Can occur with division, modulo division, or when raising a number to a negative
1441 power. If this signal is not trapped, returns :const:`Infinity` or
1442 :const:`-Infinity` with the sign determined by the inputs to the calculation.
1443
1444
1445.. class:: Inexact
1446
1447 Indicates that rounding occurred and the result is not exact.
1448
1449 Signals when non-zero digits were discarded during rounding. The rounded result
1450 is returned. The signal flag or trap is used to detect when results are
1451 inexact.
1452
1453
1454.. class:: InvalidOperation
1455
1456 An invalid operation was performed.
1457
1458 Indicates that an operation was requested that does not make sense. If not
1459 trapped, returns :const:`NaN`. Possible causes include::
1460
1461 Infinity - Infinity
1462 0 * Infinity
1463 Infinity / Infinity
1464 x % 0
1465 Infinity % x
1466 x._rescale( non-integer )
1467 sqrt(-x) and x > 0
1468 0 ** 0
1469 x ** (non-integer)
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001470 x ** Infinity
Georg Brandl8ec7f652007-08-15 14:28:01 +00001471
1472
1473.. class:: Overflow
1474
1475 Numerical overflow.
1476
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001477 Indicates the exponent is larger than :attr:`Emax` after rounding has
1478 occurred. If not trapped, the result depends on the rounding mode, either
1479 pulling inward to the largest representable finite number or rounding outward
1480 to :const:`Infinity`. In either case, :class:`Inexact` and :class:`Rounded`
1481 are also signaled.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001482
1483
1484.. class:: Rounded
1485
1486 Rounding occurred though possibly no information was lost.
1487
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001488 Signaled whenever rounding discards digits; even if those digits are zero
1489 (such as rounding :const:`5.00` to :const:`5.0`). If not trapped, returns
1490 the result unchanged. This signal is used to detect loss of significant
1491 digits.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001492
1493
1494.. class:: Subnormal
1495
1496 Exponent was lower than :attr:`Emin` prior to rounding.
1497
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001498 Occurs when an operation result is subnormal (the exponent is too small). If
1499 not trapped, returns the result unchanged.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001500
1501
1502.. class:: Underflow
1503
1504 Numerical underflow with result rounded to zero.
1505
1506 Occurs when a subnormal result is pushed to zero by rounding. :class:`Inexact`
1507 and :class:`Subnormal` are also signaled.
1508
1509The following table summarizes the hierarchy of signals::
1510
1511 exceptions.ArithmeticError(exceptions.StandardError)
1512 DecimalException
1513 Clamped
1514 DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
1515 Inexact
1516 Overflow(Inexact, Rounded)
1517 Underflow(Inexact, Rounded, Subnormal)
1518 InvalidOperation
1519 Rounded
1520 Subnormal
1521
Georg Brandlb19be572007-12-29 10:57:00 +00001522.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001523
1524
1525.. _decimal-notes:
1526
1527Floating Point Notes
1528--------------------
1529
1530
1531Mitigating round-off error with increased precision
1532^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1533
1534The use of decimal floating point eliminates decimal representation error
1535(making it possible to represent :const:`0.1` exactly); however, some operations
1536can still incur round-off error when non-zero digits exceed the fixed precision.
1537
1538The effects of round-off error can be amplified by the addition or subtraction
1539of nearly offsetting quantities resulting in loss of significance. Knuth
1540provides two instructive examples where rounded floating point arithmetic with
1541insufficient precision causes the breakdown of the associative and distributive
Georg Brandl9f662322008-03-22 11:47:10 +00001542properties of addition:
1543
1544.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001545
1546 # Examples from Seminumerical Algorithms, Section 4.2.2.
