blob: 5eb44da5b4abb0d1b108192324d7f0cb9cb986a7 [file] [log] [blame]
Georg Brandl116aa622007-08-15 14:28:22 +00001:mod:`random` --- Generate pseudo-random numbers
2================================================
3
4.. module:: random
5 :synopsis: Generate pseudo-random numbers with various common distributions.
6
Raymond Hettinger10480942011-01-10 03:26:08 +00007**Source code:** :source:`Lib/random.py`
Georg Brandl116aa622007-08-15 14:28:22 +00008
Raymond Hettinger4f707fd2011-01-10 19:54:11 +00009--------------
10
Georg Brandl116aa622007-08-15 14:28:22 +000011This module implements pseudo-random number generators for various
12distributions.
13
Raymond Hettingerb21dac12010-09-07 05:32:49 +000014For integers, there is uniform selection from a range. For sequences, there is
15uniform selection of a random element, a function to generate a random
16permutation of a list in-place, and a function for random sampling without
17replacement.
Georg Brandl116aa622007-08-15 14:28:22 +000018
19On the real line, there are functions to compute uniform, normal (Gaussian),
20lognormal, negative exponential, gamma, and beta distributions. For generating
21distributions of angles, the von Mises distribution is available.
22
Georg Brandl92849d12016-02-19 08:57:38 +010023Almost all module functions depend on the basic function :func:`.random`, which
Georg Brandl116aa622007-08-15 14:28:22 +000024generates a random float uniformly in the semi-open range [0.0, 1.0). Python
25uses the Mersenne Twister as the core generator. It produces 53-bit precision
26floats and has a period of 2\*\*19937-1. The underlying implementation in C is
27both fast and threadsafe. The Mersenne Twister is one of the most extensively
28tested random number generators in existence. However, being completely
29deterministic, it is not suitable for all purposes, and is completely unsuitable
30for cryptographic purposes.
31
32The functions supplied by this module are actually bound methods of a hidden
33instance of the :class:`random.Random` class. You can instantiate your own
Raymond Hettinger28de64f2008-01-13 23:40:30 +000034instances of :class:`Random` to get generators that don't share state.
Georg Brandl116aa622007-08-15 14:28:22 +000035
36Class :class:`Random` can also be subclassed if you want to use a different
Georg Brandl92849d12016-02-19 08:57:38 +010037basic generator of your own devising: in that case, override the :meth:`~Random.random`,
38:meth:`~Random.seed`, :meth:`~Random.getstate`, and :meth:`~Random.setstate` methods.
39Optionally, a new generator can supply a :meth:`~Random.getrandbits` method --- this
Georg Brandl116aa622007-08-15 14:28:22 +000040allows :meth:`randrange` to produce selections over an arbitrarily large range.
41
Benjamin Peterson21896a32010-03-21 22:03:03 +000042The :mod:`random` module also provides the :class:`SystemRandom` class which
43uses the system function :func:`os.urandom` to generate random numbers
44from sources provided by the operating system.
Georg Brandl116aa622007-08-15 14:28:22 +000045
Raymond Hettingerc89a4512014-05-11 02:26:23 -070046.. warning::
47
48 The pseudo-random generators of this module should not be used for
Steven D'Apranob2871fa2016-04-17 01:42:33 +100049 security purposes. For security or cryptographic uses, see the
50 :mod:`secrets` module.
Raymond Hettingerc89a4512014-05-11 02:26:23 -070051
Georg Brandl116aa622007-08-15 14:28:22 +000052
Raymond Hettinger10480942011-01-10 03:26:08 +000053Bookkeeping functions:
Georg Brandl116aa622007-08-15 14:28:22 +000054
Ezio Melottie0add762012-09-14 06:32:35 +030055.. function:: seed(a=None, version=2)
Georg Brandl116aa622007-08-15 14:28:22 +000056
Raymond Hettingerf763a722010-09-07 00:38:15 +000057 Initialize the random number generator.
Georg Brandl116aa622007-08-15 14:28:22 +000058
Ezio Melottie0add762012-09-14 06:32:35 +030059 If *a* is omitted or ``None``, the current system time is used. If
Raymond Hettingerf763a722010-09-07 00:38:15 +000060 randomness sources are provided by the operating system, they are used
61 instead of the system time (see the :func:`os.urandom` function for details
62 on availability).
