blob: df28ae8b90ed5ac69796a4e1d9fb38ffb5a0be41 [file] [log] [blame]
ztenghui7b4516e2014-01-07 10:42:55 -08001/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "OpenGLRenderer"
18
ztenghui512e6432014-09-10 13:08:20 -070019// The highest z value can't be higher than (CASTER_Z_CAP_RATIO * light.z)
ztenghuic50a03d2014-08-21 13:47:54 -070020#define CASTER_Z_CAP_RATIO 0.95f
ztenghui512e6432014-09-10 13:08:20 -070021
22// When there is no umbra, then just fake the umbra using
23// centroid * (1 - FAKE_UMBRA_SIZE_RATIO) + outline * FAKE_UMBRA_SIZE_RATIO
24#define FAKE_UMBRA_SIZE_RATIO 0.05f
25
26// When the polygon is about 90 vertices, the penumbra + umbra can reach 270 rays.
27// That is consider pretty fine tessllated polygon so far.
28// This is just to prevent using too much some memory when edge slicing is not
29// needed any more.
30#define FINE_TESSELLATED_POLYGON_RAY_NUMBER 270
31/**
32 * Extra vertices for the corner for smoother corner.
33 * Only for outer loop.
34 * Note that we use such extra memory to avoid an extra loop.
35 */
36// For half circle, we could add EXTRA_VERTEX_PER_PI vertices.
37// Set to 1 if we don't want to have any.
38#define SPOT_EXTRA_CORNER_VERTEX_PER_PI 18
39
40// For the whole polygon, the sum of all the deltas b/t normals is 2 * M_PI,
41// therefore, the maximum number of extra vertices will be twice bigger.
42#define SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER (2 * SPOT_EXTRA_CORNER_VERTEX_PER_PI)
43
44// For each RADIANS_DIVISOR, we would allocate one more vertex b/t the normals.
45#define SPOT_CORNER_RADIANS_DIVISOR (M_PI / SPOT_EXTRA_CORNER_VERTEX_PER_PI)
46
ztenghui7b4516e2014-01-07 10:42:55 -080047
48#include <math.h>
ztenghuif5ca8b42014-01-27 15:53:28 -080049#include <stdlib.h>
ztenghui7b4516e2014-01-07 10:42:55 -080050#include <utils/Log.h>
51
ztenghui63d41ab2014-02-14 13:13:41 -080052#include "ShadowTessellator.h"
ztenghui7b4516e2014-01-07 10:42:55 -080053#include "SpotShadow.h"
54#include "Vertex.h"
ztenghuic50a03d2014-08-21 13:47:54 -070055#include "utils/MathUtils.h"
ztenghui7b4516e2014-01-07 10:42:55 -080056
ztenghuic50a03d2014-08-21 13:47:54 -070057// TODO: After we settle down the new algorithm, we can remove the old one and
58// its utility functions.
59// Right now, we still need to keep it for comparison purpose and future expansion.
ztenghui7b4516e2014-01-07 10:42:55 -080060namespace android {
61namespace uirenderer {
62
ztenghui9122b1b2014-10-03 11:21:11 -070063static const float EPSILON = 1e-7;
Chris Craik726118b2014-03-07 18:27:49 -080064
ztenghui7b4516e2014-01-07 10:42:55 -080065/**
ztenghuic50a03d2014-08-21 13:47:54 -070066 * For each polygon's vertex, the light center will project it to the receiver
67 * as one of the outline vertex.
68 * For each outline vertex, we need to store the position and normal.
69 * Normal here is defined against the edge by the current vertex and the next vertex.
70 */
71struct OutlineData {
72 Vector2 position;
73 Vector2 normal;
74 float radius;
75};
76
77/**
ztenghui512e6432014-09-10 13:08:20 -070078 * For each vertex, we need to keep track of its angle, whether it is penumbra or
79 * umbra, and its corresponding vertex index.
80 */
81struct SpotShadow::VertexAngleData {
82 // The angle to the vertex from the centroid.
83 float mAngle;
84 // True is the vertex comes from penumbra, otherwise it comes from umbra.
85 bool mIsPenumbra;
86 // The index of the vertex described by this data.
87 int mVertexIndex;
88 void set(float angle, bool isPenumbra, int index) {
89 mAngle = angle;
90 mIsPenumbra = isPenumbra;
91 mVertexIndex = index;
92 }
93};
94
95/**
Chris Craik726118b2014-03-07 18:27:49 -080096 * Calculate the angle between and x and a y coordinate.
97 * The atan2 range from -PI to PI.
ztenghui7b4516e2014-01-07 10:42:55 -080098 */
Chris Craikb79a3e32014-03-11 12:20:17 -070099static float angle(const Vector2& point, const Vector2& center) {
Chris Craik726118b2014-03-07 18:27:49 -0800100 return atan2(point.y - center.y, point.x - center.x);
101}
102
103/**
104 * Calculate the intersection of a ray with the line segment defined by two points.
105 *
106 * Returns a negative value in error conditions.
107
108 * @param rayOrigin The start of the ray
109 * @param dx The x vector of the ray
110 * @param dy The y vector of the ray
111 * @param p1 The first point defining the line segment
112 * @param p2 The second point defining the line segment
113 * @return The distance along the ray if it intersects with the line segment, negative if otherwise
114 */
Chris Craikb79a3e32014-03-11 12:20:17 -0700115static float rayIntersectPoints(const Vector2& rayOrigin, float dx, float dy,
Chris Craik726118b2014-03-07 18:27:49 -0800116 const Vector2& p1, const Vector2& p2) {
117 // The math below is derived from solving this formula, basically the
118 // intersection point should stay on both the ray and the edge of (p1, p2).
119 // solve([p1x+t*(p2x-p1x)=dx*t2+px,p1y+t*(p2y-p1y)=dy*t2+py],[t,t2]);
120
ztenghui9122b1b2014-10-03 11:21:11 -0700121 float divisor = (dx * (p1.y - p2.y) + dy * p2.x - dy * p1.x);
Chris Craik726118b2014-03-07 18:27:49 -0800122 if (divisor == 0) return -1.0f; // error, invalid divisor
123
124#if DEBUG_SHADOW
ztenghui9122b1b2014-10-03 11:21:11 -0700125 float interpVal = (dx * (p1.y - rayOrigin.y) + dy * rayOrigin.x - dy * p1.x) / divisor;
ztenghui99af9422014-03-14 14:35:54 -0700126 if (interpVal < 0 || interpVal > 1) {
127 ALOGW("rayIntersectPoints is hitting outside the segment %f", interpVal);
128 }
Chris Craik726118b2014-03-07 18:27:49 -0800129#endif
130
ztenghui9122b1b2014-10-03 11:21:11 -0700131 float distance = (p1.x * (rayOrigin.y - p2.y) + p2.x * (p1.y - rayOrigin.y) +
Chris Craik726118b2014-03-07 18:27:49 -0800132 rayOrigin.x * (p2.y - p1.y)) / divisor;
133
134 return distance; // may be negative in error cases
ztenghui7b4516e2014-01-07 10:42:55 -0800135}
136
137/**
ztenghui7b4516e2014-01-07 10:42:55 -0800138 * Sort points by their X coordinates
139 *
140 * @param points the points as a Vector2 array.
141 * @param pointsLength the number of vertices of the polygon.
142 */
143void SpotShadow::xsort(Vector2* points, int pointsLength) {
144 quicksortX(points, 0, pointsLength - 1);
145}
146
147/**
148 * compute the convex hull of a collection of Points
149 *
150 * @param points the points as a Vector2 array.
151 * @param pointsLength the number of vertices of the polygon.