1547 >>> from decimal import Decimal, getcontext
1548 >>> getcontext().prec = 8
1549
1550 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1551 >>> (u + v) + w
Raymond Hettingerabe32372008-02-14 02:41:22 +00001552 Decimal('9.5111111')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001553 >>> u + (v + w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001554 Decimal('10')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001555
1556 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1557 >>> (u*v) + (u*w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001558 Decimal('0.01')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001559 >>> u * (v+w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001560 Decimal('0.0060000')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001561
1562The :mod:`decimal` module makes it possible to restore the identities by
Georg Brandl9f662322008-03-22 11:47:10 +00001563expanding the precision sufficiently to avoid loss of significance:
1564
1565.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001566
1567 >>> getcontext().prec = 20
1568 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1569 >>> (u + v) + w
Raymond Hettingerabe32372008-02-14 02:41:22 +00001570 Decimal('9.51111111')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001571 >>> u + (v + w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001572 Decimal('9.51111111')
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001573 >>>
Georg Brandl8ec7f652007-08-15 14:28:01 +00001574 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1575 >>> (u*v) + (u*w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001576 Decimal('0.0060000')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001577 >>> u * (v+w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001578 Decimal('0.0060000')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001579
1580
1581Special values
1582^^^^^^^^^^^^^^
1583
1584The number system for the :mod:`decimal` module provides special values
1585including :const:`NaN`, :const:`sNaN`, :const:`-Infinity`, :const:`Infinity`,
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001586and two zeros, :const:`+0` and :const:`-0`.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001587
1588Infinities can be constructed directly with: ``Decimal('Infinity')``. Also,
1589they can arise from dividing by zero when the :exc:`DivisionByZero` signal is
1590not trapped. Likewise, when the :exc:`Overflow` signal is not trapped, infinity
1591can result from rounding beyond the limits of the largest representable number.
1592
1593The infinities are signed (affine) and can be used in arithmetic operations
1594where they get treated as very large, indeterminate numbers. For instance,
1595adding a constant to infinity gives another infinite result.
1596
1597Some operations are indeterminate and return :const:`NaN`, or if the
1598:exc:`InvalidOperation` signal is trapped, raise an exception. For example,
1599``0/0`` returns :const:`NaN` which means "not a number". This variety of
1600:const:`NaN` is quiet and, once created, will flow through other computations
1601always resulting in another :const:`NaN`. This behavior can be useful for a
1602series of computations that occasionally have missing inputs --- it allows the
1603calculation to proceed while flagging specific results as invalid.
1604
1605A variant is :const:`sNaN` which signals rather than remaining quiet after every
1606operation. This is a useful return value when an invalid result needs to
1607interrupt a calculation for special handling.
1608
Mark Dickinson2fc92632008-02-06 22:10:50 +00001609The behavior of Python's comparison operators can be a little surprising where a
1610:const:`NaN` is involved. A test for equality where one of the operands is a
1611quiet or signaling :const:`NaN` always returns :const:`False` (even when doing
1612``Decimal('NaN')==Decimal('NaN')``), while a test for inequality always returns
Mark Dickinsonbafa9422008-02-06 22:25:16 +00001613:const:`True`. An attempt to compare two Decimals using any of the ``<``,
Mark Dickinson00c2e652008-02-07 01:42:06 +00001614``<=``, ``>`` or ``>=`` operators will raise the :exc:`InvalidOperation` signal
1615if either operand is a :const:`NaN`, and return :const:`False` if this signal is
Mark Dickinson3a94ee02008-02-10 15:19:58 +00001616not trapped. Note that the General Decimal Arithmetic specification does not
Mark Dickinson00c2e652008-02-07 01:42:06 +00001617specify the behavior of direct comparisons; these rules for comparisons
1618involving a :const:`NaN` were taken from the IEEE 854 standard (see Table 3 in
1619section 5.7). To ensure strict standards-compliance, use the :meth:`compare`
Mark Dickinson2fc92632008-02-06 22:10:50 +00001620and :meth:`compare-signal` methods instead.
1621
Georg Brandl8ec7f652007-08-15 14:28:01 +00001622The signed zeros can result from calculations that underflow. They keep the sign
1623that would have resulted if the calculation had been carried out to greater
1624precision. Since their magnitude is zero, both positive and negative zeros are
1625treated as equal and their sign is informational.