Georg Brandl116aa622007-08-15 14:28:22 +000063
Ezio Melottie0add762012-09-14 06:32:35 +030064 If *a* is an int, it is used directly.
Raymond Hettingerf763a722010-09-07 00:38:15 +000065
66 With version 2 (the default), a :class:`str`, :class:`bytes`, or :class:`bytearray`
Raymond Hettinger16eb8272016-09-04 11:17:28 -070067 object gets converted to an :class:`int` and all of its bits are used.
68
69 With version 1 (provided for reproducing random sequences from older versions
70 of Python), the algorithm for :class:`str` and :class:`bytes` generates a
71 narrower range of seeds.
Raymond Hettingerf763a722010-09-07 00:38:15 +000072
73 .. versionchanged:: 3.2
74 Moved to the version 2 scheme which uses all of the bits in a string seed.
Georg Brandl116aa622007-08-15 14:28:22 +000075
76.. function:: getstate()
77
78 Return an object capturing the current internal state of the generator. This
79 object can be passed to :func:`setstate` to restore the state.
80
Georg Brandl116aa622007-08-15 14:28:22 +000081
82.. function:: setstate(state)
83
84 *state* should have been obtained from a previous call to :func:`getstate`, and
85 :func:`setstate` restores the internal state of the generator to what it was at
Sandro Tosi985104a2012-08-12 15:12:15 +020086 the time :func:`getstate` was called.
Georg Brandl116aa622007-08-15 14:28:22 +000087
Georg Brandl116aa622007-08-15 14:28:22 +000088
Georg Brandl116aa622007-08-15 14:28:22 +000089.. function:: getrandbits(k)
90
Ezio Melotti0639d5a2009-12-19 23:26:38 +000091 Returns a Python integer with *k* random bits. This method is supplied with
Georg Brandl5c106642007-11-29 17:41:05 +000092 the MersenneTwister generator and some other generators may also provide it
Georg Brandl116aa622007-08-15 14:28:22 +000093 as an optional part of the API. When available, :meth:`getrandbits` enables
94 :meth:`randrange` to handle arbitrarily large ranges.
95
Georg Brandl116aa622007-08-15 14:28:22 +000096
97Functions for integers:
98
Ezio Melottie0add762012-09-14 06:32:35 +030099.. function:: randrange(stop)
100 randrange(start, stop[, step])
Georg Brandl116aa622007-08-15 14:28:22 +0000101
102 Return a randomly selected element from ``range(start, stop, step)``. This is
103 equivalent to ``choice(range(start, stop, step))``, but doesn't actually build a
104 range object.
105
Raymond Hettinger05156612010-09-07 04:44:52 +0000106 The positional argument pattern matches that of :func:`range`. Keyword arguments
107 should not be used because the function may use them in unexpected ways.
108
109 .. versionchanged:: 3.2
110 :meth:`randrange` is more sophisticated about producing equally distributed
111 values. Formerly it used a style like ``int(random()*n)`` which could produce
112 slightly uneven distributions.
Georg Brandl116aa622007-08-15 14:28:22 +0000113
114.. function:: randint(a, b)
115
Raymond Hettingerafd30452009-02-24 10:57:02 +0000116 Return a random integer *N* such that ``a <= N <= b``. Alias for
117 ``randrange(a, b+1)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000118
Georg Brandl116aa622007-08-15 14:28:22 +0000119
Georg Brandl55ac8f02007-09-01 13:51:09 +0000120Functions for sequences:
Georg Brandl116aa622007-08-15 14:28:22 +0000121
122.. function:: choice(seq)
123
124 Return a random element from the non-empty sequence *seq*. If *seq* is empty,
125 raises :exc:`IndexError`.
126
Raymond Hettinger28aa4a02016-09-07 00:08:44 -0700127.. function:: choices(k, population, weights=None, *, cum_weights=None)
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700128
129 Return a *k* sized list of elements chosen from the *population* with replacement.
130 If the *population* is empty, raises :exc:`IndexError`.
131
132 If a *weights* sequence is specified, selections are made according to the
133 relative weights. Alternatively, if a *cum_weights* sequence is given, the
134 selections are made according to the cumulative weights. For example, the
135 relative weights ``[10, 5, 30, 5]`` are equivalent to the cumulative
136 weights ``[10, 15, 45, 50]``. Internally, the relative weights are
137 converted to cumulative weights before making selections, so supplying the
138 cumulative weights saves work.
