blob: 80846c23e02d1dcbd4071b41e599dde695e0723b [file] [log] [blame]
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001/*
2 * Copyright 2012 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
caryclark@google.comb45a1b42012-05-18 20:50:33 +00007#include "Simplify.h"
caryclark@google.comfa0588f2012-04-26 21:01:06 +00008
9#undef SkASSERT
10#define SkASSERT(cond) while (!(cond)) { sk_throw(); }
11
caryclark@google.com15fa1382012-05-07 20:49:36 +000012// Terminology:
13// A Path contains one of more Contours
14// A Contour is made up of Segment array
caryclark@google.comb45a1b42012-05-18 20:50:33 +000015// A Segment is described by a Verb and a Point array with 2, 3, or 4 points
16// A Verb is one of Line, Quad(ratic), or Cubic
caryclark@google.com15fa1382012-05-07 20:49:36 +000017// A Segment contains a Span array
18// A Span is describes a portion of a Segment using starting and ending T
19// T values range from 0 to 1, where 0 is the first Point in the Segment
caryclark@google.com47580692012-07-23 12:14:49 +000020// An Edge is a Segment generated from a Span
caryclark@google.com15fa1382012-05-07 20:49:36 +000021
caryclark@google.comfa0588f2012-04-26 21:01:06 +000022// FIXME: remove once debugging is complete
caryclark@google.com47580692012-07-23 12:14:49 +000023#ifdef SK_DEBUG
24int gDebugMaxWindSum = SK_MaxS32;
25int gDebugMaxWindValue = SK_MaxS32;
26#endif
caryclark@google.comfa0588f2012-04-26 21:01:06 +000027
caryclark@google.com47580692012-07-23 12:14:49 +000028#define DEBUG_UNUSED 0 // set to expose unused functions
caryclark@google.comfa0588f2012-04-26 21:01:06 +000029
caryclark@google.com534aa5b2012-08-02 20:08:21 +000030#if 01 // set to 1 for multiple thread -- no debugging
caryclark@google.com47580692012-07-23 12:14:49 +000031
32const bool gRunTestsInOneThread = false;
33
34#define DEBUG_ACTIVE_SPANS 0
caryclark@google.comfa0588f2012-04-26 21:01:06 +000035#define DEBUG_ADD_INTERSECTING_TS 0
caryclark@google.com47580692012-07-23 12:14:49 +000036#define DEBUG_ADD_T_PAIR 0
caryclark@google.com47580692012-07-23 12:14:49 +000037#define DEBUG_CONCIDENT 0
caryclark@google.com8dcf1142012-07-02 20:27:02 +000038#define DEBUG_CROSS 0
caryclark@google.comfa0588f2012-04-26 21:01:06 +000039#define DEBUG_DUMP 0
caryclark@google.com8dcf1142012-07-02 20:27:02 +000040#define DEBUG_MARK_DONE 0
caryclark@google.com47580692012-07-23 12:14:49 +000041#define DEBUG_PATH_CONSTRUCTION 0
42#define DEBUG_SORT 0
caryclark@google.comafe56de2012-07-24 18:11:03 +000043#define DEBUG_WIND_BUMP 0
caryclark@google.com47580692012-07-23 12:14:49 +000044#define DEBUG_WINDING 0
caryclark@google.comfa0588f2012-04-26 21:01:06 +000045
46#else
47
caryclark@google.com47580692012-07-23 12:14:49 +000048const bool gRunTestsInOneThread = true;
caryclark@google.comfa0588f2012-04-26 21:01:06 +000049
caryclark@google.comafe56de2012-07-24 18:11:03 +000050#define DEBUG_ACTIVE_SPANS 1
caryclark@google.com65f9f0a2012-05-23 18:09:25 +000051#define DEBUG_ADD_INTERSECTING_TS 0
caryclark@google.come21cb182012-07-23 21:26:31 +000052#define DEBUG_ADD_T_PAIR 0
caryclark@google.com27c449a2012-07-27 18:26:38 +000053#define DEBUG_CONCIDENT 0
caryclark@google.com534aa5b2012-08-02 20:08:21 +000054#define DEBUG_CROSS 0
caryclark@google.comfa0588f2012-04-26 21:01:06 +000055#define DEBUG_DUMP 1
caryclark@google.com47580692012-07-23 12:14:49 +000056#define DEBUG_MARK_DONE 1
caryclark@google.com65f9f0a2012-05-23 18:09:25 +000057#define DEBUG_PATH_CONSTRUCTION 1
caryclark@google.com47580692012-07-23 12:14:49 +000058#define DEBUG_SORT 1
caryclark@google.comafe56de2012-07-24 18:11:03 +000059#define DEBUG_WIND_BUMP 0
caryclark@google.com47580692012-07-23 12:14:49 +000060#define DEBUG_WINDING 1
caryclark@google.comfa0588f2012-04-26 21:01:06 +000061
62#endif
63
caryclark@google.com534aa5b2012-08-02 20:08:21 +000064#if (DEBUG_ACTIVE_SPANS || DEBUG_CONCIDENT || DEBUG_SORT) && !DEBUG_DUMP
caryclark@google.com027de222012-07-12 12:52:50 +000065#undef DEBUG_DUMP
66#define DEBUG_DUMP 1
67#endif
68
caryclark@google.comfa0588f2012-04-26 21:01:06 +000069#if DEBUG_DUMP
70static const char* kLVerbStr[] = {"", "line", "quad", "cubic"};
caryclark@google.com65f9f0a2012-05-23 18:09:25 +000071// static const char* kUVerbStr[] = {"", "Line", "Quad", "Cubic"};
caryclark@google.comfa0588f2012-04-26 21:01:06 +000072static int gContourID;
73static int gSegmentID;
74#endif
75
caryclark@google.com8dcf1142012-07-02 20:27:02 +000076#ifndef DEBUG_TEST
77#define DEBUG_TEST 0
78#endif
79
caryclark@google.comfa0588f2012-04-26 21:01:06 +000080static int LineIntersect(const SkPoint a[2], const SkPoint b[2],
81 Intersections& intersections) {
82 const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
83 const _Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}};
84 return intersect(aLine, bLine, intersections.fT[0], intersections.fT[1]);
85}
86
87static int QuadLineIntersect(const SkPoint a[3], const SkPoint b[2],
88 Intersections& intersections) {
89 const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
90 const _Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}};
91 intersect(aQuad, bLine, intersections);
92 return intersections.fUsed;
93}
94
95static int CubicLineIntersect(const SkPoint a[2], const SkPoint b[3],
96 Intersections& intersections) {
97 const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
98 {a[3].fX, a[3].fY}};
99 const _Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}};
100 return intersect(aCubic, bLine, intersections.fT[0], intersections.fT[1]);
101}
102
103static int QuadIntersect(const SkPoint a[3], const SkPoint b[3],
104 Intersections& intersections) {
105 const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
106 const Quadratic bQuad = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}, {b[2].fX, b[2].fY}};
107 intersect(aQuad, bQuad, intersections);
108 return intersections.fUsed;
109}
110
111static int CubicIntersect(const SkPoint a[4], const SkPoint b[4],
112 Intersections& intersections) {
113 const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
114 {a[3].fX, a[3].fY}};
115 const Cubic bCubic = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}, {b[2].fX, b[2].fY},
116 {b[3].fX, b[3].fY}};
117 intersect(aCubic, bCubic, intersections);
118 return intersections.fUsed;
119}
120
121static int HLineIntersect(const SkPoint a[2], SkScalar left, SkScalar right,
122 SkScalar y, bool flipped, Intersections& intersections) {
123 const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
124 return horizontalIntersect(aLine, left, right, y, flipped, intersections);
125}
126
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000127static int HQuadIntersect(const SkPoint a[3], SkScalar left, SkScalar right,
128 SkScalar y, bool flipped, Intersections& intersections) {
129 const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
130 return horizontalIntersect(aQuad, left, right, y, flipped, intersections);
131}
132
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000133static int HCubicIntersect(const SkPoint a[4], SkScalar left, SkScalar right,
134 SkScalar y, bool flipped, Intersections& intersections) {
135 const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
136 {a[3].fX, a[3].fY}};
137 return horizontalIntersect(aCubic, left, right, y, flipped, intersections);
138}
139
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000140static int VLineIntersect(const SkPoint a[2], SkScalar top, SkScalar bottom,
141 SkScalar x, bool flipped, Intersections& intersections) {
142 const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
143 return verticalIntersect(aLine, top, bottom, x, flipped, intersections);
144}
145
146static int VQuadIntersect(const SkPoint a[3], SkScalar top, SkScalar bottom,
147 SkScalar x, bool flipped, Intersections& intersections) {
148 const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
149 return verticalIntersect(aQuad, top, bottom, x, flipped, intersections);
150}
151
152static int VCubicIntersect(const SkPoint a[4], SkScalar top, SkScalar bottom,
153 SkScalar x, bool flipped, Intersections& intersections) {
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000154 const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
155 {a[3].fX, a[3].fY}};
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000156 return verticalIntersect(aCubic, top, bottom, x, flipped, intersections);
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000157}
158
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000159static int (* const VSegmentIntersect[])(const SkPoint [], SkScalar ,
160 SkScalar , SkScalar , bool , Intersections& ) = {
161 NULL,
162 VLineIntersect,
163 VQuadIntersect,
164 VCubicIntersect
165};
166
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000167static void LineXYAtT(const SkPoint a[2], double t, SkPoint* out) {
168 const _Line line = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
169 double x, y;
170 xy_at_t(line, t, x, y);
171 out->fX = SkDoubleToScalar(x);
172 out->fY = SkDoubleToScalar(y);
173}
174
175static void QuadXYAtT(const SkPoint a[3], double t, SkPoint* out) {
176 const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
177 double x, y;
178 xy_at_t(quad, t, x, y);
179 out->fX = SkDoubleToScalar(x);
180 out->fY = SkDoubleToScalar(y);
181}
182
183static void CubicXYAtT(const SkPoint a[4], double t, SkPoint* out) {
184 const Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
185 {a[3].fX, a[3].fY}};
186 double x, y;
187 xy_at_t(cubic, t, x, y);
188 out->fX = SkDoubleToScalar(x);
189 out->fY = SkDoubleToScalar(y);
190}
191
192static void (* const SegmentXYAtT[])(const SkPoint [], double , SkPoint* ) = {
193 NULL,
194 LineXYAtT,
195 QuadXYAtT,
196 CubicXYAtT
197};
198
199static SkScalar LineXAtT(const SkPoint a[2], double t) {
200 const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
201 double x;
202 xy_at_t(aLine, t, x, *(double*) 0);
203 return SkDoubleToScalar(x);
204}
205
206static SkScalar QuadXAtT(const SkPoint a[3], double t) {
207 const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
208 double x;
209 xy_at_t(quad, t, x, *(double*) 0);
210 return SkDoubleToScalar(x);
211}
212
213static SkScalar CubicXAtT(const SkPoint a[4], double t) {
214 const Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
215 {a[3].fX, a[3].fY}};
216 double x;
217 xy_at_t(cubic, t, x, *(double*) 0);
218 return SkDoubleToScalar(x);
219}
220
221static SkScalar (* const SegmentXAtT[])(const SkPoint [], double ) = {
222 NULL,
223 LineXAtT,
224 QuadXAtT,
225 CubicXAtT
226};
227
228static SkScalar LineYAtT(const SkPoint a[2], double t) {
229 const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
230 double y;
231 xy_at_t(aLine, t, *(double*) 0, y);
232 return SkDoubleToScalar(y);
233}
234
235static SkScalar QuadYAtT(const SkPoint a[3], double t) {
236 const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
237 double y;
238 xy_at_t(quad, t, *(double*) 0, y);
239 return SkDoubleToScalar(y);
240}
241
242static SkScalar CubicYAtT(const SkPoint a[4], double t) {
243 const Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
244 {a[3].fX, a[3].fY}};
245 double y;
246 xy_at_t(cubic, t, *(double*) 0, y);
247 return SkDoubleToScalar(y);
248}
249
250static SkScalar (* const SegmentYAtT[])(const SkPoint [], double ) = {
251 NULL,
252 LineYAtT,
253 QuadYAtT,
254 CubicYAtT
255};
256
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000257static SkScalar LineDXAtT(const SkPoint a[2], double ) {
258 return a[1].fX - a[0].fX;
259}
260
261static SkScalar QuadDXAtT(const SkPoint a[3], double t) {
262 const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
263 double x;
264 dxdy_at_t(quad, t, x, *(double*) 0);
265 return SkDoubleToScalar(x);
266}
267
268static SkScalar CubicDXAtT(const SkPoint a[4], double t) {
269 const Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
270 {a[3].fX, a[3].fY}};
271 double x;
272 dxdy_at_t(cubic, t, x, *(double*) 0);
273 return SkDoubleToScalar(x);
274}
275
276static SkScalar (* const SegmentDXAtT[])(const SkPoint [], double ) = {
277 NULL,
278 LineDXAtT,
279 QuadDXAtT,
280 CubicDXAtT
281};
282
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000283static void LineSubDivide(const SkPoint a[2], double startT, double endT,
284 SkPoint sub[2]) {
285 const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
286 _Line dst;
287 sub_divide(aLine, startT, endT, dst);
288 sub[0].fX = SkDoubleToScalar(dst[0].x);
289 sub[0].fY = SkDoubleToScalar(dst[0].y);
290 sub[1].fX = SkDoubleToScalar(dst[1].x);
291 sub[1].fY = SkDoubleToScalar(dst[1].y);
292}
293
294static void QuadSubDivide(const SkPoint a[3], double startT, double endT,
295 SkPoint sub[3]) {
296 const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
297 {a[2].fX, a[2].fY}};
298 Quadratic dst;
299 sub_divide(aQuad, startT, endT, dst);
300 sub[0].fX = SkDoubleToScalar(dst[0].x);
301 sub[0].fY = SkDoubleToScalar(dst[0].y);
302 sub[1].fX = SkDoubleToScalar(dst[1].x);
303 sub[1].fY = SkDoubleToScalar(dst[1].y);
304 sub[2].fX = SkDoubleToScalar(dst[2].x);
305 sub[2].fY = SkDoubleToScalar(dst[2].y);
306}
307
308static void CubicSubDivide(const SkPoint a[4], double startT, double endT,
309 SkPoint sub[4]) {
310 const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
311 {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}};
312 Cubic dst;
313 sub_divide(aCubic, startT, endT, dst);
314 sub[0].fX = SkDoubleToScalar(dst[0].x);
315 sub[0].fY = SkDoubleToScalar(dst[0].y);
316 sub[1].fX = SkDoubleToScalar(dst[1].x);
317 sub[1].fY = SkDoubleToScalar(dst[1].y);
318 sub[2].fX = SkDoubleToScalar(dst[2].x);
319 sub[2].fY = SkDoubleToScalar(dst[2].y);
320 sub[3].fX = SkDoubleToScalar(dst[3].x);
321 sub[3].fY = SkDoubleToScalar(dst[3].y);
322}
323
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000324static void (* const SegmentSubDivide[])(const SkPoint [], double , double ,
325 SkPoint []) = {
326 NULL,
327 LineSubDivide,
328 QuadSubDivide,
329 CubicSubDivide
330};
331
caryclark@google.com65f9f0a2012-05-23 18:09:25 +0000332#if DEBUG_UNUSED
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000333static void QuadSubBounds(const SkPoint a[3], double startT, double endT,
334 SkRect& bounds) {
335 SkPoint dst[3];
336 QuadSubDivide(a, startT, endT, dst);
337 bounds.fLeft = bounds.fRight = dst[0].fX;
338 bounds.fTop = bounds.fBottom = dst[0].fY;
339 for (int index = 1; index < 3; ++index) {
340 bounds.growToInclude(dst[index].fX, dst[index].fY);
341 }
342}
343
344static void CubicSubBounds(const SkPoint a[4], double startT, double endT,
345 SkRect& bounds) {
346 SkPoint dst[4];
347 CubicSubDivide(a, startT, endT, dst);
348 bounds.fLeft = bounds.fRight = dst[0].fX;
349 bounds.fTop = bounds.fBottom = dst[0].fY;
350 for (int index = 1; index < 4; ++index) {
351 bounds.growToInclude(dst[index].fX, dst[index].fY);
352 }
353}
caryclark@google.com65f9f0a2012-05-23 18:09:25 +0000354#endif
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000355
caryclark@google.com15fa1382012-05-07 20:49:36 +0000356static SkPath::Verb QuadReduceOrder(const SkPoint a[3],
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000357 SkTDArray<SkPoint>& reducePts) {
358 const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
359 {a[2].fX, a[2].fY}};
360 Quadratic dst;
361 int order = reduceOrder(aQuad, dst);
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000362 if (order == 3) {
363 return SkPath::kQuad_Verb;
364 }
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000365 for (int index = 0; index < order; ++index) {
366 SkPoint* pt = reducePts.append();
367 pt->fX = SkDoubleToScalar(dst[index].x);
368 pt->fY = SkDoubleToScalar(dst[index].y);
369 }
370 return (SkPath::Verb) (order - 1);
371}
372
373static SkPath::Verb CubicReduceOrder(const SkPoint a[4],
374 SkTDArray<SkPoint>& reducePts) {
375 const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
376 {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}};
377 Cubic dst;
378 int order = reduceOrder(aCubic, dst, kReduceOrder_QuadraticsAllowed);
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000379 if (order == 4) {
380 return SkPath::kCubic_Verb;
381 }
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000382 for (int index = 0; index < order; ++index) {
383 SkPoint* pt = reducePts.append();
384 pt->fX = SkDoubleToScalar(dst[index].x);
385 pt->fY = SkDoubleToScalar(dst[index].y);
386 }
387 return (SkPath::Verb) (order - 1);
388}
389
caryclark@google.com15fa1382012-05-07 20:49:36 +0000390static bool QuadIsLinear(const SkPoint a[3]) {
391 const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
392 {a[2].fX, a[2].fY}};
393 return isLinear(aQuad, 0, 2);
394}
395
396static bool CubicIsLinear(const SkPoint a[4]) {
397 const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
398 {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}};
399 return isLinear(aCubic, 0, 3);
400}
401
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000402static SkScalar LineLeftMost(const SkPoint a[2], double startT, double endT) {
403 const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
404 double x[2];
405 xy_at_t(aLine, startT, x[0], *(double*) 0);
caryclark@google.com495f8e42012-05-31 13:13:11 +0000406 xy_at_t(aLine, endT, x[1], *(double*) 0);
407 return SkMinScalar((float) x[0], (float) x[1]);
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000408}
409
410static SkScalar QuadLeftMost(const SkPoint a[3], double startT, double endT) {
411 const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
412 {a[2].fX, a[2].fY}};
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000413 return (float) leftMostT(aQuad, startT, endT);
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000414}
415
416static SkScalar CubicLeftMost(const SkPoint a[4], double startT, double endT) {
417 const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
418 {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}};
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000419 return (float) leftMostT(aCubic, startT, endT);
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000420}
421
422static SkScalar (* const SegmentLeftMost[])(const SkPoint [], double , double) = {
423 NULL,
424 LineLeftMost,
425 QuadLeftMost,
426 CubicLeftMost
427};
428
caryclark@google.com65f9f0a2012-05-23 18:09:25 +0000429#if DEBUG_UNUSED
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000430static bool IsCoincident(const SkPoint a[2], const SkPoint& above,
431 const SkPoint& below) {
432 const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
433 const _Line bLine = {{above.fX, above.fY}, {below.fX, below.fY}};
434 return implicit_matches_ulps(aLine, bLine, 32);
435}
caryclark@google.com65f9f0a2012-05-23 18:09:25 +0000436#endif
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000437
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000438class Segment;
439
caryclark@google.com15fa1382012-05-07 20:49:36 +0000440// sorting angles
441// given angles of {dx dy ddx ddy dddx dddy} sort them
442class Angle {
443public:
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000444 // FIXME: this is bogus for quads and cubics
445 // if the quads and cubics' line from end pt to ctrl pt are coincident,
446 // there's no obvious way to determine the curve ordering from the
447 // derivatives alone. In particular, if one quadratic's coincident tangent
448 // is longer than the other curve, the final control point can place the
449 // longer curve on either side of the shorter one.