1626
1627In addition to the two signed zeros which are distinct yet equal, there are
1628various representations of zero with differing precisions yet equivalent in
1629value. This takes a bit of getting used to. For an eye accustomed to
1630normalized floating point representations, it is not immediately obvious that
Georg Brandl9f662322008-03-22 11:47:10 +00001631the following calculation returns a value equal to zero:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001632
1633 >>> 1 / Decimal('Infinity')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001634 Decimal('0E-1000000026')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001635
Georg Brandlb19be572007-12-29 10:57:00 +00001636.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001637
1638
1639.. _decimal-threads:
1640
1641Working with threads
1642--------------------
1643
1644The :func:`getcontext` function accesses a different :class:`Context` object for
1645each thread. Having separate thread contexts means that threads may make
1646changes (such as ``getcontext.prec=10``) without interfering with other threads.
1647
1648Likewise, the :func:`setcontext` function automatically assigns its target to
1649the current thread.
1650
1651If :func:`setcontext` has not been called before :func:`getcontext`, then
1652:func:`getcontext` will automatically create a new context for use in the
1653current thread.
1654
1655The new context is copied from a prototype context called *DefaultContext*. To
1656control the defaults so that each thread will use the same values throughout the
1657application, directly modify the *DefaultContext* object. This should be done
1658*before* any threads are started so that there won't be a race condition between
1659threads calling :func:`getcontext`. For example::
1660
1661 # Set applicationwide defaults for all threads about to be launched
1662 DefaultContext.prec = 12
1663 DefaultContext.rounding = ROUND_DOWN
1664 DefaultContext.traps = ExtendedContext.traps.copy()
1665 DefaultContext.traps[InvalidOperation] = 1
1666 setcontext(DefaultContext)
1667
1668 # Afterwards, the threads can be started
1669 t1.start()
1670 t2.start()
1671 t3.start()
1672 . . .
1673
Georg Brandlb19be572007-12-29 10:57:00 +00001674.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001675
1676
1677.. _decimal-recipes:
1678
1679Recipes
1680-------
1681
1682Here are a few recipes that serve as utility functions and that demonstrate ways
1683to work with the :class:`Decimal` class::
1684
1685 def moneyfmt(value, places=2, curr='', sep=',', dp='.',
1686 pos='', neg='-', trailneg=''):
1687 """Convert Decimal to a money formatted string.
1688
1689 places: required number of places after the decimal point
1690 curr: optional currency symbol before the sign (may be blank)
1691 sep: optional grouping separator (comma, period, space, or blank)
1692 dp: decimal point indicator (comma or period)
1693 only specify as blank when places is zero
1694 pos: optional sign for positive numbers: '+', space or blank
1695 neg: optional sign for negative numbers: '-', '(', space or blank
1696 trailneg:optional trailing minus indicator: '-', ')', space or blank
1697
1698 >>> d = Decimal('-1234567.8901')
1699 >>> moneyfmt(d, curr='$')
1700 '-$1,234,567.89'
1701 >>> moneyfmt(d, places=0, sep='.', dp='', neg='', trailneg='-')
1702 '1.234.568-'
1703 >>> moneyfmt(d, curr='$', neg='(', trailneg=')')
1704 '($1,234,567.89)'
1705 >>> moneyfmt(Decimal(123456789), sep=' ')
1706 '123 456 789.00'
1707 >>> moneyfmt(Decimal('-0.02'), neg='<', trailneg='>')
Raymond Hettinger5eaffc42008-04-17 10:48:31 +00001708 '<0.02>'
Georg Brandl8ec7f652007-08-15 14:28:01 +00001709
1710 """
Raymond Hettinger0cd71702008-02-14 12:49:37 +00001711 q = Decimal(10) ** -places # 2 places --> '0.01'
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001712 sign, digits, exp = value.quantize(q).as_tuple()
Georg Brandl8ec7f652007-08-15 14:28:01 +00001713 result = []
1714 digits = map(str, digits)
1715 build, next = result.append, digits.pop
1716 if sign:
1717 build(trailneg)
1718 for i in range(places):
Raymond Hettinger0cd71702008-02-14 12:49:37 +00001719 build(next() if digits else '0')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001720 build(dp)
Raymond Hettinger5eaffc42008-04-17 10:48:31 +00001721 if not digits:
1722 build('0')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001723 i = 0
1724 while digits:
1725 build(next())
1726 i += 1
1727 if i == 3 and digits:
1728 i = 0
1729 build(sep)
1730 build(curr)
Raymond Hettinger0cd71702008-02-14 12:49:37 +00001731 build(neg if sign else pos)
1732 return ''.join(reversed(result))
Georg Brandl8ec7f652007-08-15 14:28:01 +00001733
1734 def pi():
1735 """Compute Pi to the current precision.
