blob: 6addd4832114a91a5228ea9db8b47c7333b8ecde [file] [log] [blame]
Georg Brandl8ec7f652007-08-15 14:28:01 +00001
Raymond Hettinger13a70752008-02-10 07:21:09 +00002:mod:`decimal` --- Decimal fixed point and floating point arithmetic
3====================================================================
Georg Brandl8ec7f652007-08-15 14:28:01 +00004
5.. module:: decimal
6 :synopsis: Implementation of the General Decimal Arithmetic Specification.
7
8
9.. moduleauthor:: Eric Price <eprice at tjhsst.edu>
10.. moduleauthor:: Facundo Batista <facundo at taniquetil.com.ar>
11.. moduleauthor:: Raymond Hettinger <python at rcn.com>
12.. moduleauthor:: Aahz <aahz at pobox.com>
13.. moduleauthor:: Tim Peters <tim.one at comcast.net>
14
15
16.. sectionauthor:: Raymond D. Hettinger <python at rcn.com>
17
Georg Brandl8ec7f652007-08-15 14:28:01 +000018.. versionadded:: 2.4
19
Georg Brandl9f662322008-03-22 11:47:10 +000020.. import modules for testing inline doctests with the Sphinx doctest builder
Georg Brandl17baef02008-03-22 10:56:23 +000021.. testsetup:: *
22
Georg Brandl9f662322008-03-22 11:47:10 +000023 import decimal
24 import math
Georg Brandl17baef02008-03-22 10:56:23 +000025 from decimal import *
Georg Brandl9f662322008-03-22 11:47:10 +000026 # make sure each group gets a fresh context
27 setcontext(Context())
Georg Brandl17baef02008-03-22 10:56:23 +000028
Georg Brandl8ec7f652007-08-15 14:28:01 +000029The :mod:`decimal` module provides support for decimal floating point
Facundo Batista7c82a3e92007-09-14 18:58:34 +000030arithmetic. It offers several advantages over the :class:`float` datatype:
Georg Brandl8ec7f652007-08-15 14:28:01 +000031
Raymond Hettinger13a70752008-02-10 07:21:09 +000032* Decimal "is based on a floating-point model which was designed with people
33 in mind, and necessarily has a paramount guiding principle -- computers must
34 provide an arithmetic that works in the same way as the arithmetic that
35 people learn at school." -- excerpt from the decimal arithmetic specification.
36
Georg Brandl8ec7f652007-08-15 14:28:01 +000037* Decimal numbers can be represented exactly. In contrast, numbers like
Mark Dickinson6b87f112009-11-24 14:27:02 +000038 :const:`1.1` and :const:`2.2` do not have an exact representations in binary
39 floating point. End users typically would not expect ``1.1 + 2.2`` to display
40 as :const:`3.3000000000000003` as it does with binary floating point.
Georg Brandl8ec7f652007-08-15 14:28:01 +000041
42* The exactness carries over into arithmetic. In decimal floating point, ``0.1
Facundo Batista7c82a3e92007-09-14 18:58:34 +000043 + 0.1 + 0.1 - 0.3`` is exactly equal to zero. In binary floating point, the result
Georg Brandl8ec7f652007-08-15 14:28:01 +000044 is :const:`5.5511151231257827e-017`. While near to zero, the differences
45 prevent reliable equality testing and differences can accumulate. For this
Raymond Hettinger13a70752008-02-10 07:21:09 +000046 reason, decimal is preferred in accounting applications which have strict
Georg Brandl8ec7f652007-08-15 14:28:01 +000047 equality invariants.
48
49* The decimal module incorporates a notion of significant places so that ``1.30
50 + 1.20`` is :const:`2.50`. The trailing zero is kept to indicate significance.
51 This is the customary presentation for monetary applications. For
52 multiplication, the "schoolbook" approach uses all the figures in the
53 multiplicands. For instance, ``1.3 * 1.2`` gives :const:`1.56` while ``1.30 *
54 1.20`` gives :const:`1.5600`.
55
56* Unlike hardware based binary floating point, the decimal module has a user
Facundo Batista7c82a3e92007-09-14 18:58:34 +000057 alterable precision (defaulting to 28 places) which can be as large as needed for
Georg Brandl17baef02008-03-22 10:56:23 +000058 a given problem:
Georg Brandl8ec7f652007-08-15 14:28:01 +000059
60 >>> getcontext().prec = 6
61 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +000062 Decimal('0.142857')
Georg Brandl8ec7f652007-08-15 14:28:01 +000063 >>> getcontext().prec = 28
64 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +000065 Decimal('0.1428571428571428571428571429')
Georg Brandl8ec7f652007-08-15 14:28:01 +000066
67* Both binary and decimal floating point are implemented in terms of published
68 standards. While the built-in float type exposes only a modest portion of its
69 capabilities, the decimal module exposes all required parts of the standard.
70 When needed, the programmer has full control over rounding and signal handling.
Raymond Hettinger13a70752008-02-10 07:21:09 +000071 This includes an option to enforce exact arithmetic by using exceptions
72 to block any inexact operations.
73
74* The decimal module was designed to support "without prejudice, both exact
75 unrounded decimal arithmetic (sometimes called fixed-point arithmetic)
76 and rounded floating-point arithmetic." -- excerpt from the decimal
77 arithmetic specification.
Georg Brandl8ec7f652007-08-15 14:28:01 +000078
79The module design is centered around three concepts: the decimal number, the
80context for arithmetic, and signals.
81
82A decimal number is immutable. It has a sign, coefficient digits, and an
83exponent. To preserve significance, the coefficient digits do not truncate
Facundo Batista7c82a3e92007-09-14 18:58:34 +000084trailing zeros. Decimals also include special values such as
Georg Brandl8ec7f652007-08-15 14:28:01 +000085:const:`Infinity`, :const:`-Infinity`, and :const:`NaN`. The standard also
86differentiates :const:`-0` from :const:`+0`.
87
88The context for arithmetic is an environment specifying precision, rounding
89rules, limits on exponents, flags indicating the results of operations, and trap
90enablers which determine whether signals are treated as exceptions. Rounding
91options include :const:`ROUND_CEILING`, :const:`ROUND_DOWN`,
92:const:`ROUND_FLOOR`, :const:`ROUND_HALF_DOWN`, :const:`ROUND_HALF_EVEN`,
Facundo Batista7c82a3e92007-09-14 18:58:34 +000093:const:`ROUND_HALF_UP`, :const:`ROUND_UP`, and :const:`ROUND_05UP`.
Georg Brandl8ec7f652007-08-15 14:28:01 +000094
95Signals are groups of exceptional conditions arising during the course of
96computation. Depending on the needs of the application, signals may be ignored,
97considered as informational, or treated as exceptions. The signals in the
98decimal module are: :const:`Clamped`, :const:`InvalidOperation`,
99:const:`DivisionByZero`, :const:`Inexact`, :const:`Rounded`, :const:`Subnormal`,
100:const:`Overflow`, and :const:`Underflow`.
101
102For each signal there is a flag and a trap enabler. When a signal is
Mark Dickinson1840c1a2008-05-03 18:23:14 +0000103encountered, its flag is set to one, then, if the trap enabler is
Georg Brandl8ec7f652007-08-15 14:28:01 +0000104set to one, an exception is raised. Flags are sticky, so the user needs to
105reset them before monitoring a calculation.
106
107
108.. seealso::
109
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000110 * IBM's General Decimal Arithmetic Specification, `The General Decimal Arithmetic
Raymond Hettingerf345a212009-03-10 01:07:30 +0000111 Specification <http://speleotrove.com/decimal/>`_.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000112
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000113 * IEEE standard 854-1987, `Unofficial IEEE 854 Text
Mark Dickinsonff6672f2008-02-07 01:14:23 +0000114 <http://754r.ucbtest.org/standards/854.pdf>`_.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000115
Georg Brandlb19be572007-12-29 10:57:00 +0000116.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +0000117
118
119.. _decimal-tutorial:
120
121Quick-start Tutorial
122--------------------
123
124The usual start to using decimals is importing the module, viewing the current
125context with :func:`getcontext` and, if necessary, setting new values for
Georg Brandl9f662322008-03-22 11:47:10 +0000126precision, rounding, or enabled traps::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000127
128 >>> from decimal import *
129 >>> getcontext()
130 Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
Georg Brandl9f662322008-03-22 11:47:10 +0000131 capitals=1, flags=[], traps=[Overflow, DivisionByZero,
132 InvalidOperation])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000133
134 >>> getcontext().prec = 7 # Set a new precision
135
136Decimal instances can be constructed from integers, strings, or tuples. To
137create a Decimal from a :class:`float`, first convert it to a string. This
138serves as an explicit reminder of the details of the conversion (including
139representation error). Decimal numbers include special values such as
140:const:`NaN` which stands for "Not a number", positive and negative
Georg Brandl17baef02008-03-22 10:56:23 +0000141:const:`Infinity`, and :const:`-0`.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000142
Facundo Batista8e1c52a2008-06-21 17:30:06 +0000143 >>> getcontext().prec = 28
Georg Brandl8ec7f652007-08-15 14:28:01 +0000144 >>> Decimal(10)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000145 Decimal('10')
146 >>> Decimal('3.14')
147 Decimal('3.14')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000148 >>> Decimal((0, (3, 1, 4), -2))
Raymond Hettingerabe32372008-02-14 02:41:22 +0000149 Decimal('3.14')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000150 >>> Decimal(str(2.0 ** 0.5))
Raymond Hettingerabe32372008-02-14 02:41:22 +0000151 Decimal('1.41421356237')
152 >>> Decimal(2) ** Decimal('0.5')
153 Decimal('1.414213562373095048801688724')
154 >>> Decimal('NaN')
155 Decimal('NaN')
156 >>> Decimal('-Infinity')
157 Decimal('-Infinity')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000158
159The significance of a new Decimal is determined solely by the number of digits
160input. Context precision and rounding only come into play during arithmetic
Georg Brandl17baef02008-03-22 10:56:23 +0000161operations.