450 // Using Bezier curve focus http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf
451 // may provide some help, but nothing has been figured out yet.
caryclark@google.com15fa1382012-05-07 20:49:36 +0000452 bool operator<(const Angle& rh) const {
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000453 if ((fDy < 0) ^ (rh.fDy < 0)) {
454 return fDy < 0;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000455 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000456 if (fDy == 0 && rh.fDy == 0 && fDx != rh.fDx) {
457 return fDx < rh.fDx;
458 }
459 SkScalar cmp = fDx * rh.fDy - rh.fDx * fDy;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000460 if (cmp) {
461 return cmp < 0;
462 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000463 if ((fDDy < 0) ^ (rh.fDDy < 0)) {
464 return fDDy < 0;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000465 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000466 if (fDDy == 0 && rh.fDDy == 0 && fDDx != rh.fDDx) {
467 return fDDx < rh.fDDx;
468 }
469 cmp = fDDx * rh.fDDy - rh.fDDx * fDDy;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000470 if (cmp) {
471 return cmp < 0;
472 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000473 if ((fDDDy < 0) ^ (rh.fDDDy < 0)) {
474 return fDDDy < 0;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000475 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000476 if (fDDDy == 0 && rh.fDDDy == 0) {
477 return fDDDx < rh.fDDDx;
478 }
479 return fDDDx * rh.fDDDy < rh.fDDDx * fDDDy;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000480 }
caryclark@google.com47580692012-07-23 12:14:49 +0000481
482 double dx() const {
483 return fDx;
484 }
caryclark@google.com15fa1382012-05-07 20:49:36 +0000485
caryclark@google.com7db7c6b2012-07-27 21:22:25 +0000486 double dy() const {
487 return fDy;
488 }
489
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000490 int end() const {
491 return fEnd;
492 }
493
caryclark@google.comcc905052012-07-25 20:59:42 +0000494 bool firstBump(int sumWinding) const {
caryclark@google.com534aa5b2012-08-02 20:08:21 +0000495 SkDebugf("%s sign=%d sumWinding=%d\n", __FUNCTION__, sign(), sumWinding);
caryclark@google.comafe56de2012-07-24 18:11:03 +0000496 return sign() * sumWinding > 0;
497 }
498
caryclark@google.com88f7d0c2012-06-07 21:09:20 +0000499 bool isHorizontal() const {
500 return fDy == 0 && fDDy == 0 && fDDDy == 0;
501 }
502
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000503 // since all angles share a point, this needs to know which point
504 // is the common origin, i.e., whether the center is at pts[0] or pts[verb]
505 // practically, this should only be called by addAngle
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000506 void set(const SkPoint* pts, SkPath::Verb verb, const Segment* segment,
caryclark@google.coma3f05fa2012-06-01 17:44:28 +0000507 int start, int end) {
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000508 SkASSERT(start != end);
509 fSegment = segment;
510 fStart = start;
511 fEnd = end;
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000512 fDx = pts[1].fX - pts[0].fX; // b - a
513 fDy = pts[1].fY - pts[0].fY;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000514 if (verb == SkPath::kLine_Verb) {
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000515 fDDx = fDDy = fDDDx = fDDDy = 0;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000516 return;
517 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000518 fDDx = pts[2].fX - pts[1].fX - fDx; // a - 2b + c
519 fDDy = pts[2].fY - pts[1].fY - fDy;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000520 if (verb == SkPath::kQuad_Verb) {
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000521 fDDDx = fDDDy = 0;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000522 return;
523 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000524 fDDDx = pts[3].fX + 3 * (pts[1].fX - pts[2].fX) - pts[0].fX;
525 fDDDy = pts[3].fY + 3 * (pts[1].fY - pts[2].fY) - pts[0].fY;
526 }
527
528 // noncoincident quads/cubics may have the same initial angle
529 // as lines, so must sort by derivatives as well
530 // if flatness turns out to be a reasonable way to sort, use the below:
caryclark@google.com1577e8f2012-05-22 17:01:14 +0000531 void setFlat(const SkPoint* pts, SkPath::Verb verb, Segment* segment,
caryclark@google.coma3f05fa2012-06-01 17:44:28 +0000532 int start, int end) {
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000533 fSegment = segment;
534 fStart = start;
535 fEnd = end;
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000536 fDx = pts[1].fX - pts[0].fX; // b - a
537 fDy = pts[1].fY - pts[0].fY;
538 if (verb == SkPath::kLine_Verb) {
539 fDDx = fDDy = fDDDx = fDDDy = 0;
540 return;
541 }
542 if (verb == SkPath::kQuad_Verb) {
543 int uplsX = FloatAsInt(pts[2].fX - pts[1].fY - fDx);
544 int uplsY = FloatAsInt(pts[2].fY - pts[1].fY - fDy);
545 int larger = std::max(abs(uplsX), abs(uplsY));
546 int shift = 0;
547 double flatT;
548 SkPoint ddPt; // FIXME: get rid of copy (change fDD_ to point)
549 LineParameters implicitLine;
550 _Line tangent = {{pts[0].fX, pts[0].fY}, {pts[1].fX, pts[1].fY}};
551 implicitLine.lineEndPoints(tangent);
552 implicitLine.normalize();
553 while (larger > UlpsEpsilon * 1024) {
554 larger >>= 2;
555 ++shift;
556 flatT = 0.5 / (1 << shift);
557 QuadXYAtT(pts, flatT, &ddPt);
558 _Point _pt = {ddPt.fX, ddPt.fY};
559 double distance = implicitLine.pointDistance(_pt);
560 if (approximately_zero(distance)) {
561 SkDebugf("%s ulps too small %1.9g\n", __FUNCTION__, distance);
562 break;
563 }
564 }
565 flatT = 0.5 / (1 << shift);
566 QuadXYAtT(pts, flatT, &ddPt);
567 fDDx = ddPt.fX - pts[0].fX;
568 fDDy = ddPt.fY - pts[0].fY;
569 SkASSERT(fDDx != 0 || fDDy != 0);
570 fDDDx = fDDDy = 0;
571 return;
572 }
573 SkASSERT(0); // FIXME: add cubic case
574 }
575
caryclark@google.com1577e8f2012-05-22 17:01:14 +0000576 Segment* segment() const {
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000577 return const_cast<Segment*>(fSegment);
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000578 }
579
580 int sign() const {
caryclark@google.com495f8e42012-05-31 13:13:11 +0000581 return SkSign32(fStart - fEnd);
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000582 }
caryclark@google.coma3f05fa2012-06-01 17:44:28 +0000583
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000584 int start() const {
585 return fStart;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000586 }
587
588private:
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000589 SkScalar fDx;
590 SkScalar fDy;
591 SkScalar fDDx;
592 SkScalar fDDy;
593 SkScalar fDDDx;
594 SkScalar fDDDy;
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000595 const Segment* fSegment;
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000596 int fStart;
597 int fEnd;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000598};
599
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000600static void sortAngles(SkTDArray<Angle>& angles, SkTDArray<Angle*>& angleList) {
601 int angleCount = angles.count();
602 int angleIndex;
603 angleList.setReserve(angleCount);
604 for (angleIndex = 0; angleIndex < angleCount; ++angleIndex) {
605 *angleList.append() = &angles[angleIndex];
606 }
607 QSort<Angle>(angleList.begin(), angleList.end() - 1);
608}
609
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000610// Bounds, unlike Rect, does not consider a line to be empty.
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000611struct Bounds : public SkRect {
612 static bool Intersects(const Bounds& a, const Bounds& b) {
613 return a.fLeft <= b.fRight && b.fLeft <= a.fRight &&
614 a.fTop <= b.fBottom && b.fTop <= a.fBottom;
615 }
616
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000617 void add(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) {
618 if (left < fLeft) {
619 fLeft = left;
620 }
621 if (top < fTop) {
622 fTop = top;
623 }
624 if (right > fRight) {
625 fRight = right;
626 }
627 if (bottom > fBottom) {
628 fBottom = bottom;
629 }
630 }
631
632 void add(const Bounds& toAdd) {
633 add(toAdd.fLeft, toAdd.fTop, toAdd.fRight, toAdd.fBottom);
634 }
635
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000636 bool isEmpty() {
637 return fLeft > fRight || fTop > fBottom
638 || fLeft == fRight && fTop == fBottom
639 || isnan(fLeft) || isnan(fRight)
640 || isnan(fTop) || isnan(fBottom);
641 }
642
643 void setCubicBounds(const SkPoint a[4]) {
644 _Rect dRect;
645 Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
646 {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}};
647 dRect.setBounds(cubic);
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000648 set((float) dRect.left, (float) dRect.top, (float) dRect.right,
649 (float) dRect.bottom);
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000650 }
651
652 void setQuadBounds(const SkPoint a[3]) {
653 const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
654 {a[2].fX, a[2].fY}};
655 _Rect dRect;
656 dRect.setBounds(quad);
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000657 set((float) dRect.left, (float) dRect.top, (float) dRect.right,
658 (float) dRect.bottom);
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000659 }
660};
661
caryclark@google.com15fa1382012-05-07 20:49:36 +0000662struct Span {
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000663 Segment* fOther;
caryclark@google.com27c449a2012-07-27 18:26:38 +0000664 mutable SkPoint fPt; // lazily computed as needed
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000665 double fT;
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000666 double fOtherT; // value at fOther[fOtherIndex].fT
667 int fOtherIndex; // can't be used during intersection
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000668 int fWindSum; // accumulated from contours surrounding this one
669 int fWindValue; // 0 == canceled; 1 == normal; >1 == coincident
caryclark@google.com65f9f0a2012-05-23 18:09:25 +0000670 bool fDone; // if set, this span to next higher T has been processed
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000671};
672
673class Segment {
674public:
675 Segment() {
676#if DEBUG_DUMP
677 fID = ++gSegmentID;
678#endif
679 }
caryclark@google.comfa4a6e92012-07-11 17:52:32 +0000680
caryclark@google.com9764cc62012-07-12 19:29:45 +0000681 bool activeAngle(int index, int& done, SkTDArray<Angle>& angles) const {
682 if (activeAngleInner(index, done, angles)) {
683 return true;
684 }
caryclark@google.comfa4a6e92012-07-11 17:52:32 +0000685 double referenceT = fTs[index].fT;
686 int lesser = index;
687 while (--lesser >= 0 && referenceT - fTs[lesser].fT < FLT_EPSILON) {
caryclark@google.com9764cc62012-07-12 19:29:45 +0000688 if (activeAngleOther(lesser, done, angles)) {
caryclark@google.comfa4a6e92012-07-11 17:52:32 +0000689 return true;
690 }
691 }
692 do {
caryclark@google.com9764cc62012-07-12 19:29:45 +0000693 if (activeAngleOther(index, done, angles)) {
caryclark@google.comfa4a6e92012-07-11 17:52:32 +0000694 return true;
695 }
696 } while (++index < fTs.count() && fTs[index].fT - referenceT < FLT_EPSILON);
697 return false;
698 }
699
caryclark@google.com9764cc62012-07-12 19:29:45 +0000700 bool activeAngleOther(int index, int& done, SkTDArray<Angle>& angles) const {
caryclark@google.comfa4a6e92012-07-11 17:52:32 +0000701 Span* span = &fTs[index];
702 Segment* other = span->fOther;
703 int oIndex = span->fOtherIndex;
caryclark@google.com9764cc62012-07-12 19:29:45 +0000704 return other->activeAngleInner(oIndex, done, angles);
705 }
706
707 bool activeAngleInner(int index, int& done, SkTDArray<Angle>& angles) const {
708 int next = nextSpan(index, 1);
709 if (next > 0) {
caryclark@google.com9764cc62012-07-12 19:29:45 +0000710 const Span& upSpan = fTs[index];
caryclark@google.com210acaf2012-07-12 21:05:13 +0000711 if (upSpan.fWindValue) {
712 addAngle(angles, index, next);
713 if (upSpan.fDone) {
714 done++;
715 } else if (upSpan.fWindSum != SK_MinS32) {
716 return true;
717 }
caryclark@google.com9764cc62012-07-12 19:29:45 +0000718 }
caryclark@google.comfa4a6e92012-07-11 17:52:32 +0000719 }
caryclark@google.com9764cc62012-07-12 19:29:45 +0000720 int prev = nextSpan(index, -1);
caryclark@google.comfa4a6e92012-07-11 17:52:32 +0000721 // edge leading into junction
caryclark@google.com9764cc62012-07-12 19:29:45 +0000722 if (prev >= 0) {
caryclark@google.com9764cc62012-07-12 19:29:45 +0000723 const Span& downSpan = fTs[prev];
caryclark@google.com210acaf2012-07-12 21:05:13 +0000724 if (downSpan.fWindValue) {
725 addAngle(angles, index, prev);
726 if (downSpan.fDone) {
727 done++;
728 } else if (downSpan.fWindSum != SK_MinS32) {
729 return true;
730 }
caryclark@google.com9764cc62012-07-12 19:29:45 +0000731 }
732 }
733 return false;
caryclark@google.comfa4a6e92012-07-11 17:52:32 +0000734 }
735
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000736 SkScalar activeTop() const {
737 SkASSERT(!done());
738 int count = fTs.count();
739 SkScalar result = SK_ScalarMax;
740 bool lastDone = true;
741 for (int index = 0; index < count; ++index) {
742 bool done = fTs[index].fDone;
743 if (!done || !lastDone) {
744 SkScalar y = yAtT(index);
745 if (result > y) {
746 result = y;
747 }
748 }
749 lastDone = done;
750 }
751 SkASSERT(result < SK_ScalarMax);
752 return result;
753 }
754
755 void addAngle(SkTDArray<Angle>& angles, int start, int end) const {
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000756 SkASSERT(start != end);
757 SkPoint edge[4];
758 (*SegmentSubDivide[fVerb])(fPts, fTs[start].fT, fTs[end].fT, edge);
759 Angle* angle = angles.append();
caryclark@google.coma3f05fa2012-06-01 17:44:28 +0000760 angle->set(edge, fVerb, this, start, end);
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000761 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000762
caryclark@google.comcc905052012-07-25 20:59:42 +0000763 void addCancelOutsides(const SkTDArray<double>& outsideTs, Segment& other,
764 double oEnd) {
765 int tIndex = -1;
766 int tCount = fTs.count();
767 int oIndex = -1;
768 int oCount = other.fTs.count();
769 double tStart = outsideTs[0];
770 double oStart = outsideTs[1];
771 do {
772 ++tIndex;
773 } while (tStart - fTs[tIndex].fT >= FLT_EPSILON && tIndex < tCount);
774 int tIndexStart = tIndex;
775 do {
776 ++oIndex;
777 } while (oStart - other.fTs[oIndex].fT >= FLT_EPSILON && oIndex < oCount);
778 int oIndexStart = oIndex;
779 double nextT;
780 do {
781 nextT = fTs[++tIndex].fT;
782 } while (nextT < 1 && nextT - tStart < FLT_EPSILON);
783 double oNextT;
784 do {
785 oNextT = other.fTs[++oIndex].fT;
786 } while (oNextT < 1 && oNextT - oStart < FLT_EPSILON);
787 // at this point, spans before and after are at:
788 // fTs[tIndexStart - 1], fTs[tIndexStart], fTs[tIndex]
789 // if tIndexStart == 0, no prior span
790 // if nextT == 1, no following span
791
792 // advance the span with zero winding
793 // if the following span exists (not past the end, non-zero winding)
794 // connect the two edges
795 if (!fTs[tIndexStart].fWindValue) {
796 if (tIndexStart > 0 && fTs[tIndexStart - 1].fWindValue) {
797 #if DEBUG_CONCIDENT
798 SkDebugf("%s 1 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n",
799 __FUNCTION__, fID, other.fID, tIndexStart - 1,
caryclark@google.com27c449a2012-07-27 18:26:38 +0000800 fTs[tIndexStart].fT, xyAtT(tIndexStart).fX,
801 xyAtT(tIndexStart).fY);
caryclark@google.comcc905052012-07-25 20:59:42 +0000802 #endif
caryclark@google.com27c449a2012-07-27 18:26:38 +0000803 addTPair(fTs[tIndexStart].fT, other, other.fTs[oIndex].fT);
caryclark@google.comcc905052012-07-25 20:59:42 +0000804 }
805 if (nextT < 1 && fTs[tIndex].fWindValue) {
806 #if DEBUG_CONCIDENT
807 SkDebugf("%s 2 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n",
808 __FUNCTION__, fID, other.fID, tIndex,
809 fTs[tIndex].fT, xyAtT(tIndex).fX,
810 xyAtT(tIndex).fY);
811 #endif
812 addTPair(fTs[tIndex].fT, other, other.fTs[oIndexStart].fT);
813 }
814 } else {
815 SkASSERT(!other.fTs[oIndexStart].fWindValue);
816 if (oIndexStart > 0 && other.fTs[oIndexStart - 1].fWindValue) {
817 #if DEBUG_CONCIDENT
818 SkDebugf("%s 3 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n",
819 __FUNCTION__, fID, other.fID, oIndexStart - 1,
caryclark@google.com27c449a2012-07-27 18:26:38 +0000820 other.fTs[oIndexStart].fT, other.xyAtT(oIndexStart).fX,
821 other.xyAtT(oIndexStart).fY);
822 other.debugAddTPair(other.fTs[oIndexStart].fT, *this, fTs[tIndex].fT);
caryclark@google.comcc905052012-07-25 20:59:42 +0000823 #endif
caryclark@google.comcc905052012-07-25 20:59:42 +0000824 }
825 if (oNextT < 1 && other.fTs[oIndex].fWindValue) {
826 #if DEBUG_CONCIDENT
827 SkDebugf("%s 4 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n",
828 __FUNCTION__, fID, other.fID, oIndex,
829 other.fTs[oIndex].fT, other.xyAtT(oIndex).fX,
830 other.xyAtT(oIndex).fY);
831 other.debugAddTPair(other.fTs[oIndex].fT, *this, fTs[tIndexStart].fT);
832 #endif
833 }
834 }
835 }
836
837 void addCoinOutsides(const SkTDArray<double>& outsideTs, Segment& other,
838 double oEnd) {
839 // walk this to outsideTs[0]
840 // walk other to outsideTs[1]
841 // if either is > 0, add a pointer to the other, copying adjacent winding
842 int tIndex = -1;
843 int oIndex = -1;
844 double tStart = outsideTs[0];
845 double oStart = outsideTs[1];
846 do {
847 ++tIndex;
848 } while (tStart - fTs[tIndex].fT >= FLT_EPSILON);
849 do {
850 ++oIndex;
851 } while (oStart - other.fTs[oIndex].fT >= FLT_EPSILON);
852 if (tIndex > 0 || oIndex > 0) {
853 addTPair(tStart, other, oStart);
854 }
855 tStart = fTs[tIndex].fT;
856 oStart = other.fTs[oIndex].fT;
857 do {
858 double nextT;
859 do {
860 nextT = fTs[++tIndex].fT;
861 } while (nextT - tStart < FLT_EPSILON);
862 tStart = nextT;
863 do {
864 nextT = other.fTs[++oIndex].fT;
865 } while (nextT - oStart < FLT_EPSILON);
866 oStart = nextT;
867 if (tStart == 1 && oStart == 1) {
868 break;
869 }
870 addTPair(tStart, other, oStart);
871 } while (tStart < 1 && oStart < 1 && oEnd - oStart >= FLT_EPSILON);
872 }
873
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000874 void addCubic(const SkPoint pts[4]) {
875 init(pts, SkPath::kCubic_Verb);
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000876 fBounds.setCubicBounds(pts);
877 }
878
caryclark@google.com88f7d0c2012-06-07 21:09:20 +0000879 // FIXME: this needs to defer add for aligned consecutive line segments
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000880 SkPoint addCurveTo(int start, int end, SkPath& path, bool active) {
caryclark@google.com1577e8f2012-05-22 17:01:14 +0000881 SkPoint edge[4];
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000882 // OPTIMIZE? if not active, skip remainder and return xy_at_t(end)
caryclark@google.com1577e8f2012-05-22 17:01:14 +0000883 (*SegmentSubDivide[fVerb])(fPts, fTs[start].fT, fTs[end].fT, edge);
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000884 if (active) {
caryclark@google.com65f9f0a2012-05-23 18:09:25 +0000885 #if DEBUG_PATH_CONSTRUCTION
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000886 SkDebugf("%s %s (%1.9g,%1.9g)", __FUNCTION__,
887 kLVerbStr[fVerb], edge[1].fX, edge[1].fY);
888 if (fVerb > 1) {
889 SkDebugf(" (%1.9g,%1.9g)", edge[2].fX, edge[2].fY);
890 }
891 if (fVerb > 2) {
892 SkDebugf(" (%1.9g,%1.9g)", edge[3].fX, edge[3].fY);
893 }
894 SkDebugf("\n");
caryclark@google.com65f9f0a2012-05-23 18:09:25 +0000895 #endif
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000896 switch (fVerb) {
897 case SkPath::kLine_Verb:
898 path.lineTo(edge[1].fX, edge[1].fY);
899 break;
900 case SkPath::kQuad_Verb:
901 path.quadTo(edge[1].fX, edge[1].fY, edge[2].fX, edge[2].fY);
902 break;
903 case SkPath::kCubic_Verb:
904 path.cubicTo(edge[1].fX, edge[1].fY, edge[2].fX, edge[2].fY,
905 edge[3].fX, edge[3].fY);
906 break;
907 }
caryclark@google.com1577e8f2012-05-22 17:01:14 +0000908 }
caryclark@google.com88f7d0c2012-06-07 21:09:20 +0000909 return edge[fVerb];
caryclark@google.com1577e8f2012-05-22 17:01:14 +0000910 }
911
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000912 void addLine(const SkPoint pts[2]) {
913 init(pts, SkPath::kLine_Verb);
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000914 fBounds.set(pts, 2);
915 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000916
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000917 const SkPoint& addMoveTo(int tIndex, SkPath& path, bool active) {
918 const SkPoint& pt = xyAtT(tIndex);
919 if (active) {
caryclark@google.com65f9f0a2012-05-23 18:09:25 +0000920 #if DEBUG_PATH_CONSTRUCTION
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000921 SkDebugf("%s (%1.9g,%1.9g)\n", __FUNCTION__, pt.fX, pt.fY);
caryclark@google.com65f9f0a2012-05-23 18:09:25 +0000922 #endif
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000923 path.moveTo(pt.fX, pt.fY);
924 }
caryclark@google.com88f7d0c2012-06-07 21:09:20 +0000925 return pt;
caryclark@google.com1577e8f2012-05-22 17:01:14 +0000926 }
927
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000928 // add 2 to edge or out of range values to get T extremes
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000929 void addOtherT(int index, double otherT, int otherIndex) {
930 Span& span = fTs[index];
931 span.fOtherT = otherT;
932 span.fOtherIndex = otherIndex;
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000933 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000934
caryclark@google.comb45a1b42012-05-18 20:50:33 +0000935 void addQuad(const SkPoint pts[3]) {
936 init(pts, SkPath::kQuad_Verb);
caryclark@google.comfa0588f2012-04-26 21:01:06 +0000937 fBounds.setQuadBounds(pts);
938 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000939
940 // Defer all coincident edge processing until
941 // after normal intersections have been computed
caryclark@google.coma833b5c2012-04-30 19:38:50 +0000942
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000943// no need to be tricky; insert in normal T order
944// resolve overlapping ts when considering coincidence later
945
946 // add non-coincident intersection. Resulting edges are sorted in T.
947 int addT(double newT, Segment* other) {
caryclark@google.com15fa1382012-05-07 20:49:36 +0000948 // FIXME: in the pathological case where there is a ton of intercepts,
949 // binary search?
950 int insertedAt = -1;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000951 size_t tCount = fTs.count();
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000952 for (size_t index = 0; index < tCount; ++index) {
caryclark@google.com15fa1382012-05-07 20:49:36 +0000953 // OPTIMIZATION: if there are three or more identical Ts, then
954 // the fourth and following could be further insertion-sorted so
955 // that all the edges are clockwise or counterclockwise.
