blob: e83ba2734d29aae39d708a2dcd8150201822091b [file] [log] [blame]
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001.. _advanced:
2
3Advanced topics
4###############
5
Wenzel Jakob93296692015-10-13 23:21:54 +02006For brevity, the rest of this chapter assumes that the following two lines are
7present:
8
9.. code-block:: cpp
10
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020011 #include <pybind11/pybind11.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020012
Wenzel Jakob10e62e12015-10-15 22:46:07 +020013 namespace py = pybind11;
Wenzel Jakob93296692015-10-13 23:21:54 +020014
Wenzel Jakobde3ad072016-02-02 11:38:21 +010015Exporting constants and mutable objects
16=======================================
17
18To expose a C++ constant, use the ``attr`` function to register it in a module
19as shown below. The ``int_`` class is one of many small wrapper objects defined
20in ``pybind11/pytypes.h``. General objects (including integers) can also be
21converted using the function ``cast``.
22
23.. code-block:: cpp
24
25 PYBIND11_PLUGIN(example) {
26 py::module m("example", "pybind11 example plugin");
27 m.attr("MY_CONSTANT") = py::int_(123);
28 m.attr("MY_CONSTANT_2") = py::cast(new MyObject());
29 }
30
Wenzel Jakob28f98aa2015-10-13 02:57:16 +020031Operator overloading
32====================
33
Wenzel Jakob93296692015-10-13 23:21:54 +020034Suppose that we're given the following ``Vector2`` class with a vector addition
35and scalar multiplication operation, all implemented using overloaded operators
36in C++.
37
38.. code-block:: cpp
39
40 class Vector2 {
41 public:
42 Vector2(float x, float y) : x(x), y(y) { }
43
Wenzel Jakob93296692015-10-13 23:21:54 +020044 Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); }
45 Vector2 operator*(float value) const { return Vector2(x * value, y * value); }
46 Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; }
47 Vector2& operator*=(float v) { x *= v; y *= v; return *this; }
48
Wenzel Jakobf64feaf2016-04-28 14:33:45 +020049 friend Vector2 operator*(float f, const Vector2 &v) {
50 return Vector2(f * v.x, f * v.y);
51 }
Wenzel Jakob93296692015-10-13 23:21:54 +020052
Wenzel Jakobf64feaf2016-04-28 14:33:45 +020053 std::string toString() const {
54 return "[" + std::to_string(x) + ", " + std::to_string(y) + "]";
55 }
Wenzel Jakob93296692015-10-13 23:21:54 +020056 private:
57 float x, y;
58 };
59
60The following snippet shows how the above operators can be conveniently exposed
61to Python.
62
63.. code-block:: cpp
64
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020065 #include <pybind11/operators.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020066
Wenzel Jakobb1b71402015-10-18 16:48:30 +020067 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020068 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +020069
70 py::class_<Vector2>(m, "Vector2")
71 .def(py::init<float, float>())
72 .def(py::self + py::self)
73 .def(py::self += py::self)
74 .def(py::self *= float())
75 .def(float() * py::self)
76 .def("__repr__", &Vector2::toString);
77
78 return m.ptr();
79 }
80
81Note that a line like
82
83.. code-block:: cpp
84
85 .def(py::self * float())
86
87is really just short hand notation for
88
89.. code-block:: cpp
90
91 .def("__mul__", [](const Vector2 &a, float b) {
92 return a * b;
93 })
94
95This can be useful for exposing additional operators that don't exist on the
96C++ side, or to perform other types of customization.
97
98.. note::
99
100 To use the more convenient ``py::self`` notation, the additional
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200101 header file :file:`pybind11/operators.h` must be included.
Wenzel Jakob93296692015-10-13 23:21:54 +0200102
103.. seealso::
104
105 The file :file:`example/example3.cpp` contains a complete example that
106 demonstrates how to work with overloaded operators in more detail.
107
108Callbacks and passing anonymous functions
109=========================================
110
111The C++11 standard brought lambda functions and the generic polymorphic
112function wrapper ``std::function<>`` to the C++ programming language, which
113enable powerful new ways of working with functions. Lambda functions come in
114two flavors: stateless lambda function resemble classic function pointers that
115link to an anonymous piece of code, while stateful lambda functions
116additionally depend on captured variables that are stored in an anonymous
117*lambda closure object*.
118
119Here is a simple example of a C++ function that takes an arbitrary function
120(stateful or stateless) with signature ``int -> int`` as an argument and runs
121it with the value 10.
122
123.. code-block:: cpp
124
125 int func_arg(const std::function<int(int)> &f) {
126 return f(10);
127 }
128
129The example below is more involved: it takes a function of signature ``int -> int``
130and returns another function of the same kind. The return value is a stateful
131lambda function, which stores the value ``f`` in the capture object and adds 1 to
132its return value upon execution.
133
134.. code-block:: cpp
135
136 std::function<int(int)> func_ret(const std::function<int(int)> &f) {
137 return [f](int i) {
138 return f(i) + 1;
139 };
140 }
141
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200142After including the extra header file :file:`pybind11/functional.h`, it is almost
Wenzel Jakob93296692015-10-13 23:21:54 +0200143trivial to generate binding code for both of these functions.
144
145.. code-block:: cpp
146
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200147 #include <pybind11/functional.h>
Wenzel Jakob93296692015-10-13 23:21:54 +0200148
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200149 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200150 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200151
152 m.def("func_arg", &func_arg);
153 m.def("func_ret", &func_ret);
154
155 return m.ptr();
156 }
157
158The following interactive session shows how to call them from Python.
159
160.. code-block:: python
161
162 $ python
163 >>> import example
164 >>> def square(i):
165 ... return i * i
166 ...
167 >>> example.func_arg(square)
168 100L
169 >>> square_plus_1 = example.func_ret(square)
170 >>> square_plus_1(4)
171 17L
172 >>>
173
174.. note::
175
176 This functionality is very useful when generating bindings for callbacks in
177 C++ libraries (e.g. a graphical user interface library).
178
179 The file :file:`example/example5.cpp` contains a complete example that
180 demonstrates how to work with callbacks and anonymous functions in more detail.
181
Wenzel Jakoba4175d62015-11-17 08:30:34 +0100182.. warning::
183
184 Keep in mind that passing a function from C++ to Python (or vice versa)
185 will instantiate a piece of wrapper code that translates function
186 invocations between the two languages. Copying the same function back and
187 forth between Python and C++ many times in a row will cause these wrappers
188 to accumulate, which can decrease performance.
189
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200190Overriding virtual functions in Python
191======================================
192
Wenzel Jakob93296692015-10-13 23:21:54 +0200193Suppose that a C++ class or interface has a virtual function that we'd like to
194to override from within Python (we'll focus on the class ``Animal``; ``Dog`` is
195given as a specific example of how one would do this with traditional C++
196code).
197
198.. code-block:: cpp
199
200 class Animal {
201 public:
202 virtual ~Animal() { }
203 virtual std::string go(int n_times) = 0;
204 };
205
206 class Dog : public Animal {
207 public:
208 std::string go(int n_times) {
209 std::string result;
210 for (int i=0; i<n_times; ++i)
211 result += "woof! ";
212 return result;
213 }
214 };
215
216Let's also suppose that we are given a plain function which calls the
217function ``go()`` on an arbitrary ``Animal`` instance.