139
140 If neither *weights* nor *cum_weights* are specified, selections are made
141 with equal probability. If a weights sequence is supplied, it must be
142 the same length as the *population* sequence. It is a :exc:`TypeError`
143 to specify both *weights* and *cum_weights*.
144
145 The *weights* or *cum_weights* can use any numeric type that interoperates
146 with the :class:`float` values returned by :func:`random` (that includes
147 integers, floats, and fractions but excludes decimals).
Georg Brandl116aa622007-08-15 14:28:22 +0000148
149.. function:: shuffle(x[, random])
150
151 Shuffle the sequence *x* in place. The optional argument *random* is a
152 0-argument function returning a random float in [0.0, 1.0); by default, this is
Georg Brandl92849d12016-02-19 08:57:38 +0100153 the function :func:`.random`.
Georg Brandl116aa622007-08-15 14:28:22 +0000154
155 Note that for even rather small ``len(x)``, the total number of permutations of
156 *x* is larger than the period of most random number generators; this implies
157 that most permutations of a long sequence can never be generated.
158
159
160.. function:: sample(population, k)
161
Raymond Hettinger1acde192008-01-14 01:00:53 +0000162 Return a *k* length list of unique elements chosen from the population sequence
163 or set. Used for random sampling without replacement.
Georg Brandl116aa622007-08-15 14:28:22 +0000164
Georg Brandl116aa622007-08-15 14:28:22 +0000165 Returns a new list containing elements from the population while leaving the
166 original population unchanged. The resulting list is in selection order so that
167 all sub-slices will also be valid random samples. This allows raffle winners
168 (the sample) to be partitioned into grand prize and second place winners (the
169 subslices).
170
Guido van Rossum2cc30da2007-11-02 23:46:40 +0000171 Members of the population need not be :term:`hashable` or unique. If the population
Georg Brandl116aa622007-08-15 14:28:22 +0000172 contains repeats, then each occurrence is a possible selection in the sample.
173
174 To choose a sample from a range of integers, use an :func:`range` object as an
175 argument. This is especially fast and space efficient for sampling from a large
176 population: ``sample(range(10000000), 60)``.
177
Raymond Hettingerf07d9492012-07-09 12:43:57 -0700178 If the sample size is larger than the population size, a :exc:`ValueError`
Raymond Hettinger86a20f82012-07-08 16:01:53 -0700179 is raised.
180
Georg Brandl116aa622007-08-15 14:28:22 +0000181The following functions generate specific real-valued distributions. Function
182parameters are named after the corresponding variables in the distribution's
183equation, as used in common mathematical practice; most of these equations can
184be found in any statistics text.
185
186
187.. function:: random()
188
189 Return the next random floating point number in the range [0.0, 1.0).
190
191
192.. function:: uniform(a, b)
193
Benjamin Petersonb58dda72009-01-18 22:27:04 +0000194 Return a random floating point number *N* such that ``a <= N <= b`` for
195 ``a <= b`` and ``b <= N <= a`` for ``b < a``.
Georg Brandl116aa622007-08-15 14:28:22 +0000196
Raymond Hettingerbe40db02009-06-11 23:12:14 +0000197 The end-point value ``b`` may or may not be included in the range
198 depending on floating-point rounding in the equation ``a + (b-a) * random()``.
Benjamin Peterson35e8c462008-04-24 02:34:53 +0000199
Georg Brandl73dd7c72011-09-17 20:36:28 +0200200
Christian Heimesfe337bf2008-03-23 21:54:12 +0000201.. function:: triangular(low, high, mode)
202
Benjamin Petersonb58dda72009-01-18 22:27:04 +0000203 Return a random floating point number *N* such that ``low <= N <= high`` and
Christian Heimescc47b052008-03-25 14:56:36 +0000204 with the specified *mode* between those bounds. The *low* and *high* bounds
205 default to zero and one. The *mode* argument defaults to the midpoint
206 between the bounds, giving a symmetric distribution.
Christian Heimesfe337bf2008-03-23 21:54:12 +0000207
Georg Brandl116aa622007-08-15 14:28:22 +0000208
209.. function:: betavariate(alpha, beta)
210
Benjamin Petersonb58dda72009-01-18 22:27:04 +0000211 Beta distribution. Conditions on the parameters are ``alpha > 0`` and
212 ``beta > 0``. Returned values range between 0 and 1.
