blob: 0857b7a408f9fa729a0a7601b51a0934b5a6560d [file] [log] [blame]
Georg Brandl8ec7f652007-08-15 14:28:01 +00001
2:mod:`math` --- Mathematical functions
3======================================
4
5.. module:: math
6 :synopsis: Mathematical functions (sin() etc.).
7
8
9This module is always available. It provides access to the mathematical
10functions defined by the C standard.
11
12These functions cannot be used with complex numbers; use the functions of the
13same name from the :mod:`cmath` module if you require support for complex
14numbers. The distinction between functions which support complex numbers and
15those which don't is made since most users do not want to learn quite as much
16mathematics as required to understand complex numbers. Receiving an exception
17instead of a complex result allows earlier detection of the unexpected complex
18number used as a parameter, so that the programmer can determine how and why it
19was generated in the first place.
20
21The following functions are provided by this module. Except when explicitly
22noted otherwise, all return values are floats.
23
Georg Brandl8ec7f652007-08-15 14:28:01 +000024
Benjamin Peterson4f6ec9d2008-12-20 02:51:26 +000025Number-theoretic and representation functions
26---------------------------------------------
Georg Brandl8ec7f652007-08-15 14:28:01 +000027
28.. function:: ceil(x)
29
Jeffrey Yasskin9871d8f2008-01-05 08:47:13 +000030 Return the ceiling of *x* as a float, the smallest integer value greater than or
31 equal to *x*.
Georg Brandl8ec7f652007-08-15 14:28:01 +000032
33
Christian Heimeseebb79c2008-01-03 22:32:26 +000034.. function:: copysign(x, y)
35
36 Return *x* with the sign of *y*. ``copysign`` copies the sign bit of an IEEE
37 754 float, ``copysign(1, -0.0)`` returns *-1.0*.
38
Andrew M. Kuchling54966a52008-01-04 18:25:05 +000039 .. versionadded:: 2.6
Christian Heimeseebb79c2008-01-03 22:32:26 +000040
41
Georg Brandl8ec7f652007-08-15 14:28:01 +000042.. function:: fabs(x)
43
44 Return the absolute value of *x*.
45
Georg Brandl5da652e2008-06-18 09:28:22 +000046
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +000047.. function:: factorial(x)
48
Mark Dickinsonf88f7392008-06-18 09:20:17 +000049 Return *x* factorial. Raises :exc:`ValueError` if *x* is not integral or
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +000050 is negative.
Georg Brandl8ec7f652007-08-15 14:28:01 +000051
Georg Brandl5da652e2008-06-18 09:28:22 +000052 .. versionadded:: 2.6
53
54
Georg Brandl8ec7f652007-08-15 14:28:01 +000055.. function:: floor(x)
56
Jeffrey Yasskin9871d8f2008-01-05 08:47:13 +000057 Return the floor of *x* as a float, the largest integer value less than or equal
58 to *x*.
Georg Brandl8ec7f652007-08-15 14:28:01 +000059
Georg Brandl9749e152008-01-05 19:28:16 +000060 .. versionchanged:: 2.6
61 Added :meth:`__floor__` delegation.
62
Georg Brandl8ec7f652007-08-15 14:28:01 +000063
64.. function:: fmod(x, y)
65
66 Return ``fmod(x, y)``, as defined by the platform C library. Note that the
67 Python expression ``x % y`` may not return the same result. The intent of the C
68 standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite
69 precision) equal to ``x - n*y`` for some integer *n* such that the result has
70 the same sign as *x* and magnitude less than ``abs(y)``. Python's ``x % y``
71 returns a result with the sign of *y* instead, and may not be exactly computable
72 for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but
73 the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be
74 represented exactly as a float, and rounds to the surprising ``1e100``. For
75 this reason, function :func:`fmod` is generally preferred when working with
76 floats, while Python's ``x % y`` is preferred when working with integers.
77
78
79.. function:: frexp(x)
80
81 Return the mantissa and exponent of *x* as the pair ``(m, e)``. *m* is a float
82 and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero,
83 returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``. This is used to "pick
84 apart" the internal representation of a float in a portable way.