162
163.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +0000164
165 >>> getcontext().prec = 6
166 >>> Decimal('3.0')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000167 Decimal('3.0')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000168 >>> Decimal('3.1415926535')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000169 Decimal('3.1415926535')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000170 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000171 Decimal('5.85987')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000172 >>> getcontext().rounding = ROUND_UP
173 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000174 Decimal('5.85988')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000175
176Decimals interact well with much of the rest of Python. Here is a small decimal
Georg Brandl9f662322008-03-22 11:47:10 +0000177floating point flying circus:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000178
Georg Brandl838b4b02008-03-22 13:07:06 +0000179.. doctest::
180 :options: +NORMALIZE_WHITESPACE
181
Georg Brandl8ec7f652007-08-15 14:28:01 +0000182 >>> data = map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split())
183 >>> max(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000184 Decimal('9.25')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000185 >>> min(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000186 Decimal('0.03')
Georg Brandl838b4b02008-03-22 13:07:06 +0000187 >>> sorted(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000188 [Decimal('0.03'), Decimal('1.00'), Decimal('1.34'), Decimal('1.87'),
189 Decimal('2.35'), Decimal('3.45'), Decimal('9.25')]
Georg Brandl8ec7f652007-08-15 14:28:01 +0000190 >>> sum(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000191 Decimal('19.29')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000192 >>> a,b,c = data[:3]
193 >>> str(a)
194 '1.34'
195 >>> float(a)
Mark Dickinson6b87f112009-11-24 14:27:02 +0000196 1.34
Georg Brandl8ec7f652007-08-15 14:28:01 +0000197 >>> round(a, 1) # round() first converts to binary floating point
198 1.3
199 >>> int(a)
200 1
201 >>> a * 5
Raymond Hettingerabe32372008-02-14 02:41:22 +0000202 Decimal('6.70')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000203 >>> a * b
Raymond Hettingerabe32372008-02-14 02:41:22 +0000204 Decimal('2.5058')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000205 >>> c % a
Raymond Hettingerabe32372008-02-14 02:41:22 +0000206 Decimal('0.77')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000207
Georg Brandl9f662322008-03-22 11:47:10 +0000208And some mathematical functions are also available to Decimal:
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000209
Facundo Batista8e1c52a2008-06-21 17:30:06 +0000210 >>> getcontext().prec = 28
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000211 >>> Decimal(2).sqrt()
Raymond Hettingerabe32372008-02-14 02:41:22 +0000212 Decimal('1.414213562373095048801688724')
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000213 >>> Decimal(1).exp()
Raymond Hettingerabe32372008-02-14 02:41:22 +0000214 Decimal('2.718281828459045235360287471')
215 >>> Decimal('10').ln()
216 Decimal('2.302585092994045684017991455')
217 >>> Decimal('10').log10()
218 Decimal('1')
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000219
Georg Brandl8ec7f652007-08-15 14:28:01 +0000220The :meth:`quantize` method rounds a number to a fixed exponent. This method is
221useful for monetary applications that often round results to a fixed number of
Georg Brandl9f662322008-03-22 11:47:10 +0000222places:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000223
224 >>> Decimal('7.325').quantize(Decimal('.01'), rounding=ROUND_DOWN)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000225 Decimal('7.32')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000226 >>> Decimal('7.325').quantize(Decimal('1.'), rounding=ROUND_UP)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000227 Decimal('8')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000228
229As shown above, the :func:`getcontext` function accesses the current context and
230allows the settings to be changed. This approach meets the needs of most
231applications.
232
233For more advanced work, it may be useful to create alternate contexts using the
234Context() constructor. To make an alternate active, use the :func:`setcontext`
235function.
236
237In accordance with the standard, the :mod:`Decimal` module provides two ready to
238use standard contexts, :const:`BasicContext` and :const:`ExtendedContext`. The
239former is especially useful for debugging because many of the traps are
Georg Brandl9f662322008-03-22 11:47:10 +0000240enabled:
241
242.. doctest:: newcontext
243 :options: +NORMALIZE_WHITESPACE
Georg Brandl8ec7f652007-08-15 14:28:01 +0000244
245 >>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)
246 >>> setcontext(myothercontext)
247 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000248 Decimal('0.142857142857142857142857142857142857142857142857142857142857')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000249
250 >>> ExtendedContext
251 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
252 capitals=1, flags=[], traps=[])
253 >>> setcontext(ExtendedContext)
254 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000255 Decimal('0.142857143')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000256 >>> Decimal(42) / Decimal(0)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000257 Decimal('Infinity')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000258
259 >>> setcontext(BasicContext)
260 >>> Decimal(42) / Decimal(0)
261 Traceback (most recent call last):
262 File "<pyshell#143>", line 1, in -toplevel-
263 Decimal(42) / Decimal(0)
264 DivisionByZero: x / 0
265
266Contexts also have signal flags for monitoring exceptional conditions
267encountered during computations. The flags remain set until explicitly cleared,
268so it is best to clear the flags before each set of monitored computations by
269using the :meth:`clear_flags` method. ::
270
271 >>> setcontext(ExtendedContext)
272 >>> getcontext().clear_flags()
273 >>> Decimal(355) / Decimal(113)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000274 Decimal('3.14159292')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000275 >>> getcontext()
276 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
Georg Brandl9f662322008-03-22 11:47:10 +0000277 capitals=1, flags=[Rounded, Inexact], traps=[])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000278
279The *flags* entry shows that the rational approximation to :const:`Pi` was
280rounded (digits beyond the context precision were thrown away) and that the
281result is inexact (some of the discarded digits were non-zero).
282
283Individual traps are set using the dictionary in the :attr:`traps` field of a
Georg Brandl9f662322008-03-22 11:47:10 +0000284context:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000285
Georg Brandl9f662322008-03-22 11:47:10 +0000286.. doctest:: newcontext
287
288 >>> setcontext(ExtendedContext)
Georg Brandl8ec7f652007-08-15 14:28:01 +0000289 >>> Decimal(1) / Decimal(0)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000290 Decimal('Infinity')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000291 >>> getcontext().traps[DivisionByZero] = 1
292 >>> Decimal(1) / Decimal(0)
293 Traceback (most recent call last):
294 File "<pyshell#112>", line 1, in -toplevel-
295 Decimal(1) / Decimal(0)
296 DivisionByZero: x / 0
297
298Most programs adjust the current context only once, at the beginning of the
299program. And, in many applications, data is converted to :class:`Decimal` with
300a single cast inside a loop. With context set and decimals created, the bulk of
301the program manipulates the data no differently than with other Python numeric
302types.
303
Georg Brandlb19be572007-12-29 10:57:00 +0000304.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +0000305
306
307.. _decimal-decimal:
308
309Decimal objects
310---------------
311
312
313.. class:: Decimal([value [, context]])
314
Georg Brandlb19be572007-12-29 10:57:00 +0000315 Construct a new :class:`Decimal` object based from *value*.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000316
Raymond Hettingered171ab2010-04-02 18:39:24 +0000317 *value* can be an integer, string, tuple, :class:`float`, or another :class:`Decimal`
Raymond Hettingerabe32372008-02-14 02:41:22 +0000318 object. If no *value* is given, returns ``Decimal('0')``. If *value* is a
Mark Dickinson59bc20b2008-01-12 01:56:00 +0000319 string, it should conform to the decimal numeric string syntax after leading
320 and trailing whitespace characters are removed::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000321
322 sign ::= '+' | '-'
323 digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
324 indicator ::= 'e' | 'E'
325 digits ::= digit [digit]...
326 decimal-part ::= digits '.' [digits] | ['.'] digits
327 exponent-part ::= indicator [sign] digits
328 infinity ::= 'Infinity' | 'Inf'
329 nan ::= 'NaN' [digits] | 'sNaN' [digits]
330 numeric-value ::= decimal-part [exponent-part] | infinity
Georg Brandlc62ef8b2009-01-03 20:55:06 +0000331 numeric-string ::= [sign] numeric-value | [sign] nan
Georg Brandl8ec7f652007-08-15 14:28:01 +0000332
Mark Dickinson4326ad82009-08-02 10:59:36 +0000333 If *value* is a unicode string then other Unicode decimal digits
334 are also permitted where ``digit`` appears above. These include
335 decimal digits from various other alphabets (for example,
336 Arabic-Indic and Devanāgarī digits) along with the fullwidth digits
337 ``u'\uff10'`` through ``u'\uff19'``.
338
Georg Brandl8ec7f652007-08-15 14:28:01 +0000339 If *value* is a :class:`tuple`, it should have three components, a sign
340 (:const:`0` for positive or :const:`1` for negative), a :class:`tuple` of
341 digits, and an integer exponent. For example, ``Decimal((0, (1, 4, 1, 4), -3))``
Raymond Hettingerabe32372008-02-14 02:41:22 +0000342 returns ``Decimal('1.414')``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000343
Raymond Hettingered171ab2010-04-02 18:39:24 +0000344 If *value* is a :class:`float`, the binary floating point value is losslessly
345 converted to its exact decimal equivalent. This conversion can often require
346 upto 53 digits of precision. For example, ``Decimal(float('1.1'))`` converts
347 to ``Decimal('1.100000000000000088817841970012523233890533447265625')``.
348
Georg Brandl8ec7f652007-08-15 14:28:01 +0000349 The *context* precision does not affect how many digits are stored. That is
350 determined exclusively by the number of digits in *value*. For example,
Raymond Hettingerabe32372008-02-14 02:41:22 +0000351 ``Decimal('3.00000')`` records all five zeros even if the context precision is
Georg Brandl8ec7f652007-08-15 14:28:01 +0000352 only three.
353
354 The purpose of the *context* argument is determining what to do if *value* is a
355 malformed string. If the context traps :const:`InvalidOperation`, an exception
356 is raised; otherwise, the constructor returns a new Decimal with the value of
357 :const:`NaN`.
358
359 Once constructed, :class:`Decimal` objects are immutable.
360
Mark Dickinson59bc20b2008-01-12 01:56:00 +0000361 .. versionchanged:: 2.6
362 leading and trailing whitespace characters are permitted when
363 creating a Decimal instance from a string.
364
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000365 Decimal floating point objects share many properties with the other built-in
366 numeric types such as :class:`float` and :class:`int`. All of the usual math
367 operations and special methods apply. Likewise, decimal objects can be
368 copied, pickled, printed, used as dictionary keys, used as set elements,
369 compared, sorted, and coerced to another type (such as :class:`float` or
370 :class:`long`).
Georg Brandl8ec7f652007-08-15 14:28:01 +0000371
Mark Dickinson99d80962010-04-02 08:53:22 +0000372 Decimal objects cannot generally be combined with floats in
373 arithmetic operations: an attempt to add a :class:`Decimal` to a
374 :class:`float`, for example, will raise a :exc:`TypeError`.