152 * @param retPoly pre allocated array of floats to put the vertices
153 * @return the number of points in the polygon 0 if no intersection
154 */
155int SpotShadow::hull(Vector2* points, int pointsLength, Vector2* retPoly) {
156 xsort(points, pointsLength);
157 int n = pointsLength;
158 Vector2 lUpper[n];
159 lUpper[0] = points[0];
160 lUpper[1] = points[1];
161
162 int lUpperSize = 2;
163
164 for (int i = 2; i < n; i++) {
165 lUpper[lUpperSize] = points[i];
166 lUpperSize++;
167
ztenghuif5ca8b42014-01-27 15:53:28 -0800168 while (lUpperSize > 2 && !ccw(
169 lUpper[lUpperSize - 3].x, lUpper[lUpperSize - 3].y,
170 lUpper[lUpperSize - 2].x, lUpper[lUpperSize - 2].y,
171 lUpper[lUpperSize - 1].x, lUpper[lUpperSize - 1].y)) {
ztenghui7b4516e2014-01-07 10:42:55 -0800172 // Remove the middle point of the three last
173 lUpper[lUpperSize - 2].x = lUpper[lUpperSize - 1].x;
174 lUpper[lUpperSize - 2].y = lUpper[lUpperSize - 1].y;
175 lUpperSize--;
176 }
177 }
178
179 Vector2 lLower[n];
180 lLower[0] = points[n - 1];
181 lLower[1] = points[n - 2];
182
183 int lLowerSize = 2;
184
185 for (int i = n - 3; i >= 0; i--) {
186 lLower[lLowerSize] = points[i];
187 lLowerSize++;
188
ztenghuif5ca8b42014-01-27 15:53:28 -0800189 while (lLowerSize > 2 && !ccw(
190 lLower[lLowerSize - 3].x, lLower[lLowerSize - 3].y,
191 lLower[lLowerSize - 2].x, lLower[lLowerSize - 2].y,
192 lLower[lLowerSize - 1].x, lLower[lLowerSize - 1].y)) {
ztenghui7b4516e2014-01-07 10:42:55 -0800193 // Remove the middle point of the three last
194 lLower[lLowerSize - 2] = lLower[lLowerSize - 1];
195 lLowerSize--;
196 }
197 }
ztenghui7b4516e2014-01-07 10:42:55 -0800198
Chris Craik726118b2014-03-07 18:27:49 -0800199 // output points in CW ordering
200 const int total = lUpperSize + lLowerSize - 2;
201 int outIndex = total - 1;
ztenghui7b4516e2014-01-07 10:42:55 -0800202 for (int i = 0; i < lUpperSize; i++) {
Chris Craik726118b2014-03-07 18:27:49 -0800203 retPoly[outIndex] = lUpper[i];
204 outIndex--;
ztenghui7b4516e2014-01-07 10:42:55 -0800205 }
206
207 for (int i = 1; i < lLowerSize - 1; i++) {
Chris Craik726118b2014-03-07 18:27:49 -0800208 retPoly[outIndex] = lLower[i];
209 outIndex--;
ztenghui7b4516e2014-01-07 10:42:55 -0800210 }
211 // TODO: Add test harness which verify that all the points are inside the hull.
Chris Craik726118b2014-03-07 18:27:49 -0800212 return total;
ztenghui7b4516e2014-01-07 10:42:55 -0800213}
214
215/**
ztenghuif5ca8b42014-01-27 15:53:28 -0800216 * Test whether the 3 points form a counter clockwise turn.
ztenghui7b4516e2014-01-07 10:42:55 -0800217 *
ztenghui7b4516e2014-01-07 10:42:55 -0800218 * @return true if a right hand turn
219 */
ztenghui9122b1b2014-10-03 11:21:11 -0700220bool SpotShadow::ccw(float ax, float ay, float bx, float by,
221 float cx, float cy) {
ztenghui7b4516e2014-01-07 10:42:55 -0800222 return (bx - ax) * (cy - ay) - (by - ay) * (cx - ax) > EPSILON;
223}
224
225/**
ztenghui7b4516e2014-01-07 10:42:55 -0800226 * Sort points about a center point
227 *
228 * @param poly The in and out polyogon as a Vector2 array.
229 * @param polyLength The number of vertices of the polygon.
230 * @param center the center ctr[0] = x , ctr[1] = y to sort around.
231 */
232void SpotShadow::sort(Vector2* poly, int polyLength, const Vector2& center) {
233 quicksortCirc(poly, 0, polyLength - 1, center);
234}
235
236/**
ztenghui7b4516e2014-01-07 10:42:55 -0800237 * Swap points pointed to by i and j
238 */
239void SpotShadow::swap(Vector2* points, int i, int j) {
240 Vector2 temp = points[i];
241 points[i] = points[j];
242 points[j] = temp;
243}
244
245/**
246 * quick sort implementation about the center.
247 */
248void SpotShadow::quicksortCirc(Vector2* points, int low, int high,
249 const Vector2& center) {
250 int i = low, j = high;
251 int p = low + (high - low) / 2;
252 float pivot = angle(points[p], center);
253 while (i <= j) {
Chris Craik726118b2014-03-07 18:27:49 -0800254 while (angle(points[i], center) > pivot) {
ztenghui7b4516e2014-01-07 10:42:55 -0800255 i++;
256 }
Chris Craik726118b2014-03-07 18:27:49 -0800257 while (angle(points[j], center) < pivot) {
ztenghui7b4516e2014-01-07 10:42:55 -0800258 j--;
259 }
260
261 if (i <= j) {
262 swap(points, i, j);
263 i++;
264 j--;
265 }
266 }
267 if (low < j) quicksortCirc(points, low, j, center);
268 if (i < high) quicksortCirc(points, i, high, center);
269}
270
271/**
272 * Sort points by x axis
273 *
274 * @param points points to sort
275 * @param low start index
276 * @param high end index
277 */
278void SpotShadow::quicksortX(Vector2* points, int low, int high) {
279 int i = low, j = high;
280 int p = low + (high - low) / 2;
281 float pivot = points[p].x;
282 while (i <= j) {
283 while (points[i].x < pivot) {
284 i++;
285 }
286 while (points[j].x > pivot) {
287 j--;
288 }
289
290 if (i <= j) {
291 swap(points, i, j);
292 i++;
293 j--;
294 }
295 }
296 if (low < j) quicksortX(points, low, j);
297 if (i < high) quicksortX(points, i, high);
298}
299
300/**
301 * Test whether a point is inside the polygon.
302 *
303 * @param testPoint the point to test
304 * @param poly the polygon
305 * @return true if the testPoint is inside the poly.
306 */
307bool SpotShadow::testPointInsidePolygon(const Vector2 testPoint,
308 const Vector2* poly, int len) {
309 bool c = false;
ztenghui9122b1b2014-10-03 11:21:11 -0700310 float testx = testPoint.x;
311 float testy = testPoint.y;
ztenghui7b4516e2014-01-07 10:42:55 -0800312 for (int i = 0, j = len - 1; i < len; j = i++) {
ztenghui9122b1b2014-10-03 11:21:11 -0700313 float startX = poly[j].x;
314 float startY = poly[j].y;
315 float endX = poly[i].x;
316 float endY = poly[i].y;
ztenghui7b4516e2014-01-07 10:42:55 -0800317
ztenghui512e6432014-09-10 13:08:20 -0700318 if (((endY > testy) != (startY > testy))
319 && (testx < (startX - endX) * (testy - endY)
ztenghui7b4516e2014-01-07 10:42:55 -0800320 / (startY - endY) + endX)) {
321 c = !c;
322 }
323 }
324 return c;
325}
326
327/**
328 * Make the polygon turn clockwise.
329 *
330 * @param polygon the polygon as a Vector2 array.
331 * @param len the number of points of the polygon
332 */
333void SpotShadow::makeClockwise(Vector2* polygon, int len) {
334 if (polygon == 0 || len == 0) {
335 return;
336 }
ztenghui2e023f32014-04-28 16:43:13 -0700337 if (!ShadowTessellator::isClockwise(polygon, len)) {
ztenghui7b4516e2014-01-07 10:42:55 -0800338 reverse(polygon, len);
339 }
340}
341
342/**
ztenghui7b4516e2014-01-07 10:42:55 -0800343 * Reverse the polygon
344 *
345 * @param polygon the polygon as a Vector2 array
346 * @param len the number of points of the polygon
347 */
348void SpotShadow::reverse(Vector2* polygon, int len) {
349 int n = len / 2;
350 for (int i = 0; i < n; i++) {
351 Vector2 tmp = polygon[i];
352 int k = len - 1 - i;
353 polygon[i] = polygon[k];
354 polygon[k] = tmp;
355 }
356}
357
358/**
ztenghui7b4516e2014-01-07 10:42:55 -0800359 * Compute a horizontal circular polygon about point (x , y , height) of radius
360 * (size)
361 *
362 * @param points number of the points of the output polygon.
363 * @param lightCenter the center of the light.
364 * @param size the light size.
365 * @param ret result polygon.
366 */
367void SpotShadow::computeLightPolygon(int points, const Vector3& lightCenter,
368 float size, Vector3* ret) {
369 // TODO: Caching all the sin / cos values and store them in a look up table.
370 for (int i = 0; i < points; i++) {
ztenghui9122b1b2014-10-03 11:21:11 -0700371 float angle = 2 * i * M_PI / points;
Chris Craik726118b2014-03-07 18:27:49 -0800372 ret[i].x = cosf(angle) * size + lightCenter.x;
373 ret[i].y = sinf(angle) * size + lightCenter.y;
ztenghui7b4516e2014-01-07 10:42:55 -0800374 ret[i].z = lightCenter.z;
375 }
376}
377
378/**
ztenghui512e6432014-09-10 13:08:20 -0700379 * From light center, project one vertex to the z=0 surface and get the outline.
ztenghui7b4516e2014-01-07 10:42:55 -0800380 *
ztenghui512e6432014-09-10 13:08:20 -0700381 * @param outline The result which is the outline position.
382 * @param lightCenter The center of light.
383 * @param polyVertex The input polygon's vertex.