1736
1737 >>> print pi()
1738 3.141592653589793238462643383
1739
1740 """
1741 getcontext().prec += 2 # extra digits for intermediate steps
1742 three = Decimal(3) # substitute "three=3.0" for regular floats
1743 lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
1744 while s != lasts:
1745 lasts = s
1746 n, na = n+na, na+8
1747 d, da = d+da, da+32
1748 t = (t * n) / d
1749 s += t
1750 getcontext().prec -= 2
1751 return +s # unary plus applies the new precision
1752
1753 def exp(x):
1754 """Return e raised to the power of x. Result type matches input type.
1755
1756 >>> print exp(Decimal(1))
1757 2.718281828459045235360287471
1758 >>> print exp(Decimal(2))
1759 7.389056098930650227230427461
1760 >>> print exp(2.0)
1761 7.38905609893
1762 >>> print exp(2+0j)
1763 (7.38905609893+0j)
1764
1765 """
1766 getcontext().prec += 2
1767 i, lasts, s, fact, num = 0, 0, 1, 1, 1
1768 while s != lasts:
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001769 lasts = s
Georg Brandl8ec7f652007-08-15 14:28:01 +00001770 i += 1
1771 fact *= i
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001772 num *= x
1773 s += num / fact
1774 getcontext().prec -= 2
Georg Brandl8ec7f652007-08-15 14:28:01 +00001775 return +s
1776
1777 def cos(x):
1778 """Return the cosine of x as measured in radians.
1779
1780 >>> print cos(Decimal('0.5'))
1781 0.8775825618903727161162815826
1782 >>> print cos(0.5)
1783 0.87758256189
1784 >>> print cos(0.5+0j)
1785 (0.87758256189+0j)
1786
1787 """
1788 getcontext().prec += 2
1789 i, lasts, s, fact, num, sign = 0, 0, 1, 1, 1, 1
1790 while s != lasts:
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001791 lasts = s
Georg Brandl8ec7f652007-08-15 14:28:01 +00001792 i += 2
1793 fact *= i * (i-1)
1794 num *= x * x
1795 sign *= -1
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001796 s += num / fact * sign
1797 getcontext().prec -= 2
Georg Brandl8ec7f652007-08-15 14:28:01 +00001798 return +s
1799
1800 def sin(x):
1801 """Return the sine of x as measured in radians.
1802
1803 >>> print sin(Decimal('0.5'))
1804 0.4794255386042030002732879352
1805 >>> print sin(0.5)
1806 0.479425538604
1807 >>> print sin(0.5+0j)
1808 (0.479425538604+0j)
1809
1810 """
1811 getcontext().prec += 2
1812 i, lasts, s, fact, num, sign = 1, 0, x, 1, x, 1
1813 while s != lasts:
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001814 lasts = s
Georg Brandl8ec7f652007-08-15 14:28:01 +00001815 i += 2
1816 fact *= i * (i-1)
1817 num *= x * x
1818 sign *= -1
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001819 s += num / fact * sign
1820 getcontext().prec -= 2
Georg Brandl8ec7f652007-08-15 14:28:01 +00001821 return +s
1822
1823
Georg Brandlb19be572007-12-29 10:57:00 +00001824.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001825
1826
1827.. _decimal-faq:
1828
1829Decimal FAQ
1830-----------
1831
1832Q. It is cumbersome to type ``decimal.Decimal('1234.5')``. Is there a way to
1833minimize typing when using the interactive interpreter?