956 // This could later limit segment tests to the two adjacent
957 // neighbors, although it doesn't help with determining which
958 // circular direction to go in.
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000959 if (newT < fTs[index].fT) {
960 insertedAt = index;
961 break;
caryclark@google.com15fa1382012-05-07 20:49:36 +0000962 }
963 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000964 Span* span;
965 if (insertedAt >= 0) {
966 span = fTs.insert(insertedAt);
967 } else {
968 insertedAt = tCount;
969 span = fTs.append();
970 }
caryclark@google.com15fa1382012-05-07 20:49:36 +0000971 span->fT = newT;
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000972 span->fOther = other;
caryclark@google.com27c449a2012-07-27 18:26:38 +0000973 span->fPt.fX = SK_ScalarNaN;
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000974 span->fWindSum = SK_MinS32;
975 span->fWindValue = 1;
976 if ((span->fDone = newT == 1)) {
caryclark@google.com65f9f0a2012-05-23 18:09:25 +0000977 ++fDoneSpans;
978 }
caryclark@google.com15fa1382012-05-07 20:49:36 +0000979 return insertedAt;
980 }
981
caryclark@google.com8dcf1142012-07-02 20:27:02 +0000982 // set spans from start to end to decrement by one
983 // note this walks other backwards
984 // FIMXE: there's probably an edge case that can be constructed where
985 // two span in one segment are separated by float epsilon on one span but
986 // not the other, if one segment is very small. For this
987 // case the counts asserted below may or may not be enough to separate the
988 // spans. Even if the counts work out, what if the spanw aren't correctly
989 // sorted? It feels better in such a case to match the span's other span
990 // pointer since both coincident segments must contain the same spans.
991 void addTCancel(double startT, double endT, Segment& other,
992 double oStartT, double oEndT) {
993 SkASSERT(endT - startT >= FLT_EPSILON);
994 SkASSERT(oEndT - oStartT >= FLT_EPSILON);
995 int index = 0;
996 while (startT - fTs[index].fT >= FLT_EPSILON) {
997 ++index;
998 }
caryclark@google.comb9738012012-07-03 19:53:30 +0000999 int oIndex = other.fTs.count();
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001000 while (other.fTs[--oIndex].fT - oEndT > -FLT_EPSILON)
1001 ;
1002 Span* test = &fTs[index];
1003 Span* oTest = &other.fTs[oIndex];
caryclark@google.com18063442012-07-25 12:05:18 +00001004 SkTDArray<double> outsideTs;
1005 SkTDArray<double> oOutsideTs;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001006 do {
1007 bool decrement = test->fWindValue && oTest->fWindValue;
caryclark@google.comcc905052012-07-25 20:59:42 +00001008 bool track = test->fWindValue || oTest->fWindValue;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001009 Span* end = test;
caryclark@google.com18063442012-07-25 12:05:18 +00001010 double startT = end->fT;
1011 double oStartT = oTest->fT;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001012 do {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001013 if (decrement) {
caryclark@google.com18063442012-07-25 12:05:18 +00001014 decrementSpan(end);
caryclark@google.comcc905052012-07-25 20:59:42 +00001015 } else if (track && end->fT < 1 && oStartT < 1) {
caryclark@google.com18063442012-07-25 12:05:18 +00001016 TrackOutside(outsideTs, end->fT, oStartT);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001017 }
1018 end = &fTs[++index];
1019 } while (end->fT - test->fT < FLT_EPSILON);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001020 Span* oTestStart = oTest;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001021 do {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001022 if (decrement) {
caryclark@google.com18063442012-07-25 12:05:18 +00001023 other.decrementSpan(oTestStart);
caryclark@google.comcc905052012-07-25 20:59:42 +00001024 } else if (track && oTestStart->fT < 1 && startT < 1) {
caryclark@google.com18063442012-07-25 12:05:18 +00001025 TrackOutside(oOutsideTs, oTestStart->fT, startT);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001026 }
1027 if (!oIndex) {
1028 break;
1029 }
1030 oTestStart = &other.fTs[--oIndex];
1031 } while (oTest->fT - oTestStart->fT < FLT_EPSILON);
1032 test = end;
1033 oTest = oTestStart;
1034 } while (test->fT < endT - FLT_EPSILON);
1035 SkASSERT(!oIndex || oTest->fT <= oStartT - FLT_EPSILON);
caryclark@google.com18063442012-07-25 12:05:18 +00001036 // FIXME: determine if canceled edges need outside ts added
caryclark@google.comcc905052012-07-25 20:59:42 +00001037 if (!done() && outsideTs.count()) {
1038 addCancelOutsides(outsideTs, other, oEndT);
caryclark@google.com18063442012-07-25 12:05:18 +00001039 }
caryclark@google.comcc905052012-07-25 20:59:42 +00001040 if (!other.done() && oOutsideTs.count()) {
1041 other.addCancelOutsides(oOutsideTs, *this, endT);
caryclark@google.com18063442012-07-25 12:05:18 +00001042 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001043 }
1044
1045 // set spans from start to end to increment the greater by one and decrement
1046 // the lesser
1047 void addTCoincident(double startT, double endT, Segment& other,
1048 double oStartT, double oEndT) {
1049 SkASSERT(endT - startT >= FLT_EPSILON);
1050 SkASSERT(oEndT - oStartT >= FLT_EPSILON);
1051 int index = 0;
1052 while (startT - fTs[index].fT >= FLT_EPSILON) {
1053 ++index;
1054 }
1055 int oIndex = 0;
1056 while (oStartT - other.fTs[oIndex].fT >= FLT_EPSILON) {
1057 ++oIndex;
1058 }
1059 Span* test = &fTs[index];
1060 Span* oTest = &other.fTs[oIndex];
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001061 SkTDArray<double> outsideTs;
caryclark@google.comcc905052012-07-25 20:59:42 +00001062 SkTDArray<double> xOutsideTs;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001063 SkTDArray<double> oOutsideTs;
caryclark@google.comcc905052012-07-25 20:59:42 +00001064 SkTDArray<double> oxOutsideTs;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001065 do {
caryclark@google.comb9738012012-07-03 19:53:30 +00001066 bool transfer = test->fWindValue && oTest->fWindValue;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001067 bool decrementOther = test->fWindValue >= oTest->fWindValue;
1068 Span* end = test;
1069 double startT = end->fT;
caryclark@google.comcc905052012-07-25 20:59:42 +00001070 int startIndex = index;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001071 double oStartT = oTest->fT;
caryclark@google.comcc905052012-07-25 20:59:42 +00001072 int oStartIndex = oIndex;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001073 do {
caryclark@google.comb9738012012-07-03 19:53:30 +00001074 if (transfer) {
1075 if (decrementOther) {
caryclark@google.com27c449a2012-07-27 18:26:38 +00001076 SkASSERT(abs(end->fWindValue) <= gDebugMaxWindValue);
caryclark@google.comb9738012012-07-03 19:53:30 +00001077 ++(end->fWindValue);
caryclark@google.com18063442012-07-25 12:05:18 +00001078 } else if (decrementSpan(end)) {
1079 TrackOutside(outsideTs, end->fT, oStartT);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001080 }
caryclark@google.comcc905052012-07-25 20:59:42 +00001081 } else if (oTest->fWindValue) {
1082 SkASSERT(!decrementOther);
1083 if (startIndex > 0 && fTs[startIndex - 1].fWindValue) {
1084 TrackOutside(xOutsideTs, end->fT, oStartT);
1085 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001086 }
1087 end = &fTs[++index];
1088 } while (end->fT - test->fT < FLT_EPSILON);
1089 Span* oEnd = oTest;
1090 do {
caryclark@google.comb9738012012-07-03 19:53:30 +00001091 if (transfer) {
caryclark@google.com18063442012-07-25 12:05:18 +00001092 if (!decrementOther) {
caryclark@google.com27c449a2012-07-27 18:26:38 +00001093 SkASSERT(abs(oEnd->fWindValue) <= gDebugMaxWindValue);
caryclark@google.comb9738012012-07-03 19:53:30 +00001094 ++(oEnd->fWindValue);
caryclark@google.com18063442012-07-25 12:05:18 +00001095 } else if (other.decrementSpan(oEnd)) {
1096 TrackOutside(oOutsideTs, oEnd->fT, startT);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001097 }
caryclark@google.comcc905052012-07-25 20:59:42 +00001098 } else if (test->fWindValue) {
1099 SkASSERT(!decrementOther);
1100 if (oStartIndex > 0 && other.fTs[oStartIndex - 1].fWindValue) {
1101 SkASSERT(0); // track for later?
1102 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001103 }
1104 oEnd = &other.fTs[++oIndex];
1105 } while (oEnd->fT - oTest->fT < FLT_EPSILON);
1106 test = end;
1107 oTest = oEnd;
1108 } while (test->fT < endT - FLT_EPSILON);
1109 SkASSERT(oTest->fT < oEndT + FLT_EPSILON);
1110 SkASSERT(oTest->fT > oEndT - FLT_EPSILON);
caryclark@google.comcc905052012-07-25 20:59:42 +00001111 if (!done()) {
1112 if (outsideTs.count()) {
1113 addCoinOutsides(outsideTs, other, oEndT);
1114 }
1115 if (xOutsideTs.count()) {
1116 addCoinOutsides(xOutsideTs, other, oEndT);
1117 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001118 }
1119 if (!other.done() && oOutsideTs.count()) {
caryclark@google.comcc905052012-07-25 20:59:42 +00001120 other.addCoinOutsides(oOutsideTs, *this, endT);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001121 }
1122 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001123
caryclark@google.comcc905052012-07-25 20:59:42 +00001124 // FIXME: this doesn't prevent the same span from being added twice
1125 // fix in caller, assert here?
caryclark@google.com47580692012-07-23 12:14:49 +00001126 void addTPair(double t, Segment& other, double otherT) {
caryclark@google.comcc905052012-07-25 20:59:42 +00001127 int tCount = fTs.count();
1128 for (int tIndex = 0; tIndex < tCount; ++tIndex) {
1129 const Span& span = fTs[tIndex];
1130 if (span.fT > t) {
1131 break;
1132 }
1133 if (span.fT == t && span.fOther == &other && span.fOtherT == otherT) {
1134#if DEBUG_ADD_T_PAIR
1135 SkDebugf("%s addTPair duplicate this=%d %1.9g other=%d %1.9g\n",
1136 __FUNCTION__, fID, t, other.fID, otherT);
1137#endif
1138 return;
1139 }
1140 }
caryclark@google.com47580692012-07-23 12:14:49 +00001141#if DEBUG_ADD_T_PAIR
1142 SkDebugf("%s addTPair this=%d %1.9g other=%d %1.9g\n",
1143 __FUNCTION__, fID, t, other.fID, otherT);
1144#endif
caryclark@google.comb9738012012-07-03 19:53:30 +00001145 int insertedAt = addT(t, &other);
1146 int otherInsertedAt = other.addT(otherT, this);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001147 addOtherT(insertedAt, otherT, otherInsertedAt);
caryclark@google.comb9738012012-07-03 19:53:30 +00001148 other.addOtherT(otherInsertedAt, t, insertedAt);
caryclark@google.com47580692012-07-23 12:14:49 +00001149 Span& newSpan = fTs[insertedAt];
1150 if (insertedAt > 0) {
1151 const Span& lastSpan = fTs[insertedAt - 1];
1152 if (t - lastSpan.fT < FLT_EPSILON) {
1153 int tWind = lastSpan.fWindValue;
1154 newSpan.fWindValue = tWind;
1155 if (!tWind) {
1156 newSpan.fDone = true;
1157 ++fDoneSpans;
1158 }
1159 }
1160 }
1161 int oIndex = newSpan.fOtherIndex;
1162 if (oIndex > 0) {
1163 const Span& lastOther = other.fTs[oIndex - 1];
1164 if (otherT - lastOther.fT < FLT_EPSILON) {
1165 int oWind = lastOther.fWindValue;
1166 Span& otherSpan = other.fTs[oIndex];
1167 otherSpan.fWindValue = oWind;
1168 if (!oWind) {
1169 otherSpan.fDone = true;
1170 ++(other.fDoneSpans);
1171 }
1172 }
1173 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001174 }
1175
1176 void addTwoAngles(int start, int end, SkTDArray<Angle>& angles) const {
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001177 // add edge leading into junction
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001178 if (fTs[SkMin32(end, start)].fWindValue > 0) {
1179 addAngle(angles, end, start);
1180 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001181 // add edge leading away from junction
caryclark@google.com495f8e42012-05-31 13:13:11 +00001182 int step = SkSign32(end - start);
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001183 int tIndex = nextSpan(end, step);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001184 if (tIndex >= 0 && fTs[SkMin32(end, tIndex)].fWindValue > 0) {
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001185 addAngle(angles, end, tIndex);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001186 }
1187 }
caryclark@google.com47580692012-07-23 12:14:49 +00001188
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001189 const Bounds& bounds() const {
1190 return fBounds;
1191 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001192
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001193 void buildAngles(int index, SkTDArray<Angle>& angles) const {
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001194 double referenceT = fTs[index].fT;
1195 int lesser = index;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001196 while (--lesser >= 0 && referenceT - fTs[lesser].fT < FLT_EPSILON) {
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001197 buildAnglesInner(lesser, angles);
1198 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001199 do {
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001200 buildAnglesInner(index, angles);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001201 } while (++index < fTs.count() && fTs[index].fT - referenceT < FLT_EPSILON);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001202 }
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001203
1204 void buildAnglesInner(int index, SkTDArray<Angle>& angles) const {
1205 Span* span = &fTs[index];
1206 Segment* other = span->fOther;
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001207 // if there is only one live crossing, and no coincidence, continue
1208 // in the same direction
1209 // if there is coincidence, the only choice may be to reverse direction
1210 // find edge on either side of intersection
1211 int oIndex = span->fOtherIndex;
1212 // if done == -1, prior span has already been processed
1213 int step = 1;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001214 int next = other->nextSpan(oIndex, step);
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001215 if (next < 0) {
1216 step = -step;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001217 next = other->nextSpan(oIndex, step);
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001218 }
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001219 // add candidate into and away from junction
1220 other->addTwoAngles(next, oIndex, angles);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001221 }
1222
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001223 bool cancels(const Segment& other) const {
caryclark@google.comb9738012012-07-03 19:53:30 +00001224 SkASSERT(fVerb == SkPath::kLine_Verb);
1225 SkASSERT(other.fVerb == SkPath::kLine_Verb);
1226 SkPoint dxy = fPts[0] - fPts[1];
1227 SkPoint odxy = other.fPts[0] - other.fPts[1];
1228 return dxy.fX * odxy.fX < 0 || dxy.fY * odxy.fY < 0;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001229 }
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001230
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001231 // figure out if the segment's ascending T goes clockwise or not
1232 // not enough context to write this as shown
1233 // instead, add all segments meeting at the top
1234 // sort them using buildAngleList
1235 // find the first in the sort
1236 // see if ascendingT goes to top
caryclark@google.com65f9f0a2012-05-23 18:09:25 +00001237 bool clockwise(int /* tIndex */) const {
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001238 SkASSERT(0); // incomplete
1239 return false;
1240 }
caryclark@google.com534aa5b2012-08-02 20:08:21 +00001241
1242 int computeSum(int startIndex, int endIndex) {
1243 SkTDArray<Angle> angles;
1244 addTwoAngles(startIndex, endIndex, angles);
1245 buildAngles(endIndex, angles);
1246 SkTDArray<Angle*> sorted;
1247 sortAngles(angles, sorted);
1248 int angleCount = angles.count();
1249 const Angle* angle;
1250 const Segment* base;
1251 int winding;
1252 int firstIndex = 0;
1253 do {
1254 angle = sorted[firstIndex];
1255 base = angle->segment();
1256 winding = base->windSum(angle);
1257 if (winding != SK_MinS32) {
1258 break;
1259 }
1260 if (++firstIndex == angleCount) {
1261 return SK_MinS32;
1262 }
1263 } while (true);
1264 // turn winding into contourWinding
1265 int spanWinding = base->spanSign(angle->start(), angle->end());
1266 if (spanWinding * winding < 0) {
1267 winding += spanWinding;
1268 }
1269 #if DEBUG_SORT
1270 base->debugShowSort(sorted, firstIndex, winding);
1271 #endif
1272 int nextIndex = firstIndex + 1;
1273 int lastIndex = firstIndex != 0 ? firstIndex : angleCount;
1274 winding -= base->windBump(angle);
1275 do {
1276 if (nextIndex == angleCount) {
1277 nextIndex = 0;
1278 }
1279 angle = sorted[nextIndex];
1280 Segment* segment = angle->segment();
1281 int maxWinding = winding;
1282 winding -= segment->windBump(angle);
1283 if (segment->windSum(nextIndex) == SK_MinS32) {
1284 if (abs(maxWinding) < abs(winding) || maxWinding * winding < 0) {
1285 maxWinding = winding;
1286 }
1287 segment->markAndChaseWinding(angle, maxWinding);
1288 }
1289 } while (++nextIndex != lastIndex);
1290 return windSum(SkMin32(startIndex, endIndex));
1291 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001292
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001293 int crossedSpan(const SkPoint& basePt, SkScalar& bestY, double& hitT) const {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001294 int bestT = -1;
1295 SkScalar top = bounds().fTop;
1296 SkScalar bottom = bounds().fBottom;
caryclark@google.com210acaf2012-07-12 21:05:13 +00001297 int end = 0;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001298 do {
caryclark@google.com210acaf2012-07-12 21:05:13 +00001299 int start = end;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001300 end = nextSpan(start, 1);
caryclark@google.com47580692012-07-23 12:14:49 +00001301 if (fTs[start].fWindValue == 0) {
1302 continue;
1303 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001304 SkPoint edge[4];
1305 // OPTIMIZE: wrap this so that if start==0 end==fTCount-1 we can
1306 // work with the original data directly
1307 (*SegmentSubDivide[fVerb])(fPts, fTs[start].fT, fTs[end].fT, edge);
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001308 // intersect ray starting at basePt with edge
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001309 Intersections intersections;
1310 int pts = (*VSegmentIntersect[fVerb])(edge, top, bottom, basePt.fX,
1311 false, intersections);
1312 if (pts == 0) {
1313 continue;
caryclark@google.com495f8e42012-05-31 13:13:11 +00001314 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001315 if (pts > 1 && fVerb == SkPath::kLine_Verb) {
1316 // if the intersection is edge on, wait for another one
1317 continue;
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001318 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001319 SkASSERT(pts == 1); // FIXME: more code required to disambiguate
1320 SkPoint pt;
1321 double foundT = intersections.fT[0][0];
1322 (*SegmentXYAtT[fVerb])(fPts, foundT, &pt);
1323 if (bestY < pt.fY) {
1324 bestY = pt.fY;
1325 bestT = foundT < 1 ? start : end;
caryclark@google.com47580692012-07-23 12:14:49 +00001326 hitT = fTs[start].fT + (fTs[end].fT - fTs[start].fT) * foundT;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001327 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001328 } while (fTs[end].fT != 1);
1329 return bestT;
caryclark@google.com495f8e42012-05-31 13:13:11 +00001330 }
caryclark@google.com18063442012-07-25 12:05:18 +00001331
caryclark@google.com534aa5b2012-08-02 20:08:21 +00001332 bool crossedSpanHalves(const SkPoint& basePt, bool leftHalf, bool rightHalf) {
1333 // if a segment is connected to this one, consider it crossing
1334 int tIndex;
1335 if (fPts[0].fX == basePt.fX) {
1336 tIndex = 0;
1337 do {
1338 const Span& sSpan = fTs[tIndex];
1339 const Segment* sOther = sSpan.fOther;
1340 if (!sOther->fTs[sSpan.fOtherIndex].fWindValue) {
1341 continue;
1342 }
1343 if (leftHalf ? sOther->fBounds.fLeft < basePt.fX
1344 : sOther->fBounds.fRight > basePt.fX) {
1345 return true;
1346 }
1347 } while (fTs[++tIndex].fT == 0);
1348 }
1349 if (fPts[fVerb].fX == basePt.fX) {
1350 tIndex = fTs.count() - 1;
1351 do {
1352 const Span& eSpan = fTs[tIndex];
1353 const Segment* eOther = eSpan.fOther;
1354 if (!eOther->fTs[eSpan.fOtherIndex].fWindValue) {
1355 continue;
1356 }
1357 if (leftHalf ? eOther->fBounds.fLeft < basePt.fX
1358 : eOther->fBounds.fRight > basePt.fX) {
1359 return true;
1360 }
1361 } while (fTs[--tIndex].fT == 1);
1362 }
1363 return false;
1364 }
1365
caryclark@google.com18063442012-07-25 12:05:18 +00001366 bool decrementSpan(Span* span) {
1367 SkASSERT(span->fWindValue > 0);
1368 if (--(span->fWindValue) == 0) {
1369 span->fDone = true;
1370 ++fDoneSpans;
1371 return true;
1372 }
1373 return false;
1374 }
1375
caryclark@google.com15fa1382012-05-07 20:49:36 +00001376 bool done() const {
caryclark@google.comaf46cff2012-05-22 21:12:00 +00001377 SkASSERT(fDoneSpans <= fTs.count());
1378 return fDoneSpans == fTs.count();
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001379 }
1380
caryclark@google.com47580692012-07-23 12:14:49 +00001381 bool done(const Angle& angle) const {
1382 int start = angle.start();
1383 int end = angle.end();
1384 const Span& mSpan = fTs[SkMin32(start, end)];
1385 return mSpan.fDone;
1386 }
1387
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001388 // so the span needs to contain the pairing info found here
1389 // this should include the winding computed for the edge, and
1390 // what edge it connects to, and whether it is discarded
1391 // (maybe discarded == abs(winding) > 1) ?
1392 // only need derivatives for duration of sorting, add a new struct
1393 // for pairings, remove extra spans that have zero length and
1394 // reference an unused other
1395 // for coincident, the last span on the other may be marked done
1396 // (always?)
1397
1398 // if loop is exhausted, contour may be closed.
1399 // FIXME: pass in close point so we can check for closure
1400
1401 // given a segment, and a sense of where 'inside' is, return the next
1402 // segment. If this segment has an intersection, or ends in multiple
1403 // segments, find the mate that continues the outside.