85
86
Mark Dickinsonfef6b132008-07-30 16:20:10 +000087.. function:: fsum(iterable)
88
89 Return an accurate floating point sum of values in the iterable. Avoids
Raymond Hettinger7d854952009-02-19 05:51:41 +000090 loss of precision by tracking multiple intermediate partial sums::
Mark Dickinsonfef6b132008-07-30 16:20:10 +000091
Raymond Hettinger7d854952009-02-19 05:51:41 +000092 >>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
Mark Dickinson6b87f112009-11-24 14:27:02 +000093 0.9999999999999999
Raymond Hettinger7d854952009-02-19 05:51:41 +000094 >>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
95 1.0
Mark Dickinson23957cb2008-07-30 20:23:15 +000096
Raymond Hettinger7d854952009-02-19 05:51:41 +000097 The algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the
98 typical case where the rounding mode is half-even. On some non-Windows
99 builds, the underlying C library uses extended precision addition and may
100 occasionally double-round an intermediate sum causing it to be off in its
101 least significant bit.
Mark Dickinson23957cb2008-07-30 20:23:15 +0000102
Raymond Hettinger749e6d02009-02-19 06:55:03 +0000103 For further discussion and two alternative approaches, see the `ASPN cookbook
104 recipes for accurate floating point summation
105 <http://code.activestate.com/recipes/393090/>`_\.
106
Mark Dickinsonfef6b132008-07-30 16:20:10 +0000107 .. versionadded:: 2.6
108
109
Christian Heimese2ca4242008-01-03 20:23:15 +0000110.. function:: isinf(x)
111
112 Checks if the float *x* is positive or negative infinite.
113
Andrew M. Kuchling54966a52008-01-04 18:25:05 +0000114 .. versionadded:: 2.6
Christian Heimese2ca4242008-01-03 20:23:15 +0000115
116
117.. function:: isnan(x)
118
119 Checks if the float *x* is a NaN (not a number). NaNs are part of the
Georg Brandlc62ef8b2009-01-03 20:55:06 +0000120 IEEE 754 standards. Operation like but not limited to ``inf * 0``,
Christian Heimese2ca4242008-01-03 20:23:15 +0000121 ``inf / inf`` or any operation involving a NaN, e.g. ``nan * 1``, return
122 a NaN.
123
Andrew M. Kuchling54966a52008-01-04 18:25:05 +0000124 .. versionadded:: 2.6
Christian Heimese2ca4242008-01-03 20:23:15 +0000125
126
Georg Brandl8ec7f652007-08-15 14:28:01 +0000127.. function:: ldexp(x, i)
128
129 Return ``x * (2**i)``. This is essentially the inverse of function
130 :func:`frexp`.
131
132
133.. function:: modf(x)
134
Benjamin Peterson2d54e722008-12-20 02:48:02 +0000135 Return the fractional and integer parts of *x*. Both results carry the sign
Benjamin Peterson9de72982008-12-20 22:49:24 +0000136 of *x* and are floats.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000137
Georg Brandl5da652e2008-06-18 09:28:22 +0000138
Jeffrey Yasskinca2b69f2008-02-01 06:22:46 +0000139.. function:: trunc(x)
140
141 Return the :class:`Real` value *x* truncated to an :class:`Integral` (usually
142 a long integer). Delegates to ``x.__trunc__()``.
143
144 .. versionadded:: 2.6
145
Georg Brandl5da652e2008-06-18 09:28:22 +0000146
Georg Brandl8ec7f652007-08-15 14:28:01 +0000147Note that :func:`frexp` and :func:`modf` have a different call/return pattern
148than their C equivalents: they take a single argument and return a pair of
149values, rather than returning their second return value through an 'output
150parameter' (there is no such thing in Python).
151
152For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
153floating-point numbers of sufficiently large magnitude are exact integers.
154Python floats typically carry no more than 53 bits of precision (the same as the
155platform C double type), in which case any float *x* with ``abs(x) >= 2**52``
156necessarily has no fractional bits.