Georg Brandl116aa622007-08-15 14:28:22 +0000213
214
215.. function:: expovariate(lambd)
216
Mark Dickinson2f947362009-01-07 17:54:07 +0000217 Exponential distribution. *lambd* is 1.0 divided by the desired
218 mean. It should be nonzero. (The parameter would be called
219 "lambda", but that is a reserved word in Python.) Returned values
220 range from 0 to positive infinity if *lambd* is positive, and from
221 negative infinity to 0 if *lambd* is negative.
Georg Brandl116aa622007-08-15 14:28:22 +0000222
223
224.. function:: gammavariate(alpha, beta)
225
Benjamin Petersonb58dda72009-01-18 22:27:04 +0000226 Gamma distribution. (*Not* the gamma function!) Conditions on the
227 parameters are ``alpha > 0`` and ``beta > 0``.
Georg Brandl116aa622007-08-15 14:28:22 +0000228
Georg Brandl73dd7c72011-09-17 20:36:28 +0200229 The probability distribution function is::
230
231 x ** (alpha - 1) * math.exp(-x / beta)
232 pdf(x) = --------------------------------------
233 math.gamma(alpha) * beta ** alpha
234
Georg Brandl116aa622007-08-15 14:28:22 +0000235
236.. function:: gauss(mu, sigma)
237
Benjamin Petersonb58dda72009-01-18 22:27:04 +0000238 Gaussian distribution. *mu* is the mean, and *sigma* is the standard
239 deviation. This is slightly faster than the :func:`normalvariate` function
240 defined below.
Georg Brandl116aa622007-08-15 14:28:22 +0000241
242
243.. function:: lognormvariate(mu, sigma)
244
245 Log normal distribution. If you take the natural logarithm of this
246 distribution, you'll get a normal distribution with mean *mu* and standard
247 deviation *sigma*. *mu* can have any value, and *sigma* must be greater than
248 zero.
249
250
251.. function:: normalvariate(mu, sigma)
252
253 Normal distribution. *mu* is the mean, and *sigma* is the standard deviation.
254
255
256.. function:: vonmisesvariate(mu, kappa)
257
258 *mu* is the mean angle, expressed in radians between 0 and 2\*\ *pi*, and *kappa*
259 is the concentration parameter, which must be greater than or equal to zero. If
260 *kappa* is equal to zero, this distribution reduces to a uniform random angle
261 over the range 0 to 2\*\ *pi*.
262
263
264.. function:: paretovariate(alpha)
265
266 Pareto distribution. *alpha* is the shape parameter.
267
268
269.. function:: weibullvariate(alpha, beta)
270
271 Weibull distribution. *alpha* is the scale parameter and *beta* is the shape
272 parameter.
273
274
Raymond Hettinger3cdf8712010-12-02 05:35:35 +0000275Alternative Generator:
Georg Brandl116aa622007-08-15 14:28:22 +0000276
Georg Brandl116aa622007-08-15 14:28:22 +0000277.. class:: SystemRandom([seed])
278
279 Class that uses the :func:`os.urandom` function for generating random numbers
280 from sources provided by the operating system. Not available on all systems.
Raymond Hettinger3cdf8712010-12-02 05:35:35 +0000281 Does not rely on software state, and sequences are not reproducible. Accordingly,
Raymond Hettingerafd30452009-02-24 10:57:02 +0000282 the :meth:`seed` method has no effect and is ignored.
Georg Brandl116aa622007-08-15 14:28:22 +0000283 The :meth:`getstate` and :meth:`setstate` methods raise
284 :exc:`NotImplementedError` if called.
285
Georg Brandl116aa622007-08-15 14:28:22 +0000286
Georg Brandl116aa622007-08-15 14:28:22 +0000287.. seealso::
288
289 M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-dimensionally
290 equidistributed uniform pseudorandom number generator", ACM Transactions on
291 Modeling and Computer Simulation Vol. 8, No. 1, January pp.3-30 1998.
292
Georg Brandl116aa622007-08-15 14:28:22 +0000293
Raymond Hettinger1fd32a62009-04-01 20:52:13 +0000294 `Complementary-Multiply-with-Carry recipe
Georg Brandl5d941342016-02-26 19:37:12 +0100295 <https://code.activestate.com/recipes/576707/>`_ for a compatible alternative
Raymond Hettinger9743fd02009-04-03 05:47:33 +0000296 random number generator with a long period and comparatively simple update
Raymond Hettinger1fd32a62009-04-01 20:52:13 +0000297 operations.