1834
Georg Brandl9f662322008-03-22 11:47:10 +00001835A. Some users abbreviate the constructor to just a single letter:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001836
1837 >>> D = decimal.Decimal
1838 >>> D('1.23') + D('3.45')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001839 Decimal('4.68')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001840
1841Q. In a fixed-point application with two decimal places, some inputs have many
1842places and need to be rounded. Others are not supposed to have excess digits
1843and need to be validated. What methods should be used?
1844
1845A. The :meth:`quantize` method rounds to a fixed number of decimal places. If
Georg Brandl9f662322008-03-22 11:47:10 +00001846the :const:`Inexact` trap is set, it is also useful for validation:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001847
1848 >>> TWOPLACES = Decimal(10) ** -2 # same as Decimal('0.01')
1849
1850 >>> # Round to two places
Raymond Hettingerabe32372008-02-14 02:41:22 +00001851 >>> Decimal('3.214').quantize(TWOPLACES)
1852 Decimal('3.21')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001853
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001854 >>> # Validate that a number does not exceed two places
Raymond Hettingerabe32372008-02-14 02:41:22 +00001855 >>> Decimal('3.21').quantize(TWOPLACES, context=Context(traps=[Inexact]))
1856 Decimal('3.21')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001857
Raymond Hettingerabe32372008-02-14 02:41:22 +00001858 >>> Decimal('3.214').quantize(TWOPLACES, context=Context(traps=[Inexact]))
Georg Brandl8ec7f652007-08-15 14:28:01 +00001859 Traceback (most recent call last):
1860 ...
Georg Brandlf6dab952009-04-28 21:48:35 +00001861 Inexact: None
Georg Brandl8ec7f652007-08-15 14:28:01 +00001862
1863Q. Once I have valid two place inputs, how do I maintain that invariant
1864throughout an application?
1865
Raymond Hettinger46314812008-02-14 10:46:57 +00001866A. Some operations like addition, subtraction, and multiplication by an integer
1867will automatically preserve fixed point. Others operations, like division and
1868non-integer multiplication, will change the number of decimal places and need to
Georg Brandl9f662322008-03-22 11:47:10 +00001869be followed-up with a :meth:`quantize` step:
Raymond Hettinger46314812008-02-14 10:46:57 +00001870
1871 >>> a = Decimal('102.72') # Initial fixed-point values
1872 >>> b = Decimal('3.17')
1873 >>> a + b # Addition preserves fixed-point
1874 Decimal('105.89')
1875 >>> a - b
1876 Decimal('99.55')
1877 >>> a * 42 # So does integer multiplication
1878 Decimal('4314.24')
1879 >>> (a * b).quantize(TWOPLACES) # Must quantize non-integer multiplication
1880 Decimal('325.62')
Raymond Hettinger27a90d92008-02-14 11:01:10 +00001881 >>> (b / a).quantize(TWOPLACES) # And quantize division
Raymond Hettinger46314812008-02-14 10:46:57 +00001882 Decimal('0.03')
1883
1884In developing fixed-point applications, it is convenient to define functions
Georg Brandl9f662322008-03-22 11:47:10 +00001885to handle the :meth:`quantize` step:
Raymond Hettinger46314812008-02-14 10:46:57 +00001886
Raymond Hettinger27a90d92008-02-14 11:01:10 +00001887 >>> def mul(x, y, fp=TWOPLACES):
1888 ... return (x * y).quantize(fp)
1889 >>> def div(x, y, fp=TWOPLACES):
1890 ... return (x / y).quantize(fp)
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001891
Raymond Hettinger46314812008-02-14 10:46:57 +00001892 >>> mul(a, b) # Automatically preserve fixed-point
1893 Decimal('325.62')
1894 >>> div(b, a)
1895 Decimal('0.03')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001896
1897Q. There are many ways to express the same value. The numbers :const:`200`,
1898:const:`200.000`, :const:`2E2`, and :const:`.02E+4` all have the same value at
1899various precisions. Is there a way to transform them to a single recognizable
1900canonical value?