384 *
385 * @return float The ratio of (polygon.z / light.z - polygon.z)
ztenghui7b4516e2014-01-07 10:42:55 -0800386 */
ztenghuic50a03d2014-08-21 13:47:54 -0700387float SpotShadow::projectCasterToOutline(Vector2& outline,
388 const Vector3& lightCenter, const Vector3& polyVertex) {
389 float lightToPolyZ = lightCenter.z - polyVertex.z;
390 float ratioZ = CASTER_Z_CAP_RATIO;
391 if (lightToPolyZ != 0) {
392 // If any caster's vertex is almost above the light, we just keep it as 95%
393 // of the height of the light.
ztenghui3bd3fa12014-08-25 14:42:27 -0700394 ratioZ = MathUtils::clamp(polyVertex.z / lightToPolyZ, 0.0f, CASTER_Z_CAP_RATIO);
ztenghuic50a03d2014-08-21 13:47:54 -0700395 }
396
397 outline.x = polyVertex.x - ratioZ * (lightCenter.x - polyVertex.x);
398 outline.y = polyVertex.y - ratioZ * (lightCenter.y - polyVertex.y);
399 return ratioZ;
400}
401
402/**
403 * Generate the shadow spot light of shape lightPoly and a object poly
404 *
405 * @param isCasterOpaque whether the caster is opaque
406 * @param lightCenter the center of the light
407 * @param lightSize the radius of the light
408 * @param poly x,y,z vertexes of a convex polygon that occludes the light source
409 * @param polyLength number of vertexes of the occluding polygon
410 * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
411 * empty strip if error.
412 */
413void SpotShadow::createSpotShadow(bool isCasterOpaque, const Vector3& lightCenter,
414 float lightSize, const Vector3* poly, int polyLength, const Vector3& polyCentroid,
415 VertexBuffer& shadowTriangleStrip) {
ztenghui3bd3fa12014-08-25 14:42:27 -0700416 if (CC_UNLIKELY(lightCenter.z <= 0)) {
417 ALOGW("Relative Light Z is not positive. No spot shadow!");
418 return;
419 }
ztenghui512e6432014-09-10 13:08:20 -0700420 if (CC_UNLIKELY(polyLength < 3)) {
421#if DEBUG_SHADOW
422 ALOGW("Invalid polygon length. No spot shadow!");
423#endif
424 return;
425 }
ztenghuic50a03d2014-08-21 13:47:54 -0700426 OutlineData outlineData[polyLength];
427 Vector2 outlineCentroid;
428 // Calculate the projected outline for each polygon's vertices from the light center.
429 //
430 // O Light
431 // /
432 // /
433 // . Polygon vertex
434 // /
435 // /
436 // O Outline vertices
437 //
438 // Ratio = (Poly - Outline) / (Light - Poly)
439 // Outline.x = Poly.x - Ratio * (Light.x - Poly.x)
440 // Outline's radius / Light's radius = Ratio
441
442 // Compute the last outline vertex to make sure we can get the normal and outline
443 // in one single loop.
444 projectCasterToOutline(outlineData[polyLength - 1].position, lightCenter,
445 poly[polyLength - 1]);
446
447 // Take the outline's polygon, calculate the normal for each outline edge.
448 int currentNormalIndex = polyLength - 1;
449 int nextNormalIndex = 0;
450
451 for (int i = 0; i < polyLength; i++) {
452 float ratioZ = projectCasterToOutline(outlineData[i].position,
453 lightCenter, poly[i]);
454 outlineData[i].radius = ratioZ * lightSize;
455
456 outlineData[currentNormalIndex].normal = ShadowTessellator::calculateNormal(
457 outlineData[currentNormalIndex].position,
458 outlineData[nextNormalIndex].position);
459 currentNormalIndex = (currentNormalIndex + 1) % polyLength;
460 nextNormalIndex++;
461 }
462
463 projectCasterToOutline(outlineCentroid, lightCenter, polyCentroid);
464
465 int penumbraIndex = 0;
ztenghui512e6432014-09-10 13:08:20 -0700466 // Then each polygon's vertex produce at minmal 2 penumbra vertices.
467 // Since the size can be dynamic here, we keep track of the size and update
468 // the real size at the end.
469 int allocatedPenumbraLength = 2 * polyLength + SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER;
470 Vector2 penumbra[allocatedPenumbraLength];
471 int totalExtraCornerSliceNumber = 0;
ztenghuic50a03d2014-08-21 13:47:54 -0700472
473 Vector2 umbra[polyLength];
ztenghuic50a03d2014-08-21 13:47:54 -0700474
ztenghui512e6432014-09-10 13:08:20 -0700475 // When centroid is covered by all circles from outline, then we consider
476 // the umbra is invalid, and we will tune down the shadow strength.
ztenghuic50a03d2014-08-21 13:47:54 -0700477 bool hasValidUmbra = true;
ztenghui512e6432014-09-10 13:08:20 -0700478 // We need the minimal of RaitoVI to decrease the spot shadow strength accordingly.
479 float minRaitoVI = FLT_MAX;
ztenghuic50a03d2014-08-21 13:47:54 -0700480
481 for (int i = 0; i < polyLength; i++) {
482 // Generate all the penumbra's vertices only using the (outline vertex + normal * radius)
483 // There is no guarantee that the penumbra is still convex, but for
484 // each outline vertex, it will connect to all its corresponding penumbra vertices as
485 // triangle fans. And for neighber penumbra vertex, it will be a trapezoid.
486 //
487 // Penumbra Vertices marked as Pi
488 // Outline Vertices marked as Vi
489 // (P3)
490 // (P2) | ' (P4)
491 // (P1)' | | '
492 // ' | | '
493 // (P0) ------------------------------------------------(P5)
494 // | (V0) |(V1)
495 // | |
496 // | |
497 // | |
498 // | |
499 // | |
500 // | |
501 // | |
502 // | |
503 // (V3)-----------------------------------(V2)
504 int preNormalIndex = (i + polyLength - 1) % polyLength;
ztenghuic50a03d2014-08-21 13:47:54 -0700505
ztenghui512e6432014-09-10 13:08:20 -0700506 const Vector2& previousNormal = outlineData[preNormalIndex].normal;
507 const Vector2& currentNormal = outlineData[i].normal;
508
509 // Depending on how roundness we want for each corner, we can subdivide
ztenghuic50a03d2014-08-21 13:47:54 -0700510 // further here and/or introduce some heuristic to decide how much the
511 // subdivision should be.
ztenghui512e6432014-09-10 13:08:20 -0700512 int currentExtraSliceNumber = ShadowTessellator::getExtraVertexNumber(
513 previousNormal, currentNormal, SPOT_CORNER_RADIANS_DIVISOR);
ztenghuic50a03d2014-08-21 13:47:54 -0700514
ztenghui512e6432014-09-10 13:08:20 -0700515 int currentCornerSliceNumber = 1 + currentExtraSliceNumber;
516 totalExtraCornerSliceNumber += currentExtraSliceNumber;
517#if DEBUG_SHADOW
518 ALOGD("currentExtraSliceNumber should be %d", currentExtraSliceNumber);
519 ALOGD("currentCornerSliceNumber should be %d", currentCornerSliceNumber);
520 ALOGD("totalCornerSliceNumber is %d", totalExtraCornerSliceNumber);
521#endif
522 if (CC_UNLIKELY(totalExtraCornerSliceNumber > SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER)) {
523 currentCornerSliceNumber = 1;
524 }
525 for (int k = 0; k <= currentCornerSliceNumber; k++) {
526 Vector2 avgNormal =
527 (previousNormal * (currentCornerSliceNumber - k) + currentNormal * k) /
528 currentCornerSliceNumber;
529 avgNormal.normalize();
530 penumbra[penumbraIndex++] = outlineData[i].position +
531 avgNormal * outlineData[i].radius;
532 }
ztenghuic50a03d2014-08-21 13:47:54 -0700533
ztenghuic50a03d2014-08-21 13:47:54 -0700534
535 // Compute the umbra by the intersection from the outline's centroid!
536 //
537 // (V) ------------------------------------
538 // | ' |
539 // | ' |
540 // | ' (I) |
541 // | ' |
542 // | ' (C) |
543 // | |
544 // | |
545 // | |
546 // | |
547 // ------------------------------------
548 //
549 // Connect a line b/t the outline vertex (V) and the centroid (C), it will
550 // intersect with the outline vertex's circle at point (I).
551 // Now, ratioVI = VI / VC, ratioIC = IC / VC
552 // Then the intersetion point can be computed as Ixy = Vxy * ratioIC + Cxy * ratioVI;
553 //
ztenghui512e6432014-09-10 13:08:20 -0700554 // When all of the outline circles cover the the outline centroid, (like I is
ztenghuic50a03d2014-08-21 13:47:54 -0700555 // on the other side of C), there is no real umbra any more, so we just fake
556 // a small area around the centroid as the umbra, and tune down the spot
557 // shadow's umbra strength to simulate the effect the whole shadow will
558 // become lighter in this case.
559 // The ratio can be simulated by using the inverse of maximum of ratioVI for
560 // all (V).
ztenghui512e6432014-09-10 13:08:20 -0700561 float distOutline = (outlineData[i].position - outlineCentroid).length();
ztenghui3bd3fa12014-08-25 14:42:27 -0700562 if (CC_UNLIKELY(distOutline == 0)) {
ztenghuic50a03d2014-08-21 13:47:54 -0700563 // If the outline has 0 area, then there is no spot shadow anyway.
