blob: dd51195d77ac746c1078da27b59f482d0a139d9f [file] [log] [blame]
caryclark@google.com07393ca2013-04-08 11:47:37 +00001/*
2 * Copyright 2012 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "SkIntersections.h"
9#include "SkPathOpsCubic.h"
10#include "SkPathOpsLine.h"
11#include "SkPathOpsPoint.h"
12#include "SkPathOpsQuad.h"
13#include "SkPathOpsRect.h"
14#include "SkReduceOrder.h"
commit-bot@chromium.orgb76d3b62013-04-22 19:55:19 +000015#include "SkTSort.h"
caryclark@google.com07393ca2013-04-08 11:47:37 +000016
17#if ONE_OFF_DEBUG
caryclark@google.com7eaa53d2013-10-02 14:49:34 +000018static const double tLimits1[2][2] = {{0.3, 0.4}, {0.8, 0.9}};
19static const double tLimits2[2][2] = {{-0.8, -0.9}, {-0.8, -0.9}};
caryclark@google.com07393ca2013-04-08 11:47:37 +000020#endif
21
caryclark@google.comfa2aeee2013-07-15 13:29:13 +000022#define DEBUG_QUAD_PART ONE_OFF_DEBUG && 1
23#define DEBUG_QUAD_PART_SHOW_SIMPLE DEBUG_QUAD_PART && 0
caryclark@google.com07393ca2013-04-08 11:47:37 +000024#define SWAP_TOP_DEBUG 0
25
caryclark@google.comd892bd82013-06-17 14:10:36 +000026static const int kCubicToQuadSubdivisionDepth = 8; // slots reserved for cubic to quads subdivision
27
caryclark@google.com07393ca2013-04-08 11:47:37 +000028static int quadPart(const SkDCubic& cubic, double tStart, double tEnd, SkReduceOrder* reducer) {
29 SkDCubic part = cubic.subDivide(tStart, tEnd);
30 SkDQuad quad = part.toQuad();
31 // FIXME: should reduceOrder be looser in this use case if quartic is going to blow up on an
32 // extremely shallow quadratic?
caryclark@google.com927b7022013-11-25 14:18:21 +000033 int order = reducer->reduce(quad);
caryclark@google.com07393ca2013-04-08 11:47:37 +000034#if DEBUG_QUAD_PART
caryclark@google.comfa2aeee2013-07-15 13:29:13 +000035 SkDebugf("%s cubic=(%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g)"
36 " t=(%1.9g,%1.9g)\n", __FUNCTION__, cubic[0].fX, cubic[0].fY,
caryclark@google.com07393ca2013-04-08 11:47:37 +000037 cubic[1].fX, cubic[1].fY, cubic[2].fX, cubic[2].fY,
38 cubic[3].fX, cubic[3].fY, tStart, tEnd);
caryclark@google.comfa2aeee2013-07-15 13:29:13 +000039 SkDebugf(" {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n"
40 " {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n",
caryclark@google.com07393ca2013-04-08 11:47:37 +000041 part[0].fX, part[0].fY, part[1].fX, part[1].fY, part[2].fX, part[2].fY,
42 part[3].fX, part[3].fY, quad[0].fX, quad[0].fY,
43 quad[1].fX, quad[1].fY, quad[2].fX, quad[2].fY);
caryclark@google.comfa2aeee2013-07-15 13:29:13 +000044#if DEBUG_QUAD_PART_SHOW_SIMPLE
45 SkDebugf("%s simple=(%1.9g,%1.9g", __FUNCTION__, reducer->fQuad[0].fX, reducer->fQuad[0].fY);
caryclark@google.com07393ca2013-04-08 11:47:37 +000046 if (order > 1) {
caryclark@google.comfa2aeee2013-07-15 13:29:13 +000047 SkDebugf(" %1.9g,%1.9g", reducer->fQuad[1].fX, reducer->fQuad[1].fY);
caryclark@google.com07393ca2013-04-08 11:47:37 +000048 }
49 if (order > 2) {
caryclark@google.comfa2aeee2013-07-15 13:29:13 +000050 SkDebugf(" %1.9g,%1.9g", reducer->fQuad[2].fX, reducer->fQuad[2].fY);
caryclark@google.com07393ca2013-04-08 11:47:37 +000051 }
52 SkDebugf(")\n");
53 SkASSERT(order < 4 && order > 0);
54#endif
caryclark@google.comfa2aeee2013-07-15 13:29:13 +000055#endif
caryclark@google.com07393ca2013-04-08 11:47:37 +000056 return order;
57}
58
59static void intersectWithOrder(const SkDQuad& simple1, int order1, const SkDQuad& simple2,
60 int order2, SkIntersections& i) {
61 if (order1 == 3 && order2 == 3) {
62 i.intersect(simple1, simple2);
63 } else if (order1 <= 2 && order2 <= 2) {
64 i.intersect((const SkDLine&) simple1, (const SkDLine&) simple2);
65 } else if (order1 == 3 && order2 <= 2) {
66 i.intersect(simple1, (const SkDLine&) simple2);
67 } else {
68 SkASSERT(order1 <= 2 && order2 == 3);
69 i.intersect(simple2, (const SkDLine&) simple1);
70 i.swapPts();
71 }
72}
73
74// this flavor centers potential intersections recursively. In contrast, '2' may inadvertently
75// chase intersections near quadratic ends, requiring odd hacks to find them.