1404 // note that if there are multiples, but no coincidence, we can limit
1405 // choices to connections in the correct direction
1406
1407 // mark found segments as done
1408
caryclark@google.com15fa1382012-05-07 20:49:36 +00001409 // start is the index of the beginning T of this edge
1410 // it is guaranteed to have an end which describes a non-zero length (?)
1411 // winding -1 means ccw, 1 means cw
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001412 // firstFind allows coincident edges to be treated differently
caryclark@google.com27c449a2012-07-27 18:26:38 +00001413 Segment* findNext(SkTDArray<Span*>& chase, bool firstFind, bool active,
caryclark@google.com0e08a192012-07-13 21:07:52 +00001414 const int startIndex, const int endIndex, int& nextStart,
caryclark@google.com27c449a2012-07-27 18:26:38 +00001415 int& nextEnd, int& winding, int& spanWinding) {
caryclark@google.com534aa5b2012-08-02 20:08:21 +00001416 int outerWinding = winding;
1417 int innerWinding = winding + spanWinding;
caryclark@google.come21cb182012-07-23 21:26:31 +00001418 #if DEBUG_WINDING
caryclark@google.com534aa5b2012-08-02 20:08:21 +00001419 SkDebugf("%s winding=%d spanWinding=%d outerWinding=%d innerWinding=%d\n",
1420 __FUNCTION__, winding, spanWinding, outerWinding, innerWinding);
caryclark@google.come21cb182012-07-23 21:26:31 +00001421 #endif
caryclark@google.com534aa5b2012-08-02 20:08:21 +00001422 if (abs(outerWinding) < abs(innerWinding)
1423 || outerWinding * innerWinding < 0) {
1424 outerWinding = innerWinding;
1425 }
caryclark@google.com1577e8f2012-05-22 17:01:14 +00001426 SkASSERT(startIndex != endIndex);
caryclark@google.com15fa1382012-05-07 20:49:36 +00001427 int count = fTs.count();
caryclark@google.com1577e8f2012-05-22 17:01:14 +00001428 SkASSERT(startIndex < endIndex ? startIndex < count - 1
1429 : startIndex > 0);
caryclark@google.com495f8e42012-05-31 13:13:11 +00001430 int step = SkSign32(endIndex - startIndex);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001431 int end = nextSpan(startIndex, step);
caryclark@google.com1577e8f2012-05-22 17:01:14 +00001432 SkASSERT(end >= 0);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001433 Span* endSpan = &fTs[end];
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001434 Segment* other;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001435 if (isSimple(end)) {
caryclark@google.comaf46cff2012-05-22 21:12:00 +00001436 // mark the smaller of startIndex, endIndex done, and all adjacent
1437 // spans with the same T value (but not 'other' spans)
caryclark@google.com534aa5b2012-08-02 20:08:21 +00001438 #if DEBUG_WINDING
1439 SkDebugf("%s simple\n", __FUNCTION__);
1440 #endif
1441 markDone(SkMin32(startIndex, endIndex), outerWinding);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001442 other = endSpan->fOther;
caryclark@google.com495f8e42012-05-31 13:13:11 +00001443 nextStart = endSpan->fOtherIndex;
caryclark@google.com18063442012-07-25 12:05:18 +00001444 double startT = other->fTs[nextStart].fT;
1445 nextEnd = nextStart;
1446 do {
1447 nextEnd += step;
1448 } while (fabs(startT - other->fTs[nextEnd].fT) < FLT_EPSILON);
caryclark@google.com495f8e42012-05-31 13:13:11 +00001449 SkASSERT(step < 0 ? nextEnd >= 0 : nextEnd < other->fTs.count());
caryclark@google.com15fa1382012-05-07 20:49:36 +00001450 return other;
1451 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001452 // more than one viable candidate -- measure angles to find best
caryclark@google.com15fa1382012-05-07 20:49:36 +00001453 SkTDArray<Angle> angles;
caryclark@google.comaf46cff2012-05-22 21:12:00 +00001454 SkASSERT(startIndex - endIndex != 0);
1455 SkASSERT((startIndex - endIndex < 0) ^ (step < 0));
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001456 addTwoAngles(startIndex, end, angles);
1457 buildAngles(end, angles);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001458 SkTDArray<Angle*> sorted;
1459 sortAngles(angles, sorted);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001460 int angleCount = angles.count();
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001461 int firstIndex = findStartingEdge(sorted, startIndex, end);
caryclark@google.com1577e8f2012-05-22 17:01:14 +00001462 SkASSERT(firstIndex >= 0);
caryclark@google.com47580692012-07-23 12:14:49 +00001463 #if DEBUG_SORT
caryclark@google.com534aa5b2012-08-02 20:08:21 +00001464 debugShowSort(sorted, firstIndex, winding);
caryclark@google.com47580692012-07-23 12:14:49 +00001465 #endif
caryclark@google.com534aa5b2012-08-02 20:08:21 +00001466 SkASSERT(sorted[firstIndex]->segment() == this);
caryclark@google.com0e08a192012-07-13 21:07:52 +00001467 #if DEBUG_WINDING
caryclark@google.com534aa5b2012-08-02 20:08:21 +00001468 SkDebugf("%s sign=%d\n", __FUNCTION__, sorted[firstIndex]->sign());
caryclark@google.com0e08a192012-07-13 21:07:52 +00001469 #endif
caryclark@google.com534aa5b2012-08-02 20:08:21 +00001470 int sumWinding = winding - windBump(sorted[firstIndex]);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001471 int nextIndex = firstIndex + 1;
1472 int lastIndex = firstIndex != 0 ? firstIndex : angleCount;
1473 const Angle* foundAngle = NULL;
caryclark@google.com47580692012-07-23 12:14:49 +00001474 bool foundDone = false;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001475 // iterate through the angle, and compute everyone's winding
caryclark@google.com534aa5b2012-08-02 20:08:21 +00001476 int toggleWinding = SK_MinS32;
caryclark@google.com27c449a2012-07-27 18:26:38 +00001477 bool flipFound = false;
1478 int flipped = 1;
caryclark@google.comafe56de2012-07-24 18:11:03 +00001479 Segment* nextSegment;
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001480 do {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001481 if (nextIndex == angleCount) {
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001482 nextIndex = 0;
1483 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001484 const Angle* nextAngle = sorted[nextIndex];
caryclark@google.come21cb182012-07-23 21:26:31 +00001485 int maxWinding = sumWinding;
caryclark@google.comafe56de2012-07-24 18:11:03 +00001486 nextSegment = nextAngle->segment();
1487 sumWinding -= nextSegment->windBump(nextAngle);
caryclark@google.come21cb182012-07-23 21:26:31 +00001488 SkASSERT(abs(sumWinding) <= gDebugMaxWindSum);
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001489 #if DEBUG_WINDING
caryclark@google.come21cb182012-07-23 21:26:31 +00001490 SkDebugf("%s maxWinding=%d sumWinding=%d sign=%d\n", __FUNCTION__,
1491 maxWinding, sumWinding, nextAngle->sign());
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001492 #endif
caryclark@google.come21cb182012-07-23 21:26:31 +00001493 if (maxWinding * sumWinding < 0) {
caryclark@google.com27c449a2012-07-27 18:26:38 +00001494 flipFound ^= true;
caryclark@google.com47580692012-07-23 12:14:49 +00001495 #if DEBUG_WINDING
caryclark@google.com534aa5b2012-08-02 20:08:21 +00001496 SkDebugf("%s flipFound=%d maxWinding=%d sumWinding=%d\n",
1497 __FUNCTION__, flipFound, maxWinding, sumWinding);
caryclark@google.com47580692012-07-23 12:14:49 +00001498 #endif
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001499 }
caryclark@google.come21cb182012-07-23 21:26:31 +00001500 if (!sumWinding) {
caryclark@google.com5c286d32012-07-13 11:57:28 +00001501 if (!active) {
caryclark@google.com534aa5b2012-08-02 20:08:21 +00001502 markDone(SkMin32(startIndex, endIndex), outerWinding);
caryclark@google.com47580692012-07-23 12:14:49 +00001503 nextSegment->markWinding(SkMin32(nextAngle->start(),
1504 nextAngle->end()), maxWinding);
caryclark@google.com0e08a192012-07-13 21:07:52 +00001505 #if DEBUG_WINDING
caryclark@google.com5c286d32012-07-13 11:57:28 +00001506 SkDebugf("%s inactive\n", __FUNCTION__);
caryclark@google.com0e08a192012-07-13 21:07:52 +00001507 #endif
caryclark@google.com5c286d32012-07-13 11:57:28 +00001508 return NULL;
1509 }
caryclark@google.com47580692012-07-23 12:14:49 +00001510 if (!foundAngle || foundDone) {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001511 foundAngle = nextAngle;
caryclark@google.com47580692012-07-23 12:14:49 +00001512 foundDone = nextSegment->done(*nextAngle);
caryclark@google.com534aa5b2012-08-02 20:08:21 +00001513 if (flipFound || (maxWinding * outerWinding < 0)) {
caryclark@google.com47580692012-07-23 12:14:49 +00001514 flipped = -flipped;
1515 #if DEBUG_WINDING
caryclark@google.com534aa5b2012-08-02 20:08:21 +00001516 SkDebugf("%s flipped=%d flipFound=%d maxWinding=%d"
1517 " outerWinding=%d\n", __FUNCTION__, flipped,
1518 flipFound, maxWinding, outerWinding);
caryclark@google.com47580692012-07-23 12:14:49 +00001519 #endif
1520 }
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001521 }
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001522 continue;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001523 }
caryclark@google.com534aa5b2012-08-02 20:08:21 +00001524 if (!maxWinding && !foundAngle) {
caryclark@google.com27c449a2012-07-27 18:26:38 +00001525 #if DEBUG_WINDING
caryclark@google.com534aa5b2012-08-02 20:08:21 +00001526 if (flipped > 0) {
1527 SkDebugf("%s sumWinding=%d * outerWinding=%d < 0 (%s)\n",
1528 __FUNCTION__, sumWinding, outerWinding,
1529 sumWinding * outerWinding < 0 ? "true" : "false");
1530 }
caryclark@google.com27c449a2012-07-27 18:26:38 +00001531 #endif
caryclark@google.com534aa5b2012-08-02 20:08:21 +00001532 if (sumWinding * outerWinding < 0 && flipped > 0) {
1533 #if DEBUG_WINDING
1534 SkDebugf("%s toggleWinding=%d\n", __FUNCTION__, sumWinding);
1535 #endif
1536 toggleWinding = sumWinding;
1537 } else if (outerWinding != sumWinding) {
1538 #if DEBUG_WINDING
1539 SkDebugf("%s outerWinding=%d != sumWinding=%d winding=%d\n",
1540 __FUNCTION__, outerWinding, sumWinding, winding);
1541 #endif
caryclark@google.com27c449a2012-07-27 18:26:38 +00001542 winding = sumWinding;
caryclark@google.comcc905052012-07-25 20:59:42 +00001543 }
caryclark@google.com0e08a192012-07-13 21:07:52 +00001544 foundAngle = nextAngle;
caryclark@google.com27c449a2012-07-27 18:26:38 +00001545 if (flipFound) {
caryclark@google.com534aa5b2012-08-02 20:08:21 +00001546 flipped = -flipped;
caryclark@google.com27c449a2012-07-27 18:26:38 +00001547 #if DEBUG_WINDING
caryclark@google.com534aa5b2012-08-02 20:08:21 +00001548 SkDebugf("%s flipped flipFound=%d\n", __FUNCTION__, flipFound);
caryclark@google.com27c449a2012-07-27 18:26:38 +00001549 #endif
1550 }
caryclark@google.com0e08a192012-07-13 21:07:52 +00001551 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001552 if (nextSegment->done()) {
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001553 continue;
caryclark@google.com495f8e42012-05-31 13:13:11 +00001554 }
1555 // if the winding is non-zero, nextAngle does not connect to
1556 // current chain. If we haven't done so already, mark the angle
1557 // as done, record the winding value, and mark connected unambiguous
1558 // segments as well.
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001559 if (nextSegment->windSum(nextAngle) == SK_MinS32) {
caryclark@google.com534aa5b2012-08-02 20:08:21 +00001560 if (abs(maxWinding) < abs(sumWinding)
1561 || maxWinding * sumWinding < 0) {
caryclark@google.come21cb182012-07-23 21:26:31 +00001562 maxWinding = sumWinding;
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001563 }
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001564 Span* last;
caryclark@google.com534aa5b2012-08-02 20:08:21 +00001565 if (foundAngle) {
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001566 last = nextSegment->markAndChaseWinding(nextAngle, maxWinding);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001567 } else {
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001568 last = nextSegment->markAndChaseDone(nextAngle, maxWinding);
1569 }
1570 if (last) {
1571 *chase.append() = last;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001572 }
caryclark@google.com495f8e42012-05-31 13:13:11 +00001573 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001574 } while (++nextIndex != lastIndex);
caryclark@google.com47580692012-07-23 12:14:49 +00001575 SkASSERT(sorted[firstIndex]->segment() == this);
caryclark@google.com534aa5b2012-08-02 20:08:21 +00001576 markDone(SkMin32(startIndex, endIndex), outerWinding);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001577 if (!foundAngle) {
1578 return NULL;
1579 }
1580 nextStart = foundAngle->start();
1581 nextEnd = foundAngle->end();
caryclark@google.comafe56de2012-07-24 18:11:03 +00001582 nextSegment = foundAngle->segment();
1583 spanWinding = SkSign32(spanWinding) * flipped * nextSegment->windValue(
1584 SkMin32(nextStart, nextEnd));
caryclark@google.com534aa5b2012-08-02 20:08:21 +00001585 if (toggleWinding != SK_MinS32) {
1586 winding = toggleWinding;
1587 spanWinding = -spanWinding;
caryclark@google.com27c449a2012-07-27 18:26:38 +00001588 }
caryclark@google.com27c449a2012-07-27 18:26:38 +00001589 #if DEBUG_WINDING
1590 SkDebugf("%s spanWinding=%d\n", __FUNCTION__, spanWinding);
1591 #endif
caryclark@google.comafe56de2012-07-24 18:11:03 +00001592 return nextSegment;
caryclark@google.com1577e8f2012-05-22 17:01:14 +00001593 }
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001594
1595 int findStartingEdge(SkTDArray<Angle*>& sorted, int start, int end) {
1596 int angleCount = sorted.count();
1597 int firstIndex = -1;
1598 for (int angleIndex = 0; angleIndex < angleCount; ++angleIndex) {
1599 const Angle* angle = sorted[angleIndex];
1600 if (angle->segment() == this && angle->start() == end &&
1601 angle->end() == start) {
1602 firstIndex = angleIndex;
1603 break;
1604 }
1605 }
1606 return firstIndex;
1607 }
1608
caryclark@google.com1577e8f2012-05-22 17:01:14 +00001609 // FIXME: this is tricky code; needs its own unit test
caryclark@google.com65f9f0a2012-05-23 18:09:25 +00001610 void findTooCloseToCall(int /* winding */ ) { // FIXME: winding should be considered
caryclark@google.com15fa1382012-05-07 20:49:36 +00001611 int count = fTs.count();
1612 if (count < 3) { // require t=0, x, 1 at minimum
1613 return;
1614 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001615 int matchIndex = 0;
caryclark@google.com15fa1382012-05-07 20:49:36 +00001616 int moCount;
1617 Span* match;
1618 Segment* mOther;
1619 do {
1620 match = &fTs[matchIndex];
1621 mOther = match->fOther;
1622 moCount = mOther->fTs.count();
caryclark@google.com1577e8f2012-05-22 17:01:14 +00001623 if (moCount >= 3) {
1624 break;
1625 }
1626 if (++matchIndex >= count) {
1627 return;
1628 }
1629 } while (true); // require t=0, x, 1 at minimum
caryclark@google.com15fa1382012-05-07 20:49:36 +00001630 // OPTIMIZATION: defer matchPt until qualifying toCount is found?
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001631 const SkPoint* matchPt = &xyAtT(match);
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001632 // look for a pair of nearby T values that map to the same (x,y) value
1633 // if found, see if the pair of other segments share a common point. If
1634 // so, the span from here to there is coincident.
caryclark@google.com15fa1382012-05-07 20:49:36 +00001635 for (int index = matchIndex + 1; index < count; ++index) {
1636 Span* test = &fTs[index];
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001637 if (test->fDone) {
caryclark@google.com495f8e42012-05-31 13:13:11 +00001638 continue;
1639 }
caryclark@google.com15fa1382012-05-07 20:49:36 +00001640 Segment* tOther = test->fOther;
1641 int toCount = tOther->fTs.count();
1642 if (toCount < 3) { // require t=0, x, 1 at minimum
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001643 continue;
1644 }
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001645 const SkPoint* testPt = &xyAtT(test);
1646 if (*matchPt != *testPt) {
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001647 matchIndex = index;
caryclark@google.com15fa1382012-05-07 20:49:36 +00001648 moCount = toCount;
1649 match = test;
1650 mOther = tOther;
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001651 matchPt = testPt;
1652 continue;
1653 }
caryclark@google.com1577e8f2012-05-22 17:01:14 +00001654 int moStart = -1;
1655 int moEnd = -1;
1656 double moStartT, moEndT;
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001657 for (int moIndex = 0; moIndex < moCount; ++moIndex) {
caryclark@google.com15fa1382012-05-07 20:49:36 +00001658 Span& moSpan = mOther->fTs[moIndex];
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001659 if (moSpan.fDone) {
caryclark@google.com495f8e42012-05-31 13:13:11 +00001660 continue;
1661 }
caryclark@google.com15fa1382012-05-07 20:49:36 +00001662 if (moSpan.fOther == this) {
1663 if (moSpan.fOtherT == match->fT) {
1664 moStart = moIndex;
caryclark@google.com1577e8f2012-05-22 17:01:14 +00001665 moStartT = moSpan.fT;
caryclark@google.com15fa1382012-05-07 20:49:36 +00001666 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001667 continue;
1668 }
caryclark@google.com1577e8f2012-05-22 17:01:14 +00001669 if (moSpan.fOther == tOther) {
1670 SkASSERT(moEnd == -1);
1671 moEnd = moIndex;
1672 moEndT = moSpan.fT;
caryclark@google.com15fa1382012-05-07 20:49:36 +00001673 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001674 }
caryclark@google.com1577e8f2012-05-22 17:01:14 +00001675 if (moStart < 0 || moEnd < 0) {
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001676 continue;
1677 }
caryclark@google.com1577e8f2012-05-22 17:01:14 +00001678 // FIXME: if moStartT, moEndT are initialized to NaN, can skip this test
1679 if (moStartT == moEndT) {
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001680 continue;
1681 }
caryclark@google.com1577e8f2012-05-22 17:01:14 +00001682 int toStart = -1;
1683 int toEnd = -1;
1684 double toStartT, toEndT;
1685 for (int toIndex = 0; toIndex < toCount; ++toIndex) {
1686 Span& toSpan = tOther->fTs[toIndex];
1687 if (toSpan.fOther == this) {
1688 if (toSpan.fOtherT == test->fT) {
1689 toStart = toIndex;
1690 toStartT = toSpan.fT;
1691 }
1692 continue;
1693 }
1694 if (toSpan.fOther == mOther && toSpan.fOtherT == moEndT) {
1695 SkASSERT(toEnd == -1);
1696 toEnd = toIndex;
1697 toEndT = toSpan.fT;
1698 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001699 }
caryclark@google.com1577e8f2012-05-22 17:01:14 +00001700 // FIXME: if toStartT, toEndT are initialized to NaN, can skip this test
1701 if (toStart <= 0 || toEnd <= 0) {
1702 continue;
1703 }
1704 if (toStartT == toEndT) {
1705 continue;
1706 }
1707 // test to see if the segment between there and here is linear
1708 if (!mOther->isLinear(moStart, moEnd)
1709 || !tOther->isLinear(toStart, toEnd)) {
1710 continue;
1711 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001712 // FIXME: defer implementation until the rest works
1713 // this may share code with regular coincident detection
1714 SkASSERT(0);
1715 #if 0
1716 if (flipped) {
1717 mOther->addTCancel(moStart, moEnd, tOther, tStart, tEnd);
1718 } else {
1719 mOther->addTCoincident(moStart, moEnd, tOther, tStart, tEnd);
1720 }
1721 #endif
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001722 }
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001723 }
1724
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001725 // OPTIMIZATION : for a pair of lines, can we compute points at T (cached)
1726 // and use more concise logic like the old edge walker code?
