blob: 4a1578972452984a82575877f48afdfa6ad38dfb [file] [log] [blame]
Georg Brandl116aa622007-08-15 14:28:22 +00001:mod:`math` --- Mathematical functions
2======================================
3
4.. module:: math
5 :synopsis: Mathematical functions (sin() etc.).
6
Łukasz Langa288234f2013-01-18 13:40:43 +01007.. testsetup::
8
9 from math import fsum
Georg Brandl116aa622007-08-15 14:28:22 +000010
Terry Jan Reedyfa089b92016-06-11 15:02:54 -040011--------------
12
Ned Batchelder6faad352019-05-17 05:59:14 -040013This module provides access to the mathematical functions defined by the C
14standard.
Georg Brandl116aa622007-08-15 14:28:22 +000015
16These functions cannot be used with complex numbers; use the functions of the
17same name from the :mod:`cmath` module if you require support for complex
18numbers. The distinction between functions which support complex numbers and
19those which don't is made since most users do not want to learn quite as much
20mathematics as required to understand complex numbers. Receiving an exception
21instead of a complex result allows earlier detection of the unexpected complex
22number used as a parameter, so that the programmer can determine how and why it
23was generated in the first place.
24
25The following functions are provided by this module. Except when explicitly
26noted otherwise, all return values are floats.
27
Georg Brandl116aa622007-08-15 14:28:22 +000028
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +000029Number-theoretic and representation functions
30---------------------------------------------
Georg Brandl116aa622007-08-15 14:28:22 +000031
32.. function:: ceil(x)
33
Georg Brandl2a033732008-04-05 17:37:09 +000034 Return the ceiling of *x*, the smallest integer greater than or equal to *x*.
35 If *x* is not a float, delegates to ``x.__ceil__()``, which should return an
Serhiy Storchakabfdcd432013-10-13 23:09:14 +030036 :class:`~numbers.Integral` value.
Christian Heimes072c0f12008-01-03 23:01:04 +000037
38
Raymond Hettingerb7fade42019-06-01 15:01:46 -070039.. function:: comb(n, k)
40
41 Return the number of ways to choose *k* items from *n* items without repetition
42 and without order.
43
Raymond Hettinger963eb0f2019-06-04 01:23:06 -070044 Evaluates to ``n! / (k! * (n - k)!)`` when ``k <= n`` and evaluates
45 to zero when ``k > n``.
Raymond Hettingerb7fade42019-06-01 15:01:46 -070046
Raymond Hettinger963eb0f2019-06-04 01:23:06 -070047 Also called the binomial coefficient because it is equivalent
48 to the coefficient of k-th term in polynomial expansion of the
49 expression ``(1 + x) ** n``.
50
51 Raises :exc:`TypeError` if either of the arguments not integers.
52 Raises :exc:`ValueError` if either of the arguments are negative.
Raymond Hettingerb7fade42019-06-01 15:01:46 -070053
54 .. versionadded:: 3.8
55
56
Christian Heimes072c0f12008-01-03 23:01:04 +000057.. function:: copysign(x, y)
58
Andrew Kuchling8cb1ec32014-02-16 11:11:25 -050059 Return a float with the magnitude (absolute value) of *x* but the sign of
60 *y*. On platforms that support signed zeros, ``copysign(1.0, -0.0)``
61 returns *-1.0*.
Christian Heimes072c0f12008-01-03 23:01:04 +000062
Serhiy Storchakadbaf7462017-05-04 12:25:09 +030063
Georg Brandl116aa622007-08-15 14:28:22 +000064.. function:: fabs(x)
65
66 Return the absolute value of *x*.
67
Serhiy Storchakadbaf7462017-05-04 12:25:09 +030068
Georg Brandlc28e1fa2008-06-10 19:20:26 +000069.. function:: factorial(x)
70
Akshay Sharma46126712019-05-31 22:11:17 +053071 Return *x* factorial as an integer. Raises :exc:`ValueError` if *x* is not integral or
Georg Brandlc28e1fa2008-06-10 19:20:26 +000072 is negative.