76static void intersect(const SkDCubic& cubic1, double t1s, double t1e, const SkDCubic& cubic2,
77 double t2s, double t2e, double precisionScale, SkIntersections& i) {
78 i.upDepth();
79 SkDCubic c1 = cubic1.subDivide(t1s, t1e);
80 SkDCubic c2 = cubic2.subDivide(t2s, t2e);
caryclark@google.comd892bd82013-06-17 14:10:36 +000081 SkSTArray<kCubicToQuadSubdivisionDepth, double, true> ts1;
caryclark@google.com07393ca2013-04-08 11:47:37 +000082 // OPTIMIZE: if c1 == c2, call once (happens when detecting self-intersection)
83 c1.toQuadraticTs(c1.calcPrecision() * precisionScale, &ts1);
caryclark@google.comd892bd82013-06-17 14:10:36 +000084 SkSTArray<kCubicToQuadSubdivisionDepth, double, true> ts2;
caryclark@google.com07393ca2013-04-08 11:47:37 +000085 c2.toQuadraticTs(c2.calcPrecision() * precisionScale, &ts2);
86 double t1Start = t1s;
87 int ts1Count = ts1.count();
88 for (int i1 = 0; i1 <= ts1Count; ++i1) {
89 const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1;
90 const double t1 = t1s + (t1e - t1s) * tEnd1;
91 SkReduceOrder s1;
92 int o1 = quadPart(cubic1, t1Start, t1, &s1);
93 double t2Start = t2s;
94 int ts2Count = ts2.count();
95 for (int i2 = 0; i2 <= ts2Count; ++i2) {
96 const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1;
97 const double t2 = t2s + (t2e - t2s) * tEnd2;
98 if (&cubic1 == &cubic2 && t1Start >= t2Start) {
99 t2Start = t2;
100 continue;
101 }
102 SkReduceOrder s2;
103 int o2 = quadPart(cubic2, t2Start, t2, &s2);
104 #if ONE_OFF_DEBUG
105 char tab[] = " ";
106 if (tLimits1[0][0] >= t1Start && tLimits1[0][1] <= t1
107 && tLimits1[1][0] >= t2Start && tLimits1[1][1] <= t2) {
caryclark@google.com07393ca2013-04-08 11:47:37 +0000108 SkDebugf("%.*s %s t1=(%1.9g,%1.9g) t2=(%1.9g,%1.9g)", i.depth()*2, tab,
109 __FUNCTION__, t1Start, t1, t2Start, t2);
110 SkIntersections xlocals;
caryclark@google.com570863f2013-09-16 15:55:01 +0000111 xlocals.allowNear(false);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000112 intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, xlocals);
113 SkDebugf(" xlocals.fUsed=%d\n", xlocals.used());
114 }
115 #endif
116 SkIntersections locals;
caryclark@google.com570863f2013-09-16 15:55:01 +0000117 locals.allowNear(false);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000118 intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, locals);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000119 int tCount = locals.used();
120 for (int tIdx = 0; tIdx < tCount; ++tIdx) {
121 double to1 = t1Start + (t1 - t1Start) * locals[0][tIdx];
122 double to2 = t2Start + (t2 - t2Start) * locals[1][tIdx];
123 // if the computed t is not sufficiently precise, iterate
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000124 SkDPoint p1 = cubic1.ptAtT(to1);
125 SkDPoint p2 = cubic2.ptAtT(to2);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000126 if (p1.approximatelyEqual(p2)) {
caryclark@google.com7eaa53d2013-10-02 14:49:34 +0000127 // FIXME: local edge may be coincident -- experiment with not propagating coincidence to caller
128// SkASSERT(!locals.isCoincident(tIdx));
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000129 if (&cubic1 != &cubic2 || !approximately_equal(to1, to2)) {
caryclark@google.com07393ca2013-04-08 11:47:37 +0000130 if (i.swapped()) { // FIXME: insert should respect swap
131 i.insert(to2, to1, p1);
132 } else {
133 i.insert(to1, to2, p1);
134 }
135 }
136 } else {
commit-bot@chromium.org4431e772014-04-14 17:08:59 +0000137/*for random cubics, 16 below catches 99.997% of the intersections. To test for the remaining 0.003%
138 look for nearly coincident curves. and check each 1/16th section.