1727 // FIXME: this needs to deal with coincident edges
caryclark@google.com1577e8f2012-05-22 17:01:14 +00001728 Segment* findTop(int& tIndex, int& endIndex) {
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001729 // iterate through T intersections and return topmost
1730 // topmost tangent from y-min to first pt is closer to horizontal
caryclark@google.com88f7d0c2012-06-07 21:09:20 +00001731 SkASSERT(!done());
1732 int firstT;
1733 int lastT;
caryclark@google.com88f7d0c2012-06-07 21:09:20 +00001734 SkPoint topPt;
1735 topPt.fY = SK_ScalarMax;
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001736 int count = fTs.count();
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001737 // see if either end is not done since we want smaller Y of the pair
caryclark@google.com88f7d0c2012-06-07 21:09:20 +00001738 bool lastDone = true;
1739 for (int index = 0; index < count; ++index) {
caryclark@google.com15fa1382012-05-07 20:49:36 +00001740 const Span& span = fTs[index];
caryclark@google.com88f7d0c2012-06-07 21:09:20 +00001741 if (!span.fDone || !lastDone) {
1742 const SkPoint& intercept = xyAtT(&span);
1743 if (topPt.fY > intercept.fY || (topPt.fY == intercept.fY
1744 && topPt.fX > intercept.fX)) {
1745 topPt = intercept;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001746 firstT = lastT = index;
caryclark@google.com88f7d0c2012-06-07 21:09:20 +00001747 } else if (topPt == intercept) {
1748 lastT = index;
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001749 }
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001750 }
caryclark@google.com88f7d0c2012-06-07 21:09:20 +00001751 lastDone = span.fDone;
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001752 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001753 // sort the edges to find the leftmost
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001754 int step = 1;
1755 int end = nextSpan(firstT, step);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001756 if (end == -1) {
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001757 step = -1;
1758 end = nextSpan(firstT, step);
caryclark@google.com65f9f0a2012-05-23 18:09:25 +00001759 SkASSERT(end != -1);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001760 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001761 // if the topmost T is not on end, or is three-way or more, find left
1762 // look for left-ness from tLeft to firstT (matching y of other)
1763 SkTDArray<Angle> angles;
1764 SkASSERT(firstT - end != 0);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001765 addTwoAngles(end, firstT, angles);
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001766 buildAngles(firstT, angles);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001767 SkTDArray<Angle*> sorted;
1768 sortAngles(angles, sorted);
caryclark@google.com88f7d0c2012-06-07 21:09:20 +00001769 // skip edges that have already been processed
1770 firstT = -1;
1771 Segment* leftSegment;
1772 do {
1773 const Angle* angle = sorted[++firstT];
1774 leftSegment = angle->segment();
1775 tIndex = angle->end();
1776 endIndex = angle->start();
1777 } while (leftSegment->fTs[SkMin32(tIndex, endIndex)].fDone);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001778 return leftSegment;
1779 }
caryclark@google.com534aa5b2012-08-02 20:08:21 +00001780
1781 bool firstBump(const Angle* angle, int sumWinding) const {
1782 int winding = spanSign(angle->start(), angle->end());
1783 sumWinding -= winding;
1784 if (sumWinding == 0) {
1785 sumWinding = winding;
1786 }
1787 bool result = angle->sign() * sumWinding > 0;
1788 SkASSERT(result == angle->firstBump(sumWinding));
1789 return result;
1790 }
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001791
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001792 // FIXME: not crazy about this
1793 // when the intersections are performed, the other index is into an
1794 // incomplete array. as the array grows, the indices become incorrect
1795 // while the following fixes the indices up again, it isn't smart about
1796 // skipping segments whose indices are already correct
1797 // assuming we leave the code that wrote the index in the first place
1798 void fixOtherTIndex() {
1799 int iCount = fTs.count();
1800 for (int i = 0; i < iCount; ++i) {
1801 Span& iSpan = fTs[i];
1802 double oT = iSpan.fOtherT;
1803 Segment* other = iSpan.fOther;
1804 int oCount = other->fTs.count();
1805 for (int o = 0; o < oCount; ++o) {
1806 Span& oSpan = other->fTs[o];
1807 if (oT == oSpan.fT && this == oSpan.fOther) {
1808 iSpan.fOtherIndex = o;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001809 break;
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001810 }
1811 }
1812 }
1813 }
1814
caryclark@google.com495f8e42012-05-31 13:13:11 +00001815 // OPTIMIZATION: uses tail recursion. Unwise?
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001816 Span* innerChaseDone(int index, int step, int winding) {
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001817 int end = nextSpan(index, step);
caryclark@google.com9764cc62012-07-12 19:29:45 +00001818 SkASSERT(end >= 0);
1819 if (multipleSpans(end)) {
1820 return &fTs[end];
caryclark@google.com495f8e42012-05-31 13:13:11 +00001821 }
caryclark@google.com88f7d0c2012-06-07 21:09:20 +00001822 const Span& endSpan = fTs[end];
1823 Segment* other = endSpan.fOther;
1824 index = endSpan.fOtherIndex;
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001825 int otherEnd = other->nextSpan(index, step);
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001826 Span* last = other->innerChaseDone(index, step, winding);
caryclark@google.com495f8e42012-05-31 13:13:11 +00001827 other->markDone(SkMin32(index, otherEnd), winding);
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001828 return last;
caryclark@google.com495f8e42012-05-31 13:13:11 +00001829 }
1830
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001831 Span* innerChaseWinding(int index, int step, int winding) {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001832 int end = nextSpan(index, step);
caryclark@google.com9764cc62012-07-12 19:29:45 +00001833 SkASSERT(end >= 0);
1834 if (multipleSpans(end)) {
1835 return &fTs[end];
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001836 }
1837 const Span& endSpan = fTs[end];
1838 Segment* other = endSpan.fOther;
1839 index = endSpan.fOtherIndex;
1840 int otherEnd = other->nextSpan(index, step);
1841 int min = SkMin32(index, otherEnd);
1842 if (other->fTs[min].fWindSum != SK_MinS32) {
caryclark@google.com0e08a192012-07-13 21:07:52 +00001843 SkASSERT(other->fTs[min].fWindSum == winding);
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001844 return NULL;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001845 }
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001846 Span* last = other->innerChaseWinding(index, step, winding);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001847 other->markWinding(min, winding);
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001848 return last;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001849 }
1850
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001851 void init(const SkPoint pts[], SkPath::Verb verb) {
1852 fPts = pts;
1853 fVerb = verb;
caryclark@google.comaf46cff2012-05-22 21:12:00 +00001854 fDoneSpans = 0;
caryclark@google.comb45a1b42012-05-18 20:50:33 +00001855 }
1856
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001857 bool intersected() const {
1858 return fTs.count() > 0;
1859 }
caryclark@google.com7db7c6b2012-07-27 21:22:25 +00001860
1861 bool isConnected(int startIndex, int endIndex) const {
1862 return fTs[startIndex].fWindSum != SK_MinS32
1863 || fTs[endIndex].fWindSum != SK_MinS32;
1864 }
1865
caryclark@google.com15fa1382012-05-07 20:49:36 +00001866 bool isLinear(int start, int end) const {
1867 if (fVerb == SkPath::kLine_Verb) {
1868 return true;
1869 }
1870 if (fVerb == SkPath::kQuad_Verb) {
1871 SkPoint qPart[3];
1872 QuadSubDivide(fPts, fTs[start].fT, fTs[end].fT, qPart);
1873 return QuadIsLinear(qPart);
1874 } else {
1875 SkASSERT(fVerb == SkPath::kCubic_Verb);
1876 SkPoint cPart[4];
1877 CubicSubDivide(fPts, fTs[start].fT, fTs[end].fT, cPart);
1878 return CubicIsLinear(cPart);
1879 }
1880 }
caryclark@google.comb9738012012-07-03 19:53:30 +00001881
1882 // OPTIMIZE: successive calls could start were the last leaves off
1883 // or calls could specialize to walk forwards or backwards
1884 bool isMissing(double startT) const {
1885 size_t tCount = fTs.count();
1886 for (size_t index = 0; index < tCount; ++index) {
1887 if (fabs(startT - fTs[index].fT) < FLT_EPSILON) {
1888 return false;
1889 }
1890 }
1891 return true;
1892 }
1893
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001894 bool isSimple(int end) const {
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001895 int count = fTs.count();
1896 if (count == 2) {
1897 return true;
1898 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001899 double t = fTs[end].fT;
1900 if (t < FLT_EPSILON) {
1901 return fTs[1].fT >= FLT_EPSILON;
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001902 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001903 if (t > 1 - FLT_EPSILON) {
1904 return fTs[count - 2].fT <= 1 - FLT_EPSILON;
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001905 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001906 return false;
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00001907 }
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001908
1909 bool isHorizontal() const {
1910 return fBounds.fTop == fBounds.fBottom;
1911 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001912
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001913 bool isVertical() const {
1914 return fBounds.fLeft == fBounds.fRight;
1915 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00001916
caryclark@google.comfa0588f2012-04-26 21:01:06 +00001917 SkScalar leftMost(int start, int end) const {
1918 return (*SegmentLeftMost[fVerb])(fPts, fTs[start].fT, fTs[end].fT);
1919 }
caryclark@google.comaf46cff2012-05-22 21:12:00 +00001920
caryclark@google.com495f8e42012-05-31 13:13:11 +00001921 // this span is excluded by the winding rule -- chase the ends
1922 // as long as they are unambiguous to mark connections as done
1923 // and give them the same winding value
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001924 Span* markAndChaseDone(const Angle* angle, int winding) {
caryclark@google.com495f8e42012-05-31 13:13:11 +00001925 int index = angle->start();
1926 int endIndex = angle->end();
1927 int step = SkSign32(endIndex - index);
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001928 Span* last = innerChaseDone(index, step, winding);
caryclark@google.com495f8e42012-05-31 13:13:11 +00001929 markDone(SkMin32(index, endIndex), winding);
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001930 return last;
caryclark@google.com495f8e42012-05-31 13:13:11 +00001931 }
1932
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001933 Span* markAndChaseWinding(const Angle* angle, int winding) {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001934 int index = angle->start();
1935 int endIndex = angle->end();
1936 int min = SkMin32(index, endIndex);
1937 int step = SkSign32(endIndex - index);
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001938 Span* last = innerChaseWinding(index, step, winding);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001939 markWinding(min, winding);
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00001940 return last;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001941 }
1942
caryclark@google.com495f8e42012-05-31 13:13:11 +00001943 // FIXME: this should also mark spans with equal (x,y)
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001944 // This may be called when the segment is already marked done. While this
1945 // wastes time, it shouldn't do any more than spin through the T spans.
1946 // OPTIMIZATION: abort on first done found (assuming that this code is
1947 // always called to mark segments done).
caryclark@google.com495f8e42012-05-31 13:13:11 +00001948 void markDone(int index, int winding) {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001949 // SkASSERT(!done());
caryclark@google.comaf46cff2012-05-22 21:12:00 +00001950 double referenceT = fTs[index].fT;
1951 int lesser = index;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001952 while (--lesser >= 0 && referenceT - fTs[lesser].fT < FLT_EPSILON) {
caryclark@google.com495f8e42012-05-31 13:13:11 +00001953 Span& span = fTs[lesser];
caryclark@google.com88f7d0c2012-06-07 21:09:20 +00001954 if (span.fDone) {
1955 continue;
1956 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001957 #if DEBUG_MARK_DONE
1958 const SkPoint& pt = xyAtT(&span);
caryclark@google.com534aa5b2012-08-02 20:08:21 +00001959 SkDebugf("%s id=%d index=%d t=%1.9g pt=(%1.9g,%1.9g) wind=%d\n",
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001960 __FUNCTION__, fID, lesser, span.fT, pt.fX, pt.fY, winding);
1961 #endif
caryclark@google.com88f7d0c2012-06-07 21:09:20 +00001962 span.fDone = true;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001963 SkASSERT(span.fWindSum == SK_MinS32 || span.fWindSum == winding);
caryclark@google.com47580692012-07-23 12:14:49 +00001964 SkASSERT(abs(winding) <= gDebugMaxWindSum);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001965 span.fWindSum = winding;
caryclark@google.com65f9f0a2012-05-23 18:09:25 +00001966 fDoneSpans++;
caryclark@google.comaf46cff2012-05-22 21:12:00 +00001967 }
1968 do {
caryclark@google.com495f8e42012-05-31 13:13:11 +00001969 Span& span = fTs[index];
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001970 // SkASSERT(!span.fDone);
1971 if (span.fDone) {
1972 continue;
1973 }
1974 #if DEBUG_MARK_DONE
1975 const SkPoint& pt = xyAtT(&span);
caryclark@google.com534aa5b2012-08-02 20:08:21 +00001976 SkDebugf("%s id=%d index=%d t=%1.9g pt=(%1.9g,%1.9g) wind=%d\n",
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001977 __FUNCTION__, fID, index, span.fT, pt.fX, pt.fY, winding);
1978 #endif
1979 span.fDone = true;
1980 SkASSERT(span.fWindSum == SK_MinS32 || span.fWindSum == winding);
caryclark@google.com47580692012-07-23 12:14:49 +00001981 SkASSERT(abs(winding) <= gDebugMaxWindSum);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001982 span.fWindSum = winding;
1983 fDoneSpans++;
1984 } while (++index < fTs.count() && fTs[index].fT - referenceT < FLT_EPSILON);
1985 }
1986
1987 void markWinding(int index, int winding) {
caryclark@google.comafe56de2012-07-24 18:11:03 +00001988 // SkASSERT(!done());
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001989 double referenceT = fTs[index].fT;
1990 int lesser = index;
1991 while (--lesser >= 0 && referenceT - fTs[lesser].fT < FLT_EPSILON) {
1992 Span& span = fTs[lesser];
1993 if (span.fDone) {
1994 continue;
1995 }
caryclark@google.com47580692012-07-23 12:14:49 +00001996 // SkASSERT(span.fWindValue == 1 || winding == 0);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00001997 SkASSERT(span.fWindSum == SK_MinS32 || span.fWindSum == winding);
1998 #if DEBUG_MARK_DONE
1999 const SkPoint& pt = xyAtT(&span);
caryclark@google.com534aa5b2012-08-02 20:08:21 +00002000 SkDebugf("%s id=%d index=%d t=%1.9g pt=(%1.9g,%1.9g) wind=%d\n",
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002001 __FUNCTION__, fID, lesser, span.fT, pt.fX, pt.fY, winding);
2002 #endif
caryclark@google.com47580692012-07-23 12:14:49 +00002003 SkASSERT(abs(winding) <= gDebugMaxWindSum);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002004 span.fWindSum = winding;
2005 }
2006 do {
2007 Span& span = fTs[index];
caryclark@google.com88f7d0c2012-06-07 21:09:20 +00002008 // SkASSERT(!span.fDone || span.fCoincident);
2009 if (span.fDone) {
2010 continue;
2011 }
caryclark@google.com47580692012-07-23 12:14:49 +00002012 // SkASSERT(span.fWindValue == 1 || winding == 0);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002013 SkASSERT(span.fWindSum == SK_MinS32 || span.fWindSum == winding);
2014 #if DEBUG_MARK_DONE
2015 const SkPoint& pt = xyAtT(&span);
caryclark@google.com534aa5b2012-08-02 20:08:21 +00002016 SkDebugf("%s id=%d index=%d t=%1.9g pt=(%1.9g,%1.9g) wind=%d\n",
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002017 __FUNCTION__, fID, index, span.fT, pt.fX, pt.fY, winding);
2018 #endif
caryclark@google.com47580692012-07-23 12:14:49 +00002019 SkASSERT(abs(winding) <= gDebugMaxWindSum);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002020 span.fWindSum = winding;
2021 } while (++index < fTs.count() && fTs[index].fT - referenceT < FLT_EPSILON);
caryclark@google.comaf46cff2012-05-22 21:12:00 +00002022 }
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002023
caryclark@google.com9764cc62012-07-12 19:29:45 +00002024 // return span if when chasing, two or more radiating spans are not done
2025 // OPTIMIZATION: ? multiple spans is detected when there is only one valid
2026 // candidate and the remaining spans have windValue == 0 (canceled by
2027 // coincidence). The coincident edges could either be removed altogether,
2028 // or this code could be more complicated in detecting this case. Worth it?
2029 bool multipleSpans(int end) const {
2030 return end > 0 && end < fTs.count() - 1;
caryclark@google.com88f7d0c2012-06-07 21:09:20 +00002031 }
2032
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00002033 // This has callers for two different situations: one establishes the end
2034 // of the current span, and one establishes the beginning of the next span
2035 // (thus the name). When this is looking for the end of the current span,
2036 // coincidence is found when the beginning Ts contain -step and the end
2037 // contains step. When it is looking for the beginning of the next, the
2038 // first Ts found can be ignored and the last Ts should contain -step.
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002039 // OPTIMIZATION: probably should split into two functions
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00002040 int nextSpan(int from, int step) const {
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00002041 const Span& fromSpan = fTs[from];
caryclark@google.com495f8e42012-05-31 13:13:11 +00002042 int count = fTs.count();
2043 int to = from;
caryclark@google.com495f8e42012-05-31 13:13:11 +00002044 while (step > 0 ? ++to < count : --to >= 0) {
2045 const Span& span = fTs[to];
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002046 if ((step > 0 ? span.fT - fromSpan.fT : fromSpan.fT - span.fT) < FLT_EPSILON) {
caryclark@google.com495f8e42012-05-31 13:13:11 +00002047 continue;
2048 }
caryclark@google.com495f8e42012-05-31 13:13:11 +00002049 return to;
2050 }
2051 return -1;
2052 }
2053
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002054 const SkPoint* pts() const {
2055 return fPts;
2056 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002057
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002058 void reset() {
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002059 init(NULL, (SkPath::Verb) -1);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002060 fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax);
2061 fTs.reset();
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002062 }
2063
caryclark@google.com1577e8f2012-05-22 17:01:14 +00002064 // OPTIMIZATION: mark as debugging only if used solely by tests
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00002065 const Span& span(int tIndex) const {
2066 return fTs[tIndex];
2067 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002068
2069 int spanSign(int startIndex, int endIndex) const {
2070 return startIndex < endIndex ? -fTs[startIndex].fWindValue :
2071 fTs[endIndex].fWindValue;
2072 }
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00002073
2074 // OPTIMIZATION: mark as debugging only if used solely by tests
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002075 double t(int tIndex) const {
2076 return fTs[tIndex].fT;
2077 }
caryclark@google.com18063442012-07-25 12:05:18 +00002078
2079 static void TrackOutside(SkTDArray<double>& outsideTs, double end,
2080 double start) {
2081 int outCount = outsideTs.count();
2082 if (outCount == 0 || end - outsideTs[outCount - 2] >= FLT_EPSILON) {
2083 *outsideTs.append() = end;
2084 *outsideTs.append() = start;
2085 }
2086 }
2087
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002088 void updatePts(const SkPoint pts[]) {
2089 fPts = pts;
2090 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002091
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002092 SkPath::Verb verb() const {
2093 return fVerb;
2094 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002095
caryclark@google.comafe56de2012-07-24 18:11:03 +00002096 int windBump(const Angle* angle) const {
2097 SkASSERT(angle->segment() == this);
2098 const Span& span = fTs[SkMin32(angle->start(), angle->end())];
2099 int result = angle->sign() * span.fWindValue;
2100#if DEBUG_WIND_BUMP
2101 SkDebugf("%s bump=%d\n", __FUNCTION__, result);
2102#endif
2103 return result;
2104 }
2105
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00002106 int windSum(int tIndex) const {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002107 return fTs[tIndex].fWindSum;
2108 }
caryclark@google.com495f8e42012-05-31 13:13:11 +00002109
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00002110 int windSum(const Angle* angle) const {
caryclark@google.com495f8e42012-05-31 13:13:11 +00002111 int start = angle->start();
2112 int end = angle->end();
2113 int index = SkMin32(start, end);
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00002114 return windSum(index);
caryclark@google.com495f8e42012-05-31 13:13:11 +00002115 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002116
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002117 int windValue(int tIndex) const {
2118 return fTs[tIndex].fWindValue;
2119 }
2120
2121 int windValue(const Angle* angle) const {
2122 int start = angle->start();
2123 int end = angle->end();
2124 int index = SkMin32(start, end);
2125 return windValue(index);
2126 }
2127
2128 SkScalar xAtT(const Span* span) const {
2129 return xyAtT(span).fX;
2130 }
2131
2132 const SkPoint& xyAtT(int index) const {
2133 return xyAtT(&fTs[index]);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002134 }
2135
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00002136 const SkPoint& xyAtT(const Span* span) const {
caryclark@google.com27c449a2012-07-27 18:26:38 +00002137 if (SkScalarIsNaN(span->fPt.fX)) {
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00002138 if (span->fT == 0) {
caryclark@google.com27c449a2012-07-27 18:26:38 +00002139 span->fPt = fPts[0];
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00002140 } else if (span->fT == 1) {
caryclark@google.com27c449a2012-07-27 18:26:38 +00002141 span->fPt = fPts[fVerb];
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00002142 } else {
caryclark@google.com27c449a2012-07-27 18:26:38 +00002143 (*SegmentXYAtT[fVerb])(fPts, span->fT, &span->fPt);
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00002144 }
2145 }
caryclark@google.com27c449a2012-07-27 18:26:38 +00002146 return span->fPt;
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002147 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002148
2149 SkScalar yAtT(int index) const {
2150 return yAtT(&fTs[index]);
2151 }
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002152
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002153 SkScalar yAtT(const Span* span) const {
2154 return xyAtT(span).fY;
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002155 }
2156
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002157#if DEBUG_DUMP
2158 void dump() const {
2159 const char className[] = "Segment";
2160 const int tab = 4;
2161 for (int i = 0; i < fTs.count(); ++i) {
2162 SkPoint out;
2163 (*SegmentXYAtT[fVerb])(fPts, t(i), &out);
2164 SkDebugf("%*s [%d] %s.fTs[%d]=%1.9g (%1.9g,%1.9g) other=%d"
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002165 " otherT=%1.9g windSum=%d\n",
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002166 tab + sizeof(className), className, fID,
2167 kLVerbStr[fVerb], i, fTs[i].fT, out.fX, out.fY,
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002168 fTs[i].fOther->fID, fTs[i].fOtherT, fTs[i].fWindSum);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002169 }
caryclark@google.com15fa1382012-05-07 20:49:36 +00002170 SkDebugf("%*s [%d] fBounds=(l:%1.9g, t:%1.9g r:%1.9g, b:%1.9g)",
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002171 tab + sizeof(className), className, fID,
caryclark@google.com15fa1382012-05-07 20:49:36 +00002172 fBounds.fLeft, fBounds.fTop, fBounds.fRight, fBounds.fBottom);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002173 }
2174#endif
2175
caryclark@google.com47580692012-07-23 12:14:49 +00002176#if DEBUG_CONCIDENT
caryclark@google.comcc905052012-07-25 20:59:42 +00002177 // assert if pair has not already been added
caryclark@google.com534aa5b2012-08-02 20:08:21 +00002178 void debugAddTPair(double t, const Segment& other, double otherT) const {
caryclark@google.comcc905052012-07-25 20:59:42 +00002179 for (int i = 0; i < fTs.count(); ++i) {
2180 if (fTs[i].fT == t && fTs[i].fOther == &other && fTs[i].fOtherT == otherT) {
2181 return;
2182 }
2183 }
2184 SkASSERT(0);
2185 }
2186#endif
2187
caryclark@google.com534aa5b2012-08-02 20:08:21 +00002188#if DEBUG_DUMP
2189 int debugID() const {
2190 return fID;
2191 }