Georg Brandl116aa622007-08-15 14:28:22 +000073
Serhiy Storchakadbaf7462017-05-04 12:25:09 +030074
Georg Brandl116aa622007-08-15 14:28:22 +000075.. function:: floor(x)
76
Georg Brandl2a033732008-04-05 17:37:09 +000077 Return the floor of *x*, the largest integer less than or equal to *x*.
78 If *x* is not a float, delegates to ``x.__floor__()``, which should return an
Serhiy Storchakabfdcd432013-10-13 23:09:14 +030079 :class:`~numbers.Integral` value.
Georg Brandl116aa622007-08-15 14:28:22 +000080
81
82.. function:: fmod(x, y)
83
84 Return ``fmod(x, y)``, as defined by the platform C library. Note that the
85 Python expression ``x % y`` may not return the same result. The intent of the C
86 standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite
87 precision) equal to ``x - n*y`` for some integer *n* such that the result has
88 the same sign as *x* and magnitude less than ``abs(y)``. Python's ``x % y``
89 returns a result with the sign of *y* instead, and may not be exactly computable
90 for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but
91 the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be
92 represented exactly as a float, and rounds to the surprising ``1e100``. For
93 this reason, function :func:`fmod` is generally preferred when working with
94 floats, while Python's ``x % y`` is preferred when working with integers.
95
96
97.. function:: frexp(x)
98
99 Return the mantissa and exponent of *x* as the pair ``(m, e)``. *m* is a float
100 and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero,
101 returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``. This is used to "pick
102 apart" the internal representation of a float in a portable way.
103
104
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000105.. function:: fsum(iterable)
106
107 Return an accurate floating point sum of values in the iterable. Avoids
Raymond Hettingerf3936f82009-02-19 05:48:05 +0000108 loss of precision by tracking multiple intermediate partial sums::
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000109
Raymond Hettingerf3936f82009-02-19 05:48:05 +0000110 >>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
Mark Dickinson5a55b612009-06-28 20:59:42 +0000111 0.9999999999999999
Raymond Hettingerf3936f82009-02-19 05:48:05 +0000112 >>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
113 1.0
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000114
Raymond Hettingerf3936f82009-02-19 05:48:05 +0000115 The algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the
116 typical case where the rounding mode is half-even. On some non-Windows
117 builds, the underlying C library uses extended precision addition and may
118 occasionally double-round an intermediate sum causing it to be off in its
119 least significant bit.
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000120
Raymond Hettinger477be822009-02-19 06:44:30 +0000121 For further discussion and two alternative approaches, see the `ASPN cookbook
122 recipes for accurate floating point summation
Georg Brandl5d941342016-02-26 19:37:12 +0100123 <https://code.activestate.com/recipes/393090/>`_\.
Raymond Hettinger477be822009-02-19 06:44:30 +0000124
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000125
Serhiy Storchaka48e47aa2015-05-13 00:19:51 +0300126.. function:: gcd(a, b)
127
128 Return the greatest common divisor of the integers *a* and *b*. If either
129 *a* or *b* is nonzero, then the value of ``gcd(a, b)`` is the largest
130 positive integer that divides both *a* and *b*. ``gcd(0, 0)`` returns
131 ``0``.
132
Benjamin Petersone960d182015-05-12 17:24:17 -0400133 .. versionadded:: 3.5
134
Serhiy Storchaka48e47aa2015-05-13 00:19:51 +0300135
Tal Einatd5519ed2015-05-31 22:05:00 +0300136.. function:: isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0)
137
138 Return ``True`` if the values *a* and *b* are close to each other and
139 ``False`` otherwise.
140
141 Whether or not two values are considered close is determined according to
142 given absolute and relative tolerances.
143
144 *rel_tol* is the relative tolerance -- it is the maximum allowed difference
145 between *a* and *b*, relative to the larger absolute value of *a* or *b*.
146 For example, to set a tolerance of 5%, pass ``rel_tol=0.05``. The default
147 tolerance is ``1e-09``, which assures that the two values are the same
148 within about 9 decimal digits. *rel_tol* must be greater than zero.
149
150 *abs_tol* is the minimum absolute tolerance -- useful for comparisons near
151 zero. *abs_tol* must be at least zero.
152
153 If no errors occur, the result will be:
154 ``abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol)``.
