blob: d46014b7c01228bcdb333fe66c80e126198e3758 [file] [log] [blame]
Georg Brandl8ec7f652007-08-15 14:28:01 +00001
2:mod:`math` --- Mathematical functions
3======================================
4
5.. module:: math
6 :synopsis: Mathematical functions (sin() etc.).
7
8
9This module is always available. It provides access to the mathematical
10functions defined by the C standard.
11
12These functions cannot be used with complex numbers; use the functions of the
13same name from the :mod:`cmath` module if you require support for complex
14numbers. The distinction between functions which support complex numbers and
15those which don't is made since most users do not want to learn quite as much
16mathematics as required to understand complex numbers. Receiving an exception
17instead of a complex result allows earlier detection of the unexpected complex
18number used as a parameter, so that the programmer can determine how and why it
19was generated in the first place.
20
21The following functions are provided by this module. Except when explicitly
22noted otherwise, all return values are floats.
23
Georg Brandl8ec7f652007-08-15 14:28:01 +000024
Benjamin Peterson4f6ec9d2008-12-20 02:51:26 +000025Number-theoretic and representation functions
26---------------------------------------------
Georg Brandl8ec7f652007-08-15 14:28:01 +000027
28.. function:: ceil(x)
29
Jeffrey Yasskin9871d8f2008-01-05 08:47:13 +000030 Return the ceiling of *x* as a float, the smallest integer value greater than or
31 equal to *x*.
Georg Brandl8ec7f652007-08-15 14:28:01 +000032
33
Christian Heimeseebb79c2008-01-03 22:32:26 +000034.. function:: copysign(x, y)
35
36 Return *x* with the sign of *y*. ``copysign`` copies the sign bit of an IEEE
37 754 float, ``copysign(1, -0.0)`` returns *-1.0*.
38
Andrew M. Kuchling54966a52008-01-04 18:25:05 +000039 .. versionadded:: 2.6
Christian Heimeseebb79c2008-01-03 22:32:26 +000040
41
Georg Brandl8ec7f652007-08-15 14:28:01 +000042.. function:: fabs(x)
43
44 Return the absolute value of *x*.
45
Georg Brandl5da652e2008-06-18 09:28:22 +000046
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +000047.. function:: factorial(x)
48
Mark Dickinsonf88f7392008-06-18 09:20:17 +000049 Return *x* factorial. Raises :exc:`ValueError` if *x* is not integral or
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +000050 is negative.
Georg Brandl8ec7f652007-08-15 14:28:01 +000051
Georg Brandl5da652e2008-06-18 09:28:22 +000052 .. versionadded:: 2.6
53
54
Georg Brandl8ec7f652007-08-15 14:28:01 +000055.. function:: floor(x)
56
Jeffrey Yasskin9871d8f2008-01-05 08:47:13 +000057 Return the floor of *x* as a float, the largest integer value less than or equal
58 to *x*.
Georg Brandl8ec7f652007-08-15 14:28:01 +000059
Georg Brandl9749e152008-01-05 19:28:16 +000060 .. versionchanged:: 2.6
61 Added :meth:`__floor__` delegation.
62
Georg Brandl8ec7f652007-08-15 14:28:01 +000063
64.. function:: fmod(x, y)
65
66 Return ``fmod(x, y)``, as defined by the platform C library. Note that the
67 Python expression ``x % y`` may not return the same result. The intent of the C
68 standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite
69 precision) equal to ``x - n*y`` for some integer *n* such that the result has
70 the same sign as *x* and magnitude less than ``abs(y)``. Python's ``x % y``
71 returns a result with the sign of *y* instead, and may not be exactly computable
72 for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but
73 the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be
74 represented exactly as a float, and rounds to the surprising ``1e100``. For
75 this reason, function :func:`fmod` is generally preferred when working with
76 floats, while Python's ``x % y`` is preferred when working with integers.