139*/
140 double offset = precisionScale / 16; // FIXME: const is arbitrary: test, refine
caryclark@google.com07393ca2013-04-08 11:47:37 +0000141 double c1Bottom = tIdx == 0 ? 0 :
142 (t1Start + (t1 - t1Start) * locals[0][tIdx - 1] + to1) / 2;
caryclark@google.com3b97af52013-04-23 11:56:44 +0000143 double c1Min = SkTMax(c1Bottom, to1 - offset);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000144 double c1Top = tIdx == tCount - 1 ? 1 :
145 (t1Start + (t1 - t1Start) * locals[0][tIdx + 1] + to1) / 2;
caryclark@google.com3b97af52013-04-23 11:56:44 +0000146 double c1Max = SkTMin(c1Top, to1 + offset);
147 double c2Min = SkTMax(0., to2 - offset);
148 double c2Max = SkTMin(1., to2 + offset);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000149 #if ONE_OFF_DEBUG
150 SkDebugf("%.*s %s 1 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab,
151 __FUNCTION__,
152 c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
153 && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
154 to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
155 && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
156 c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
157 && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
158 to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
159 && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
160 SkDebugf("%.*s %s 1 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
161 " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
162 i.depth()*2, tab, __FUNCTION__, c1Bottom, c1Top, 0., 1.,
163 to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
164 SkDebugf("%.*s %s 1 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
165 " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min,
166 c1Max, c2Min, c2Max);
167 #endif
168 intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
169 #if ONE_OFF_DEBUG
170 SkDebugf("%.*s %s 1 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__,
171 i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1);
172 #endif
173 if (tCount > 1) {
caryclark@google.com3b97af52013-04-23 11:56:44 +0000174 c1Min = SkTMax(0., to1 - offset);
175 c1Max = SkTMin(1., to1 + offset);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000176 double c2Bottom = tIdx == 0 ? to2 :
177 (t2Start + (t2 - t2Start) * locals[1][tIdx - 1] + to2) / 2;
178 double c2Top = tIdx == tCount - 1 ? to2 :
179 (t2Start + (t2 - t2Start) * locals[1][tIdx + 1] + to2) / 2;
180 if (c2Bottom > c2Top) {
181 SkTSwap(c2Bottom, c2Top);
182 }
183 if (c2Bottom == to2) {
184 c2Bottom = 0;
185 }
186 if (c2Top == to2) {
187 c2Top = 1;
188 }
caryclark@google.com3b97af52013-04-23 11:56:44 +0000189 c2Min = SkTMax(c2Bottom, to2 - offset);
190 c2Max = SkTMin(c2Top, to2 + offset);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000191 #if ONE_OFF_DEBUG
192 SkDebugf("%.*s %s 2 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab,
193 __FUNCTION__,
194 c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
195 && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
196 to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
197 && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
198 c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
199 && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
200 to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
201 && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
202 SkDebugf("%.*s %s 2 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
203 " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
204 i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top,
205 to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
206 SkDebugf("%.*s %s 2 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
207 " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min,
208 c1Max, c2Min, c2Max);
209 #endif
210 intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
211 #if ONE_OFF_DEBUG
212 SkDebugf("%.*s %s 2 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__,
213 i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1);
214 #endif
caryclark@google.com3b97af52013-04-23 11:56:44 +0000215 c1Min = SkTMax(c1Bottom, to1 - offset);
216 c1Max = SkTMin(c1Top, to1 + offset);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000217 #if ONE_OFF_DEBUG
218 SkDebugf("%.*s %s 3 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab,
219 __FUNCTION__,
220 c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
221 && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
222 to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
223 && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
224 c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
225 && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
226 to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
227 && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
228 SkDebugf("%.*s %s 3 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
229 " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
230 i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top,
231 to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
232 SkDebugf("%.*s %s 3 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
233 " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min,
234 c1Max, c2Min, c2Max);
235 #endif
236 intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
237 #if ONE_OFF_DEBUG
238 SkDebugf("%.*s %s 3 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__,
239 i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1);
240 #endif
241 }
caryclark@google.comfa2aeee2013-07-15 13:29:13 +0000242 // intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000243 // FIXME: if no intersection is found, either quadratics intersected where
244 // cubics did not, or the intersection was missed. In the former case, expect
245 // the quadratics to be nearly parallel at the point of intersection, and check
246 // for that.