155
156 The IEEE 754 special values of ``NaN``, ``inf``, and ``-inf`` will be
157 handled according to IEEE rules. Specifically, ``NaN`` is not considered
158 close to any other value, including ``NaN``. ``inf`` and ``-inf`` are only
159 considered close to themselves.
160
161 .. versionadded:: 3.5
162
163 .. seealso::
164
165 :pep:`485` -- A function for testing approximate equality
166
167
Mark Dickinson8e0c9962010-07-11 17:38:24 +0000168.. function:: isfinite(x)
169
170 Return ``True`` if *x* is neither an infinity nor a NaN, and
171 ``False`` otherwise. (Note that ``0.0`` *is* considered finite.)
172
Mark Dickinsonc7622422010-07-11 19:47:37 +0000173 .. versionadded:: 3.2
174
Mark Dickinson8e0c9962010-07-11 17:38:24 +0000175
Christian Heimes072c0f12008-01-03 23:01:04 +0000176.. function:: isinf(x)
177
Mark Dickinsonc7622422010-07-11 19:47:37 +0000178 Return ``True`` if *x* is a positive or negative infinity, and
179 ``False`` otherwise.
Christian Heimes072c0f12008-01-03 23:01:04 +0000180
Christian Heimes072c0f12008-01-03 23:01:04 +0000181
182.. function:: isnan(x)
183
Mark Dickinsonc7622422010-07-11 19:47:37 +0000184 Return ``True`` if *x* is a NaN (not a number), and ``False`` otherwise.
Christian Heimes072c0f12008-01-03 23:01:04 +0000185
Christian Heimes072c0f12008-01-03 23:01:04 +0000186
Mark Dickinson73934b92019-05-18 12:29:50 +0100187.. function:: isqrt(n)
188
189 Return the integer square root of the nonnegative integer *n*. This is the
190 floor of the exact square root of *n*, or equivalently the greatest integer
191 *a* such that *a*\ ² |nbsp| ≤ |nbsp| *n*.
192
193 For some applications, it may be more convenient to have the least integer
194 *a* such that *n* |nbsp| ≤ |nbsp| *a*\ ², or in other words the ceiling of
195 the exact square root of *n*. For positive *n*, this can be computed using
196 ``a = 1 + isqrt(n - 1)``.
197
198 .. versionadded:: 3.8
199
200
Georg Brandl116aa622007-08-15 14:28:22 +0000201.. function:: ldexp(x, i)
202
203 Return ``x * (2**i)``. This is essentially the inverse of function
204 :func:`frexp`.
205
206
207.. function:: modf(x)
208
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000209 Return the fractional and integer parts of *x*. Both results carry the sign
210 of *x* and are floats.
Georg Brandl116aa622007-08-15 14:28:22 +0000211
Christian Heimes400adb02008-02-01 08:12:03 +0000212
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +0300213.. function:: perm(n, k)
214
215 Return the number of ways to choose *k* items from *n* items
216 without repetition and with order.
217
Raymond Hettinger963eb0f2019-06-04 01:23:06 -0700218 Evaluates to ``n! / (n - k)!`` when ``k <= n`` and evaluates
219 to zero when ``k > n``.
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +0300220
Raymond Hettinger963eb0f2019-06-04 01:23:06 -0700221 Raises :exc:`TypeError` if either of the arguments not integers.
222 Raises :exc:`ValueError` if either of the arguments are negative.
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +0300223
224 .. versionadded:: 3.8
225
226
Pablo Galindobc098512019-02-07 07:04:02 +0000227.. function:: prod(iterable, *, start=1)
228
229 Calculate the product of all the elements in the input *iterable*.
230 The default *start* value for the product is ``1``.
231
232 When the iterable is empty, return the start value. This function is
233 intended specifically for use with numeric values and may reject
234 non-numeric types.
235
236 .. versionadded:: 3.8
237
238
Mark Dickinsona0ce3752017-04-05 18:34:27 +0100239.. function:: remainder(x, y)
240
241 Return the IEEE 754-style remainder of *x* with respect to *y*. For
242 finite *x* and finite nonzero *y*, this is the difference ``x - n*y``,
243 where ``n`` is the closest integer to the exact value of the quotient ``x /
244 y``. If ``x / y`` is exactly halfway between two consecutive integers, the
245 nearest *even* integer is used for ``n``. The remainder ``r = remainder(x,
246 y)`` thus always satisfies ``abs(r) <= 0.5 * abs(y)``.