2192#endif
2193
caryclark@google.comcc905052012-07-25 20:59:42 +00002194#if DEBUG_CONCIDENT
caryclark@google.com534aa5b2012-08-02 20:08:21 +00002195 void debugShowTs() const {
caryclark@google.com47580692012-07-23 12:14:49 +00002196 SkDebugf("%s %d", __FUNCTION__, fID);
2197 for (int i = 0; i < fTs.count(); ++i) {
2198 SkDebugf(" [o=%d %1.9g (%1.9g,%1.9g) w=%d]", fTs[i].fOther->fID,
2199 fTs[i].fT, xAtT(&fTs[i]), yAtT(&fTs[i]), fTs[i].fWindValue);
2200 }
2201 SkDebugf("\n");
2202 }
2203#endif
2204
caryclark@google.com027de222012-07-12 12:52:50 +00002205#if DEBUG_ACTIVE_SPANS
caryclark@google.com534aa5b2012-08-02 20:08:21 +00002206 void debugShowActiveSpans() const {
caryclark@google.com027de222012-07-12 12:52:50 +00002207 if (done()) {
2208 return;
2209 }
2210 for (int i = 0; i < fTs.count(); ++i) {
2211 if (fTs[i].fDone) {
2212 continue;
2213 }
caryclark@google.com534aa5b2012-08-02 20:08:21 +00002214 SkDebugf("%s id=%d", __FUNCTION__, fID);
caryclark@google.com027de222012-07-12 12:52:50 +00002215 SkDebugf(" (%1.9g,%1.9g", fPts[0].fX, fPts[0].fY);
2216 for (int vIndex = 1; vIndex <= fVerb; ++vIndex) {
2217 SkDebugf(" %1.9g,%1.9g", fPts[vIndex].fX, fPts[vIndex].fY);
2218 }
2219 const Span* span = &fTs[i];
2220 SkDebugf(") fT=%d (%1.9g) (%1.9g,%1.9g)", i, fTs[i].fT,
2221 xAtT(span), yAtT(i));
2222 const Segment* other = fTs[i].fOther;
caryclark@google.com534aa5b2012-08-02 20:08:21 +00002223 SkDebugf(" other=%d otherT=%1.9g otherIndex=%d windSum=",
2224 other->fID, fTs[i].fOtherT, fTs[i].fOtherIndex);
2225 if (fTs[i].fWindSum == SK_MinS32) {
2226 SkDebugf("?");
2227 } else {
2228 SkDebugf("%d", fTs[i].fWindSum);
2229 }
2230 SkDebugf(" windValue=%d\n", fTs[i].fWindValue);
caryclark@google.com027de222012-07-12 12:52:50 +00002231 }
2232 }
2233#endif
2234
caryclark@google.com47580692012-07-23 12:14:49 +00002235#if DEBUG_SORT
caryclark@google.come21cb182012-07-23 21:26:31 +00002236 void debugShowSort(const SkTDArray<Angle*>& angles, int first,
caryclark@google.com534aa5b2012-08-02 20:08:21 +00002237 const int contourWinding) const {
caryclark@google.comafe56de2012-07-24 18:11:03 +00002238 SkASSERT(angles[first]->segment() == this);
caryclark@google.com534aa5b2012-08-02 20:08:21 +00002239 int lastSum = contourWinding;
2240 int windSum = lastSum - windBump(angles[first]);
2241 SkDebugf("%s contourWinding=%d bump=%d\n", __FUNCTION__,
2242 contourWinding, windBump(angles[first]));
caryclark@google.comafe56de2012-07-24 18:11:03 +00002243 int index = first;
2244 bool firstTime = true;
caryclark@google.com47580692012-07-23 12:14:49 +00002245 do {
2246 const Angle& angle = *angles[index];
2247 const Segment& segment = *angle.segment();
2248 int start = angle.start();
2249 int end = angle.end();
2250 const Span& sSpan = segment.fTs[start];
2251 const Span& eSpan = segment.fTs[end];
2252 const Span& mSpan = segment.fTs[SkMin32(start, end)];
caryclark@google.com534aa5b2012-08-02 20:08:21 +00002253 if (!firstTime) {
caryclark@google.comafe56de2012-07-24 18:11:03 +00002254 lastSum = windSum;
2255 windSum -= segment.windBump(&angle);
2256 }
caryclark@google.com47580692012-07-23 12:14:49 +00002257 SkDebugf("%s [%d] id=%d start=%d (%1.9g,%,1.9g) end=%d (%1.9g,%,1.9g)"
2258 " sign=%d windValue=%d winding: %d->%d (max=%d) done=%d\n",
2259 __FUNCTION__, index, segment.fID, start, segment.xAtT(&sSpan),
2260 segment.yAtT(&sSpan), end, segment.xAtT(&eSpan),
2261 segment.yAtT(&eSpan), angle.sign(), mSpan.fWindValue,
2262 lastSum, windSum, abs(lastSum) > abs(windSum) ? lastSum :
2263 windSum, mSpan.fDone);
2264 ++index;
2265 if (index == angles.count()) {
2266 index = 0;
2267 }
caryclark@google.com534aa5b2012-08-02 20:08:21 +00002268 if (firstTime) {
2269 firstTime = false;
2270 }
caryclark@google.com47580692012-07-23 12:14:49 +00002271 } while (index != first);
2272 }
2273#endif
2274
caryclark@google.com534aa5b2012-08-02 20:08:21 +00002275#if DEBUG_WINDING
2276 bool debugVerifyWinding(int start, int end, int winding) const {
2277 const Span& span = fTs[SkMin32(start, end)];
2278 int spanWinding = span.fWindSum;
2279 if (spanWinding == SK_MinS32) {
2280 return true;
2281 }
2282 int spanSign = SkSign32(start - end);
2283 int signedVal = spanSign * span.fWindValue;
2284 if (signedVal < 0) {
2285 spanWinding -= signedVal;
2286 }
2287 return span.fWindSum == winding;
2288 }
2289#endif
2290
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002291private:
2292 const SkPoint* fPts;
2293 SkPath::Verb fVerb;
2294 Bounds fBounds;
caryclark@google.com15fa1382012-05-07 20:49:36 +00002295 SkTDArray<Span> fTs; // two or more (always includes t=0 t=1)
caryclark@google.comaf46cff2012-05-22 21:12:00 +00002296 int fDoneSpans; // used for quick check that segment is finished
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002297#if DEBUG_DUMP
2298 int fID;
2299#endif
2300};
2301
caryclark@google.comb9738012012-07-03 19:53:30 +00002302class Contour;
2303
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002304struct Coincidence {
caryclark@google.comb9738012012-07-03 19:53:30 +00002305 Contour* fContours[2];
2306 int fSegments[2];
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002307 double fTs[2][2];
2308};
2309
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002310class Contour {
2311public:
2312 Contour() {
2313 reset();
2314#if DEBUG_DUMP
2315 fID = ++gContourID;
2316#endif
2317 }
2318
2319 bool operator<(const Contour& rh) const {
2320 return fBounds.fTop == rh.fBounds.fTop
2321 ? fBounds.fLeft < rh.fBounds.fLeft
2322 : fBounds.fTop < rh.fBounds.fTop;
2323 }
2324
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002325 void addCoincident(int index, Contour* other, int otherIndex,
2326 const Intersections& ts, bool swap) {
2327 Coincidence& coincidence = *fCoincidences.append();
caryclark@google.comb9738012012-07-03 19:53:30 +00002328 coincidence.fContours[0] = this;
2329 coincidence.fContours[1] = other;
2330 coincidence.fSegments[0] = index;
2331 coincidence.fSegments[1] = otherIndex;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002332 coincidence.fTs[swap][0] = ts.fT[0][0];
2333 coincidence.fTs[swap][1] = ts.fT[0][1];
2334 coincidence.fTs[!swap][0] = ts.fT[1][0];
2335 coincidence.fTs[!swap][1] = ts.fT[1][1];
2336 }
2337
2338 void addCross(const Contour* crosser) {
2339#ifdef DEBUG_CROSS
2340 for (int index = 0; index < fCrosses.count(); ++index) {
2341 SkASSERT(fCrosses[index] != crosser);
2342 }
2343#endif
2344 *fCrosses.append() = crosser;
2345 }
2346
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002347 void addCubic(const SkPoint pts[4]) {
2348 fSegments.push_back().addCubic(pts);
2349 fContainsCurves = true;
2350 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002351
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002352 int addLine(const SkPoint pts[2]) {
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002353 fSegments.push_back().addLine(pts);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002354 return fSegments.count();
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002355 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002356
2357 void addOtherT(int segIndex, int tIndex, double otherT, int otherIndex) {
2358 fSegments[segIndex].addOtherT(tIndex, otherT, otherIndex);
2359 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002360
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002361 int addQuad(const SkPoint pts[3]) {
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002362 fSegments.push_back().addQuad(pts);
2363 fContainsCurves = true;
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002364 return fSegments.count();
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002365 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002366
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002367 int addT(int segIndex, double newT, Contour* other, int otherIndex) {
2368 containsIntercepts();
2369 return fSegments[segIndex].addT(newT, &other->fSegments[otherIndex]);
2370 }
2371
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002372 const Bounds& bounds() const {
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002373 return fBounds;
2374 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002375
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002376 void complete() {
2377 setBounds();
2378 fContainsIntercepts = false;
2379 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002380
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002381 void containsIntercepts() {
2382 fContainsIntercepts = true;
2383 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002384
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002385 const Segment* crossedSegment(const SkPoint& basePt, SkScalar& bestY,
2386 int &tIndex, double& hitT) {
2387 int segmentCount = fSegments.count();
2388 const Segment* bestSegment = NULL;
2389 for (int test = 0; test < segmentCount; ++test) {
2390 Segment* testSegment = &fSegments[test];
2391 const SkRect& bounds = testSegment->bounds();
caryclark@google.com534aa5b2012-08-02 20:08:21 +00002392 if (bounds.fBottom <= bestY) {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002393 continue;
2394 }
caryclark@google.com534aa5b2012-08-02 20:08:21 +00002395 if (bounds.fTop >= basePt.fY) {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002396 continue;
2397 }
2398 if (bounds.fLeft > basePt.fX) {
2399 continue;
2400 }
2401 if (bounds.fRight < basePt.fX) {
2402 continue;
2403 }
caryclark@google.com534aa5b2012-08-02 20:08:21 +00002404 if (bounds.fLeft == bounds.fRight) {
2405 continue;
2406 }
2407 #if 0
2408 bool leftHalf = bounds.fLeft == basePt.fX;
2409 bool rightHalf = bounds.fRight == basePt.fX;
2410 if ((leftHalf || rightHalf) && !testSegment->crossedSpanHalves(
2411 basePt, leftHalf, rightHalf)) {
2412 continue;
2413 }
2414 #endif
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002415 double testHitT;
2416 int testT = testSegment->crossedSpan(basePt, bestY, testHitT);
2417 if (testT >= 0) {
2418 bestSegment = testSegment;
2419 tIndex = testT;
2420 hitT = testHitT;
2421 }
2422 }
2423 return bestSegment;
2424 }
2425
2426 bool crosses(const Contour* crosser) const {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002427 for (int index = 0; index < fCrosses.count(); ++index) {
2428 if (fCrosses[index] == crosser) {
2429 return true;
2430 }
2431 }
2432 return false;
2433 }
2434
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002435 void findTooCloseToCall(int winding) {
2436 int segmentCount = fSegments.count();
2437 for (int sIndex = 0; sIndex < segmentCount; ++sIndex) {
2438 fSegments[sIndex].findTooCloseToCall(winding);
2439 }
2440 }
2441
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002442 void fixOtherTIndex() {
2443 int segmentCount = fSegments.count();
2444 for (int sIndex = 0; sIndex < segmentCount; ++sIndex) {
2445 fSegments[sIndex].fixOtherTIndex();
2446 }
2447 }
2448
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002449 void reset() {
2450 fSegments.reset();
2451 fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax);
caryclark@google.com15fa1382012-05-07 20:49:36 +00002452 fContainsCurves = fContainsIntercepts = false;
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002453 }
caryclark@google.comb9738012012-07-03 19:53:30 +00002454
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002455 void resolveCoincidence(int winding) {
2456 int count = fCoincidences.count();
2457 for (int index = 0; index < count; ++index) {
2458 Coincidence& coincidence = fCoincidences[index];
caryclark@google.comb9738012012-07-03 19:53:30 +00002459 Contour* thisContour = coincidence.fContours[0];
2460 Contour* otherContour = coincidence.fContours[1];
2461 int thisIndex = coincidence.fSegments[0];
2462 int otherIndex = coincidence.fSegments[1];
2463 Segment& thisOne = thisContour->fSegments[thisIndex];
2464 Segment& other = otherContour->fSegments[otherIndex];
caryclark@google.com47580692012-07-23 12:14:49 +00002465 #if DEBUG_CONCIDENT
2466 thisOne.debugShowTs();
2467 other.debugShowTs();
2468 #endif
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002469 double startT = coincidence.fTs[0][0];
2470 double endT = coincidence.fTs[0][1];
2471 if (startT > endT) {
2472 SkTSwap<double>(startT, endT);
2473 }
2474 SkASSERT(endT - startT >= FLT_EPSILON);
2475 double oStartT = coincidence.fTs[1][0];
2476 double oEndT = coincidence.fTs[1][1];
2477 if (oStartT > oEndT) {
2478 SkTSwap<double>(oStartT, oEndT);
2479 }
2480 SkASSERT(oEndT - oStartT >= FLT_EPSILON);
caryclark@google.comb9738012012-07-03 19:53:30 +00002481 if (winding > 0 || thisOne.cancels(other)) {
2482 // make sure startT and endT have t entries
2483 if (thisOne.isMissing(startT) || other.isMissing(oEndT)) {
2484 thisOne.addTPair(startT, other, oEndT);
2485 }
2486 if (thisOne.isMissing(endT) || other.isMissing(oStartT)) {
2487 other.addTPair(oStartT, thisOne, endT);
2488 }
2489 thisOne.addTCancel(startT, endT, other, oStartT, oEndT);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002490 } else {
caryclark@google.comb9738012012-07-03 19:53:30 +00002491 if (thisOne.isMissing(startT) || other.isMissing(oStartT)) {
2492 thisOne.addTPair(startT, other, oStartT);
2493 }
2494 if (thisOne.isMissing(endT) || other.isMissing(oEndT)) {
2495 other.addTPair(oEndT, thisOne, endT);
2496 }
2497 thisOne.addTCoincident(startT, endT, other, oStartT, oEndT);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002498 }
caryclark@google.com47580692012-07-23 12:14:49 +00002499 #if DEBUG_CONCIDENT
2500 thisOne.debugShowTs();
2501 other.debugShowTs();
2502 #endif
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002503 }
2504 }
2505
2506 const SkTArray<Segment>& segments() {
2507 return fSegments;
2508 }
2509
caryclark@google.com15fa1382012-05-07 20:49:36 +00002510 // OPTIMIZATION: feel pretty uneasy about this. It seems like once again
2511 // we need to sort and walk edges in y, but that on the surface opens the
2512 // same can of worms as before. But then, this is a rough sort based on
2513 // segments' top, and not a true sort, so it could be ameniable to regular
2514 // sorting instead of linear searching. Still feel like I'm missing something
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002515 Segment* topSegment(SkScalar& bestY) {
caryclark@google.com15fa1382012-05-07 20:49:36 +00002516 int segmentCount = fSegments.count();
2517 SkASSERT(segmentCount > 0);
2518 int best = -1;
2519 Segment* bestSegment = NULL;
2520 while (++best < segmentCount) {
2521 Segment* testSegment = &fSegments[best];
2522 if (testSegment->done()) {
2523 continue;
2524 }
2525 bestSegment = testSegment;
2526 break;
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002527 }
caryclark@google.com15fa1382012-05-07 20:49:36 +00002528 if (!bestSegment) {
2529 return NULL;
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002530 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002531 SkScalar bestTop = bestSegment->activeTop();
caryclark@google.com15fa1382012-05-07 20:49:36 +00002532 for (int test = best + 1; test < segmentCount; ++test) {
2533 Segment* testSegment = &fSegments[test];
2534 if (testSegment->done()) {
2535 continue;
2536 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002537 if (testSegment->bounds().fTop > bestTop) {
2538 continue;
2539 }
2540 SkScalar testTop = testSegment->activeTop();
caryclark@google.com15fa1382012-05-07 20:49:36 +00002541 if (bestTop > testTop) {
2542 bestTop = testTop;
2543 bestSegment = testSegment;
2544 }
2545 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002546 bestY = bestTop;
caryclark@google.com15fa1382012-05-07 20:49:36 +00002547 return bestSegment;
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002548 }
2549
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002550 int updateSegment(int index, const SkPoint* pts) {
2551 Segment& segment = fSegments[index];
2552 segment.updatePts(pts);
2553 return segment.verb() + 1;
2554 }
2555
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002556#if DEBUG_TEST
2557 SkTArray<Segment>& debugSegments() {
2558 return fSegments;
2559 }
2560#endif
2561
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002562#if DEBUG_DUMP
2563 void dump() {
2564 int i;
2565 const char className[] = "Contour";
2566 const int tab = 4;
2567 SkDebugf("%s %p (contour=%d)\n", className, this, fID);
2568 for (i = 0; i < fSegments.count(); ++i) {
2569 SkDebugf("%*s.fSegments[%d]:\n", tab + sizeof(className),
2570 className, i);
2571 fSegments[i].dump();
2572 }
2573 SkDebugf("%*s.fBounds=(l:%1.9g, t:%1.9g r:%1.9g, b:%1.9g)\n",
2574 tab + sizeof(className), className,
2575 fBounds.fLeft, fBounds.fTop,
2576 fBounds.fRight, fBounds.fBottom);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002577 SkDebugf("%*s.fContainsIntercepts=%d\n", tab + sizeof(className),
2578 className, fContainsIntercepts);
2579 SkDebugf("%*s.fContainsCurves=%d\n", tab + sizeof(className),
2580 className, fContainsCurves);
2581 }
2582#endif
2583
caryclark@google.com027de222012-07-12 12:52:50 +00002584#if DEBUG_ACTIVE_SPANS
2585 void debugShowActiveSpans() {
2586 for (int index = 0; index < fSegments.count(); ++index) {
caryclark@google.com534aa5b2012-08-02 20:08:21 +00002587 fSegments[index].debugShowActiveSpans();
caryclark@google.com027de222012-07-12 12:52:50 +00002588 }
2589 }
2590#endif
2591
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002592protected:
2593 void setBounds() {
2594 int count = fSegments.count();
2595 if (count == 0) {
2596 SkDebugf("%s empty contour\n", __FUNCTION__);
2597 SkASSERT(0);
2598 // FIXME: delete empty contour?
2599 return;
2600 }
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002601 fBounds = fSegments.front().bounds();
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002602 for (int index = 1; index < count; ++index) {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002603 fBounds.add(fSegments[index].bounds());
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002604 }
2605 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002606
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002607private:
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002608 SkTArray<Segment> fSegments;
2609 SkTDArray<Coincidence> fCoincidences;
2610 SkTDArray<const Contour*> fCrosses;
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002611 Bounds fBounds;
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002612 bool fContainsIntercepts;
2613 bool fContainsCurves;
2614#if DEBUG_DUMP
2615 int fID;
2616#endif
2617};
2618
2619class EdgeBuilder {
2620public:
2621
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002622EdgeBuilder(const SkPath& path, SkTArray<Contour>& contours)
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002623 : fPath(path)
2624 , fCurrentContour(NULL)
2625 , fContours(contours)
2626{
2627#if DEBUG_DUMP
2628 gContourID = 0;
2629 gSegmentID = 0;
2630#endif
2631 walk();
2632}
2633
2634protected:
2635
2636void complete() {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002637 if (fCurrentContour && fCurrentContour->segments().count()) {
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002638 fCurrentContour->complete();
2639 fCurrentContour = NULL;
2640 }
2641}
2642
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002643void walk() {
2644 // FIXME:remove once we can access path pts directly
2645 SkPath::RawIter iter(fPath); // FIXME: access path directly when allowed
2646 SkPoint pts[4];
2647 SkPath::Verb verb;
2648 do {
2649 verb = iter.next(pts);
2650 *fPathVerbs.append() = verb;
2651 if (verb == SkPath::kMove_Verb) {
2652 *fPathPts.append() = pts[0];
2653 } else if (verb >= SkPath::kLine_Verb && verb <= SkPath::kCubic_Verb) {
2654 fPathPts.append(verb, &pts[1]);
2655 }
2656 } while (verb != SkPath::kDone_Verb);
2657 // FIXME: end of section to remove once path pts are accessed directly
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002658
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002659 SkPath::Verb reducedVerb;
2660 uint8_t* verbPtr = fPathVerbs.begin();
2661 const SkPoint* pointsPtr = fPathPts.begin();
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002662 const SkPoint* finalCurveStart = NULL;
2663 const SkPoint* finalCurveEnd = NULL;
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002664 while ((verb = (SkPath::Verb) *verbPtr++) != SkPath::kDone_Verb) {
2665 switch (verb) {
2666 case SkPath::kMove_Verb:
2667 complete();
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002668 if (!fCurrentContour) {
2669 fCurrentContour = fContours.push_back_n(1);
2670 finalCurveEnd = pointsPtr++;
2671 *fExtra.append() = -1; // start new contour
2672 }
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002673 continue;
2674 case SkPath::kLine_Verb:
2675 // skip degenerate points
2676 if (pointsPtr[-1].fX != pointsPtr[0].fX
2677 || pointsPtr[-1].fY != pointsPtr[0].fY) {
2678 fCurrentContour->addLine(&pointsPtr[-1]);
2679 }
2680 break;
2681 case SkPath::kQuad_Verb:
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002682
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002683 reducedVerb = QuadReduceOrder(&pointsPtr[-1], fReducePts);
2684 if (reducedVerb == 0) {
2685 break; // skip degenerate points
2686 }
2687 if (reducedVerb == 1) {
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002688 *fExtra.append() =
2689 fCurrentContour->addLine(fReducePts.end() - 2);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002690 break;
2691 }
2692 fCurrentContour->addQuad(&pointsPtr[-1]);
2693 break;
2694 case SkPath::kCubic_Verb:
2695 reducedVerb = CubicReduceOrder(&pointsPtr[-1], fReducePts);
2696 if (reducedVerb == 0) {
2697 break; // skip degenerate points
2698 }
2699 if (reducedVerb == 1) {
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002700 *fExtra.append() =
2701 fCurrentContour->addLine(fReducePts.end() - 2);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002702 break;
2703 }
2704 if (reducedVerb == 2) {
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002705 *fExtra.append() =
2706 fCurrentContour->addQuad(fReducePts.end() - 3);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002707 break;
2708 }
2709 fCurrentContour->addCubic(&pointsPtr[-1]);
2710 break;
2711 case SkPath::kClose_Verb:
2712 SkASSERT(fCurrentContour);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002713 if (finalCurveStart && finalCurveEnd
2714 && *finalCurveStart != *finalCurveEnd) {
2715 *fReducePts.append() = *finalCurveStart;
2716 *fReducePts.append() = *finalCurveEnd;
2717 *fExtra.append() =
2718 fCurrentContour->addLine(fReducePts.end() - 2);
2719 }
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002720 complete();
2721 continue;
2722 default:
2723 SkDEBUGFAIL("bad verb");
2724 return;
2725 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002726 finalCurveStart = &pointsPtr[verb - 1];
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002727 pointsPtr += verb;
2728 SkASSERT(fCurrentContour);
2729 }
2730 complete();
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002731 if (fCurrentContour && !fCurrentContour->segments().count()) {
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002732 fContours.pop_back();
2733 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002734 // correct pointers in contours since fReducePts may have moved as it grew
2735 int cIndex = 0;
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002736 int extraCount = fExtra.count();
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002737 SkASSERT(extraCount == 0 || fExtra[0] == -1);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002738 int eIndex = 0;
2739 int rIndex = 0;
2740 while (++eIndex < extraCount) {
2741 int offset = fExtra[eIndex];
2742 if (offset < 0) {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002743 ++cIndex;
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002744 continue;
2745 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002746 fCurrentContour = &fContours[cIndex];
2747 rIndex += fCurrentContour->updateSegment(offset - 1,
2748 &fReducePts[rIndex]);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002749 }
2750 fExtra.reset(); // we're done with this
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002751}
2752
2753private:
2754 const SkPath& fPath;
2755 SkTDArray<SkPoint> fPathPts; // FIXME: point directly to path pts instead
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002756 SkTDArray<uint8_t> fPathVerbs; // FIXME: remove
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002757 Contour* fCurrentContour;
2758 SkTArray<Contour>& fContours;
2759 SkTDArray<SkPoint> fReducePts; // segments created on the fly
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002760 SkTDArray<int> fExtra; // -1 marks new contour, > 0 offsets into contour
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002761};
2762
2763class Work {
2764public:
2765 enum SegmentType {
2766 kHorizontalLine_Segment = -1,
2767 kVerticalLine_Segment = 0,
2768 kLine_Segment = SkPath::kLine_Verb,
2769 kQuad_Segment = SkPath::kQuad_Verb,
2770 kCubic_Segment = SkPath::kCubic_Verb,
2771 };
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002772
2773 void addCoincident(Work& other, const Intersections& ts, bool swap) {
2774 fContour->addCoincident(fIndex, other.fContour, other.fIndex, ts, swap);
2775 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002776
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002777 // FIXME: does it make sense to write otherIndex now if we're going to
2778 // fix it up later?