247 }
248 }
caryclark@google.com07393ca2013-04-08 11:47:37 +0000249 t2Start = t2;
250 }
251 t1Start = t1;
252 }
253 i.downDepth();
254}
255
caryclark@google.com7eaa53d2013-10-02 14:49:34 +0000256 // if two ends intersect, check middle for coincidence
257bool SkIntersections::cubicCheckCoincidence(const SkDCubic& c1, const SkDCubic& c2) {
258 if (fUsed < 2) {
259 return false;
260 }
261 int last = fUsed - 1;
262 double tRange1 = fT[0][last] - fT[0][0];
263 double tRange2 = fT[1][last] - fT[1][0];
264 for (int index = 1; index < 5; ++index) {
265 double testT1 = fT[0][0] + tRange1 * index / 5;
266 double testT2 = fT[1][0] + tRange2 * index / 5;
267 SkDPoint testPt1 = c1.ptAtT(testT1);
268 SkDPoint testPt2 = c2.ptAtT(testT2);
269 if (!testPt1.approximatelyEqual(testPt2)) {
270 return false;
271 }
272 }
273 if (fUsed > 2) {
274 fPt[1] = fPt[last];
275 fT[0][1] = fT[0][last];
276 fT[1][1] = fT[1][last];
277 fUsed = 2;
278 }
279 fIsCoincident[0] = fIsCoincident[1] = 0x03;
280 return true;
281}
282
caryclark@google.com07393ca2013-04-08 11:47:37 +0000283#define LINE_FRACTION 0.1
284
285// intersect the end of the cubic with the other. Try lines from the end to control and opposite
286// end to determine range of t on opposite cubic.
caryclark@google.com7eaa53d2013-10-02 14:49:34 +0000287bool SkIntersections::cubicExactEnd(const SkDCubic& cubic1, bool start, const SkDCubic& cubic2) {
caryclark@google.com07393ca2013-04-08 11:47:37 +0000288 int t1Index = start ? 0 : 3;
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000289 double testT = (double) !start;
caryclark@google.com7eaa53d2013-10-02 14:49:34 +0000290 bool swap = swapped();
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000291 // quad/quad at this point checks to see if exact matches have already been found
292 // cubic/cubic can't reject so easily since cubics can intersect same point more than once
caryclark@google.com7eaa53d2013-10-02 14:49:34 +0000293 SkDLine tmpLine;
294 tmpLine[0] = tmpLine[1] = cubic2[t1Index];
295 tmpLine[1].fX += cubic2[2 - start].fY - cubic2[t1Index].fY;
296 tmpLine[1].fY -= cubic2[2 - start].fX - cubic2[t1Index].fX;
297 SkIntersections impTs;
caryclark@google.coma2bbc6e2013-11-01 17:36:03 +0000298 impTs.allowNear(false);
caryclark@google.com7eaa53d2013-10-02 14:49:34 +0000299 impTs.intersectRay(cubic1, tmpLine);
300 for (int index = 0; index < impTs.used(); ++index) {
301 SkDPoint realPt = impTs.pt(index);
302 if (!tmpLine[0].approximatelyEqual(realPt)) {
303 continue;
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000304 }
caryclark@google.com7eaa53d2013-10-02 14:49:34 +0000305 if (swap) {
306 insert(testT, impTs[0][index], tmpLine[0]);
307 } else {
308 insert(impTs[0][index], testT, tmpLine[0]);
309 }
310 return true;
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000311 }
caryclark@google.com7eaa53d2013-10-02 14:49:34 +0000312 return false;
313}
314
315void SkIntersections::cubicNearEnd(const SkDCubic& cubic1, bool start, const SkDCubic& cubic2,
316 const SkDRect& bounds2) {
317 SkDLine line;
318 int t1Index = start ? 0 : 3;
319 double testT = (double) !start;
320 // don't bother if the two cubics are connnected
caryclark@google.comd892bd82013-06-17 14:10:36 +0000321 static const int kPointsInCubic = 4; // FIXME: move to DCubic, replace '4' with this
322 static const int kMaxLineCubicIntersections = 3;
323 SkSTArray<(kMaxLineCubicIntersections - 1) * kMaxLineCubicIntersections, double, true> tVals;
caryclark@google.coma5e55922013-05-07 18:51:31 +0000324 line[0] = cubic1[t1Index];
325 // this variant looks for intersections with the end point and lines parallel to other points