247
248 Special cases follow IEEE 754: in particular, ``remainder(x, math.inf)`` is
249 *x* for any finite *x*, and ``remainder(x, 0)`` and
250 ``remainder(math.inf, x)`` raise :exc:`ValueError` for any non-NaN *x*.
251 If the result of the remainder operation is zero, that zero will have
252 the same sign as *x*.
253
254 On platforms using IEEE 754 binary floating-point, the result of this
255 operation is always exactly representable: no rounding error is introduced.
256
257 .. versionadded:: 3.7
258
259
Christian Heimes400adb02008-02-01 08:12:03 +0000260.. function:: trunc(x)
261
Serhiy Storchakabfdcd432013-10-13 23:09:14 +0300262 Return the :class:`~numbers.Real` value *x* truncated to an
263 :class:`~numbers.Integral` (usually an integer). Delegates to
Eric Appelt308eab92018-03-10 02:44:12 -0600264 :meth:`x.__trunc__() <object.__trunc__>`.
Christian Heimes400adb02008-02-01 08:12:03 +0000265
Christian Heimes400adb02008-02-01 08:12:03 +0000266
Georg Brandl116aa622007-08-15 14:28:22 +0000267Note that :func:`frexp` and :func:`modf` have a different call/return pattern
268than their C equivalents: they take a single argument and return a pair of
269values, rather than returning their second return value through an 'output
270parameter' (there is no such thing in Python).
271
272For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
273floating-point numbers of sufficiently large magnitude are exact integers.
274Python floats typically carry no more than 53 bits of precision (the same as the
275platform C double type), in which case any float *x* with ``abs(x) >= 2**52``
276necessarily has no fractional bits.
277
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000278
279Power and logarithmic functions
280-------------------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000281
Georg Brandl116aa622007-08-15 14:28:22 +0000282.. function:: exp(x)
283
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300284 Return *e* raised to the power *x*, where *e* = 2.718281... is the base
285 of natural logarithms. This is usually more accurate than ``math.e ** x``
286 or ``pow(math.e, x)``.
287
Georg Brandl116aa622007-08-15 14:28:22 +0000288
Mark Dickinson664b5112009-12-16 20:23:42 +0000289.. function:: expm1(x)
290
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300291 Return *e* raised to the power *x*, minus 1. Here *e* is the base of natural
292 logarithms. For small floats *x*, the subtraction in ``exp(x) - 1``
Raymond Hettinger1081d482011-03-31 12:04:53 -0700293 can result in a `significant loss of precision
Georg Brandl5d941342016-02-26 19:37:12 +0100294 <https://en.wikipedia.org/wiki/Loss_of_significance>`_\; the :func:`expm1`
Raymond Hettinger1081d482011-03-31 12:04:53 -0700295 function provides a way to compute this quantity to full precision::
Mark Dickinson664b5112009-12-16 20:23:42 +0000296
297 >>> from math import exp, expm1
298 >>> exp(1e-5) - 1 # gives result accurate to 11 places
299 1.0000050000069649e-05
300 >>> expm1(1e-5) # result accurate to full precision
301 1.0000050000166668e-05
302
Mark Dickinson45f992a2009-12-19 11:20:49 +0000303 .. versionadded:: 3.2
304
Mark Dickinson664b5112009-12-16 20:23:42 +0000305
Georg Brandl116aa622007-08-15 14:28:22 +0000306.. function:: log(x[, base])
307
Georg Brandla6053b42009-09-01 08:11:14 +0000308 With one argument, return the natural logarithm of *x* (to base *e*).
309
310 With two arguments, return the logarithm of *x* to the given *base*,
311 calculated as ``log(x)/log(base)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000312
Georg Brandl116aa622007-08-15 14:28:22 +0000313
Christian Heimes53876d92008-04-19 00:31:39 +0000314.. function:: log1p(x)
315
316 Return the natural logarithm of *1+x* (base *e*). The
317 result is calculated in a way which is accurate for *x* near zero.