157
Benjamin Peterson4f6ec9d2008-12-20 02:51:26 +0000158
159Power and logarithmic functions
160-------------------------------
Georg Brandl8ec7f652007-08-15 14:28:01 +0000161
Georg Brandl8ec7f652007-08-15 14:28:01 +0000162.. function:: exp(x)
163
164 Return ``e**x``.
165
166
Mark Dickinson9cae1782009-12-16 20:13:40 +0000167.. function:: expm1(x)
168
169 Return ``e**x - 1``. For small floats *x*, the subtraction in
170 ``exp(x) - 1`` can result in a significant loss of precision; the
171 :func:`expm1` function provides a way to compute this quantity to
172 full precision::
173
174 >>> from math import exp, expm1
175 >>> exp(1e-5) - 1 # gives result accurate to 11 places
176 1.0000050000069649e-05
177 >>> expm1(1e-5) # result accurate to full precision
178 1.0000050000166668e-05
179
Mark Dickinson5ff37ae2009-12-19 11:07:23 +0000180 .. versionadded:: 2.7
181
Mark Dickinson9cae1782009-12-16 20:13:40 +0000182
Georg Brandl8ec7f652007-08-15 14:28:01 +0000183.. function:: log(x[, base])
184
Georg Brandl018ad1c2009-09-01 07:53:37 +0000185 With one argument, return the natural logarithm of *x* (to base *e*).
186
187 With two arguments, return the logarithm of *x* to the given *base*,
188 calculated as ``log(x)/log(base)``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000189
190 .. versionchanged:: 2.3
191 *base* argument added.
192
193
Christian Heimes6f341092008-04-18 23:13:07 +0000194.. function:: log1p(x)
195
196 Return the natural logarithm of *1+x* (base *e*). The
197 result is calculated in a way which is accurate for *x* near zero.
198
199 .. versionadded:: 2.6
200
201
Georg Brandl8ec7f652007-08-15 14:28:01 +0000202.. function:: log10(x)
203
Georg Brandl018ad1c2009-09-01 07:53:37 +0000204 Return the base-10 logarithm of *x*. This is usually more accurate
205 than ``log(x, 10)``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000206
207
208.. function:: pow(x, y)
209
Mark Dickinson48f7a4a2008-04-19 21:35:35 +0000210 Return ``x`` raised to the power ``y``. Exceptional cases follow
211 Annex 'F' of the C99 standard as far as possible. In particular,
212 ``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even
213 when ``x`` is a zero or a NaN. If both ``x`` and ``y`` are finite,
214 ``x`` is negative, and ``y`` is not an integer then ``pow(x, y)``
215 is undefined, and raises :exc:`ValueError`.
Christian Heimes6f341092008-04-18 23:13:07 +0000216
217 .. versionchanged:: 2.6
Mark Dickinson48f7a4a2008-04-19 21:35:35 +0000218 The outcome of ``1**nan`` and ``nan**0`` was undefined.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000219
220
221.. function:: sqrt(x)
222
223 Return the square root of *x*.
224
Georg Brandl8ec7f652007-08-15 14:28:01 +0000225
Benjamin Peterson4f6ec9d2008-12-20 02:51:26 +0000226Trigonometric functions
227-----------------------
Georg Brandl8ec7f652007-08-15 14:28:01 +0000228
229.. function:: acos(x)
230
231 Return the arc cosine of *x*, in radians.
232
233
234.. function:: asin(x)
235
236 Return the arc sine of *x*, in radians.
237
238
239.. function:: atan(x)
240
241 Return the arc tangent of *x*, in radians.
242
243
244.. function:: atan2(y, x)
245
246 Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``.
247 The vector in the plane from the origin to point ``(x, y)`` makes this angle
248 with the positive X axis. The point of :func:`atan2` is that the signs of both
249 inputs are known to it, so it can compute the correct quadrant for the angle.
250 For example, ``atan(1``) and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1,
251 -1)`` is ``-3*pi/4``.
252
253
254.. function:: cos(x)
255
256 Return the cosine of *x* radians.
257
258
259.. function:: hypot(x, y)
260
261 Return the Euclidean norm, ``sqrt(x*x + y*y)``. This is the length of the vector
262 from the origin to point ``(x, y)``.