218
219.. code-block:: cpp
220
221 std::string call_go(Animal *animal) {
222 return animal->go(3);
223 }
224
225Normally, the binding code for these classes would look as follows:
226
227.. code-block:: cpp
228
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200229 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200230 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200231
232 py::class_<Animal> animal(m, "Animal");
233 animal
234 .def("go", &Animal::go);
235
236 py::class_<Dog>(m, "Dog", animal)
237 .def(py::init<>());
238
239 m.def("call_go", &call_go);
240
241 return m.ptr();
242 }
243
244However, these bindings are impossible to extend: ``Animal`` is not
245constructible, and we clearly require some kind of "trampoline" that
246redirects virtual calls back to Python.
247
248Defining a new type of ``Animal`` from within Python is possible but requires a
249helper class that is defined as follows:
250
251.. code-block:: cpp
252
253 class PyAnimal : public Animal {
254 public:
255 /* Inherit the constructors */
256 using Animal::Animal;
257
258 /* Trampoline (need one for each virtual function) */
259 std::string go(int n_times) {
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200260 PYBIND11_OVERLOAD_PURE(
Wenzel Jakob93296692015-10-13 23:21:54 +0200261 std::string, /* Return type */
262 Animal, /* Parent class */
263 go, /* Name of function */
264 n_times /* Argument(s) */
265 );
266 }
267 };
268
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200269The macro :func:`PYBIND11_OVERLOAD_PURE` should be used for pure virtual
270functions, and :func:`PYBIND11_OVERLOAD` should be used for functions which have
Wenzel Jakob93296692015-10-13 23:21:54 +0200271a default implementation. The binding code also needs a few minor adaptations
272(highlighted):
273
274.. code-block:: cpp
275 :emphasize-lines: 4,6,7
276
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200277 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200278 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200279
280 py::class_<PyAnimal> animal(m, "Animal");
281 animal
282 .alias<Animal>()
283 .def(py::init<>())
284 .def("go", &Animal::go);
285
286 py::class_<Dog>(m, "Dog", animal)
287 .def(py::init<>());
288
289 m.def("call_go", &call_go);
290
291 return m.ptr();
292 }
293
294Importantly, the trampoline helper class is used as the template argument to
295:class:`class_`, and a call to :func:`class_::alias` informs the binding
296generator that this is merely an alias for the underlying type ``Animal``.
297Following this, we are able to define a constructor as usual.
298
299The Python session below shows how to override ``Animal::go`` and invoke it via
300a virtual method call.
301
Wenzel Jakobde3ad072016-02-02 11:38:21 +0100302.. code-block:: python
Wenzel Jakob93296692015-10-13 23:21:54 +0200303
304 >>> from example import *
305 >>> d = Dog()
306 >>> call_go(d)
307 u'woof! woof! woof! '
308 >>> class Cat(Animal):
309 ... def go(self, n_times):
310 ... return "meow! " * n_times
311 ...
312 >>> c = Cat()
313 >>> call_go(c)
314 u'meow! meow! meow! '
315
316.. seealso::
317
318 The file :file:`example/example12.cpp` contains a complete example that
319 demonstrates how to override virtual functions using pybind11 in more
320 detail.
321
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100322
323Global Interpreter Lock (GIL)
324=============================
325
326The classes :class:`gil_scoped_release` and :class:`gil_scoped_acquire` can be
327used to acquire and release the global interpreter lock in the body of a C++
328function call. In this way, long-running C++ code can be parallelized using
329multiple Python threads. Taking the previous section as an example, this could
330be realized as follows (important changes highlighted):
331
332.. code-block:: cpp
333 :emphasize-lines: 8,9,33,34
334
335 class PyAnimal : public Animal {
336 public:
337 /* Inherit the constructors */
338 using Animal::Animal;
339
340 /* Trampoline (need one for each virtual function) */
341 std::string go(int n_times) {
342 /* Acquire GIL before calling Python code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100343 py::gil_scoped_acquire acquire;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100344
345 PYBIND11_OVERLOAD_PURE(
346 std::string, /* Return type */
347 Animal, /* Parent class */
348 go, /* Name of function */
349 n_times /* Argument(s) */
350 );
351 }
352 };
353
354 PYBIND11_PLUGIN(example) {
355 py::module m("example", "pybind11 example plugin");
356
357 py::class_<PyAnimal> animal(m, "Animal");
358 animal
359 .alias<Animal>()
360 .def(py::init<>())
361 .def("go", &Animal::go);
362
363 py::class_<Dog>(m, "Dog", animal)
364 .def(py::init<>());
365
366 m.def("call_go", [](Animal *animal) -> std::string {
367 /* Release GIL before calling into (potentially long-running) C++ code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100368 py::gil_scoped_release release;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100369 return call_go(animal);
370 });
371
372 return m.ptr();
373 }
374
Wenzel Jakob93296692015-10-13 23:21:54 +0200375Passing STL data structures
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200376===========================
377
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200378When including the additional header file :file:`pybind11/stl.h`, conversions
Wenzel Jakob978e3762016-04-07 18:00:41 +0200379between ``std::vector<>``, ``std::list<>``, ``std::set<>``, and ``std::map<>``
380and the Python ``list``, ``set`` and ``dict`` data structures are automatically
381enabled. The types ``std::pair<>`` and ``std::tuple<>`` are already supported
382out of the box with just the core :file:`pybind11/pybind11.h` header.
Wenzel Jakob93296692015-10-13 23:21:54 +0200383
384.. note::
385
Wenzel Jakob44db04f2015-12-14 12:40:45 +0100386 Arbitrary nesting of any of these types is supported.
Wenzel Jakob93296692015-10-13 23:21:54 +0200387
388.. seealso::
389
390 The file :file:`example/example2.cpp` contains a complete example that
391 demonstrates how to pass STL data types in more detail.
392
Wenzel Jakobb2825952016-04-13 23:33:00 +0200393Binding sequence data types, iterators, the slicing protocol, etc.
394==================================================================
Wenzel Jakob93296692015-10-13 23:21:54 +0200395
396Please refer to the supplemental example for details.
397
398.. seealso::
399
400 The file :file:`example/example6.cpp` contains a complete example that
401 shows how to bind a sequence data type, including length queries
402 (``__len__``), iterators (``__iter__``), the slicing protocol and other
403 kinds of useful operations.
404
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200405Return value policies
406=====================
407
Wenzel Jakob93296692015-10-13 23:21:54 +0200408Python and C++ use wildly different ways of managing the memory and lifetime of
409objects managed by them. This can lead to issues when creating bindings for
410functions that return a non-trivial type. Just by looking at the type
411information, it is not clear whether Python should take charge of the returned
412value and eventually free its resources, or if this is handled on the C++ side.