caryclark@google.comd892bd82013-06-17 14:10:36 +0000326 for (int index = 0; index < kPointsInCubic; ++index) {
caryclark@google.com07393ca2013-04-08 11:47:37 +0000327 if (index == t1Index) {
328 continue;
329 }
330 SkDVector dxy1 = cubic1[index] - line[0];
331 dxy1 /= SkDCubic::gPrecisionUnit;
332 line[1] = line[0] + dxy1;
333 SkDRect lineBounds;
334 lineBounds.setBounds(line);
335 if (!bounds2.intersects(&lineBounds)) {
336 continue;
337 }
338 SkIntersections local;
339 if (!local.intersect(cubic2, line)) {
340 continue;
341 }
342 for (int idx2 = 0; idx2 < local.used(); ++idx2) {
343 double foundT = local[0][idx2];
344 if (approximately_less_than_zero(foundT)
345 || approximately_greater_than_one(foundT)) {
346 continue;
347 }
348 if (local.pt(idx2).approximatelyEqual(line[0])) {
caryclark@google.com7eaa53d2013-10-02 14:49:34 +0000349 if (swapped()) { // FIXME: insert should respect swap
350 insert(foundT, testT, line[0]);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000351 } else {
caryclark@google.com7eaa53d2013-10-02 14:49:34 +0000352 insert(testT, foundT, line[0]);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000353 }
354 } else {
caryclark@google.comd892bd82013-06-17 14:10:36 +0000355 tVals.push_back(foundT);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000356 }
357 }
358 }
359 if (tVals.count() == 0) {
360 return;
361 }
commit-bot@chromium.orgb76d3b62013-04-22 19:55:19 +0000362 SkTQSort<double>(tVals.begin(), tVals.end() - 1);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000363 double tMin1 = start ? 0 : 1 - LINE_FRACTION;
364 double tMax1 = start ? LINE_FRACTION : 1;
365 int tIdx = 0;
366 do {
367 int tLast = tIdx;
368 while (tLast + 1 < tVals.count() && roughly_equal(tVals[tLast + 1], tVals[tIdx])) {
369 ++tLast;
370 }
caryclark@google.com3b97af52013-04-23 11:56:44 +0000371 double tMin2 = SkTMax(tVals[tIdx] - LINE_FRACTION, 0.0);
372 double tMax2 = SkTMin(tVals[tLast] + LINE_FRACTION, 1.0);
caryclark@google.com7eaa53d2013-10-02 14:49:34 +0000373 int lastUsed = used();
374 ::intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, *this);
375 if (lastUsed == used()) {
caryclark@google.com3b97af52013-04-23 11:56:44 +0000376 tMin2 = SkTMax(tVals[tIdx] - (1.0 / SkDCubic::gPrecisionUnit), 0.0);
377 tMax2 = SkTMin(tVals[tLast] + (1.0 / SkDCubic::gPrecisionUnit), 1.0);
caryclark@google.com7eaa53d2013-10-02 14:49:34 +0000378 ::intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, *this);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000379 }
380 tIdx = tLast + 1;
381 } while (tIdx < tVals.count());
caryclark@google.com07393ca2013-04-08 11:47:37 +0000382 return;
383}
384
385const double CLOSE_ENOUGH = 0.001;
386
387static bool closeStart(const SkDCubic& cubic, int cubicIndex, SkIntersections& i, SkDPoint& pt) {
388 if (i[cubicIndex][0] != 0 || i[cubicIndex][1] > CLOSE_ENOUGH) {
389 return false;
390 }
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000391 pt = cubic.ptAtT((i[cubicIndex][0] + i[cubicIndex][1]) / 2);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000392 return true;
393}
394
395static bool closeEnd(const SkDCubic& cubic, int cubicIndex, SkIntersections& i, SkDPoint& pt) {
396 int last = i.used() - 1;
397 if (i[cubicIndex][last] != 1 || i[cubicIndex][last - 1] < 1 - CLOSE_ENOUGH) {
398 return false;
399 }
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000400 pt = cubic.ptAtT((i[cubicIndex][last] + i[cubicIndex][last - 1]) / 2);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000401 return true;
402}
403
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000404static bool only_end_pts_in_common(const SkDCubic& c1, const SkDCubic& c2) {