564 ALOGW("Outline has 0 area, no spot shadow!");
565 return;
566 }
ztenghui512e6432014-09-10 13:08:20 -0700567
568 float ratioVI = outlineData[i].radius / distOutline;
569 minRaitoVI = MathUtils::min(minRaitoVI, ratioVI);
570 if (ratioVI >= (1 - FAKE_UMBRA_SIZE_RATIO)) {
571 ratioVI = (1 - FAKE_UMBRA_SIZE_RATIO);
ztenghuic50a03d2014-08-21 13:47:54 -0700572 }
573 // When we know we don't have valid umbra, don't bother to compute the
574 // values below. But we can't skip the loop yet since we want to know the
575 // maximum ratio.
ztenghui512e6432014-09-10 13:08:20 -0700576 float ratioIC = 1 - ratioVI;
577 umbra[i] = outlineData[i].position * ratioIC + outlineCentroid * ratioVI;
ztenghuic50a03d2014-08-21 13:47:54 -0700578 }
579
ztenghui512e6432014-09-10 13:08:20 -0700580 hasValidUmbra = (minRaitoVI <= 1.0);
ztenghuic50a03d2014-08-21 13:47:54 -0700581 float shadowStrengthScale = 1.0;
582 if (!hasValidUmbra) {
ztenghui512e6432014-09-10 13:08:20 -0700583#if DEBUG_SHADOW
ztenghuic50a03d2014-08-21 13:47:54 -0700584 ALOGW("The object is too close to the light or too small, no real umbra!");
ztenghui512e6432014-09-10 13:08:20 -0700585#endif
ztenghuic50a03d2014-08-21 13:47:54 -0700586 for (int i = 0; i < polyLength; i++) {
587 umbra[i] = outlineData[i].position * FAKE_UMBRA_SIZE_RATIO +
ztenghui512e6432014-09-10 13:08:20 -0700588 outlineCentroid * (1 - FAKE_UMBRA_SIZE_RATIO);
ztenghuic50a03d2014-08-21 13:47:54 -0700589 }
ztenghui512e6432014-09-10 13:08:20 -0700590 shadowStrengthScale = 1.0 / minRaitoVI;
ztenghuic50a03d2014-08-21 13:47:54 -0700591 }
592
ztenghui512e6432014-09-10 13:08:20 -0700593 int penumbraLength = penumbraIndex;
594 int umbraLength = polyLength;
595
ztenghuic50a03d2014-08-21 13:47:54 -0700596#if DEBUG_SHADOW
ztenghui512e6432014-09-10 13:08:20 -0700597 ALOGD("penumbraLength is %d , allocatedPenumbraLength %d", penumbraLength, allocatedPenumbraLength);
ztenghuic50a03d2014-08-21 13:47:54 -0700598 dumpPolygon(poly, polyLength, "input poly");
ztenghuic50a03d2014-08-21 13:47:54 -0700599 dumpPolygon(penumbra, penumbraLength, "penumbra");
ztenghui512e6432014-09-10 13:08:20 -0700600 dumpPolygon(umbra, umbraLength, "umbra");
ztenghuic50a03d2014-08-21 13:47:54 -0700601 ALOGD("hasValidUmbra is %d and shadowStrengthScale is %f", hasValidUmbra, shadowStrengthScale);
602#endif
603
ztenghui512e6432014-09-10 13:08:20 -0700604 // The penumbra and umbra needs to be in convex shape to keep consistency
605 // and quality.
606 // Since we are still shooting rays to penumbra, it needs to be convex.
607 // Umbra can be represented as a fan from the centroid, but visually umbra
608 // looks nicer when it is convex.
609 Vector2 finalUmbra[umbraLength];
610 Vector2 finalPenumbra[penumbraLength];
611 int finalUmbraLength = hull(umbra, umbraLength, finalUmbra);
612 int finalPenumbraLength = hull(penumbra, penumbraLength, finalPenumbra);
613
614 generateTriangleStrip(isCasterOpaque, shadowStrengthScale, finalPenumbra,
615 finalPenumbraLength, finalUmbra, finalUmbraLength, poly, polyLength,
616 shadowTriangleStrip, outlineCentroid);
617
ztenghuic50a03d2014-08-21 13:47:54 -0700618}
619
ztenghui7b4516e2014-01-07 10:42:55 -0800620/**
Chris Craik726118b2014-03-07 18:27:49 -0800621 * Converts a polygon specified with CW vertices into an array of distance-from-centroid values.
622 *
623 * Returns false in error conditions
624 *
625 * @param poly Array of vertices. Note that these *must* be CW.
626 * @param polyLength The number of vertices in the polygon.
627 * @param polyCentroid The centroid of the polygon, from which rays will be cast
628 * @param rayDist The output array for the calculated distances, must be SHADOW_RAY_COUNT in size
629 */
630bool convertPolyToRayDist(const Vector2* poly, int polyLength, const Vector2& polyCentroid,
631 float* rayDist) {
632 const int rays = SHADOW_RAY_COUNT;
633 const float step = M_PI * 2 / rays;
634
635 const Vector2* lastVertex = &(poly[polyLength - 1]);
636 float startAngle = angle(*lastVertex, polyCentroid);
637
638 // Start with the ray that's closest to and less than startAngle
639 int rayIndex = floor((startAngle - EPSILON) / step);
640 rayIndex = (rayIndex + rays) % rays; // ensure positive
641
642 for (int polyIndex = 0; polyIndex < polyLength; polyIndex++) {
643 /*
644 * For a given pair of vertices on the polygon, poly[i-1] and poly[i], the rays that
645 * intersect these will be those that are between the two angles from the centroid that the
646 * vertices define.
647 *
648 * Because the polygon vertices are stored clockwise, the closest ray with an angle
649 * *smaller* than that defined by angle(poly[i], centroid) will be the first ray that does
650 * not intersect with poly[i-1], poly[i].
651 */
652 float currentAngle = angle(poly[polyIndex], polyCentroid);
653
654 // find first ray that will not intersect the line segment poly[i-1] & poly[i]
655 int firstRayIndexOnNextSegment = floor((currentAngle - EPSILON) / step);
656 firstRayIndexOnNextSegment = (firstRayIndexOnNextSegment + rays) % rays; // ensure positive
657
658 // Iterate through all rays that intersect with poly[i-1], poly[i] line segment.
659 // This may be 0 rays.
660 while (rayIndex != firstRayIndexOnNextSegment) {
661 float distanceToIntersect = rayIntersectPoints(polyCentroid,
662 cos(rayIndex * step),
663 sin(rayIndex * step),
664 *lastVertex, poly[polyIndex]);
ztenghui50ecf842014-03-11 16:52:30 -0700665 if (distanceToIntersect < 0) {
666#if DEBUG_SHADOW
667 ALOGW("ERROR: convertPolyToRayDist failed");
668#endif
669 return false; // error case, abort
670 }
Chris Craik726118b2014-03-07 18:27:49 -0800671
672 rayDist[rayIndex] = distanceToIntersect;
673
674 rayIndex = (rayIndex - 1 + rays) % rays;
675 }
676 lastVertex = &poly[polyIndex];
677 }
678
ztenghui512e6432014-09-10 13:08:20 -0700679 return true;
Chris Craik726118b2014-03-07 18:27:49 -0800680}
681
682/**
ztenghui7b4516e2014-01-07 10:42:55 -0800683 * This is only for experimental purpose.
684 * After intersections are calculated, we could smooth the polygon if needed.
685 * So far, we don't think it is more appealing yet.
686 *
687 * @param level The level of smoothness.
688 * @param rays The total number of rays.
689 * @param rayDist (In and Out) The distance for each ray.
690 *
691 */
692void SpotShadow::smoothPolygon(int level, int rays, float* rayDist) {
693 for (int k = 0; k < level; k++) {
694 for (int i = 0; i < rays; i++) {
695 float p1 = rayDist[(rays - 1 + i) % rays];
696 float p2 = rayDist[i];
697 float p3 = rayDist[(i + 1) % rays];
698 rayDist[i] = (p1 + p2 * 2 + p3) / 4;
699 }
700 }
701}
702
ztenghui512e6432014-09-10 13:08:20 -0700703/**
704 * Generate a array of the angleData for either umbra or penumbra vertices.
705 *
706 * This array will be merged and used to guide where to shoot the rays, in clockwise order.
707 *
708 * @param angleDataList The result array of angle data.
709 *
710 * @return int The maximum angle's index in the array.
711 */
712int SpotShadow::setupAngleList(VertexAngleData* angleDataList,
713 int polyLength, const Vector2* polygon, const Vector2& centroid,
714 bool isPenumbra, const char* name) {
715 float maxAngle = FLT_MIN;
716 int maxAngleIndex = 0;
717 for (int i = 0; i < polyLength; i++) {
718 float currentAngle = angle(polygon[i], centroid);
719 if (currentAngle > maxAngle) {
720 maxAngle = currentAngle;
721 maxAngleIndex = i;
722 }
723 angleDataList[i].set(currentAngle, isPenumbra, i);
724#if DEBUG_SHADOW
725 ALOGD("%s AngleList i %d %f", name, i, currentAngle);
726#endif
727 }
728 return maxAngleIndex;
729}
730
731/**
732 * Make sure the polygons are indeed in clockwise order.