77
78
79.. function:: frexp(x)
80
81 Return the mantissa and exponent of *x* as the pair ``(m, e)``. *m* is a float
82 and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero,
83 returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``. This is used to "pick
84 apart" the internal representation of a float in a portable way.
85
86
Mark Dickinsonfef6b132008-07-30 16:20:10 +000087.. function:: fsum(iterable)
88
89 Return an accurate floating point sum of values in the iterable. Avoids
Raymond Hettinger7d854952009-02-19 05:51:41 +000090 loss of precision by tracking multiple intermediate partial sums::
Mark Dickinsonfef6b132008-07-30 16:20:10 +000091
Raymond Hettinger7d854952009-02-19 05:51:41 +000092 >>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
93 0.99999999999999989
94 >>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
95 1.0
Mark Dickinson23957cb2008-07-30 20:23:15 +000096
Raymond Hettinger7d854952009-02-19 05:51:41 +000097 The algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the
98 typical case where the rounding mode is half-even. On some non-Windows
99 builds, the underlying C library uses extended precision addition and may
100 occasionally double-round an intermediate sum causing it to be off in its
101 least significant bit.
Mark Dickinson23957cb2008-07-30 20:23:15 +0000102
Raymond Hettinger749e6d02009-02-19 06:55:03 +0000103 For further discussion and two alternative approaches, see the `ASPN cookbook
104 recipes for accurate floating point summation
105 <http://code.activestate.com/recipes/393090/>`_\.
106
Mark Dickinsonfef6b132008-07-30 16:20:10 +0000107 .. versionadded:: 2.6
108
109
Christian Heimese2ca4242008-01-03 20:23:15 +0000110.. function:: isinf(x)
111
112 Checks if the float *x* is positive or negative infinite.
113
Andrew M. Kuchling54966a52008-01-04 18:25:05 +0000114 .. versionadded:: 2.6
Christian Heimese2ca4242008-01-03 20:23:15 +0000115
116
117.. function:: isnan(x)
118
119 Checks if the float *x* is a NaN (not a number). NaNs are part of the
Georg Brandlc62ef8b2009-01-03 20:55:06 +0000120 IEEE 754 standards. Operation like but not limited to ``inf * 0``,
Christian Heimese2ca4242008-01-03 20:23:15 +0000121 ``inf / inf`` or any operation involving a NaN, e.g. ``nan * 1``, return
122 a NaN.
123
Andrew M. Kuchling54966a52008-01-04 18:25:05 +0000124 .. versionadded:: 2.6
Christian Heimese2ca4242008-01-03 20:23:15 +0000125
126
Georg Brandl8ec7f652007-08-15 14:28:01 +0000127.. function:: ldexp(x, i)
128
129 Return ``x * (2**i)``. This is essentially the inverse of function
130 :func:`frexp`.
131
132
133.. function:: modf(x)
134
Benjamin Peterson2d54e722008-12-20 02:48:02 +0000135 Return the fractional and integer parts of *x*. Both results carry the sign
Benjamin Peterson9de72982008-12-20 22:49:24 +0000136 of *x* and are floats.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000137
Georg Brandl5da652e2008-06-18 09:28:22 +0000138
Jeffrey Yasskinca2b69f2008-02-01 06:22:46 +0000139.. function:: trunc(x)
140
141 Return the :class:`Real` value *x* truncated to an :class:`Integral` (usually
142 a long integer). Delegates to ``x.__trunc__()``.
143
144 .. versionadded:: 2.6
145
Georg Brandl5da652e2008-06-18 09:28:22 +0000146
Georg Brandl8ec7f652007-08-15 14:28:01 +0000147Note that :func:`frexp` and :func:`modf` have a different call/return pattern
148than their C equivalents: they take a single argument and return a pair of
149values, rather than returning their second return value through an 'output
150parameter' (there is no such thing in Python).
151
152For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
153floating-point numbers of sufficiently large magnitude are exact integers.