375 There's one exception to this rule: it's possible to use Python's
376 comparison operators to compare a :class:`float` instance ``x``
377 with a :class:`Decimal` instance ``y``. Without this exception,
378 comparisons between :class:`Decimal` and :class:`float` instances
379 would follow the general rules for comparing objects of different
380 types described in the :ref:`expressions` section of the reference
381 manual, leading to confusing results.
382
383 .. versionchanged:: 2.7
384 A comparison between a :class:`float` instance ``x`` and a
385 :class:`Decimal` instance ``y`` now returns a result based on
386 the values of ``x`` and ``y``. In earlier versions ``x < y``
387 returned the same (arbitrary) result for any :class:`Decimal`
388 instance ``x`` and any :class:`float` instance ``y``.
389
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000390 In addition to the standard numeric properties, decimal floating point
391 objects also have a number of specialized methods:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000392
393
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000394 .. method:: adjusted()
Georg Brandl8ec7f652007-08-15 14:28:01 +0000395
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000396 Return the adjusted exponent after shifting out the coefficient's
397 rightmost digits until only the lead digit remains:
398 ``Decimal('321e+5').adjusted()`` returns seven. Used for determining the
399 position of the most significant digit with respect to the decimal point.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000400
401
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000402 .. method:: as_tuple()
Georg Brandl8ec7f652007-08-15 14:28:01 +0000403
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000404 Return a :term:`named tuple` representation of the number:
405 ``DecimalTuple(sign, digits, exponent)``.
Georg Brandle3c3db52008-01-11 09:55:53 +0000406
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000407 .. versionchanged:: 2.6
408 Use a named tuple.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000409
410
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000411 .. method:: canonical()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000412
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000413 Return the canonical encoding of the argument. Currently, the encoding of
414 a :class:`Decimal` instance is always canonical, so this operation returns
415 its argument unchanged.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000416
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000417 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000418
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000419 .. method:: compare(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000420
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000421 Compare the values of two Decimal instances. This operation behaves in
422 the same way as the usual comparison method :meth:`__cmp__`, except that
423 :meth:`compare` returns a Decimal instance rather than an integer, and if
424 either operand is a NaN then the result is a NaN::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000425
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000426 a or b is a NaN ==> Decimal('NaN')
427 a < b ==> Decimal('-1')
428 a == b ==> Decimal('0')
429 a > b ==> Decimal('1')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000430
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000431 .. method:: compare_signal(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000432
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000433 This operation is identical to the :meth:`compare` method, except that all
434 NaNs signal. That is, if neither operand is a signaling NaN then any
435 quiet NaN operand is treated as though it were a signaling NaN.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000436
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000437 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000438
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000439 .. method:: compare_total(other)
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000440
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000441 Compare two operands using their abstract representation rather than their
442 numerical value. Similar to the :meth:`compare` method, but the result
443 gives a total ordering on :class:`Decimal` instances. Two
444 :class:`Decimal` instances with the same numeric value but different
445 representations compare unequal in this ordering:
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000446
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000447 >>> Decimal('12.0').compare_total(Decimal('12'))
448 Decimal('-1')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000449
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000450 Quiet and signaling NaNs are also included in the total ordering. The
451 result of this function is ``Decimal('0')`` if both operands have the same
452 representation, ``Decimal('-1')`` if the first operand is lower in the
453 total order than the second, and ``Decimal('1')`` if the first operand is
454 higher in the total order than the second operand. See the specification
455 for details of the total order.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000456
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000457 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000458
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000459 .. method:: compare_total_mag(other)
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000460
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000461 Compare two operands using their abstract representation rather than their
462 value as in :meth:`compare_total`, but ignoring the sign of each operand.
463 ``x.compare_total_mag(y)`` is equivalent to
464 ``x.copy_abs().compare_total(y.copy_abs())``.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000465
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000466 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000467
Facundo Batista8e1c52a2008-06-21 17:30:06 +0000468 .. method:: conjugate()
469
470 Just returns self, this method is only to comply with the Decimal
471 Specification.
472
473 .. versionadded:: 2.6
474
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000475 .. method:: copy_abs()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000476
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000477 Return the absolute value of the argument. This operation is unaffected
478 by the context and is quiet: no flags are changed and no rounding is
479 performed.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000480
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000481 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000482
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000483 .. method:: copy_negate()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000484
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000485 Return the negation of the argument. This operation is unaffected by the
486 context and is quiet: no flags are changed and no rounding is performed.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000487
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000488 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000489
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000490 .. method:: copy_sign(other)
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000491
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000492 Return a copy of the first operand with the sign set to be the same as the
493 sign of the second operand. For example:
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000494
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000495 >>> Decimal('2.3').copy_sign(Decimal('-1.5'))
496 Decimal('-2.3')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000497
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000498 This operation is unaffected by the context and is quiet: no flags are
499 changed and no rounding is performed.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000500
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000501 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000502
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000503 .. method:: exp([context])
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000504
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000505 Return the value of the (natural) exponential function ``e**x`` at the
506 given number. The result is correctly rounded using the
507 :const:`ROUND_HALF_EVEN` rounding mode.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000508
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000509 >>> Decimal(1).exp()
510 Decimal('2.718281828459045235360287471')
511 >>> Decimal(321).exp()
512 Decimal('2.561702493119680037517373933E+139')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000513
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000514 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000515
Raymond Hettingerf4d85972009-01-03 19:02:23 +0000516 .. method:: from_float(f)
517
518 Classmethod that converts a float to a decimal number, exactly.
519
520 Note `Decimal.from_float(0.1)` is not the same as `Decimal('0.1')`.
521 Since 0.1 is not exactly representable in binary floating point, the
522 value is stored as the nearest representable value which is
523 `0x1.999999999999ap-4`. That equivalent value in decimal is
524 `0.1000000000000000055511151231257827021181583404541015625`.
525
526 .. doctest::
527
528 >>> Decimal.from_float(0.1)
529 Decimal('0.1000000000000000055511151231257827021181583404541015625')
530 >>> Decimal.from_float(float('nan'))
531 Decimal('NaN')
532 >>> Decimal.from_float(float('inf'))
533 Decimal('Infinity')
534 >>> Decimal.from_float(float('-inf'))
535 Decimal('-Infinity')
536
537 .. versionadded:: 2.7
538
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000539 .. method:: fma(other, third[, context])
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000540
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000541 Fused multiply-add. Return self*other+third with no rounding of the
542 intermediate product self*other.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000543
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000544 >>> Decimal(2).fma(3, 5)
545 Decimal('11')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000546
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000547 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000548
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000549 .. method:: is_canonical()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000550
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000551 Return :const:`True` if the argument is canonical and :const:`False`
552 otherwise. Currently, a :class:`Decimal` instance is always canonical, so
553 this operation always returns :const:`True`.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000554
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000555 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000556
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000557 .. method:: is_finite()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000558
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000559 Return :const:`True` if the argument is a finite number, and
560 :const:`False` if the argument is an infinity or a NaN.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000561
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000562 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000563
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000564 .. method:: is_infinite()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000565
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000566 Return :const:`True` if the argument is either positive or negative
567 infinity and :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000568
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000569 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000570
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000571 .. method:: is_nan()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000572
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000573 Return :const:`True` if the argument is a (quiet or signaling) NaN and
574 :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000575
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000576 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000577
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000578 .. method:: is_normal()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000579
Raymond Hettingereecd1dc62009-03-10 04:40:24 +0000580 Return :const:`True` if the argument is a *normal* finite non-zero
581 number with an adjusted exponent greater than or equal to *Emin*.
582 Return :const:`False` if the argument is zero, subnormal, infinite or a
583 NaN. Note, the term *normal* is used here in a different sense with
584 the :meth:`normalize` method which is used to create canonical values.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000585
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000586 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000587
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000588 .. method:: is_qnan()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000589
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000590 Return :const:`True` if the argument is a quiet NaN, and
591 :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000592
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000593 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000594
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000595 .. method:: is_signed()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000596
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000597 Return :const:`True` if the argument has a negative sign and
598 :const:`False` otherwise. Note that zeros and NaNs can both carry signs.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000599
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000600 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000601
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000602 .. method:: is_snan()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000603
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000604 Return :const:`True` if the argument is a signaling NaN and :const:`False`
605 otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000606
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000607 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000608
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000609 .. method:: is_subnormal()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000610
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000611 Return :const:`True` if the argument is subnormal, and :const:`False`
Raymond Hettingereecd1dc62009-03-10 04:40:24 +0000612 otherwise. A number is subnormal is if it is nonzero, finite, and has an
613 adjusted exponent less than *Emin*.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000614
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000615 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000616
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000617 .. method:: is_zero()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000618
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000619 Return :const:`True` if the argument is a (positive or negative) zero and
620 :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000621
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000622 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000623
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000624 .. method:: ln([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000625
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000626 Return the natural (base e) logarithm of the operand. The result is
627 correctly rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000628
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000629 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000630
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000631 .. method:: log10([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000632
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000633 Return the base ten logarithm of the operand. The result is correctly
634 rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000635
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000636 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000637
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000638 .. method:: logb([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000639
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000640 For a nonzero number, return the adjusted exponent of its operand as a
641 :class:`Decimal` instance. If the operand is a zero then
642 ``Decimal('-Infinity')`` is returned and the :const:`DivisionByZero` flag
643 is raised. If the operand is an infinity then ``Decimal('Infinity')`` is
644 returned.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000645
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000646 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000647
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000648 .. method:: logical_and(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000649
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000650 :meth:`logical_and` is a logical operation which takes two *logical
651 operands* (see :ref:`logical_operands_label`). The result is the
652 digit-wise ``and`` of the two operands.
653
654 .. versionadded:: 2.6
655
Georg Brandl3d5c87a2009-06-30 16:15:43 +0000656 .. method:: logical_invert([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000657
Georg Brandl3d5c87a2009-06-30 16:15:43 +0000658 :meth:`logical_invert` is a logical operation. The
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000659 result is the digit-wise inversion of the operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000660
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000661 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000662
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000663 .. method:: logical_or(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000664
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000665 :meth:`logical_or` is a logical operation which takes two *logical
666 operands* (see :ref:`logical_operands_label`). The result is the
667 digit-wise ``or`` of the two operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000668
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000669 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000670
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000671 .. method:: logical_xor(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000672
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000673 :meth:`logical_xor` is a logical operation which takes two *logical
674 operands* (see :ref:`logical_operands_label`). The result is the
675 digit-wise exclusive or of the two operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000676
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000677 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000678
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000679 .. method:: max(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000680
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000681 Like ``max(self, other)`` except that the context rounding rule is applied
682 before returning and that :const:`NaN` values are either signaled or
683 ignored (depending on the context and whether they are signaling or
684 quiet).