733 *
734 * Possible reasons to return false: 1. The input polygon is not setup properly. 2. The hull
735 * algorithm is not able to generate it properly.
736 *
737 * Anyway, since the algorithm depends on the clockwise, when these kind of unexpected error
738 * situation is found, we need to detect it and early return without corrupting the memory.
739 *
740 * @return bool True if the angle list is actually from big to small.
741 */
742bool SpotShadow::checkClockwise(int indexOfMaxAngle, int listLength, VertexAngleData* angleList,
743 const char* name) {
744 int currentIndex = indexOfMaxAngle;
745#if DEBUG_SHADOW
746 ALOGD("max index %d", currentIndex);
747#endif
748 for (int i = 0; i < listLength - 1; i++) {
749 // TODO: Cache the last angle.
750 float currentAngle = angleList[currentIndex].mAngle;
751 float nextAngle = angleList[(currentIndex + 1) % listLength].mAngle;
752 if (currentAngle < nextAngle) {
753#if DEBUG_SHADOW
754 ALOGE("%s, is not CW, at index %d", name, currentIndex);
755#endif
756 return false;
757 }
758 currentIndex = (currentIndex + 1) % listLength;
759 }
760 return true;
761}
762
763/**
764 * Check the polygon is clockwise.
765 *
766 * @return bool True is the polygon is clockwise.
767 */
768bool SpotShadow::checkPolyClockwise(int polyAngleLength, int maxPolyAngleIndex,
769 const float* polyAngleList) {
770 bool isPolyCW = true;
771 // Starting from maxPolyAngleIndex , check around to make sure angle decrease.
772 for (int i = 0; i < polyAngleLength - 1; i++) {
773 float currentAngle = polyAngleList[(i + maxPolyAngleIndex) % polyAngleLength];
774 float nextAngle = polyAngleList[(i + maxPolyAngleIndex + 1) % polyAngleLength];
775 if (currentAngle < nextAngle) {
776 isPolyCW = false;
777 }
778 }
779 return isPolyCW;
780}
781
782/**
783 * Given the sorted array of all the vertices angle data, calculate for each
784 * vertices, the offset value to array element which represent the start edge
785 * of the polygon we need to shoot the ray at.
786 *
787 * TODO: Calculate this for umbra and penumbra in one loop using one single array.
788 *
789 * @param distances The result of the array distance counter.
790 */
791void SpotShadow::calculateDistanceCounter(bool needsOffsetToUmbra, int angleLength,
792 const VertexAngleData* allVerticesAngleData, int* distances) {
793
794 bool firstVertexIsPenumbra = allVerticesAngleData[0].mIsPenumbra;
795 // If we want distance to inner, then we just set to 0 when we see inner.
796 bool needsSearch = needsOffsetToUmbra ? firstVertexIsPenumbra : !firstVertexIsPenumbra;
797 int distanceCounter = 0;
798 if (needsSearch) {
799 int foundIndex = -1;
800 for (int i = (angleLength - 1); i >= 0; i--) {
801 bool currentIsOuter = allVerticesAngleData[i].mIsPenumbra;
802 // If we need distance to inner, then we need to find a inner vertex.
803 if (currentIsOuter != firstVertexIsPenumbra) {
804 foundIndex = i;
805 break;
806 }
807 }
808 LOG_ALWAYS_FATAL_IF(foundIndex == -1, "Wrong index found, means either"
809 " umbra or penumbra's length is 0");
810 distanceCounter = angleLength - foundIndex;
811 }
812#if DEBUG_SHADOW
813 ALOGD("distances[0] is %d", distanceCounter);
814#endif
815
816 distances[0] = distanceCounter; // means never see a target poly
817
818 for (int i = 1; i < angleLength; i++) {
819 bool firstVertexIsPenumbra = allVerticesAngleData[i].mIsPenumbra;
820 // When we needs for distance for each outer vertex to inner, then we
821 // increase the distance when seeing outer vertices. Otherwise, we clear
822 // to 0.
823 bool needsIncrement = needsOffsetToUmbra ? firstVertexIsPenumbra : !firstVertexIsPenumbra;
824 // If counter is not -1, that means we have seen an other polygon's vertex.
825 if (needsIncrement && distanceCounter != -1) {
826 distanceCounter++;
827 } else {
828 distanceCounter = 0;
829 }
830 distances[i] = distanceCounter;
831 }
832}
833
834/**
835 * Given umbra and penumbra angle data list, merge them by sorting the angle
836 * from the biggest to smallest.
837 *
838 * @param allVerticesAngleData The result array of merged angle data.
839 */
840void SpotShadow::mergeAngleList(int maxUmbraAngleIndex, int maxPenumbraAngleIndex,
841 const VertexAngleData* umbraAngleList, int umbraLength,
842 const VertexAngleData* penumbraAngleList, int penumbraLength,
843 VertexAngleData* allVerticesAngleData) {
844
845 int totalRayNumber = umbraLength + penumbraLength;
846 int umbraIndex = maxUmbraAngleIndex;
847 int penumbraIndex = maxPenumbraAngleIndex;
848
849 float currentUmbraAngle = umbraAngleList[umbraIndex].mAngle;
850 float currentPenumbraAngle = penumbraAngleList[penumbraIndex].mAngle;
851
852 // TODO: Clean this up using a while loop with 2 iterators.
853 for (int i = 0; i < totalRayNumber; i++) {
854 if (currentUmbraAngle > currentPenumbraAngle) {
855 allVerticesAngleData[i] = umbraAngleList[umbraIndex];
856 umbraIndex = (umbraIndex + 1) % umbraLength;
857
858 // If umbraIndex round back, that means we are running out of
859 // umbra vertices to merge, so just copy all the penumbra leftover.
860 // Otherwise, we update the currentUmbraAngle.
861 if (umbraIndex != maxUmbraAngleIndex) {
862 currentUmbraAngle = umbraAngleList[umbraIndex].mAngle;
863 } else {
864 for (int j = i + 1; j < totalRayNumber; j++) {
865 allVerticesAngleData[j] = penumbraAngleList[penumbraIndex];
866 penumbraIndex = (penumbraIndex + 1) % penumbraLength;
867 }
868 break;
869 }
870 } else {
871 allVerticesAngleData[i] = penumbraAngleList[penumbraIndex];
872 penumbraIndex = (penumbraIndex + 1) % penumbraLength;
873 // If penumbraIndex round back, that means we are running out of
874 // penumbra vertices to merge, so just copy all the umbra leftover.
875 // Otherwise, we update the currentPenumbraAngle.
876 if (penumbraIndex != maxPenumbraAngleIndex) {
877 currentPenumbraAngle = penumbraAngleList[penumbraIndex].mAngle;
878 } else {
879 for (int j = i + 1; j < totalRayNumber; j++) {
880 allVerticesAngleData[j] = umbraAngleList[umbraIndex];
881 umbraIndex = (umbraIndex + 1) % umbraLength;
882 }
883 break;
884 }
885 }
886 }
887}
888
889#if DEBUG_SHADOW
890/**
891 * DEBUG ONLY: Verify all the offset compuation is correctly done by examining
892 * each vertex and its neighbor.