154Python floats typically carry no more than 53 bits of precision (the same as the
155platform C double type), in which case any float *x* with ``abs(x) >= 2**52``
156necessarily has no fractional bits.
157
Benjamin Peterson4f6ec9d2008-12-20 02:51:26 +0000158
159Power and logarithmic functions
160-------------------------------
Georg Brandl8ec7f652007-08-15 14:28:01 +0000161
Georg Brandl8ec7f652007-08-15 14:28:01 +0000162.. function:: exp(x)
163
164 Return ``e**x``.
165
166
167.. function:: log(x[, base])
168
Georg Brandl018ad1c2009-09-01 07:53:37 +0000169 With one argument, return the natural logarithm of *x* (to base *e*).
170
171 With two arguments, return the logarithm of *x* to the given *base*,
172 calculated as ``log(x)/log(base)``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000173
174 .. versionchanged:: 2.3
175 *base* argument added.
176
177
Christian Heimes6f341092008-04-18 23:13:07 +0000178.. function:: log1p(x)
179
180 Return the natural logarithm of *1+x* (base *e*). The
181 result is calculated in a way which is accurate for *x* near zero.
182
183 .. versionadded:: 2.6
184
185
Georg Brandl8ec7f652007-08-15 14:28:01 +0000186.. function:: log10(x)
187
Georg Brandl018ad1c2009-09-01 07:53:37 +0000188 Return the base-10 logarithm of *x*. This is usually more accurate
189 than ``log(x, 10)``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000190
191
192.. function:: pow(x, y)
193
Mark Dickinson48f7a4a2008-04-19 21:35:35 +0000194 Return ``x`` raised to the power ``y``. Exceptional cases follow
195 Annex 'F' of the C99 standard as far as possible. In particular,
196 ``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even
197 when ``x`` is a zero or a NaN. If both ``x`` and ``y`` are finite,
198 ``x`` is negative, and ``y`` is not an integer then ``pow(x, y)``
199 is undefined, and raises :exc:`ValueError`.
Christian Heimes6f341092008-04-18 23:13:07 +0000200
201 .. versionchanged:: 2.6
Mark Dickinson48f7a4a2008-04-19 21:35:35 +0000202 The outcome of ``1**nan`` and ``nan**0`` was undefined.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000203
204
205.. function:: sqrt(x)
206
207 Return the square root of *x*.
208
Georg Brandl8ec7f652007-08-15 14:28:01 +0000209
Benjamin Peterson4f6ec9d2008-12-20 02:51:26 +0000210Trigonometric functions
211-----------------------
Georg Brandl8ec7f652007-08-15 14:28:01 +0000212
213.. function:: acos(x)
214
215 Return the arc cosine of *x*, in radians.
216
217
218.. function:: asin(x)
219
220 Return the arc sine of *x*, in radians.
221
222
223.. function:: atan(x)
224
225 Return the arc tangent of *x*, in radians.
226
227
228.. function:: atan2(y, x)
229
230 Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``.
231 The vector in the plane from the origin to point ``(x, y)`` makes this angle
232 with the positive X axis. The point of :func:`atan2` is that the signs of both
233 inputs are known to it, so it can compute the correct quadrant for the angle.
234 For example, ``atan(1``) and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1,
235 -1)`` is ``-3*pi/4``.
236
237
238.. function:: cos(x)
239
240 Return the cosine of *x* radians.
241
242
243.. function:: hypot(x, y)
244
245 Return the Euclidean norm, ``sqrt(x*x + y*y)``. This is the length of the vector
246 from the origin to point ``(x, y)``.