318
Christian Heimes53876d92008-04-19 00:31:39 +0000319
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200320.. function:: log2(x)
321
Benjamin Petersoneaee1382011-05-08 19:48:08 -0500322 Return the base-2 logarithm of *x*. This is usually more accurate than
323 ``log(x, 2)``.
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200324
325 .. versionadded:: 3.3
326
Victor Stinner9415afc2011-09-21 03:35:18 +0200327 .. seealso::
328
329 :meth:`int.bit_length` returns the number of bits necessary to represent
330 an integer in binary, excluding the sign and leading zeros.
331
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200332
Georg Brandl116aa622007-08-15 14:28:22 +0000333.. function:: log10(x)
334
Georg Brandla6053b42009-09-01 08:11:14 +0000335 Return the base-10 logarithm of *x*. This is usually more accurate
336 than ``log(x, 10)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000337
338
339.. function:: pow(x, y)
340
Christian Heimesa342c012008-04-20 21:01:16 +0000341 Return ``x`` raised to the power ``y``. Exceptional cases follow
342 Annex 'F' of the C99 standard as far as possible. In particular,
343 ``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even
344 when ``x`` is a zero or a NaN. If both ``x`` and ``y`` are finite,
345 ``x`` is negative, and ``y`` is not an integer then ``pow(x, y)``
346 is undefined, and raises :exc:`ValueError`.
Christian Heimes53876d92008-04-19 00:31:39 +0000347
Ezio Melotti739d5492013-02-23 04:53:44 +0200348 Unlike the built-in ``**`` operator, :func:`math.pow` converts both
349 its arguments to type :class:`float`. Use ``**`` or the built-in
350 :func:`pow` function for computing exact integer powers.
351
Georg Brandl116aa622007-08-15 14:28:22 +0000352
353.. function:: sqrt(x)
354
355 Return the square root of *x*.
356
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300357
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000358Trigonometric functions
359-----------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000360
Georg Brandl116aa622007-08-15 14:28:22 +0000361.. function:: acos(x)
362
363 Return the arc cosine of *x*, in radians.
364
365
366.. function:: asin(x)
367
368 Return the arc sine of *x*, in radians.
369
370
371.. function:: atan(x)
372
373 Return the arc tangent of *x*, in radians.
374
375
376.. function:: atan2(y, x)
377
378 Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``.
379 The vector in the plane from the origin to point ``(x, y)`` makes this angle
380 with the positive X axis. The point of :func:`atan2` is that the signs of both
381 inputs are known to it, so it can compute the correct quadrant for the angle.
Mark Dickinson603b7532010-04-06 19:55:03 +0000382 For example, ``atan(1)`` and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1,
Georg Brandl116aa622007-08-15 14:28:22 +0000383 -1)`` is ``-3*pi/4``.
384
385
386.. function:: cos(x)
387
388 Return the cosine of *x* radians.
389
390
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -0700391.. function:: dist(p, q)
392
393 Return the Euclidean distance between two points *p* and *q*, each
394 given as a tuple of coordinates. The two tuples must be the same size.
395
396 Roughly equivalent to::
397
398 sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))
399
400 .. versionadded:: 3.8
401
402
Raymond Hettingerc6dabe32018-07-28 07:48:04 -0700403.. function:: hypot(*coordinates)
Georg Brandl116aa622007-08-15 14:28:22 +0000404
Raymond Hettingerc6dabe32018-07-28 07:48:04 -0700405 Return the Euclidean norm, ``sqrt(sum(x**2 for x in coordinates))``.
406 This is the length of the vector from the origin to the point
407 given by the coordinates.
408
409 For a two dimensional point ``(x, y)``, this is equivalent to computing
410 the hypotenuse of a right triangle using the Pythagorean theorem,
411 ``sqrt(x*x + y*y)``.
412
413 .. versionchanged:: 3.8
414 Added support for n-dimensional points. Formerly, only the two
415 dimensional case was supported.