893 */
894static void verifyDistanceCounter(const VertexAngleData* allVerticesAngleData,
895 const int* distances, int angleLength, const char* name) {
896 int currentDistance = distances[0];
897 for (int i = 1; i < angleLength; i++) {
898 if (distances[i] != INT_MIN) {
899 if (!((currentDistance + 1) == distances[i]
900 || distances[i] == 0)) {
901 ALOGE("Wrong distance found at i %d name %s", i, name);
902 }
903 currentDistance = distances[i];
904 if (currentDistance != 0) {
905 bool currentOuter = allVerticesAngleData[i].mIsPenumbra;
906 for (int j = 1; j <= (currentDistance - 1); j++) {
907 bool neigborOuter =
908 allVerticesAngleData[(i + angleLength - j) % angleLength].mIsPenumbra;
909 if (neigborOuter != currentOuter) {
910 ALOGE("Wrong distance found at i %d name %s", i, name);
911 }
912 }
913 bool oppositeOuter =
914 allVerticesAngleData[(i + angleLength - currentDistance) % angleLength].mIsPenumbra;
915 if (oppositeOuter == currentOuter) {
916 ALOGE("Wrong distance found at i %d name %s", i, name);
917 }
918 }
919 }
920 }
921}
922
923/**
924 * DEBUG ONLY: Verify all the angle data compuated are is correctly done
925 */
926static void verifyAngleData(int totalRayNumber, const VertexAngleData* allVerticesAngleData,
927 const int* distancesToInner, const int* distancesToOuter,
928 const VertexAngleData* umbraAngleList, int maxUmbraAngleIndex, int umbraLength,
929 const VertexAngleData* penumbraAngleList, int maxPenumbraAngleIndex,
930 int penumbraLength) {
931 for (int i = 0; i < totalRayNumber; i++) {
932 ALOGD("currentAngleList i %d, angle %f, isInner %d, index %d distancesToInner"
933 " %d distancesToOuter %d", i, allVerticesAngleData[i].mAngle,
934 !allVerticesAngleData[i].mIsPenumbra,
935 allVerticesAngleData[i].mVertexIndex, distancesToInner[i], distancesToOuter[i]);
936 }
937
938 verifyDistanceCounter(allVerticesAngleData, distancesToInner, totalRayNumber, "distancesToInner");
939 verifyDistanceCounter(allVerticesAngleData, distancesToOuter, totalRayNumber, "distancesToOuter");
940
941 for (int i = 0; i < totalRayNumber; i++) {
942 if ((distancesToInner[i] * distancesToOuter[i]) != 0) {
943 ALOGE("distancesToInner wrong at index %d distancesToInner[i] %d,"
944 " distancesToOuter[i] %d", i, distancesToInner[i], distancesToOuter[i]);
945 }
946 }
947 int currentUmbraVertexIndex =
948 umbraAngleList[maxUmbraAngleIndex].mVertexIndex;
949 int currentPenumbraVertexIndex =
950 penumbraAngleList[maxPenumbraAngleIndex].mVertexIndex;
951 for (int i = 0; i < totalRayNumber; i++) {
952 if (allVerticesAngleData[i].mIsPenumbra == true) {
953 if (allVerticesAngleData[i].mVertexIndex != currentPenumbraVertexIndex) {
954 ALOGW("wrong penumbra indexing i %d allVerticesAngleData[i].mVertexIndex %d "
955 "currentpenumbraVertexIndex %d", i,
956 allVerticesAngleData[i].mVertexIndex, currentPenumbraVertexIndex);
957 }
958 currentPenumbraVertexIndex = (currentPenumbraVertexIndex + 1) % penumbraLength;
959 } else {
960 if (allVerticesAngleData[i].mVertexIndex != currentUmbraVertexIndex) {
961 ALOGW("wrong umbra indexing i %d allVerticesAngleData[i].mVertexIndex %d "
962 "currentUmbraVertexIndex %d", i,
963 allVerticesAngleData[i].mVertexIndex, currentUmbraVertexIndex);
964 }
965 currentUmbraVertexIndex = (currentUmbraVertexIndex + 1) % umbraLength;
966 }
967 }
968 for (int i = 0; i < totalRayNumber - 1; i++) {
969 float currentAngle = allVerticesAngleData[i].mAngle;
970 float nextAngle = allVerticesAngleData[(i + 1) % totalRayNumber].mAngle;
971 if (currentAngle < nextAngle) {
972 ALOGE("Unexpected angle values!, currentAngle nextAngle %f %f", currentAngle, nextAngle);
973 }
974 }
975}
976#endif
977
978/**
979 * In order to compute the occluded umbra, we need to setup the angle data list
980 * for the polygon data. Since we only store one poly vertex per polygon vertex,
981 * this array only needs to be a float array which are the angles for each vertex.
982 *
983 * @param polyAngleList The result list
984 *
985 * @return int The index for the maximum angle in this array.
986 */
987int SpotShadow::setupPolyAngleList(float* polyAngleList, int polyAngleLength,
988 const Vector2* poly2d, const Vector2& centroid) {
989 int maxPolyAngleIndex = -1;
990 float maxPolyAngle = -FLT_MAX;
991 for (int i = 0; i < polyAngleLength; i++) {
992 polyAngleList[i] = angle(poly2d[i], centroid);
993 if (polyAngleList[i] > maxPolyAngle) {
994 maxPolyAngle = polyAngleList[i];
995 maxPolyAngleIndex = i;
996 }
997 }
998 return maxPolyAngleIndex;
999}
1000
1001/**
1002 * For umbra and penumbra, given the offset info and the current ray number,
1003 * find the right edge index (the (starting vertex) for the ray to shoot at.
1004 *
1005 * @return int The index of the starting vertex of the edge.
1006 */
1007inline int SpotShadow::getEdgeStartIndex(const int* offsets, int rayIndex, int totalRayNumber,
1008 const VertexAngleData* allVerticesAngleData) {
1009 int tempOffset = offsets[rayIndex];
1010 int targetRayIndex = (rayIndex - tempOffset + totalRayNumber) % totalRayNumber;
1011 return allVerticesAngleData[targetRayIndex].mVertexIndex;
1012}
1013
1014/**
1015 * For the occluded umbra, given the array of angles, find the index of the
1016 * starting vertex of the edge, for the ray to shoo at.
1017 *
1018 * TODO: Save the last result to shorten the search distance.
1019 *
1020 * @return int The index of the starting vertex of the edge.
1021 */
1022inline int SpotShadow::getPolyEdgeStartIndex(int maxPolyAngleIndex, int polyLength,
1023 const float* polyAngleList, float rayAngle) {
1024 int minPolyAngleIndex = (maxPolyAngleIndex + polyLength - 1) % polyLength;
1025 int resultIndex = -1;
1026 if (rayAngle > polyAngleList[maxPolyAngleIndex]
1027 || rayAngle <= polyAngleList[minPolyAngleIndex]) {
1028 resultIndex = minPolyAngleIndex;
1029 } else {
1030 for (int i = 0; i < polyLength - 1; i++) {
1031 int currentIndex = (maxPolyAngleIndex + i) % polyLength;
1032 int nextIndex = (maxPolyAngleIndex + i + 1) % polyLength;
1033 if (rayAngle <= polyAngleList[currentIndex]
1034 && rayAngle > polyAngleList[nextIndex]) {
1035 resultIndex = currentIndex;
1036 }
1037 }
1038 }
1039 if (CC_UNLIKELY(resultIndex == -1)) {
1040 // TODO: Add more error handling here.
1041 ALOGE("Wrong index found, means no edge can't be found for rayAngle %f", rayAngle);
1042 }
1043 return resultIndex;
1044}
1045
1046/**
1047 * Convert the incoming polygons into arrays of vertices, for each ray.
1048 * Ray only shoots when there is one vertex either on penumbra on umbra.
1049 *
1050 * Finally, it will generate vertices per ray for umbra, penumbra and optionally
1051 * occludedUmbra.
1052 *
1053 * Return true (success) when all vertices are generated
1054 */
1055int SpotShadow::convertPolysToVerticesPerRay(
1056 bool hasOccludedUmbraArea, const Vector2* poly2d, int polyLength,
1057 const Vector2* umbra, int umbraLength, const Vector2* penumbra,
1058 int penumbraLength, const Vector2& centroid,
1059 Vector2* umbraVerticesPerRay, Vector2* penumbraVerticesPerRay,
1060 Vector2* occludedUmbraVerticesPerRay) {
1061 int totalRayNumber = umbraLength + penumbraLength;
1062
1063 // For incoming umbra / penumbra polygons, we will build an intermediate data
1064 // structure to help us sort all the vertices according to the vertices.
1065 // Using this data structure, we can tell where (the angle) to shoot the ray,
1066 // whether we shoot at penumbra edge or umbra edge, and which edge to shoot at.
1067 //
1068 // We first parse each vertices and generate a table of VertexAngleData.
1069 // Based on that, we create 2 arrays telling us which edge to shoot at.
1070 VertexAngleData allVerticesAngleData[totalRayNumber];
1071 VertexAngleData umbraAngleList[umbraLength];
1072 VertexAngleData penumbraAngleList[penumbraLength];
1073
1074 int polyAngleLength = hasOccludedUmbraArea ? polyLength : 0;
1075 float polyAngleList[polyAngleLength];
1076
1077 const int maxUmbraAngleIndex =
1078 setupAngleList(umbraAngleList, umbraLength, umbra, centroid, false, "umbra");
1079 const int maxPenumbraAngleIndex =
1080 setupAngleList(penumbraAngleList, penumbraLength, penumbra, centroid, true, "penumbra");
1081 const int maxPolyAngleIndex = setupPolyAngleList(polyAngleList, polyAngleLength, poly2d, centroid);
1082
1083 // Check all the polygons here are CW.
1084 bool isPolyCW = checkPolyClockwise(polyAngleLength, maxPolyAngleIndex, polyAngleList);
1085 bool isUmbraCW = checkClockwise(maxUmbraAngleIndex, umbraLength,
1086 umbraAngleList, "umbra");
1087 bool isPenumbraCW = checkClockwise(maxPenumbraAngleIndex, penumbraLength,
1088 penumbraAngleList, "penumbra");
1089
1090 if (!isUmbraCW || !isPenumbraCW || !isPolyCW) {
1091#if DEBUG_SHADOW
1092 ALOGE("One polygon is not CW isUmbraCW %d isPenumbraCW %d isPolyCW %d",
1093 isUmbraCW, isPenumbraCW, isPolyCW);
1094#endif
1095 return false;
1096 }
1097
1098 mergeAngleList(maxUmbraAngleIndex, maxPenumbraAngleIndex,
1099 umbraAngleList, umbraLength, penumbraAngleList, penumbraLength,
1100 allVerticesAngleData);
1101
1102 // Calculate the offset to the left most Inner vertex for each outerVertex.
