blob: a47ed9ce3dd05e04925b4924f9c89c98b5a05660 [file] [log] [blame]
Georg Brandl116aa622007-08-15 14:28:22 +00001:mod:`random` --- Generate pseudo-random numbers
2================================================
3
4.. module:: random
5 :synopsis: Generate pseudo-random numbers with various common distributions.
6
Raymond Hettinger10480942011-01-10 03:26:08 +00007**Source code:** :source:`Lib/random.py`
Georg Brandl116aa622007-08-15 14:28:22 +00008
Raymond Hettinger4f707fd2011-01-10 19:54:11 +00009--------------
10
Georg Brandl116aa622007-08-15 14:28:22 +000011This module implements pseudo-random number generators for various
12distributions.
13
Raymond Hettingerb21dac12010-09-07 05:32:49 +000014For integers, there is uniform selection from a range. For sequences, there is
15uniform selection of a random element, a function to generate a random
16permutation of a list in-place, and a function for random sampling without
17replacement.
Georg Brandl116aa622007-08-15 14:28:22 +000018
19On the real line, there are functions to compute uniform, normal (Gaussian),
20lognormal, negative exponential, gamma, and beta distributions. For generating
21distributions of angles, the von Mises distribution is available.
22
Georg Brandl92849d12016-02-19 08:57:38 +010023Almost all module functions depend on the basic function :func:`.random`, which
Georg Brandl116aa622007-08-15 14:28:22 +000024generates a random float uniformly in the semi-open range [0.0, 1.0). Python
25uses the Mersenne Twister as the core generator. It produces 53-bit precision
26floats and has a period of 2\*\*19937-1. The underlying implementation in C is
27both fast and threadsafe. The Mersenne Twister is one of the most extensively
28tested random number generators in existence. However, being completely
29deterministic, it is not suitable for all purposes, and is completely unsuitable
30for cryptographic purposes.
31
32The functions supplied by this module are actually bound methods of a hidden
33instance of the :class:`random.Random` class. You can instantiate your own
Raymond Hettinger28de64f2008-01-13 23:40:30 +000034instances of :class:`Random` to get generators that don't share state.
Georg Brandl116aa622007-08-15 14:28:22 +000035
36Class :class:`Random` can also be subclassed if you want to use a different
Georg Brandl92849d12016-02-19 08:57:38 +010037basic generator of your own devising: in that case, override the :meth:`~Random.random`,
38:meth:`~Random.seed`, :meth:`~Random.getstate`, and :meth:`~Random.setstate` methods.
39Optionally, a new generator can supply a :meth:`~Random.getrandbits` method --- this
Georg Brandl116aa622007-08-15 14:28:22 +000040allows :meth:`randrange` to produce selections over an arbitrarily large range.
41
Benjamin Peterson21896a32010-03-21 22:03:03 +000042The :mod:`random` module also provides the :class:`SystemRandom` class which
43uses the system function :func:`os.urandom` to generate random numbers
44from sources provided by the operating system.
Georg Brandl116aa622007-08-15 14:28:22 +000045
Raymond Hettingerc89a4512014-05-11 02:26:23 -070046.. warning::
47
48 The pseudo-random generators of this module should not be used for
Steven D'Apranob2871fa2016-04-17 01:42:33 +100049 security purposes. For security or cryptographic uses, see the
50 :mod:`secrets` module.
Raymond Hettingerc89a4512014-05-11 02:26:23 -070051
Georg Brandl116aa622007-08-15 14:28:22 +000052
Raymond Hettinger10480942011-01-10 03:26:08 +000053Bookkeeping functions:
Georg Brandl116aa622007-08-15 14:28:22 +000054
Ezio Melottie0add762012-09-14 06:32:35 +030055.. function:: seed(a=None, version=2)
Georg Brandl116aa622007-08-15 14:28:22 +000056
Raymond Hettingerf763a722010-09-07 00:38:15 +000057 Initialize the random number generator.
Georg Brandl116aa622007-08-15 14:28:22 +000058
Ezio Melottie0add762012-09-14 06:32:35 +030059 If *a* is omitted or ``None``, the current system time is used. If
Raymond Hettingerf763a722010-09-07 00:38:15 +000060 randomness sources are provided by the operating system, they are used
61 instead of the system time (see the :func:`os.urandom` function for details
62 on availability).