Georg Brandl116aa622007-08-15 14:28:22 +0000416
417
418.. function:: sin(x)
419
420 Return the sine of *x* radians.
421
422
423.. function:: tan(x)
424
425 Return the tangent of *x* radians.
426
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300427
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000428Angular conversion
429------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000430
Georg Brandl116aa622007-08-15 14:28:22 +0000431.. function:: degrees(x)
432
Benjamin Peterson19a3f172015-05-12 19:15:53 -0400433 Convert angle *x* from radians to degrees.
Georg Brandl116aa622007-08-15 14:28:22 +0000434
435
436.. function:: radians(x)
437
Benjamin Peterson19a3f172015-05-12 19:15:53 -0400438 Convert angle *x* from degrees to radians.
Georg Brandl116aa622007-08-15 14:28:22 +0000439
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300440
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000441Hyperbolic functions
442--------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000443
Georg Brandl5d941342016-02-26 19:37:12 +0100444`Hyperbolic functions <https://en.wikipedia.org/wiki/Hyperbolic_function>`_
Raymond Hettinger1081d482011-03-31 12:04:53 -0700445are analogs of trigonometric functions that are based on hyperbolas
446instead of circles.
Georg Brandl116aa622007-08-15 14:28:22 +0000447
Christian Heimesa342c012008-04-20 21:01:16 +0000448.. function:: acosh(x)
449
450 Return the inverse hyperbolic cosine of *x*.
451
Christian Heimesa342c012008-04-20 21:01:16 +0000452
453.. function:: asinh(x)
454
455 Return the inverse hyperbolic sine of *x*.
456
Christian Heimesa342c012008-04-20 21:01:16 +0000457
458.. function:: atanh(x)
459
460 Return the inverse hyperbolic tangent of *x*.
461
Christian Heimesa342c012008-04-20 21:01:16 +0000462
Georg Brandl116aa622007-08-15 14:28:22 +0000463.. function:: cosh(x)
464
465 Return the hyperbolic cosine of *x*.
466
467
468.. function:: sinh(x)
469
470 Return the hyperbolic sine of *x*.
471
472
473.. function:: tanh(x)
474
475 Return the hyperbolic tangent of *x*.
476
Christian Heimes53876d92008-04-19 00:31:39 +0000477
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000478Special functions
479-----------------
480
Mark Dickinson45f992a2009-12-19 11:20:49 +0000481.. function:: erf(x)
482
Georg Brandl5d941342016-02-26 19:37:12 +0100483 Return the `error function <https://en.wikipedia.org/wiki/Error_function>`_ at
Raymond Hettinger1081d482011-03-31 12:04:53 -0700484 *x*.
485
486 The :func:`erf` function can be used to compute traditional statistical
487 functions such as the `cumulative standard normal distribution
Georg Brandl5d941342016-02-26 19:37:12 +0100488 <https://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_function>`_::
Raymond Hettinger1081d482011-03-31 12:04:53 -0700489
490 def phi(x):
491 'Cumulative distribution function for the standard normal distribution'
492 return (1.0 + erf(x / sqrt(2.0))) / 2.0
Mark Dickinson45f992a2009-12-19 11:20:49 +0000493
494 .. versionadded:: 3.2
495
496
497.. function:: erfc(x)
498
Raymond Hettinger1081d482011-03-31 12:04:53 -0700499 Return the complementary error function at *x*. The `complementary error
Georg Brandl5d941342016-02-26 19:37:12 +0100500 function <https://en.wikipedia.org/wiki/Error_function>`_ is defined as
Raymond Hettinger12e6c252011-03-31 13:59:24 -0700501 ``1.0 - erf(x)``. It is used for large values of *x* where a subtraction
502 from one would cause a `loss of significance
Georg Brandl5d941342016-02-26 19:37:12 +0100503 <https://en.wikipedia.org/wiki/Loss_of_significance>`_\.
Mark Dickinson45f992a2009-12-19 11:20:49 +0000504
505 .. versionadded:: 3.2
506
507
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000508.. function:: gamma(x)
509
Georg Brandl5d941342016-02-26 19:37:12 +0100510 Return the `Gamma function <https://en.wikipedia.org/wiki/Gamma_function>`_ at
Raymond Hettinger12e6c252011-03-31 13:59:24 -0700511 *x*.