Raymond Hettinger435cb0f2010-09-06 23:36:31 +0000298
Raymond Hettinger3cdf8712010-12-02 05:35:35 +0000299
Raymond Hettinger435cb0f2010-09-06 23:36:31 +0000300Notes on Reproducibility
Antoine Pitroue72b5862010-12-12 20:13:31 +0000301------------------------
Raymond Hettinger435cb0f2010-09-06 23:36:31 +0000302
303Sometimes it is useful to be able to reproduce the sequences given by a pseudo
304random number generator. By re-using a seed value, the same sequence should be
305reproducible from run to run as long as multiple threads are not running.
306
307Most of the random module's algorithms and seeding functions are subject to
308change across Python versions, but two aspects are guaranteed not to change:
309
310* If a new seeding method is added, then a backward compatible seeder will be
311 offered.
312
Georg Brandl92849d12016-02-19 08:57:38 +0100313* The generator's :meth:`~Random.random` method will continue to produce the same
Raymond Hettinger435cb0f2010-09-06 23:36:31 +0000314 sequence when the compatible seeder is given the same seed.
Raymond Hettinger2fdc7b12010-12-02 02:41:33 +0000315
Raymond Hettinger6e353942010-12-04 23:42:12 +0000316.. _random-examples:
Raymond Hettinger2fdc7b12010-12-02 02:41:33 +0000317
Raymond Hettinger2fdc7b12010-12-02 02:41:33 +0000318Examples and Recipes
Antoine Pitroue72b5862010-12-12 20:13:31 +0000319--------------------
Raymond Hettinger2fdc7b12010-12-02 02:41:33 +0000320
Raymond Hettinger3cdf8712010-12-02 05:35:35 +0000321Basic usage::
322
323 >>> random.random() # Random float x, 0.0 <= x < 1.0
324 0.37444887175646646
325
326 >>> random.uniform(1, 10) # Random float x, 1.0 <= x < 10.0
327 1.1800146073117523
328
329 >>> random.randrange(10) # Integer from 0 to 9
330 7
331
332 >>> random.randrange(0, 101, 2) # Even integer from 0 to 100
333 26
334
335 >>> random.choice('abcdefghij') # Single random element
336 'c'
337
338 >>> items = [1, 2, 3, 4, 5, 6, 7]
339 >>> random.shuffle(items)
340 >>> items
341 [7, 3, 2, 5, 6, 4, 1]
342
343 >>> random.sample([1, 2, 3, 4, 5], 3) # Three samples without replacement
344 [4, 1, 5]
345
Sandro Tosi1ee17192012-04-14 16:01:17 +0200346A common task is to make a :func:`random.choice` with weighted probabilities.
Raymond Hettinger2fdc7b12010-12-02 02:41:33 +0000347
348If the weights are small integer ratios, a simple technique is to build a sample
349population with repeats::
350
351 >>> weighted_choices = [('Red', 3), ('Blue', 2), ('Yellow', 1), ('Green', 4)]
352 >>> population = [val for val, cnt in weighted_choices for i in range(cnt)]
Raymond Hettingerf5b7c7b2016-09-05 13:15:02 -0700353 >>> population
354 ['Red', 'Red', 'Red', 'Blue', 'Blue', 'Yellow', 'Green', 'Green', 'Green', 'Green']
355
Raymond Hettinger2fdc7b12010-12-02 02:41:33 +0000356 >>> random.choice(population)
357 'Green'
358
Raymond Hettinger3cdf8712010-12-02 05:35:35 +0000359A more general approach is to arrange the weights in a cumulative distribution
360with :func:`itertools.accumulate`, and then locate the random value with
361:func:`bisect.bisect`::
Raymond Hettinger2fdc7b12010-12-02 02:41:33 +0000362
363 >>> choices, weights = zip(*weighted_choices)
364 >>> cumdist = list(itertools.accumulate(weights))
Raymond Hettingerf5b7c7b2016-09-05 13:15:02 -0700365 >>> cumdist # [3, 3+2, 3+2+1, 3+2+1+4]
366 [3, 5, 6, 10]
367
Raymond Hettinger2fdc7b12010-12-02 02:41:33 +0000368 >>> x = random.random() * cumdist[-1]
369 >>> choices[bisect.bisect(cumdist, x)]
370 'Blue'