blob: 43f4b4a77ecb07dd020e912dd15a46eaafe5c3c8 [file] [log] [blame]
Georg Brandl8ec7f652007-08-15 14:28:01 +00001
Raymond Hettinger13a70752008-02-10 07:21:09 +00002:mod:`decimal` --- Decimal fixed point and floating point arithmetic
3====================================================================
Georg Brandl8ec7f652007-08-15 14:28:01 +00004
5.. module:: decimal
6 :synopsis: Implementation of the General Decimal Arithmetic Specification.
7
8
9.. moduleauthor:: Eric Price <eprice at tjhsst.edu>
10.. moduleauthor:: Facundo Batista <facundo at taniquetil.com.ar>
11.. moduleauthor:: Raymond Hettinger <python at rcn.com>
12.. moduleauthor:: Aahz <aahz at pobox.com>
13.. moduleauthor:: Tim Peters <tim.one at comcast.net>
14
15
16.. sectionauthor:: Raymond D. Hettinger <python at rcn.com>
17
Georg Brandl8ec7f652007-08-15 14:28:01 +000018.. versionadded:: 2.4
19
Georg Brandl9f662322008-03-22 11:47:10 +000020.. import modules for testing inline doctests with the Sphinx doctest builder
Georg Brandl17baef02008-03-22 10:56:23 +000021.. testsetup:: *
22
Georg Brandl9f662322008-03-22 11:47:10 +000023 import decimal
24 import math
Georg Brandl17baef02008-03-22 10:56:23 +000025 from decimal import *
Georg Brandl9f662322008-03-22 11:47:10 +000026 # make sure each group gets a fresh context
27 setcontext(Context())
Georg Brandl17baef02008-03-22 10:56:23 +000028
Georg Brandl8ec7f652007-08-15 14:28:01 +000029The :mod:`decimal` module provides support for decimal floating point
Facundo Batista7c82a3e92007-09-14 18:58:34 +000030arithmetic. It offers several advantages over the :class:`float` datatype:
Georg Brandl8ec7f652007-08-15 14:28:01 +000031
Raymond Hettinger13a70752008-02-10 07:21:09 +000032* Decimal "is based on a floating-point model which was designed with people
33 in mind, and necessarily has a paramount guiding principle -- computers must
34 provide an arithmetic that works in the same way as the arithmetic that
35 people learn at school." -- excerpt from the decimal arithmetic specification.
36
Georg Brandl8ec7f652007-08-15 14:28:01 +000037* Decimal numbers can be represented exactly. In contrast, numbers like
Mark Dickinson6b87f112009-11-24 14:27:02 +000038 :const:`1.1` and :const:`2.2` do not have an exact representations in binary
39 floating point. End users typically would not expect ``1.1 + 2.2`` to display
40 as :const:`3.3000000000000003` as it does with binary floating point.
Georg Brandl8ec7f652007-08-15 14:28:01 +000041
42* The exactness carries over into arithmetic. In decimal floating point, ``0.1
Facundo Batista7c82a3e92007-09-14 18:58:34 +000043 + 0.1 + 0.1 - 0.3`` is exactly equal to zero. In binary floating point, the result
Georg Brandl8ec7f652007-08-15 14:28:01 +000044 is :const:`5.5511151231257827e-017`. While near to zero, the differences
45 prevent reliable equality testing and differences can accumulate. For this
Raymond Hettinger13a70752008-02-10 07:21:09 +000046 reason, decimal is preferred in accounting applications which have strict
Georg Brandl8ec7f652007-08-15 14:28:01 +000047 equality invariants.
48
49* The decimal module incorporates a notion of significant places so that ``1.30
50 + 1.20`` is :const:`2.50`. The trailing zero is kept to indicate significance.
51 This is the customary presentation for monetary applications. For
52 multiplication, the "schoolbook" approach uses all the figures in the
53 multiplicands. For instance, ``1.3 * 1.2`` gives :const:`1.56` while ``1.30 *
54 1.20`` gives :const:`1.5600`.
55
56* Unlike hardware based binary floating point, the decimal module has a user
Facundo Batista7c82a3e92007-09-14 18:58:34 +000057 alterable precision (defaulting to 28 places) which can be as large as needed for
Georg Brandl17baef02008-03-22 10:56:23 +000058 a given problem:
Georg Brandl8ec7f652007-08-15 14:28:01 +000059
60 >>> getcontext().prec = 6
61 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +000062 Decimal('0.142857')
Georg Brandl8ec7f652007-08-15 14:28:01 +000063 >>> getcontext().prec = 28
64 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +000065 Decimal('0.1428571428571428571428571429')
Georg Brandl8ec7f652007-08-15 14:28:01 +000066
67* Both binary and decimal floating point are implemented in terms of published
68 standards. While the built-in float type exposes only a modest portion of its
69 capabilities, the decimal module exposes all required parts of the standard.
70 When needed, the programmer has full control over rounding and signal handling.
Raymond Hettinger13a70752008-02-10 07:21:09 +000071 This includes an option to enforce exact arithmetic by using exceptions
72 to block any inexact operations.
73
74* The decimal module was designed to support "without prejudice, both exact
75 unrounded decimal arithmetic (sometimes called fixed-point arithmetic)
76 and rounded floating-point arithmetic." -- excerpt from the decimal
77 arithmetic specification.
Georg Brandl8ec7f652007-08-15 14:28:01 +000078
79The module design is centered around three concepts: the decimal number, the
80context for arithmetic, and signals.
81
82A decimal number is immutable. It has a sign, coefficient digits, and an
83exponent. To preserve significance, the coefficient digits do not truncate
Facundo Batista7c82a3e92007-09-14 18:58:34 +000084trailing zeros. Decimals also include special values such as
Georg Brandl8ec7f652007-08-15 14:28:01 +000085:const:`Infinity`, :const:`-Infinity`, and :const:`NaN`. The standard also
86differentiates :const:`-0` from :const:`+0`.
87
88The context for arithmetic is an environment specifying precision, rounding
89rules, limits on exponents, flags indicating the results of operations, and trap
90enablers which determine whether signals are treated as exceptions. Rounding
91options include :const:`ROUND_CEILING`, :const:`ROUND_DOWN`,
92:const:`ROUND_FLOOR`, :const:`ROUND_HALF_DOWN`, :const:`ROUND_HALF_EVEN`,
Facundo Batista7c82a3e92007-09-14 18:58:34 +000093:const:`ROUND_HALF_UP`, :const:`ROUND_UP`, and :const:`ROUND_05UP`.
Georg Brandl8ec7f652007-08-15 14:28:01 +000094
95Signals are groups of exceptional conditions arising during the course of
96computation. Depending on the needs of the application, signals may be ignored,
97considered as informational, or treated as exceptions. The signals in the
98decimal module are: :const:`Clamped`, :const:`InvalidOperation`,
99:const:`DivisionByZero`, :const:`Inexact`, :const:`Rounded`, :const:`Subnormal`,
100:const:`Overflow`, and :const:`Underflow`.
101
102For each signal there is a flag and a trap enabler. When a signal is
Mark Dickinson1840c1a2008-05-03 18:23:14 +0000103encountered, its flag is set to one, then, if the trap enabler is
Georg Brandl8ec7f652007-08-15 14:28:01 +0000104set to one, an exception is raised. Flags are sticky, so the user needs to
105reset them before monitoring a calculation.
106
107
108.. seealso::
109
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000110 * IBM's General Decimal Arithmetic Specification, `The General Decimal Arithmetic
Raymond Hettingerf345a212009-03-10 01:07:30 +0000111 Specification <http://speleotrove.com/decimal/>`_.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000112
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000113 * IEEE standard 854-1987, `Unofficial IEEE 854 Text
Mark Dickinsonff6672f2008-02-07 01:14:23 +0000114 <http://754r.ucbtest.org/standards/854.pdf>`_.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000115
Georg Brandlb19be572007-12-29 10:57:00 +0000116.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +0000117
118
119.. _decimal-tutorial:
120
121Quick-start Tutorial
122--------------------
123
124The usual start to using decimals is importing the module, viewing the current
125context with :func:`getcontext` and, if necessary, setting new values for
Georg Brandl9f662322008-03-22 11:47:10 +0000126precision, rounding, or enabled traps::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000127
128 >>> from decimal import *
129 >>> getcontext()
130 Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
Georg Brandl9f662322008-03-22 11:47:10 +0000131 capitals=1, flags=[], traps=[Overflow, DivisionByZero,
132 InvalidOperation])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000133
134 >>> getcontext().prec = 7 # Set a new precision
135
136Decimal instances can be constructed from integers, strings, or tuples. To
137create a Decimal from a :class:`float`, first convert it to a string. This
138serves as an explicit reminder of the details of the conversion (including
139representation error). Decimal numbers include special values such as
140:const:`NaN` which stands for "Not a number", positive and negative
Georg Brandl17baef02008-03-22 10:56:23 +0000141:const:`Infinity`, and :const:`-0`.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000142
Facundo Batista8e1c52a2008-06-21 17:30:06 +0000143 >>> getcontext().prec = 28
Georg Brandl8ec7f652007-08-15 14:28:01 +0000144 >>> Decimal(10)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000145 Decimal('10')
146 >>> Decimal('3.14')
147 Decimal('3.14')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000148 >>> Decimal((0, (3, 1, 4), -2))
Raymond Hettingerabe32372008-02-14 02:41:22 +0000149 Decimal('3.14')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000150 >>> Decimal(str(2.0 ** 0.5))
Raymond Hettingerabe32372008-02-14 02:41:22 +0000151 Decimal('1.41421356237')
152 >>> Decimal(2) ** Decimal('0.5')
153 Decimal('1.414213562373095048801688724')
154 >>> Decimal('NaN')
155 Decimal('NaN')
156 >>> Decimal('-Infinity')
157 Decimal('-Infinity')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000158
159The significance of a new Decimal is determined solely by the number of digits
160input. Context precision and rounding only come into play during arithmetic
Georg Brandl17baef02008-03-22 10:56:23 +0000161operations.
162
163.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +0000164
165 >>> getcontext().prec = 6
166 >>> Decimal('3.0')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000167 Decimal('3.0')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000168 >>> Decimal('3.1415926535')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000169 Decimal('3.1415926535')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000170 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000171 Decimal('5.85987')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000172 >>> getcontext().rounding = ROUND_UP
173 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000174 Decimal('5.85988')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000175
176Decimals interact well with much of the rest of Python. Here is a small decimal
Georg Brandl9f662322008-03-22 11:47:10 +0000177floating point flying circus:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000178
Georg Brandl838b4b02008-03-22 13:07:06 +0000179.. doctest::
180 :options: +NORMALIZE_WHITESPACE
181
Georg Brandl8ec7f652007-08-15 14:28:01 +0000182 >>> data = map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split())
183 >>> max(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000184 Decimal('9.25')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000185 >>> min(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000186 Decimal('0.03')
Georg Brandl838b4b02008-03-22 13:07:06 +0000187 >>> sorted(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000188 [Decimal('0.03'), Decimal('1.00'), Decimal('1.34'), Decimal('1.87'),
189 Decimal('2.35'), Decimal('3.45'), Decimal('9.25')]
Georg Brandl8ec7f652007-08-15 14:28:01 +0000190 >>> sum(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000191 Decimal('19.29')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000192 >>> a,b,c = data[:3]
193 >>> str(a)
194 '1.34'
195 >>> float(a)
Mark Dickinson6b87f112009-11-24 14:27:02 +0000196 1.34
Georg Brandl8ec7f652007-08-15 14:28:01 +0000197 >>> round(a, 1) # round() first converts to binary floating point
198 1.3
199 >>> int(a)
200 1
201 >>> a * 5
Raymond Hettingerabe32372008-02-14 02:41:22 +0000202 Decimal('6.70')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000203 >>> a * b
Raymond Hettingerabe32372008-02-14 02:41:22 +0000204 Decimal('2.5058')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000205 >>> c % a
Raymond Hettingerabe32372008-02-14 02:41:22 +0000206 Decimal('0.77')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000207
Georg Brandl9f662322008-03-22 11:47:10 +0000208And some mathematical functions are also available to Decimal:
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000209
Facundo Batista8e1c52a2008-06-21 17:30:06 +0000210 >>> getcontext().prec = 28
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000211 >>> Decimal(2).sqrt()
Raymond Hettingerabe32372008-02-14 02:41:22 +0000212 Decimal('1.414213562373095048801688724')
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000213 >>> Decimal(1).exp()
Raymond Hettingerabe32372008-02-14 02:41:22 +0000214 Decimal('2.718281828459045235360287471')
215 >>> Decimal('10').ln()
216 Decimal('2.302585092994045684017991455')
217 >>> Decimal('10').log10()
218 Decimal('1')
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000219
Georg Brandl8ec7f652007-08-15 14:28:01 +0000220The :meth:`quantize` method rounds a number to a fixed exponent. This method is
221useful for monetary applications that often round results to a fixed number of
Georg Brandl9f662322008-03-22 11:47:10 +0000222places:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000223
224 >>> Decimal('7.325').quantize(Decimal('.01'), rounding=ROUND_DOWN)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000225 Decimal('7.32')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000226 >>> Decimal('7.325').quantize(Decimal('1.'), rounding=ROUND_UP)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000227 Decimal('8')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000228
229As shown above, the :func:`getcontext` function accesses the current context and
230allows the settings to be changed. This approach meets the needs of most
231applications.
232
233For more advanced work, it may be useful to create alternate contexts using the
234Context() constructor. To make an alternate active, use the :func:`setcontext`
235function.
236
237In accordance with the standard, the :mod:`Decimal` module provides two ready to
238use standard contexts, :const:`BasicContext` and :const:`ExtendedContext`. The
239former is especially useful for debugging because many of the traps are
Georg Brandl9f662322008-03-22 11:47:10 +0000240enabled:
241
242.. doctest:: newcontext
243 :options: +NORMALIZE_WHITESPACE
Georg Brandl8ec7f652007-08-15 14:28:01 +0000244
245 >>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)
246 >>> setcontext(myothercontext)
247 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000248 Decimal('0.142857142857142857142857142857142857142857142857142857142857')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000249
250 >>> ExtendedContext
251 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
252 capitals=1, flags=[], traps=[])
253 >>> setcontext(ExtendedContext)
254 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000255 Decimal('0.142857143')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000256 >>> Decimal(42) / Decimal(0)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000257 Decimal('Infinity')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000258
259 >>> setcontext(BasicContext)
260 >>> Decimal(42) / Decimal(0)
261 Traceback (most recent call last):
262 File "<pyshell#143>", line 1, in -toplevel-
263 Decimal(42) / Decimal(0)
264 DivisionByZero: x / 0
265
266Contexts also have signal flags for monitoring exceptional conditions
267encountered during computations. The flags remain set until explicitly cleared,
268so it is best to clear the flags before each set of monitored computations by
269using the :meth:`clear_flags` method. ::
270
271 >>> setcontext(ExtendedContext)
272 >>> getcontext().clear_flags()
273 >>> Decimal(355) / Decimal(113)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000274 Decimal('3.14159292')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000275 >>> getcontext()
276 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
Georg Brandl9f662322008-03-22 11:47:10 +0000277 capitals=1, flags=[Rounded, Inexact], traps=[])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000278
279The *flags* entry shows that the rational approximation to :const:`Pi` was
280rounded (digits beyond the context precision were thrown away) and that the
281result is inexact (some of the discarded digits were non-zero).
282
283Individual traps are set using the dictionary in the :attr:`traps` field of a
Georg Brandl9f662322008-03-22 11:47:10 +0000284context:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000285
Georg Brandl9f662322008-03-22 11:47:10 +0000286.. doctest:: newcontext
287
288 >>> setcontext(ExtendedContext)
Georg Brandl8ec7f652007-08-15 14:28:01 +0000289 >>> Decimal(1) / Decimal(0)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000290 Decimal('Infinity')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000291 >>> getcontext().traps[DivisionByZero] = 1
292 >>> Decimal(1) / Decimal(0)
293 Traceback (most recent call last):
294 File "<pyshell#112>", line 1, in -toplevel-
295 Decimal(1) / Decimal(0)
296 DivisionByZero: x / 0
297
298Most programs adjust the current context only once, at the beginning of the
299program. And, in many applications, data is converted to :class:`Decimal` with
300a single cast inside a loop. With context set and decimals created, the bulk of
301the program manipulates the data no differently than with other Python numeric
302types.
303
Georg Brandlb19be572007-12-29 10:57:00 +0000304.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +0000305
306
307.. _decimal-decimal:
308
309Decimal objects
310---------------
311
312
313.. class:: Decimal([value [, context]])
314
Georg Brandlb19be572007-12-29 10:57:00 +0000315 Construct a new :class:`Decimal` object based from *value*.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000316
Mark Dickinson59bc20b2008-01-12 01:56:00 +0000317 *value* can be an integer, string, tuple, or another :class:`Decimal`
Raymond Hettingerabe32372008-02-14 02:41:22 +0000318 object. If no *value* is given, returns ``Decimal('0')``. If *value* is a
Mark Dickinson59bc20b2008-01-12 01:56:00 +0000319 string, it should conform to the decimal numeric string syntax after leading
320 and trailing whitespace characters are removed::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000321
322 sign ::= '+' | '-'
323 digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
324 indicator ::= 'e' | 'E'
325 digits ::= digit [digit]...
326 decimal-part ::= digits '.' [digits] | ['.'] digits
327 exponent-part ::= indicator [sign] digits
328 infinity ::= 'Infinity' | 'Inf'
329 nan ::= 'NaN' [digits] | 'sNaN' [digits]
330 numeric-value ::= decimal-part [exponent-part] | infinity
Georg Brandlc62ef8b2009-01-03 20:55:06 +0000331 numeric-string ::= [sign] numeric-value | [sign] nan
Georg Brandl8ec7f652007-08-15 14:28:01 +0000332
Mark Dickinson4326ad82009-08-02 10:59:36 +0000333 If *value* is a unicode string then other Unicode decimal digits
334 are also permitted where ``digit`` appears above. These include
335 decimal digits from various other alphabets (for example,
336 Arabic-Indic and Devanāgarī digits) along with the fullwidth digits
337 ``u'\uff10'`` through ``u'\uff19'``.
338
Georg Brandl8ec7f652007-08-15 14:28:01 +0000339 If *value* is a :class:`tuple`, it should have three components, a sign
340 (:const:`0` for positive or :const:`1` for negative), a :class:`tuple` of
341 digits, and an integer exponent. For example, ``Decimal((0, (1, 4, 1, 4), -3))``
Raymond Hettingerabe32372008-02-14 02:41:22 +0000342 returns ``Decimal('1.414')``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000343
344 The *context* precision does not affect how many digits are stored. That is
345 determined exclusively by the number of digits in *value*. For example,
Raymond Hettingerabe32372008-02-14 02:41:22 +0000346 ``Decimal('3.00000')`` records all five zeros even if the context precision is
Georg Brandl8ec7f652007-08-15 14:28:01 +0000347 only three.
348
349 The purpose of the *context* argument is determining what to do if *value* is a
350 malformed string. If the context traps :const:`InvalidOperation`, an exception
351 is raised; otherwise, the constructor returns a new Decimal with the value of
352 :const:`NaN`.
353
354 Once constructed, :class:`Decimal` objects are immutable.
355
Mark Dickinson59bc20b2008-01-12 01:56:00 +0000356 .. versionchanged:: 2.6
357 leading and trailing whitespace characters are permitted when
358 creating a Decimal instance from a string.
359
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000360 Decimal floating point objects share many properties with the other built-in
361 numeric types such as :class:`float` and :class:`int`. All of the usual math
362 operations and special methods apply. Likewise, decimal objects can be
363 copied, pickled, printed, used as dictionary keys, used as set elements,
364 compared, sorted, and coerced to another type (such as :class:`float` or
365 :class:`long`).
Georg Brandl8ec7f652007-08-15 14:28:01 +0000366
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000367 In addition to the standard numeric properties, decimal floating point
368 objects also have a number of specialized methods:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000369
370
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000371 .. method:: adjusted()
Georg Brandl8ec7f652007-08-15 14:28:01 +0000372
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000373 Return the adjusted exponent after shifting out the coefficient's
374 rightmost digits until only the lead digit remains:
375 ``Decimal('321e+5').adjusted()`` returns seven. Used for determining the
376 position of the most significant digit with respect to the decimal point.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000377
378
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000379 .. method:: as_tuple()
Georg Brandl8ec7f652007-08-15 14:28:01 +0000380
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000381 Return a :term:`named tuple` representation of the number:
382 ``DecimalTuple(sign, digits, exponent)``.
Georg Brandle3c3db52008-01-11 09:55:53 +0000383
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000384 .. versionchanged:: 2.6
385 Use a named tuple.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000386
387
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000388 .. method:: canonical()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000389
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000390 Return the canonical encoding of the argument. Currently, the encoding of
391 a :class:`Decimal` instance is always canonical, so this operation returns
392 its argument unchanged.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000393
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000394 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000395
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000396 .. method:: compare(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000397
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000398 Compare the values of two Decimal instances. This operation behaves in
399 the same way as the usual comparison method :meth:`__cmp__`, except that
400 :meth:`compare` returns a Decimal instance rather than an integer, and if
401 either operand is a NaN then the result is a NaN::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000402
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000403 a or b is a NaN ==> Decimal('NaN')
404 a < b ==> Decimal('-1')
405 a == b ==> Decimal('0')
406 a > b ==> Decimal('1')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000407
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000408 .. method:: compare_signal(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000409
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000410 This operation is identical to the :meth:`compare` method, except that all
411 NaNs signal. That is, if neither operand is a signaling NaN then any
412 quiet NaN operand is treated as though it were a signaling NaN.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000413
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000414 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000415
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000416 .. method:: compare_total(other)
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000417
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000418 Compare two operands using their abstract representation rather than their
419 numerical value. Similar to the :meth:`compare` method, but the result
420 gives a total ordering on :class:`Decimal` instances. Two
421 :class:`Decimal` instances with the same numeric value but different
422 representations compare unequal in this ordering:
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000423
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000424 >>> Decimal('12.0').compare_total(Decimal('12'))
425 Decimal('-1')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000426
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000427 Quiet and signaling NaNs are also included in the total ordering. The
428 result of this function is ``Decimal('0')`` if both operands have the same
429 representation, ``Decimal('-1')`` if the first operand is lower in the
430 total order than the second, and ``Decimal('1')`` if the first operand is
431 higher in the total order than the second operand. See the specification
432 for details of the total order.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000433
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000434 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000435
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000436 .. method:: compare_total_mag(other)
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000437
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000438 Compare two operands using their abstract representation rather than their
439 value as in :meth:`compare_total`, but ignoring the sign of each operand.
440 ``x.compare_total_mag(y)`` is equivalent to
441 ``x.copy_abs().compare_total(y.copy_abs())``.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000442
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000443 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000444
Facundo Batista8e1c52a2008-06-21 17:30:06 +0000445 .. method:: conjugate()
446
447 Just returns self, this method is only to comply with the Decimal
448 Specification.
449
450 .. versionadded:: 2.6
451
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000452 .. method:: copy_abs()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000453
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000454 Return the absolute value of the argument. This operation is unaffected
455 by the context and is quiet: no flags are changed and no rounding is
456 performed.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000457
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000458 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000459
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000460 .. method:: copy_negate()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000461
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000462 Return the negation of the argument. This operation is unaffected by the
463 context and is quiet: no flags are changed and no rounding is performed.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000464
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000465 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000466
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000467 .. method:: copy_sign(other)
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000468
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000469 Return a copy of the first operand with the sign set to be the same as the
470 sign of the second operand. For example:
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000471
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000472 >>> Decimal('2.3').copy_sign(Decimal('-1.5'))
473 Decimal('-2.3')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000474
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000475 This operation is unaffected by the context and is quiet: no flags are
476 changed and no rounding is performed.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000477
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000478 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000479
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000480 .. method:: exp([context])
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000481
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000482 Return the value of the (natural) exponential function ``e**x`` at the
483 given number. The result is correctly rounded using the
484 :const:`ROUND_HALF_EVEN` rounding mode.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000485
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000486 >>> Decimal(1).exp()
487 Decimal('2.718281828459045235360287471')
488 >>> Decimal(321).exp()
489 Decimal('2.561702493119680037517373933E+139')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000490
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000491 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000492
Raymond Hettingerf4d85972009-01-03 19:02:23 +0000493 .. method:: from_float(f)
494
495 Classmethod that converts a float to a decimal number, exactly.
496
497 Note `Decimal.from_float(0.1)` is not the same as `Decimal('0.1')`.
498 Since 0.1 is not exactly representable in binary floating point, the
499 value is stored as the nearest representable value which is
500 `0x1.999999999999ap-4`. That equivalent value in decimal is
501 `0.1000000000000000055511151231257827021181583404541015625`.
502
503 .. doctest::
504
505 >>> Decimal.from_float(0.1)
506 Decimal('0.1000000000000000055511151231257827021181583404541015625')
507 >>> Decimal.from_float(float('nan'))
508 Decimal('NaN')
509 >>> Decimal.from_float(float('inf'))
510 Decimal('Infinity')
511 >>> Decimal.from_float(float('-inf'))
512 Decimal('-Infinity')
513
514 .. versionadded:: 2.7
515
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000516 .. method:: fma(other, third[, context])
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000517
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000518 Fused multiply-add. Return self*other+third with no rounding of the
519 intermediate product self*other.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000520
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000521 >>> Decimal(2).fma(3, 5)
522 Decimal('11')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000523
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000524 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000525
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000526 .. method:: is_canonical()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000527
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000528 Return :const:`True` if the argument is canonical and :const:`False`
529 otherwise. Currently, a :class:`Decimal` instance is always canonical, so
530 this operation always returns :const:`True`.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000531
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000532 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000533
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000534 .. method:: is_finite()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000535
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000536 Return :const:`True` if the argument is a finite number, and
537 :const:`False` if the argument is an infinity or a NaN.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000538
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000539 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000540
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000541 .. method:: is_infinite()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000542
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000543 Return :const:`True` if the argument is either positive or negative
544 infinity and :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000545
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000546 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000547
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000548 .. method:: is_nan()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000549
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000550 Return :const:`True` if the argument is a (quiet or signaling) NaN and
551 :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000552
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000553 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000554
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000555 .. method:: is_normal()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000556
Raymond Hettingereecd1dc62009-03-10 04:40:24 +0000557 Return :const:`True` if the argument is a *normal* finite non-zero
558 number with an adjusted exponent greater than or equal to *Emin*.
559 Return :const:`False` if the argument is zero, subnormal, infinite or a
560 NaN. Note, the term *normal* is used here in a different sense with
561 the :meth:`normalize` method which is used to create canonical values.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000562
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000563 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000564
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000565 .. method:: is_qnan()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000566
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000567 Return :const:`True` if the argument is a quiet NaN, and
568 :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000569
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000570 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000571
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000572 .. method:: is_signed()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000573
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000574 Return :const:`True` if the argument has a negative sign and
575 :const:`False` otherwise. Note that zeros and NaNs can both carry signs.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000576
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000577 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000578
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000579 .. method:: is_snan()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000580
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000581 Return :const:`True` if the argument is a signaling NaN and :const:`False`
582 otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000583
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000584 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000585
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000586 .. method:: is_subnormal()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000587
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000588 Return :const:`True` if the argument is subnormal, and :const:`False`
Raymond Hettingereecd1dc62009-03-10 04:40:24 +0000589 otherwise. A number is subnormal is if it is nonzero, finite, and has an
590 adjusted exponent less than *Emin*.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000591
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000592 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000593
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000594 .. method:: is_zero()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000595
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000596 Return :const:`True` if the argument is a (positive or negative) zero and
597 :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000598
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000599 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000600
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000601 .. method:: ln([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000602
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000603 Return the natural (base e) logarithm of the operand. The result is
604 correctly rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000605
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000606 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000607
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000608 .. method:: log10([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000609
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000610 Return the base ten logarithm of the operand. The result is correctly
611 rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000612
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000613 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000614
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000615 .. method:: logb([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000616
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000617 For a nonzero number, return the adjusted exponent of its operand as a
618 :class:`Decimal` instance. If the operand is a zero then
619 ``Decimal('-Infinity')`` is returned and the :const:`DivisionByZero` flag
620 is raised. If the operand is an infinity then ``Decimal('Infinity')`` is
621 returned.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000622
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000623 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000624
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000625 .. method:: logical_and(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000626
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000627 :meth:`logical_and` is a logical operation which takes two *logical
628 operands* (see :ref:`logical_operands_label`). The result is the
629 digit-wise ``and`` of the two operands.
630
631 .. versionadded:: 2.6
632
Georg Brandl3d5c87a2009-06-30 16:15:43 +0000633 .. method:: logical_invert([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000634
Georg Brandl3d5c87a2009-06-30 16:15:43 +0000635 :meth:`logical_invert` is a logical operation. The
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000636 result is the digit-wise inversion of the operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000637
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000638 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000639
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000640 .. method:: logical_or(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000641
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000642 :meth:`logical_or` is a logical operation which takes two *logical
643 operands* (see :ref:`logical_operands_label`). The result is the
644 digit-wise ``or`` of the two operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000645
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000646 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000647
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000648 .. method:: logical_xor(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000649
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000650 :meth:`logical_xor` is a logical operation which takes two *logical
651 operands* (see :ref:`logical_operands_label`). The result is the
652 digit-wise exclusive or of the two operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000653
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000654 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000655
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000656 .. method:: max(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000657
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000658 Like ``max(self, other)`` except that the context rounding rule is applied
659 before returning and that :const:`NaN` values are either signaled or
660 ignored (depending on the context and whether they are signaling or
661 quiet).
Georg Brandl8ec7f652007-08-15 14:28:01 +0000662
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000663 .. method:: max_mag(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000664
Georg Brandl9fa61bb2009-07-26 14:19:57 +0000665 Similar to the :meth:`.max` method, but the comparison is done using the
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000666 absolute values of the operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000667
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000668 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000669
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000670 .. method:: min(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000671
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000672 Like ``min(self, other)`` except that the context rounding rule is applied
673 before returning and that :const:`NaN` values are either signaled or
674 ignored (depending on the context and whether they are signaling or
675 quiet).
Georg Brandl8ec7f652007-08-15 14:28:01 +0000676
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000677 .. method:: min_mag(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000678
Georg Brandl9fa61bb2009-07-26 14:19:57 +0000679 Similar to the :meth:`.min` method, but the comparison is done using the
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000680 absolute values of the operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000681
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000682 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000683
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000684 .. method:: next_minus([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000685
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000686 Return the largest number representable in the given context (or in the
687 current thread's context if no context is given) that is smaller than the
688 given operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000689
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000690 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000691
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000692 .. method:: next_plus([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000693
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000694 Return the smallest number representable in the given context (or in the
695 current thread's context if no context is given) that is larger than the
696 given operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000697
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000698 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000699
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000700 .. method:: next_toward(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000701
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000702 If the two operands are unequal, return the number closest to the first
703 operand in the direction of the second operand. If both operands are
704 numerically equal, return a copy of the first operand with the sign set to
705 be the same as the sign of the second operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000706
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000707 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000708
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000709 .. method:: normalize([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000710
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000711 Normalize the number by stripping the rightmost trailing zeros and
712 converting any result equal to :const:`Decimal('0')` to
713 :const:`Decimal('0e0')`. Used for producing canonical values for members
714 of an equivalence class. For example, ``Decimal('32.100')`` and
715 ``Decimal('0.321000e+2')`` both normalize to the equivalent value
716 ``Decimal('32.1')``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000717
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000718 .. method:: number_class([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000719
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000720 Return a string describing the *class* of the operand. The returned value
721 is one of the following ten strings.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000722
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000723 * ``"-Infinity"``, indicating that the operand is negative infinity.
724 * ``"-Normal"``, indicating that the operand is a negative normal number.
725 * ``"-Subnormal"``, indicating that the operand is negative and subnormal.
726 * ``"-Zero"``, indicating that the operand is a negative zero.
727 * ``"+Zero"``, indicating that the operand is a positive zero.
728 * ``"+Subnormal"``, indicating that the operand is positive and subnormal.
729 * ``"+Normal"``, indicating that the operand is a positive normal number.
730 * ``"+Infinity"``, indicating that the operand is positive infinity.
731 * ``"NaN"``, indicating that the operand is a quiet NaN (Not a Number).
732 * ``"sNaN"``, indicating that the operand is a signaling NaN.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000733
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000734 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000735
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000736 .. method:: quantize(exp[, rounding[, context[, watchexp]]])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000737
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000738 Return a value equal to the first operand after rounding and having the
739 exponent of the second operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000740
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000741 >>> Decimal('1.41421356').quantize(Decimal('1.000'))
742 Decimal('1.414')
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000743
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000744 Unlike other operations, if the length of the coefficient after the
745 quantize operation would be greater than precision, then an
746 :const:`InvalidOperation` is signaled. This guarantees that, unless there
747 is an error condition, the quantized exponent is always equal to that of
748 the right-hand operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000749
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000750 Also unlike other operations, quantize never signals Underflow, even if
751 the result is subnormal and inexact.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000752
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000753 If the exponent of the second operand is larger than that of the first
754 then rounding may be necessary. In this case, the rounding mode is
755 determined by the ``rounding`` argument if given, else by the given
756 ``context`` argument; if neither argument is given the rounding mode of
757 the current thread's context is used.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000758
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000759 If *watchexp* is set (default), then an error is returned whenever the
760 resulting exponent is greater than :attr:`Emax` or less than
761 :attr:`Etiny`.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000762
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000763 .. method:: radix()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000764
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000765 Return ``Decimal(10)``, the radix (base) in which the :class:`Decimal`
766 class does all its arithmetic. Included for compatibility with the
767 specification.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000768
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000769 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000770
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000771 .. method:: remainder_near(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000772
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000773 Compute the modulo as either a positive or negative value depending on
774 which is closest to zero. For instance, ``Decimal(10).remainder_near(6)``
775 returns ``Decimal('-2')`` which is closer to zero than ``Decimal('4')``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000776
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000777 If both are equally close, the one chosen will have the same sign as
778 *self*.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000779
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000780 .. method:: rotate(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000781
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000782 Return the result of rotating the digits of the first operand by an amount
783 specified by the second operand. The second operand must be an integer in
784 the range -precision through precision. The absolute value of the second
785 operand gives the number of places to rotate. If the second operand is
786 positive then rotation is to the left; otherwise rotation is to the right.
787 The coefficient of the first operand is padded on the left with zeros to
788 length precision if necessary. The sign and exponent of the first operand
789 are unchanged.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000790
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000791 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000792
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000793 .. method:: same_quantum(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000794
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000795 Test whether self and other have the same exponent or whether both are
796 :const:`NaN`.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000797
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000798 .. method:: scaleb(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000799
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000800 Return the first operand with exponent adjusted by the second.
801 Equivalently, return the first operand multiplied by ``10**other``. The
802 second operand must be an integer.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000803
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000804 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000805
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000806 .. method:: shift(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000807
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000808 Return the result of shifting the digits of the first operand by an amount
809 specified by the second operand. The second operand must be an integer in
810 the range -precision through precision. The absolute value of the second
811 operand gives the number of places to shift. If the second operand is
812 positive then the shift is to the left; otherwise the shift is to the
813 right. Digits shifted into the coefficient are zeros. The sign and
814 exponent of the first operand are unchanged.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000815
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000816 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000817
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000818 .. method:: sqrt([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000819
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000820 Return the square root of the argument to full precision.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000821
822
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000823 .. method:: to_eng_string([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000824
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000825 Convert to an engineering-type string.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000826
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000827 Engineering notation has an exponent which is a multiple of 3, so there
828 are up to 3 digits left of the decimal place. For example, converts
829 ``Decimal('123E+1')`` to ``Decimal('1.23E+3')``
Georg Brandl8ec7f652007-08-15 14:28:01 +0000830
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000831 .. method:: to_integral([rounding[, context]])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000832
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000833 Identical to the :meth:`to_integral_value` method. The ``to_integral``
834 name has been kept for compatibility with older versions.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000835
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000836 .. method:: to_integral_exact([rounding[, context]])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000837
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000838 Round to the nearest integer, signaling :const:`Inexact` or
839 :const:`Rounded` as appropriate if rounding occurs. The rounding mode is
840 determined by the ``rounding`` parameter if given, else by the given
841 ``context``. If neither parameter is given then the rounding mode of the
842 current context is used.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000843
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000844 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000845
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000846 .. method:: to_integral_value([rounding[, context]])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000847
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000848 Round to the nearest integer without signaling :const:`Inexact` or
849 :const:`Rounded`. If given, applies *rounding*; otherwise, uses the
850 rounding method in either the supplied *context* or the current context.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000851
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000852 .. versionchanged:: 2.6
853 renamed from ``to_integral`` to ``to_integral_value``. The old name
854 remains valid for compatibility.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000855
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000856.. _logical_operands_label:
857
858Logical operands
859^^^^^^^^^^^^^^^^
860
861The :meth:`logical_and`, :meth:`logical_invert`, :meth:`logical_or`,
862and :meth:`logical_xor` methods expect their arguments to be *logical
863operands*. A *logical operand* is a :class:`Decimal` instance whose
864exponent and sign are both zero, and whose digits are all either
865:const:`0` or :const:`1`.
866
Georg Brandlb19be572007-12-29 10:57:00 +0000867.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +0000868
869
870.. _decimal-context:
871
872Context objects
873---------------
874
875Contexts are environments for arithmetic operations. They govern precision, set
876rules for rounding, determine which signals are treated as exceptions, and limit
877the range for exponents.
878
879Each thread has its own current context which is accessed or changed using the
880:func:`getcontext` and :func:`setcontext` functions:
881
882
883.. function:: getcontext()
884
885 Return the current context for the active thread.
886
887
888.. function:: setcontext(c)
889
890 Set the current context for the active thread to *c*.
891
892Beginning with Python 2.5, you can also use the :keyword:`with` statement and
893the :func:`localcontext` function to temporarily change the active context.
894
895
896.. function:: localcontext([c])
897
898 Return a context manager that will set the current context for the active thread
899 to a copy of *c* on entry to the with-statement and restore the previous context
900 when exiting the with-statement. If no context is specified, a copy of the
901 current context is used.
902
903 .. versionadded:: 2.5
904
905 For example, the following code sets the current decimal precision to 42 places,
906 performs a calculation, and then automatically restores the previous context::
907
Georg Brandl8ec7f652007-08-15 14:28:01 +0000908 from decimal import localcontext
909
910 with localcontext() as ctx:
911 ctx.prec = 42 # Perform a high precision calculation
912 s = calculate_something()
913 s = +s # Round the final result back to the default precision
914
915New contexts can also be created using the :class:`Context` constructor
916described below. In addition, the module provides three pre-made contexts:
917
918
919.. class:: BasicContext
920
921 This is a standard context defined by the General Decimal Arithmetic
922 Specification. Precision is set to nine. Rounding is set to
923 :const:`ROUND_HALF_UP`. All flags are cleared. All traps are enabled (treated
924 as exceptions) except :const:`Inexact`, :const:`Rounded`, and
925 :const:`Subnormal`.
926
927 Because many of the traps are enabled, this context is useful for debugging.
928
929
930.. class:: ExtendedContext
931
932 This is a standard context defined by the General Decimal Arithmetic
933 Specification. Precision is set to nine. Rounding is set to
934 :const:`ROUND_HALF_EVEN`. All flags are cleared. No traps are enabled (so that
935 exceptions are not raised during computations).
936
Mark Dickinson3a94ee02008-02-10 15:19:58 +0000937 Because the traps are disabled, this context is useful for applications that
Georg Brandl8ec7f652007-08-15 14:28:01 +0000938 prefer to have result value of :const:`NaN` or :const:`Infinity` instead of
939 raising exceptions. This allows an application to complete a run in the
940 presence of conditions that would otherwise halt the program.
941
942
943.. class:: DefaultContext
944
945 This context is used by the :class:`Context` constructor as a prototype for new
946 contexts. Changing a field (such a precision) has the effect of changing the
947 default for new contexts creating by the :class:`Context` constructor.
948
949 This context is most useful in multi-threaded environments. Changing one of the
950 fields before threads are started has the effect of setting system-wide
951 defaults. Changing the fields after threads have started is not recommended as
952 it would require thread synchronization to prevent race conditions.
953
954 In single threaded environments, it is preferable to not use this context at
955 all. Instead, simply create contexts explicitly as described below.
956
957 The default values are precision=28, rounding=ROUND_HALF_EVEN, and enabled traps
958 for Overflow, InvalidOperation, and DivisionByZero.
959
960In addition to the three supplied contexts, new contexts can be created with the
961:class:`Context` constructor.
962
963
964.. class:: Context(prec=None, rounding=None, traps=None, flags=None, Emin=None, Emax=None, capitals=1)
965
966 Creates a new context. If a field is not specified or is :const:`None`, the
967 default values are copied from the :const:`DefaultContext`. If the *flags*
968 field is not specified or is :const:`None`, all flags are cleared.
969
970 The *prec* field is a positive integer that sets the precision for arithmetic
971 operations in the context.
972
973 The *rounding* option is one of:
974
975 * :const:`ROUND_CEILING` (towards :const:`Infinity`),
976 * :const:`ROUND_DOWN` (towards zero),
977 * :const:`ROUND_FLOOR` (towards :const:`-Infinity`),
978 * :const:`ROUND_HALF_DOWN` (to nearest with ties going towards zero),
979 * :const:`ROUND_HALF_EVEN` (to nearest with ties going to nearest even integer),
980 * :const:`ROUND_HALF_UP` (to nearest with ties going away from zero), or
981 * :const:`ROUND_UP` (away from zero).
Georg Brandlc62ef8b2009-01-03 20:55:06 +0000982 * :const:`ROUND_05UP` (away from zero if last digit after rounding towards zero
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000983 would have been 0 or 5; otherwise towards zero)
Georg Brandl8ec7f652007-08-15 14:28:01 +0000984
985 The *traps* and *flags* fields list any signals to be set. Generally, new
986 contexts should only set traps and leave the flags clear.
987
988 The *Emin* and *Emax* fields are integers specifying the outer limits allowable
989 for exponents.
990
991 The *capitals* field is either :const:`0` or :const:`1` (the default). If set to
992 :const:`1`, exponents are printed with a capital :const:`E`; otherwise, a
993 lowercase :const:`e` is used: :const:`Decimal('6.02e+23')`.
994
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000995 .. versionchanged:: 2.6
996 The :const:`ROUND_05UP` rounding mode was added.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000997
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000998 The :class:`Context` class defines several general purpose methods as well as
999 a large number of methods for doing arithmetic directly in a given context.
1000 In addition, for each of the :class:`Decimal` methods described above (with
1001 the exception of the :meth:`adjusted` and :meth:`as_tuple` methods) there is
1002 a corresponding :class:`Context` method. For example, ``C.exp(x)`` is
1003 equivalent to ``x.exp(context=C)``.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001004
1005
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001006 .. method:: clear_flags()
Georg Brandl8ec7f652007-08-15 14:28:01 +00001007
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001008 Resets all of the flags to :const:`0`.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001009
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001010 .. method:: copy()
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001011
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001012 Return a duplicate of the context.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001013
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001014 .. method:: copy_decimal(num)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001015
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001016 Return a copy of the Decimal instance num.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001017
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001018 .. method:: create_decimal(num)
Georg Brandl9f662322008-03-22 11:47:10 +00001019
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001020 Creates a new Decimal instance from *num* but using *self* as
1021 context. Unlike the :class:`Decimal` constructor, the context precision,
1022 rounding method, flags, and traps are applied to the conversion.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001023
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001024 This is useful because constants are often given to a greater precision
1025 than is needed by the application. Another benefit is that rounding
1026 immediately eliminates unintended effects from digits beyond the current
1027 precision. In the following example, using unrounded inputs means that
1028 adding zero to a sum can change the result:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001029
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001030 .. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001031
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001032 >>> getcontext().prec = 3
1033 >>> Decimal('3.4445') + Decimal('1.0023')
1034 Decimal('4.45')
1035 >>> Decimal('3.4445') + Decimal(0) + Decimal('1.0023')
1036 Decimal('4.44')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001037
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001038 This method implements the to-number operation of the IBM specification.
1039 If the argument is a string, no leading or trailing whitespace is
1040 permitted.
1041
Georg Brandlaa5bb322009-01-03 19:44:48 +00001042 .. method:: create_decimal_from_float(f)
Raymond Hettingerf4d85972009-01-03 19:02:23 +00001043
1044 Creates a new Decimal instance from a float *f* but rounding using *self*
Georg Brandla24067e2009-01-03 20:15:14 +00001045 as the context. Unlike the :meth:`Decimal.from_float` class method,
Raymond Hettingerf4d85972009-01-03 19:02:23 +00001046 the context precision, rounding method, flags, and traps are applied to
1047 the conversion.
1048
1049 .. doctest::
1050
Georg Brandlaa5bb322009-01-03 19:44:48 +00001051 >>> context = Context(prec=5, rounding=ROUND_DOWN)
1052 >>> context.create_decimal_from_float(math.pi)
1053 Decimal('3.1415')
1054 >>> context = Context(prec=5, traps=[Inexact])
1055 >>> context.create_decimal_from_float(math.pi)
1056 Traceback (most recent call last):
1057 ...
1058 Inexact: None
Raymond Hettingerf4d85972009-01-03 19:02:23 +00001059
1060 .. versionadded:: 2.7
1061
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001062 .. method:: Etiny()
1063
1064 Returns a value equal to ``Emin - prec + 1`` which is the minimum exponent
1065 value for subnormal results. When underflow occurs, the exponent is set
1066 to :const:`Etiny`.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001067
1068
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001069 .. method:: Etop()
Georg Brandl8ec7f652007-08-15 14:28:01 +00001070
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001071 Returns a value equal to ``Emax - prec + 1``.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001072
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001073 The usual approach to working with decimals is to create :class:`Decimal`
1074 instances and then apply arithmetic operations which take place within the
1075 current context for the active thread. An alternative approach is to use
1076 context methods for calculating within a specific context. The methods are
1077 similar to those for the :class:`Decimal` class and are only briefly
1078 recounted here.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001079
1080
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001081 .. method:: abs(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001082
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001083 Returns the absolute value of *x*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001084
1085
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001086 .. method:: add(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001087
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001088 Return the sum of *x* and *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001089
1090
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001091 .. method:: canonical(x)
1092
1093 Returns the same Decimal object *x*.
1094
1095
1096 .. method:: compare(x, y)
1097
1098 Compares *x* and *y* numerically.
1099
1100
1101 .. method:: compare_signal(x, y)
1102
1103 Compares the values of the two operands numerically.
1104
1105
1106 .. method:: compare_total(x, y)
1107
1108 Compares two operands using their abstract representation.
1109
1110
1111 .. method:: compare_total_mag(x, y)
1112
1113 Compares two operands using their abstract representation, ignoring sign.
1114
1115
1116 .. method:: copy_abs(x)
1117
1118 Returns a copy of *x* with the sign set to 0.
1119
1120
1121 .. method:: copy_negate(x)
1122
1123 Returns a copy of *x* with the sign inverted.
1124
1125
1126 .. method:: copy_sign(x, y)
1127
1128 Copies the sign from *y* to *x*.
1129
1130
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001131 .. method:: divide(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001132
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001133 Return *x* divided by *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001134
1135
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001136 .. method:: divide_int(x, y)
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001137
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001138 Return *x* divided by *y*, truncated to an integer.
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001139
1140
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001141 .. method:: divmod(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001142
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001143 Divides two numbers and returns the integer part of the result.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001144
1145
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001146 .. method:: exp(x)
1147
1148 Returns `e ** x`.
1149
1150
1151 .. method:: fma(x, y, z)
1152
1153 Returns *x* multiplied by *y*, plus *z*.
1154
1155
1156 .. method:: is_canonical(x)
1157
1158 Returns True if *x* is canonical; otherwise returns False.
1159
1160
1161 .. method:: is_finite(x)
1162
1163 Returns True if *x* is finite; otherwise returns False.
1164
1165
1166 .. method:: is_infinite(x)
1167
1168 Returns True if *x* is infinite; otherwise returns False.
1169
1170
1171 .. method:: is_nan(x)
1172
1173 Returns True if *x* is a qNaN or sNaN; otherwise returns False.
1174
1175
1176 .. method:: is_normal(x)
1177
1178 Returns True if *x* is a normal number; otherwise returns False.
1179
1180
1181 .. method:: is_qnan(x)
1182
1183 Returns True if *x* is a quiet NaN; otherwise returns False.
1184
1185
1186 .. method:: is_signed(x)
1187
1188 Returns True if *x* is negative; otherwise returns False.
1189
1190
1191 .. method:: is_snan(x)
1192
1193 Returns True if *x* is a signaling NaN; otherwise returns False.
1194
1195
1196 .. method:: is_subnormal(x)
1197
1198 Returns True if *x* is subnormal; otherwise returns False.
1199
1200
1201 .. method:: is_zero(x)
1202
1203 Returns True if *x* is a zero; otherwise returns False.
1204
1205
1206 .. method:: ln(x)
1207
1208 Returns the natural (base e) logarithm of *x*.
1209
1210
1211 .. method:: log10(x)
1212
1213 Returns the base 10 logarithm of *x*.
1214
1215
1216 .. method:: logb(x)