Georg Brandl8ec7f652007-08-15 14:28:01 +0000685
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000686 .. method:: max_mag(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000687
Georg Brandl9fa61bb2009-07-26 14:19:57 +0000688 Similar to the :meth:`.max` method, but the comparison is done using the
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000689 absolute values of the operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000690
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000691 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000692
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000693 .. method:: min(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000694
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000695 Like ``min(self, other)`` except that the context rounding rule is applied
696 before returning and that :const:`NaN` values are either signaled or
697 ignored (depending on the context and whether they are signaling or
698 quiet).
Georg Brandl8ec7f652007-08-15 14:28:01 +0000699
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000700 .. method:: min_mag(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000701
Georg Brandl9fa61bb2009-07-26 14:19:57 +0000702 Similar to the :meth:`.min` method, but the comparison is done using the
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000703 absolute values of the operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000704
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000705 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000706
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000707 .. method:: next_minus([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000708
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000709 Return the largest number representable in the given context (or in the
710 current thread's context if no context is given) that is smaller than the
711 given operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000712
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000713 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000714
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000715 .. method:: next_plus([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000716
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000717 Return the smallest number representable in the given context (or in the
718 current thread's context if no context is given) that is larger than the
719 given operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000720
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000721 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000722
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000723 .. method:: next_toward(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000724
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000725 If the two operands are unequal, return the number closest to the first
726 operand in the direction of the second operand. If both operands are
727 numerically equal, return a copy of the first operand with the sign set to
728 be the same as the sign of the second operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000729
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000730 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000731
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000732 .. method:: normalize([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000733
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000734 Normalize the number by stripping the rightmost trailing zeros and
735 converting any result equal to :const:`Decimal('0')` to
736 :const:`Decimal('0e0')`. Used for producing canonical values for members
737 of an equivalence class. For example, ``Decimal('32.100')`` and
738 ``Decimal('0.321000e+2')`` both normalize to the equivalent value
739 ``Decimal('32.1')``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000740
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000741 .. method:: number_class([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000742
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000743 Return a string describing the *class* of the operand. The returned value
744 is one of the following ten strings.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000745
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000746 * ``"-Infinity"``, indicating that the operand is negative infinity.
747 * ``"-Normal"``, indicating that the operand is a negative normal number.
748 * ``"-Subnormal"``, indicating that the operand is negative and subnormal.
749 * ``"-Zero"``, indicating that the operand is a negative zero.
750 * ``"+Zero"``, indicating that the operand is a positive zero.
751 * ``"+Subnormal"``, indicating that the operand is positive and subnormal.
752 * ``"+Normal"``, indicating that the operand is a positive normal number.
753 * ``"+Infinity"``, indicating that the operand is positive infinity.
754 * ``"NaN"``, indicating that the operand is a quiet NaN (Not a Number).
755 * ``"sNaN"``, indicating that the operand is a signaling NaN.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000756
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000757 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000758
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000759 .. method:: quantize(exp[, rounding[, context[, watchexp]]])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000760
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000761 Return a value equal to the first operand after rounding and having the
762 exponent of the second operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000763
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000764 >>> Decimal('1.41421356').quantize(Decimal('1.000'))
765 Decimal('1.414')
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000766
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000767 Unlike other operations, if the length of the coefficient after the
768 quantize operation would be greater than precision, then an
769 :const:`InvalidOperation` is signaled. This guarantees that, unless there
770 is an error condition, the quantized exponent is always equal to that of
771 the right-hand operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000772
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000773 Also unlike other operations, quantize never signals Underflow, even if
774 the result is subnormal and inexact.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000775
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000776 If the exponent of the second operand is larger than that of the first
777 then rounding may be necessary. In this case, the rounding mode is
778 determined by the ``rounding`` argument if given, else by the given
779 ``context`` argument; if neither argument is given the rounding mode of
780 the current thread's context is used.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000781
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000782 If *watchexp* is set (default), then an error is returned whenever the
783 resulting exponent is greater than :attr:`Emax` or less than
784 :attr:`Etiny`.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000785
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000786 .. method:: radix()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000787
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000788 Return ``Decimal(10)``, the radix (base) in which the :class:`Decimal`
789 class does all its arithmetic. Included for compatibility with the
790 specification.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000791
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000792 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000793
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000794 .. method:: remainder_near(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000795
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000796 Compute the modulo as either a positive or negative value depending on
797 which is closest to zero. For instance, ``Decimal(10).remainder_near(6)``
798 returns ``Decimal('-2')`` which is closer to zero than ``Decimal('4')``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000799
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000800 If both are equally close, the one chosen will have the same sign as
801 *self*.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000802
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000803 .. method:: rotate(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000804
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000805 Return the result of rotating the digits of the first operand by an amount
806 specified by the second operand. The second operand must be an integer in
807 the range -precision through precision. The absolute value of the second
808 operand gives the number of places to rotate. If the second operand is
809 positive then rotation is to the left; otherwise rotation is to the right.
810 The coefficient of the first operand is padded on the left with zeros to
811 length precision if necessary. The sign and exponent of the first operand
812 are unchanged.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000813
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000814 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000815
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000816 .. method:: same_quantum(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000817
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000818 Test whether self and other have the same exponent or whether both are
819 :const:`NaN`.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000820
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000821 .. method:: scaleb(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000822
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000823 Return the first operand with exponent adjusted by the second.
824 Equivalently, return the first operand multiplied by ``10**other``. The
825 second operand must be an integer.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000826
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000827 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000828
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000829 .. method:: shift(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000830
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000831 Return the result of shifting the digits of the first operand by an amount
832 specified by the second operand. The second operand must be an integer in
833 the range -precision through precision. The absolute value of the second
834 operand gives the number of places to shift. If the second operand is
835 positive then the shift is to the left; otherwise the shift is to the
836 right. Digits shifted into the coefficient are zeros. The sign and
837 exponent of the first operand are unchanged.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000838
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000839 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000840
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000841 .. method:: sqrt([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000842
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000843 Return the square root of the argument to full precision.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000844
845
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000846 .. method:: to_eng_string([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000847
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000848 Convert to an engineering-type string.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000849
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000850 Engineering notation has an exponent which is a multiple of 3, so there
851 are up to 3 digits left of the decimal place. For example, converts
852 ``Decimal('123E+1')`` to ``Decimal('1.23E+3')``
Georg Brandl8ec7f652007-08-15 14:28:01 +0000853
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000854 .. method:: to_integral([rounding[, context]])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000855
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000856 Identical to the :meth:`to_integral_value` method. The ``to_integral``
857 name has been kept for compatibility with older versions.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000858
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000859 .. method:: to_integral_exact([rounding[, context]])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000860
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000861 Round to the nearest integer, signaling :const:`Inexact` or
862 :const:`Rounded` as appropriate if rounding occurs. The rounding mode is
863 determined by the ``rounding`` parameter if given, else by the given
864 ``context``. If neither parameter is given then the rounding mode of the
865 current context is used.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000866
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000867 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000868
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000869 .. method:: to_integral_value([rounding[, context]])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000870
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000871 Round to the nearest integer without signaling :const:`Inexact` or
872 :const:`Rounded`. If given, applies *rounding*; otherwise, uses the
873 rounding method in either the supplied *context* or the current context.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000874
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000875 .. versionchanged:: 2.6
876 renamed from ``to_integral`` to ``to_integral_value``. The old name
877 remains valid for compatibility.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000878
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000879.. _logical_operands_label:
880
881Logical operands
882^^^^^^^^^^^^^^^^
883
884The :meth:`logical_and`, :meth:`logical_invert`, :meth:`logical_or`,
885and :meth:`logical_xor` methods expect their arguments to be *logical
886operands*. A *logical operand* is a :class:`Decimal` instance whose
887exponent and sign are both zero, and whose digits are all either
888:const:`0` or :const:`1`.
889
Georg Brandlb19be572007-12-29 10:57:00 +0000890.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +0000891
892
893.. _decimal-context:
894
895Context objects
896---------------
897
898Contexts are environments for arithmetic operations. They govern precision, set
899rules for rounding, determine which signals are treated as exceptions, and limit
900the range for exponents.
901
902Each thread has its own current context which is accessed or changed using the
903:func:`getcontext` and :func:`setcontext` functions:
904
905
906.. function:: getcontext()
907
908 Return the current context for the active thread.
909
910
911.. function:: setcontext(c)
912
913 Set the current context for the active thread to *c*.
914
915Beginning with Python 2.5, you can also use the :keyword:`with` statement and
916the :func:`localcontext` function to temporarily change the active context.
917
918
919.. function:: localcontext([c])
920
921 Return a context manager that will set the current context for the active thread
922 to a copy of *c* on entry to the with-statement and restore the previous context
923 when exiting the with-statement. If no context is specified, a copy of the
924 current context is used.
925
926 .. versionadded:: 2.5
927
928 For example, the following code sets the current decimal precision to 42 places,
929 performs a calculation, and then automatically restores the previous context::
930
Georg Brandl8ec7f652007-08-15 14:28:01 +0000931 from decimal import localcontext
932
933 with localcontext() as ctx:
934 ctx.prec = 42 # Perform a high precision calculation
935 s = calculate_something()
936 s = +s # Round the final result back to the default precision
937
938New contexts can also be created using the :class:`Context` constructor
939described below. In addition, the module provides three pre-made contexts:
940
941
942.. class:: BasicContext
943
944 This is a standard context defined by the General Decimal Arithmetic
945 Specification. Precision is set to nine. Rounding is set to
946 :const:`ROUND_HALF_UP`. All flags are cleared. All traps are enabled (treated
947 as exceptions) except :const:`Inexact`, :const:`Rounded`, and
948 :const:`Subnormal`.
949
950 Because many of the traps are enabled, this context is useful for debugging.
951
952
953.. class:: ExtendedContext
954
955 This is a standard context defined by the General Decimal Arithmetic
956 Specification. Precision is set to nine. Rounding is set to
957 :const:`ROUND_HALF_EVEN`. All flags are cleared. No traps are enabled (so that
958 exceptions are not raised during computations).