1103 // Then the offset to the left most Outer vertex for each innerVertex.
1104 int offsetToInner[totalRayNumber];
1105 int offsetToOuter[totalRayNumber];
1106 calculateDistanceCounter(true, totalRayNumber, allVerticesAngleData, offsetToInner);
1107 calculateDistanceCounter(false, totalRayNumber, allVerticesAngleData, offsetToOuter);
1108
1109 // Generate both umbraVerticesPerRay and penumbraVerticesPerRay
1110 for (int i = 0; i < totalRayNumber; i++) {
1111 float rayAngle = allVerticesAngleData[i].mAngle;
1112 bool isUmbraVertex = !allVerticesAngleData[i].mIsPenumbra;
1113
1114 float dx = cosf(rayAngle);
1115 float dy = sinf(rayAngle);
1116 float distanceToIntersectUmbra = -1;
1117
1118 if (isUmbraVertex) {
1119 // We can just copy umbra easily, and calculate the distance for the
1120 // occluded umbra computation.
1121 int startUmbraIndex = allVerticesAngleData[i].mVertexIndex;
1122 umbraVerticesPerRay[i] = umbra[startUmbraIndex];
1123 if (hasOccludedUmbraArea) {
1124 distanceToIntersectUmbra = (umbraVerticesPerRay[i] - centroid).length();
1125 }
1126
1127 //shoot ray to penumbra only
1128 int startPenumbraIndex = getEdgeStartIndex(offsetToOuter, i, totalRayNumber,
1129 allVerticesAngleData);
1130 float distanceToIntersectPenumbra = rayIntersectPoints(centroid, dx, dy,
1131 penumbra[startPenumbraIndex],
1132 penumbra[(startPenumbraIndex + 1) % penumbraLength]);
1133 if (distanceToIntersectPenumbra < 0) {
1134#if DEBUG_SHADOW
1135 ALOGW("convertPolyToRayDist for penumbra failed rayAngle %f dx %f dy %f",
1136 rayAngle, dx, dy);
1137#endif
1138 distanceToIntersectPenumbra = 0;
1139 }
1140 penumbraVerticesPerRay[i].x = centroid.x + dx * distanceToIntersectPenumbra;
1141 penumbraVerticesPerRay[i].y = centroid.y + dy * distanceToIntersectPenumbra;
1142 } else {
1143 // We can just copy the penumbra
1144 int startPenumbraIndex = allVerticesAngleData[i].mVertexIndex;
1145 penumbraVerticesPerRay[i] = penumbra[startPenumbraIndex];
1146
1147 // And shoot ray to umbra only
1148 int startUmbraIndex = getEdgeStartIndex(offsetToInner, i, totalRayNumber,
1149 allVerticesAngleData);
1150
1151 distanceToIntersectUmbra = rayIntersectPoints(centroid, dx, dy,
1152 umbra[startUmbraIndex], umbra[(startUmbraIndex + 1) % umbraLength]);
1153 if (distanceToIntersectUmbra < 0) {
1154#if DEBUG_SHADOW
1155 ALOGW("convertPolyToRayDist for umbra failed rayAngle %f dx %f dy %f",
1156 rayAngle, dx, dy);
1157#endif
1158 distanceToIntersectUmbra = 0;
1159 }
1160 umbraVerticesPerRay[i].x = centroid.x + dx * distanceToIntersectUmbra;
1161 umbraVerticesPerRay[i].y = centroid.y + dy * distanceToIntersectUmbra;
1162 }
1163
1164 if (hasOccludedUmbraArea) {
1165 // Shoot the same ray to the poly2d, and get the distance.
1166 int startPolyIndex = getPolyEdgeStartIndex(maxPolyAngleIndex, polyLength,
1167 polyAngleList, rayAngle);
1168
1169 float distanceToIntersectPoly = rayIntersectPoints(centroid, dx, dy,
1170 poly2d[startPolyIndex], poly2d[(startPolyIndex + 1) % polyLength]);
1171 if (distanceToIntersectPoly < 0) {
1172 distanceToIntersectPoly = 0;
1173 }
1174 distanceToIntersectPoly = MathUtils::min(distanceToIntersectUmbra, distanceToIntersectPoly);
1175 occludedUmbraVerticesPerRay[i].x = centroid.x + dx * distanceToIntersectPoly;
1176 occludedUmbraVerticesPerRay[i].y = centroid.y + dy * distanceToIntersectPoly;
1177 }
1178 }
1179
1180#if DEBUG_SHADOW
1181 verifyAngleData(totalRayNumber, allVerticesAngleData, offsetToInner,
1182 offsetToOuter, umbraAngleList, maxUmbraAngleIndex, umbraLength,
1183 penumbraAngleList, maxPenumbraAngleIndex, penumbraLength);
1184#endif
1185 return true; // success
1186
1187}
1188
1189/**
1190 * Generate a triangle strip given two convex polygon
1191**/
1192void SpotShadow::generateTriangleStrip(bool isCasterOpaque, float shadowStrengthScale,
1193 Vector2* penumbra, int penumbraLength, Vector2* umbra, int umbraLength,
1194 const Vector3* poly, int polyLength, VertexBuffer& shadowTriangleStrip,
1195 const Vector2& centroid) {
1196
1197 bool hasOccludedUmbraArea = false;
1198 Vector2 poly2d[polyLength];
1199
1200 if (isCasterOpaque) {
1201 for (int i = 0; i < polyLength; i++) {
1202 poly2d[i].x = poly[i].x;
1203 poly2d[i].y = poly[i].y;
1204 }
1205 // Make sure the centroid is inside the umbra, otherwise, fall back to the
1206 // approach as if there is no occluded umbra area.
1207 if (testPointInsidePolygon(centroid, poly2d, polyLength)) {
1208 hasOccludedUmbraArea = true;
1209 }
1210 }
1211
1212 int totalRayNum = umbraLength + penumbraLength;
1213 Vector2 umbraVertices[totalRayNum];
1214 Vector2 penumbraVertices[totalRayNum];
1215 Vector2 occludedUmbraVertices[totalRayNum];
1216 bool convertSuccess = convertPolysToVerticesPerRay(hasOccludedUmbraArea, poly2d,
1217 polyLength, umbra, umbraLength, penumbra, penumbraLength,
1218 centroid, umbraVertices, penumbraVertices, occludedUmbraVertices);
1219 if (!convertSuccess) {
1220 return;
1221 }
1222
1223 // Minimal value is 1, for each vertex show up once.
1224 // The bigger this value is , the smoother the look is, but more memory
1225 // is consumed.
1226 // When the ray number is high, that means the polygon has been fine
1227 // tessellated, we don't need this extra slice, just keep it as 1.
1228 int sliceNumberPerEdge = (totalRayNum > FINE_TESSELLATED_POLYGON_RAY_NUMBER) ? 1 : 2;
1229
1230 // For each polygon, we at most add (totalRayNum * sliceNumberPerEdge) vertices.
1231 int slicedVertexCountPerPolygon = totalRayNum * sliceNumberPerEdge;
1232 int totalVertexCount = slicedVertexCountPerPolygon * 2 + totalRayNum;
1233 int totalIndexCount = 2 * (slicedVertexCountPerPolygon * 2 + 2);
1234 AlphaVertex* shadowVertices =
1235 shadowTriangleStrip.alloc<AlphaVertex>(totalVertexCount);
1236 uint16_t* indexBuffer =
1237 shadowTriangleStrip.allocIndices<uint16_t>(totalIndexCount);
1238
1239 int indexBufferIndex = 0;
1240 int vertexBufferIndex = 0;
1241
1242 uint16_t slicedUmbraVertexIndex[totalRayNum * sliceNumberPerEdge];
1243 // Should be something like 0 0 0 1 1 1 2 3 3 3...
1244 int rayNumberPerSlicedUmbra[totalRayNum * sliceNumberPerEdge];
1245 int realUmbraVertexCount = 0;
1246 for (int i = 0; i < totalRayNum; i++) {
1247 Vector2 currentPenumbra = penumbraVertices[i];
1248 Vector2 currentUmbra = umbraVertices[i];
1249
1250 Vector2 nextPenumbra = penumbraVertices[(i + 1) % totalRayNum];
1251 Vector2 nextUmbra = umbraVertices[(i + 1) % totalRayNum];
1252 // NextUmbra/Penumbra will be done in the next loop!!
1253 for (int weight = 0; weight < sliceNumberPerEdge; weight++) {
1254 const Vector2& slicedPenumbra = (currentPenumbra * (sliceNumberPerEdge - weight)
1255 + nextPenumbra * weight) / sliceNumberPerEdge;
1256
1257 const Vector2& slicedUmbra = (currentUmbra * (sliceNumberPerEdge - weight)
1258 + nextUmbra * weight) / sliceNumberPerEdge;
1259
1260 // In the vertex buffer, we fill the Penumbra first, then umbra.
1261 indexBuffer[indexBufferIndex++] = vertexBufferIndex;
1262 AlphaVertex::set(&shadowVertices[vertexBufferIndex++], slicedPenumbra.x,
1263 slicedPenumbra.y, 0.0f);
1264
1265 // When we add umbra vertex, we need to remember its current ray number.