1901
1902A. The :meth:`normalize` method maps all equivalent values to a single
Georg Brandl9f662322008-03-22 11:47:10 +00001903representative:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001904
1905 >>> values = map(Decimal, '200 200.000 2E2 .02E+4'.split())
1906 >>> [v.normalize() for v in values]
Raymond Hettingerabe32372008-02-14 02:41:22 +00001907 [Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2')]
Georg Brandl8ec7f652007-08-15 14:28:01 +00001908
1909Q. Some decimal values always print with exponential notation. Is there a way
1910to get a non-exponential representation?
1911
1912A. For some values, exponential notation is the only way to express the number
1913of significant places in the coefficient. For example, expressing
1914:const:`5.0E+3` as :const:`5000` keeps the value constant but cannot show the
1915original's two-place significance.
1916
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001917If an application does not care about tracking significance, it is easy to
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001918remove the exponent and trailing zeros, losing significance, but keeping the
1919value unchanged::
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001920
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001921 def remove_exponent(d):
1922 '''Remove exponent and trailing zeros.
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001923
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001924 >>> remove_exponent(Decimal('5E+3'))
1925 Decimal('5000')
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001926
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001927 '''
1928 return d.quantize(Decimal(1)) if d == d.to_integral() else d.normalize()
Georg Brandl8ec7f652007-08-15 14:28:01 +00001929
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001930Q. Is there a way to convert a regular float to a Decimal?
Georg Brandl9f662322008-03-22 11:47:10 +00001931
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001932A. Yes, the classmethod :meth:`from_float` makes an exact conversion.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001933
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001934The regular decimal constructor does not do this by default because there is
1935some question about whether it is advisable to mix binary and decimal floating
1936point. Also, its use requires some care to avoid the representation issues
1937associated with binary floating point:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001938
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001939 >>> Decimal.from_float(1.1)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001940 Decimal('1.100000000000000088817841970012523233890533447265625')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001941
1942Q. Within a complex calculation, how can I make sure that I haven't gotten a
1943spurious result because of insufficient precision or rounding anomalies.
1944
1945A. The decimal module makes it easy to test results. A best practice is to
1946re-run calculations using greater precision and with various rounding modes.
1947Widely differing results indicate insufficient precision, rounding mode issues,
1948ill-conditioned inputs, or a numerically unstable algorithm.
1949
1950Q. I noticed that context precision is applied to the results of operations but
1951not to the inputs. Is there anything to watch out for when mixing values of
1952different precisions?
1953
1954A. Yes. The principle is that all values are considered to be exact and so is
1955the arithmetic on those values. Only the results are rounded. The advantage
1956for inputs is that "what you type is what you get". A disadvantage is that the
Georg Brandl9f662322008-03-22 11:47:10 +00001957results can look odd if you forget that the inputs haven't been rounded:
1958
1959.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001960
1961 >>> getcontext().prec = 3
Georg Brandl9f662322008-03-22 11:47:10 +00001962 >>> Decimal('3.104') + Decimal('2.104')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001963 Decimal('5.21')
Georg Brandl9f662322008-03-22 11:47:10 +00001964 >>> Decimal('3.104') + Decimal('0.000') + Decimal('2.104')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001965 Decimal('5.20')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001966
1967The solution is either to increase precision or to force rounding of inputs
Georg Brandl9f662322008-03-22 11:47:10 +00001968using the unary plus operation:
1969
1970.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001971
1972 >>> getcontext().prec = 3
1973 >>> +Decimal('1.23456789') # unary plus triggers rounding
Raymond Hettingerabe32372008-02-14 02:41:22 +00001974 Decimal('1.23')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001975
1976Alternatively, inputs can be rounded upon creation using the
Georg Brandl9f662322008-03-22 11:47:10 +00001977:meth:`Context.create_decimal` method:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001978
1979 >>> Context(prec=5, rounding=ROUND_DOWN).create_decimal('1.2345678')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001980 Decimal('1.2345')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001981