1217
1218 Returns the exponent of the magnitude of the operand's MSD.
1219
1220
1221 .. method:: logical_and(x, y)
1222
Georg Brandle92818f2009-01-03 20:47:01 +00001223 Applies the logical operation *and* between each operand's digits.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001224
1225
1226 .. method:: logical_invert(x)
1227
1228 Invert all the digits in *x*.
1229
1230
1231 .. method:: logical_or(x, y)
1232
Georg Brandle92818f2009-01-03 20:47:01 +00001233 Applies the logical operation *or* between each operand's digits.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001234
1235
1236 .. method:: logical_xor(x, y)
1237
Georg Brandle92818f2009-01-03 20:47:01 +00001238 Applies the logical operation *xor* between each operand's digits.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001239
1240
1241 .. method:: max(x, y)
1242
1243 Compares two values numerically and returns the maximum.
1244
1245
1246 .. method:: max_mag(x, y)
1247
1248 Compares the values numerically with their sign ignored.
1249
1250
1251 .. method:: min(x, y)
1252
1253 Compares two values numerically and returns the minimum.
1254
1255
1256 .. method:: min_mag(x, y)
1257
1258 Compares the values numerically with their sign ignored.
1259
1260
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001261 .. method:: minus(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001262
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001263 Minus corresponds to the unary prefix minus operator in Python.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001264
1265
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001266 .. method:: multiply(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001267
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001268 Return the product of *x* and *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001269
1270
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001271 .. method:: next_minus(x)
1272
1273 Returns the largest representable number smaller than *x*.
1274
1275
1276 .. method:: next_plus(x)
1277
1278 Returns the smallest representable number larger than *x*.
1279
1280
1281 .. method:: next_toward(x, y)
1282
1283 Returns the number closest to *x*, in direction towards *y*.
1284
1285
1286 .. method:: normalize(x)
1287
1288 Reduces *x* to its simplest form.
1289
1290
1291 .. method:: number_class(x)
1292
1293 Returns an indication of the class of *x*.
1294
1295
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001296 .. method:: plus(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001297
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001298 Plus corresponds to the unary prefix plus operator in Python. This
1299 operation applies the context precision and rounding, so it is *not* an
1300 identity operation.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001301
1302
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001303 .. method:: power(x, y[, modulo])
Georg Brandl8ec7f652007-08-15 14:28:01 +00001304
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001305 Return ``x`` to the power of ``y``, reduced modulo ``modulo`` if given.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001306
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001307 With two arguments, compute ``x**y``. If ``x`` is negative then ``y``
1308 must be integral. The result will be inexact unless ``y`` is integral and
1309 the result is finite and can be expressed exactly in 'precision' digits.
1310 The result should always be correctly rounded, using the rounding mode of
1311 the current thread's context.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001312
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001313 With three arguments, compute ``(x**y) % modulo``. For the three argument
1314 form, the following restrictions on the arguments hold:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001315
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001316 - all three arguments must be integral
1317 - ``y`` must be nonnegative
1318 - at least one of ``x`` or ``y`` must be nonzero
1319 - ``modulo`` must be nonzero and have at most 'precision' digits
Georg Brandl8ec7f652007-08-15 14:28:01 +00001320
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001321 The result of ``Context.power(x, y, modulo)`` is identical to the result
1322 that would be obtained by computing ``(x**y) % modulo`` with unbounded
1323 precision, but is computed more efficiently. It is always exact.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001324
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001325 .. versionchanged:: 2.6
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001326 ``y`` may now be nonintegral in ``x**y``.
1327 Stricter requirements for the three-argument version.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001328
1329
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001330 .. method:: quantize(x, y)
1331
1332 Returns a value equal to *x* (rounded), having the exponent of *y*.
1333
1334
1335 .. method:: radix()
1336
1337 Just returns 10, as this is Decimal, :)
1338
1339
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001340 .. method:: remainder(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001341
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001342 Returns the remainder from integer division.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001343
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001344 The sign of the result, if non-zero, is the same as that of the original
1345 dividend.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001346
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001347 .. method:: remainder_near(x, y)
1348
Georg Brandle92818f2009-01-03 20:47:01 +00001349 Returns ``x - y * n``, where *n* is the integer nearest the exact value
1350 of ``x / y`` (if the result is 0 then its sign will be the sign of *x*).
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001351
1352
1353 .. method:: rotate(x, y)
1354
1355 Returns a rotated copy of *x*, *y* times.
1356
1357
1358 .. method:: same_quantum(x, y)
1359
1360 Returns True if the two operands have the same exponent.
1361
1362
1363 .. method:: scaleb (x, y)
1364
1365 Returns the first operand after adding the second value its exp.
1366
1367
1368 .. method:: shift(x, y)
1369
1370 Returns a shifted copy of *x*, *y* times.
1371
1372
1373 .. method:: sqrt(x)
1374
1375 Square root of a non-negative number to context precision.
1376
1377
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001378 .. method:: subtract(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001379
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001380 Return the difference between *x* and *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001381
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001382
1383 .. method:: to_eng_string(x)
1384
1385 Converts a number to a string, using scientific notation.
1386
1387
1388 .. method:: to_integral_exact(x)
1389
1390 Rounds to an integer.
1391
1392
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001393 .. method:: to_sci_string(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001394
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001395 Converts a number to a string using scientific notation.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001396
Georg Brandlb19be572007-12-29 10:57:00 +00001397.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001398
1399
1400.. _decimal-signals:
1401
1402Signals
1403-------
1404
1405Signals represent conditions that arise during computation. Each corresponds to
1406one context flag and one context trap enabler.
1407
Mark Dickinson1840c1a2008-05-03 18:23:14 +00001408The context flag is set whenever the condition is encountered. After the
Georg Brandl8ec7f652007-08-15 14:28:01 +00001409computation, flags may be checked for informational purposes (for instance, to
1410determine whether a computation was exact). After checking the flags, be sure to
1411clear all flags before starting the next computation.
1412
1413If the context's trap enabler is set for the signal, then the condition causes a
1414Python exception to be raised. For example, if the :class:`DivisionByZero` trap
1415is set, then a :exc:`DivisionByZero` exception is raised upon encountering the
1416condition.
1417
1418
1419.. class:: Clamped
1420
1421 Altered an exponent to fit representation constraints.
1422
1423 Typically, clamping occurs when an exponent falls outside the context's
1424 :attr:`Emin` and :attr:`Emax` limits. If possible, the exponent is reduced to
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001425 fit by adding zeros to the coefficient.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001426
1427
1428.. class:: DecimalException
1429
1430 Base class for other signals and a subclass of :exc:`ArithmeticError`.
1431
1432
1433.. class:: DivisionByZero
1434
1435 Signals the division of a non-infinite number by zero.
1436
1437 Can occur with division, modulo division, or when raising a number to a negative
1438 power. If this signal is not trapped, returns :const:`Infinity` or
1439 :const:`-Infinity` with the sign determined by the inputs to the calculation.
1440
1441
1442.. class:: Inexact
1443
1444 Indicates that rounding occurred and the result is not exact.
1445
1446 Signals when non-zero digits were discarded during rounding. The rounded result
1447 is returned. The signal flag or trap is used to detect when results are
1448 inexact.
1449
1450
1451.. class:: InvalidOperation
1452
1453 An invalid operation was performed.
1454
1455 Indicates that an operation was requested that does not make sense. If not
1456 trapped, returns :const:`NaN`. Possible causes include::
1457
1458 Infinity - Infinity
1459 0 * Infinity
1460 Infinity / Infinity
1461 x % 0
1462 Infinity % x
1463 x._rescale( non-integer )
1464 sqrt(-x) and x > 0
1465 0 ** 0
1466 x ** (non-integer)
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001467 x ** Infinity
Georg Brandl8ec7f652007-08-15 14:28:01 +00001468
1469
1470.. class:: Overflow
1471
1472 Numerical overflow.
1473
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001474 Indicates the exponent is larger than :attr:`Emax` after rounding has
1475 occurred. If not trapped, the result depends on the rounding mode, either
1476 pulling inward to the largest representable finite number or rounding outward
1477 to :const:`Infinity`. In either case, :class:`Inexact` and :class:`Rounded`
1478 are also signaled.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001479
1480
1481.. class:: Rounded
1482
1483 Rounding occurred though possibly no information was lost.
1484
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001485 Signaled whenever rounding discards digits; even if those digits are zero
1486 (such as rounding :const:`5.00` to :const:`5.0`). If not trapped, returns
1487 the result unchanged. This signal is used to detect loss of significant
1488 digits.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001489
1490
1491.. class:: Subnormal
1492
1493 Exponent was lower than :attr:`Emin` prior to rounding.
1494
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001495 Occurs when an operation result is subnormal (the exponent is too small). If
1496 not trapped, returns the result unchanged.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001497
1498
1499.. class:: Underflow
1500
1501 Numerical underflow with result rounded to zero.
1502
1503 Occurs when a subnormal result is pushed to zero by rounding. :class:`Inexact`
1504 and :class:`Subnormal` are also signaled.
1505
1506The following table summarizes the hierarchy of signals::
1507
1508 exceptions.ArithmeticError(exceptions.StandardError)
1509 DecimalException
1510 Clamped
1511 DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
1512 Inexact
1513 Overflow(Inexact, Rounded)
1514 Underflow(Inexact, Rounded, Subnormal)
1515 InvalidOperation
1516 Rounded
1517 Subnormal
1518
Georg Brandlb19be572007-12-29 10:57:00 +00001519.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001520
1521
1522.. _decimal-notes:
1523
1524Floating Point Notes
1525--------------------
1526
1527
1528Mitigating round-off error with increased precision
1529^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1530
1531The use of decimal floating point eliminates decimal representation error
1532(making it possible to represent :const:`0.1` exactly); however, some operations
1533can still incur round-off error when non-zero digits exceed the fixed precision.
1534
1535The effects of round-off error can be amplified by the addition or subtraction
1536of nearly offsetting quantities resulting in loss of significance. Knuth
1537provides two instructive examples where rounded floating point arithmetic with
1538insufficient precision causes the breakdown of the associative and distributive
Georg Brandl9f662322008-03-22 11:47:10 +00001539properties of addition:
1540
1541.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001542
1543 # Examples from Seminumerical Algorithms, Section 4.2.2.