959
Mark Dickinson3a94ee02008-02-10 15:19:58 +0000960 Because the traps are disabled, this context is useful for applications that
Georg Brandl8ec7f652007-08-15 14:28:01 +0000961 prefer to have result value of :const:`NaN` or :const:`Infinity` instead of
962 raising exceptions. This allows an application to complete a run in the
963 presence of conditions that would otherwise halt the program.
964
965
966.. class:: DefaultContext
967
968 This context is used by the :class:`Context` constructor as a prototype for new
969 contexts. Changing a field (such a precision) has the effect of changing the
970 default for new contexts creating by the :class:`Context` constructor.
971
972 This context is most useful in multi-threaded environments. Changing one of the
973 fields before threads are started has the effect of setting system-wide
974 defaults. Changing the fields after threads have started is not recommended as
975 it would require thread synchronization to prevent race conditions.
976
977 In single threaded environments, it is preferable to not use this context at
978 all. Instead, simply create contexts explicitly as described below.
979
980 The default values are precision=28, rounding=ROUND_HALF_EVEN, and enabled traps
981 for Overflow, InvalidOperation, and DivisionByZero.
982
983In addition to the three supplied contexts, new contexts can be created with the
984:class:`Context` constructor.
985
986
987.. class:: Context(prec=None, rounding=None, traps=None, flags=None, Emin=None, Emax=None, capitals=1)
988
989 Creates a new context. If a field is not specified or is :const:`None`, the
990 default values are copied from the :const:`DefaultContext`. If the *flags*
991 field is not specified or is :const:`None`, all flags are cleared.
992
993 The *prec* field is a positive integer that sets the precision for arithmetic
994 operations in the context.
995
996 The *rounding* option is one of:
997
998 * :const:`ROUND_CEILING` (towards :const:`Infinity`),
999 * :const:`ROUND_DOWN` (towards zero),
1000 * :const:`ROUND_FLOOR` (towards :const:`-Infinity`),
1001 * :const:`ROUND_HALF_DOWN` (to nearest with ties going towards zero),
1002 * :const:`ROUND_HALF_EVEN` (to nearest with ties going to nearest even integer),
1003 * :const:`ROUND_HALF_UP` (to nearest with ties going away from zero), or
1004 * :const:`ROUND_UP` (away from zero).
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001005 * :const:`ROUND_05UP` (away from zero if last digit after rounding towards zero
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001006 would have been 0 or 5; otherwise towards zero)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001007
1008 The *traps* and *flags* fields list any signals to be set. Generally, new
1009 contexts should only set traps and leave the flags clear.
1010
1011 The *Emin* and *Emax* fields are integers specifying the outer limits allowable
1012 for exponents.
1013
1014 The *capitals* field is either :const:`0` or :const:`1` (the default). If set to
1015 :const:`1`, exponents are printed with a capital :const:`E`; otherwise, a
1016 lowercase :const:`e` is used: :const:`Decimal('6.02e+23')`.
1017
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001018 .. versionchanged:: 2.6
1019 The :const:`ROUND_05UP` rounding mode was added.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001020
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001021 The :class:`Context` class defines several general purpose methods as well as
1022 a large number of methods for doing arithmetic directly in a given context.
1023 In addition, for each of the :class:`Decimal` methods described above (with
1024 the exception of the :meth:`adjusted` and :meth:`as_tuple` methods) there is
Mark Dickinson6d8effb2010-02-18 14:27:02 +00001025 a corresponding :class:`Context` method. For example, for a :class:`Context`
1026 instance ``C`` and :class:`Decimal` instance ``x``, ``C.exp(x)`` is
1027 equivalent to ``x.exp(context=C)``. Each :class:`Context` method accepts a
1028 Python integer (an instance of :class:`int` or :class:`long`) anywhere that a
1029 Decimal instance is accepted.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001030
1031
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001032 .. method:: clear_flags()
Georg Brandl8ec7f652007-08-15 14:28:01 +00001033
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001034 Resets all of the flags to :const:`0`.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001035
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001036 .. method:: copy()
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001037
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001038 Return a duplicate of the context.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001039
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001040 .. method:: copy_decimal(num)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001041
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001042 Return a copy of the Decimal instance num.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001043
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001044 .. method:: create_decimal(num)
Georg Brandl9f662322008-03-22 11:47:10 +00001045
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001046 Creates a new Decimal instance from *num* but using *self* as
1047 context. Unlike the :class:`Decimal` constructor, the context precision,
1048 rounding method, flags, and traps are applied to the conversion.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001049
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001050 This is useful because constants are often given to a greater precision
1051 than is needed by the application. Another benefit is that rounding
1052 immediately eliminates unintended effects from digits beyond the current
1053 precision. In the following example, using unrounded inputs means that
1054 adding zero to a sum can change the result:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001055
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001056 .. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001057
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001058 >>> getcontext().prec = 3
1059 >>> Decimal('3.4445') + Decimal('1.0023')
1060 Decimal('4.45')
1061 >>> Decimal('3.4445') + Decimal(0) + Decimal('1.0023')
1062 Decimal('4.44')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001063
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001064 This method implements the to-number operation of the IBM specification.
1065 If the argument is a string, no leading or trailing whitespace is
1066 permitted.
1067
Georg Brandlaa5bb322009-01-03 19:44:48 +00001068 .. method:: create_decimal_from_float(f)
Raymond Hettingerf4d85972009-01-03 19:02:23 +00001069
1070 Creates a new Decimal instance from a float *f* but rounding using *self*
Georg Brandla24067e2009-01-03 20:15:14 +00001071 as the context. Unlike the :meth:`Decimal.from_float` class method,
Raymond Hettingerf4d85972009-01-03 19:02:23 +00001072 the context precision, rounding method, flags, and traps are applied to
1073 the conversion.
1074
1075 .. doctest::
1076
Georg Brandlaa5bb322009-01-03 19:44:48 +00001077 >>> context = Context(prec=5, rounding=ROUND_DOWN)
1078 >>> context.create_decimal_from_float(math.pi)
1079 Decimal('3.1415')
1080 >>> context = Context(prec=5, traps=[Inexact])
1081 >>> context.create_decimal_from_float(math.pi)
1082 Traceback (most recent call last):
1083 ...
1084 Inexact: None
Raymond Hettingerf4d85972009-01-03 19:02:23 +00001085
1086 .. versionadded:: 2.7
1087
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001088 .. method:: Etiny()
1089
1090 Returns a value equal to ``Emin - prec + 1`` which is the minimum exponent
1091 value for subnormal results. When underflow occurs, the exponent is set
1092 to :const:`Etiny`.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001093
1094
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001095 .. method:: Etop()
Georg Brandl8ec7f652007-08-15 14:28:01 +00001096
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001097 Returns a value equal to ``Emax - prec + 1``.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001098
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001099 The usual approach to working with decimals is to create :class:`Decimal`
1100 instances and then apply arithmetic operations which take place within the
1101 current context for the active thread. An alternative approach is to use
1102 context methods for calculating within a specific context. The methods are
1103 similar to those for the :class:`Decimal` class and are only briefly
1104 recounted here.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001105
1106
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001107 .. method:: abs(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001108
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001109 Returns the absolute value of *x*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001110
1111
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001112 .. method:: add(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001113
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001114 Return the sum of *x* and *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001115
1116
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001117 .. method:: canonical(x)
1118
1119 Returns the same Decimal object *x*.
1120
1121
1122 .. method:: compare(x, y)
1123
1124 Compares *x* and *y* numerically.
1125
1126
1127 .. method:: compare_signal(x, y)
1128
1129 Compares the values of the two operands numerically.
1130
1131
1132 .. method:: compare_total(x, y)
1133
1134 Compares two operands using their abstract representation.
1135
1136
1137 .. method:: compare_total_mag(x, y)
1138
1139 Compares two operands using their abstract representation, ignoring sign.
1140
1141
1142 .. method:: copy_abs(x)
1143
1144 Returns a copy of *x* with the sign set to 0.
1145
1146
1147 .. method:: copy_negate(x)
1148
1149 Returns a copy of *x* with the sign inverted.
1150
1151
1152 .. method:: copy_sign(x, y)
1153
1154 Copies the sign from *y* to *x*.
1155
1156
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001157 .. method:: divide(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001158
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001159 Return *x* divided by *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001160
1161
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001162 .. method:: divide_int(x, y)
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001163
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001164 Return *x* divided by *y*, truncated to an integer.
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001165
1166
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001167 .. method:: divmod(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001168
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001169 Divides two numbers and returns the integer part of the result.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001170
1171
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001172 .. method:: exp(x)
1173
1174 Returns `e ** x`.
1175
1176
1177 .. method:: fma(x, y, z)
1178
1179 Returns *x* multiplied by *y*, plus *z*.
1180
1181
1182 .. method:: is_canonical(x)
1183
1184 Returns True if *x* is canonical; otherwise returns False.
1185
1186
1187 .. method:: is_finite(x)
1188
1189 Returns True if *x* is finite; otherwise returns False.
1190
1191
1192 .. method:: is_infinite(x)
1193
1194 Returns True if *x* is infinite; otherwise returns False.
1195
1196
1197 .. method:: is_nan(x)
1198
1199 Returns True if *x* is a qNaN or sNaN; otherwise returns False.
1200
1201
1202 .. method:: is_normal(x)
1203
1204 Returns True if *x* is a normal number; otherwise returns False.
1205
1206
1207 .. method:: is_qnan(x)
1208
1209 Returns True if *x* is a quiet NaN; otherwise returns False.
1210
1211
1212 .. method:: is_signed(x)
1213
1214 Returns True if *x* is negative; otherwise returns False.
1215
1216
1217 .. method:: is_snan(x)
1218
1219 Returns True if *x* is a signaling NaN; otherwise returns False.
1220
1221
1222 .. method:: is_subnormal(x)
1223
1224 Returns True if *x* is subnormal; otherwise returns False.
1225
1226
1227 .. method:: is_zero(x)
1228
1229 Returns True if *x* is a zero; otherwise returns False.
1230
1231
1232 .. method:: ln(x)
1233
1234 Returns the natural (base e) logarithm of *x*.
1235
1236
1237 .. method:: log10(x)