2779 void addOtherT(int index, double otherT, int otherIndex) {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002780 fContour->addOtherT(fIndex, index, otherT, otherIndex);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002781 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002782
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002783 // Avoid collapsing t values that are close to the same since
2784 // we walk ts to describe consecutive intersections. Since a pair of ts can
2785 // be nearly equal, any problems caused by this should be taken care
2786 // of later.
2787 // On the edge or out of range values are negative; add 2 to get end
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002788 int addT(double newT, const Work& other) {
2789 return fContour->addT(fIndex, newT, other.fContour, other.fIndex);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002790 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002791
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002792 bool advance() {
2793 return ++fIndex < fLast;
2794 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002795
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002796 SkScalar bottom() const {
2797 return bounds().fBottom;
2798 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002799
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002800 const Bounds& bounds() const {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002801 return fContour->segments()[fIndex].bounds();
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002802 }
2803
2804 const SkPoint* cubic() const {
2805 return fCubic;
2806 }
2807
2808 void init(Contour* contour) {
2809 fContour = contour;
2810 fIndex = 0;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002811 fLast = contour->segments().count();
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002812 }
caryclark@google.com66ca2fb2012-07-03 14:30:08 +00002813
2814 bool isAdjacent(const Work& next) {
2815 return fContour == next.fContour && fIndex + 1 == next.fIndex;
2816 }
2817
2818 bool isFirstLast(const Work& next) {
2819 return fContour == next.fContour && fIndex == 0
2820 && next.fIndex == fLast - 1;
2821 }
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002822
2823 SkScalar left() const {
2824 return bounds().fLeft;
2825 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002826
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002827 void promoteToCubic() {
2828 fCubic[0] = pts()[0];
2829 fCubic[2] = pts()[1];
2830 fCubic[3] = pts()[2];
2831 fCubic[1].fX = (fCubic[0].fX + fCubic[2].fX * 2) / 3;
2832 fCubic[1].fY = (fCubic[0].fY + fCubic[2].fY * 2) / 3;
2833 fCubic[2].fX = (fCubic[3].fX + fCubic[2].fX * 2) / 3;
2834 fCubic[2].fY = (fCubic[3].fY + fCubic[2].fY * 2) / 3;
2835 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002836
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002837 const SkPoint* pts() const {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002838 return fContour->segments()[fIndex].pts();
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002839 }
2840
2841 SkScalar right() const {
2842 return bounds().fRight;
2843 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002844
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002845 ptrdiff_t segmentIndex() const {
2846 return fIndex;
2847 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002848
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002849 SegmentType segmentType() const {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002850 const Segment& segment = fContour->segments()[fIndex];
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002851 SegmentType type = (SegmentType) segment.verb();
2852 if (type != kLine_Segment) {
2853 return type;
2854 }
2855 if (segment.isHorizontal()) {
2856 return kHorizontalLine_Segment;
2857 }
2858 if (segment.isVertical()) {
2859 return kVerticalLine_Segment;
2860 }
2861 return kLine_Segment;
2862 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002863
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002864 bool startAfter(const Work& after) {
2865 fIndex = after.fIndex;
2866 return advance();
2867 }
2868
2869 SkScalar top() const {
2870 return bounds().fTop;
2871 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002872
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002873 SkPath::Verb verb() const {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002874 return fContour->segments()[fIndex].verb();
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002875 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00002876
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002877 SkScalar x() const {
2878 return bounds().fLeft;
2879 }
2880
2881 bool xFlipped() const {
2882 return x() != pts()[0].fX;
2883 }
2884
2885 SkScalar y() const {
2886 return bounds().fTop;
2887 }
2888
2889 bool yFlipped() const {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002890 return y() != pts()[0].fY;
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002891 }
2892
2893protected:
2894 Contour* fContour;
2895 SkPoint fCubic[4];
2896 int fIndex;
2897 int fLast;
2898};
2899
caryclark@google.com65f9f0a2012-05-23 18:09:25 +00002900#if DEBUG_ADD_INTERSECTING_TS
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002901static void debugShowLineIntersection(int pts, const Work& wt,
2902 const Work& wn, const double wtTs[2], const double wnTs[2]) {
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002903 if (!pts) {
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002904 SkDebugf("%s no intersect (%1.9g,%1.9g %1.9g,%1.9g) (%1.9g,%1.9g %1.9g,%1.9g)\n",
2905 __FUNCTION__, wt.pts()[0].fX, wt.pts()[0].fY,
2906 wt.pts()[1].fX, wt.pts()[1].fY, wn.pts()[0].fX, wn.pts()[0].fY,
2907 wn.pts()[1].fX, wn.pts()[1].fY);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002908 return;
2909 }
2910 SkPoint wtOutPt, wnOutPt;
2911 LineXYAtT(wt.pts(), wtTs[0], &wtOutPt);
2912 LineXYAtT(wn.pts(), wnTs[0], &wnOutPt);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002913 SkDebugf("%s wtTs[0]=%g (%g,%g, %g,%g) (%g,%g)",
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002914 __FUNCTION__,
2915 wtTs[0], wt.pts()[0].fX, wt.pts()[0].fY,
2916 wt.pts()[1].fX, wt.pts()[1].fY, wtOutPt.fX, wtOutPt.fY);
2917 if (pts == 2) {
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002918 SkDebugf(" wtTs[1]=%g", wtTs[1]);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002919 }
caryclark@google.comb9738012012-07-03 19:53:30 +00002920 SkDebugf(" wnTs[0]=%g (%g,%g, %g,%g) (%g,%g)",
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002921 wnTs[0], wn.pts()[0].fX, wn.pts()[0].fY,
2922 wn.pts()[1].fX, wn.pts()[1].fY, wnOutPt.fX, wnOutPt.fY);
2923 if (pts == 2) {
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002924 SkDebugf(" wnTs[1]=%g", wnTs[1]);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002925 }
caryclark@google.comb9738012012-07-03 19:53:30 +00002926 SkDebugf("\n");
2927}
caryclark@google.com65f9f0a2012-05-23 18:09:25 +00002928#else
2929static void debugShowLineIntersection(int , const Work& ,
2930 const Work& , const double [2], const double [2]) {
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002931}
caryclark@google.com65f9f0a2012-05-23 18:09:25 +00002932#endif
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002933
caryclark@google.com65f9f0a2012-05-23 18:09:25 +00002934static bool addIntersectTs(Contour* test, Contour* next) {
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002935
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002936 if (test != next) {
2937 if (test->bounds().fBottom < next->bounds().fTop) {
2938 return false;
2939 }
2940 if (!Bounds::Intersects(test->bounds(), next->bounds())) {
2941 return true;
2942 }
2943 }
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002944 Work wt;
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002945 wt.init(test);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00002946 bool foundCommonContour = test == next;
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002947 do {
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002948 Work wn;
2949 wn.init(next);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002950 if (test == next && !wn.startAfter(wt)) {
2951 continue;
2952 }
2953 do {
2954 if (!Bounds::Intersects(wt.bounds(), wn.bounds())) {
2955 continue;
2956 }
2957 int pts;
2958 Intersections ts;
2959 bool swap = false;
2960 switch (wt.segmentType()) {
2961 case Work::kHorizontalLine_Segment:
2962 swap = true;
2963 switch (wn.segmentType()) {
2964 case Work::kHorizontalLine_Segment:
2965 case Work::kVerticalLine_Segment:
2966 case Work::kLine_Segment: {
2967 pts = HLineIntersect(wn.pts(), wt.left(),
2968 wt.right(), wt.y(), wt.xFlipped(), ts);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002969 debugShowLineIntersection(pts, wt, wn,
2970 ts.fT[1], ts.fT[0]);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002971 break;
2972 }
2973 case Work::kQuad_Segment: {
2974 pts = HQuadIntersect(wn.pts(), wt.left(),
2975 wt.right(), wt.y(), wt.xFlipped(), ts);
2976 break;
2977 }
2978 case Work::kCubic_Segment: {
2979 pts = HCubicIntersect(wn.pts(), wt.left(),
2980 wt.right(), wt.y(), wt.xFlipped(), ts);
2981 break;
2982 }
2983 default:
2984 SkASSERT(0);
2985 }
2986 break;
2987 case Work::kVerticalLine_Segment:
2988 swap = true;
2989 switch (wn.segmentType()) {
2990 case Work::kHorizontalLine_Segment:
2991 case Work::kVerticalLine_Segment:
2992 case Work::kLine_Segment: {
2993 pts = VLineIntersect(wn.pts(), wt.top(),
2994 wt.bottom(), wt.x(), wt.yFlipped(), ts);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00002995 debugShowLineIntersection(pts, wt, wn,
2996 ts.fT[1], ts.fT[0]);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00002997 break;
2998 }
2999 case Work::kQuad_Segment: {
3000 pts = VQuadIntersect(wn.pts(), wt.top(),
3001 wt.bottom(), wt.x(), wt.yFlipped(), ts);
3002 break;
3003 }
3004 case Work::kCubic_Segment: {
3005 pts = VCubicIntersect(wn.pts(), wt.top(),
3006 wt.bottom(), wt.x(), wt.yFlipped(), ts);
3007 break;
3008 }
3009 default:
3010 SkASSERT(0);
3011 }
3012 break;
3013 case Work::kLine_Segment:
3014 switch (wn.segmentType()) {
3015 case Work::kHorizontalLine_Segment:
3016 pts = HLineIntersect(wt.pts(), wn.left(),
3017 wn.right(), wn.y(), wn.xFlipped(), ts);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00003018 debugShowLineIntersection(pts, wt, wn,
3019 ts.fT[1], ts.fT[0]);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00003020 break;
3021 case Work::kVerticalLine_Segment:
3022 pts = VLineIntersect(wt.pts(), wn.top(),
3023 wn.bottom(), wn.x(), wn.yFlipped(), ts);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00003024 debugShowLineIntersection(pts, wt, wn,
3025 ts.fT[1], ts.fT[0]);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00003026 break;
3027 case Work::kLine_Segment: {
3028 pts = LineIntersect(wt.pts(), wn.pts(), ts);
3029 debugShowLineIntersection(pts, wt, wn,
3030 ts.fT[1], ts.fT[0]);
3031 break;
3032 }
3033 case Work::kQuad_Segment: {
3034 swap = true;
3035 pts = QuadLineIntersect(wn.pts(), wt.pts(), ts);
3036 break;
3037 }
3038 case Work::kCubic_Segment: {
3039 swap = true;
3040 pts = CubicLineIntersect(wn.pts(), wt.pts(), ts);
3041 break;
3042 }
3043 default:
3044 SkASSERT(0);
3045 }
3046 break;
3047 case Work::kQuad_Segment:
3048 switch (wn.segmentType()) {
3049 case Work::kHorizontalLine_Segment:
3050 pts = HQuadIntersect(wt.pts(), wn.left(),
3051 wn.right(), wn.y(), wn.xFlipped(), ts);
3052 break;
3053 case Work::kVerticalLine_Segment:
3054 pts = VQuadIntersect(wt.pts(), wn.top(),
3055 wn.bottom(), wn.x(), wn.yFlipped(), ts);
3056 break;
3057 case Work::kLine_Segment: {
3058 pts = QuadLineIntersect(wt.pts(), wn.pts(), ts);
3059 break;
3060 }
3061 case Work::kQuad_Segment: {
3062 pts = QuadIntersect(wt.pts(), wn.pts(), ts);
3063 break;
3064 }
3065 case Work::kCubic_Segment: {
3066 wt.promoteToCubic();
3067 pts = CubicIntersect(wt.cubic(), wn.pts(), ts);
3068 break;
3069 }
3070 default:
3071 SkASSERT(0);
3072 }
3073 break;
3074 case Work::kCubic_Segment:
3075 switch (wn.segmentType()) {
3076 case Work::kHorizontalLine_Segment:
3077 pts = HCubicIntersect(wt.pts(), wn.left(),
3078 wn.right(), wn.y(), wn.xFlipped(), ts);
3079 break;
3080 case Work::kVerticalLine_Segment:
3081 pts = VCubicIntersect(wt.pts(), wn.top(),
3082 wn.bottom(), wn.x(), wn.yFlipped(), ts);
3083 break;
3084 case Work::kLine_Segment: {
3085 pts = CubicLineIntersect(wt.pts(), wn.pts(), ts);
3086 break;
3087 }
3088 case Work::kQuad_Segment: {
3089 wn.promoteToCubic();
3090 pts = CubicIntersect(wt.pts(), wn.cubic(), ts);
3091 break;
3092 }
3093 case Work::kCubic_Segment: {
3094 pts = CubicIntersect(wt.pts(), wn.pts(), ts);
3095 break;
3096 }
3097 default:
3098 SkASSERT(0);
3099 }
3100 break;
3101 default:
3102 SkASSERT(0);
3103 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00003104 if (!foundCommonContour && pts > 0) {
3105 test->addCross(next);
3106 next->addCross(test);
3107 foundCommonContour = true;
3108 }
caryclark@google.comfa0588f2012-04-26 21:01:06 +00003109 // in addition to recording T values, record matching segment
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00003110 if (pts == 2 && wn.segmentType() <= Work::kLine_Segment
3111 && wt.segmentType() <= Work::kLine_Segment) {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00003112 wt.addCoincident(wn, ts, swap);
3113 continue;
caryclark@google.coma3f05fa2012-06-01 17:44:28 +00003114 }
caryclark@google.com15fa1382012-05-07 20:49:36 +00003115 for (int pt = 0; pt < pts; ++pt) {
caryclark@google.comfa0588f2012-04-26 21:01:06 +00003116 SkASSERT(ts.fT[0][pt] >= 0 && ts.fT[0][pt] <= 1);
3117 SkASSERT(ts.fT[1][pt] >= 0 && ts.fT[1][pt] <= 1);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00003118 int testTAt = wt.addT(ts.fT[swap][pt], wn);
3119 int nextTAt = wn.addT(ts.fT[!swap][pt], wt);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00003120 wt.addOtherT(testTAt, ts.fT[!swap][pt], nextTAt);
3121 wn.addOtherT(nextTAt, ts.fT[swap][pt], testTAt);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00003122 }
3123 } while (wn.advance());
3124 } while (wt.advance());
3125 return true;
3126}
3127
caryclark@google.com8dcf1142012-07-02 20:27:02 +00003128// resolve any coincident pairs found while intersecting, and
caryclark@google.coma833b5c2012-04-30 19:38:50 +00003129// see if coincidence is formed by clipping non-concident segments
3130static void coincidenceCheck(SkTDArray<Contour*>& contourList, int winding) {
3131 int contourCount = contourList.count();
caryclark@google.comf25edfe2012-06-01 18:20:10 +00003132 for (int cIndex = 0; cIndex < contourCount; ++cIndex) {
caryclark@google.coma833b5c2012-04-30 19:38:50 +00003133 Contour* contour = contourList[cIndex];
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00003134 contour->findTooCloseToCall(winding);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00003135 }
3136 for (int cIndex = 0; cIndex < contourCount; ++cIndex) {
3137 Contour* contour = contourList[cIndex];
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00003138 contour->resolveCoincidence(winding);
caryclark@google.coma833b5c2012-04-30 19:38:50 +00003139 }
3140}
3141
caryclark@google.com8dcf1142012-07-02 20:27:02 +00003142// project a ray from the top of the contour up and see if it hits anything
3143// note: when we compute line intersections, we keep track of whether
3144// two contours touch, so we need only look at contours not touching this one.
3145// OPTIMIZATION: sort contourList vertically to avoid linear walk
3146static int innerContourCheck(SkTDArray<Contour*>& contourList,
caryclark@google.com534aa5b2012-08-02 20:08:21 +00003147 const Segment* current, int index, int endIndex) {
caryclark@google.com7db7c6b2012-07-27 21:22:25 +00003148 const SkPoint& basePt = current->xyAtT(endIndex);
caryclark@google.com8dcf1142012-07-02 20:27:02 +00003149 int contourCount = contourList.count();
caryclark@google.com8dcf1142012-07-02 20:27:02 +00003150 SkScalar bestY = SK_ScalarMin;
caryclark@google.com47580692012-07-23 12:14:49 +00003151 const Segment* test = NULL;
3152 int tIndex;
3153 double tHit;
caryclark@google.com534aa5b2012-08-02 20:08:21 +00003154 // bool checkCrosses = true;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00003155 for (int cTest = 0; cTest < contourCount; ++cTest) {
3156 Contour* contour = contourList[cTest];
3157 if (basePt.fY < contour->bounds().fTop) {
3158 continue;
3159 }
3160 if (bestY > contour->bounds().fBottom) {
3161 continue;
3162 }
caryclark@google.com534aa5b2012-08-02 20:08:21 +00003163#if 0
caryclark@google.com7db7c6b2012-07-27 21:22:25 +00003164 // even though the contours crossed, if spans cancel through concidence,
3165 // the contours may be not have any span links to chase, and the current
3166 // segment may be isolated. Detect this by seeing if current has
3167 // uninitialized wind sums. If so, project a ray instead of relying on
3168 // previously found intersections.