413For this reason, pybind11 provides a several `return value policy` annotations
414that can be passed to the :func:`module::def` and :func:`class_::def`
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100415functions. The default policy is :enum:`return_value_policy::automatic`.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200416
Wenzel Jakobf64feaf2016-04-28 14:33:45 +0200417.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
418
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200419+--------------------------------------------------+----------------------------------------------------------------------------+
420| Return value policy | Description |
421+==================================================+============================================================================+
422| :enum:`return_value_policy::automatic` | This is the default return value policy, which falls back to the policy |
423| | :enum:`return_value_policy::take_ownership` when the return value is a |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200424| | pointer. Otherwise, it uses :enum:`return_value::move` or |
425| | :enum:`return_value::copy` for rvalue and lvalue references, respectively. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200426| | See below for a description of what all of these different policies do. |
427+--------------------------------------------------+----------------------------------------------------------------------------+
428| :enum:`return_value_policy::automatic_reference` | As above, but use policy :enum:`return_value_policy::reference` when the |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200429| | return value is a pointer. You probably won't need to use this. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200430+--------------------------------------------------+----------------------------------------------------------------------------+
431| :enum:`return_value_policy::take_ownership` | Reference an existing object (i.e. do not create a new copy) and take |
432| | ownership. Python will call the destructor and delete operator when the |
433| | object's reference count reaches zero. Undefined behavior ensues when the |
434| | C++ side does the same.. |
435+--------------------------------------------------+----------------------------------------------------------------------------+
436| :enum:`return_value_policy::copy` | Create a new copy of the returned object, which will be owned by Python. |
437| | This policy is comparably safe because the lifetimes of the two instances |
438| | are decoupled. |
439+--------------------------------------------------+----------------------------------------------------------------------------+
440| :enum:`return_value_policy::move` | Use ``std::move`` to move the return value contents into a new instance |
441| | that will be owned by Python. This policy is comparably safe because the |
442| | lifetimes of the two instances (move source and destination) are decoupled.|
443+--------------------------------------------------+----------------------------------------------------------------------------+
444| :enum:`return_value_policy::reference` | Reference an existing object, but do not take ownership. The C++ side is |
445| | responsible for managing the object's lifetime and deallocating it when |
446| | it is no longer used. Warning: undefined behavior will ensue when the C++ |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200447| | side deletes an object that is still referenced and used by Python. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200448+--------------------------------------------------+----------------------------------------------------------------------------+
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200449| :enum:`return_value_policy::reference_internal` | This policy only applies to methods and properties. It references the |
450| | object without taking ownership similar to the above |
451| | :enum:`return_value_policy::reference` policy. In contrast to that policy, |
452| | the function or property's implicit ``this`` argument (called the *parent*)|
453| | is considered to be the the owner of the return value (the *child*). |
454| | pybind11 then couples the lifetime of the parent to the child via a |
455| | reference relationship that ensures that the parent cannot be garbage |
456| | collected while Python is still using the child. More advanced variations |
457| | of this scheme are also possible using combinations of |
458| | :enum:`return_value_policy::reference` and the :class:`keep_alive` call |
459| | policy described next. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200460+--------------------------------------------------+----------------------------------------------------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +0200461
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200462The following example snippet shows a use case of the
Wenzel Jakob93296692015-10-13 23:21:54 +0200463:enum:`return_value_policy::reference_internal` policy.
464
465.. code-block:: cpp
466
467 class Example {
468 public:
469 Internal &get_internal() { return internal; }
470 private:
471 Internal internal;
472 };
473
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200474 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200475 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200476
477 py::class_<Example>(m, "Example")
478 .def(py::init<>())
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200479 .def("get_internal", &Example::get_internal, "Return the internal data",
480 py::return_value_policy::reference_internal);
Wenzel Jakob93296692015-10-13 23:21:54 +0200481
482 return m.ptr();
483 }
484
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200485.. warning::
486
487 Code with invalid call policies might access unitialized memory or free
488 data structures multiple times, which can lead to hard-to-debug
489 non-determinism and segmentation faults, hence it is worth spending the
490 time to understand all the different options in the table above.
491
492.. note::
493
494 The next section on :ref:`call_policies` discusses *call policies* that can be
495 specified *in addition* to a return value policy from the list above. Call
496 policies indicate reference relationships that can involve both return values
497 and parameters of functions.
498
499.. note::
500
501 As an alternative to elaborate call policies and lifetime management logic,
502 consider using smart pointers (see the section on :ref:`smart_pointers` for
503 details). Smart pointers can tell whether an object is still referenced from
504 C++ or Python, which generally eliminates the kinds of inconsistencies that
505 can lead to crashes or undefined behavior. For functions returning smart
506 pointers, it is not necessary to specify a return value policy.
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100507
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200508.. _call_policies:
509
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100510Additional call policies
511========================
512
513In addition to the above return value policies, further `call policies` can be
514specified to indicate dependencies between parameters. There is currently just
515one policy named ``keep_alive<Nurse, Patient>``, which indicates that the
516argument with index ``Patient`` should be kept alive at least until the
517argument with index ``Nurse`` is freed by the garbage collector; argument
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200518indices start at one, while zero refers to the return value. For methods, index
519one refers to the implicit ``this`` pointer, while regular arguments begin at
520index two. Arbitrarily many call policies can be specified.
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100521
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200522Consider the following example: the binding code for a list append operation
523that ties the lifetime of the newly added element to the underlying container
524might be declared as follows:
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100525
526.. code-block:: cpp
527
528 py::class_<List>(m, "List")
529 .def("append", &List::append, py::keep_alive<1, 2>());
530
531.. note::
532
533 ``keep_alive`` is analogous to the ``with_custodian_and_ward`` (if Nurse,
534 Patient != 0) and ``with_custodian_and_ward_postcall`` (if Nurse/Patient ==
535 0) policies from Boost.Python.
536
Wenzel Jakob61587162016-01-18 22:38:52 +0100537.. seealso::
538
539 The file :file:`example/example13.cpp` contains a complete example that
540 demonstrates using :class:`keep_alive` in more detail.
541
Wenzel Jakob93296692015-10-13 23:21:54 +0200542Implicit type conversions
543=========================
544
545Suppose that instances of two types ``A`` and ``B`` are used in a project, and
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200546that an ``A`` can easily be converted into an instance of type ``B`` (examples of this
Wenzel Jakob93296692015-10-13 23:21:54 +0200547could be a fixed and an arbitrary precision number type).
548
549.. code-block:: cpp
550
551 py::class_<A>(m, "A")
552 /// ... members ...
553
554 py::class_<B>(m, "B")
555 .def(py::init<A>())
556 /// ... members ...
557
558 m.def("func",
559 [](const B &) { /* .... */ }
560 );
561
562To invoke the function ``func`` using a variable ``a`` containing an ``A``
563instance, we'd have to write ``func(B(a))`` in Python. On the other hand, C++
564will automatically apply an implicit type conversion, which makes it possible
565to directly write ``func(a)``.
566
567In this situation (i.e. where ``B`` has a constructor that converts from
568``A``), the following statement enables similar implicit conversions on the
569Python side:
570
571.. code-block:: cpp
572
573 py::implicitly_convertible<A, B>();
574
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200575Unique pointers
576===============
577
578Given a class ``Example`` with Python bindings, it's possible to return
579instances wrapped in C++11 unique pointers, like so
580
581.. code-block:: cpp
582
583 std::unique_ptr<Example> create_example() { return std::unique_ptr<Example>(new Example()); }
584
585.. code-block:: cpp
586
587 m.def("create_example", &create_example);
588
589In other words, there is nothing special that needs to be done. While returning
590unique pointers in this way is allowed, it is *illegal* to use them as function
591arguments. For instance, the following function signature cannot be processed
592by pybind11.
593
594.. code-block:: cpp
595
596 void do_something_with_example(std::unique_ptr<Example> ex) { ... }
597
598The above signature would imply that Python needs to give up ownership of an
599object that is passed to this function, which is generally not possible (for
600instance, the object might be referenced elsewhere).
601
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200602.. _smart_pointers:
603
Wenzel Jakob93296692015-10-13 23:21:54 +0200604Smart pointers
605==============
606
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200607This section explains how to pass values that are wrapped in "smart" pointer
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200608types with internal reference counting. For the simpler C++11 unique pointers,
609refer to the previous section.