1238
1239 Returns the base 10 logarithm of *x*.
1240
1241
1242 .. method:: logb(x)
1243
1244 Returns the exponent of the magnitude of the operand's MSD.
1245
1246
1247 .. method:: logical_and(x, y)
1248
Georg Brandle92818f2009-01-03 20:47:01 +00001249 Applies the logical operation *and* between each operand's digits.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001250
1251
1252 .. method:: logical_invert(x)
1253
1254 Invert all the digits in *x*.
1255
1256
1257 .. method:: logical_or(x, y)
1258
Georg Brandle92818f2009-01-03 20:47:01 +00001259 Applies the logical operation *or* between each operand's digits.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001260
1261
1262 .. method:: logical_xor(x, y)
1263
Georg Brandle92818f2009-01-03 20:47:01 +00001264 Applies the logical operation *xor* between each operand's digits.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001265
1266
1267 .. method:: max(x, y)
1268
1269 Compares two values numerically and returns the maximum.
1270
1271
1272 .. method:: max_mag(x, y)
1273
1274 Compares the values numerically with their sign ignored.
1275
1276
1277 .. method:: min(x, y)
1278
1279 Compares two values numerically and returns the minimum.
1280
1281
1282 .. method:: min_mag(x, y)
1283
1284 Compares the values numerically with their sign ignored.
1285
1286
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001287 .. method:: minus(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001288
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001289 Minus corresponds to the unary prefix minus operator in Python.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001290
1291
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001292 .. method:: multiply(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001293
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001294 Return the product of *x* and *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001295
1296
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001297 .. method:: next_minus(x)
1298
1299 Returns the largest representable number smaller than *x*.
1300
1301
1302 .. method:: next_plus(x)
1303
1304 Returns the smallest representable number larger than *x*.
1305
1306
1307 .. method:: next_toward(x, y)
1308
1309 Returns the number closest to *x*, in direction towards *y*.
1310
1311
1312 .. method:: normalize(x)
1313
1314 Reduces *x* to its simplest form.
1315
1316
1317 .. method:: number_class(x)
1318
1319 Returns an indication of the class of *x*.
1320
1321
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001322 .. method:: plus(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001323
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001324 Plus corresponds to the unary prefix plus operator in Python. This
1325 operation applies the context precision and rounding, so it is *not* an
1326 identity operation.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001327
1328
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001329 .. method:: power(x, y[, modulo])
Georg Brandl8ec7f652007-08-15 14:28:01 +00001330
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001331 Return ``x`` to the power of ``y``, reduced modulo ``modulo`` if given.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001332
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001333 With two arguments, compute ``x**y``. If ``x`` is negative then ``y``
1334 must be integral. The result will be inexact unless ``y`` is integral and
1335 the result is finite and can be expressed exactly in 'precision' digits.
1336 The result should always be correctly rounded, using the rounding mode of
1337 the current thread's context.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001338
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001339 With three arguments, compute ``(x**y) % modulo``. For the three argument
1340 form, the following restrictions on the arguments hold:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001341
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001342 - all three arguments must be integral
1343 - ``y`` must be nonnegative
1344 - at least one of ``x`` or ``y`` must be nonzero
1345 - ``modulo`` must be nonzero and have at most 'precision' digits
Georg Brandl8ec7f652007-08-15 14:28:01 +00001346
Mark Dickinsonf5be4e62010-02-22 15:40:28 +00001347 The value resulting from ``Context.power(x, y, modulo)`` is
1348 equal to the value that would be obtained by computing ``(x**y)
1349 % modulo`` with unbounded precision, but is computed more
1350 efficiently. The exponent of the result is zero, regardless of
1351 the exponents of ``x``, ``y`` and ``modulo``. The result is
1352 always exact.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001353
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001354 .. versionchanged:: 2.6
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001355 ``y`` may now be nonintegral in ``x**y``.
1356 Stricter requirements for the three-argument version.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001357
1358
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001359 .. method:: quantize(x, y)
1360
1361 Returns a value equal to *x* (rounded), having the exponent of *y*.
1362
1363
1364 .. method:: radix()
1365
1366 Just returns 10, as this is Decimal, :)
1367
1368
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001369 .. method:: remainder(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001370
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001371 Returns the remainder from integer division.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001372
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001373 The sign of the result, if non-zero, is the same as that of the original
1374 dividend.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001375
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001376 .. method:: remainder_near(x, y)
1377
Georg Brandle92818f2009-01-03 20:47:01 +00001378 Returns ``x - y * n``, where *n* is the integer nearest the exact value
1379 of ``x / y`` (if the result is 0 then its sign will be the sign of *x*).
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001380
1381
1382 .. method:: rotate(x, y)
1383
1384 Returns a rotated copy of *x*, *y* times.
1385
1386
1387 .. method:: same_quantum(x, y)
1388
1389 Returns True if the two operands have the same exponent.
1390
1391
1392 .. method:: scaleb (x, y)
1393
1394 Returns the first operand after adding the second value its exp.
1395
1396
1397 .. method:: shift(x, y)
1398
1399 Returns a shifted copy of *x*, *y* times.
1400
1401
1402 .. method:: sqrt(x)
1403
1404 Square root of a non-negative number to context precision.
1405
1406
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001407 .. method:: subtract(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001408
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001409 Return the difference between *x* and *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001410
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001411
1412 .. method:: to_eng_string(x)
1413
1414 Converts a number to a string, using scientific notation.
1415
1416
1417 .. method:: to_integral_exact(x)
1418
1419 Rounds to an integer.
1420
1421
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001422 .. method:: to_sci_string(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001423
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001424 Converts a number to a string using scientific notation.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001425
Georg Brandlb19be572007-12-29 10:57:00 +00001426.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001427
1428
1429.. _decimal-signals:
1430
1431Signals
1432-------
1433
1434Signals represent conditions that arise during computation. Each corresponds to
1435one context flag and one context trap enabler.
1436
Mark Dickinson1840c1a2008-05-03 18:23:14 +00001437The context flag is set whenever the condition is encountered. After the
Georg Brandl8ec7f652007-08-15 14:28:01 +00001438computation, flags may be checked for informational purposes (for instance, to
1439determine whether a computation was exact). After checking the flags, be sure to
1440clear all flags before starting the next computation.
1441
1442If the context's trap enabler is set for the signal, then the condition causes a
1443Python exception to be raised. For example, if the :class:`DivisionByZero` trap
1444is set, then a :exc:`DivisionByZero` exception is raised upon encountering the
1445condition.
1446
1447
1448.. class:: Clamped
1449
1450 Altered an exponent to fit representation constraints.
1451
1452 Typically, clamping occurs when an exponent falls outside the context's
1453 :attr:`Emin` and :attr:`Emax` limits. If possible, the exponent is reduced to
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001454 fit by adding zeros to the coefficient.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001455
1456
1457.. class:: DecimalException
1458
1459 Base class for other signals and a subclass of :exc:`ArithmeticError`.
1460
1461
1462.. class:: DivisionByZero
1463
1464 Signals the division of a non-infinite number by zero.
1465
1466 Can occur with division, modulo division, or when raising a number to a negative
1467 power. If this signal is not trapped, returns :const:`Infinity` or
1468 :const:`-Infinity` with the sign determined by the inputs to the calculation.
1469
1470
1471.. class:: Inexact
1472
1473 Indicates that rounding occurred and the result is not exact.
1474
1475 Signals when non-zero digits were discarded during rounding. The rounded result
1476 is returned. The signal flag or trap is used to detect when results are
1477 inexact.
1478
1479
1480.. class:: InvalidOperation
1481
1482 An invalid operation was performed.
1483
1484 Indicates that an operation was requested that does not make sense. If not
1485 trapped, returns :const:`NaN`. Possible causes include::
1486
1487 Infinity - Infinity
1488 0 * Infinity
1489 Infinity / Infinity
1490 x % 0
1491 Infinity % x
1492 x._rescale( non-integer )
1493 sqrt(-x) and x > 0
1494 0 ** 0
1495 x ** (non-integer)
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001496 x ** Infinity
Georg Brandl8ec7f652007-08-15 14:28:01 +00001497
1498
1499.. class:: Overflow
1500
1501 Numerical overflow.
1502
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001503 Indicates the exponent is larger than :attr:`Emax` after rounding has
1504 occurred. If not trapped, the result depends on the rounding mode, either
1505 pulling inward to the largest representable finite number or rounding outward
1506 to :const:`Infinity`. In either case, :class:`Inexact` and :class:`Rounded`
1507 are also signaled.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001508
1509
1510.. class:: Rounded
1511
1512 Rounding occurred though possibly no information was lost.
1513
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001514 Signaled whenever rounding discards digits; even if those digits are zero
1515 (such as rounding :const:`5.00` to :const:`5.0`). If not trapped, returns
1516 the result unchanged. This signal is used to detect loss of significant
1517 digits.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001518
1519
1520.. class:: Subnormal
1521
1522 Exponent was lower than :attr:`Emin` prior to rounding.
1523
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001524 Occurs when an operation result is subnormal (the exponent is too small). If
1525 not trapped, returns the result unchanged.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001526
1527
1528.. class:: Underflow
1529
1530 Numerical underflow with result rounded to zero.
1531
1532 Occurs when a subnormal result is pushed to zero by rounding. :class:`Inexact`
1533 and :class:`Subnormal` are also signaled.
1534
1535The following table summarizes the hierarchy of signals::
1536
1537 exceptions.ArithmeticError(exceptions.StandardError)
1538 DecimalException
1539 Clamped
1540 DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
1541 Inexact
1542 Overflow(Inexact, Rounded)
1543 Underflow(Inexact, Rounded, Subnormal)
1544 InvalidOperation
1545 Rounded
1546 Subnormal
1547
Georg Brandlb19be572007-12-29 10:57:00 +00001548.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001549
1550
1551.. _decimal-notes:
1552
1553Floating Point Notes
1554--------------------
1555
1556
1557Mitigating round-off error with increased precision
1558^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1559
1560The use of decimal floating point eliminates decimal representation error
1561(making it possible to represent :const:`0.1` exactly); however, some operations
1562can still incur round-off error when non-zero digits exceed the fixed precision.
1563
1564The effects of round-off error can be amplified by the addition or subtraction
1565of nearly offsetting quantities resulting in loss of significance. Knuth
1566provides two instructive examples where rounded floating point arithmetic with
1567insufficient precision causes the breakdown of the associative and distributive
Georg Brandl9f662322008-03-22 11:47:10 +00001568properties of addition:
1569
1570.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001571
1572 # Examples from Seminumerical Algorithms, Section 4.2.2.
1573 >>> from decimal import Decimal, getcontext
1574 >>> getcontext().prec = 8
1575
1576 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1577 >>> (u + v) + w
Raymond Hettingerabe32372008-02-14 02:41:22 +00001578 Decimal('9.5111111')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001579 >>> u + (v + w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001580 Decimal('10')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001581
1582 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1583 >>> (u*v) + (u*w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001584 Decimal('0.01')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001585 >>> u * (v+w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001586 Decimal('0.0060000')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001587
1588The :mod:`decimal` module makes it possible to restore the identities by
Georg Brandl9f662322008-03-22 11:47:10 +00001589expanding the precision sufficiently to avoid loss of significance:
1590
1591.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001592
1593 >>> getcontext().prec = 20
1594 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1595 >>> (u + v) + w
Raymond Hettingerabe32372008-02-14 02:41:22 +00001596 Decimal('9.51111111')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001597 >>> u + (v + w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001598 Decimal('9.51111111')
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001599 >>>
Georg Brandl8ec7f652007-08-15 14:28:01 +00001600 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1601 >>> (u*v) + (u*w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001602 Decimal('0.0060000')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001603 >>> u * (v+w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001604 Decimal('0.0060000')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001605
1606
1607Special values
1608^^^^^^^^^^^^^^
1609
1610The number system for the :mod:`decimal` module provides special values
1611including :const:`NaN`, :const:`sNaN`, :const:`-Infinity`, :const:`Infinity`,
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001612and two zeros, :const:`+0` and :const:`-0`.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001613
1614Infinities can be constructed directly with: ``Decimal('Infinity')``. Also,
1615they can arise from dividing by zero when the :exc:`DivisionByZero` signal is
1616not trapped. Likewise, when the :exc:`Overflow` signal is not trapped, infinity
1617can result from rounding beyond the limits of the largest representable number.
1618
1619The infinities are signed (affine) and can be used in arithmetic operations
1620where they get treated as very large, indeterminate numbers. For instance,
1621adding a constant to infinity gives another infinite result.
1622
1623Some operations are indeterminate and return :const:`NaN`, or if the
1624:exc:`InvalidOperation` signal is trapped, raise an exception. For example,
1625``0/0`` returns :const:`NaN` which means "not a number". This variety of
1626:const:`NaN` is quiet and, once created, will flow through other computations
1627always resulting in another :const:`NaN`. This behavior can be useful for a
1628series of computations that occasionally have missing inputs --- it allows the
1629calculation to proceed while flagging specific results as invalid.
1630
1631A variant is :const:`sNaN` which signals rather than remaining quiet after every
1632operation. This is a useful return value when an invalid result needs to
1633interrupt a calculation for special handling.
1634
Mark Dickinson2fc92632008-02-06 22:10:50 +00001635The behavior of Python's comparison operators can be a little surprising where a
1636:const:`NaN` is involved. A test for equality where one of the operands is a
1637quiet or signaling :const:`NaN` always returns :const:`False` (even when doing
1638``Decimal('NaN')==Decimal('NaN')``), while a test for inequality always returns
Mark Dickinsonbafa9422008-02-06 22:25:16 +00001639:const:`True`. An attempt to compare two Decimals using any of the ``<``,
Mark Dickinson00c2e652008-02-07 01:42:06 +00001640``<=``, ``>`` or ``>=`` operators will raise the :exc:`InvalidOperation` signal
1641if either operand is a :const:`NaN`, and return :const:`False` if this signal is
Mark Dickinson3a94ee02008-02-10 15:19:58 +00001642not trapped. Note that the General Decimal Arithmetic specification does not
Mark Dickinson00c2e652008-02-07 01:42:06 +00001643specify the behavior of direct comparisons; these rules for comparisons
1644involving a :const:`NaN` were taken from the IEEE 854 standard (see Table 3 in
1645section 5.7). To ensure strict standards-compliance, use the :meth:`compare`
Mark Dickinson2fc92632008-02-06 22:10:50 +00001646and :meth:`compare-signal` methods instead.
1647
Georg Brandl8ec7f652007-08-15 14:28:01 +00001648The signed zeros can result from calculations that underflow. They keep the sign
1649that would have resulted if the calculation had been carried out to greater
1650precision. Since their magnitude is zero, both positive and negative zeros are
1651treated as equal and their sign is informational.
1652
1653In addition to the two signed zeros which are distinct yet equal, there are
1654various representations of zero with differing precisions yet equivalent in
1655value. This takes a bit of getting used to. For an eye accustomed to
1656normalized floating point representations, it is not immediately obvious that
Georg Brandl9f662322008-03-22 11:47:10 +00001657the following calculation returns a value equal to zero:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001658
1659 >>> 1 / Decimal('Infinity')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001660 Decimal('0E-1000000026')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001661
Georg Brandlb19be572007-12-29 10:57:00 +00001662.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001663
1664
1665.. _decimal-threads:
1666
1667Working with threads
1668--------------------
1669
1670The :func:`getcontext` function accesses a different :class:`Context` object for
1671each thread. Having separate thread contexts means that threads may make
1672changes (such as ``getcontext.prec=10``) without interfering with other threads.
1673
1674Likewise, the :func:`setcontext` function automatically assigns its target to
1675the current thread.
1676
1677If :func:`setcontext` has not been called before :func:`getcontext`, then
1678:func:`getcontext` will automatically create a new context for use in the
1679current thread.
1680
1681The new context is copied from a prototype context called *DefaultContext*. To
1682control the defaults so that each thread will use the same values throughout the
1683application, directly modify the *DefaultContext* object. This should be done
1684*before* any threads are started so that there won't be a race condition between
1685threads calling :func:`getcontext`. For example::
1686
1687 # Set applicationwide defaults for all threads about to be launched
1688 DefaultContext.prec = 12
1689 DefaultContext.rounding = ROUND_DOWN
1690 DefaultContext.traps = ExtendedContext.traps.copy()
1691 DefaultContext.traps[InvalidOperation] = 1
1692 setcontext(DefaultContext)
1693
1694 # Afterwards, the threads can be started
1695 t1.start()
1696 t2.start()
1697 t3.start()
1698 . . .
1699
Georg Brandlb19be572007-12-29 10:57:00 +00001700.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001701
1702
1703.. _decimal-recipes:
1704
1705Recipes
1706-------
1707
1708Here are a few recipes that serve as utility functions and that demonstrate ways
1709to work with the :class:`Decimal` class::
1710
1711 def moneyfmt(value, places=2, curr='', sep=',', dp='.',
1712 pos='', neg='-', trailneg=''):
1713 """Convert Decimal to a money formatted string.
1714
1715 places: required number of places after the decimal point
1716 curr: optional currency symbol before the sign (may be blank)
1717 sep: optional grouping separator (comma, period, space, or blank)
1718 dp: decimal point indicator (comma or period)
1719 only specify as blank when places is zero
1720 pos: optional sign for positive numbers: '+', space or blank
1721 neg: optional sign for negative numbers: '-', '(', space or blank
1722 trailneg:optional trailing minus indicator: '-', ')', space or blank
1723
1724 >>> d = Decimal('-1234567.8901')
1725 >>> moneyfmt(d, curr='$')
1726 '-$1,234,567.89'
1727 >>> moneyfmt(d, places=0, sep='.', dp='', neg='', trailneg='-')
1728 '1.234.568-'
1729 >>> moneyfmt(d, curr='$', neg='(', trailneg=')')
1730 '($1,234,567.89)'
1731 >>> moneyfmt(Decimal(123456789), sep=' ')
1732 '123 456 789.00'
1733 >>> moneyfmt(Decimal('-0.02'), neg='<', trailneg='>')
Raymond Hettinger5eaffc42008-04-17 10:48:31 +00001734 '<0.02>'
Georg Brandl8ec7f652007-08-15 14:28:01 +00001735
1736 """
Raymond Hettinger0cd71702008-02-14 12:49:37 +00001737 q = Decimal(10) ** -places # 2 places --> '0.01'
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001738 sign, digits, exp = value.quantize(q).as_tuple()
Georg Brandl8ec7f652007-08-15 14:28:01 +00001739 result = []
1740 digits = map(str, digits)
1741 build, next = result.append, digits.pop
1742 if sign:
1743 build(trailneg)
1744 for i in range(places):
Raymond Hettinger0cd71702008-02-14 12:49:37 +00001745 build(next() if digits else '0')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001746 build(dp)
Raymond Hettinger5eaffc42008-04-17 10:48:31 +00001747 if not digits:
1748 build('0')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001749 i = 0
1750 while digits:
1751 build(next())
1752 i += 1
1753 if i == 3 and digits:
1754 i = 0
1755 build(sep)
1756 build(curr)
Raymond Hettinger0cd71702008-02-14 12:49:37 +00001757 build(neg if sign else pos)
1758 return ''.join(reversed(result))
Georg Brandl8ec7f652007-08-15 14:28:01 +00001759
1760 def pi():
1761 """Compute Pi to the current precision.
1762
1763 >>> print pi()
1764 3.141592653589793238462643383
1765
1766 """
1767 getcontext().prec += 2 # extra digits for intermediate steps
1768 three = Decimal(3) # substitute "three=3.0" for regular floats
1769 lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
1770 while s != lasts:
1771 lasts = s
1772 n, na = n+na, na+8
1773 d, da = d+da, da+32
1774 t = (t * n) / d
1775 s += t
1776 getcontext().prec -= 2
1777 return +s # unary plus applies the new precision
1778
1779 def exp(x):
1780 """Return e raised to the power of x. Result type matches input type.
1781
1782 >>> print exp(Decimal(1))
1783 2.718281828459045235360287471
1784 >>> print exp(Decimal(2))
1785 7.389056098930650227230427461
1786 >>> print exp(2.0)
1787 7.38905609893
1788 >>> print exp(2+0j)
1789 (7.38905609893+0j)
1790
1791 """
1792 getcontext().prec += 2
1793 i, lasts, s, fact, num = 0, 0, 1, 1, 1
1794 while s != lasts:
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001795 lasts = s
Georg Brandl8ec7f652007-08-15 14:28:01 +00001796 i += 1
1797 fact *= i
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001798 num *= x
1799 s += num / fact
1800 getcontext().prec -= 2
Georg Brandl8ec7f652007-08-15 14:28:01 +00001801 return +s
1802
1803 def cos(x):
1804 """Return the cosine of x as measured in radians.