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000512
Mark Dickinson56e09662009-10-01 16:13:29 +0000513 .. versionadded:: 3.2
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000514
515
Mark Dickinson05d2e082009-12-11 20:17:17 +0000516.. function:: lgamma(x)
517
518 Return the natural logarithm of the absolute value of the Gamma
519 function at *x*.
520
Mark Dickinson45f992a2009-12-19 11:20:49 +0000521 .. versionadded:: 3.2
Mark Dickinson05d2e082009-12-11 20:17:17 +0000522
523
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000524Constants
Mark Dickinson60fe6b02009-06-02 12:53:15 +0000525---------
Georg Brandl116aa622007-08-15 14:28:22 +0000526
527.. data:: pi
528
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300529 The mathematical constant *π* = 3.141592..., to available precision.
Georg Brandl116aa622007-08-15 14:28:22 +0000530
531
532.. data:: e
533
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300534 The mathematical constant *e* = 2.718281..., to available precision.
535
Georg Brandl116aa622007-08-15 14:28:22 +0000536
Guido van Rossum0a891d72016-08-15 09:12:52 -0700537.. data:: tau
538
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300539 The mathematical constant *τ* = 6.283185..., to available precision.
540 Tau is a circle constant equal to 2\ *π*, the ratio of a circle's circumference to
Guido van Rossum0a891d72016-08-15 09:12:52 -0700541 its radius. To learn more about Tau, check out Vi Hart's video `Pi is (still)
542 Wrong <https://www.youtube.com/watch?v=jG7vhMMXagQ>`_, and start celebrating
Sanyam Khurana338cd832018-01-20 05:55:37 +0530543 `Tau day <https://tauday.com/>`_ by eating twice as much pie!
Christian Heimes53876d92008-04-19 00:31:39 +0000544
Georg Brandl4770d6e2016-08-16 07:08:46 +0200545 .. versionadded:: 3.6
546
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300547
Mark Dickinsona5d0c7c2015-01-11 11:55:29 +0000548.. data:: inf
549
550 A floating-point positive infinity. (For negative infinity, use
551 ``-math.inf``.) Equivalent to the output of ``float('inf')``.
552
553 .. versionadded:: 3.5
554
555
556.. data:: nan
557
558 A floating-point "not a number" (NaN) value. Equivalent to the output of
559 ``float('nan')``.
560
561 .. versionadded:: 3.5
562
563
Georg Brandl495f7b52009-10-27 15:28:25 +0000564.. impl-detail::
Georg Brandl116aa622007-08-15 14:28:22 +0000565
566 The :mod:`math` module consists mostly of thin wrappers around the platform C
Mark Dickinson603b7532010-04-06 19:55:03 +0000567 math library functions. Behavior in exceptional cases follows Annex F of
568 the C99 standard where appropriate. The current implementation will raise
569 :exc:`ValueError` for invalid operations like ``sqrt(-1.0)`` or ``log(0.0)``
570 (where C99 Annex F recommends signaling invalid operation or divide-by-zero),
571 and :exc:`OverflowError` for results that overflow (for example,
Benjamin Peterson08bf91c2010-04-11 16:12:57 +0000572 ``exp(1000.0)``). A NaN will not be returned from any of the functions
573 above unless one or more of the input arguments was a NaN; in that case,
574 most functions will return a NaN, but (again following C99 Annex F) there
Mark Dickinson603b7532010-04-06 19:55:03 +0000575 are some exceptions to this rule, for example ``pow(float('nan'), 0.0)`` or
576 ``hypot(float('nan'), float('inf'))``.
Georg Brandl116aa622007-08-15 14:28:22 +0000577
Mark Dickinson42dfeec2010-04-06 22:13:37 +0000578 Note that Python makes no effort to distinguish signaling NaNs from
579 quiet NaNs, and behavior for signaling NaNs remains unspecified.
580 Typical behavior is to treat all NaNs as though they were quiet.
Christian Heimes53876d92008-04-19 00:31:39 +0000581
Georg Brandl116aa622007-08-15 14:28:22 +0000582
583.. seealso::
584
585 Module :mod:`cmath`
586 Complex number versions of many of these functions.
Mark Dickinson73934b92019-05-18 12:29:50 +0100587
588.. |nbsp| unicode:: 0xA0
589 :trim: