blob: b78fcedd03de5fd2c0cda356c39ef0c89da6e9d1 [file] [log] [blame]
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001/* Math module -- standard C math library functions, pi and e */
2
Christian Heimes53876d92008-04-19 00:31:39 +00003/* Here are some comments from Tim Peters, extracted from the
4 discussion attached to http://bugs.python.org/issue1640. They
5 describe the general aims of the math module with respect to
6 special values, IEEE-754 floating-point exceptions, and Python
7 exceptions.
8
9These are the "spirit of 754" rules:
10
111. If the mathematical result is a real number, but of magnitude too
12large to approximate by a machine float, overflow is signaled and the
13result is an infinity (with the appropriate sign).
14
152. If the mathematical result is a real number, but of magnitude too
16small to approximate by a machine float, underflow is signaled and the
17result is a zero (with the appropriate sign).
18
193. At a singularity (a value x such that the limit of f(y) as y
20approaches x exists and is an infinity), "divide by zero" is signaled
21and the result is an infinity (with the appropriate sign). This is
22complicated a little by that the left-side and right-side limits may
23not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0
24from the positive or negative directions. In that specific case, the
25sign of the zero determines the result of 1/0.
26
274. At a point where a function has no defined result in the extended
28reals (i.e., the reals plus an infinity or two), invalid operation is
29signaled and a NaN is returned.
30
31And these are what Python has historically /tried/ to do (but not
32always successfully, as platform libm behavior varies a lot):
33
34For #1, raise OverflowError.
35
36For #2, return a zero (with the appropriate sign if that happens by
37accident ;-)).
38
39For #3 and #4, raise ValueError. It may have made sense to raise
40Python's ZeroDivisionError in #3, but historically that's only been
41raised for division by zero and mod by zero.
42
43*/
44
45/*
46 In general, on an IEEE-754 platform the aim is to follow the C99
47 standard, including Annex 'F', whenever possible. Where the
48 standard recommends raising the 'divide-by-zero' or 'invalid'
49 floating-point exceptions, Python should raise a ValueError. Where
50 the standard recommends raising 'overflow', Python should raise an
51 OverflowError. In all other circumstances a value should be
52 returned.
53 */
54
Barry Warsaw8b43b191996-12-09 22:32:36 +000055#include "Python.h"
Mark Dickinson664b5112009-12-16 20:23:42 +000056#include "_math.h"
Guido van Rossum85a5fbb1990-10-14 12:07:46 +000057
Serhiy Storchakac9ea9332017-01-19 18:13:09 +020058#include "clinic/mathmodule.c.h"
59
60/*[clinic input]
61module math
62[clinic start generated code]*/
63/*[clinic end generated code: output=da39a3ee5e6b4b0d input=76bc7002685dd942]*/
64
65
Mark Dickinson12c4bdb2009-09-28 19:21:11 +000066/*
67 sin(pi*x), giving accurate results for all finite x (especially x
68 integral or close to an integer). This is here for use in the
69 reflection formula for the gamma function. It conforms to IEEE
70 754-2008 for finite arguments, but not for infinities or nans.
71*/
Tim Petersa40c7932001-09-05 22:36:56 +000072
Mark Dickinson12c4bdb2009-09-28 19:21:11 +000073static const double pi = 3.141592653589793238462643383279502884197;
Mark Dickinson9c91eb82010-07-07 16:17:31 +000074static const double logpi = 1.144729885849400174143427351353058711647;
Louie Lu7a264642017-03-31 01:05:10 +080075#if !defined(HAVE_ERF) || !defined(HAVE_ERFC)
76static const double sqrtpi = 1.772453850905516027298167483341145182798;
77#endif /* !defined(HAVE_ERF) || !defined(HAVE_ERFC) */
Mark Dickinson12c4bdb2009-09-28 19:21:11 +000078
Raymond Hettingercfd735e2019-01-29 20:39:53 -080079
80/* Version of PyFloat_AsDouble() with in-line fast paths
81 for exact floats and integers. Gives a substantial
82 speed improvement for extracting float arguments.
83*/
84
85#define ASSIGN_DOUBLE(target_var, obj, error_label) \
86 if (PyFloat_CheckExact(obj)) { \
87 target_var = PyFloat_AS_DOUBLE(obj); \
88 } \
89 else if (PyLong_CheckExact(obj)) { \
90 target_var = PyLong_AsDouble(obj); \
91 if (target_var == -1.0 && PyErr_Occurred()) { \
92 goto error_label; \
93 } \
94 } \
95 else { \
96 target_var = PyFloat_AsDouble(obj); \
97 if (target_var == -1.0 && PyErr_Occurred()) { \
98 goto error_label; \
99 } \
100 }
101
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000102static double
Dima Pasechnikf57cd822019-02-26 06:36:11 +0000103m_sinpi(double x)
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000104{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000105 double y, r;
106 int n;
107 /* this function should only ever be called for finite arguments */
108 assert(Py_IS_FINITE(x));
109 y = fmod(fabs(x), 2.0);
110 n = (int)round(2.0*y);
111 assert(0 <= n && n <= 4);
112 switch (n) {
113 case 0:
114 r = sin(pi*y);
115 break;
116 case 1:
117 r = cos(pi*(y-0.5));
118 break;
119 case 2:
120 /* N.B. -sin(pi*(y-1.0)) is *not* equivalent: it would give
121 -0.0 instead of 0.0 when y == 1.0. */
122 r = sin(pi*(1.0-y));
123 break;
124 case 3:
125 r = -cos(pi*(y-1.5));
126 break;
127 case 4:
128 r = sin(pi*(y-2.0));
129 break;
130 default:
Barry Warsawb2e57942017-09-14 18:13:16 -0700131 Py_UNREACHABLE();
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000132 }
133 return copysign(1.0, x)*r;
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000134}
135
136/* Implementation of the real gamma function. In extensive but non-exhaustive
137 random tests, this function proved accurate to within <= 10 ulps across the
138 entire float domain. Note that accuracy may depend on the quality of the
139 system math functions, the pow function in particular. Special cases
140 follow C99 annex F. The parameters and method are tailored to platforms
141 whose double format is the IEEE 754 binary64 format.
142
143 Method: for x > 0.0 we use the Lanczos approximation with parameters N=13
144 and g=6.024680040776729583740234375; these parameters are amongst those
145 used by the Boost library. Following Boost (again), we re-express the
146 Lanczos sum as a rational function, and compute it that way. The
147 coefficients below were computed independently using MPFR, and have been
148 double-checked against the coefficients in the Boost source code.
149
150 For x < 0.0 we use the reflection formula.
151
152 There's one minor tweak that deserves explanation: Lanczos' formula for
153 Gamma(x) involves computing pow(x+g-0.5, x-0.5) / exp(x+g-0.5). For many x
154 values, x+g-0.5 can be represented exactly. However, in cases where it
155 can't be represented exactly the small error in x+g-0.5 can be magnified
156 significantly by the pow and exp calls, especially for large x. A cheap
157 correction is to multiply by (1 + e*g/(x+g-0.5)), where e is the error
158 involved in the computation of x+g-0.5 (that is, e = computed value of
159 x+g-0.5 - exact value of x+g-0.5). Here's the proof:
160
161 Correction factor
162 -----------------
163 Write x+g-0.5 = y-e, where y is exactly representable as an IEEE 754
164 double, and e is tiny. Then:
165
166 pow(x+g-0.5,x-0.5)/exp(x+g-0.5) = pow(y-e, x-0.5)/exp(y-e)
167 = pow(y, x-0.5)/exp(y) * C,
168
169 where the correction_factor C is given by
170
171 C = pow(1-e/y, x-0.5) * exp(e)
172
173 Since e is tiny, pow(1-e/y, x-0.5) ~ 1-(x-0.5)*e/y, and exp(x) ~ 1+e, so:
174
175 C ~ (1-(x-0.5)*e/y) * (1+e) ~ 1 + e*(y-(x-0.5))/y
176
177 But y-(x-0.5) = g+e, and g+e ~ g. So we get C ~ 1 + e*g/y, and
178
179 pow(x+g-0.5,x-0.5)/exp(x+g-0.5) ~ pow(y, x-0.5)/exp(y) * (1 + e*g/y),
180
181 Note that for accuracy, when computing r*C it's better to do
182
183 r + e*g/y*r;
184
185 than
186
187 r * (1 + e*g/y);
188
189 since the addition in the latter throws away most of the bits of
190 information in e*g/y.
191*/
192
193#define LANCZOS_N 13
194static const double lanczos_g = 6.024680040776729583740234375;
195static const double lanczos_g_minus_half = 5.524680040776729583740234375;
196static const double lanczos_num_coeffs[LANCZOS_N] = {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000197 23531376880.410759688572007674451636754734846804940,
198 42919803642.649098768957899047001988850926355848959,
199 35711959237.355668049440185451547166705960488635843,
200 17921034426.037209699919755754458931112671403265390,
201 6039542586.3520280050642916443072979210699388420708,
202 1439720407.3117216736632230727949123939715485786772,
203 248874557.86205415651146038641322942321632125127801,
204 31426415.585400194380614231628318205362874684987640,
205 2876370.6289353724412254090516208496135991145378768,
206 186056.26539522349504029498971604569928220784236328,
207 8071.6720023658162106380029022722506138218516325024,
208 210.82427775157934587250973392071336271166969580291,
209 2.5066282746310002701649081771338373386264310793408
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000210};
211
212/* denominator is x*(x+1)*...*(x+LANCZOS_N-2) */
213static const double lanczos_den_coeffs[LANCZOS_N] = {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000214 0.0, 39916800.0, 120543840.0, 150917976.0, 105258076.0, 45995730.0,
215 13339535.0, 2637558.0, 357423.0, 32670.0, 1925.0, 66.0, 1.0};
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000216
217/* gamma values for small positive integers, 1 though NGAMMA_INTEGRAL */
218#define NGAMMA_INTEGRAL 23
219static const double gamma_integral[NGAMMA_INTEGRAL] = {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000220 1.0, 1.0, 2.0, 6.0, 24.0, 120.0, 720.0, 5040.0, 40320.0, 362880.0,
221 3628800.0, 39916800.0, 479001600.0, 6227020800.0, 87178291200.0,
222 1307674368000.0, 20922789888000.0, 355687428096000.0,
223 6402373705728000.0, 121645100408832000.0, 2432902008176640000.0,
224 51090942171709440000.0, 1124000727777607680000.0,
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000225};
226
227/* Lanczos' sum L_g(x), for positive x */
228
229static double
230lanczos_sum(double x)
231{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000232 double num = 0.0, den = 0.0;
233 int i;
234 assert(x > 0.0);
235 /* evaluate the rational function lanczos_sum(x). For large
236 x, the obvious algorithm risks overflow, so we instead
237 rescale the denominator and numerator of the rational
238 function by x**(1-LANCZOS_N) and treat this as a
239 rational function in 1/x. This also reduces the error for
240 larger x values. The choice of cutoff point (5.0 below) is
241 somewhat arbitrary; in tests, smaller cutoff values than
242 this resulted in lower accuracy. */
243 if (x < 5.0) {
244 for (i = LANCZOS_N; --i >= 0; ) {
245 num = num * x + lanczos_num_coeffs[i];
246 den = den * x + lanczos_den_coeffs[i];
247 }
248 }
249 else {
250 for (i = 0; i < LANCZOS_N; i++) {
251 num = num / x + lanczos_num_coeffs[i];
252 den = den / x + lanczos_den_coeffs[i];
253 }
254 }
255 return num/den;
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000256}
257
Mark Dickinsona5d0c7c2015-01-11 11:55:29 +0000258/* Constant for +infinity, generated in the same way as float('inf'). */
259
260static double
261m_inf(void)
262{
263#ifndef PY_NO_SHORT_FLOAT_REPR
264 return _Py_dg_infinity(0);
265#else
266 return Py_HUGE_VAL;
267#endif
268}
269
270/* Constant nan value, generated in the same way as float('nan'). */
271/* We don't currently assume that Py_NAN is defined everywhere. */
272
273#if !defined(PY_NO_SHORT_FLOAT_REPR) || defined(Py_NAN)
274
275static double
276m_nan(void)
277{
278#ifndef PY_NO_SHORT_FLOAT_REPR
279 return _Py_dg_stdnan(0);
280#else
281 return Py_NAN;
282#endif
283}
284
285#endif
286
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000287static double
288m_tgamma(double x)
289{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000290 double absx, r, y, z, sqrtpow;
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000291
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000292 /* special cases */
293 if (!Py_IS_FINITE(x)) {
294 if (Py_IS_NAN(x) || x > 0.0)
295 return x; /* tgamma(nan) = nan, tgamma(inf) = inf */
296 else {
297 errno = EDOM;
298 return Py_NAN; /* tgamma(-inf) = nan, invalid */
299 }
300 }
301 if (x == 0.0) {
302 errno = EDOM;
Mark Dickinson50203a62011-09-25 15:26:43 +0100303 /* tgamma(+-0.0) = +-inf, divide-by-zero */
304 return copysign(Py_HUGE_VAL, x);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000305 }
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000306
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000307 /* integer arguments */
308 if (x == floor(x)) {
309 if (x < 0.0) {
310 errno = EDOM; /* tgamma(n) = nan, invalid for */
311 return Py_NAN; /* negative integers n */
312 }
313 if (x <= NGAMMA_INTEGRAL)
314 return gamma_integral[(int)x - 1];
315 }
316 absx = fabs(x);
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000317
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000318 /* tiny arguments: tgamma(x) ~ 1/x for x near 0 */
319 if (absx < 1e-20) {
320 r = 1.0/x;
321 if (Py_IS_INFINITY(r))
322 errno = ERANGE;
323 return r;
324 }
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000325
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000326 /* large arguments: assuming IEEE 754 doubles, tgamma(x) overflows for
327 x > 200, and underflows to +-0.0 for x < -200, not a negative
328 integer. */
329 if (absx > 200.0) {
330 if (x < 0.0) {
Dima Pasechnikf57cd822019-02-26 06:36:11 +0000331 return 0.0/m_sinpi(x);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000332 }
333 else {
334 errno = ERANGE;
335 return Py_HUGE_VAL;
336 }
337 }
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000338
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000339 y = absx + lanczos_g_minus_half;
340 /* compute error in sum */
341 if (absx > lanczos_g_minus_half) {
342 /* note: the correction can be foiled by an optimizing
343 compiler that (incorrectly) thinks that an expression like
344 a + b - a - b can be optimized to 0.0. This shouldn't
345 happen in a standards-conforming compiler. */
346 double q = y - absx;
347 z = q - lanczos_g_minus_half;
348 }
349 else {
350 double q = y - lanczos_g_minus_half;
351 z = q - absx;
352 }
353 z = z * lanczos_g / y;
354 if (x < 0.0) {
Dima Pasechnikf57cd822019-02-26 06:36:11 +0000355 r = -pi / m_sinpi(absx) / absx * exp(y) / lanczos_sum(absx);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000356 r -= z * r;
357 if (absx < 140.0) {
358 r /= pow(y, absx - 0.5);
359 }
360 else {
361 sqrtpow = pow(y, absx / 2.0 - 0.25);
362 r /= sqrtpow;
363 r /= sqrtpow;
364 }
365 }
366 else {
367 r = lanczos_sum(absx) / exp(y);
368 r += z * r;
369 if (absx < 140.0) {
370 r *= pow(y, absx - 0.5);
371 }
372 else {
373 sqrtpow = pow(y, absx / 2.0 - 0.25);
374 r *= sqrtpow;
375 r *= sqrtpow;
376 }
377 }
378 if (Py_IS_INFINITY(r))
379 errno = ERANGE;
380 return r;
Guido van Rossum8832b621991-12-16 15:44:24 +0000381}
382
Christian Heimes53876d92008-04-19 00:31:39 +0000383/*
Mark Dickinson05d2e082009-12-11 20:17:17 +0000384 lgamma: natural log of the absolute value of the Gamma function.
385 For large arguments, Lanczos' formula works extremely well here.
386*/
387
388static double
389m_lgamma(double x)
390{
Serhiy Storchaka97553fd2017-03-11 23:37:16 +0200391 double r;
Serhiy Storchaka97553fd2017-03-11 23:37:16 +0200392 double absx;
Mark Dickinson05d2e082009-12-11 20:17:17 +0000393
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000394 /* special cases */
395 if (!Py_IS_FINITE(x)) {
396 if (Py_IS_NAN(x))
397 return x; /* lgamma(nan) = nan */
398 else
399 return Py_HUGE_VAL; /* lgamma(+-inf) = +inf */
400 }
Mark Dickinson05d2e082009-12-11 20:17:17 +0000401
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000402 /* integer arguments */
403 if (x == floor(x) && x <= 2.0) {
404 if (x <= 0.0) {
405 errno = EDOM; /* lgamma(n) = inf, divide-by-zero for */
406 return Py_HUGE_VAL; /* integers n <= 0 */
407 }
408 else {
409 return 0.0; /* lgamma(1) = lgamma(2) = 0.0 */
410 }
411 }
Mark Dickinson05d2e082009-12-11 20:17:17 +0000412
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000413 absx = fabs(x);
414 /* tiny arguments: lgamma(x) ~ -log(fabs(x)) for small x */
415 if (absx < 1e-20)
416 return -log(absx);
Mark Dickinson05d2e082009-12-11 20:17:17 +0000417
Mark Dickinson9c91eb82010-07-07 16:17:31 +0000418 /* Lanczos' formula. We could save a fraction of a ulp in accuracy by
419 having a second set of numerator coefficients for lanczos_sum that
420 absorbed the exp(-lanczos_g) term, and throwing out the lanczos_g
421 subtraction below; it's probably not worth it. */
422 r = log(lanczos_sum(absx)) - lanczos_g;
423 r += (absx - 0.5) * (log(absx + lanczos_g - 0.5) - 1);
424 if (x < 0.0)
425 /* Use reflection formula to get value for negative x. */
Dima Pasechnikf57cd822019-02-26 06:36:11 +0000426 r = logpi - log(fabs(m_sinpi(absx))) - log(absx) - r;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000427 if (Py_IS_INFINITY(r))
428 errno = ERANGE;
429 return r;
Mark Dickinson05d2e082009-12-11 20:17:17 +0000430}
431
Serhiy Storchaka97553fd2017-03-11 23:37:16 +0200432#if !defined(HAVE_ERF) || !defined(HAVE_ERFC)
433
Mark Dickinson45f992a2009-12-19 11:20:49 +0000434/*
435 Implementations of the error function erf(x) and the complementary error
436 function erfc(x).
437
Brett Cannon45adb312016-01-15 09:38:24 -0800438 Method: we use a series approximation for erf for small x, and a continued
439 fraction approximation for erfc(x) for larger x;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000440 combined with the relations erf(-x) = -erf(x) and erfc(x) = 1.0 - erf(x),
441 this gives us erf(x) and erfc(x) for all x.
442
443 The series expansion used is:
444
445 erf(x) = x*exp(-x*x)/sqrt(pi) * [
446 2/1 + 4/3 x**2 + 8/15 x**4 + 16/105 x**6 + ...]
447
448 The coefficient of x**(2k-2) here is 4**k*factorial(k)/factorial(2*k).
449 This series converges well for smallish x, but slowly for larger x.
450
451 The continued fraction expansion used is:
452
453 erfc(x) = x*exp(-x*x)/sqrt(pi) * [1/(0.5 + x**2 -) 0.5/(2.5 + x**2 - )
454 3.0/(4.5 + x**2 - ) 7.5/(6.5 + x**2 - ) ...]
455
456 after the first term, the general term has the form:
457
458 k*(k-0.5)/(2*k+0.5 + x**2 - ...).
459
460 This expansion converges fast for larger x, but convergence becomes
461 infinitely slow as x approaches 0.0. The (somewhat naive) continued
462 fraction evaluation algorithm used below also risks overflow for large x;
463 but for large x, erfc(x) == 0.0 to within machine precision. (For
464 example, erfc(30.0) is approximately 2.56e-393).
465
466 Parameters: use series expansion for abs(x) < ERF_SERIES_CUTOFF and
467 continued fraction expansion for ERF_SERIES_CUTOFF <= abs(x) <
468 ERFC_CONTFRAC_CUTOFF. ERFC_SERIES_TERMS and ERFC_CONTFRAC_TERMS are the
469 numbers of terms to use for the relevant expansions. */
470
471#define ERF_SERIES_CUTOFF 1.5
472#define ERF_SERIES_TERMS 25
473#define ERFC_CONTFRAC_CUTOFF 30.0
474#define ERFC_CONTFRAC_TERMS 50
475
476/*
477 Error function, via power series.
478
479 Given a finite float x, return an approximation to erf(x).
480 Converges reasonably fast for small x.
481*/
482
483static double
484m_erf_series(double x)
485{
Mark Dickinsonbcdf9da2010-06-13 10:52:38 +0000486 double x2, acc, fk, result;
487 int i, saved_errno;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000488
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000489 x2 = x * x;
490 acc = 0.0;
491 fk = (double)ERF_SERIES_TERMS + 0.5;
492 for (i = 0; i < ERF_SERIES_TERMS; i++) {
493 acc = 2.0 + x2 * acc / fk;
494 fk -= 1.0;
495 }
Mark Dickinsonbcdf9da2010-06-13 10:52:38 +0000496 /* Make sure the exp call doesn't affect errno;
497 see m_erfc_contfrac for more. */
498 saved_errno = errno;
499 result = acc * x * exp(-x2) / sqrtpi;
500 errno = saved_errno;
501 return result;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000502}
503
504/*
505 Complementary error function, via continued fraction expansion.
506
507 Given a positive float x, return an approximation to erfc(x). Converges
508 reasonably fast for x large (say, x > 2.0), and should be safe from
509 overflow if x and nterms are not too large. On an IEEE 754 machine, with x
510 <= 30.0, we're safe up to nterms = 100. For x >= 30.0, erfc(x) is smaller
511 than the smallest representable nonzero float. */
512
513static double
514m_erfc_contfrac(double x)
515{
Mark Dickinsonbcdf9da2010-06-13 10:52:38 +0000516 double x2, a, da, p, p_last, q, q_last, b, result;
517 int i, saved_errno;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000518
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000519 if (x >= ERFC_CONTFRAC_CUTOFF)
520 return 0.0;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000521
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000522 x2 = x*x;
523 a = 0.0;
524 da = 0.5;
525 p = 1.0; p_last = 0.0;
526 q = da + x2; q_last = 1.0;
527 for (i = 0; i < ERFC_CONTFRAC_TERMS; i++) {
528 double temp;
529 a += da;
530 da += 2.0;
531 b = da + x2;
532 temp = p; p = b*p - a*p_last; p_last = temp;
533 temp = q; q = b*q - a*q_last; q_last = temp;
534 }
Mark Dickinsonbcdf9da2010-06-13 10:52:38 +0000535 /* Issue #8986: On some platforms, exp sets errno on underflow to zero;
536 save the current errno value so that we can restore it later. */
537 saved_errno = errno;
538 result = p / q * x * exp(-x2) / sqrtpi;
539 errno = saved_errno;
540 return result;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000541}
542
Serhiy Storchaka97553fd2017-03-11 23:37:16 +0200543#endif /* !defined(HAVE_ERF) || !defined(HAVE_ERFC) */
544
Mark Dickinson45f992a2009-12-19 11:20:49 +0000545/* Error function erf(x), for general x */
546
547static double
548m_erf(double x)
549{
Serhiy Storchaka97553fd2017-03-11 23:37:16 +0200550#ifdef HAVE_ERF
551 return erf(x);
552#else
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000553 double absx, cf;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000554
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000555 if (Py_IS_NAN(x))
556 return x;
557 absx = fabs(x);
558 if (absx < ERF_SERIES_CUTOFF)
559 return m_erf_series(x);
560 else {
561 cf = m_erfc_contfrac(absx);
562 return x > 0.0 ? 1.0 - cf : cf - 1.0;
563 }
Serhiy Storchaka97553fd2017-03-11 23:37:16 +0200564#endif
Mark Dickinson45f992a2009-12-19 11:20:49 +0000565}
566
567/* Complementary error function erfc(x), for general x. */
568
569static double
570m_erfc(double x)
571{
Serhiy Storchaka97553fd2017-03-11 23:37:16 +0200572#ifdef HAVE_ERFC
573 return erfc(x);
574#else
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000575 double absx, cf;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000576
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000577 if (Py_IS_NAN(x))
578 return x;
579 absx = fabs(x);
580 if (absx < ERF_SERIES_CUTOFF)
581 return 1.0 - m_erf_series(x);
582 else {
583 cf = m_erfc_contfrac(absx);
584 return x > 0.0 ? cf : 2.0 - cf;
585 }
Serhiy Storchaka97553fd2017-03-11 23:37:16 +0200586#endif
Mark Dickinson45f992a2009-12-19 11:20:49 +0000587}
Mark Dickinson05d2e082009-12-11 20:17:17 +0000588
589/*
Christian Heimese57950f2008-04-21 13:08:03 +0000590 wrapper for atan2 that deals directly with special cases before
591 delegating to the platform libm for the remaining cases. This
592 is necessary to get consistent behaviour across platforms.
593 Windows, FreeBSD and alpha Tru64 are amongst platforms that don't
594 always follow C99.
595*/
596
597static double
598m_atan2(double y, double x)
599{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000600 if (Py_IS_NAN(x) || Py_IS_NAN(y))
601 return Py_NAN;
602 if (Py_IS_INFINITY(y)) {
603 if (Py_IS_INFINITY(x)) {
604 if (copysign(1., x) == 1.)
605 /* atan2(+-inf, +inf) == +-pi/4 */
606 return copysign(0.25*Py_MATH_PI, y);
607 else
608 /* atan2(+-inf, -inf) == +-pi*3/4 */
609 return copysign(0.75*Py_MATH_PI, y);
610 }
611 /* atan2(+-inf, x) == +-pi/2 for finite x */
612 return copysign(0.5*Py_MATH_PI, y);
613 }
614 if (Py_IS_INFINITY(x) || y == 0.) {
615 if (copysign(1., x) == 1.)
616 /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
617 return copysign(0., y);
618 else
619 /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
620 return copysign(Py_MATH_PI, y);
621 }
622 return atan2(y, x);
Christian Heimese57950f2008-04-21 13:08:03 +0000623}
624
Mark Dickinsona0ce3752017-04-05 18:34:27 +0100625
626/* IEEE 754-style remainder operation: x - n*y where n*y is the nearest
627 multiple of y to x, taking n even in the case of a tie. Assuming an IEEE 754
628 binary floating-point format, the result is always exact. */
629
630static double
631m_remainder(double x, double y)
632{
633 /* Deal with most common case first. */
634 if (Py_IS_FINITE(x) && Py_IS_FINITE(y)) {
635 double absx, absy, c, m, r;
636
637 if (y == 0.0) {
638 return Py_NAN;
639 }
640
641 absx = fabs(x);
642 absy = fabs(y);
643 m = fmod(absx, absy);
644
645 /*
646 Warning: some subtlety here. What we *want* to know at this point is
647 whether the remainder m is less than, equal to, or greater than half
648 of absy. However, we can't do that comparison directly because we
649 can't be sure that 0.5*absy is representable (the mutiplication
650 might incur precision loss due to underflow). So instead we compare
651 m with the complement c = absy - m: m < 0.5*absy if and only if m <
652 c, and so on. The catch is that absy - m might also not be
653 representable, but it turns out that it doesn't matter:
654
655 - if m > 0.5*absy then absy - m is exactly representable, by
656 Sterbenz's lemma, so m > c
657 - if m == 0.5*absy then again absy - m is exactly representable
658 and m == c
659 - if m < 0.5*absy then either (i) 0.5*absy is exactly representable,
660 in which case 0.5*absy < absy - m, so 0.5*absy <= c and hence m <
661 c, or (ii) absy is tiny, either subnormal or in the lowest normal
662 binade. Then absy - m is exactly representable and again m < c.
663 */
664
665 c = absy - m;
666 if (m < c) {
667 r = m;
668 }
669 else if (m > c) {
670 r = -c;
671 }
672 else {
673 /*
674 Here absx is exactly halfway between two multiples of absy,
675 and we need to choose the even multiple. x now has the form
676
677 absx = n * absy + m
678
679 for some integer n (recalling that m = 0.5*absy at this point).
680 If n is even we want to return m; if n is odd, we need to
681 return -m.
682
683 So
684
685 0.5 * (absx - m) = (n/2) * absy
686
687 and now reducing modulo absy gives us:
688
689 | m, if n is odd
690 fmod(0.5 * (absx - m), absy) = |
691 | 0, if n is even
692
693 Now m - 2.0 * fmod(...) gives the desired result: m
694 if n is even, -m if m is odd.
695
696 Note that all steps in fmod(0.5 * (absx - m), absy)
697 will be computed exactly, with no rounding error
698 introduced.
699 */
700 assert(m == c);
701 r = m - 2.0 * fmod(0.5 * (absx - m), absy);
702 }
703 return copysign(1.0, x) * r;
704 }
705
706 /* Special values. */
707 if (Py_IS_NAN(x)) {
708 return x;
709 }
710 if (Py_IS_NAN(y)) {
711 return y;
712 }
713 if (Py_IS_INFINITY(x)) {
714 return Py_NAN;
715 }
716 assert(Py_IS_INFINITY(y));
717 return x;
718}
719
720
Christian Heimese57950f2008-04-21 13:08:03 +0000721/*
Mark Dickinsone675f082008-12-11 21:56:00 +0000722 Various platforms (Solaris, OpenBSD) do nonstandard things for log(0),
723 log(-ve), log(NaN). Here are wrappers for log and log10 that deal with
724 special values directly, passing positive non-special values through to
725 the system log/log10.
726 */
727
728static double
729m_log(double x)
730{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000731 if (Py_IS_FINITE(x)) {
732 if (x > 0.0)
733 return log(x);
734 errno = EDOM;
735 if (x == 0.0)
736 return -Py_HUGE_VAL; /* log(0) = -inf */
737 else
738 return Py_NAN; /* log(-ve) = nan */
739 }
740 else if (Py_IS_NAN(x))
741 return x; /* log(nan) = nan */
742 else if (x > 0.0)
743 return x; /* log(inf) = inf */
744 else {
745 errno = EDOM;
746 return Py_NAN; /* log(-inf) = nan */
747 }
Mark Dickinsone675f082008-12-11 21:56:00 +0000748}
749
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200750/*
751 log2: log to base 2.
752
753 Uses an algorithm that should:
Mark Dickinson83b8c0b2011-05-09 08:40:20 +0100754
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200755 (a) produce exact results for powers of 2, and
Mark Dickinson83b8c0b2011-05-09 08:40:20 +0100756 (b) give a monotonic log2 (for positive finite floats),
757 assuming that the system log is monotonic.
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200758*/
759
760static double
761m_log2(double x)
762{
763 if (!Py_IS_FINITE(x)) {
764 if (Py_IS_NAN(x))
765 return x; /* log2(nan) = nan */
766 else if (x > 0.0)
767 return x; /* log2(+inf) = +inf */
768 else {
769 errno = EDOM;
770 return Py_NAN; /* log2(-inf) = nan, invalid-operation */
771 }
772 }
773
774 if (x > 0.0) {
Victor Stinner8f9f8d62011-05-09 12:45:41 +0200775#ifdef HAVE_LOG2
776 return log2(x);
777#else
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200778 double m;
779 int e;
780 m = frexp(x, &e);
781 /* We want log2(m * 2**e) == log(m) / log(2) + e. Care is needed when
782 * x is just greater than 1.0: in that case e is 1, log(m) is negative,
783 * and we get significant cancellation error from the addition of
784 * log(m) / log(2) to e. The slight rewrite of the expression below
785 * avoids this problem.
786 */
787 if (x >= 1.0) {
788 return log(2.0 * m) / log(2.0) + (e - 1);
789 }
790 else {
791 return log(m) / log(2.0) + e;
792 }
Victor Stinner8f9f8d62011-05-09 12:45:41 +0200793#endif
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200794 }
795 else if (x == 0.0) {
796 errno = EDOM;
797 return -Py_HUGE_VAL; /* log2(0) = -inf, divide-by-zero */
798 }
799 else {
800 errno = EDOM;
Mark Dickinson23442582011-05-09 08:05:00 +0100801 return Py_NAN; /* log2(-inf) = nan, invalid-operation */
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200802 }
803}
804
Mark Dickinsone675f082008-12-11 21:56:00 +0000805static double
806m_log10(double x)
807{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000808 if (Py_IS_FINITE(x)) {
809 if (x > 0.0)
810 return log10(x);
811 errno = EDOM;
812 if (x == 0.0)
813 return -Py_HUGE_VAL; /* log10(0) = -inf */
814 else
815 return Py_NAN; /* log10(-ve) = nan */
816 }
817 else if (Py_IS_NAN(x))
818 return x; /* log10(nan) = nan */
819 else if (x > 0.0)
820 return x; /* log10(inf) = inf */
821 else {
822 errno = EDOM;
823 return Py_NAN; /* log10(-inf) = nan */
824 }
Mark Dickinsone675f082008-12-11 21:56:00 +0000825}
826
827
Serhiy Storchakac9ea9332017-01-19 18:13:09 +0200828/*[clinic input]
829math.gcd
Serhiy Storchaka48e47aa2015-05-13 00:19:51 +0300830
Serhiy Storchakac9ea9332017-01-19 18:13:09 +0200831 x as a: object
832 y as b: object
833 /
834
835greatest common divisor of x and y
836[clinic start generated code]*/
837
838static PyObject *
839math_gcd_impl(PyObject *module, PyObject *a, PyObject *b)
840/*[clinic end generated code: output=7b2e0c151bd7a5d8 input=c2691e57fb2a98fa]*/
841{
842 PyObject *g;
Serhiy Storchaka48e47aa2015-05-13 00:19:51 +0300843
844 a = PyNumber_Index(a);
845 if (a == NULL)
846 return NULL;
847 b = PyNumber_Index(b);
848 if (b == NULL) {
849 Py_DECREF(a);
850 return NULL;
851 }
852 g = _PyLong_GCD(a, b);
853 Py_DECREF(a);
854 Py_DECREF(b);
855 return g;
856}
857
Serhiy Storchaka48e47aa2015-05-13 00:19:51 +0300858
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000859/* Call is_error when errno != 0, and where x is the result libm
860 * returned. is_error will usually set up an exception and return
861 * true (1), but may return false (0) without setting up an exception.
862 */
863static int
864is_error(double x)
865{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000866 int result = 1; /* presumption of guilt */
867 assert(errno); /* non-zero errno is a precondition for calling */
868 if (errno == EDOM)
869 PyErr_SetString(PyExc_ValueError, "math domain error");
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000870
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000871 else if (errno == ERANGE) {
872 /* ANSI C generally requires libm functions to set ERANGE
873 * on overflow, but also generally *allows* them to set
874 * ERANGE on underflow too. There's no consistency about
875 * the latter across platforms.
876 * Alas, C99 never requires that errno be set.
877 * Here we suppress the underflow errors (libm functions
878 * should return a zero on underflow, and +- HUGE_VAL on
879 * overflow, so testing the result for zero suffices to
880 * distinguish the cases).
881 *
882 * On some platforms (Ubuntu/ia64) it seems that errno can be
883 * set to ERANGE for subnormal results that do *not* underflow
884 * to zero. So to be safe, we'll ignore ERANGE whenever the
885 * function result is less than one in absolute value.
886 */
887 if (fabs(x) < 1.0)
888 result = 0;
889 else
890 PyErr_SetString(PyExc_OverflowError,
891 "math range error");
892 }
893 else
894 /* Unexpected math error */
895 PyErr_SetFromErrno(PyExc_ValueError);
896 return result;
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000897}
898
Mark Dickinsone675f082008-12-11 21:56:00 +0000899/*
Christian Heimes53876d92008-04-19 00:31:39 +0000900 math_1 is used to wrap a libm function f that takes a double
Serhiy Storchakac9ea9332017-01-19 18:13:09 +0200901 argument and returns a double.
Christian Heimes53876d92008-04-19 00:31:39 +0000902
903 The error reporting follows these rules, which are designed to do
904 the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
905 platforms.
906
907 - a NaN result from non-NaN inputs causes ValueError to be raised
908 - an infinite result from finite inputs causes OverflowError to be
909 raised if can_overflow is 1, or raises ValueError if can_overflow
910 is 0.
911 - if the result is finite and errno == EDOM then ValueError is
912 raised
913 - if the result is finite and nonzero and errno == ERANGE then
914 OverflowError is raised
915
916 The last rule is used to catch overflow on platforms which follow
917 C89 but for which HUGE_VAL is not an infinity.
918
919 For the majority of one-argument functions these rules are enough
920 to ensure that Python's functions behave as specified in 'Annex F'
921 of the C99 standard, with the 'invalid' and 'divide-by-zero'
922 floating-point exceptions mapping to Python's ValueError and the
923 'overflow' floating-point exception mapping to OverflowError.
924 math_1 only works for functions that don't have singularities *and*
925 the possibility of overflow; fortunately, that covers everything we
926 care about right now.
927*/
928
Barry Warsaw8b43b191996-12-09 22:32:36 +0000929static PyObject *
Jeffrey Yasskinc2155832008-01-05 20:03:11 +0000930math_1_to_whatever(PyObject *arg, double (*func) (double),
Christian Heimes53876d92008-04-19 00:31:39 +0000931 PyObject *(*from_double_func) (double),
932 int can_overflow)
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000933{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000934 double x, r;
935 x = PyFloat_AsDouble(arg);
936 if (x == -1.0 && PyErr_Occurred())
937 return NULL;
938 errno = 0;
939 PyFPE_START_PROTECT("in math_1", return 0);
940 r = (*func)(x);
941 PyFPE_END_PROTECT(r);
942 if (Py_IS_NAN(r) && !Py_IS_NAN(x)) {
943 PyErr_SetString(PyExc_ValueError,
944 "math domain error"); /* invalid arg */
945 return NULL;
946 }
947 if (Py_IS_INFINITY(r) && Py_IS_FINITE(x)) {
Benjamin Peterson2354a752012-03-13 16:13:09 -0500948 if (can_overflow)
949 PyErr_SetString(PyExc_OverflowError,
950 "math range error"); /* overflow */
951 else
952 PyErr_SetString(PyExc_ValueError,
953 "math domain error"); /* singularity */
954 return NULL;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000955 }
956 if (Py_IS_FINITE(r) && errno && is_error(r))
957 /* this branch unnecessary on most platforms */
958 return NULL;
Mark Dickinsonde429622008-05-01 00:19:23 +0000959
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000960 return (*from_double_func)(r);
Christian Heimes53876d92008-04-19 00:31:39 +0000961}
962
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000963/* variant of math_1, to be used when the function being wrapped is known to
964 set errno properly (that is, errno = EDOM for invalid or divide-by-zero,
965 errno = ERANGE for overflow). */
966
967static PyObject *
968math_1a(PyObject *arg, double (*func) (double))
969{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000970 double x, r;
971 x = PyFloat_AsDouble(arg);
972 if (x == -1.0 && PyErr_Occurred())
973 return NULL;
974 errno = 0;
975 PyFPE_START_PROTECT("in math_1a", return 0);
976 r = (*func)(x);
977 PyFPE_END_PROTECT(r);
978 if (errno && is_error(r))
979 return NULL;
980 return PyFloat_FromDouble(r);
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000981}
982
Christian Heimes53876d92008-04-19 00:31:39 +0000983/*
984 math_2 is used to wrap a libm function f that takes two double
985 arguments and returns a double.
986
987 The error reporting follows these rules, which are designed to do
988 the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
989 platforms.
990
991 - a NaN result from non-NaN inputs causes ValueError to be raised
992 - an infinite result from finite inputs causes OverflowError to be
993 raised.
994 - if the result is finite and errno == EDOM then ValueError is
995 raised
996 - if the result is finite and nonzero and errno == ERANGE then
997 OverflowError is raised
998
999 The last rule is used to catch overflow on platforms which follow
1000 C89 but for which HUGE_VAL is not an infinity.
1001
1002 For most two-argument functions (copysign, fmod, hypot, atan2)
1003 these rules are enough to ensure that Python's functions behave as
1004 specified in 'Annex F' of the C99 standard, with the 'invalid' and
1005 'divide-by-zero' floating-point exceptions mapping to Python's
1006 ValueError and the 'overflow' floating-point exception mapping to
1007 OverflowError.
1008*/
1009
1010static PyObject *
1011math_1(PyObject *arg, double (*func) (double), int can_overflow)
1012{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001013 return math_1_to_whatever(arg, func, PyFloat_FromDouble, can_overflow);
Jeffrey Yasskinc2155832008-01-05 20:03:11 +00001014}
1015
1016static PyObject *
Christian Heimes53876d92008-04-19 00:31:39 +00001017math_1_to_int(PyObject *arg, double (*func) (double), int can_overflow)
Jeffrey Yasskinc2155832008-01-05 20:03:11 +00001018{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001019 return math_1_to_whatever(arg, func, PyLong_FromDouble, can_overflow);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001020}
1021
Barry Warsaw8b43b191996-12-09 22:32:36 +00001022static PyObject *
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02001023math_2(PyObject *const *args, Py_ssize_t nargs,
1024 double (*func) (double, double), const char *funcname)
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001025{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001026 double x, y, r;
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02001027 if (!_PyArg_CheckPositional(funcname, nargs, 2, 2))
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001028 return NULL;
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02001029 x = PyFloat_AsDouble(args[0]);
Mark Dickinsone634a8a2020-03-14 11:38:52 +00001030 if (x == -1.0 && PyErr_Occurred()) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001031 return NULL;
Mark Dickinsone634a8a2020-03-14 11:38:52 +00001032 }
1033 y = PyFloat_AsDouble(args[1]);
1034 if (y == -1.0 && PyErr_Occurred()) {
1035 return NULL;
1036 }
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001037 errno = 0;
1038 PyFPE_START_PROTECT("in math_2", return 0);
1039 r = (*func)(x, y);
1040 PyFPE_END_PROTECT(r);
1041 if (Py_IS_NAN(r)) {
1042 if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
1043 errno = EDOM;
1044 else
1045 errno = 0;
1046 }
1047 else if (Py_IS_INFINITY(r)) {
1048 if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
1049 errno = ERANGE;
1050 else
1051 errno = 0;
1052 }
1053 if (errno && is_error(r))
1054 return NULL;
1055 else
1056 return PyFloat_FromDouble(r);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001057}
1058
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001059#define FUNC1(funcname, func, can_overflow, docstring) \
1060 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
1061 return math_1(args, func, can_overflow); \
1062 }\
1063 PyDoc_STRVAR(math_##funcname##_doc, docstring);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001064
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001065#define FUNC1A(funcname, func, docstring) \
1066 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
1067 return math_1a(args, func); \
1068 }\
1069 PyDoc_STRVAR(math_##funcname##_doc, docstring);
Mark Dickinson12c4bdb2009-09-28 19:21:11 +00001070
Fred Drake40c48682000-07-03 18:11:56 +00001071#define FUNC2(funcname, func, docstring) \
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02001072 static PyObject * math_##funcname(PyObject *self, PyObject *const *args, Py_ssize_t nargs) { \
1073 return math_2(args, nargs, func, #funcname); \
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001074 }\
1075 PyDoc_STRVAR(math_##funcname##_doc, docstring);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001076
Christian Heimes53876d92008-04-19 00:31:39 +00001077FUNC1(acos, acos, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001078 "acos($module, x, /)\n--\n\n"
1079 "Return the arc cosine (measured in radians) of x.")
Mark Dickinsonf3718592009-12-21 15:27:41 +00001080FUNC1(acosh, m_acosh, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001081 "acosh($module, x, /)\n--\n\n"
1082 "Return the inverse hyperbolic cosine of x.")
Christian Heimes53876d92008-04-19 00:31:39 +00001083FUNC1(asin, asin, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001084 "asin($module, x, /)\n--\n\n"
1085 "Return the arc sine (measured in radians) of x.")
Mark Dickinsonf3718592009-12-21 15:27:41 +00001086FUNC1(asinh, m_asinh, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001087 "asinh($module, x, /)\n--\n\n"
1088 "Return the inverse hyperbolic sine of x.")
Christian Heimes53876d92008-04-19 00:31:39 +00001089FUNC1(atan, atan, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001090 "atan($module, x, /)\n--\n\n"
1091 "Return the arc tangent (measured in radians) of x.")
Christian Heimese57950f2008-04-21 13:08:03 +00001092FUNC2(atan2, m_atan2,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001093 "atan2($module, y, x, /)\n--\n\n"
1094 "Return the arc tangent (measured in radians) of y/x.\n\n"
Tim Petersfe71f812001-08-07 22:10:00 +00001095 "Unlike atan(y/x), the signs of both x and y are considered.")
Mark Dickinsonf3718592009-12-21 15:27:41 +00001096FUNC1(atanh, m_atanh, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001097 "atanh($module, x, /)\n--\n\n"
1098 "Return the inverse hyperbolic tangent of x.")
Guido van Rossum13e05de2007-08-23 22:56:55 +00001099
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001100/*[clinic input]
1101math.ceil
1102
1103 x as number: object
1104 /
1105
1106Return the ceiling of x as an Integral.
1107
1108This is the smallest integer >= x.
1109[clinic start generated code]*/
1110
1111static PyObject *
1112math_ceil(PyObject *module, PyObject *number)
1113/*[clinic end generated code: output=6c3b8a78bc201c67 input=2725352806399cab]*/
1114{
Benjamin Petersonce798522012-01-22 11:24:29 -05001115 _Py_IDENTIFIER(__ceil__);
Mark Dickinson6d02d9c2010-07-02 16:05:15 +00001116 PyObject *method, *result;
Guido van Rossum13e05de2007-08-23 22:56:55 +00001117
Benjamin Petersonce798522012-01-22 11:24:29 -05001118 method = _PyObject_LookupSpecial(number, &PyId___ceil__);
Benjamin Petersonf751bc92010-07-02 13:46:42 +00001119 if (method == NULL) {
1120 if (PyErr_Occurred())
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001121 return NULL;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001122 return math_1_to_int(number, ceil, 0);
Benjamin Petersonf751bc92010-07-02 13:46:42 +00001123 }
Victor Stinnerf17c3de2016-12-06 18:46:19 +01001124 result = _PyObject_CallNoArg(method);
Mark Dickinson6d02d9c2010-07-02 16:05:15 +00001125 Py_DECREF(method);
1126 return result;
Guido van Rossum13e05de2007-08-23 22:56:55 +00001127}
1128
Christian Heimes072c0f12008-01-03 23:01:04 +00001129FUNC2(copysign, copysign,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001130 "copysign($module, x, y, /)\n--\n\n"
1131 "Return a float with the magnitude (absolute value) of x but the sign of y.\n\n"
1132 "On platforms that support signed zeros, copysign(1.0, -0.0)\n"
1133 "returns -1.0.\n")
Christian Heimes53876d92008-04-19 00:31:39 +00001134FUNC1(cos, cos, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001135 "cos($module, x, /)\n--\n\n"
1136 "Return the cosine of x (measured in radians).")
Christian Heimes53876d92008-04-19 00:31:39 +00001137FUNC1(cosh, cosh, 1,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001138 "cosh($module, x, /)\n--\n\n"
1139 "Return the hyperbolic cosine of x.")
Mark Dickinson45f992a2009-12-19 11:20:49 +00001140FUNC1A(erf, m_erf,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001141 "erf($module, x, /)\n--\n\n"
1142 "Error function at x.")
Mark Dickinson45f992a2009-12-19 11:20:49 +00001143FUNC1A(erfc, m_erfc,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001144 "erfc($module, x, /)\n--\n\n"
1145 "Complementary error function at x.")
Christian Heimes53876d92008-04-19 00:31:39 +00001146FUNC1(exp, exp, 1,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001147 "exp($module, x, /)\n--\n\n"
1148 "Return e raised to the power of x.")
Mark Dickinson664b5112009-12-16 20:23:42 +00001149FUNC1(expm1, m_expm1, 1,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001150 "expm1($module, x, /)\n--\n\n"
1151 "Return exp(x)-1.\n\n"
Mark Dickinson664b5112009-12-16 20:23:42 +00001152 "This function avoids the loss of precision involved in the direct "
1153 "evaluation of exp(x)-1 for small x.")
Christian Heimes53876d92008-04-19 00:31:39 +00001154FUNC1(fabs, fabs, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001155 "fabs($module, x, /)\n--\n\n"
1156 "Return the absolute value of the float x.")
Guido van Rossum13e05de2007-08-23 22:56:55 +00001157
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001158/*[clinic input]
1159math.floor
1160
1161 x as number: object
1162 /
1163
1164Return the floor of x as an Integral.
1165
1166This is the largest integer <= x.
1167[clinic start generated code]*/
1168
1169static PyObject *
1170math_floor(PyObject *module, PyObject *number)
1171/*[clinic end generated code: output=c6a65c4884884b8a input=63af6b5d7ebcc3d6]*/
1172{
Benjamin Petersonce798522012-01-22 11:24:29 -05001173 _Py_IDENTIFIER(__floor__);
Benjamin Petersonb0125892010-07-02 13:35:17 +00001174 PyObject *method, *result;
Guido van Rossum13e05de2007-08-23 22:56:55 +00001175
Benjamin Petersonce798522012-01-22 11:24:29 -05001176 method = _PyObject_LookupSpecial(number, &PyId___floor__);
Benjamin Peterson8bb9cde2010-07-01 15:16:55 +00001177 if (method == NULL) {
1178 if (PyErr_Occurred())
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001179 return NULL;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001180 return math_1_to_int(number, floor, 0);
Benjamin Peterson8bb9cde2010-07-01 15:16:55 +00001181 }
Victor Stinnerf17c3de2016-12-06 18:46:19 +01001182 result = _PyObject_CallNoArg(method);
Benjamin Petersonb0125892010-07-02 13:35:17 +00001183 Py_DECREF(method);
1184 return result;
Guido van Rossum13e05de2007-08-23 22:56:55 +00001185}
1186
Mark Dickinson12c4bdb2009-09-28 19:21:11 +00001187FUNC1A(gamma, m_tgamma,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001188 "gamma($module, x, /)\n--\n\n"
1189 "Gamma function at x.")
Mark Dickinson05d2e082009-12-11 20:17:17 +00001190FUNC1A(lgamma, m_lgamma,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001191 "lgamma($module, x, /)\n--\n\n"
1192 "Natural logarithm of absolute value of Gamma function at x.")
Mark Dickinsonbe64d952010-07-07 16:21:29 +00001193FUNC1(log1p, m_log1p, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001194 "log1p($module, x, /)\n--\n\n"
1195 "Return the natural logarithm of 1+x (base e).\n\n"
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001196 "The result is computed in a way which is accurate for x near zero.")
Mark Dickinsona0ce3752017-04-05 18:34:27 +01001197FUNC2(remainder, m_remainder,
1198 "remainder($module, x, y, /)\n--\n\n"
1199 "Difference between x and the closest integer multiple of y.\n\n"
1200 "Return x - n*y where n*y is the closest integer multiple of y.\n"
1201 "In the case where x is exactly halfway between two multiples of\n"
1202 "y, the nearest even value of n is used. The result is always exact.")
Christian Heimes53876d92008-04-19 00:31:39 +00001203FUNC1(sin, sin, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001204 "sin($module, x, /)\n--\n\n"
1205 "Return the sine of x (measured in radians).")
Christian Heimes53876d92008-04-19 00:31:39 +00001206FUNC1(sinh, sinh, 1,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001207 "sinh($module, x, /)\n--\n\n"
1208 "Return the hyperbolic sine of x.")
Christian Heimes53876d92008-04-19 00:31:39 +00001209FUNC1(sqrt, sqrt, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001210 "sqrt($module, x, /)\n--\n\n"
1211 "Return the square root of x.")
Christian Heimes53876d92008-04-19 00:31:39 +00001212FUNC1(tan, tan, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001213 "tan($module, x, /)\n--\n\n"
1214 "Return the tangent of x (measured in radians).")
Christian Heimes53876d92008-04-19 00:31:39 +00001215FUNC1(tanh, tanh, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001216 "tanh($module, x, /)\n--\n\n"
1217 "Return the hyperbolic tangent of x.")
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001218
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001219/* Precision summation function as msum() by Raymond Hettinger in
1220 <http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>,
1221 enhanced with the exact partials sum and roundoff from Mark
1222 Dickinson's post at <http://bugs.python.org/file10357/msum4.py>.
1223 See those links for more details, proofs and other references.
1224
1225 Note 1: IEEE 754R floating point semantics are assumed,
1226 but the current implementation does not re-establish special
1227 value semantics across iterations (i.e. handling -Inf + Inf).
1228
1229 Note 2: No provision is made for intermediate overflow handling;
Georg Brandlf78e02b2008-06-10 17:40:04 +00001230 therefore, sum([1e+308, 1e-308, 1e+308]) returns 1e+308 while
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001231 sum([1e+308, 1e+308, 1e-308]) raises an OverflowError due to the
1232 overflow of the first partial sum.
1233
Benjamin Petersonfea6a942008-07-02 16:11:42 +00001234 Note 3: The intermediate values lo, yr, and hi are declared volatile so
1235 aggressive compilers won't algebraically reduce lo to always be exactly 0.0.
Georg Brandlf78e02b2008-06-10 17:40:04 +00001236 Also, the volatile declaration forces the values to be stored in memory as
1237 regular doubles instead of extended long precision (80-bit) values. This
Benjamin Petersonfea6a942008-07-02 16:11:42 +00001238 prevents double rounding because any addition or subtraction of two doubles
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001239 can be resolved exactly into double-sized hi and lo values. As long as the
Georg Brandlf78e02b2008-06-10 17:40:04 +00001240 hi value gets forced into a double before yr and lo are computed, the extra
1241 bits in downstream extended precision operations (x87 for example) will be
1242 exactly zero and therefore can be losslessly stored back into a double,
1243 thereby preventing double rounding.
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001244
1245 Note 4: A similar implementation is in Modules/cmathmodule.c.
1246 Be sure to update both when making changes.
1247
Serhiy Storchakaa60c2fe2015-03-12 21:56:08 +02001248 Note 5: The signature of math.fsum() differs from builtins.sum()
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001249 because the start argument doesn't make sense in the context of
1250 accurate summation. Since the partials table is collapsed before
1251 returning a result, sum(seq2, start=sum(seq1)) may not equal the
1252 accurate result returned by sum(itertools.chain(seq1, seq2)).
1253*/
1254
1255#define NUM_PARTIALS 32 /* initial partials array size, on stack */
1256
1257/* Extend the partials array p[] by doubling its size. */
1258static int /* non-zero on error */
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001259_fsum_realloc(double **p_ptr, Py_ssize_t n,
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001260 double *ps, Py_ssize_t *m_ptr)
1261{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001262 void *v = NULL;
1263 Py_ssize_t m = *m_ptr;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001264
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001265 m += m; /* double */
Victor Stinner049e5092014-08-17 22:20:00 +02001266 if (n < m && (size_t)m < ((size_t)PY_SSIZE_T_MAX / sizeof(double))) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001267 double *p = *p_ptr;
1268 if (p == ps) {
1269 v = PyMem_Malloc(sizeof(double) * m);
1270 if (v != NULL)
1271 memcpy(v, ps, sizeof(double) * n);
1272 }
1273 else
1274 v = PyMem_Realloc(p, sizeof(double) * m);
1275 }
1276 if (v == NULL) { /* size overflow or no memory */
1277 PyErr_SetString(PyExc_MemoryError, "math.fsum partials");
1278 return 1;
1279 }
1280 *p_ptr = (double*) v;
1281 *m_ptr = m;
1282 return 0;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001283}
1284
1285/* Full precision summation of a sequence of floats.
1286
1287 def msum(iterable):
1288 partials = [] # sorted, non-overlapping partial sums
1289 for x in iterable:
Mark Dickinsonfdb0acc2010-06-25 20:22:24 +00001290 i = 0
1291 for y in partials:
1292 if abs(x) < abs(y):
1293 x, y = y, x
1294 hi = x + y
1295 lo = y - (hi - x)
1296 if lo:
1297 partials[i] = lo
1298 i += 1
1299 x = hi
1300 partials[i:] = [x]
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001301 return sum_exact(partials)
1302
1303 Rounded x+y stored in hi with the roundoff stored in lo. Together hi+lo
1304 are exactly equal to x+y. The inner loop applies hi/lo summation to each
1305 partial so that the list of partial sums remains exact.
1306
1307 Sum_exact() adds the partial sums exactly and correctly rounds the final
1308 result (using the round-half-to-even rule). The items in partials remain
1309 non-zero, non-special, non-overlapping and strictly increasing in
1310 magnitude, but possibly not all having the same sign.
1311
1312 Depends on IEEE 754 arithmetic guarantees and half-even rounding.
1313*/
1314
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001315/*[clinic input]
1316math.fsum
1317
1318 seq: object
1319 /
1320
1321Return an accurate floating point sum of values in the iterable seq.
1322
1323Assumes IEEE-754 floating point arithmetic.
1324[clinic start generated code]*/
1325
1326static PyObject *
1327math_fsum(PyObject *module, PyObject *seq)
1328/*[clinic end generated code: output=ba5c672b87fe34fc input=c51b7d8caf6f6e82]*/
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001329{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001330 PyObject *item, *iter, *sum = NULL;
1331 Py_ssize_t i, j, n = 0, m = NUM_PARTIALS;
1332 double x, y, t, ps[NUM_PARTIALS], *p = ps;
1333 double xsave, special_sum = 0.0, inf_sum = 0.0;
1334 volatile double hi, yr, lo;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001335
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001336 iter = PyObject_GetIter(seq);
1337 if (iter == NULL)
1338 return NULL;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001339
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001340 PyFPE_START_PROTECT("fsum", Py_DECREF(iter); return NULL)
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001341
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001342 for(;;) { /* for x in iterable */
1343 assert(0 <= n && n <= m);
1344 assert((m == NUM_PARTIALS && p == ps) ||
1345 (m > NUM_PARTIALS && p != NULL));
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001346
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001347 item = PyIter_Next(iter);
1348 if (item == NULL) {
1349 if (PyErr_Occurred())
1350 goto _fsum_error;
1351 break;
1352 }
Raymond Hettingercfd735e2019-01-29 20:39:53 -08001353 ASSIGN_DOUBLE(x, item, error_with_item);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001354 Py_DECREF(item);
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001355
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001356 xsave = x;
1357 for (i = j = 0; j < n; j++) { /* for y in partials */
1358 y = p[j];
1359 if (fabs(x) < fabs(y)) {
1360 t = x; x = y; y = t;
1361 }
1362 hi = x + y;
1363 yr = hi - x;
1364 lo = y - yr;
1365 if (lo != 0.0)
1366 p[i++] = lo;
1367 x = hi;
1368 }
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001369
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001370 n = i; /* ps[i:] = [x] */
1371 if (x != 0.0) {
1372 if (! Py_IS_FINITE(x)) {
1373 /* a nonfinite x could arise either as
1374 a result of intermediate overflow, or
1375 as a result of a nan or inf in the
1376 summands */
1377 if (Py_IS_FINITE(xsave)) {
1378 PyErr_SetString(PyExc_OverflowError,
1379 "intermediate overflow in fsum");
1380 goto _fsum_error;
1381 }
1382 if (Py_IS_INFINITY(xsave))
1383 inf_sum += xsave;
1384 special_sum += xsave;
1385 /* reset partials */
1386 n = 0;
1387 }
1388 else if (n >= m && _fsum_realloc(&p, n, ps, &m))
1389 goto _fsum_error;
1390 else
1391 p[n++] = x;
1392 }
1393 }
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001394
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001395 if (special_sum != 0.0) {
1396 if (Py_IS_NAN(inf_sum))
1397 PyErr_SetString(PyExc_ValueError,
1398 "-inf + inf in fsum");
1399 else
1400 sum = PyFloat_FromDouble(special_sum);
1401 goto _fsum_error;
1402 }
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001403
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001404 hi = 0.0;
1405 if (n > 0) {
1406 hi = p[--n];
1407 /* sum_exact(ps, hi) from the top, stop when the sum becomes
1408 inexact. */
1409 while (n > 0) {
1410 x = hi;
1411 y = p[--n];
1412 assert(fabs(y) < fabs(x));
1413 hi = x + y;
1414 yr = hi - x;
1415 lo = y - yr;
1416 if (lo != 0.0)
1417 break;
1418 }
1419 /* Make half-even rounding work across multiple partials.
1420 Needed so that sum([1e-16, 1, 1e16]) will round-up the last
1421 digit to two instead of down to zero (the 1e-16 makes the 1
1422 slightly closer to two). With a potential 1 ULP rounding
1423 error fixed-up, math.fsum() can guarantee commutativity. */
1424 if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) ||
1425 (lo > 0.0 && p[n-1] > 0.0))) {
1426 y = lo * 2.0;
1427 x = hi + y;
1428 yr = x - hi;
1429 if (y == yr)
1430 hi = x;
1431 }
1432 }
1433 sum = PyFloat_FromDouble(hi);
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001434
Raymond Hettingercfd735e2019-01-29 20:39:53 -08001435 _fsum_error:
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001436 PyFPE_END_PROTECT(hi)
1437 Py_DECREF(iter);
1438 if (p != ps)
1439 PyMem_Free(p);
1440 return sum;
Raymond Hettingercfd735e2019-01-29 20:39:53 -08001441
1442 error_with_item:
1443 Py_DECREF(item);
1444 goto _fsum_error;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001445}
1446
1447#undef NUM_PARTIALS
1448
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001449
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001450/* Return the smallest integer k such that n < 2**k, or 0 if n == 0.
1451 * Equivalent to floor(lg(x))+1. Also equivalent to: bitwidth_of_type -
1452 * count_leading_zero_bits(x)
1453 */
1454
1455/* XXX: This routine does more or less the same thing as
1456 * bits_in_digit() in Objects/longobject.c. Someday it would be nice to
1457 * consolidate them. On BSD, there's a library function called fls()
1458 * that we could use, and GCC provides __builtin_clz().
1459 */
1460
1461static unsigned long
1462bit_length(unsigned long n)
1463{
1464 unsigned long len = 0;
1465 while (n != 0) {
1466 ++len;
1467 n >>= 1;
1468 }
1469 return len;
1470}
1471
1472static unsigned long
1473count_set_bits(unsigned long n)
1474{
1475 unsigned long count = 0;
1476 while (n != 0) {
1477 ++count;
1478 n &= n - 1; /* clear least significant bit */
1479 }
1480 return count;
1481}
1482
Mark Dickinson73934b92019-05-18 12:29:50 +01001483/* Integer square root
1484
1485Given a nonnegative integer `n`, we want to compute the largest integer
1486`a` for which `a * a <= n`, or equivalently the integer part of the exact
1487square root of `n`.
1488
1489We use an adaptive-precision pure-integer version of Newton's iteration. Given
1490a positive integer `n`, the algorithm produces at each iteration an integer
1491approximation `a` to the square root of `n >> s` for some even integer `s`,
1492with `s` decreasing as the iterations progress. On the final iteration, `s` is
1493zero and we have an approximation to the square root of `n` itself.
1494
1495At every step, the approximation `a` is strictly within 1.0 of the true square
1496root, so we have
1497
1498 (a - 1)**2 < (n >> s) < (a + 1)**2
1499
1500After the final iteration, a check-and-correct step is needed to determine
1501whether `a` or `a - 1` gives the desired integer square root of `n`.
1502
1503The algorithm is remarkable in its simplicity. There's no need for a
1504per-iteration check-and-correct step, and termination is straightforward: the
1505number of iterations is known in advance (it's exactly `floor(log2(log2(n)))`
1506for `n > 1`). The only tricky part of the correctness proof is in establishing
1507that the bound `(a - 1)**2 < (n >> s) < (a + 1)**2` is maintained from one
1508iteration to the next. A sketch of the proof of this is given below.
1509
1510In addition to the proof sketch, a formal, computer-verified proof
1511of correctness (using Lean) of an equivalent recursive algorithm can be found
1512here:
1513
1514 https://github.com/mdickinson/snippets/blob/master/proofs/isqrt/src/isqrt.lean
1515
1516
1517Here's Python code equivalent to the C implementation below:
1518
1519 def isqrt(n):
1520 """
1521 Return the integer part of the square root of the input.
1522 """
1523 n = operator.index(n)
1524
1525 if n < 0:
1526 raise ValueError("isqrt() argument must be nonnegative")
1527 if n == 0:
1528 return 0
1529
1530 c = (n.bit_length() - 1) // 2
1531 a = 1
1532 d = 0
1533 for s in reversed(range(c.bit_length())):
Miss Islington (bot)3f3efed2019-06-16 10:14:02 -07001534 # Loop invariant: (a-1)**2 < (n >> 2*(c - d)) < (a+1)**2
Mark Dickinson73934b92019-05-18 12:29:50 +01001535 e = d
1536 d = c >> s
1537 a = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a
Mark Dickinson73934b92019-05-18 12:29:50 +01001538
1539 return a - (a*a > n)
1540
1541
1542Sketch of proof of correctness
1543------------------------------
1544
1545The delicate part of the correctness proof is showing that the loop invariant
1546is preserved from one iteration to the next. That is, just before the line
1547
1548 a = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a
1549
1550is executed in the above code, we know that
1551
1552 (1) (a - 1)**2 < (n >> 2*(c - e)) < (a + 1)**2.
1553
1554(since `e` is always the value of `d` from the previous iteration). We must
1555prove that after that line is executed, we have
1556
1557 (a - 1)**2 < (n >> 2*(c - d)) < (a + 1)**2
1558
Miss Islington (bot)4bc6bb92019-07-05 15:00:43 -07001559To facilitate the proof, we make some changes of notation. Write `m` for
Mark Dickinson73934b92019-05-18 12:29:50 +01001560`n >> 2*(c-d)`, and write `b` for the new value of `a`, so
1561
1562 b = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a
1563
1564or equivalently:
1565
1566 (2) b = (a << d - e - 1) + (m >> d - e + 1) // a
1567
1568Then we can rewrite (1) as:
1569
1570 (3) (a - 1)**2 < (m >> 2*(d - e)) < (a + 1)**2
1571
1572and we must show that (b - 1)**2 < m < (b + 1)**2.
1573
1574From this point on, we switch to mathematical notation, so `/` means exact
1575division rather than integer division and `^` is used for exponentiation. We
1576use the `√` symbol for the exact square root. In (3), we can remove the
1577implicit floor operation to give:
1578
1579 (4) (a - 1)^2 < m / 4^(d - e) < (a + 1)^2
1580
1581Taking square roots throughout (4), scaling by `2^(d-e)`, and rearranging gives
1582
1583 (5) 0 <= | 2^(d-e)a - √m | < 2^(d-e)
1584
1585Squaring and dividing through by `2^(d-e+1) a` gives
1586
1587 (6) 0 <= 2^(d-e-1) a + m / (2^(d-e+1) a) - √m < 2^(d-e-1) / a
1588
1589We'll show below that `2^(d-e-1) <= a`. Given that, we can replace the
1590right-hand side of (6) with `1`, and now replacing the central
1591term `m / (2^(d-e+1) a)` with its floor in (6) gives
1592
1593 (7) -1 < 2^(d-e-1) a + m // 2^(d-e+1) a - √m < 1
1594
1595Or equivalently, from (2):
1596
1597 (7) -1 < b - √m < 1
1598
1599and rearranging gives that `(b-1)^2 < m < (b+1)^2`, which is what we needed
1600to prove.
1601
1602We're not quite done: we still have to prove the inequality `2^(d - e - 1) <=
1603a` that was used to get line (7) above. From the definition of `c`, we have
1604`4^c <= n`, which implies
1605
1606 (8) 4^d <= m
1607
1608also, since `e == d >> 1`, `d` is at most `2e + 1`, from which it follows
1609that `2d - 2e - 1 <= d` and hence that
1610
1611 (9) 4^(2d - 2e - 1) <= m
1612
1613Dividing both sides by `4^(d - e)` gives
1614
1615 (10) 4^(d - e - 1) <= m / 4^(d - e)
1616
1617But we know from (4) that `m / 4^(d-e) < (a + 1)^2`, hence
1618
1619 (11) 4^(d - e - 1) < (a + 1)^2
1620
1621Now taking square roots of both sides and observing that both `2^(d-e-1)` and
1622`a` are integers gives `2^(d - e - 1) <= a`, which is what we needed. This
1623completes the proof sketch.
1624
1625*/
1626
Mark Dickinson5c08ce92019-05-19 17:51:56 +01001627
1628/* Approximate square root of a large 64-bit integer.
1629
1630 Given `n` satisfying `2**62 <= n < 2**64`, return `a`
1631 satisfying `(a - 1)**2 < n < (a + 1)**2`. */
1632
1633static uint64_t
1634_approximate_isqrt(uint64_t n)
1635{
1636 uint32_t u = 1U + (n >> 62);
1637 u = (u << 1) + (n >> 59) / u;
1638 u = (u << 3) + (n >> 53) / u;
1639 u = (u << 7) + (n >> 41) / u;
1640 return (u << 15) + (n >> 17) / u;
1641}
1642
Mark Dickinson73934b92019-05-18 12:29:50 +01001643/*[clinic input]
1644math.isqrt
1645
1646 n: object
1647 /
1648
1649Return the integer part of the square root of the input.
1650[clinic start generated code]*/
1651
1652static PyObject *
1653math_isqrt(PyObject *module, PyObject *n)
1654/*[clinic end generated code: output=35a6f7f980beab26 input=5b6e7ae4fa6c43d6]*/
1655{
Mark Dickinson5c08ce92019-05-19 17:51:56 +01001656 int a_too_large, c_bit_length;
Mark Dickinson73934b92019-05-18 12:29:50 +01001657 size_t c, d;
Mark Dickinson5c08ce92019-05-19 17:51:56 +01001658 uint64_t m, u;
Mark Dickinson73934b92019-05-18 12:29:50 +01001659 PyObject *a = NULL, *b;
1660
1661 n = PyNumber_Index(n);
1662 if (n == NULL) {
1663 return NULL;
1664 }
1665
1666 if (_PyLong_Sign(n) < 0) {
1667 PyErr_SetString(
1668 PyExc_ValueError,
1669 "isqrt() argument must be nonnegative");
1670 goto error;
1671 }
1672 if (_PyLong_Sign(n) == 0) {
1673 Py_DECREF(n);
1674 return PyLong_FromLong(0);
1675 }
1676
Mark Dickinson5c08ce92019-05-19 17:51:56 +01001677 /* c = (n.bit_length() - 1) // 2 */
Mark Dickinson73934b92019-05-18 12:29:50 +01001678 c = _PyLong_NumBits(n);
1679 if (c == (size_t)(-1)) {
1680 goto error;
1681 }
1682 c = (c - 1U) / 2U;
1683
Mark Dickinson5c08ce92019-05-19 17:51:56 +01001684 /* Fast path: if c <= 31 then n < 2**64 and we can compute directly with a
1685 fast, almost branch-free algorithm. In the final correction, we use `u*u
1686 - 1 >= m` instead of the simpler `u*u > m` in order to get the correct
1687 result in the corner case where `u=2**32`. */
1688 if (c <= 31U) {
1689 m = (uint64_t)PyLong_AsUnsignedLongLong(n);
1690 Py_DECREF(n);
1691 if (m == (uint64_t)(-1) && PyErr_Occurred()) {
1692 return NULL;
1693 }
1694 u = _approximate_isqrt(m << (62U - 2U*c)) >> (31U - c);
1695 u -= u * u - 1U >= m;
1696 return PyLong_FromUnsignedLongLong((unsigned long long)u);
Mark Dickinson73934b92019-05-18 12:29:50 +01001697 }
1698
Mark Dickinson5c08ce92019-05-19 17:51:56 +01001699 /* Slow path: n >= 2**64. We perform the first five iterations in C integer
1700 arithmetic, then switch to using Python long integers. */
1701
1702 /* From n >= 2**64 it follows that c.bit_length() >= 6. */
1703 c_bit_length = 6;
1704 while ((c >> c_bit_length) > 0U) {
1705 ++c_bit_length;
1706 }
1707
1708 /* Initialise d and a. */
1709 d = c >> (c_bit_length - 5);
1710 b = _PyLong_Rshift(n, 2U*c - 62U);
1711 if (b == NULL) {
1712 goto error;
1713 }
1714 m = (uint64_t)PyLong_AsUnsignedLongLong(b);
1715 Py_DECREF(b);
1716 if (m == (uint64_t)(-1) && PyErr_Occurred()) {
1717 goto error;
1718 }
1719 u = _approximate_isqrt(m) >> (31U - d);
1720 a = PyLong_FromUnsignedLongLong((unsigned long long)u);
Mark Dickinson73934b92019-05-18 12:29:50 +01001721 if (a == NULL) {
1722 goto error;
1723 }
Mark Dickinson5c08ce92019-05-19 17:51:56 +01001724
1725 for (int s = c_bit_length - 6; s >= 0; --s) {
Serhiy Storchakaa5119e72019-05-19 14:14:38 +03001726 PyObject *q;
Mark Dickinson73934b92019-05-18 12:29:50 +01001727 size_t e = d;
1728
1729 d = c >> s;
1730
1731 /* q = (n >> 2*c - e - d + 1) // a */
Serhiy Storchakaa5119e72019-05-19 14:14:38 +03001732 q = _PyLong_Rshift(n, 2U*c - d - e + 1U);
Mark Dickinson73934b92019-05-18 12:29:50 +01001733 if (q == NULL) {
1734 goto error;
1735 }
1736 Py_SETREF(q, PyNumber_FloorDivide(q, a));
1737 if (q == NULL) {
1738 goto error;
1739 }
1740
1741 /* a = (a << d - 1 - e) + q */
Serhiy Storchakaa5119e72019-05-19 14:14:38 +03001742 Py_SETREF(a, _PyLong_Lshift(a, d - 1U - e));
Mark Dickinson73934b92019-05-18 12:29:50 +01001743 if (a == NULL) {
1744 Py_DECREF(q);
1745 goto error;
1746 }
1747 Py_SETREF(a, PyNumber_Add(a, q));
1748 Py_DECREF(q);
1749 if (a == NULL) {
1750 goto error;
1751 }
1752 }
1753
1754 /* The correct result is either a or a - 1. Figure out which, and
1755 decrement a if necessary. */
1756
1757 /* a_too_large = n < a * a */
1758 b = PyNumber_Multiply(a, a);
1759 if (b == NULL) {
1760 goto error;
1761 }
1762 a_too_large = PyObject_RichCompareBool(n, b, Py_LT);
1763 Py_DECREF(b);
1764 if (a_too_large == -1) {
1765 goto error;
1766 }
1767
1768 if (a_too_large) {
1769 Py_SETREF(a, PyNumber_Subtract(a, _PyLong_One));
1770 }
1771 Py_DECREF(n);
1772 return a;
1773
1774 error:
1775 Py_XDECREF(a);
1776 Py_DECREF(n);
1777 return NULL;
1778}
1779
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001780/* Divide-and-conquer factorial algorithm
1781 *
Raymond Hettinger15f44ab2016-08-30 10:47:49 -07001782 * Based on the formula and pseudo-code provided at:
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001783 * http://www.luschny.de/math/factorial/binarysplitfact.html
1784 *
1785 * Faster algorithms exist, but they're more complicated and depend on
Ezio Melotti9527afd2010-07-08 15:03:02 +00001786 * a fast prime factorization algorithm.
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001787 *
1788 * Notes on the algorithm
1789 * ----------------------
1790 *
1791 * factorial(n) is written in the form 2**k * m, with m odd. k and m are
1792 * computed separately, and then combined using a left shift.
1793 *
1794 * The function factorial_odd_part computes the odd part m (i.e., the greatest
1795 * odd divisor) of factorial(n), using the formula:
1796 *
1797 * factorial_odd_part(n) =
1798 *
1799 * product_{i >= 0} product_{0 < j <= n / 2**i, j odd} j
1800 *
1801 * Example: factorial_odd_part(20) =
1802 *
1803 * (1) *
1804 * (1) *
1805 * (1 * 3 * 5) *
1806 * (1 * 3 * 5 * 7 * 9)
1807 * (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19)
1808 *
1809 * Here i goes from large to small: the first term corresponds to i=4 (any
1810 * larger i gives an empty product), and the last term corresponds to i=0.
1811 * Each term can be computed from the last by multiplying by the extra odd
1812 * numbers required: e.g., to get from the penultimate term to the last one,
1813 * we multiply by (11 * 13 * 15 * 17 * 19).
1814 *
1815 * To see a hint of why this formula works, here are the same numbers as above
1816 * but with the even parts (i.e., the appropriate powers of 2) included. For
1817 * each subterm in the product for i, we multiply that subterm by 2**i:
1818 *
1819 * factorial(20) =
1820 *
1821 * (16) *
1822 * (8) *
1823 * (4 * 12 * 20) *
1824 * (2 * 6 * 10 * 14 * 18) *
1825 * (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19)
1826 *
1827 * The factorial_partial_product function computes the product of all odd j in
1828 * range(start, stop) for given start and stop. It's used to compute the
1829 * partial products like (11 * 13 * 15 * 17 * 19) in the example above. It
1830 * operates recursively, repeatedly splitting the range into two roughly equal
1831 * pieces until the subranges are small enough to be computed using only C
1832 * integer arithmetic.
1833 *
1834 * The two-valuation k (i.e., the exponent of the largest power of 2 dividing
1835 * the factorial) is computed independently in the main math_factorial
1836 * function. By standard results, its value is:
1837 *
1838 * two_valuation = n//2 + n//4 + n//8 + ....
1839 *
1840 * It can be shown (e.g., by complete induction on n) that two_valuation is
1841 * equal to n - count_set_bits(n), where count_set_bits(n) gives the number of
1842 * '1'-bits in the binary expansion of n.
1843 */
1844
1845/* factorial_partial_product: Compute product(range(start, stop, 2)) using
1846 * divide and conquer. Assumes start and stop are odd and stop > start.
1847 * max_bits must be >= bit_length(stop - 2). */
1848
1849static PyObject *
1850factorial_partial_product(unsigned long start, unsigned long stop,
1851 unsigned long max_bits)
1852{
1853 unsigned long midpoint, num_operands;
1854 PyObject *left = NULL, *right = NULL, *result = NULL;
1855
1856 /* If the return value will fit an unsigned long, then we can
1857 * multiply in a tight, fast loop where each multiply is O(1).
1858 * Compute an upper bound on the number of bits required to store
1859 * the answer.
1860 *
1861 * Storing some integer z requires floor(lg(z))+1 bits, which is
1862 * conveniently the value returned by bit_length(z). The
1863 * product x*y will require at most
1864 * bit_length(x) + bit_length(y) bits to store, based
1865 * on the idea that lg product = lg x + lg y.
1866 *
1867 * We know that stop - 2 is the largest number to be multiplied. From
1868 * there, we have: bit_length(answer) <= num_operands *
1869 * bit_length(stop - 2)
1870 */
1871
1872 num_operands = (stop - start) / 2;
1873 /* The "num_operands <= 8 * SIZEOF_LONG" check guards against the
1874 * unlikely case of an overflow in num_operands * max_bits. */
1875 if (num_operands <= 8 * SIZEOF_LONG &&
1876 num_operands * max_bits <= 8 * SIZEOF_LONG) {
1877 unsigned long j, total;
1878 for (total = start, j = start + 2; j < stop; j += 2)
1879 total *= j;
1880 return PyLong_FromUnsignedLong(total);
1881 }
1882
1883 /* find midpoint of range(start, stop), rounded up to next odd number. */
1884 midpoint = (start + num_operands) | 1;
1885 left = factorial_partial_product(start, midpoint,
1886 bit_length(midpoint - 2));
1887 if (left == NULL)
1888 goto error;
1889 right = factorial_partial_product(midpoint, stop, max_bits);
1890 if (right == NULL)
1891 goto error;
1892 result = PyNumber_Multiply(left, right);
1893
1894 error:
1895 Py_XDECREF(left);
1896 Py_XDECREF(right);
1897 return result;
1898}
1899
1900/* factorial_odd_part: compute the odd part of factorial(n). */
1901
1902static PyObject *
1903factorial_odd_part(unsigned long n)
1904{
1905 long i;
1906 unsigned long v, lower, upper;
1907 PyObject *partial, *tmp, *inner, *outer;
1908
1909 inner = PyLong_FromLong(1);
1910 if (inner == NULL)
1911 return NULL;
1912 outer = inner;
1913 Py_INCREF(outer);
1914
1915 upper = 3;
1916 for (i = bit_length(n) - 2; i >= 0; i--) {
1917 v = n >> i;
1918 if (v <= 2)
1919 continue;
1920 lower = upper;
1921 /* (v + 1) | 1 = least odd integer strictly larger than n / 2**i */
1922 upper = (v + 1) | 1;
1923 /* Here inner is the product of all odd integers j in the range (0,
1924 n/2**(i+1)]. The factorial_partial_product call below gives the
1925 product of all odd integers j in the range (n/2**(i+1), n/2**i]. */
1926 partial = factorial_partial_product(lower, upper, bit_length(upper-2));
1927 /* inner *= partial */
1928 if (partial == NULL)
1929 goto error;
1930 tmp = PyNumber_Multiply(inner, partial);
1931 Py_DECREF(partial);
1932 if (tmp == NULL)
1933 goto error;
1934 Py_DECREF(inner);
1935 inner = tmp;
1936 /* Now inner is the product of all odd integers j in the range (0,
1937 n/2**i], giving the inner product in the formula above. */
1938
1939 /* outer *= inner; */
1940 tmp = PyNumber_Multiply(outer, inner);
1941 if (tmp == NULL)
1942 goto error;
1943 Py_DECREF(outer);
1944 outer = tmp;
1945 }
Mark Dickinson76464492012-10-25 10:46:28 +01001946 Py_DECREF(inner);
1947 return outer;
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001948
1949 error:
1950 Py_DECREF(outer);
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001951 Py_DECREF(inner);
Mark Dickinson76464492012-10-25 10:46:28 +01001952 return NULL;
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001953}
1954
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001955
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001956/* Lookup table for small factorial values */
1957
1958static const unsigned long SmallFactorials[] = {
1959 1, 1, 2, 6, 24, 120, 720, 5040, 40320,
1960 362880, 3628800, 39916800, 479001600,
1961#if SIZEOF_LONG >= 8
1962 6227020800, 87178291200, 1307674368000,
1963 20922789888000, 355687428096000, 6402373705728000,
1964 121645100408832000, 2432902008176640000
1965#endif
1966};
1967
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001968/*[clinic input]
1969math.factorial
1970
1971 x as arg: object
1972 /
1973
1974Find x!.
1975
1976Raise a ValueError if x is negative or non-integral.
1977[clinic start generated code]*/
1978
Barry Warsaw8b43b191996-12-09 22:32:36 +00001979static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001980math_factorial(PyObject *module, PyObject *arg)
1981/*[clinic end generated code: output=6686f26fae00e9ca input=6d1c8105c0d91fb4]*/
Georg Brandlc28e1fa2008-06-10 19:20:26 +00001982{
Serhiy Storchakaa5119e72019-05-19 14:14:38 +03001983 long x, two_valuation;
Mark Dickinson5990d282014-04-10 09:29:39 -04001984 int overflow;
Serhiy Storchakaa5119e72019-05-19 14:14:38 +03001985 PyObject *result, *odd_part, *pyint_form;
Georg Brandlc28e1fa2008-06-10 19:20:26 +00001986
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001987 if (PyFloat_Check(arg)) {
1988 PyObject *lx;
1989 double dx = PyFloat_AS_DOUBLE((PyFloatObject *)arg);
1990 if (!(Py_IS_FINITE(dx) && dx == floor(dx))) {
1991 PyErr_SetString(PyExc_ValueError,
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001992 "factorial() only accepts integral values");
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001993 return NULL;
1994 }
1995 lx = PyLong_FromDouble(dx);
1996 if (lx == NULL)
1997 return NULL;
Mark Dickinson5990d282014-04-10 09:29:39 -04001998 x = PyLong_AsLongAndOverflow(lx, &overflow);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001999 Py_DECREF(lx);
2000 }
Pablo Galindoe9ba3702018-09-03 22:20:06 +01002001 else {
2002 pyint_form = PyNumber_Index(arg);
2003 if (pyint_form == NULL) {
2004 return NULL;
2005 }
2006 x = PyLong_AsLongAndOverflow(pyint_form, &overflow);
2007 Py_DECREF(pyint_form);
2008 }
Georg Brandlc28e1fa2008-06-10 19:20:26 +00002009
Mark Dickinson5990d282014-04-10 09:29:39 -04002010 if (x == -1 && PyErr_Occurred()) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002011 return NULL;
Mark Dickinson5990d282014-04-10 09:29:39 -04002012 }
2013 else if (overflow == 1) {
2014 PyErr_Format(PyExc_OverflowError,
2015 "factorial() argument should not exceed %ld",
2016 LONG_MAX);
2017 return NULL;
2018 }
2019 else if (overflow == -1 || x < 0) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002020 PyErr_SetString(PyExc_ValueError,
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00002021 "factorial() not defined for negative values");
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002022 return NULL;
2023 }
Georg Brandlc28e1fa2008-06-10 19:20:26 +00002024
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00002025 /* use lookup table if x is small */
Victor Stinner63941882011-09-29 00:42:28 +02002026 if (x < (long)Py_ARRAY_LENGTH(SmallFactorials))
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00002027 return PyLong_FromUnsignedLong(SmallFactorials[x]);
2028
2029 /* else express in the form odd_part * 2**two_valuation, and compute as
2030 odd_part << two_valuation. */
2031 odd_part = factorial_odd_part(x);
2032 if (odd_part == NULL)
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002033 return NULL;
Serhiy Storchakaa5119e72019-05-19 14:14:38 +03002034 two_valuation = x - count_set_bits(x);
2035 result = _PyLong_Lshift(odd_part, two_valuation);
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00002036 Py_DECREF(odd_part);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002037 return result;
Georg Brandlc28e1fa2008-06-10 19:20:26 +00002038}
2039
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002040
2041/*[clinic input]
2042math.trunc
2043
2044 x: object
2045 /
2046
2047Truncates the Real x to the nearest Integral toward 0.
2048
2049Uses the __trunc__ magic method.
2050[clinic start generated code]*/
Georg Brandlc28e1fa2008-06-10 19:20:26 +00002051
2052static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002053math_trunc(PyObject *module, PyObject *x)
2054/*[clinic end generated code: output=34b9697b707e1031 input=2168b34e0a09134d]*/
Christian Heimes400adb02008-02-01 08:12:03 +00002055{
Benjamin Petersonce798522012-01-22 11:24:29 -05002056 _Py_IDENTIFIER(__trunc__);
Benjamin Petersonb0125892010-07-02 13:35:17 +00002057 PyObject *trunc, *result;
Christian Heimes400adb02008-02-01 08:12:03 +00002058
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002059 if (Py_TYPE(x)->tp_dict == NULL) {
2060 if (PyType_Ready(Py_TYPE(x)) < 0)
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002061 return NULL;
2062 }
Christian Heimes400adb02008-02-01 08:12:03 +00002063
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002064 trunc = _PyObject_LookupSpecial(x, &PyId___trunc__);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002065 if (trunc == NULL) {
Benjamin Peterson8bb9cde2010-07-01 15:16:55 +00002066 if (!PyErr_Occurred())
2067 PyErr_Format(PyExc_TypeError,
2068 "type %.100s doesn't define __trunc__ method",
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002069 Py_TYPE(x)->tp_name);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002070 return NULL;
2071 }
Victor Stinnerf17c3de2016-12-06 18:46:19 +01002072 result = _PyObject_CallNoArg(trunc);
Benjamin Petersonb0125892010-07-02 13:35:17 +00002073 Py_DECREF(trunc);
2074 return result;
Christian Heimes400adb02008-02-01 08:12:03 +00002075}
2076
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002077
2078/*[clinic input]
2079math.frexp
2080
2081 x: double
2082 /
2083
2084Return the mantissa and exponent of x, as pair (m, e).
2085
2086m is a float and e is an int, such that x = m * 2.**e.
2087If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0.
2088[clinic start generated code]*/
Christian Heimes400adb02008-02-01 08:12:03 +00002089
2090static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002091math_frexp_impl(PyObject *module, double x)
2092/*[clinic end generated code: output=03e30d252a15ad4a input=96251c9e208bc6e9]*/
Guido van Rossumd18ad581991-10-24 14:57:21 +00002093{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002094 int i;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002095 /* deal with special cases directly, to sidestep platform
2096 differences */
2097 if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) {
2098 i = 0;
2099 }
2100 else {
2101 PyFPE_START_PROTECT("in math_frexp", return 0);
2102 x = frexp(x, &i);
2103 PyFPE_END_PROTECT(x);
2104 }
2105 return Py_BuildValue("(di)", x, i);
Guido van Rossumd18ad581991-10-24 14:57:21 +00002106}
2107
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002108
2109/*[clinic input]
2110math.ldexp
2111
2112 x: double
2113 i: object
2114 /
2115
2116Return x * (2**i).
2117
2118This is essentially the inverse of frexp().
2119[clinic start generated code]*/
Guido van Rossumc6e22901998-12-04 19:26:43 +00002120
Barry Warsaw8b43b191996-12-09 22:32:36 +00002121static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002122math_ldexp_impl(PyObject *module, double x, PyObject *i)
2123/*[clinic end generated code: output=b6892f3c2df9cc6a input=17d5970c1a40a8c1]*/
Guido van Rossumd18ad581991-10-24 14:57:21 +00002124{
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002125 double r;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002126 long exp;
2127 int overflow;
Alexandre Vassalotti6461e102008-05-15 22:09:29 +00002128
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002129 if (PyLong_Check(i)) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002130 /* on overflow, replace exponent with either LONG_MAX
2131 or LONG_MIN, depending on the sign. */
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002132 exp = PyLong_AsLongAndOverflow(i, &overflow);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002133 if (exp == -1 && PyErr_Occurred())
2134 return NULL;
2135 if (overflow)
2136 exp = overflow < 0 ? LONG_MIN : LONG_MAX;
2137 }
2138 else {
2139 PyErr_SetString(PyExc_TypeError,
Serhiy Storchaka95949422013-08-27 19:40:23 +03002140 "Expected an int as second argument to ldexp.");
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002141 return NULL;
2142 }
Alexandre Vassalotti6461e102008-05-15 22:09:29 +00002143
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002144 if (x == 0. || !Py_IS_FINITE(x)) {
2145 /* NaNs, zeros and infinities are returned unchanged */
2146 r = x;
2147 errno = 0;
2148 } else if (exp > INT_MAX) {
2149 /* overflow */
2150 r = copysign(Py_HUGE_VAL, x);
2151 errno = ERANGE;
2152 } else if (exp < INT_MIN) {
2153 /* underflow to +-0 */
2154 r = copysign(0., x);
2155 errno = 0;
2156 } else {
2157 errno = 0;
2158 PyFPE_START_PROTECT("in math_ldexp", return 0);
2159 r = ldexp(x, (int)exp);
2160 PyFPE_END_PROTECT(r);
2161 if (Py_IS_INFINITY(r))
2162 errno = ERANGE;
2163 }
Alexandre Vassalotti6461e102008-05-15 22:09:29 +00002164
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002165 if (errno && is_error(r))
2166 return NULL;
2167 return PyFloat_FromDouble(r);
Guido van Rossumd18ad581991-10-24 14:57:21 +00002168}
2169
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002170
2171/*[clinic input]
2172math.modf
2173
2174 x: double
2175 /
2176
2177Return the fractional and integer parts of x.
2178
2179Both results carry the sign of x and are floats.
2180[clinic start generated code]*/
Guido van Rossumc6e22901998-12-04 19:26:43 +00002181
Barry Warsaw8b43b191996-12-09 22:32:36 +00002182static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002183math_modf_impl(PyObject *module, double x)
2184/*[clinic end generated code: output=90cee0260014c3c0 input=b4cfb6786afd9035]*/
Guido van Rossumd18ad581991-10-24 14:57:21 +00002185{
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002186 double y;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002187 /* some platforms don't do the right thing for NaNs and
2188 infinities, so we take care of special cases directly. */
2189 if (!Py_IS_FINITE(x)) {
2190 if (Py_IS_INFINITY(x))
2191 return Py_BuildValue("(dd)", copysign(0., x), x);
2192 else if (Py_IS_NAN(x))
2193 return Py_BuildValue("(dd)", x, x);
2194 }
Christian Heimesa342c012008-04-20 21:01:16 +00002195
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002196 errno = 0;
2197 PyFPE_START_PROTECT("in math_modf", return 0);
2198 x = modf(x, &y);
2199 PyFPE_END_PROTECT(x);
2200 return Py_BuildValue("(dd)", x, y);
Guido van Rossumd18ad581991-10-24 14:57:21 +00002201}
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00002202
Guido van Rossumc6e22901998-12-04 19:26:43 +00002203
Serhiy Storchaka95949422013-08-27 19:40:23 +03002204/* A decent logarithm is easy to compute even for huge ints, but libm can't
Tim Peters78526162001-09-05 00:53:45 +00002205 do that by itself -- loghelper can. func is log or log10, and name is
Serhiy Storchaka95949422013-08-27 19:40:23 +03002206 "log" or "log10". Note that overflow of the result isn't possible: an int
Mark Dickinson6ecd9e52010-01-02 15:33:56 +00002207 can contain no more than INT_MAX * SHIFT bits, so has value certainly less
2208 than 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is
Tim Peters78526162001-09-05 00:53:45 +00002209 small enough to fit in an IEEE single. log and log10 are even smaller.
Serhiy Storchaka95949422013-08-27 19:40:23 +03002210 However, intermediate overflow is possible for an int if the number of bits
2211 in that int is larger than PY_SSIZE_T_MAX. */
Tim Peters78526162001-09-05 00:53:45 +00002212
2213static PyObject*
Serhiy Storchakaef1585e2015-12-25 20:01:53 +02002214loghelper(PyObject* arg, double (*func)(double), const char *funcname)
Tim Peters78526162001-09-05 00:53:45 +00002215{
Serhiy Storchaka95949422013-08-27 19:40:23 +03002216 /* If it is int, do it ourselves. */
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002217 if (PyLong_Check(arg)) {
Mark Dickinsonc6037172010-09-29 19:06:36 +00002218 double x, result;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002219 Py_ssize_t e;
Mark Dickinsonc6037172010-09-29 19:06:36 +00002220
2221 /* Negative or zero inputs give a ValueError. */
2222 if (Py_SIZE(arg) <= 0) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002223 PyErr_SetString(PyExc_ValueError,
2224 "math domain error");
2225 return NULL;
2226 }
Mark Dickinsonfa41e602010-09-28 07:22:27 +00002227
Mark Dickinsonc6037172010-09-29 19:06:36 +00002228 x = PyLong_AsDouble(arg);
2229 if (x == -1.0 && PyErr_Occurred()) {
2230 if (!PyErr_ExceptionMatches(PyExc_OverflowError))
2231 return NULL;
2232 /* Here the conversion to double overflowed, but it's possible
2233 to compute the log anyway. Clear the exception and continue. */
2234 PyErr_Clear();
2235 x = _PyLong_Frexp((PyLongObject *)arg, &e);
2236 if (x == -1.0 && PyErr_Occurred())
2237 return NULL;
2238 /* Value is ~= x * 2**e, so the log ~= log(x) + log(2) * e. */
2239 result = func(x) + func(2.0) * e;
2240 }
2241 else
2242 /* Successfully converted x to a double. */
2243 result = func(x);
2244 return PyFloat_FromDouble(result);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002245 }
Tim Peters78526162001-09-05 00:53:45 +00002246
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002247 /* Else let libm handle it by itself. */
2248 return math_1(arg, func, 0);
Tim Peters78526162001-09-05 00:53:45 +00002249}
2250
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002251
2252/*[clinic input]
2253math.log
2254
2255 x: object
2256 [
2257 base: object(c_default="NULL") = math.e
2258 ]
2259 /
2260
2261Return the logarithm of x to the given base.
2262
2263If the base not specified, returns the natural logarithm (base e) of x.
2264[clinic start generated code]*/
2265
Tim Peters78526162001-09-05 00:53:45 +00002266static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002267math_log_impl(PyObject *module, PyObject *x, int group_right_1,
2268 PyObject *base)
2269/*[clinic end generated code: output=7b5a39e526b73fc9 input=0f62d5726cbfebbd]*/
Tim Peters78526162001-09-05 00:53:45 +00002270{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002271 PyObject *num, *den;
2272 PyObject *ans;
Raymond Hettinger866964c2002-12-14 19:51:34 +00002273
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002274 num = loghelper(x, m_log, "log");
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002275 if (num == NULL || base == NULL)
2276 return num;
Raymond Hettinger866964c2002-12-14 19:51:34 +00002277
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002278 den = loghelper(base, m_log, "log");
2279 if (den == NULL) {
2280 Py_DECREF(num);
2281 return NULL;
2282 }
Raymond Hettinger866964c2002-12-14 19:51:34 +00002283
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002284 ans = PyNumber_TrueDivide(num, den);
2285 Py_DECREF(num);
2286 Py_DECREF(den);
2287 return ans;
Tim Peters78526162001-09-05 00:53:45 +00002288}
2289
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002290
2291/*[clinic input]
2292math.log2
2293
2294 x: object
2295 /
2296
2297Return the base 2 logarithm of x.
2298[clinic start generated code]*/
Tim Peters78526162001-09-05 00:53:45 +00002299
2300static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002301math_log2(PyObject *module, PyObject *x)
2302/*[clinic end generated code: output=5425899a4d5d6acb input=08321262bae4f39b]*/
Victor Stinnerfa0e3d52011-05-09 01:01:09 +02002303{
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002304 return loghelper(x, m_log2, "log2");
Victor Stinnerfa0e3d52011-05-09 01:01:09 +02002305}
2306
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002307
2308/*[clinic input]
2309math.log10
2310
2311 x: object
2312 /
2313
2314Return the base 10 logarithm of x.
2315[clinic start generated code]*/
Victor Stinnerfa0e3d52011-05-09 01:01:09 +02002316
2317static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002318math_log10(PyObject *module, PyObject *x)
2319/*[clinic end generated code: output=be72a64617df9c6f input=b2469d02c6469e53]*/
Tim Peters78526162001-09-05 00:53:45 +00002320{
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002321 return loghelper(x, m_log10, "log10");
Tim Peters78526162001-09-05 00:53:45 +00002322}
2323
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002324
2325/*[clinic input]
2326math.fmod
2327
2328 x: double
2329 y: double
2330 /
2331
2332Return fmod(x, y), according to platform C.
2333
2334x % y may differ.
2335[clinic start generated code]*/
Tim Peters78526162001-09-05 00:53:45 +00002336
Christian Heimes53876d92008-04-19 00:31:39 +00002337static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002338math_fmod_impl(PyObject *module, double x, double y)
2339/*[clinic end generated code: output=7559d794343a27b5 input=4f84caa8cfc26a03]*/
Christian Heimes53876d92008-04-19 00:31:39 +00002340{
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002341 double r;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002342 /* fmod(x, +/-Inf) returns x for finite x. */
2343 if (Py_IS_INFINITY(y) && Py_IS_FINITE(x))
2344 return PyFloat_FromDouble(x);
2345 errno = 0;
2346 PyFPE_START_PROTECT("in math_fmod", return 0);
2347 r = fmod(x, y);
2348 PyFPE_END_PROTECT(r);
2349 if (Py_IS_NAN(r)) {
2350 if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
2351 errno = EDOM;
2352 else
2353 errno = 0;
2354 }
2355 if (errno && is_error(r))
2356 return NULL;
2357 else
2358 return PyFloat_FromDouble(r);
Christian Heimes53876d92008-04-19 00:31:39 +00002359}
2360
Raymond Hettinger13990742018-08-11 11:26:36 -07002361/*
Raymond Hettinger745c0f32018-08-31 11:22:13 -07002362Given an *n* length *vec* of values and a value *max*, compute:
Raymond Hettinger13990742018-08-11 11:26:36 -07002363
Raymond Hettingerc630e102018-08-11 18:39:05 -07002364 max * sqrt(sum((x / max) ** 2 for x in vec))
Raymond Hettinger13990742018-08-11 11:26:36 -07002365
Raymond Hettinger745c0f32018-08-31 11:22:13 -07002366The value of the *max* variable must be non-negative and
Raymond Hettinger216aaaa2018-11-09 01:06:02 -08002367equal to the absolute value of the largest magnitude
Raymond Hettinger745c0f32018-08-31 11:22:13 -07002368entry in the vector. If n==0, then *max* should be 0.0.
2369If an infinity is present in the vec, *max* should be INF.
Raymond Hettingerc630e102018-08-11 18:39:05 -07002370
2371The *found_nan* variable indicates whether some member of
2372the *vec* is a NaN.
Raymond Hettinger21786f52018-08-28 22:47:24 -07002373
2374To improve accuracy and to increase the number of cases where
2375vector_norm() is commutative, we use a variant of Neumaier
2376summation specialized to exploit that we always know that
2377|csum| >= |x|.
2378
2379The *csum* variable tracks the cumulative sum and *frac* tracks
2380the cumulative fractional errors at each step. Since this
2381variant assumes that |csum| >= |x| at each step, we establish
2382the precondition by starting the accumulation from 1.0 which
Raymond Hettinger745c0f32018-08-31 11:22:13 -07002383represents the largest possible value of (x/max)**2.
2384
2385After the loop is finished, the initial 1.0 is subtracted out
2386for a net zero effect on the final sum. Since *csum* will be
2387greater than 1.0, the subtraction of 1.0 will not cause
2388fractional digits to be dropped from *csum*.
Raymond Hettinger21786f52018-08-28 22:47:24 -07002389
Raymond Hettinger13990742018-08-11 11:26:36 -07002390*/
2391
2392static inline double
Raymond Hettingerc630e102018-08-11 18:39:05 -07002393vector_norm(Py_ssize_t n, double *vec, double max, int found_nan)
Raymond Hettinger13990742018-08-11 11:26:36 -07002394{
Raymond Hettinger745c0f32018-08-31 11:22:13 -07002395 double x, csum = 1.0, oldcsum, frac = 0.0;
Raymond Hettinger13990742018-08-11 11:26:36 -07002396 Py_ssize_t i;
2397
Raymond Hettingerc630e102018-08-11 18:39:05 -07002398 if (Py_IS_INFINITY(max)) {
2399 return max;
2400 }
2401 if (found_nan) {
2402 return Py_NAN;
2403 }
Raymond Hettingerf3267142018-09-02 13:34:21 -07002404 if (max == 0.0 || n <= 1) {
Raymond Hettinger745c0f32018-08-31 11:22:13 -07002405 return max;
Raymond Hettinger13990742018-08-11 11:26:36 -07002406 }
Raymond Hettinger745c0f32018-08-31 11:22:13 -07002407 for (i=0 ; i < n ; i++) {
Raymond Hettinger13990742018-08-11 11:26:36 -07002408 x = vec[i];
Raymond Hettinger745c0f32018-08-31 11:22:13 -07002409 assert(Py_IS_FINITE(x) && fabs(x) <= max);
Raymond Hettinger13990742018-08-11 11:26:36 -07002410 x /= max;
Raymond Hettinger21786f52018-08-28 22:47:24 -07002411 x = x*x;
Raymond Hettinger13990742018-08-11 11:26:36 -07002412 oldcsum = csum;
2413 csum += x;
Raymond Hettinger745c0f32018-08-31 11:22:13 -07002414 assert(csum >= x);
Raymond Hettinger21786f52018-08-28 22:47:24 -07002415 frac += (oldcsum - csum) + x;
Raymond Hettinger13990742018-08-11 11:26:36 -07002416 }
Raymond Hettinger745c0f32018-08-31 11:22:13 -07002417 return max * sqrt(csum - 1.0 + frac);
Raymond Hettinger13990742018-08-11 11:26:36 -07002418}
2419
Raymond Hettingerc630e102018-08-11 18:39:05 -07002420#define NUM_STACK_ELEMS 16
2421
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002422/*[clinic input]
2423math.dist
2424
Miss Islington (bot)76821ba2019-07-27 14:26:58 -07002425 p: object
2426 q: object
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002427 /
2428
2429Return the Euclidean distance between two points p and q.
2430
Miss Islington (bot)76821ba2019-07-27 14:26:58 -07002431The points should be specified as sequences (or iterables) of
2432coordinates. Both inputs must have the same dimension.
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002433
2434Roughly equivalent to:
2435 sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))
2436[clinic start generated code]*/
2437
2438static PyObject *
2439math_dist_impl(PyObject *module, PyObject *p, PyObject *q)
Miss Islington (bot)76821ba2019-07-27 14:26:58 -07002440/*[clinic end generated code: output=56bd9538d06bbcfe input=74e85e1b6092e68e]*/
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002441{
2442 PyObject *item;
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002443 double max = 0.0;
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002444 double x, px, qx, result;
2445 Py_ssize_t i, m, n;
Miss Islington (bot)76821ba2019-07-27 14:26:58 -07002446 int found_nan = 0, p_allocated = 0, q_allocated = 0;
Raymond Hettingerc630e102018-08-11 18:39:05 -07002447 double diffs_on_stack[NUM_STACK_ELEMS];
2448 double *diffs = diffs_on_stack;
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002449
Miss Islington (bot)76821ba2019-07-27 14:26:58 -07002450 if (!PyTuple_Check(p)) {
2451 p = PySequence_Tuple(p);
2452 if (p == NULL) {
2453 return NULL;
2454 }
2455 p_allocated = 1;
2456 }
2457 if (!PyTuple_Check(q)) {
2458 q = PySequence_Tuple(q);
2459 if (q == NULL) {
2460 if (p_allocated) {
2461 Py_DECREF(p);
2462 }
2463 return NULL;
2464 }
2465 q_allocated = 1;
2466 }
2467
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002468 m = PyTuple_GET_SIZE(p);
2469 n = PyTuple_GET_SIZE(q);
2470 if (m != n) {
2471 PyErr_SetString(PyExc_ValueError,
2472 "both points must have the same number of dimensions");
2473 return NULL;
2474
2475 }
Raymond Hettingerc630e102018-08-11 18:39:05 -07002476 if (n > NUM_STACK_ELEMS) {
2477 diffs = (double *) PyObject_Malloc(n * sizeof(double));
2478 if (diffs == NULL) {
Zackery Spytz4c49da02018-12-07 03:11:30 -07002479 return PyErr_NoMemory();
Raymond Hettingerc630e102018-08-11 18:39:05 -07002480 }
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002481 }
2482 for (i=0 ; i<n ; i++) {
2483 item = PyTuple_GET_ITEM(p, i);
Raymond Hettingercfd735e2019-01-29 20:39:53 -08002484 ASSIGN_DOUBLE(px, item, error_exit);
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002485 item = PyTuple_GET_ITEM(q, i);
Raymond Hettingercfd735e2019-01-29 20:39:53 -08002486 ASSIGN_DOUBLE(qx, item, error_exit);
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002487 x = fabs(px - qx);
2488 diffs[i] = x;
2489 found_nan |= Py_IS_NAN(x);
2490 if (x > max) {
2491 max = x;
2492 }
2493 }
Raymond Hettingerc630e102018-08-11 18:39:05 -07002494 result = vector_norm(n, diffs, max, found_nan);
2495 if (diffs != diffs_on_stack) {
2496 PyObject_Free(diffs);
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002497 }
Miss Islington (bot)76821ba2019-07-27 14:26:58 -07002498 if (p_allocated) {
2499 Py_DECREF(p);
2500 }
2501 if (q_allocated) {
2502 Py_DECREF(q);
2503 }
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002504 return PyFloat_FromDouble(result);
Raymond Hettingerc630e102018-08-11 18:39:05 -07002505
2506 error_exit:
2507 if (diffs != diffs_on_stack) {
2508 PyObject_Free(diffs);
2509 }
Miss Islington (bot)76821ba2019-07-27 14:26:58 -07002510 if (p_allocated) {
2511 Py_DECREF(p);
2512 }
2513 if (q_allocated) {
2514 Py_DECREF(q);
2515 }
Raymond Hettingerc630e102018-08-11 18:39:05 -07002516 return NULL;
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002517}
2518
Raymond Hettingerc6dabe32018-07-28 07:48:04 -07002519/* AC: cannot convert yet, waiting for *args support */
Christian Heimes53876d92008-04-19 00:31:39 +00002520static PyObject *
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02002521math_hypot(PyObject *self, PyObject *const *args, Py_ssize_t nargs)
Christian Heimes53876d92008-04-19 00:31:39 +00002522{
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02002523 Py_ssize_t i;
Raymond Hettingerc6dabe32018-07-28 07:48:04 -07002524 PyObject *item;
Raymond Hettingerc6dabe32018-07-28 07:48:04 -07002525 double max = 0.0;
Raymond Hettingerc6dabe32018-07-28 07:48:04 -07002526 double x, result;
2527 int found_nan = 0;
Raymond Hettingerc630e102018-08-11 18:39:05 -07002528 double coord_on_stack[NUM_STACK_ELEMS];
2529 double *coordinates = coord_on_stack;
Raymond Hettingerc6dabe32018-07-28 07:48:04 -07002530
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02002531 if (nargs > NUM_STACK_ELEMS) {
2532 coordinates = (double *) PyObject_Malloc(nargs * sizeof(double));
Zackery Spytz4c49da02018-12-07 03:11:30 -07002533 if (coordinates == NULL) {
2534 return PyErr_NoMemory();
2535 }
Raymond Hettingerc630e102018-08-11 18:39:05 -07002536 }
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02002537 for (i = 0; i < nargs; i++) {
2538 item = args[i];
Raymond Hettingercfd735e2019-01-29 20:39:53 -08002539 ASSIGN_DOUBLE(x, item, error_exit);
Raymond Hettingerc6dabe32018-07-28 07:48:04 -07002540 x = fabs(x);
2541 coordinates[i] = x;
2542 found_nan |= Py_IS_NAN(x);
2543 if (x > max) {
2544 max = x;
2545 }
2546 }
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02002547 result = vector_norm(nargs, coordinates, max, found_nan);
Raymond Hettingerc630e102018-08-11 18:39:05 -07002548 if (coordinates != coord_on_stack) {
2549 PyObject_Free(coordinates);
Raymond Hettingerc6dabe32018-07-28 07:48:04 -07002550 }
Raymond Hettingerc6dabe32018-07-28 07:48:04 -07002551 return PyFloat_FromDouble(result);
Raymond Hettingerc630e102018-08-11 18:39:05 -07002552
2553 error_exit:
2554 if (coordinates != coord_on_stack) {
2555 PyObject_Free(coordinates);
2556 }
2557 return NULL;
Christian Heimes53876d92008-04-19 00:31:39 +00002558}
2559
Raymond Hettingerc630e102018-08-11 18:39:05 -07002560#undef NUM_STACK_ELEMS
2561
Raymond Hettingerc6dabe32018-07-28 07:48:04 -07002562PyDoc_STRVAR(math_hypot_doc,
2563 "hypot(*coordinates) -> value\n\n\
2564Multidimensional Euclidean distance from the origin to a point.\n\
2565\n\
2566Roughly equivalent to:\n\
2567 sqrt(sum(x**2 for x in coordinates))\n\
2568\n\
2569For a two dimensional point (x, y), gives the hypotenuse\n\
2570using the Pythagorean theorem: sqrt(x*x + y*y).\n\
2571\n\
2572For example, the hypotenuse of a 3/4/5 right triangle is:\n\
2573\n\
2574 >>> hypot(3.0, 4.0)\n\
2575 5.0\n\
2576");
Christian Heimes53876d92008-04-19 00:31:39 +00002577
2578/* pow can't use math_2, but needs its own wrapper: the problem is
2579 that an infinite result can arise either as a result of overflow
2580 (in which case OverflowError should be raised) or as a result of
2581 e.g. 0.**-5. (for which ValueError needs to be raised.)
2582*/
2583
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002584/*[clinic input]
2585math.pow
Christian Heimes53876d92008-04-19 00:31:39 +00002586
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002587 x: double
2588 y: double
2589 /
2590
2591Return x**y (x to the power of y).
2592[clinic start generated code]*/
2593
2594static PyObject *
2595math_pow_impl(PyObject *module, double x, double y)
2596/*[clinic end generated code: output=fff93e65abccd6b0 input=c26f1f6075088bfd]*/
2597{
2598 double r;
2599 int odd_y;
Christian Heimesa342c012008-04-20 21:01:16 +00002600
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002601 /* deal directly with IEEE specials, to cope with problems on various
2602 platforms whose semantics don't exactly match C99 */
2603 r = 0.; /* silence compiler warning */
2604 if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) {
2605 errno = 0;
2606 if (Py_IS_NAN(x))
2607 r = y == 0. ? 1. : x; /* NaN**0 = 1 */
2608 else if (Py_IS_NAN(y))
2609 r = x == 1. ? 1. : y; /* 1**NaN = 1 */
2610 else if (Py_IS_INFINITY(x)) {
2611 odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0;
2612 if (y > 0.)
2613 r = odd_y ? x : fabs(x);
2614 else if (y == 0.)
2615 r = 1.;
2616 else /* y < 0. */
2617 r = odd_y ? copysign(0., x) : 0.;
2618 }
2619 else if (Py_IS_INFINITY(y)) {
2620 if (fabs(x) == 1.0)
2621 r = 1.;
2622 else if (y > 0. && fabs(x) > 1.0)
2623 r = y;
2624 else if (y < 0. && fabs(x) < 1.0) {
2625 r = -y; /* result is +inf */
2626 if (x == 0.) /* 0**-inf: divide-by-zero */
2627 errno = EDOM;
2628 }
2629 else
2630 r = 0.;
2631 }
2632 }
2633 else {
2634 /* let libm handle finite**finite */
2635 errno = 0;
2636 PyFPE_START_PROTECT("in math_pow", return 0);
2637 r = pow(x, y);
2638 PyFPE_END_PROTECT(r);
2639 /* a NaN result should arise only from (-ve)**(finite
2640 non-integer); in this case we want to raise ValueError. */
2641 if (!Py_IS_FINITE(r)) {
2642 if (Py_IS_NAN(r)) {
2643 errno = EDOM;
2644 }
2645 /*
2646 an infinite result here arises either from:
2647 (A) (+/-0.)**negative (-> divide-by-zero)
2648 (B) overflow of x**y with x and y finite
2649 */
2650 else if (Py_IS_INFINITY(r)) {
2651 if (x == 0.)
2652 errno = EDOM;
2653 else
2654 errno = ERANGE;
2655 }
2656 }
2657 }
Christian Heimes53876d92008-04-19 00:31:39 +00002658
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002659 if (errno && is_error(r))
2660 return NULL;
2661 else
2662 return PyFloat_FromDouble(r);
Christian Heimes53876d92008-04-19 00:31:39 +00002663}
2664
Christian Heimes53876d92008-04-19 00:31:39 +00002665
Christian Heimes072c0f12008-01-03 23:01:04 +00002666static const double degToRad = Py_MATH_PI / 180.0;
2667static const double radToDeg = 180.0 / Py_MATH_PI;
Raymond Hettingerd6f22672002-05-13 03:56:10 +00002668
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002669/*[clinic input]
2670math.degrees
2671
2672 x: double
2673 /
2674
2675Convert angle x from radians to degrees.
2676[clinic start generated code]*/
2677
Raymond Hettingerd6f22672002-05-13 03:56:10 +00002678static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002679math_degrees_impl(PyObject *module, double x)
2680/*[clinic end generated code: output=7fea78b294acd12f input=81e016555d6e3660]*/
Raymond Hettingerd6f22672002-05-13 03:56:10 +00002681{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002682 return PyFloat_FromDouble(x * radToDeg);
Raymond Hettingerd6f22672002-05-13 03:56:10 +00002683}
2684
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002685
2686/*[clinic input]
2687math.radians
2688
2689 x: double
2690 /
2691
2692Convert angle x from degrees to radians.
2693[clinic start generated code]*/
Raymond Hettingerd6f22672002-05-13 03:56:10 +00002694
2695static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002696math_radians_impl(PyObject *module, double x)
2697/*[clinic end generated code: output=34daa47caf9b1590 input=91626fc489fe3d63]*/
Raymond Hettingerd6f22672002-05-13 03:56:10 +00002698{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002699 return PyFloat_FromDouble(x * degToRad);
Raymond Hettingerd6f22672002-05-13 03:56:10 +00002700}
2701
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002702
2703/*[clinic input]
2704math.isfinite
2705
2706 x: double
2707 /
2708
2709Return True if x is neither an infinity nor a NaN, and False otherwise.
2710[clinic start generated code]*/
Tim Peters78526162001-09-05 00:53:45 +00002711
Christian Heimes072c0f12008-01-03 23:01:04 +00002712static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002713math_isfinite_impl(PyObject *module, double x)
2714/*[clinic end generated code: output=8ba1f396440c9901 input=46967d254812e54a]*/
Mark Dickinson8e0c9962010-07-11 17:38:24 +00002715{
Mark Dickinson8e0c9962010-07-11 17:38:24 +00002716 return PyBool_FromLong((long)Py_IS_FINITE(x));
2717}
2718
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002719
2720/*[clinic input]
2721math.isnan
2722
2723 x: double
2724 /
2725
2726Return True if x is a NaN (not a number), and False otherwise.
2727[clinic start generated code]*/
Mark Dickinson8e0c9962010-07-11 17:38:24 +00002728
2729static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002730math_isnan_impl(PyObject *module, double x)
2731/*[clinic end generated code: output=f537b4d6df878c3e input=935891e66083f46a]*/
Christian Heimes072c0f12008-01-03 23:01:04 +00002732{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002733 return PyBool_FromLong((long)Py_IS_NAN(x));
Christian Heimes072c0f12008-01-03 23:01:04 +00002734}
2735
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002736
2737/*[clinic input]
2738math.isinf
2739
2740 x: double
2741 /
2742
2743Return True if x is a positive or negative infinity, and False otherwise.
2744[clinic start generated code]*/
Christian Heimes072c0f12008-01-03 23:01:04 +00002745
2746static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002747math_isinf_impl(PyObject *module, double x)
2748/*[clinic end generated code: output=9f00cbec4de7b06b input=32630e4212cf961f]*/
Christian Heimes072c0f12008-01-03 23:01:04 +00002749{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002750 return PyBool_FromLong((long)Py_IS_INFINITY(x));
Christian Heimes072c0f12008-01-03 23:01:04 +00002751}
2752
Christian Heimes072c0f12008-01-03 23:01:04 +00002753
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002754/*[clinic input]
2755math.isclose -> bool
2756
2757 a: double
2758 b: double
2759 *
2760 rel_tol: double = 1e-09
2761 maximum difference for being considered "close", relative to the
2762 magnitude of the input values
2763 abs_tol: double = 0.0
2764 maximum difference for being considered "close", regardless of the
2765 magnitude of the input values
2766
2767Determine whether two floating point numbers are close in value.
2768
2769Return True if a is close in value to b, and False otherwise.
2770
2771For the values to be considered close, the difference between them
2772must be smaller than at least one of the tolerances.
2773
2774-inf, inf and NaN behave similarly to the IEEE 754 Standard. That
2775is, NaN is not close to anything, even itself. inf and -inf are
2776only close to themselves.
2777[clinic start generated code]*/
2778
2779static int
2780math_isclose_impl(PyObject *module, double a, double b, double rel_tol,
2781 double abs_tol)
2782/*[clinic end generated code: output=b73070207511952d input=f28671871ea5bfba]*/
Tal Einatd5519ed2015-05-31 22:05:00 +03002783{
Tal Einatd5519ed2015-05-31 22:05:00 +03002784 double diff = 0.0;
Tal Einatd5519ed2015-05-31 22:05:00 +03002785
2786 /* sanity check on the inputs */
2787 if (rel_tol < 0.0 || abs_tol < 0.0 ) {
2788 PyErr_SetString(PyExc_ValueError,
2789 "tolerances must be non-negative");
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002790 return -1;
Tal Einatd5519ed2015-05-31 22:05:00 +03002791 }
2792
2793 if ( a == b ) {
2794 /* short circuit exact equality -- needed to catch two infinities of
2795 the same sign. And perhaps speeds things up a bit sometimes.
2796 */
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002797 return 1;
Tal Einatd5519ed2015-05-31 22:05:00 +03002798 }
2799
2800 /* This catches the case of two infinities of opposite sign, or
2801 one infinity and one finite number. Two infinities of opposite
2802 sign would otherwise have an infinite relative tolerance.
2803 Two infinities of the same sign are caught by the equality check
2804 above.
2805 */
2806
2807 if (Py_IS_INFINITY(a) || Py_IS_INFINITY(b)) {
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002808 return 0;
Tal Einatd5519ed2015-05-31 22:05:00 +03002809 }
2810
2811 /* now do the regular computation
2812 this is essentially the "weak" test from the Boost library
2813 */
2814
2815 diff = fabs(b - a);
2816
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002817 return (((diff <= fabs(rel_tol * b)) ||
2818 (diff <= fabs(rel_tol * a))) ||
2819 (diff <= abs_tol));
Tal Einatd5519ed2015-05-31 22:05:00 +03002820}
2821
Pablo Galindo04114112019-03-09 19:18:08 +00002822static inline int
2823_check_long_mult_overflow(long a, long b) {
2824
2825 /* From Python2's int_mul code:
2826
2827 Integer overflow checking for * is painful: Python tried a couple ways, but
2828 they didn't work on all platforms, or failed in endcases (a product of
2829 -sys.maxint-1 has been a particular pain).
2830
2831 Here's another way:
2832
2833 The native long product x*y is either exactly right or *way* off, being
2834 just the last n bits of the true product, where n is the number of bits
2835 in a long (the delivered product is the true product plus i*2**n for
2836 some integer i).
2837
2838 The native double product (double)x * (double)y is subject to three
2839 rounding errors: on a sizeof(long)==8 box, each cast to double can lose
2840 info, and even on a sizeof(long)==4 box, the multiplication can lose info.
2841 But, unlike the native long product, it's not in *range* trouble: even
2842 if sizeof(long)==32 (256-bit longs), the product easily fits in the
2843 dynamic range of a double. So the leading 50 (or so) bits of the double
2844 product are correct.
2845
2846 We check these two ways against each other, and declare victory if they're
2847 approximately the same. Else, because the native long product is the only
2848 one that can lose catastrophic amounts of information, it's the native long
2849 product that must have overflowed.
2850
2851 */
2852
2853 long longprod = (long)((unsigned long)a * b);
2854 double doubleprod = (double)a * (double)b;
2855 double doubled_longprod = (double)longprod;
2856
2857 if (doubled_longprod == doubleprod) {
2858 return 0;
2859 }
2860
2861 const double diff = doubled_longprod - doubleprod;
2862 const double absdiff = diff >= 0.0 ? diff : -diff;
2863 const double absprod = doubleprod >= 0.0 ? doubleprod : -doubleprod;
2864
2865 if (32.0 * absdiff <= absprod) {
2866 return 0;
2867 }
2868
2869 return 1;
2870}
Tal Einatd5519ed2015-05-31 22:05:00 +03002871
Pablo Galindobc098512019-02-07 07:04:02 +00002872/*[clinic input]
2873math.prod
2874
2875 iterable: object
2876 /
2877 *
2878 start: object(c_default="NULL") = 1
2879
2880Calculate the product of all the elements in the input iterable.
2881
2882The default start value for the product is 1.
2883
2884When the iterable is empty, return the start value. This function is
2885intended specifically for use with numeric values and may reject
2886non-numeric types.
2887[clinic start generated code]*/
2888
2889static PyObject *
2890math_prod_impl(PyObject *module, PyObject *iterable, PyObject *start)
2891/*[clinic end generated code: output=36153bedac74a198 input=4c5ab0682782ed54]*/
2892{
2893 PyObject *result = start;
2894 PyObject *temp, *item, *iter;
2895
2896 iter = PyObject_GetIter(iterable);
2897 if (iter == NULL) {
2898 return NULL;
2899 }
2900
2901 if (result == NULL) {
2902 result = PyLong_FromLong(1);
2903 if (result == NULL) {
2904 Py_DECREF(iter);
2905 return NULL;
2906 }
2907 } else {
2908 Py_INCREF(result);
2909 }
2910#ifndef SLOW_PROD
2911 /* Fast paths for integers keeping temporary products in C.
2912 * Assumes all inputs are the same type.
2913 * If the assumption fails, default to use PyObjects instead.
2914 */
2915 if (PyLong_CheckExact(result)) {
2916 int overflow;
2917 long i_result = PyLong_AsLongAndOverflow(result, &overflow);
2918 /* If this already overflowed, don't even enter the loop. */
2919 if (overflow == 0) {
2920 Py_DECREF(result);
2921 result = NULL;
2922 }
2923 /* Loop over all the items in the iterable until we finish, we overflow
2924 * or we found a non integer element */
2925 while(result == NULL) {
2926 item = PyIter_Next(iter);
2927 if (item == NULL) {
2928 Py_DECREF(iter);
2929 if (PyErr_Occurred()) {
2930 return NULL;
2931 }
2932 return PyLong_FromLong(i_result);
2933 }
2934 if (PyLong_CheckExact(item)) {
2935 long b = PyLong_AsLongAndOverflow(item, &overflow);
Pablo Galindo04114112019-03-09 19:18:08 +00002936 if (overflow == 0 && !_check_long_mult_overflow(i_result, b)) {
2937 long x = i_result * b;
Pablo Galindobc098512019-02-07 07:04:02 +00002938 i_result = x;
2939 Py_DECREF(item);
2940 continue;
2941 }
2942 }
2943 /* Either overflowed or is not an int.
2944 * Restore real objects and process normally */
2945 result = PyLong_FromLong(i_result);
2946 if (result == NULL) {
2947 Py_DECREF(item);
2948 Py_DECREF(iter);
2949 return NULL;
2950 }
2951 temp = PyNumber_Multiply(result, item);
2952 Py_DECREF(result);
2953 Py_DECREF(item);
2954 result = temp;
2955 if (result == NULL) {
2956 Py_DECREF(iter);
2957 return NULL;
2958 }
2959 }
2960 }
2961
2962 /* Fast paths for floats keeping temporary products in C.
2963 * Assumes all inputs are the same type.
2964 * If the assumption fails, default to use PyObjects instead.
2965 */
2966 if (PyFloat_CheckExact(result)) {
2967 double f_result = PyFloat_AS_DOUBLE(result);
2968 Py_DECREF(result);
2969 result = NULL;
2970 while(result == NULL) {
2971 item = PyIter_Next(iter);
2972 if (item == NULL) {
2973 Py_DECREF(iter);
2974 if (PyErr_Occurred()) {
2975 return NULL;
2976 }
2977 return PyFloat_FromDouble(f_result);
2978 }
2979 if (PyFloat_CheckExact(item)) {
2980 f_result *= PyFloat_AS_DOUBLE(item);
2981 Py_DECREF(item);
2982 continue;
2983 }
2984 if (PyLong_CheckExact(item)) {
2985 long value;
2986 int overflow;
2987 value = PyLong_AsLongAndOverflow(item, &overflow);
2988 if (!overflow) {
2989 f_result *= (double)value;
2990 Py_DECREF(item);
2991 continue;
2992 }
2993 }
2994 result = PyFloat_FromDouble(f_result);
2995 if (result == NULL) {
2996 Py_DECREF(item);
2997 Py_DECREF(iter);
2998 return NULL;
2999 }
3000 temp = PyNumber_Multiply(result, item);
3001 Py_DECREF(result);
3002 Py_DECREF(item);
3003 result = temp;
3004 if (result == NULL) {
3005 Py_DECREF(iter);
3006 return NULL;
3007 }
3008 }
3009 }
3010#endif
3011 /* Consume rest of the iterable (if any) that could not be handled
3012 * by specialized functions above.*/
3013 for(;;) {
3014 item = PyIter_Next(iter);
3015 if (item == NULL) {
3016 /* error, or end-of-sequence */
3017 if (PyErr_Occurred()) {
3018 Py_DECREF(result);
3019 result = NULL;
3020 }
3021 break;
3022 }
3023 temp = PyNumber_Multiply(result, item);
3024 Py_DECREF(result);
3025 Py_DECREF(item);
3026 result = temp;
3027 if (result == NULL)
3028 break;
3029 }
3030 Py_DECREF(iter);
3031 return result;
3032}
3033
3034
Yash Aggarwal4a686502019-06-01 12:51:27 +05303035/*[clinic input]
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +03003036math.perm
3037
3038 n: object
Miss Islington (bot)feaceaa2019-06-08 09:17:33 -07003039 k: object = None
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +03003040 /
3041
3042Number of ways to choose k items from n items without repetition and with order.
3043
Raymond Hettinger963eb0f2019-06-04 01:23:06 -07003044Evaluates to n! / (n - k)! when k <= n and evaluates
3045to zero when k > n.
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +03003046
Miss Islington (bot)feaceaa2019-06-08 09:17:33 -07003047If k is not specified or is None, then k defaults to n
3048and the function returns n!.
3049
Raymond Hettinger963eb0f2019-06-04 01:23:06 -07003050Raises TypeError if either of the arguments are not integers.
3051Raises ValueError if either of the arguments are negative.
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +03003052[clinic start generated code]*/
3053
3054static PyObject *
3055math_perm_impl(PyObject *module, PyObject *n, PyObject *k)
Miss Islington (bot)feaceaa2019-06-08 09:17:33 -07003056/*[clinic end generated code: output=e021a25469653e23 input=5311c5a00f359b53]*/
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +03003057{
3058 PyObject *result = NULL, *factor = NULL;
3059 int overflow, cmp;
3060 long long i, factors;
3061
Miss Islington (bot)feaceaa2019-06-08 09:17:33 -07003062 if (k == Py_None) {
3063 return math_factorial(module, n);
3064 }
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +03003065 n = PyNumber_Index(n);
3066 if (n == NULL) {
3067 return NULL;
3068 }
3069 if (!PyLong_CheckExact(n)) {
3070 Py_SETREF(n, _PyLong_Copy((PyLongObject *)n));
3071 if (n == NULL) {
3072 return NULL;
3073 }
3074 }
3075 k = PyNumber_Index(k);
3076 if (k == NULL) {
3077 Py_DECREF(n);
3078 return NULL;
3079 }
3080 if (!PyLong_CheckExact(k)) {
3081 Py_SETREF(k, _PyLong_Copy((PyLongObject *)k));
3082 if (k == NULL) {
3083 Py_DECREF(n);
3084 return NULL;
3085 }
3086 }
3087
3088 if (Py_SIZE(n) < 0) {
3089 PyErr_SetString(PyExc_ValueError,
3090 "n must be a non-negative integer");
3091 goto error;
3092 }
Miss Islington (bot)599f7ec2019-06-16 04:38:07 -07003093 if (Py_SIZE(k) < 0) {
3094 PyErr_SetString(PyExc_ValueError,
3095 "k must be a non-negative integer");
3096 goto error;
3097 }
3098
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +03003099 cmp = PyObject_RichCompareBool(n, k, Py_LT);
3100 if (cmp != 0) {
3101 if (cmp > 0) {
Raymond Hettinger963eb0f2019-06-04 01:23:06 -07003102 result = PyLong_FromLong(0);
3103 goto done;
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +03003104 }
3105 goto error;
3106 }
3107
3108 factors = PyLong_AsLongLongAndOverflow(k, &overflow);
3109 if (overflow > 0) {
3110 PyErr_Format(PyExc_OverflowError,
3111 "k must not exceed %lld",
3112 LLONG_MAX);
3113 goto error;
3114 }
Miss Islington (bot)599f7ec2019-06-16 04:38:07 -07003115 else if (factors == -1) {
3116 /* k is nonnegative, so a return value of -1 can only indicate error */
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +03003117 goto error;
3118 }
3119
3120 if (factors == 0) {
3121 result = PyLong_FromLong(1);
3122 goto done;
3123 }
3124
3125 result = n;
3126 Py_INCREF(result);
3127 if (factors == 1) {
3128 goto done;
3129 }
3130
3131 factor = n;
3132 Py_INCREF(factor);
3133 for (i = 1; i < factors; ++i) {
3134 Py_SETREF(factor, PyNumber_Subtract(factor, _PyLong_One));
3135 if (factor == NULL) {
3136 goto error;
3137 }
3138 Py_SETREF(result, PyNumber_Multiply(result, factor));
3139 if (result == NULL) {
3140 goto error;
3141 }
3142 }
3143 Py_DECREF(factor);
3144
3145done:
3146 Py_DECREF(n);
3147 Py_DECREF(k);
3148 return result;
3149
3150error:
3151 Py_XDECREF(factor);
3152 Py_XDECREF(result);
3153 Py_DECREF(n);
3154 Py_DECREF(k);
3155 return NULL;
3156}
3157
3158
3159/*[clinic input]
Yash Aggarwal4a686502019-06-01 12:51:27 +05303160math.comb
3161
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003162 n: object
3163 k: object
3164 /
Yash Aggarwal4a686502019-06-01 12:51:27 +05303165
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003166Number of ways to choose k items from n items without repetition and without order.
Yash Aggarwal4a686502019-06-01 12:51:27 +05303167
Raymond Hettinger963eb0f2019-06-04 01:23:06 -07003168Evaluates to n! / (k! * (n - k)!) when k <= n and evaluates
3169to zero when k > n.
Yash Aggarwal4a686502019-06-01 12:51:27 +05303170
Raymond Hettinger963eb0f2019-06-04 01:23:06 -07003171Also called the binomial coefficient because it is equivalent
3172to the coefficient of k-th term in polynomial expansion of the
3173expression (1 + x)**n.
3174
3175Raises TypeError if either of the arguments are not integers.
3176Raises ValueError if either of the arguments are negative.
Yash Aggarwal4a686502019-06-01 12:51:27 +05303177
3178[clinic start generated code]*/
3179
3180static PyObject *
3181math_comb_impl(PyObject *module, PyObject *n, PyObject *k)
Raymond Hettinger963eb0f2019-06-04 01:23:06 -07003182/*[clinic end generated code: output=bd2cec8d854f3493 input=9a05315af2518709]*/
Yash Aggarwal4a686502019-06-01 12:51:27 +05303183{
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003184 PyObject *result = NULL, *factor = NULL, *temp;
Yash Aggarwal4a686502019-06-01 12:51:27 +05303185 int overflow, cmp;
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003186 long long i, factors;
Yash Aggarwal4a686502019-06-01 12:51:27 +05303187
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003188 n = PyNumber_Index(n);
3189 if (n == NULL) {
3190 return NULL;
Yash Aggarwal4a686502019-06-01 12:51:27 +05303191 }
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +03003192 if (!PyLong_CheckExact(n)) {
3193 Py_SETREF(n, _PyLong_Copy((PyLongObject *)n));
3194 if (n == NULL) {
3195 return NULL;
3196 }
3197 }
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003198 k = PyNumber_Index(k);
3199 if (k == NULL) {
3200 Py_DECREF(n);
3201 return NULL;
Yash Aggarwal4a686502019-06-01 12:51:27 +05303202 }
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +03003203 if (!PyLong_CheckExact(k)) {
3204 Py_SETREF(k, _PyLong_Copy((PyLongObject *)k));
3205 if (k == NULL) {
3206 Py_DECREF(n);
3207 return NULL;
3208 }
3209 }
Yash Aggarwal4a686502019-06-01 12:51:27 +05303210
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003211 if (Py_SIZE(n) < 0) {
3212 PyErr_SetString(PyExc_ValueError,
3213 "n must be a non-negative integer");
3214 goto error;
Yash Aggarwal4a686502019-06-01 12:51:27 +05303215 }
Miss Islington (bot)599f7ec2019-06-16 04:38:07 -07003216 if (Py_SIZE(k) < 0) {
3217 PyErr_SetString(PyExc_ValueError,
3218 "k must be a non-negative integer");
3219 goto error;
3220 }
3221
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003222 /* k = min(k, n - k) */
3223 temp = PyNumber_Subtract(n, k);
3224 if (temp == NULL) {
3225 goto error;
Yash Aggarwal4a686502019-06-01 12:51:27 +05303226 }
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003227 if (Py_SIZE(temp) < 0) {
3228 Py_DECREF(temp);
Raymond Hettinger963eb0f2019-06-04 01:23:06 -07003229 result = PyLong_FromLong(0);
3230 goto done;
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003231 }
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +03003232 cmp = PyObject_RichCompareBool(temp, k, Py_LT);
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003233 if (cmp > 0) {
3234 Py_SETREF(k, temp);
Yash Aggarwal4a686502019-06-01 12:51:27 +05303235 }
3236 else {
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003237 Py_DECREF(temp);
3238 if (cmp < 0) {
3239 goto error;
3240 }
Yash Aggarwal4a686502019-06-01 12:51:27 +05303241 }
3242
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003243 factors = PyLong_AsLongLongAndOverflow(k, &overflow);
3244 if (overflow > 0) {
Yash Aggarwal4a686502019-06-01 12:51:27 +05303245 PyErr_Format(PyExc_OverflowError,
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003246 "min(n - k, k) must not exceed %lld",
Yash Aggarwal4a686502019-06-01 12:51:27 +05303247 LLONG_MAX);
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003248 goto error;
Yash Aggarwal4a686502019-06-01 12:51:27 +05303249 }
Miss Islington (bot)599f7ec2019-06-16 04:38:07 -07003250 if (factors == -1) {
3251 /* k is nonnegative, so a return value of -1 can only indicate error */
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003252 goto error;
Yash Aggarwal4a686502019-06-01 12:51:27 +05303253 }
3254
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003255 if (factors == 0) {
3256 result = PyLong_FromLong(1);
3257 goto done;
Yash Aggarwal4a686502019-06-01 12:51:27 +05303258 }
3259
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003260 result = n;
3261 Py_INCREF(result);
3262 if (factors == 1) {
3263 goto done;
Yash Aggarwal4a686502019-06-01 12:51:27 +05303264 }
3265
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003266 factor = n;
3267 Py_INCREF(factor);
3268 for (i = 1; i < factors; ++i) {
3269 Py_SETREF(factor, PyNumber_Subtract(factor, _PyLong_One));
3270 if (factor == NULL) {
3271 goto error;
3272 }
3273 Py_SETREF(result, PyNumber_Multiply(result, factor));
3274 if (result == NULL) {
3275 goto error;
3276 }
Yash Aggarwal4a686502019-06-01 12:51:27 +05303277
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003278 temp = PyLong_FromUnsignedLongLong((unsigned long long)i + 1);
3279 if (temp == NULL) {
3280 goto error;
3281 }
3282 Py_SETREF(result, PyNumber_FloorDivide(result, temp));
3283 Py_DECREF(temp);
3284 if (result == NULL) {
3285 goto error;
3286 }
3287 }
3288 Py_DECREF(factor);
Yash Aggarwal4a686502019-06-01 12:51:27 +05303289
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003290done:
3291 Py_DECREF(n);
3292 Py_DECREF(k);
3293 return result;
3294
3295error:
3296 Py_XDECREF(factor);
3297 Py_XDECREF(result);
3298 Py_DECREF(n);
3299 Py_DECREF(k);
Yash Aggarwal4a686502019-06-01 12:51:27 +05303300 return NULL;
3301}
3302
3303
Barry Warsaw8b43b191996-12-09 22:32:36 +00003304static PyMethodDef math_methods[] = {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003305 {"acos", math_acos, METH_O, math_acos_doc},
3306 {"acosh", math_acosh, METH_O, math_acosh_doc},
3307 {"asin", math_asin, METH_O, math_asin_doc},
3308 {"asinh", math_asinh, METH_O, math_asinh_doc},
3309 {"atan", math_atan, METH_O, math_atan_doc},
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02003310 {"atan2", (PyCFunction)(void(*)(void))math_atan2, METH_FASTCALL, math_atan2_doc},
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003311 {"atanh", math_atanh, METH_O, math_atanh_doc},
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02003312 MATH_CEIL_METHODDEF
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02003313 {"copysign", (PyCFunction)(void(*)(void))math_copysign, METH_FASTCALL, math_copysign_doc},
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003314 {"cos", math_cos, METH_O, math_cos_doc},
3315 {"cosh", math_cosh, METH_O, math_cosh_doc},
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02003316 MATH_DEGREES_METHODDEF
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07003317 MATH_DIST_METHODDEF
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003318 {"erf", math_erf, METH_O, math_erf_doc},
3319 {"erfc", math_erfc, METH_O, math_erfc_doc},
3320 {"exp", math_exp, METH_O, math_exp_doc},
3321 {"expm1", math_expm1, METH_O, math_expm1_doc},
3322 {"fabs", math_fabs, METH_O, math_fabs_doc},
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02003323 MATH_FACTORIAL_METHODDEF
3324 MATH_FLOOR_METHODDEF
3325 MATH_FMOD_METHODDEF
3326 MATH_FREXP_METHODDEF
3327 MATH_FSUM_METHODDEF
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003328 {"gamma", math_gamma, METH_O, math_gamma_doc},
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02003329 MATH_GCD_METHODDEF
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02003330 {"hypot", (PyCFunction)(void(*)(void))math_hypot, METH_FASTCALL, math_hypot_doc},
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02003331 MATH_ISCLOSE_METHODDEF
3332 MATH_ISFINITE_METHODDEF
3333 MATH_ISINF_METHODDEF
3334 MATH_ISNAN_METHODDEF
Mark Dickinson73934b92019-05-18 12:29:50 +01003335 MATH_ISQRT_METHODDEF
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02003336 MATH_LDEXP_METHODDEF
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003337 {"lgamma", math_lgamma, METH_O, math_lgamma_doc},
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02003338 MATH_LOG_METHODDEF
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003339 {"log1p", math_log1p, METH_O, math_log1p_doc},
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02003340 MATH_LOG10_METHODDEF
3341 MATH_LOG2_METHODDEF
3342 MATH_MODF_METHODDEF
3343 MATH_POW_METHODDEF
3344 MATH_RADIANS_METHODDEF
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02003345 {"remainder", (PyCFunction)(void(*)(void))math_remainder, METH_FASTCALL, math_remainder_doc},
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003346 {"sin", math_sin, METH_O, math_sin_doc},
3347 {"sinh", math_sinh, METH_O, math_sinh_doc},
3348 {"sqrt", math_sqrt, METH_O, math_sqrt_doc},
3349 {"tan", math_tan, METH_O, math_tan_doc},
3350 {"tanh", math_tanh, METH_O, math_tanh_doc},
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02003351 MATH_TRUNC_METHODDEF
Pablo Galindobc098512019-02-07 07:04:02 +00003352 MATH_PROD_METHODDEF
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +03003353 MATH_PERM_METHODDEF
Yash Aggarwal4a686502019-06-01 12:51:27 +05303354 MATH_COMB_METHODDEF
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003355 {NULL, NULL} /* sentinel */
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00003356};
3357
Guido van Rossumc6e22901998-12-04 19:26:43 +00003358
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00003359PyDoc_STRVAR(module_doc,
Ned Batchelder6faad352019-05-17 05:59:14 -04003360"This module provides access to the mathematical functions\n"
3361"defined by the C standard.");
Guido van Rossumc6e22901998-12-04 19:26:43 +00003362
Martin v. Löwis1a214512008-06-11 05:26:20 +00003363
3364static struct PyModuleDef mathmodule = {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003365 PyModuleDef_HEAD_INIT,
3366 "math",
3367 module_doc,
3368 -1,
3369 math_methods,
3370 NULL,
3371 NULL,
3372 NULL,
3373 NULL
Martin v. Löwis1a214512008-06-11 05:26:20 +00003374};
3375
Mark Hammondfe51c6d2002-08-02 02:27:13 +00003376PyMODINIT_FUNC
Martin v. Löwis1a214512008-06-11 05:26:20 +00003377PyInit_math(void)
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00003378{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003379 PyObject *m;
Tim Petersfe71f812001-08-07 22:10:00 +00003380
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003381 m = PyModule_Create(&mathmodule);
3382 if (m == NULL)
3383 goto finally;
Barry Warsawfc93f751996-12-17 00:47:03 +00003384
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003385 PyModule_AddObject(m, "pi", PyFloat_FromDouble(Py_MATH_PI));
3386 PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E));
Guido van Rossum0a891d72016-08-15 09:12:52 -07003387 PyModule_AddObject(m, "tau", PyFloat_FromDouble(Py_MATH_TAU)); /* 2pi */
Mark Dickinsona5d0c7c2015-01-11 11:55:29 +00003388 PyModule_AddObject(m, "inf", PyFloat_FromDouble(m_inf()));
3389#if !defined(PY_NO_SHORT_FLOAT_REPR) || defined(Py_NAN)
3390 PyModule_AddObject(m, "nan", PyFloat_FromDouble(m_nan()));
3391#endif
Barry Warsawfc93f751996-12-17 00:47:03 +00003392
Mark Dickinsona5d0c7c2015-01-11 11:55:29 +00003393 finally:
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003394 return m;
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00003395}