405// the idea here is to see at minimum do a quick reject by rotating all points
406// to either side of the line formed by connecting the endpoints
407// if the opposite curves points are on the line or on the other side, the
408// curves at most intersect at the endpoints
409 for (int oddMan = 0; oddMan < 4; ++oddMan) {
410 const SkDPoint* endPt[3];
411 for (int opp = 1; opp < 4; ++opp) {
412 int end = oddMan ^ opp; // choose a value not equal to oddMan
413 endPt[opp - 1] = &c1[end];
414 }
415 for (int triTest = 0; triTest < 3; ++triTest) {
416 double origX = endPt[triTest]->fX;
417 double origY = endPt[triTest]->fY;
418 int oppTest = triTest + 1;
419 if (3 == oppTest) {
420 oppTest = 0;
421 }
422 double adj = endPt[oppTest]->fX - origX;
423 double opp = endPt[oppTest]->fY - origY;
424 double sign = (c1[oddMan].fY - origY) * adj - (c1[oddMan].fX - origX) * opp;
425 if (approximately_zero(sign)) {
426 goto tryNextHalfPlane;
427 }
428 for (int n = 0; n < 4; ++n) {
429 double test = (c2[n].fY - origY) * adj - (c2[n].fX - origX) * opp;
430 if (test * sign > 0 && !precisely_zero(test)) {
431 goto tryNextHalfPlane;
432 }
433 }
434 }
435 return true;
436tryNextHalfPlane:
437 ;
438 }
439 return false;
440}
441
caryclark@google.com07393ca2013-04-08 11:47:37 +0000442int SkIntersections::intersect(const SkDCubic& c1, const SkDCubic& c2) {
caryclark@google.com7eaa53d2013-10-02 14:49:34 +0000443 if (fMax == 0) {
444 fMax = 9;
445 }
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000446 bool selfIntersect = &c1 == &c2;
447 if (selfIntersect) {
caryclark@google.com7eaa53d2013-10-02 14:49:34 +0000448 if (c1[0].approximatelyEqual(c1[3])) {
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000449 insert(0, 1, c1[0]);
caryclark@google.com7eaa53d2013-10-02 14:49:34 +0000450 return fUsed;
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000451 }
452 } else {
caryclark@google.coma2bbc6e2013-11-01 17:36:03 +0000453 // OPTIMIZATION: set exact end bits here to avoid cubic exact end later
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000454 for (int i1 = 0; i1 < 4; i1 += 3) {
455 for (int i2 = 0; i2 < 4; i2 += 3) {
caryclark@google.com7eaa53d2013-10-02 14:49:34 +0000456 if (c1[i1].approximatelyEqual(c2[i2])) {
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000457 insert(i1 >> 1, i2 >> 1, c1[i1]);
458 }
459 }
460 }
461 }
462 SkASSERT(fUsed < 4);
463 if (!selfIntersect) {
464 if (only_end_pts_in_common(c1, c2)) {
465 return fUsed;
466 }
467 if (only_end_pts_in_common(c2, c1)) {
468 return fUsed;
469 }
470 }
471 // quad/quad does linear test here -- cubic does not
472 // cubics which are really lines should have been detected in reduce step earlier
caryclark@google.com7eaa53d2013-10-02 14:49:34 +0000473 int exactEndBits = 0;
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000474 if (selfIntersect) {
475 if (fUsed) {
476 return fUsed;
477 }
478 } else {
caryclark@google.com7eaa53d2013-10-02 14:49:34 +0000479 exactEndBits |= cubicExactEnd(c1, false, c2) << 0;
480 exactEndBits |= cubicExactEnd(c1, true, c2) << 1;
caryclark@google.com07393ca2013-04-08 11:47:37 +0000481 swap();
caryclark@google.com7eaa53d2013-10-02 14:49:34 +0000482 exactEndBits |= cubicExactEnd(c2, false, c1) << 2;
483 exactEndBits |= cubicExactEnd(c2, true, c1) << 3;
caryclark@google.com07393ca2013-04-08 11:47:37 +0000484 swap();
485 }
caryclark@google.com7eaa53d2013-10-02 14:49:34 +0000486 if (cubicCheckCoincidence(c1, c2)) {
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000487 SkASSERT(!selfIntersect);
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000488 return fUsed;
489 }