Georg Brandl116aa622007-08-15 14:28:22 +000063
Ezio Melottie0add762012-09-14 06:32:35 +030064 If *a* is an int, it is used directly.
Raymond Hettingerf763a722010-09-07 00:38:15 +000065
66 With version 2 (the default), a :class:`str`, :class:`bytes`, or :class:`bytearray`
Raymond Hettinger16eb8272016-09-04 11:17:28 -070067 object gets converted to an :class:`int` and all of its bits are used.
68
69 With version 1 (provided for reproducing random sequences from older versions
70 of Python), the algorithm for :class:`str` and :class:`bytes` generates a
71 narrower range of seeds.
Raymond Hettingerf763a722010-09-07 00:38:15 +000072
73 .. versionchanged:: 3.2
74 Moved to the version 2 scheme which uses all of the bits in a string seed.
Georg Brandl116aa622007-08-15 14:28:22 +000075
76.. function:: getstate()
77
78 Return an object capturing the current internal state of the generator. This
79 object can be passed to :func:`setstate` to restore the state.
80
Georg Brandl116aa622007-08-15 14:28:22 +000081
82.. function:: setstate(state)
83
84 *state* should have been obtained from a previous call to :func:`getstate`, and
85 :func:`setstate` restores the internal state of the generator to what it was at
Sandro Tosi985104a2012-08-12 15:12:15 +020086 the time :func:`getstate` was called.
Georg Brandl116aa622007-08-15 14:28:22 +000087
Georg Brandl116aa622007-08-15 14:28:22 +000088
Georg Brandl116aa622007-08-15 14:28:22 +000089.. function:: getrandbits(k)
90
Ezio Melotti0639d5a2009-12-19 23:26:38 +000091 Returns a Python integer with *k* random bits. This method is supplied with
Georg Brandl5c106642007-11-29 17:41:05 +000092 the MersenneTwister generator and some other generators may also provide it
Georg Brandl116aa622007-08-15 14:28:22 +000093 as an optional part of the API. When available, :meth:`getrandbits` enables
94 :meth:`randrange` to handle arbitrarily large ranges.
95
Georg Brandl116aa622007-08-15 14:28:22 +000096
97Functions for integers:
98
Ezio Melottie0add762012-09-14 06:32:35 +030099.. function:: randrange(stop)
100 randrange(start, stop[, step])
Georg Brandl116aa622007-08-15 14:28:22 +0000101
102 Return a randomly selected element from ``range(start, stop, step)``. This is
103 equivalent to ``choice(range(start, stop, step))``, but doesn't actually build a
104 range object.
105
Raymond Hettinger05156612010-09-07 04:44:52 +0000106 The positional argument pattern matches that of :func:`range`. Keyword arguments
107 should not be used because the function may use them in unexpected ways.
108
109 .. versionchanged:: 3.2
110 :meth:`randrange` is more sophisticated about producing equally distributed
111 values. Formerly it used a style like ``int(random()*n)`` which could produce
112 slightly uneven distributions.
Georg Brandl116aa622007-08-15 14:28:22 +0000113
114.. function:: randint(a, b)
115
Raymond Hettingerafd30452009-02-24 10:57:02 +0000116 Return a random integer *N* such that ``a <= N <= b``. Alias for
117 ``randrange(a, b+1)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000118
Georg Brandl116aa622007-08-15 14:28:22 +0000119
Georg Brandl55ac8f02007-09-01 13:51:09 +0000120Functions for sequences:
Georg Brandl116aa622007-08-15 14:28:22 +0000121
122.. function:: choice(seq)
123
124 Return a random element from the non-empty sequence *seq*. If *seq* is empty,
125 raises :exc:`IndexError`.
126
Raymond Hettinger9016f282016-09-26 21:45:57 -0700127.. function:: choices(population, weights=None, *, cum_weights=None, k=1)
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700128
129 Return a *k* sized list of elements chosen from the *population* with replacement.
130 If the *population* is empty, raises :exc:`IndexError`.
131
132 If a *weights* sequence is specified, selections are made according to the
133 relative weights. Alternatively, if a *cum_weights* sequence is given, the
Raymond Hettinger1c3a1212016-10-12 01:42:10 -0400134 selections are made according to the cumulative weights (perhaps computed
135 using :func:`itertools.accumulate`). For example, the relative weights
136 ``[10, 5, 30, 5]`` are equivalent to the cumulative weights
137 ``[10, 15, 45, 50]``. Internally, the relative weights are converted to
138 cumulative weights before making selections, so supplying the cumulative
139 weights saves work.
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700140
141 If neither *weights* nor *cum_weights* are specified, selections are made
142 with equal probability. If a weights sequence is supplied, it must be
143 the same length as the *population* sequence. It is a :exc:`TypeError`
144 to specify both *weights* and *cum_weights*.
145
146 The *weights* or *cum_weights* can use any numeric type that interoperates
147 with the :class:`float` values returned by :func:`random` (that includes
148 integers, floats, and fractions but excludes decimals).
Georg Brandl116aa622007-08-15 14:28:22 +0000149
Raymond Hettinger1c3a1212016-10-12 01:42:10 -0400150 .. versionadded:: 3.6
151
152
Georg Brandl116aa622007-08-15 14:28:22 +0000153.. function:: shuffle(x[, random])
154
155 Shuffle the sequence *x* in place. The optional argument *random* is a
156 0-argument function returning a random float in [0.0, 1.0); by default, this is
Georg Brandl92849d12016-02-19 08:57:38 +0100157 the function :func:`.random`.
Georg Brandl116aa622007-08-15 14:28:22 +0000158
159 Note that for even rather small ``len(x)``, the total number of permutations of
160 *x* is larger than the period of most random number generators; this implies
161 that most permutations of a long sequence can never be generated.
162
163
164.. function:: sample(population, k)
165
Raymond Hettinger1acde192008-01-14 01:00:53 +0000166 Return a *k* length list of unique elements chosen from the population sequence
167 or set. Used for random sampling without replacement.
Georg Brandl116aa622007-08-15 14:28:22 +0000168
Georg Brandl116aa622007-08-15 14:28:22 +0000169 Returns a new list containing elements from the population while leaving the
170 original population unchanged. The resulting list is in selection order so that
171 all sub-slices will also be valid random samples. This allows raffle winners
172 (the sample) to be partitioned into grand prize and second place winners (the
173 subslices).
174
Guido van Rossum2cc30da2007-11-02 23:46:40 +0000175 Members of the population need not be :term:`hashable` or unique. If the population
Georg Brandl116aa622007-08-15 14:28:22 +0000176 contains repeats, then each occurrence is a possible selection in the sample.
177
178 To choose a sample from a range of integers, use an :func:`range` object as an
179 argument. This is especially fast and space efficient for sampling from a large
180 population: ``sample(range(10000000), 60)``.
181
Raymond Hettingerf07d9492012-07-09 12:43:57 -0700182 If the sample size is larger than the population size, a :exc:`ValueError`
Raymond Hettinger86a20f82012-07-08 16:01:53 -0700183 is raised.
184
Georg Brandl116aa622007-08-15 14:28:22 +0000185The following functions generate specific real-valued distributions. Function
186parameters are named after the corresponding variables in the distribution's
187equation, as used in common mathematical practice; most of these equations can
188be found in any statistics text.
189
190
191.. function:: random()
192
193 Return the next random floating point number in the range [0.0, 1.0).
194
195
196.. function:: uniform(a, b)
197
Benjamin Petersonb58dda72009-01-18 22:27:04 +0000198 Return a random floating point number *N* such that ``a <= N <= b`` for
199 ``a <= b`` and ``b <= N <= a`` for ``b < a``.
Georg Brandl116aa622007-08-15 14:28:22 +0000200
Raymond Hettingerbe40db02009-06-11 23:12:14 +0000201 The end-point value ``b`` may or may not be included in the range
202 depending on floating-point rounding in the equation ``a + (b-a) * random()``.
Benjamin Peterson35e8c462008-04-24 02:34:53 +0000203
Georg Brandl73dd7c72011-09-17 20:36:28 +0200204
Christian Heimesfe337bf2008-03-23 21:54:12 +0000205.. function:: triangular(low, high, mode)
206
Benjamin Petersonb58dda72009-01-18 22:27:04 +0000207 Return a random floating point number *N* such that ``low <= N <= high`` and
Christian Heimescc47b052008-03-25 14:56:36 +0000208 with the specified *mode* between those bounds. The *low* and *high* bounds
209 default to zero and one. The *mode* argument defaults to the midpoint
210 between the bounds, giving a symmetric distribution.
Christian Heimesfe337bf2008-03-23 21:54:12 +0000211
Georg Brandl116aa622007-08-15 14:28:22 +0000212
213.. function:: betavariate(alpha, beta)
214
Benjamin Petersonb58dda72009-01-18 22:27:04 +0000215 Beta distribution. Conditions on the parameters are ``alpha > 0`` and
216 ``beta > 0``. Returned values range between 0 and 1.
Georg Brandl116aa622007-08-15 14:28:22 +0000217
218
219.. function:: expovariate(lambd)
220
Mark Dickinson2f947362009-01-07 17:54:07 +0000221 Exponential distribution. *lambd* is 1.0 divided by the desired
222 mean. It should be nonzero. (The parameter would be called
223 "lambda", but that is a reserved word in Python.) Returned values
224 range from 0 to positive infinity if *lambd* is positive, and from
225 negative infinity to 0 if *lambd* is negative.
Georg Brandl116aa622007-08-15 14:28:22 +0000226
227
228.. function:: gammavariate(alpha, beta)
229
Benjamin Petersonb58dda72009-01-18 22:27:04 +0000230 Gamma distribution. (*Not* the gamma function!) Conditions on the
231 parameters are ``alpha > 0`` and ``beta > 0``.
Georg Brandl116aa622007-08-15 14:28:22 +0000232
Georg Brandl73dd7c72011-09-17 20:36:28 +0200233 The probability distribution function is::
234
235 x ** (alpha - 1) * math.exp(-x / beta)
236 pdf(x) = --------------------------------------
237 math.gamma(alpha) * beta ** alpha
238
Georg Brandl116aa622007-08-15 14:28:22 +0000239
240.. function:: gauss(mu, sigma)
241
Benjamin Petersonb58dda72009-01-18 22:27:04 +0000242 Gaussian distribution. *mu* is the mean, and *sigma* is the standard
243 deviation. This is slightly faster than the :func:`normalvariate` function
244 defined below.
Georg Brandl116aa622007-08-15 14:28:22 +0000245
246
247.. function:: lognormvariate(mu, sigma)
248
249 Log normal distribution. If you take the natural logarithm of this
250 distribution, you'll get a normal distribution with mean *mu* and standard
251 deviation *sigma*. *mu* can have any value, and *sigma* must be greater than
252 zero.
253
254
255.. function:: normalvariate(mu, sigma)
256
257 Normal distribution. *mu* is the mean, and *sigma* is the standard deviation.
258
259
260.. function:: vonmisesvariate(mu, kappa)
261
262 *mu* is the mean angle, expressed in radians between 0 and 2\*\ *pi*, and *kappa*
263 is the concentration parameter, which must be greater than or equal to zero. If
264 *kappa* is equal to zero, this distribution reduces to a uniform random angle
265 over the range 0 to 2\*\ *pi*.
266
267
268.. function:: paretovariate(alpha)
269
270 Pareto distribution. *alpha* is the shape parameter.
271
272
273.. function:: weibullvariate(alpha, beta)
274
275 Weibull distribution. *alpha* is the scale parameter and *beta* is the shape
276 parameter.
277
278
Raymond Hettinger3cdf8712010-12-02 05:35:35 +0000279Alternative Generator:
Georg Brandl116aa622007-08-15 14:28:22 +0000280
Georg Brandl116aa622007-08-15 14:28:22 +0000281.. class:: SystemRandom([seed])
282
283 Class that uses the :func:`os.urandom` function for generating random numbers
284 from sources provided by the operating system. Not available on all systems.
Raymond Hettinger3cdf8712010-12-02 05:35:35 +0000285 Does not rely on software state, and sequences are not reproducible. Accordingly,
Raymond Hettingerafd30452009-02-24 10:57:02 +0000286 the :meth:`seed` method has no effect and is ignored.
Georg Brandl116aa622007-08-15 14:28:22 +0000287 The :meth:`getstate` and :meth:`setstate` methods raise
288 :exc:`NotImplementedError` if called.
289
Georg Brandl116aa622007-08-15 14:28:22 +0000290
Georg Brandl116aa622007-08-15 14:28:22 +0000291.. seealso::
292
293 M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-dimensionally
294 equidistributed uniform pseudorandom number generator", ACM Transactions on
295 Modeling and Computer Simulation Vol. 8, No. 1, January pp.3-30 1998.
296
Georg Brandl116aa622007-08-15 14:28:22 +0000297
Raymond Hettinger1fd32a62009-04-01 20:52:13 +0000298 `Complementary-Multiply-with-Carry recipe
Georg Brandl5d941342016-02-26 19:37:12 +0100299 <https://code.activestate.com/recipes/576707/>`_ for a compatible alternative
Raymond Hettinger9743fd02009-04-03 05:47:33 +0000300 random number generator with a long period and comparatively simple update
Raymond Hettinger1fd32a62009-04-01 20:52:13 +0000301 operations.
Raymond Hettinger435cb0f2010-09-06 23:36:31 +0000302
Raymond Hettinger3cdf8712010-12-02 05:35:35 +0000303
Raymond Hettinger435cb0f2010-09-06 23:36:31 +0000304Notes on Reproducibility
Antoine Pitroue72b5862010-12-12 20:13:31 +0000305------------------------
Raymond Hettinger435cb0f2010-09-06 23:36:31 +0000306
307Sometimes it is useful to be able to reproduce the sequences given by a pseudo
308random number generator. By re-using a seed value, the same sequence should be
309reproducible from run to run as long as multiple threads are not running.
310
311Most of the random module's algorithms and seeding functions are subject to
312change across Python versions, but two aspects are guaranteed not to change:
313
314* If a new seeding method is added, then a backward compatible seeder will be
315 offered.
316
Georg Brandl92849d12016-02-19 08:57:38 +0100317* The generator's :meth:`~Random.random` method will continue to produce the same
Raymond Hettinger435cb0f2010-09-06 23:36:31 +0000318 sequence when the compatible seeder is given the same seed.
Raymond Hettinger2fdc7b12010-12-02 02:41:33 +0000319
Raymond Hettinger6e353942010-12-04 23:42:12 +0000320.. _random-examples:
Raymond Hettinger2fdc7b12010-12-02 02:41:33 +0000321
Raymond Hettinger2fdc7b12010-12-02 02:41:33 +0000322Examples and Recipes
Antoine Pitroue72b5862010-12-12 20:13:31 +0000323--------------------
Raymond Hettinger2fdc7b12010-12-02 02:41:33 +0000324
Raymond Hettinger3cdf8712010-12-02 05:35:35 +0000325Basic usage::
326
327 >>> random.random() # Random float x, 0.0 <= x < 1.0
328 0.37444887175646646
329
330 >>> random.uniform(1, 10) # Random float x, 1.0 <= x < 10.0
331 1.1800146073117523
332
333 >>> random.randrange(10) # Integer from 0 to 9
334 7
335
336 >>> random.randrange(0, 101, 2) # Even integer from 0 to 100
337 26
338
339 >>> random.choice('abcdefghij') # Single random element
340 'c'
341
Raymond Hettinger1c3a1212016-10-12 01:42:10 -0400342 >>> deck = ['jack', 'queen', 'king', 'ace']
343 >>> shuffle(deck)
344 >>> deck
345 ['king', 'queen', 'ace', 'jack']
Raymond Hettinger3cdf8712010-12-02 05:35:35 +0000346
347 >>> random.sample([1, 2, 3, 4, 5], 3) # Three samples without replacement
348 [4, 1, 5]
349
Raymond Hettinger1c3a1212016-10-12 01:42:10 -0400350 >>> # Six weighted samples with replacement
351 >>> choices(['red', 'black', 'green'], [18, 18, 2], k=6)
352 ['red', 'green', 'black', 'black', 'red', 'black']
Raymond Hettinger2fdc7b12010-12-02 02:41:33 +0000353
Raymond Hettinger1c3a1212016-10-12 01:42:10 -0400354Example of `statistical bootstrapping
355<https://en.wikipedia.org/wiki/Bootstrapping_(statistics)>`_ using resampling
356with replacement to estimate a confidence interval for the mean of a small
357sample of size five::
Raymond Hettinger2fdc7b12010-12-02 02:41:33 +0000358
Raymond Hettinger1c3a1212016-10-12 01:42:10 -0400359 # http://statistics.about.com/od/Applications/a/Example-Of-Bootstrapping.htm
360 from statistics import mean
361 from random import choices
Raymond Hettingerf5b7c7b2016-09-05 13:15:02 -0700362
Raymond Hettinger1c3a1212016-10-12 01:42:10 -0400363 data = 1, 2, 4, 4, 10
364 means = sorted(mean(choices(data, k=5)) for i in range(20))
365 print('The sample mean of {:.1f} has a 90% confidence interval '
366 'from {:.1f} to {:.1f}'.format(mean(data), means[1], means[-2]))