3169 if (baseContour == contour) {
3170 continue;
3171 }
3172 if (checkCrosses && baseContour->crosses(contour)) {
3173 if (current->isConnected(index, endIndex)) {
3174 continue;
3175 }
3176 checkCrosses = false;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00003177 }
caryclark@google.com534aa5b2012-08-02 20:08:21 +00003178#endif
caryclark@google.com47580692012-07-23 12:14:49 +00003179 const Segment* next = contour->crossedSegment(basePt, bestY, tIndex, tHit);
3180 if (next) {
3181 test = next;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00003182 }
caryclark@google.com47580692012-07-23 12:14:49 +00003183 }
3184 if (!test) {
caryclark@google.com47580692012-07-23 12:14:49 +00003185 return 0;
3186 }
3187 int winding, windValue;
3188 // If the ray hit the end of a span, we need to construct the wheel of
3189 // angles to find the span closest to the ray -- even if there are just
3190 // two spokes on the wheel.
caryclark@google.com534aa5b2012-08-02 20:08:21 +00003191 const Angle* angle = NULL;
caryclark@google.come21cb182012-07-23 21:26:31 +00003192 if (fabs(tHit - test->t(tIndex)) < FLT_EPSILON) {
caryclark@google.com47580692012-07-23 12:14:49 +00003193 SkTDArray<Angle> angles;
3194 int end = test->nextSpan(tIndex, 1);
3195 if (end < 0) {
3196 end = test->nextSpan(tIndex, -1);
3197 }
3198 test->addTwoAngles(end, tIndex, angles);
3199 test->buildAngles(tIndex, angles);
3200 SkTDArray<Angle*> sorted;
3201 // OPTIMIZATION: call a sort that, if base point is the leftmost,
3202 // returns the first counterclockwise hour before 6 o'clock,
3203 // or if the base point is rightmost, returns the first clockwise
3204 // hour after 6 o'clock
3205 sortAngles(angles, sorted);
3206#if DEBUG_SORT
caryclark@google.com534aa5b2012-08-02 20:08:21 +00003207 sorted[0]->segment()->debugShowSort(sorted, 0, 0);
caryclark@google.com47580692012-07-23 12:14:49 +00003208#endif
3209 // walk the sorted angle fan to find the lowest angle
3210 // above the base point. Currently, the first angle in the sorted array
3211 // is 12 noon or an earlier hour (the next counterclockwise)
3212 int count = sorted.count();
3213 int left = -1;
caryclark@google.com7db7c6b2012-07-27 21:22:25 +00003214 int mid = -1;
caryclark@google.com47580692012-07-23 12:14:49 +00003215 int right = -1;
caryclark@google.com7db7c6b2012-07-27 21:22:25 +00003216 bool baseMatches = test->yAtT(tIndex) == basePt.fY;
caryclark@google.com47580692012-07-23 12:14:49 +00003217 for (int index = 0; index < count; ++index) {
caryclark@google.com7db7c6b2012-07-27 21:22:25 +00003218 const Angle* angle = sorted[index];
3219 if (baseMatches && angle->isHorizontal()) {
3220 continue;
3221 }
3222 double indexDx = angle->dx();
caryclark@google.com47580692012-07-23 12:14:49 +00003223 if (indexDx < 0) {
3224 left = index;
3225 } else if (indexDx > 0) {
3226 right = index;
3227 break;
caryclark@google.com7db7c6b2012-07-27 21:22:25 +00003228 } else {
3229 mid = index;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00003230 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00003231 }
caryclark@google.com7db7c6b2012-07-27 21:22:25 +00003232 if (left < 0 && right < 0) {
3233 left = mid;
3234 }
caryclark@google.com47580692012-07-23 12:14:49 +00003235 SkASSERT(left >= 0 || right >= 0);
3236 if (left < 0) {
3237 left = right;
caryclark@google.com534aa5b2012-08-02 20:08:21 +00003238 } else if (left >= 0 && mid >= 0 && right >= 0
3239 && sorted[mid]->sign() == sorted[right]->sign()) {
3240 left = right;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00003241 }
caryclark@google.com534aa5b2012-08-02 20:08:21 +00003242 angle = sorted[left];
caryclark@google.com47580692012-07-23 12:14:49 +00003243 test = angle->segment();
3244 winding = test->windSum(angle);
caryclark@google.come21cb182012-07-23 21:26:31 +00003245 SkASSERT(winding != SK_MinS32);
caryclark@google.com47580692012-07-23 12:14:49 +00003246 windValue = test->windValue(angle);
caryclark@google.com47580692012-07-23 12:14:49 +00003247#if DEBUG_WINDING
caryclark@google.com534aa5b2012-08-02 20:08:21 +00003248 SkDebugf("%s angle winding=%d windValue=%d sign=%d\n", __FUNCTION__, winding,
3249 windValue, angle->sign());
caryclark@google.com47580692012-07-23 12:14:49 +00003250#endif
3251 } else {
3252 winding = test->windSum(tIndex);
caryclark@google.come21cb182012-07-23 21:26:31 +00003253 SkASSERT(winding != SK_MinS32);
caryclark@google.com47580692012-07-23 12:14:49 +00003254 windValue = test->windValue(tIndex);
3255#if DEBUG_WINDING
3256 SkDebugf("%s single winding=%d windValue=%d\n", __FUNCTION__, winding,
3257 windValue);
3258#endif
3259 }
3260 // see if a + change in T results in a +/- change in X (compute x'(T))
3261 SkScalar dx = (*SegmentDXAtT[test->verb()])(test->pts(), tHit);
3262#if DEBUG_WINDING
3263 SkDebugf("%s dx=%1.9g\n", __FUNCTION__, dx);
3264#endif
caryclark@google.com534aa5b2012-08-02 20:08:21 +00003265 if (dx == 0) {
3266 SkASSERT(angle);
3267 if (test->firstBump(angle, winding)) {
3268 winding -= test->windBump(angle);
3269 }
3270 } else if (winding * dx > 0) { // if same signs, result is negative
caryclark@google.com47580692012-07-23 12:14:49 +00003271 winding += dx > 0 ? -windValue : windValue;
3272#if DEBUG_WINDING
3273 SkDebugf("%s final winding=%d\n", __FUNCTION__, winding);
3274#endif
caryclark@google.com8dcf1142012-07-02 20:27:02 +00003275 }
caryclark@google.com534aa5b2012-08-02 20:08:21 +00003276 // start here;
caryclark@google.com7db7c6b2012-07-27 21:22:25 +00003277 // we're broken because we find a vertical span
caryclark@google.com8dcf1142012-07-02 20:27:02 +00003278 return winding;
3279}
caryclark@google.comb45a1b42012-05-18 20:50:33 +00003280
3281// OPTIMIZATION: not crazy about linear search here to find top active y.
3282// seems like we should break down and do the sort, or maybe sort each
3283// contours' segments?
3284// Once the segment array is built, there's no reason I can think of not to
3285// sort it in Y. hmmm
caryclark@google.com8dcf1142012-07-02 20:27:02 +00003286// FIXME: return the contour found to pass to inner contour check
caryclark@google.com534aa5b2012-08-02 20:08:21 +00003287static Segment* findTopContour(SkTDArray<Contour*>& contourList) {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00003288 int contourCount = contourList.count();
caryclark@google.comb45a1b42012-05-18 20:50:33 +00003289 int cIndex = 0;
3290 Segment* topStart;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00003291 SkScalar bestY = SK_ScalarMax;
3292 Contour* contour;
caryclark@google.comb45a1b42012-05-18 20:50:33 +00003293 do {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00003294 contour = contourList[cIndex];
3295 topStart = contour->topSegment(bestY);
caryclark@google.comb45a1b42012-05-18 20:50:33 +00003296 } while (!topStart && ++cIndex < contourCount);
3297 if (!topStart) {
3298 return NULL;
3299 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00003300 while (++cIndex < contourCount) {
3301 contour = contourList[cIndex];
3302 if (bestY < contour->bounds().fTop) {
caryclark@google.comb45a1b42012-05-18 20:50:33 +00003303 continue;
3304 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00003305 SkScalar testY = SK_ScalarMax;
3306 Segment* test = contour->topSegment(testY);
3307 if (!test || bestY <= testY) {
3308 continue;
caryclark@google.comb45a1b42012-05-18 20:50:33 +00003309 }
caryclark@google.com8dcf1142012-07-02 20:27:02 +00003310 topStart = test;
3311 bestY = testY;
caryclark@google.comb45a1b42012-05-18 20:50:33 +00003312 }
3313 return topStart;
3314}
3315
caryclark@google.come21cb182012-07-23 21:26:31 +00003316static Segment* findChase(SkTDArray<Span*>& chase, int& tIndex, int& endIndex,
3317 int contourWinding) {
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00003318 while (chase.count()) {
caryclark@google.com9764cc62012-07-12 19:29:45 +00003319 Span* span = chase[chase.count() - 1];
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00003320 const Span& backPtr = span->fOther->span(span->fOtherIndex);
3321 Segment* segment = backPtr.fOther;
3322 tIndex = backPtr.fOtherIndex;
caryclark@google.com9764cc62012-07-12 19:29:45 +00003323 SkTDArray<Angle> angles;
3324 int done = 0;
3325 if (segment->activeAngle(tIndex, done, angles)) {
3326 Angle* last = angles.end() - 1;
3327 tIndex = last->start();
3328 endIndex = last->end();
3329 return last->segment();
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00003330 }
caryclark@google.com9764cc62012-07-12 19:29:45 +00003331 if (done == angles.count()) {
3332 chase.pop(&span);
3333 continue;
3334 }
3335 SkTDArray<Angle*> sorted;
3336 sortAngles(angles, sorted);
3337 // find first angle, initialize winding to computed fWindSum
3338 int firstIndex = -1;
3339 const Angle* angle;
caryclark@google.com534aa5b2012-08-02 20:08:21 +00003340 int winding;
caryclark@google.com9764cc62012-07-12 19:29:45 +00003341 do {
3342 angle = sorted[++firstIndex];
caryclark@google.com534aa5b2012-08-02 20:08:21 +00003343 segment = angle->segment();
3344 winding = segment->windSum(angle);
3345 } while (winding == SK_MinS32);
3346 int spanWinding = segment->spanSign(angle->start(), angle->end());
3347 #if DEBUG_WINDING
3348 SkDebugf("%s winding=%d spanWinding=%d contourWinding=%d\n",
3349 __FUNCTION__, winding, spanWinding, contourWinding);
caryclark@google.com47580692012-07-23 12:14:49 +00003350 #endif
caryclark@google.com534aa5b2012-08-02 20:08:21 +00003351 // turn swinding into contourWinding
3352 if (spanWinding * winding < 0) {
3353 winding += spanWinding;
caryclark@google.com9764cc62012-07-12 19:29:45 +00003354 }
caryclark@google.com534aa5b2012-08-02 20:08:21 +00003355 #if DEBUG_SORT
3356 segment->debugShowSort(sorted, firstIndex, winding);
3357 #endif
caryclark@google.com9764cc62012-07-12 19:29:45 +00003358 // we care about first sign and whether wind sum indicates this
3359 // edge is inside or outside. Maybe need to pass span winding
3360 // or first winding or something into this function?
3361 // advance to first undone angle, then return it and winding
3362 // (to set whether edges are active or not)
3363 int nextIndex = firstIndex + 1;
3364 int angleCount = sorted.count();
3365 int lastIndex = firstIndex != 0 ? firstIndex : angleCount;
caryclark@google.com534aa5b2012-08-02 20:08:21 +00003366 angle = sorted[firstIndex];
3367 winding -= angle->segment()->windBump(angle);
caryclark@google.com9764cc62012-07-12 19:29:45 +00003368 do {
3369 SkASSERT(nextIndex != firstIndex);
3370 if (nextIndex == angleCount) {
3371 nextIndex = 0;
3372 }
caryclark@google.com534aa5b2012-08-02 20:08:21 +00003373 angle = sorted[nextIndex];
caryclark@google.com9764cc62012-07-12 19:29:45 +00003374 segment = angle->segment();
caryclark@google.com534aa5b2012-08-02 20:08:21 +00003375 int maxWinding = winding;
3376 winding -= segment->windBump(angle);
3377 #if DEBUG_SORT
3378 SkDebugf("%s id=%d maxWinding=%d winding=%d\n", __FUNCTION__,
3379 segment->debugID(), maxWinding, winding);
3380 #endif
caryclark@google.com9764cc62012-07-12 19:29:45 +00003381 tIndex = angle->start();
3382 endIndex = angle->end();
3383 int lesser = SkMin32(tIndex, endIndex);
3384 const Span& nextSpan = segment->span(lesser);
3385 if (!nextSpan.fDone) {
caryclark@google.com534aa5b2012-08-02 20:08:21 +00003386#if 1
caryclark@google.com9764cc62012-07-12 19:29:45 +00003387 // FIXME: this be wrong. assign startWinding if edge is in
3388 // same direction. If the direction is opposite, winding to
3389 // assign is flipped sign or +/- 1?
caryclark@google.com534aa5b2012-08-02 20:08:21 +00003390 if (abs(maxWinding) < abs(winding)) {
3391 maxWinding = winding;
caryclark@google.com9764cc62012-07-12 19:29:45 +00003392 }
3393 segment->markWinding(lesser, maxWinding);
caryclark@google.com534aa5b2012-08-02 20:08:21 +00003394#endif
caryclark@google.com9764cc62012-07-12 19:29:45 +00003395 break;
3396 }
3397 } while (++nextIndex != lastIndex);
3398 return segment;
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00003399 }
3400 return NULL;
3401}
3402
caryclark@google.com027de222012-07-12 12:52:50 +00003403#if DEBUG_ACTIVE_SPANS
3404static void debugShowActiveSpans(SkTDArray<Contour*>& contourList) {
3405 for (int index = 0; index < contourList.count(); ++ index) {
3406 contourList[index]->debugShowActiveSpans();
3407 }
3408}
3409#endif
3410
caryclark@google.com27c449a2012-07-27 18:26:38 +00003411static bool windingIsActive(int winding, int spanWinding) {
3412 return winding * spanWinding <= 0 && abs(winding) <= abs(spanWinding)
3413 && (!winding || !spanWinding || winding == -spanWinding);
3414}
3415
caryclark@google.comfa0588f2012-04-26 21:01:06 +00003416// Each segment may have an inside or an outside. Segments contained within
3417// winding may have insides on either side, and form a contour that should be
3418// ignored. Segments that are coincident with opposing direction segments may
3419// have outsides on either side, and should also disappear.
3420// 'Normal' segments will have one inside and one outside. Subsequent connections
3421// when winding should follow the intersection direction. If more than one edge
3422// is an option, choose first edge that continues the inside.
caryclark@google.comb45a1b42012-05-18 20:50:33 +00003423 // since we start with leftmost top edge, we'll traverse through a
3424 // smaller angle counterclockwise to get to the next edge.
caryclark@google.com1577e8f2012-05-22 17:01:14 +00003425static void bridge(SkTDArray<Contour*>& contourList, SkPath& simple) {
caryclark@google.com8dcf1142012-07-02 20:27:02 +00003426 bool firstContour = true;
caryclark@google.com15fa1382012-05-07 20:49:36 +00003427 do {
caryclark@google.com534aa5b2012-08-02 20:08:21 +00003428 Segment* topStart = findTopContour(contourList);
caryclark@google.com15fa1382012-05-07 20:49:36 +00003429 if (!topStart) {
3430 break;
caryclark@google.comcc905052012-07-25 20:59:42 +00003431 }
caryclark@google.com15fa1382012-05-07 20:49:36 +00003432 // Start at the top. Above the top is outside, below is inside.
caryclark@google.com495f8e42012-05-31 13:13:11 +00003433 // follow edges to intersection by changing the index by direction.
3434 int index, endIndex;
caryclark@google.com88f7d0c2012-06-07 21:09:20 +00003435 Segment* current = topStart->findTop(index, endIndex);
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00003436 int contourWinding;
3437 if (firstContour) {
3438 contourWinding = 0;
3439 firstContour = false;
3440 } else {
caryclark@google.com534aa5b2012-08-02 20:08:21 +00003441 contourWinding = current->windSum(SkMin32(index, endIndex));
3442 // FIXME: don't I have to adjust windSum to get contourWinding?
3443 if (contourWinding == SK_MinS32) {
3444 contourWinding = current->computeSum(index, endIndex);
3445 if (contourWinding == SK_MinS32) {
3446 contourWinding = innerContourCheck(contourList, current,
3447 index, endIndex);
3448 }
3449 }
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00003450#if DEBUG_WINDING
caryclark@google.com534aa5b2012-08-02 20:08:21 +00003451 // SkASSERT(current->debugVerifyWinding(index, endIndex, contourWinding));
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00003452 SkDebugf("%s contourWinding=%d\n", __FUNCTION__, contourWinding);
3453#endif
caryclark@google.com8dcf1142012-07-02 20:27:02 +00003454 }
caryclark@google.com88f7d0c2012-06-07 21:09:20 +00003455 SkPoint lastPt;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00003456 bool firstTime = true;
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00003457 int winding = contourWinding;
caryclark@google.com8dcf1142012-07-02 20:27:02 +00003458 int spanWinding = current->spanSign(index, endIndex);
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00003459 // FIXME: needs work. While it works in limited situations, it does
3460 // not always compute winding correctly. Active should be removed and instead
3461 // the initial winding should be correctly passed in so that if the
3462 // inner contour is wound the same way, it never finds an accumulated
3463 // winding of zero. Inside 'find next', we need to look for transitions
3464 // other than zero when resolving sorted angles.
caryclark@google.com27c449a2012-07-27 18:26:38 +00003465 bool active = windingIsActive(winding, spanWinding);
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00003466 SkTDArray<Span*> chaseArray;
caryclark@google.comb45a1b42012-05-18 20:50:33 +00003467 do {
caryclark@google.com0e08a192012-07-13 21:07:52 +00003468 #if DEBUG_WINDING
caryclark@google.come21cb182012-07-23 21:26:31 +00003469 SkDebugf("%s active=%s winding=%d spanWinding=%d\n",
3470 __FUNCTION__, active ? "true" : "false",
3471 winding, spanWinding);
caryclark@google.com0e08a192012-07-13 21:07:52 +00003472 #endif
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00003473 const SkPoint* firstPt = NULL;
3474 do {
3475 SkASSERT(!current->done());
caryclark@google.comafe56de2012-07-24 18:11:03 +00003476 int nextStart, nextEnd;
caryclark@google.com27c449a2012-07-27 18:26:38 +00003477 Segment* next = current->findNext(chaseArray,
3478 firstTime, active, index, endIndex,
3479 nextStart, nextEnd, winding, spanWinding);
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00003480 if (!next) {
3481 break;
3482 }
3483 if (!firstPt) {
3484 firstPt = &current->addMoveTo(index, simple, active);
3485 }
3486 lastPt = current->addCurveTo(index, endIndex, simple, active);
3487 current = next;
3488 index = nextStart;
3489 endIndex = nextEnd;
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00003490 firstTime = false;
3491 } while (*firstPt != lastPt && (active || !current->done()));
3492 if (firstPt && active) {
3493 #if DEBUG_PATH_CONSTRUCTION
3494 SkDebugf("%s close\n", __FUNCTION__);
3495 #endif
3496 simple.close();
3497 }
caryclark@google.come21cb182012-07-23 21:26:31 +00003498 current = findChase(chaseArray, index, endIndex, contourWinding);
caryclark@google.com0e08a192012-07-13 21:07:52 +00003499 #if DEBUG_ACTIVE_SPANS
caryclark@google.com027de222012-07-12 12:52:50 +00003500 debugShowActiveSpans(contourList);
caryclark@google.com0e08a192012-07-13 21:07:52 +00003501 #endif
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00003502 if (!current) {
caryclark@google.com495f8e42012-05-31 13:13:11 +00003503 break;
3504 }
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00003505 int lesser = SkMin32(index, endIndex);
caryclark@google.com534aa5b2012-08-02 20:08:21 +00003506 spanWinding = current->spanSign(index, endIndex);
3507 winding = current->windSum(lesser);
3508 if (spanWinding * winding > 0) {
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00003509 winding -= spanWinding;
3510 }
caryclark@google.com534aa5b2012-08-02 20:08:21 +00003511 active = windingIsActive(winding, spanWinding);
caryclark@google.comfa4a6e92012-07-11 17:52:32 +00003512 } while (true);
caryclark@google.com1577e8f2012-05-22 17:01:14 +00003513 } while (true);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00003514}
3515
caryclark@google.comb45a1b42012-05-18 20:50:33 +00003516static void fixOtherTIndex(SkTDArray<Contour*>& contourList) {
3517 int contourCount = contourList.count();
3518 for (int cTest = 0; cTest < contourCount; ++cTest) {
3519 Contour* contour = contourList[cTest];
3520 contour->fixOtherTIndex();
3521 }
3522}
3523
caryclark@google.com1577e8f2012-05-22 17:01:14 +00003524static void makeContourList(SkTArray<Contour>& contours,
caryclark@google.comfa0588f2012-04-26 21:01:06 +00003525 SkTDArray<Contour*>& list) {
caryclark@google.coma833b5c2012-04-30 19:38:50 +00003526 int count = contours.count();
caryclark@google.comfa0588f2012-04-26 21:01:06 +00003527 if (count == 0) {
3528 return;
3529 }
caryclark@google.coma833b5c2012-04-30 19:38:50 +00003530 for (int index = 0; index < count; ++index) {
caryclark@google.comfa0588f2012-04-26 21:01:06 +00003531 *list.append() = &contours[index];
3532 }
caryclark@google.comfa0588f2012-04-26 21:01:06 +00003533 QSort<Contour>(list.begin(), list.end() - 1);
3534}
3535
caryclark@google.com65f9f0a2012-05-23 18:09:25 +00003536void simplifyx(const SkPath& path, SkPath& simple) {
caryclark@google.comfa0588f2012-04-26 21:01:06 +00003537 // returns 1 for evenodd, -1 for winding, regardless of inverse-ness
caryclark@google.coma833b5c2012-04-30 19:38:50 +00003538 int winding = (path.getFillType() & 1) ? 1 : -1;
caryclark@google.comfa0588f2012-04-26 21:01:06 +00003539 simple.reset();
3540 simple.setFillType(SkPath::kEvenOdd_FillType);
3541
3542 // turn path into list of segments
3543 SkTArray<Contour> contours;
3544 // FIXME: add self-intersecting cubics' T values to segment
3545 EdgeBuilder builder(path, contours);
3546 SkTDArray<Contour*> contourList;
caryclark@google.com1577e8f2012-05-22 17:01:14 +00003547 makeContourList(contours, contourList);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00003548 Contour** currentPtr = contourList.begin();
3549 if (!currentPtr) {
3550 return;
3551 }
caryclark@google.com1577e8f2012-05-22 17:01:14 +00003552 Contour** listEnd = contourList.end();
caryclark@google.comfa0588f2012-04-26 21:01:06 +00003553 // find all intersections between segments
3554 do {
3555 Contour** nextPtr = currentPtr;
3556 Contour* current = *currentPtr++;
3557 Contour* next;
3558 do {
3559 next = *nextPtr++;
caryclark@google.com65f9f0a2012-05-23 18:09:25 +00003560 } while (addIntersectTs(current, next) && nextPtr != listEnd);
caryclark@google.com1577e8f2012-05-22 17:01:14 +00003561 } while (currentPtr != listEnd);
caryclark@google.coma833b5c2012-04-30 19:38:50 +00003562 // eat through coincident edges
3563 coincidenceCheck(contourList, winding);
caryclark@google.com66ca2fb2012-07-03 14:30:08 +00003564 fixOtherTIndex(contourList);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00003565 // construct closed contours
caryclark@google.com1577e8f2012-05-22 17:01:14 +00003566 bridge(contourList, simple);
caryclark@google.comfa0588f2012-04-26 21:01:06 +00003567}
3568