1805
1806 >>> print cos(Decimal('0.5'))
1807 0.8775825618903727161162815826
1808 >>> print cos(0.5)
1809 0.87758256189
1810 >>> print cos(0.5+0j)
1811 (0.87758256189+0j)
1812
1813 """
1814 getcontext().prec += 2
1815 i, lasts, s, fact, num, sign = 0, 0, 1, 1, 1, 1
1816 while s != lasts:
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001817 lasts = s
Georg Brandl8ec7f652007-08-15 14:28:01 +00001818 i += 2
1819 fact *= i * (i-1)
1820 num *= x * x
1821 sign *= -1
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001822 s += num / fact * sign
1823 getcontext().prec -= 2
Georg Brandl8ec7f652007-08-15 14:28:01 +00001824 return +s
1825
1826 def sin(x):
1827 """Return the sine of x as measured in radians.
1828
1829 >>> print sin(Decimal('0.5'))
1830 0.4794255386042030002732879352
1831 >>> print sin(0.5)
1832 0.479425538604
1833 >>> print sin(0.5+0j)
1834 (0.479425538604+0j)
1835
1836 """
1837 getcontext().prec += 2
1838 i, lasts, s, fact, num, sign = 1, 0, x, 1, x, 1
1839 while s != lasts:
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001840 lasts = s
Georg Brandl8ec7f652007-08-15 14:28:01 +00001841 i += 2
1842 fact *= i * (i-1)
1843 num *= x * x
1844 sign *= -1
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001845 s += num / fact * sign
1846 getcontext().prec -= 2
Georg Brandl8ec7f652007-08-15 14:28:01 +00001847 return +s
1848
1849
Georg Brandlb19be572007-12-29 10:57:00 +00001850.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001851
1852
1853.. _decimal-faq:
1854
1855Decimal FAQ
1856-----------
1857
1858Q. It is cumbersome to type ``decimal.Decimal('1234.5')``. Is there a way to
1859minimize typing when using the interactive interpreter?
1860
Georg Brandl9f662322008-03-22 11:47:10 +00001861A. Some users abbreviate the constructor to just a single letter:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001862
1863 >>> D = decimal.Decimal
1864 >>> D('1.23') + D('3.45')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001865 Decimal('4.68')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001866
1867Q. In a fixed-point application with two decimal places, some inputs have many
1868places and need to be rounded. Others are not supposed to have excess digits
1869and need to be validated. What methods should be used?
1870
1871A. The :meth:`quantize` method rounds to a fixed number of decimal places. If
Georg Brandl9f662322008-03-22 11:47:10 +00001872the :const:`Inexact` trap is set, it is also useful for validation:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001873
1874 >>> TWOPLACES = Decimal(10) ** -2 # same as Decimal('0.01')
1875
1876 >>> # Round to two places
Raymond Hettingerabe32372008-02-14 02:41:22 +00001877 >>> Decimal('3.214').quantize(TWOPLACES)
1878 Decimal('3.21')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001879
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001880 >>> # Validate that a number does not exceed two places
Raymond Hettingerabe32372008-02-14 02:41:22 +00001881 >>> Decimal('3.21').quantize(TWOPLACES, context=Context(traps=[Inexact]))
1882 Decimal('3.21')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001883
Raymond Hettingerabe32372008-02-14 02:41:22 +00001884 >>> Decimal('3.214').quantize(TWOPLACES, context=Context(traps=[Inexact]))
Georg Brandl8ec7f652007-08-15 14:28:01 +00001885 Traceback (most recent call last):
1886 ...
Georg Brandlf6dab952009-04-28 21:48:35 +00001887 Inexact: None
Georg Brandl8ec7f652007-08-15 14:28:01 +00001888
1889Q. Once I have valid two place inputs, how do I maintain that invariant
1890throughout an application?
1891
Raymond Hettinger46314812008-02-14 10:46:57 +00001892A. Some operations like addition, subtraction, and multiplication by an integer
1893will automatically preserve fixed point. Others operations, like division and
1894non-integer multiplication, will change the number of decimal places and need to
Georg Brandl9f662322008-03-22 11:47:10 +00001895be followed-up with a :meth:`quantize` step:
Raymond Hettinger46314812008-02-14 10:46:57 +00001896
1897 >>> a = Decimal('102.72') # Initial fixed-point values
1898 >>> b = Decimal('3.17')
1899 >>> a + b # Addition preserves fixed-point
1900 Decimal('105.89')
1901 >>> a - b
1902 Decimal('99.55')
1903 >>> a * 42 # So does integer multiplication
1904 Decimal('4314.24')
1905 >>> (a * b).quantize(TWOPLACES) # Must quantize non-integer multiplication
1906 Decimal('325.62')
Raymond Hettinger27a90d92008-02-14 11:01:10 +00001907 >>> (b / a).quantize(TWOPLACES) # And quantize division
Raymond Hettinger46314812008-02-14 10:46:57 +00001908 Decimal('0.03')
1909
1910In developing fixed-point applications, it is convenient to define functions
Georg Brandl9f662322008-03-22 11:47:10 +00001911to handle the :meth:`quantize` step:
Raymond Hettinger46314812008-02-14 10:46:57 +00001912
Raymond Hettinger27a90d92008-02-14 11:01:10 +00001913 >>> def mul(x, y, fp=TWOPLACES):
1914 ... return (x * y).quantize(fp)
1915 >>> def div(x, y, fp=TWOPLACES):
1916 ... return (x / y).quantize(fp)
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001917
Raymond Hettinger46314812008-02-14 10:46:57 +00001918 >>> mul(a, b) # Automatically preserve fixed-point
1919 Decimal('325.62')
1920 >>> div(b, a)
1921 Decimal('0.03')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001922
1923Q. There are many ways to express the same value. The numbers :const:`200`,
1924:const:`200.000`, :const:`2E2`, and :const:`.02E+4` all have the same value at
1925various precisions. Is there a way to transform them to a single recognizable
1926canonical value?
1927
1928A. The :meth:`normalize` method maps all equivalent values to a single
Georg Brandl9f662322008-03-22 11:47:10 +00001929representative:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001930
1931 >>> values = map(Decimal, '200 200.000 2E2 .02E+4'.split())
1932 >>> [v.normalize() for v in values]
Raymond Hettingerabe32372008-02-14 02:41:22 +00001933 [Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2')]
Georg Brandl8ec7f652007-08-15 14:28:01 +00001934
1935Q. Some decimal values always print with exponential notation. Is there a way
1936to get a non-exponential representation?
1937
1938A. For some values, exponential notation is the only way to express the number
1939of significant places in the coefficient. For example, expressing
1940:const:`5.0E+3` as :const:`5000` keeps the value constant but cannot show the
1941original's two-place significance.
1942
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001943If an application does not care about tracking significance, it is easy to
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001944remove the exponent and trailing zeros, losing significance, but keeping the
1945value unchanged::
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001946
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001947 def remove_exponent(d):
1948 '''Remove exponent and trailing zeros.
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001949
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001950 >>> remove_exponent(Decimal('5E+3'))
1951 Decimal('5000')
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001952
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001953 '''
1954 return d.quantize(Decimal(1)) if d == d.to_integral() else d.normalize()
Georg Brandl8ec7f652007-08-15 14:28:01 +00001955
Raymond Hettingered171ab2010-04-02 18:39:24 +00001956Q. Is there a way to convert a regular float to a :class:`Decimal`?
Georg Brandl9f662322008-03-22 11:47:10 +00001957
Raymond Hettingered171ab2010-04-02 18:39:24 +00001958A. Yes, all binary floating point numbers can be exactly expressed as a
1959Decimal though an exact conversion may take more precision than intuition would
1960suggest:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001961
Raymond Hettingered171ab2010-04-02 18:39:24 +00001962.. doctest::
Georg Brandl8ec7f652007-08-15 14:28:01 +00001963
Raymond Hettingered171ab2010-04-02 18:39:24 +00001964 >>> Decimal(math.pi)
1965 Decimal('3.141592653589793115997963468544185161590576171875')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001966
1967Q. Within a complex calculation, how can I make sure that I haven't gotten a
1968spurious result because of insufficient precision or rounding anomalies.
1969
1970A. The decimal module makes it easy to test results. A best practice is to
1971re-run calculations using greater precision and with various rounding modes.
1972Widely differing results indicate insufficient precision, rounding mode issues,
1973ill-conditioned inputs, or a numerically unstable algorithm.
1974
1975Q. I noticed that context precision is applied to the results of operations but
1976not to the inputs. Is there anything to watch out for when mixing values of
1977different precisions?
1978
1979A. Yes. The principle is that all values are considered to be exact and so is
1980the arithmetic on those values. Only the results are rounded. The advantage
1981for inputs is that "what you type is what you get". A disadvantage is that the
Georg Brandl9f662322008-03-22 11:47:10 +00001982results can look odd if you forget that the inputs haven't been rounded:
1983
1984.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001985
1986 >>> getcontext().prec = 3
Georg Brandl9f662322008-03-22 11:47:10 +00001987 >>> Decimal('3.104') + Decimal('2.104')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001988 Decimal('5.21')
Georg Brandl9f662322008-03-22 11:47:10 +00001989 >>> Decimal('3.104') + Decimal('0.000') + Decimal('2.104')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001990 Decimal('5.20')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001991
1992The solution is either to increase precision or to force rounding of inputs
Georg Brandl9f662322008-03-22 11:47:10 +00001993using the unary plus operation:
1994
1995.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001996
1997 >>> getcontext().prec = 3
1998 >>> +Decimal('1.23456789') # unary plus triggers rounding
Raymond Hettingerabe32372008-02-14 02:41:22 +00001999 Decimal('1.23')
Georg Brandl8ec7f652007-08-15 14:28:01 +00002000
2001Alternatively, inputs can be rounded upon creation using the
Georg Brandl9f662322008-03-22 11:47:10 +00002002:meth:`Context.create_decimal` method:
Georg Brandl8ec7f652007-08-15 14:28:01 +00002003
2004 >>> Context(prec=5, rounding=ROUND_DOWN).create_decimal('1.2345678')
Raymond Hettingerabe32372008-02-14 02:41:22 +00002005 Decimal('1.2345')
Georg Brandl8ec7f652007-08-15 14:28:01 +00002006