247
248
249.. function:: sin(x)
250
251 Return the sine of *x* radians.
252
253
254.. function:: tan(x)
255
256 Return the tangent of *x* radians.
257
Georg Brandl8ec7f652007-08-15 14:28:01 +0000258
Benjamin Peterson4f6ec9d2008-12-20 02:51:26 +0000259Angular conversion
260------------------
Georg Brandl8ec7f652007-08-15 14:28:01 +0000261
262.. function:: degrees(x)
263
264 Converts angle *x* from radians to degrees.
265
266
267.. function:: radians(x)
268
269 Converts angle *x* from degrees to radians.
270
Georg Brandl8ec7f652007-08-15 14:28:01 +0000271
Benjamin Peterson4f6ec9d2008-12-20 02:51:26 +0000272Hyperbolic functions
273--------------------
Georg Brandl8ec7f652007-08-15 14:28:01 +0000274
Mark Dickinson47a84aa2008-04-19 21:49:22 +0000275.. function:: acosh(x)
276
277 Return the inverse hyperbolic cosine of *x*.
278
279 .. versionadded:: 2.6
280
281
282.. function:: asinh(x)
283
284 Return the inverse hyperbolic sine of *x*.
285
286 .. versionadded:: 2.6
287
288
289.. function:: atanh(x)
290
291 Return the inverse hyperbolic tangent of *x*.
292
293 .. versionadded:: 2.6
294
295
Georg Brandl8ec7f652007-08-15 14:28:01 +0000296.. function:: cosh(x)
297
298 Return the hyperbolic cosine of *x*.
299
300
301.. function:: sinh(x)
302
303 Return the hyperbolic sine of *x*.
304
305
306.. function:: tanh(x)
307
308 Return the hyperbolic tangent of *x*.
309
Christian Heimes6f341092008-04-18 23:13:07 +0000310
Mark Dickinsonb93fff02009-09-28 18:54:55 +0000311Special functions
312-----------------
313
314.. function:: gamma(x)
315
316 Return the Gamma function at *x*.
317
318 .. versionadded:: 2.7
319
320
Benjamin Peterson4f6ec9d2008-12-20 02:51:26 +0000321Constants
322---------
Georg Brandl8ec7f652007-08-15 14:28:01 +0000323
Georg Brandl8ec7f652007-08-15 14:28:01 +0000324.. data:: pi
325
326 The mathematical constant *pi*.
327
328
329.. data:: e
330
331 The mathematical constant *e*.
332
Christian Heimes6f341092008-04-18 23:13:07 +0000333
Georg Brandl8ec7f652007-08-15 14:28:01 +0000334.. note::
335
336 The :mod:`math` module consists mostly of thin wrappers around the platform C
337 math library functions. Behavior in exceptional cases is loosely specified
338 by the C standards, and Python inherits much of its math-function
339 error-reporting behavior from the platform C implementation. As a result,
340 the specific exceptions raised in error cases (and even whether some
341 arguments are considered to be exceptional at all) are not defined in any
342 useful cross-platform or cross-release way. For example, whether
343 ``math.log(0)`` returns ``-Inf`` or raises :exc:`ValueError` or
344 :exc:`OverflowError` isn't defined, and in cases where ``math.log(0)`` raises
345 :exc:`OverflowError`, ``math.log(0L)`` may raise :exc:`ValueError` instead.
346
Mark Dickinson48f7a4a2008-04-19 21:35:35 +0000347 All functions return a quiet *NaN* if at least one of the args is *NaN*.
Georg Brandl9481ba32008-08-30 22:00:28 +0000348 Signaling *NaN*\s raise an exception. The exception type still depends on the
Christian Heimes6f341092008-04-18 23:13:07 +0000349 platform and libm implementation. It's usually :exc:`ValueError` for *EDOM*
350 and :exc:`OverflowError` for errno *ERANGE*.
351
Georg Brandl173b7392008-05-12 17:43:13 +0000352 .. versionchanged:: 2.6
Christian Heimes6f341092008-04-18 23:13:07 +0000353 In earlier versions of Python the outcome of an operation with NaN as
354 input depended on platform and libm implementation.
355
Georg Brandl8ec7f652007-08-15 14:28:01 +0000356
357.. seealso::
358
359 Module :mod:`cmath`
360 Complex number versions of many of these functions.