263
264
265.. function:: sin(x)
266
267 Return the sine of *x* radians.
268
269
270.. function:: tan(x)
271
272 Return the tangent of *x* radians.
273
Georg Brandl8ec7f652007-08-15 14:28:01 +0000274
Benjamin Peterson4f6ec9d2008-12-20 02:51:26 +0000275Angular conversion
276------------------
Georg Brandl8ec7f652007-08-15 14:28:01 +0000277
278.. function:: degrees(x)
279
280 Converts angle *x* from radians to degrees.
281
282
283.. function:: radians(x)
284
285 Converts angle *x* from degrees to radians.
286
Georg Brandl8ec7f652007-08-15 14:28:01 +0000287
Benjamin Peterson4f6ec9d2008-12-20 02:51:26 +0000288Hyperbolic functions
289--------------------
Georg Brandl8ec7f652007-08-15 14:28:01 +0000290
Mark Dickinson47a84aa2008-04-19 21:49:22 +0000291.. function:: acosh(x)
292
293 Return the inverse hyperbolic cosine of *x*.
294
295 .. versionadded:: 2.6
296
297
298.. function:: asinh(x)
299
300 Return the inverse hyperbolic sine of *x*.
301
302 .. versionadded:: 2.6
303
304
305.. function:: atanh(x)
306
307 Return the inverse hyperbolic tangent of *x*.
308
309 .. versionadded:: 2.6
310
311
Georg Brandl8ec7f652007-08-15 14:28:01 +0000312.. function:: cosh(x)
313
314 Return the hyperbolic cosine of *x*.
315
316
317.. function:: sinh(x)
318
319 Return the hyperbolic sine of *x*.
320
321
322.. function:: tanh(x)
323
324 Return the hyperbolic tangent of *x*.
325
Christian Heimes6f341092008-04-18 23:13:07 +0000326
Mark Dickinsonb93fff02009-09-28 18:54:55 +0000327Special functions
328-----------------
329
Mark Dickinson5ff37ae2009-12-19 11:07:23 +0000330.. function:: erf(x)
331
332 Return the error function at *x*.
333
334 .. versionadded:: 2.7
335
336
337.. function:: erfc(x)
338
339 Return the complementary error function at *x*.
340
341 .. versionadded:: 2.7
342
343
Mark Dickinsonb93fff02009-09-28 18:54:55 +0000344.. function:: gamma(x)
345
346 Return the Gamma function at *x*.
347
348 .. versionadded:: 2.7
349
350
Mark Dickinson9be87bc2009-12-11 17:29:33 +0000351.. function:: lgamma(x)
352
353 Return the natural logarithm of the absolute value of the Gamma
354 function at *x*.
355
356 .. versionadded:: 2.7
357
358
Benjamin Peterson4f6ec9d2008-12-20 02:51:26 +0000359Constants
360---------
Georg Brandl8ec7f652007-08-15 14:28:01 +0000361
Georg Brandl8ec7f652007-08-15 14:28:01 +0000362.. data:: pi
363
364 The mathematical constant *pi*.
365
366
367.. data:: e
368
369 The mathematical constant *e*.
370
Christian Heimes6f341092008-04-18 23:13:07 +0000371
Georg Brandl6c14e582009-10-22 11:48:10 +0000372.. impl-detail::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000373
374 The :mod:`math` module consists mostly of thin wrappers around the platform C
375 math library functions. Behavior in exceptional cases is loosely specified
376 by the C standards, and Python inherits much of its math-function
377 error-reporting behavior from the platform C implementation. As a result,
378 the specific exceptions raised in error cases (and even whether some
379 arguments are considered to be exceptional at all) are not defined in any
380 useful cross-platform or cross-release way. For example, whether
381 ``math.log(0)`` returns ``-Inf`` or raises :exc:`ValueError` or
382 :exc:`OverflowError` isn't defined, and in cases where ``math.log(0)`` raises
383 :exc:`OverflowError`, ``math.log(0L)`` may raise :exc:`ValueError` instead.
384
Mark Dickinson48f7a4a2008-04-19 21:35:35 +0000385 All functions return a quiet *NaN* if at least one of the args is *NaN*.
Georg Brandl9481ba32008-08-30 22:00:28 +0000386 Signaling *NaN*\s raise an exception. The exception type still depends on the
Christian Heimes6f341092008-04-18 23:13:07 +0000387 platform and libm implementation. It's usually :exc:`ValueError` for *EDOM*
388 and :exc:`OverflowError` for errno *ERANGE*.
389
Georg Brandl173b7392008-05-12 17:43:13 +0000390 .. versionchanged:: 2.6
Christian Heimes6f341092008-04-18 23:13:07 +0000391 In earlier versions of Python the outcome of an operation with NaN as
392 input depended on platform and libm implementation.
393
Georg Brandl8ec7f652007-08-15 14:28:01 +0000394
395.. seealso::
396
397 Module :mod:`cmath`
398 Complex number versions of many of these functions.