caryclark@google.com7eaa53d2013-10-02 14:49:34 +0000490 // FIXME: pass in cached bounds from caller
caryclark@google.coma2bbc6e2013-11-01 17:36:03 +0000491 SkDRect c2Bounds;
caryclark@google.com7eaa53d2013-10-02 14:49:34 +0000492 c2Bounds.setBounds(c2);
caryclark@google.coma2bbc6e2013-11-01 17:36:03 +0000493 if (!(exactEndBits & 4)) {
caryclark@google.com7eaa53d2013-10-02 14:49:34 +0000494 cubicNearEnd(c1, false, c2, c2Bounds);
495 }
caryclark@google.coma2bbc6e2013-11-01 17:36:03 +0000496 if (!(exactEndBits & 8)) {
commit-bot@chromium.org8cb1daa2014-04-25 12:59:11 +0000497 if (selfIntersect && fUsed) {
498 return fUsed;
499 }
caryclark@google.com7eaa53d2013-10-02 14:49:34 +0000500 cubicNearEnd(c1, true, c2, c2Bounds);
commit-bot@chromium.org8cb1daa2014-04-25 12:59:11 +0000501 if (selfIntersect && fUsed && ((approximately_less_than_zero(fT[0][0])
502 && approximately_less_than_zero(fT[1][0]))
503 || (approximately_greater_than_one(fT[0][0])
504 && approximately_greater_than_one(fT[1][0])))) {
505 SkASSERT(fUsed == 1);
506 fUsed = 0;
507 return fUsed;
508 }
caryclark@google.com7eaa53d2013-10-02 14:49:34 +0000509 }
510 if (!selfIntersect) {
caryclark@google.coma2bbc6e2013-11-01 17:36:03 +0000511 SkDRect c1Bounds;
512 c1Bounds.setBounds(c1); // OPTIMIZE use setRawBounds ?
caryclark@google.com7eaa53d2013-10-02 14:49:34 +0000513 swap();
caryclark@google.coma2bbc6e2013-11-01 17:36:03 +0000514 if (!(exactEndBits & 1)) {
caryclark@google.com7eaa53d2013-10-02 14:49:34 +0000515 cubicNearEnd(c2, false, c1, c1Bounds);
516 }
caryclark@google.coma2bbc6e2013-11-01 17:36:03 +0000517 if (!(exactEndBits & 2)) {
caryclark@google.com7eaa53d2013-10-02 14:49:34 +0000518 cubicNearEnd(c2, true, c1, c1Bounds);
519 }
520 swap();
521 }
522 if (cubicCheckCoincidence(c1, c2)) {
523 SkASSERT(!selfIntersect);
524 return fUsed;
525 }
caryclark@google.coma2bbc6e2013-11-01 17:36:03 +0000526 SkIntersections i;
527 i.fAllowNear = false;
528 i.fMax = 9;
529 ::intersect(c1, 0, 1, c2, 0, 1, 1, i);
530 int compCount = i.used();
531 if (compCount) {
532 int exactCount = used();
533 if (exactCount == 0) {
534 set(i);
535 } else {
536 // at least one is exact or near, and at least one was computed. Eliminate duplicates
537 for (int exIdx = 0; exIdx < exactCount; ++exIdx) {
538 for (int cpIdx = 0; cpIdx < compCount; ) {
539 if (fT[0][0] == i[0][0] && fT[1][0] == i[1][0]) {
540 i.removeOne(cpIdx);
541 --compCount;
542 continue;
543 }
544 double tAvg = (fT[0][exIdx] + i[0][cpIdx]) / 2;
545 SkDPoint pt = c1.ptAtT(tAvg);
546 if (!pt.approximatelyEqual(fPt[exIdx])) {
547 ++cpIdx;
548 continue;
549 }
550 tAvg = (fT[1][exIdx] + i[1][cpIdx]) / 2;
551 pt = c2.ptAtT(tAvg);
552 if (!pt.approximatelyEqual(fPt[exIdx])) {
553 ++cpIdx;
554 continue;
555 }
556 i.removeOne(cpIdx);
557 --compCount;
558 }
559 }
560 // if mid t evaluates to nearly the same point, skip the t
561 for (int cpIdx = 0; cpIdx < compCount - 1; ) {
562 double tAvg = (fT[0][cpIdx] + i[0][cpIdx + 1]) / 2;
563 SkDPoint pt = c1.ptAtT(tAvg);
564 if (!pt.approximatelyEqual(fPt[cpIdx])) {
565 ++cpIdx;
566 continue;
567 }
568 tAvg = (fT[1][cpIdx] + i[1][cpIdx + 1]) / 2;
569 pt = c2.ptAtT(tAvg);
570 if (!pt.approximatelyEqual(fPt[cpIdx])) {
571 ++cpIdx;
572 continue;
573 }
574 i.removeOne(cpIdx);
575 --compCount;
576 }
577 // in addition to adding below missing function, think about how to say
578 append(i);
579 }
580 }
caryclark@google.com07393ca2013-04-08 11:47:37 +0000581 // If an end point and a second point very close to the end is returned, the second
582 // point may have been detected because the approximate quads
583 // intersected at the end and close to it. Verify that the second point is valid.
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000584 if (fUsed <= 1) {
caryclark@google.com07393ca2013-04-08 11:47:37 +0000585 return fUsed;
586 }
587 SkDPoint pt[2];
588 if (closeStart(c1, 0, *this, pt[0]) && closeStart(c2, 1, *this, pt[1])
589 && pt[0].approximatelyEqual(pt[1])) {
590 removeOne(1);
591 }
592 if (closeEnd(c1, 0, *this, pt[0]) && closeEnd(c2, 1, *this, pt[1])
593 && pt[0].approximatelyEqual(pt[1])) {
594 removeOne(used() - 2);
595 }
caryclark@google.comcffbcc32013-06-04 17:59:42 +0000596 // vet the pairs of t values to see if the mid value is also on the curve. If so, mark
597 // the span as coincident
598 if (fUsed >= 2 && !coincidentUsed()) {
599 int last = fUsed - 1;
600 int match = 0;
601 for (int index = 0; index < last; ++index) {
602 double mid1 = (fT[0][index] + fT[0][index + 1]) / 2;
603 double mid2 = (fT[1][index] + fT[1][index + 1]) / 2;
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000604 pt[0] = c1.ptAtT(mid1);
605 pt[1] = c2.ptAtT(mid2);
caryclark@google.comcffbcc32013-06-04 17:59:42 +0000606 if (pt[0].approximatelyEqual(pt[1])) {
607 match |= 1 << index;
608 }
609 }
610 if (match) {
caryclark@google.com7eaa53d2013-10-02 14:49:34 +0000611#if DEBUG_CONCIDENT
caryclark@google.comcffbcc32013-06-04 17:59:42 +0000612 if (((match + 1) & match) != 0) {
613 SkDebugf("%s coincident hole\n", __FUNCTION__);
614 }
caryclark@google.com7eaa53d2013-10-02 14:49:34 +0000615#endif
caryclark@google.comcffbcc32013-06-04 17:59:42 +0000616 // for now, assume that everything from start to finish is coincident
617 if (fUsed > 2) {
618 fPt[1] = fPt[last];
619 fT[0][1] = fT[0][last];
620 fT[1][1] = fT[1][last];
621 fIsCoincident[0] = 0x03;
622 fIsCoincident[1] = 0x03;
623 fUsed = 2;
624 }
625 }
626 }
caryclark@google.com07393ca2013-04-08 11:47:37 +0000627 return fUsed;
628}
629
630// Up promote the quad to a cubic.
631// OPTIMIZATION If this is a common use case, optimize by duplicating
632// the intersect 3 loop to avoid the promotion / demotion code
633int SkIntersections::intersect(const SkDCubic& cubic, const SkDQuad& quad) {
caryclark@google.com7eaa53d2013-10-02 14:49:34 +0000634 fMax = 6;
caryclark@google.com07393ca2013-04-08 11:47:37 +0000635 SkDCubic up = quad.toCubic();
636 (void) intersect(cubic, up);
637 return used();
638}
639
640/* http://www.ag.jku.at/compass/compasssample.pdf
641( Self-Intersection Problems and Approximate Implicitization by Jan B. Thomassen
642Centre of Mathematics for Applications, University of Oslo http://www.cma.uio.no janbth@math.uio.no
643SINTEF Applied Mathematics http://www.sintef.no )
644describes a method to find the self intersection of a cubic by taking the gradient of the implicit
645form dotted with the normal, and solving for the roots. My math foo is too poor to implement this.*/
646
647int SkIntersections::intersect(const SkDCubic& c) {
caryclark@google.com7eaa53d2013-10-02 14:49:34 +0000648 fMax = 1;
caryclark@google.com07393ca2013-04-08 11:47:37 +0000649 // check to see if x or y end points are the extrema. Are other quick rejects possible?
650 if (c.endsAreExtremaInXOrY()) {
651 return false;
652 }
653 (void) intersect(c, c);
654 if (used() > 0) {
655 SkASSERT(used() == 1);
656 if (fT[0][0] > fT[1][0]) {
657 swapPts();
658 }
659 }
660 return used();
661}