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200610
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200611The binding generator for classes, :class:`class_`, takes an optional second
Wenzel Jakob93296692015-10-13 23:21:54 +0200612template type, which denotes a special *holder* type that is used to manage
613references to the object. When wrapping a type named ``Type``, the default
614value of this template parameter is ``std::unique_ptr<Type>``, which means that
615the object is deallocated when Python's reference count goes to zero.
616
Wenzel Jakob1853b652015-10-18 15:38:50 +0200617It is possible to switch to other types of reference counting wrappers or smart
618pointers, which is useful in codebases that rely on them. For instance, the
619following snippet causes ``std::shared_ptr`` to be used instead.
Wenzel Jakob93296692015-10-13 23:21:54 +0200620
621.. code-block:: cpp
622
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100623 py::class_<Example, std::shared_ptr<Example> /* <- holder type */> obj(m, "Example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100624
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100625Note that any particular class can only be associated with a single holder type.
Wenzel Jakob93296692015-10-13 23:21:54 +0200626
Wenzel Jakob1853b652015-10-18 15:38:50 +0200627To enable transparent conversions for functions that take shared pointers as an
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100628argument or that return them, a macro invocation similar to the following must
Wenzel Jakob1853b652015-10-18 15:38:50 +0200629be declared at the top level before any binding code:
630
631.. code-block:: cpp
632
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200633 PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>);
Wenzel Jakob1853b652015-10-18 15:38:50 +0200634
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100635.. note::
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100636
637 The first argument of :func:`PYBIND11_DECLARE_HOLDER_TYPE` should be a
638 placeholder name that is used as a template parameter of the second
639 argument. Thus, feel free to use any identifier, but use it consistently on
640 both sides; also, don't use the name of a type that already exists in your
641 codebase.
642
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100643One potential stumbling block when using holder types is that they need to be
644applied consistently. Can you guess what's broken about the following binding
645code?
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100646
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100647.. code-block:: cpp
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100648
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100649 class Child { };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100650
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100651 class Parent {
652 public:
653 Parent() : child(std::make_shared<Child>()) { }
654 Child *get_child() { return child.get(); } /* Hint: ** DON'T DO THIS ** */
655 private:
656 std::shared_ptr<Child> child;
657 };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100658
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100659 PYBIND11_PLUGIN(example) {
660 py::module m("example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100661
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100662 py::class_<Child, std::shared_ptr<Child>>(m, "Child");
663
664 py::class_<Parent, std::shared_ptr<Parent>>(m, "Parent")
665 .def(py::init<>())
666 .def("get_child", &Parent::get_child);
667
668 return m.ptr();
669 }
670
671The following Python code will cause undefined behavior (and likely a
672segmentation fault).
673
674.. code-block:: python
675
676 from example import Parent
677 print(Parent().get_child())
678
679The problem is that ``Parent::get_child()`` returns a pointer to an instance of
680``Child``, but the fact that this instance is already managed by
681``std::shared_ptr<...>`` is lost when passing raw pointers. In this case,
682pybind11 will create a second independent ``std::shared_ptr<...>`` that also
683claims ownership of the pointer. In the end, the object will be freed **twice**
684since these shared pointers have no way of knowing about each other.
685
686There are two ways to resolve this issue:
687
6881. For types that are managed by a smart pointer class, never use raw pointers
689 in function arguments or return values. In other words: always consistently
690 wrap pointers into their designated holder types (such as
691 ``std::shared_ptr<...>``). In this case, the signature of ``get_child()``
692 should be modified as follows:
693
694.. code-block:: cpp
695
696 std::shared_ptr<Child> get_child() { return child; }
697
6982. Adjust the definition of ``Child`` by specifying
699 ``std::enable_shared_from_this<T>`` (see cppreference_ for details) as a
700 base class. This adds a small bit of information to ``Child`` that allows
701 pybind11 to realize that there is already an existing
702 ``std::shared_ptr<...>`` and communicate with it. In this case, the
703 declaration of ``Child`` should look as follows:
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100704
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100705.. _cppreference: http://en.cppreference.com/w/cpp/memory/enable_shared_from_this
706
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100707.. code-block:: cpp
708
709 class Child : public std::enable_shared_from_this<Child> { };
710
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100711.. seealso::
712
713 The file :file:`example/example8.cpp` contains a complete example that
714 demonstrates how to work with custom reference-counting holder types in
715 more detail.
716
Wenzel Jakob93296692015-10-13 23:21:54 +0200717.. _custom_constructors:
718
719Custom constructors
720===================
721
722The syntax for binding constructors was previously introduced, but it only
723works when a constructor with the given parameters actually exists on the C++
724side. To extend this to more general cases, let's take a look at what actually
725happens under the hood: the following statement
726
727.. code-block:: cpp
728
729 py::class_<Example>(m, "Example")
730 .def(py::init<int>());
731
732is short hand notation for
733
734.. code-block:: cpp
735
736 py::class_<Example>(m, "Example")
737 .def("__init__",
738 [](Example &instance, int arg) {
739 new (&instance) Example(arg);
740 }
741 );
742
743In other words, :func:`init` creates an anonymous function that invokes an
744in-place constructor. Memory allocation etc. is already take care of beforehand
745within pybind11.
746
747Catching and throwing exceptions
748================================
749
750When C++ code invoked from Python throws an ``std::exception``, it is
751automatically converted into a Python ``Exception``. pybind11 defines multiple
752special exception classes that will map to different types of Python
753exceptions:
754
Wenzel Jakobf64feaf2016-04-28 14:33:45 +0200755.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
756
Wenzel Jakob978e3762016-04-07 18:00:41 +0200757+--------------------------------------+------------------------------+
758| C++ exception type | Python exception type |
759+======================================+==============================+
760| :class:`std::exception` | ``RuntimeError`` |
761+--------------------------------------+------------------------------+
762| :class:`std::bad_alloc` | ``MemoryError`` |
763+--------------------------------------+------------------------------+
764| :class:`std::domain_error` | ``ValueError`` |
765+--------------------------------------+------------------------------+
766| :class:`std::invalid_argument` | ``ValueError`` |
767+--------------------------------------+------------------------------+
768| :class:`std::length_error` | ``ValueError`` |
769+--------------------------------------+------------------------------+
770| :class:`std::out_of_range` | ``ValueError`` |
771+--------------------------------------+------------------------------+
772| :class:`std::range_error` | ``ValueError`` |
773+--------------------------------------+------------------------------+
774| :class:`pybind11::stop_iteration` | ``StopIteration`` (used to |
775| | implement custom iterators) |
776+--------------------------------------+------------------------------+
777| :class:`pybind11::index_error` | ``IndexError`` (used to |
778| | indicate out of bounds |
779| | accesses in ``__getitem__``, |
780| | ``__setitem__``, etc.) |
781+--------------------------------------+------------------------------+
782| :class:`pybind11::error_already_set` | Indicates that the Python |
783| | exception flag has already |
784| | been initialized |
785+--------------------------------------+------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +0200786
787When a Python function invoked from C++ throws an exception, it is converted
788into a C++ exception of type :class:`error_already_set` whose string payload
789contains a textual summary.
790
791There is also a special exception :class:`cast_error` that is thrown by
792:func:`handle::call` when the input arguments cannot be converted to Python
793objects.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200794
Wenzel Jakob9e0a0562016-05-05 20:33:54 +0200795.. _opaque:
796
797Treating STL data structures as opaque objects
798==============================================
799
800pybind11 heavily relies on a template matching mechanism to convert parameters
801and return values that are constructed from STL data types such as vectors,
802linked lists, hash tables, etc. This even works in a recursive manner, for
803instance to deal with lists of hash maps of pairs of elementary and custom
804types, etc.
805
806However, a fundamental limitation of this approach is that internal conversions
807between Python and C++ types involve a copy operation that prevents
808pass-by-reference semantics. What does this mean?
809
810Suppose we bind the following function
811
812.. code-block:: cpp
813
814 void append_1(std::vector<int> &v) {
815 v.push_back(1);
816 }
817
818and call it from Python, the following happens:
819
820.. code-block:: python
821
822 >>> v = [5, 6]
823 >>> append_1(v)
824 >>> print(v)
825 [5, 6]
826
827As you can see, when passing STL data structures by reference, modifications
828are not propagated back the Python side. A similar situation arises when
829exposing STL data structures using the ``def_readwrite`` or ``def_readonly``
830functions:
831
832.. code-block:: cpp
833
834 /* ... definition ... */
835
836 class MyClass {
837 std::vector<int> contents;
838 };
839
840 /* ... binding code ... */
841
842 py::class_<MyClass>(m, "MyClass")
843 .def(py::init<>)
844 .def_readwrite("contents", &MyClass::contents);
845
846In this case, properties can be read and written in their entirety. However, an
847``append`` operaton involving such a list type has no effect:
848
849.. code-block:: python
850
851 >>> m = MyClass()
852 >>> m.contents = [5, 6]
853 >>> print(m.contents)
854 [5, 6]
855 >>> m.contents.append(7)
856 >>> print(m.contents)
857 [5, 6]
858
859To deal with both of the above situations, pybind11 provides a macro named
860``PYBIND11_MAKE_OPAQUE(T)`` that disables the template-based conversion
861machinery of types, thus rendering them *opaque*. The contents of opaque
862objects are never inspected or extracted, hence they can be passed by
863reference. For instance, to turn ``std::vector<int>`` into an opaque type, add
864the declaration
865
866.. code-block:: cpp
867
868 PYBIND11_MAKE_OPAQUE(std::vector<int>);
869
870before any binding code (e.g. invocations to ``class_::def()``, etc.). This
871macro must be specified at the top level, since instantiates a partial template
872overload. If your binding code consists of multiple compilation units, it must
873be present in every file preceding any usage of ``std::vector<int>``. Opaque
874types must also have a corresponding ``class_`` declaration to associate them
875with a name in Python, and to define a set of available operations:
876
877.. code-block:: cpp
878
879 py::class_<std::vector<int>>(m, "IntVector")
880 .def(py::init<>())
881 .def("clear", &std::vector<int>::clear)
882 .def("pop_back", &std::vector<int>::pop_back)
883 .def("__len__", [](const std::vector<int> &v) { return v.size(); })
884 .def("__iter__", [](std::vector<int> &v) {
885 return py::make_iterator(v.begin(), v.end());
886 }, py::keep_alive<0, 1>()) /* Keep vector alive while iterator is used */
887 // ....
888
889
890.. seealso::
891
892 The file :file:`example/example14.cpp` contains a complete example that
893 demonstrates how to create and expose opaque types using pybind11 in more
894 detail.
895
896.. _eigen:
897
898Transparent conversion of dense and sparse Eigen data types
899===========================================================
900
901Eigen [#f1]_ is C++ header-based library for dense and sparse linear algebra. Due to
902its popularity and widespread adoption, pybind11 provides transparent
903conversion support between Eigen and Scientific Python linear algebra data types.
904
905Specifically, when including the optional header file :file:`pybind11/eigen.h`,
Wenzel Jakob178c8a82016-05-10 15:59:01 +0100906pybind11 will automatically and transparently convert
Wenzel Jakob9e0a0562016-05-05 20:33:54 +0200907
9081. Static and dynamic Eigen dense vectors and matrices to instances of
909 ``numpy.ndarray`` (and vice versa).
910
9111. Eigen sparse vectors and matrices to instances of
912 ``scipy.sparse.csr_matrix``/``scipy.sparse.csc_matrix`` (and vice versa).
913
914This makes it possible to bind most kinds of functions that rely on these types.
915One major caveat are functions that take Eigen matrices *by reference* and modify
916them somehow, in which case the information won't be propagated to the caller.
917
918.. code-block:: cpp
919
920 /* The Python bindings of this function won't replicate
921 the intended effect of modifying the function argument */
922 void scale_by_2(Eigen::Vector3f &v) {
923 v *= 2;
924 }
925
926To see why this is, refer to the section on :ref:`opaque` (although that
927section specifically covers STL data types, the underlying issue is the same).
928The next two sections discuss an efficient alternative for exposing the
929underlying native Eigen types as opaque objects in a way that still integrates
930with NumPy and SciPy.
931
932.. [#f1] http://eigen.tuxfamily.org
933
934.. seealso::
935
936 The file :file:`example/eigen.cpp` contains a complete example that
937 shows how to pass Eigen sparse and dense data types in more detail.
938
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200939Buffer protocol
940===============
941
942Python supports an extremely general and convenient approach for exchanging
Wenzel Jakob9e0a0562016-05-05 20:33:54 +0200943data between plugin libraries. Types can expose a buffer view [#f2]_, which
944provides fast direct access to the raw internal data representation. Suppose we
945want to bind the following simplistic Matrix class:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200946
947.. code-block:: cpp
948
949 class Matrix {
950 public:
951 Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) {
952 m_data = new float[rows*cols];
953 }
954 float *data() { return m_data; }
955 size_t rows() const { return m_rows; }
956 size_t cols() const { return m_cols; }
957 private:
958 size_t m_rows, m_cols;
959 float *m_data;
960 };
961
962The following binding code exposes the ``Matrix`` contents as a buffer object,
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200963making it possible to cast Matrices into NumPy arrays. It is even possible to
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200964completely avoid copy operations with Python expressions like
965``np.array(matrix_instance, copy = False)``.
966
967.. code-block:: cpp
968
969 py::class_<Matrix>(m, "Matrix")
970 .def_buffer([](Matrix &m) -> py::buffer_info {
971 return py::buffer_info(
Wenzel Jakob876eeab2016-05-04 22:22:48 +0200972 m.data(), /* Pointer to buffer */
973 sizeof(float), /* Size of one scalar */
974 py::format_descriptor<float>::value, /* Python struct-style format descriptor */
975 2, /* Number of dimensions */
976 { m.rows(), m.cols() }, /* Buffer dimensions */
977 { sizeof(float) * m.rows(), /* Strides (in bytes) for each index */
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200978 sizeof(float) }
979 );
980 });
981
982The snippet above binds a lambda function, which can create ``py::buffer_info``
983description records on demand describing a given matrix. The contents of
984``py::buffer_info`` mirror the Python buffer protocol specification.
985
986.. code-block:: cpp
987
988 struct buffer_info {
989 void *ptr;
990 size_t itemsize;
991 std::string format;
992 int ndim;
993 std::vector<size_t> shape;
994 std::vector<size_t> strides;
995 };
996
997To create a C++ function that can take a Python buffer object as an argument,
998simply use the type ``py::buffer`` as one of its arguments. Buffers can exist
999in a great variety of configurations, hence some safety checks are usually
1000necessary in the function body. Below, you can see an basic example on how to
1001define a custom constructor for the Eigen double precision matrix
1002(``Eigen::MatrixXd``) type, which supports initialization from compatible
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001003buffer objects (e.g. a NumPy matrix).
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001004
1005.. code-block:: cpp
1006
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001007 /* Bind MatrixXd (or some other Eigen type) to Python */
1008 typedef Eigen::MatrixXd Matrix;
1009
1010 typedef Matrix::Scalar Scalar;
1011 constexpr bool rowMajor = Matrix::Flags & Eigen::RowMajorBit;
1012
1013 py::class_<Matrix>(m, "Matrix")
1014 .def("__init__", [](Matrix &m, py::buffer b) {
Wenzel Jakobe7628532016-05-05 10:04:44 +02001015 typedef Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic> Strides;
Wenzel Jakobe7628532016-05-05 10:04:44 +02001016
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001017 /* Request a buffer descriptor from Python */
1018 py::buffer_info info = b.request();
1019
1020 /* Some sanity checks ... */
Wenzel Jakobe7628532016-05-05 10:04:44 +02001021 if (info.format != py::format_descriptor<Scalar>::value)
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001022 throw std::runtime_error("Incompatible format: expected a double array!");
1023
1024 if (info.ndim != 2)
1025 throw std::runtime_error("Incompatible buffer dimension!");
1026
Wenzel Jakobe7628532016-05-05 10:04:44 +02001027 auto strides = Strides(
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001028 info.strides[rowMajor ? 0 : 1] / sizeof(Scalar),
1029 info.strides[rowMajor ? 1 : 0] / sizeof(Scalar));
Wenzel Jakobe7628532016-05-05 10:04:44 +02001030
1031 auto map = Eigen::Map<Matrix, 0, Strides>(
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001032 static_cat<Scalar *>(info.ptr), info.shape[0], info.shape[1], strides);
Wenzel Jakobe7628532016-05-05 10:04:44 +02001033
1034 new (&m) Matrix(map);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001035 });
1036
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001037For reference, the ``def_buffer()`` call for this Eigen data type should look
1038as follows:
1039
1040.. code-block:: cpp
1041
1042 .def_buffer([](Matrix &m) -> py::buffer_info {
1043 return py::buffer_info(
1044 m.data(), /* Pointer to buffer */
1045 sizeof(Scalar), /* Size of one scalar */
1046 /* Python struct-style format descriptor */
1047 py::format_descriptor<Scalar>::value,
1048 /* Number of dimensions */
1049 2,
1050 /* Buffer dimensions */
1051 { (size_t) m.rows(),
1052 (size_t) m.cols() },
1053 /* Strides (in bytes) for each index */
1054 { sizeof(Scalar) * (rowMajor ? m.cols() : 1),
1055 sizeof(Scalar) * (rowMajor ? 1 : m.rows()) }
1056 );
1057 })
1058
1059For a much easier approach of binding Eigen types (although with some
1060limitations), refer to the section on :ref:`eigen`.
1061
Wenzel Jakob93296692015-10-13 23:21:54 +02001062.. seealso::
1063
1064 The file :file:`example/example7.cpp` contains a complete example that
1065 demonstrates using the buffer protocol with pybind11 in more detail.
1066
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001067.. [#f2] http://docs.python.org/3/c-api/buffer.html
Wenzel Jakob978e3762016-04-07 18:00:41 +02001068
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001069NumPy support
1070=============
1071
1072By exchanging ``py::buffer`` with ``py::array`` in the above snippet, we can
1073restrict the function so that it only accepts NumPy arrays (rather than any
Wenzel Jakob978e3762016-04-07 18:00:41 +02001074type of Python object satisfying the buffer protocol).
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001075
1076In many situations, we want to define a function which only accepts a NumPy
Wenzel Jakob93296692015-10-13 23:21:54 +02001077array of a certain data type. This is possible via the ``py::array_t<T>``
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001078template. For instance, the following function requires the argument to be a
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001079NumPy array containing double precision values.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001080
1081.. code-block:: cpp
1082
Wenzel Jakob93296692015-10-13 23:21:54 +02001083 void f(py::array_t<double> array);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001084
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001085When it is invoked with a different type (e.g. an integer or a list of
1086integers), the binding code will attempt to cast the input into a NumPy array
1087of the requested type. Note that this feature requires the
1088:file:``pybind11/numpy.h`` header to be included.
1089
1090Data in NumPy arrays is not guaranteed to packed in a dense manner;
1091furthermore, entries can be separated by arbitrary column and row strides.
1092Sometimes, it can be useful to require a function to only accept dense arrays
1093using either the C (row-major) or Fortran (column-major) ordering. This can be
1094accomplished via a second template argument with values ``py::array::c_style``
1095or ``py::array::f_style``.
1096
1097.. code-block:: cpp
1098
1099 void f(py::array_t<double, py::array::c_style> array);
1100
1101As before, the implementation will attempt to convert non-conforming arguments
1102into an array satisfying the specified requirements.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001103
1104Vectorizing functions
1105=====================
1106
1107Suppose we want to bind a function with the following signature to Python so
1108that it can process arbitrary NumPy array arguments (vectors, matrices, general
1109N-D arrays) in addition to its normal arguments:
1110
1111.. code-block:: cpp
1112
1113 double my_func(int x, float y, double z);
1114
Wenzel Jakob8f4eb002015-10-15 18:13:33 +02001115After including the ``pybind11/numpy.h`` header, this is extremely simple:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001116
1117.. code-block:: cpp
1118
1119 m.def("vectorized_func", py::vectorize(my_func));
1120
1121Invoking the function like below causes 4 calls to be made to ``my_func`` with
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001122each of the array elements. The significant advantage of this compared to
Wenzel Jakob978e3762016-04-07 18:00:41 +02001123solutions like ``numpy.vectorize()`` is that the loop over the elements runs
1124entirely on the C++ side and can be crunched down into a tight, optimized loop
1125by the compiler. The result is returned as a NumPy array of type
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001126``numpy.dtype.float64``.
1127
1128.. code-block:: python
1129
1130 >>> x = np.array([[1, 3],[5, 7]])
1131 >>> y = np.array([[2, 4],[6, 8]])
1132 >>> z = 3
1133 >>> result = vectorized_func(x, y, z)
1134
1135The scalar argument ``z`` is transparently replicated 4 times. The input
1136arrays ``x`` and ``y`` are automatically converted into the right types (they
1137are of type ``numpy.dtype.int64`` but need to be ``numpy.dtype.int32`` and
1138``numpy.dtype.float32``, respectively)
1139
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001140Sometimes we might want to explicitly exclude an argument from the vectorization
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001141because it makes little sense to wrap it in a NumPy array. For instance,
1142suppose the function signature was
1143
1144.. code-block:: cpp
1145
1146 double my_func(int x, float y, my_custom_type *z);
1147
1148This can be done with a stateful Lambda closure:
1149
1150.. code-block:: cpp
1151
1152 // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization)
1153 m.def("vectorized_func",
Wenzel Jakob93296692015-10-13 23:21:54 +02001154 [](py::array_t<int> x, py::array_t<float> y, my_custom_type *z) {
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001155 auto stateful_closure = [z](int x, float y) { return my_func(x, y, z); };
1156 return py::vectorize(stateful_closure)(x, y);
1157 }
1158 );
1159
Wenzel Jakob61587162016-01-18 22:38:52 +01001160In cases where the computation is too complicated to be reduced to
1161``vectorize``, it will be necessary to create and access the buffer contents
1162manually. The following snippet contains a complete example that shows how this
1163works (the code is somewhat contrived, since it could have been done more
1164simply using ``vectorize``).
1165
1166.. code-block:: cpp
1167
1168 #include <pybind11/pybind11.h>
1169 #include <pybind11/numpy.h>
1170
1171 namespace py = pybind11;
1172
1173 py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) {
1174 auto buf1 = input1.request(), buf2 = input2.request();
1175
1176 if (buf1.ndim != 1 || buf2.ndim != 1)
1177 throw std::runtime_error("Number of dimensions must be one");
1178
1179 if (buf1.shape[0] != buf2.shape[0])
1180 throw std::runtime_error("Input shapes must match");
1181
1182 auto result = py::array(py::buffer_info(
1183 nullptr, /* Pointer to data (nullptr -> ask NumPy to allocate!) */
1184 sizeof(double), /* Size of one item */
Wenzel Jakob876eeab2016-05-04 22:22:48 +02001185 py::format_descriptor<double>::value, /* Buffer format */
Wenzel Jakob61587162016-01-18 22:38:52 +01001186 buf1.ndim, /* How many dimensions? */
1187 { buf1.shape[0] }, /* Number of elements for each dimension */
1188 { sizeof(double) } /* Strides for each dimension */
1189 ));
1190
1191 auto buf3 = result.request();
1192
1193 double *ptr1 = (double *) buf1.ptr,
1194 *ptr2 = (double *) buf2.ptr,
1195 *ptr3 = (double *) buf3.ptr;
1196
1197 for (size_t idx = 0; idx < buf1.shape[0]; idx++)
1198 ptr3[idx] = ptr1[idx] + ptr2[idx];
1199
1200 return result;
1201 }
1202
1203 PYBIND11_PLUGIN(test) {
1204 py::module m("test");
1205 m.def("add_arrays", &add_arrays, "Add two NumPy arrays");
1206 return m.ptr();
1207 }
1208
Wenzel Jakob93296692015-10-13 23:21:54 +02001209.. seealso::
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001210
Wenzel Jakob93296692015-10-13 23:21:54 +02001211 The file :file:`example/example10.cpp` contains a complete example that
1212 demonstrates using :func:`vectorize` in more detail.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001213
Wenzel Jakob93296692015-10-13 23:21:54 +02001214Functions taking Python objects as arguments
1215============================================
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001216
Wenzel Jakob93296692015-10-13 23:21:54 +02001217pybind11 exposes all major Python types using thin C++ wrapper classes. These
1218wrapper classes can also be used as parameters of functions in bindings, which
1219makes it possible to directly work with native Python types on the C++ side.
1220For instance, the following statement iterates over a Python ``dict``:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001221
Wenzel Jakob93296692015-10-13 23:21:54 +02001222.. code-block:: cpp
1223
1224 void print_dict(py::dict dict) {
1225 /* Easily interact with Python types */
1226 for (auto item : dict)
1227 std::cout << "key=" << item.first << ", "
1228 << "value=" << item.second << std::endl;
1229 }
1230
1231Available types include :class:`handle`, :class:`object`, :class:`bool_`,
Wenzel Jakob27e8e102016-01-17 22:36:37 +01001232:class:`int_`, :class:`float_`, :class:`str`, :class:`bytes`, :class:`tuple`,
Wenzel Jakobf64feaf2016-04-28 14:33:45 +02001233:class:`list`, :class:`dict`, :class:`slice`, :class:`none`, :class:`capsule`,
1234:class:`iterable`, :class:`iterator`, :class:`function`, :class:`buffer`,
1235:class:`array`, and :class:`array_t`.
Wenzel Jakob93296692015-10-13 23:21:54 +02001236
Wenzel Jakob436b7312015-10-20 01:04:30 +02001237In this kind of mixed code, it is often necessary to convert arbitrary C++
1238types to Python, which can be done using :func:`cast`:
1239
1240.. code-block:: cpp
1241
1242 MyClass *cls = ..;
1243 py::object obj = py::cast(cls);
1244
1245The reverse direction uses the following syntax:
1246
1247.. code-block:: cpp
1248
1249 py::object obj = ...;
1250 MyClass *cls = obj.cast<MyClass *>();
1251
1252When conversion fails, both directions throw the exception :class:`cast_error`.
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001253It is also possible to call python functions via ``operator()``.
1254
1255.. code-block:: cpp
1256
1257 py::function f = <...>;
1258 py::object result_py = f(1234, "hello", some_instance);
1259 MyClass &result = result_py.cast<MyClass>();
1260
1261The special ``f(*args)`` and ``f(*args, **kwargs)`` syntax is also supported to
1262supply arbitrary argument and keyword lists, although these cannot be mixed
1263with other parameters.
1264
1265.. code-block:: cpp
1266
1267 py::function f = <...>;
1268 py::tuple args = py::make_tuple(1234);
1269 py::dict kwargs;
1270 kwargs["y"] = py::cast(5678);
1271 py::object result = f(*args, **kwargs);
Wenzel Jakob436b7312015-10-20 01:04:30 +02001272
Wenzel Jakob93296692015-10-13 23:21:54 +02001273.. seealso::
1274
1275 The file :file:`example/example2.cpp` contains a complete example that
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001276 demonstrates passing native Python types in more detail. The file
1277 :file:`example/example11.cpp` discusses usage of ``args`` and ``kwargs``.
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001278
1279Default arguments revisited
1280===========================
1281
1282The section on :ref:`default_args` previously discussed basic usage of default
1283arguments using pybind11. One noteworthy aspect of their implementation is that
1284default arguments are converted to Python objects right at declaration time.
1285Consider the following example:
1286
1287.. code-block:: cpp
1288
1289 py::class_<MyClass>("MyClass")
1290 .def("myFunction", py::arg("arg") = SomeType(123));
1291
1292In this case, pybind11 must already be set up to deal with values of the type
1293``SomeType`` (via a prior instantiation of ``py::class_<SomeType>``), or an
1294exception will be thrown.
1295
1296Another aspect worth highlighting is that the "preview" of the default argument
1297in the function signature is generated using the object's ``__repr__`` method.
1298If not available, the signature may not be very helpful, e.g.:
1299
1300.. code-block:: python
1301
1302 FUNCTIONS
1303 ...
1304 | myFunction(...)
Wenzel Jakob48548ea2016-01-17 22:36:44 +01001305 | Signature : (MyClass, arg : SomeType = <SomeType object at 0x101b7b080>) -> NoneType
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001306 ...
1307
1308The first way of addressing this is by defining ``SomeType.__repr__``.
1309Alternatively, it is possible to specify the human-readable preview of the
1310default argument manually using the ``arg_t`` notation:
1311
1312.. code-block:: cpp
1313
1314 py::class_<MyClass>("MyClass")
1315 .def("myFunction", py::arg_t<SomeType>("arg", SomeType(123), "SomeType(123)"));
1316
Wenzel Jakobc769fce2016-03-03 12:03:30 +01001317Sometimes it may be necessary to pass a null pointer value as a default
1318argument. In this case, remember to cast it to the underlying type in question,
1319like so:
1320
1321.. code-block:: cpp
1322
1323 py::class_<MyClass>("MyClass")
1324 .def("myFunction", py::arg("arg") = (SomeType *) nullptr);
1325
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001326Binding functions that accept arbitrary numbers of arguments and keywords arguments
1327===================================================================================
1328
1329Python provides a useful mechanism to define functions that accept arbitrary
1330numbers of arguments and keyword arguments:
1331
1332.. code-block:: cpp
1333
1334 def generic(*args, **kwargs):
1335 # .. do something with args and kwargs
1336
1337Such functions can also be created using pybind11:
1338
1339.. code-block:: cpp
1340
1341 void generic(py::args args, py::kwargs kwargs) {
1342 /// .. do something with args
1343 if (kwargs)
1344 /// .. do something with kwargs
1345 }
1346
1347 /// Binding code
1348 m.def("generic", &generic);
1349
1350(See ``example/example11.cpp``). The class ``py::args`` derives from
1351``py::list`` and ``py::kwargs`` derives from ``py::dict`` Note that the
1352``kwargs`` argument is invalid if no keyword arguments were actually provided.
1353Please refer to the other examples for details on how to iterate over these,
1354and on how to cast their entries into C++ objects.
1355
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001356Partitioning code over multiple extension modules
1357=================================================
1358
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001359It's straightforward to split binding code over multiple extension modules,
1360while referencing types that are declared elsewhere. Everything "just" works
1361without any special precautions. One exception to this rule occurs when
1362extending a type declared in another extension module. Recall the basic example
1363from Section :ref:`inheritance`.
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001364
1365.. code-block:: cpp
1366
1367 py::class_<Pet> pet(m, "Pet");
1368 pet.def(py::init<const std::string &>())
1369 .def_readwrite("name", &Pet::name);
1370
1371 py::class_<Dog>(m, "Dog", pet /* <- specify parent */)
1372 .def(py::init<const std::string &>())
1373 .def("bark", &Dog::bark);
1374
1375Suppose now that ``Pet`` bindings are defined in a module named ``basic``,
1376whereas the ``Dog`` bindings are defined somewhere else. The challenge is of
1377course that the variable ``pet`` is not available anymore though it is needed
1378to indicate the inheritance relationship to the constructor of ``class_<Dog>``.
1379However, it can be acquired as follows:
1380
1381.. code-block:: cpp
1382
1383 py::object pet = (py::object) py::module::import("basic").attr("Pet");
1384
1385 py::class_<Dog>(m, "Dog", pet)
1386 .def(py::init<const std::string &>())
1387 .def("bark", &Dog::bark);
1388
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001389Alternatively, we can rely on the ``base`` tag, which performs an automated
1390lookup of the corresponding Python type. However, this also requires invoking
1391the ``import`` function once to ensure that the pybind11 binding code of the
1392module ``basic`` has been executed.
1393
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001394.. code-block:: cpp
1395
1396 py::module::import("basic");
1397
1398 py::class_<Dog>(m, "Dog", py::base<Pet>())
1399 .def(py::init<const std::string &>())
1400 .def("bark", &Dog::bark);
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001401
Wenzel Jakob978e3762016-04-07 18:00:41 +02001402Naturally, both methods will fail when there are cyclic dependencies.
1403
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001404Note that compiling code which has its default symbol visibility set to
1405*hidden* (e.g. via the command line flag ``-fvisibility=hidden`` on GCC/Clang) can interfere with the
1406ability to access types defined in another extension module. Workarounds
1407include changing the global symbol visibility (not recommended, because it will
1408lead unnecessarily large binaries) or manually exporting types that are
1409accessed by multiple extension modules:
1410
1411.. code-block:: cpp
1412
1413 #ifdef _WIN32
1414 # define EXPORT_TYPE __declspec(dllexport)
1415 #else
1416 # define EXPORT_TYPE __attribute__ ((visibility("default")))
1417 #endif
1418
1419 class EXPORT_TYPE Dog : public Animal {
1420 ...
1421 };
1422
1423
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001424Pickling support
1425================
1426
1427Python's ``pickle`` module provides a powerful facility to serialize and
1428de-serialize a Python object graph into a binary data stream. To pickle and
Wenzel Jakob3d0e6ff2016-04-13 11:48:10 +02001429unpickle C++ classes using pybind11, two additional functions must be provided.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001430Suppose the class in question has the following signature:
1431
1432.. code-block:: cpp
1433
1434 class Pickleable {
1435 public:
1436 Pickleable(const std::string &value) : m_value(value) { }
1437 const std::string &value() const { return m_value; }
1438
1439 void setExtra(int extra) { m_extra = extra; }
1440 int extra() const { return m_extra; }
1441 private:
1442 std::string m_value;
1443 int m_extra = 0;
1444 };
1445
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001446The binding code including the requisite ``__setstate__`` and ``__getstate__`` methods [#f3]_
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001447looks as follows:
1448
1449.. code-block:: cpp
1450
1451 py::class_<Pickleable>(m, "Pickleable")
1452 .def(py::init<std::string>())
1453 .def("value", &Pickleable::value)
1454 .def("extra", &Pickleable::extra)
1455 .def("setExtra", &Pickleable::setExtra)
1456 .def("__getstate__", [](const Pickleable &p) {
1457 /* Return a tuple that fully encodes the state of the object */
1458 return py::make_tuple(p.value(), p.extra());
1459 })
1460 .def("__setstate__", [](Pickleable &p, py::tuple t) {
1461 if (t.size() != 2)
1462 throw std::runtime_error("Invalid state!");
1463
Wenzel Jakobd40885a2016-04-13 13:30:05 +02001464 /* Invoke the in-place constructor. Note that this is needed even
1465 when the object just has a trivial default constructor */
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001466 new (&p) Pickleable(t[0].cast<std::string>());
1467
1468 /* Assign any additional state */
1469 p.setExtra(t[1].cast<int>());
1470 });
1471
1472An instance can now be pickled as follows:
1473
1474.. code-block:: python
1475
1476 try:
1477 import cPickle as pickle # Use cPickle on Python 2.7
1478 except ImportError:
1479 import pickle
1480
1481 p = Pickleable("test_value")
1482 p.setExtra(15)
Wenzel Jakob81e09752016-04-30 23:13:03 +02001483 data = pickle.dumps(p, 2)
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001484
Wenzel Jakob81e09752016-04-30 23:13:03 +02001485Note that only the cPickle module is supported on Python 2.7. The second
1486argument to ``dumps`` is also crucial: it selects the pickle protocol version
14872, since the older version 1 is not supported. Newer versions are also fine—for
1488instance, specify ``-1`` to always use the latest available version. Beware:
1489failure to follow these instructions will cause important pybind11 memory
1490allocation routines to be skipped during unpickling, which will likely lead to
1491memory corruption and/or segmentation faults.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001492
1493.. seealso::
1494
1495 The file :file:`example/example15.cpp` contains a complete example that
1496 demonstrates how to pickle and unpickle types using pybind11 in more detail.
1497
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001498.. [#f3] http://docs.python.org/3/library/pickle.html#pickling-class-instances
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001499
1500Generating documentation using Sphinx
1501=====================================
1502
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001503Sphinx [#f4]_ has the ability to inspect the signatures and documentation
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001504strings in pybind11-based extension modules to automatically generate beautiful
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001505documentation in a variety formats. The pbtest repository [#f5]_ contains a
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001506simple example repository which uses this approach.
1507
1508There are two potential gotchas when using this approach: first, make sure that
1509the resulting strings do not contain any :kbd:`TAB` characters, which break the
1510docstring parsing routines. You may want to use C++11 raw string literals,
1511which are convenient for multi-line comments. Conveniently, any excess
1512indentation will be automatically be removed by Sphinx. However, for this to
1513work, it is important that all lines are indented consistently, i.e.:
1514
1515.. code-block:: cpp
1516
1517 // ok
1518 m.def("foo", &foo, R"mydelimiter(
1519 The foo function
1520
1521 Parameters
1522 ----------
1523 )mydelimiter");
1524
1525 // *not ok*
1526 m.def("foo", &foo, R"mydelimiter(The foo function
1527
1528 Parameters
1529 ----------
1530 )mydelimiter");
1531
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001532.. [#f4] http://www.sphinx-doc.org
1533.. [#f5] http://github.com/pybind/pbtest
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001534