1544 >>> from decimal import Decimal, getcontext
1545 >>> getcontext().prec = 8
1546
1547 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1548 >>> (u + v) + w
Raymond Hettingerabe32372008-02-14 02:41:22 +00001549 Decimal('9.5111111')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001550 >>> u + (v + w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001551 Decimal('10')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001552
1553 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1554 >>> (u*v) + (u*w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001555 Decimal('0.01')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001556 >>> u * (v+w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001557 Decimal('0.0060000')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001558
1559The :mod:`decimal` module makes it possible to restore the identities by
Georg Brandl9f662322008-03-22 11:47:10 +00001560expanding the precision sufficiently to avoid loss of significance:
1561
1562.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001563
1564 >>> getcontext().prec = 20
1565 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1566 >>> (u + v) + w
Raymond Hettingerabe32372008-02-14 02:41:22 +00001567 Decimal('9.51111111')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001568 >>> u + (v + w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001569 Decimal('9.51111111')
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001570 >>>
Georg Brandl8ec7f652007-08-15 14:28:01 +00001571 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1572 >>> (u*v) + (u*w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001573 Decimal('0.0060000')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001574 >>> u * (v+w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001575 Decimal('0.0060000')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001576
1577
1578Special values
1579^^^^^^^^^^^^^^
1580
1581The number system for the :mod:`decimal` module provides special values
1582including :const:`NaN`, :const:`sNaN`, :const:`-Infinity`, :const:`Infinity`,
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001583and two zeros, :const:`+0` and :const:`-0`.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001584
1585Infinities can be constructed directly with: ``Decimal('Infinity')``. Also,
1586they can arise from dividing by zero when the :exc:`DivisionByZero` signal is
1587not trapped. Likewise, when the :exc:`Overflow` signal is not trapped, infinity
1588can result from rounding beyond the limits of the largest representable number.
1589
1590The infinities are signed (affine) and can be used in arithmetic operations
1591where they get treated as very large, indeterminate numbers. For instance,
1592adding a constant to infinity gives another infinite result.
1593
1594Some operations are indeterminate and return :const:`NaN`, or if the
1595:exc:`InvalidOperation` signal is trapped, raise an exception. For example,
1596``0/0`` returns :const:`NaN` which means "not a number". This variety of
1597:const:`NaN` is quiet and, once created, will flow through other computations
1598always resulting in another :const:`NaN`. This behavior can be useful for a
1599series of computations that occasionally have missing inputs --- it allows the
1600calculation to proceed while flagging specific results as invalid.
1601
1602A variant is :const:`sNaN` which signals rather than remaining quiet after every
1603operation. This is a useful return value when an invalid result needs to
1604interrupt a calculation for special handling.
1605
Mark Dickinson2fc92632008-02-06 22:10:50 +00001606The behavior of Python's comparison operators can be a little surprising where a
1607:const:`NaN` is involved. A test for equality where one of the operands is a
1608quiet or signaling :const:`NaN` always returns :const:`False` (even when doing
1609``Decimal('NaN')==Decimal('NaN')``), while a test for inequality always returns
Mark Dickinsonbafa9422008-02-06 22:25:16 +00001610:const:`True`. An attempt to compare two Decimals using any of the ``<``,
Mark Dickinson00c2e652008-02-07 01:42:06 +00001611``<=``, ``>`` or ``>=`` operators will raise the :exc:`InvalidOperation` signal
1612if either operand is a :const:`NaN`, and return :const:`False` if this signal is
Mark Dickinson3a94ee02008-02-10 15:19:58 +00001613not trapped. Note that the General Decimal Arithmetic specification does not
Mark Dickinson00c2e652008-02-07 01:42:06 +00001614specify the behavior of direct comparisons; these rules for comparisons
1615involving a :const:`NaN` were taken from the IEEE 854 standard (see Table 3 in
1616section 5.7). To ensure strict standards-compliance, use the :meth:`compare`
Mark Dickinson2fc92632008-02-06 22:10:50 +00001617and :meth:`compare-signal` methods instead.
1618
Georg Brandl8ec7f652007-08-15 14:28:01 +00001619The signed zeros can result from calculations that underflow. They keep the sign
1620that would have resulted if the calculation had been carried out to greater
1621precision. Since their magnitude is zero, both positive and negative zeros are
1622treated as equal and their sign is informational.
1623
1624In addition to the two signed zeros which are distinct yet equal, there are
1625various representations of zero with differing precisions yet equivalent in
1626value. This takes a bit of getting used to. For an eye accustomed to
1627normalized floating point representations, it is not immediately obvious that
Georg Brandl9f662322008-03-22 11:47:10 +00001628the following calculation returns a value equal to zero:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001629
1630 >>> 1 / Decimal('Infinity')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001631 Decimal('0E-1000000026')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001632
Georg Brandlb19be572007-12-29 10:57:00 +00001633.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001634
1635
1636.. _decimal-threads:
1637
1638Working with threads
1639--------------------
1640
1641The :func:`getcontext` function accesses a different :class:`Context` object for
1642each thread. Having separate thread contexts means that threads may make
1643changes (such as ``getcontext.prec=10``) without interfering with other threads.
1644
1645Likewise, the :func:`setcontext` function automatically assigns its target to
1646the current thread.
1647
1648If :func:`setcontext` has not been called before :func:`getcontext`, then
1649:func:`getcontext` will automatically create a new context for use in the
1650current thread.
1651
1652The new context is copied from a prototype context called *DefaultContext*. To
1653control the defaults so that each thread will use the same values throughout the
1654application, directly modify the *DefaultContext* object. This should be done
1655*before* any threads are started so that there won't be a race condition between
1656threads calling :func:`getcontext`. For example::
1657
1658 # Set applicationwide defaults for all threads about to be launched
1659 DefaultContext.prec = 12
1660 DefaultContext.rounding = ROUND_DOWN
1661 DefaultContext.traps = ExtendedContext.traps.copy()
1662 DefaultContext.traps[InvalidOperation] = 1
1663 setcontext(DefaultContext)
1664
1665 # Afterwards, the threads can be started
1666 t1.start()
1667 t2.start()
1668 t3.start()
1669 . . .
1670
Georg Brandlb19be572007-12-29 10:57:00 +00001671.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001672
1673
1674.. _decimal-recipes:
1675
1676Recipes
1677-------
1678
1679Here are a few recipes that serve as utility functions and that demonstrate ways
1680to work with the :class:`Decimal` class::
1681
1682 def moneyfmt(value, places=2, curr='', sep=',', dp='.',
1683 pos='', neg='-', trailneg=''):
1684 """Convert Decimal to a money formatted string.
1685
1686 places: required number of places after the decimal point
1687 curr: optional currency symbol before the sign (may be blank)
1688 sep: optional grouping separator (comma, period, space, or blank)
1689 dp: decimal point indicator (comma or period)
1690 only specify as blank when places is zero
1691 pos: optional sign for positive numbers: '+', space or blank
1692 neg: optional sign for negative numbers: '-', '(', space or blank
1693 trailneg:optional trailing minus indicator: '-', ')', space or blank
1694
1695 >>> d = Decimal('-1234567.8901')
1696 >>> moneyfmt(d, curr='$')
1697 '-$1,234,567.89'
1698 >>> moneyfmt(d, places=0, sep='.', dp='', neg='', trailneg='-')
1699 '1.234.568-'
1700 >>> moneyfmt(d, curr='$', neg='(', trailneg=')')
1701 '($1,234,567.89)'
1702 >>> moneyfmt(Decimal(123456789), sep=' ')
1703 '123 456 789.00'
1704 >>> moneyfmt(Decimal('-0.02'), neg='<', trailneg='>')
Raymond Hettinger5eaffc42008-04-17 10:48:31 +00001705 '<0.02>'
Georg Brandl8ec7f652007-08-15 14:28:01 +00001706
1707 """
Raymond Hettinger0cd71702008-02-14 12:49:37 +00001708 q = Decimal(10) ** -places # 2 places --> '0.01'
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001709 sign, digits, exp = value.quantize(q).as_tuple()
Georg Brandl8ec7f652007-08-15 14:28:01 +00001710 result = []
1711 digits = map(str, digits)
1712 build, next = result.append, digits.pop
1713 if sign:
1714 build(trailneg)
1715 for i in range(places):
Raymond Hettinger0cd71702008-02-14 12:49:37 +00001716 build(next() if digits else '0')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001717 build(dp)
Raymond Hettinger5eaffc42008-04-17 10:48:31 +00001718 if not digits:
1719 build('0')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001720 i = 0
1721 while digits:
1722 build(next())
1723 i += 1
1724 if i == 3 and digits:
1725 i = 0
1726 build(sep)
1727 build(curr)
Raymond Hettinger0cd71702008-02-14 12:49:37 +00001728 build(neg if sign else pos)
1729 return ''.join(reversed(result))
Georg Brandl8ec7f652007-08-15 14:28:01 +00001730
1731 def pi():
1732 """Compute Pi to the current precision.
1733
1734 >>> print pi()
1735 3.141592653589793238462643383
1736
1737 """
1738 getcontext().prec += 2 # extra digits for intermediate steps
1739 three = Decimal(3) # substitute "three=3.0" for regular floats
1740 lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
1741 while s != lasts:
1742 lasts = s
1743 n, na = n+na, na+8
1744 d, da = d+da, da+32
1745 t = (t * n) / d
1746 s += t
1747 getcontext().prec -= 2
1748 return +s # unary plus applies the new precision
1749
1750 def exp(x):
1751 """Return e raised to the power of x. Result type matches input type.
1752
1753 >>> print exp(Decimal(1))
1754 2.718281828459045235360287471
1755 >>> print exp(Decimal(2))
1756 7.389056098930650227230427461
1757 >>> print exp(2.0)
1758 7.38905609893
1759 >>> print exp(2+0j)
1760 (7.38905609893+0j)
1761
1762 """
1763 getcontext().prec += 2
1764 i, lasts, s, fact, num = 0, 0, 1, 1, 1
1765 while s != lasts:
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001766 lasts = s
Georg Brandl8ec7f652007-08-15 14:28:01 +00001767 i += 1
1768 fact *= i
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001769 num *= x
1770 s += num / fact
1771 getcontext().prec -= 2
Georg Brandl8ec7f652007-08-15 14:28:01 +00001772 return +s
1773
1774 def cos(x):
1775 """Return the cosine of x as measured in radians.
1776
1777 >>> print cos(Decimal('0.5'))
1778 0.8775825618903727161162815826
1779 >>> print cos(0.5)
1780 0.87758256189
1781 >>> print cos(0.5+0j)
1782 (0.87758256189+0j)
1783
1784 """
1785 getcontext().prec += 2
1786 i, lasts, s, fact, num, sign = 0, 0, 1, 1, 1, 1
1787 while s != lasts:
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001788 lasts = s
Georg Brandl8ec7f652007-08-15 14:28:01 +00001789 i += 2
1790 fact *= i * (i-1)
1791 num *= x * x
1792 sign *= -1
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001793 s += num / fact * sign
1794 getcontext().prec -= 2
Georg Brandl8ec7f652007-08-15 14:28:01 +00001795 return +s
1796
1797 def sin(x):
1798 """Return the sine of x as measured in radians.
1799
1800 >>> print sin(Decimal('0.5'))
1801 0.4794255386042030002732879352
1802 >>> print sin(0.5)
1803 0.479425538604
1804 >>> print sin(0.5+0j)
1805 (0.479425538604+0j)
1806
1807 """
1808 getcontext().prec += 2
1809 i, lasts, s, fact, num, sign = 1, 0, x, 1, x, 1
1810 while s != lasts:
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001811 lasts = s
Georg Brandl8ec7f652007-08-15 14:28:01 +00001812 i += 2
1813 fact *= i * (i-1)
1814 num *= x * x
1815 sign *= -1
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001816 s += num / fact * sign
1817 getcontext().prec -= 2
Georg Brandl8ec7f652007-08-15 14:28:01 +00001818 return +s
1819
1820
Georg Brandlb19be572007-12-29 10:57:00 +00001821.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001822
1823
1824.. _decimal-faq:
1825
1826Decimal FAQ
1827-----------
1828
1829Q. It is cumbersome to type ``decimal.Decimal('1234.5')``. Is there a way to
1830minimize typing when using the interactive interpreter?
1831
Georg Brandl9f662322008-03-22 11:47:10 +00001832A. Some users abbreviate the constructor to just a single letter:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001833
1834 >>> D = decimal.Decimal
1835 >>> D('1.23') + D('3.45')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001836 Decimal('4.68')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001837
1838Q. In a fixed-point application with two decimal places, some inputs have many
1839places and need to be rounded. Others are not supposed to have excess digits
1840and need to be validated. What methods should be used?
1841
1842A. The :meth:`quantize` method rounds to a fixed number of decimal places. If
Georg Brandl9f662322008-03-22 11:47:10 +00001843the :const:`Inexact` trap is set, it is also useful for validation:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001844
1845 >>> TWOPLACES = Decimal(10) ** -2 # same as Decimal('0.01')
1846
1847 >>> # Round to two places
Raymond Hettingerabe32372008-02-14 02:41:22 +00001848 >>> Decimal('3.214').quantize(TWOPLACES)
1849 Decimal('3.21')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001850
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001851 >>> # Validate that a number does not exceed two places
Raymond Hettingerabe32372008-02-14 02:41:22 +00001852 >>> Decimal('3.21').quantize(TWOPLACES, context=Context(traps=[Inexact]))
1853 Decimal('3.21')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001854
Raymond Hettingerabe32372008-02-14 02:41:22 +00001855 >>> Decimal('3.214').quantize(TWOPLACES, context=Context(traps=[Inexact]))
Georg Brandl8ec7f652007-08-15 14:28:01 +00001856 Traceback (most recent call last):
1857 ...
Georg Brandlf6dab952009-04-28 21:48:35 +00001858 Inexact: None
Georg Brandl8ec7f652007-08-15 14:28:01 +00001859
1860Q. Once I have valid two place inputs, how do I maintain that invariant
1861throughout an application?
1862
Raymond Hettinger46314812008-02-14 10:46:57 +00001863A. Some operations like addition, subtraction, and multiplication by an integer
1864will automatically preserve fixed point. Others operations, like division and
1865non-integer multiplication, will change the number of decimal places and need to
Georg Brandl9f662322008-03-22 11:47:10 +00001866be followed-up with a :meth:`quantize` step:
Raymond Hettinger46314812008-02-14 10:46:57 +00001867
1868 >>> a = Decimal('102.72') # Initial fixed-point values
1869 >>> b = Decimal('3.17')
1870 >>> a + b # Addition preserves fixed-point
1871 Decimal('105.89')
1872 >>> a - b
1873 Decimal('99.55')
1874 >>> a * 42 # So does integer multiplication
1875 Decimal('4314.24')
1876 >>> (a * b).quantize(TWOPLACES) # Must quantize non-integer multiplication
1877 Decimal('325.62')
Raymond Hettinger27a90d92008-02-14 11:01:10 +00001878 >>> (b / a).quantize(TWOPLACES) # And quantize division
Raymond Hettinger46314812008-02-14 10:46:57 +00001879 Decimal('0.03')
1880
1881In developing fixed-point applications, it is convenient to define functions
Georg Brandl9f662322008-03-22 11:47:10 +00001882to handle the :meth:`quantize` step:
Raymond Hettinger46314812008-02-14 10:46:57 +00001883
Raymond Hettinger27a90d92008-02-14 11:01:10 +00001884 >>> def mul(x, y, fp=TWOPLACES):
1885 ... return (x * y).quantize(fp)
1886 >>> def div(x, y, fp=TWOPLACES):
1887 ... return (x / y).quantize(fp)
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001888
Raymond Hettinger46314812008-02-14 10:46:57 +00001889 >>> mul(a, b) # Automatically preserve fixed-point
1890 Decimal('325.62')
1891 >>> div(b, a)
1892 Decimal('0.03')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001893
1894Q. There are many ways to express the same value. The numbers :const:`200`,
1895:const:`200.000`, :const:`2E2`, and :const:`.02E+4` all have the same value at
1896various precisions. Is there a way to transform them to a single recognizable
1897canonical value?
1898
1899A. The :meth:`normalize` method maps all equivalent values to a single
Georg Brandl9f662322008-03-22 11:47:10 +00001900representative:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001901
1902 >>> values = map(Decimal, '200 200.000 2E2 .02E+4'.split())
1903 >>> [v.normalize() for v in values]
Raymond Hettingerabe32372008-02-14 02:41:22 +00001904 [Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2')]
Georg Brandl8ec7f652007-08-15 14:28:01 +00001905
1906Q. Some decimal values always print with exponential notation. Is there a way
1907to get a non-exponential representation?
1908
1909A. For some values, exponential notation is the only way to express the number
1910of significant places in the coefficient. For example, expressing
1911:const:`5.0E+3` as :const:`5000` keeps the value constant but cannot show the
1912original's two-place significance.
1913
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001914If an application does not care about tracking significance, it is easy to
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001915remove the exponent and trailing zeros, losing significance, but keeping the
1916value unchanged::
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001917
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001918 def remove_exponent(d):
1919 '''Remove exponent and trailing zeros.
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001920
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001921 >>> remove_exponent(Decimal('5E+3'))
1922 Decimal('5000')
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001923
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001924 '''
1925 return d.quantize(Decimal(1)) if d == d.to_integral() else d.normalize()
Georg Brandl8ec7f652007-08-15 14:28:01 +00001926
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001927Q. Is there a way to convert a regular float to a Decimal?
Georg Brandl9f662322008-03-22 11:47:10 +00001928
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001929A. Yes, the classmethod :meth:`from_float` makes an exact conversion.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001930
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001931The regular decimal constructor does not do this by default because there is
1932some question about whether it is advisable to mix binary and decimal floating
1933point. Also, its use requires some care to avoid the representation issues
1934associated with binary floating point:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001935
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001936 >>> Decimal.from_float(1.1)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001937 Decimal('1.100000000000000088817841970012523233890533447265625')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001938
1939Q. Within a complex calculation, how can I make sure that I haven't gotten a
1940spurious result because of insufficient precision or rounding anomalies.
1941
1942A. The decimal module makes it easy to test results. A best practice is to
1943re-run calculations using greater precision and with various rounding modes.
1944Widely differing results indicate insufficient precision, rounding mode issues,
1945ill-conditioned inputs, or a numerically unstable algorithm.
1946
1947Q. I noticed that context precision is applied to the results of operations but
1948not to the inputs. Is there anything to watch out for when mixing values of
1949different precisions?
1950
1951A. Yes. The principle is that all values are considered to be exact and so is
1952the arithmetic on those values. Only the results are rounded. The advantage
1953for inputs is that "what you type is what you get". A disadvantage is that the
Georg Brandl9f662322008-03-22 11:47:10 +00001954results can look odd if you forget that the inputs haven't been rounded:
1955
1956.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001957
1958 >>> getcontext().prec = 3
Georg Brandl9f662322008-03-22 11:47:10 +00001959 >>> Decimal('3.104') + Decimal('2.104')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001960 Decimal('5.21')
Georg Brandl9f662322008-03-22 11:47:10 +00001961 >>> Decimal('3.104') + Decimal('0.000') + Decimal('2.104')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001962 Decimal('5.20')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001963
1964The solution is either to increase precision or to force rounding of inputs
Georg Brandl9f662322008-03-22 11:47:10 +00001965using the unary plus operation:
1966
1967.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001968
1969 >>> getcontext().prec = 3
1970 >>> +Decimal('1.23456789') # unary plus triggers rounding
Raymond Hettingerabe32372008-02-14 02:41:22 +00001971 Decimal('1.23')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001972
1973Alternatively, inputs can be rounded upon creation using the
Georg Brandl9f662322008-03-22 11:47:10 +00001974:meth:`Context.create_decimal` method:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001975
1976 >>> Context(prec=5, rounding=ROUND_DOWN).create_decimal('1.2345678')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001977 Decimal('1.2345')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001978