1266 // And its own vertexBufferIndex. This is for occluded umbra usage.
1267 indexBuffer[indexBufferIndex++] = vertexBufferIndex;
1268 rayNumberPerSlicedUmbra[realUmbraVertexCount] = i;
1269 slicedUmbraVertexIndex[realUmbraVertexCount] = vertexBufferIndex;
1270 realUmbraVertexCount++;
1271 AlphaVertex::set(&shadowVertices[vertexBufferIndex++], slicedUmbra.x,
1272 slicedUmbra.y, M_PI);
1273 }
1274 }
1275
1276 indexBuffer[indexBufferIndex++] = 0;
1277 //RealUmbraVertexIndex[0] must be 1, so we connect back well at the
1278 //beginning of occluded area.
1279 indexBuffer[indexBufferIndex++] = 1;
1280
1281 float occludedUmbraAlpha = M_PI;
1282 if (hasOccludedUmbraArea) {
1283 // Now the occludedUmbra area;
1284 int currentRayNumber = -1;
1285 int firstOccludedUmbraIndex = -1;
1286 for (int i = 0; i < realUmbraVertexCount; i++) {
1287 indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[i];
1288
1289 // If the occludedUmbra vertex has not been added yet, then add it.
1290 // Otherwise, just use the previously added occludedUmbra vertices.
1291 if (rayNumberPerSlicedUmbra[i] != currentRayNumber) {
1292 currentRayNumber++;
1293 indexBuffer[indexBufferIndex++] = vertexBufferIndex;
1294 // We need to remember the begining of the occludedUmbra vertices
1295 // to close this loop.
1296 if (currentRayNumber == 0) {
1297 firstOccludedUmbraIndex = vertexBufferIndex;
1298 }
1299 AlphaVertex::set(&shadowVertices[vertexBufferIndex++],
1300 occludedUmbraVertices[currentRayNumber].x,
1301 occludedUmbraVertices[currentRayNumber].y,
1302 occludedUmbraAlpha);
1303 } else {
1304 indexBuffer[indexBufferIndex++] = (vertexBufferIndex - 1);
1305 }
1306 }
1307 // Close the loop here!
1308 indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[0];
1309 indexBuffer[indexBufferIndex++] = firstOccludedUmbraIndex;
1310 } else {
1311 int lastCentroidIndex = vertexBufferIndex;
1312 AlphaVertex::set(&shadowVertices[vertexBufferIndex++], centroid.x,
1313 centroid.y, occludedUmbraAlpha);
1314 for (int i = 0; i < realUmbraVertexCount; i++) {
1315 indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[i];
1316 indexBuffer[indexBufferIndex++] = lastCentroidIndex;
1317 }
1318 // Close the loop here!
1319 indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[0];
1320 indexBuffer[indexBufferIndex++] = lastCentroidIndex;
1321 }
1322
1323#if DEBUG_SHADOW
1324 ALOGD("allocated IB %d allocated VB is %d", totalIndexCount, totalVertexCount);
1325 ALOGD("IB index %d VB index is %d", indexBufferIndex, vertexBufferIndex);
1326 for (int i = 0; i < vertexBufferIndex; i++) {
1327 ALOGD("vertexBuffer i %d, (%f, %f %f)", i, shadowVertices[i].x, shadowVertices[i].y,
1328 shadowVertices[i].alpha);
1329 }
1330 for (int i = 0; i < indexBufferIndex; i++) {
1331 ALOGD("indexBuffer i %d, indexBuffer[i] %d", i, indexBuffer[i]);
1332 }
1333#endif
1334
1335 // At the end, update the real index and vertex buffer size.
1336 shadowTriangleStrip.updateVertexCount(vertexBufferIndex);
1337 shadowTriangleStrip.updateIndexCount(indexBufferIndex);
1338 ShadowTessellator::checkOverflow(vertexBufferIndex, totalVertexCount, "Spot Vertex Buffer");
1339 ShadowTessellator::checkOverflow(indexBufferIndex, totalIndexCount, "Spot Index Buffer");
1340
1341 shadowTriangleStrip.setMode(VertexBuffer::kIndices);
1342 shadowTriangleStrip.computeBounds<AlphaVertex>();
1343}
1344
ztenghuif5ca8b42014-01-27 15:53:28 -08001345#if DEBUG_SHADOW
1346
1347#define TEST_POINT_NUMBER 128
ztenghuif5ca8b42014-01-27 15:53:28 -08001348/**
1349 * Calculate the bounds for generating random test points.
1350 */
1351void SpotShadow::updateBound(const Vector2 inVector, Vector2& lowerBound,
ztenghui512e6432014-09-10 13:08:20 -07001352 Vector2& upperBound) {
ztenghuif5ca8b42014-01-27 15:53:28 -08001353 if (inVector.x < lowerBound.x) {
1354 lowerBound.x = inVector.x;
1355 }
1356
1357 if (inVector.y < lowerBound.y) {
1358 lowerBound.y = inVector.y;
1359 }
1360
1361 if (inVector.x > upperBound.x) {
1362 upperBound.x = inVector.x;
1363 }
1364
1365 if (inVector.y > upperBound.y) {
1366 upperBound.y = inVector.y;
1367 }
1368}
1369
1370/**
1371 * For debug purpose, when things go wrong, dump the whole polygon data.
1372 */
ztenghuic50a03d2014-08-21 13:47:54 -07001373void SpotShadow::dumpPolygon(const Vector2* poly, int polyLength, const char* polyName) {
1374 for (int i = 0; i < polyLength; i++) {
1375 ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
1376 }
1377}
1378
1379/**
1380 * For debug purpose, when things go wrong, dump the whole polygon data.
1381 */
1382void SpotShadow::dumpPolygon(const Vector3* poly, int polyLength, const char* polyName) {
ztenghuif5ca8b42014-01-27 15:53:28 -08001383 for (int i = 0; i < polyLength; i++) {
1384 ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
1385 }
1386}
1387
1388/**
1389 * Test whether the polygon is convex.
1390 */
1391bool SpotShadow::testConvex(const Vector2* polygon, int polygonLength,
1392 const char* name) {
1393 bool isConvex = true;
1394 for (int i = 0; i < polygonLength; i++) {
1395 Vector2 start = polygon[i];
1396 Vector2 middle = polygon[(i + 1) % polygonLength];
1397 Vector2 end = polygon[(i + 2) % polygonLength];
1398
ztenghui9122b1b2014-10-03 11:21:11 -07001399 float delta = (float(middle.x) - start.x) * (float(end.y) - start.y) -
1400 (float(middle.y) - start.y) * (float(end.x) - start.x);
ztenghuif5ca8b42014-01-27 15:53:28 -08001401 bool isCCWOrCoLinear = (delta >= EPSILON);
1402
1403 if (isCCWOrCoLinear) {
ztenghui50ecf842014-03-11 16:52:30 -07001404 ALOGW("(Error Type 2): polygon (%s) is not a convex b/c start (x %f, y %f),"
ztenghuif5ca8b42014-01-27 15:53:28 -08001405 "middle (x %f, y %f) and end (x %f, y %f) , delta is %f !!!",
1406 name, start.x, start.y, middle.x, middle.y, end.x, end.y, delta);
1407 isConvex = false;
1408 break;
1409 }
1410 }
1411 return isConvex;
1412}
1413
1414/**
1415 * Test whether or not the polygon (intersection) is within the 2 input polygons.
1416 * Using Marte Carlo method, we generate a random point, and if it is inside the
1417 * intersection, then it must be inside both source polygons.
1418 */
1419void SpotShadow::testIntersection(const Vector2* poly1, int poly1Length,
1420 const Vector2* poly2, int poly2Length,
1421 const Vector2* intersection, int intersectionLength) {
1422 // Find the min and max of x and y.
ztenghuic50a03d2014-08-21 13:47:54 -07001423 Vector2 lowerBound = {FLT_MAX, FLT_MAX};
1424 Vector2 upperBound = {-FLT_MAX, -FLT_MAX};
ztenghuif5ca8b42014-01-27 15:53:28 -08001425 for (int i = 0; i < poly1Length; i++) {
1426 updateBound(poly1[i], lowerBound, upperBound);
1427 }
1428 for (int i = 0; i < poly2Length; i++) {
1429 updateBound(poly2[i], lowerBound, upperBound);
1430 }
1431
1432 bool dumpPoly = false;
1433 for (int k = 0; k < TEST_POINT_NUMBER; k++) {
1434 // Generate a random point between minX, minY and maxX, maxY.
ztenghui9122b1b2014-10-03 11:21:11 -07001435 float randomX = rand() / float(RAND_MAX);
1436 float randomY = rand() / float(RAND_MAX);
ztenghuif5ca8b42014-01-27 15:53:28 -08001437
1438 Vector2 testPoint;
1439 testPoint.x = lowerBound.x + randomX * (upperBound.x - lowerBound.x);
1440 testPoint.y = lowerBound.y + randomY * (upperBound.y - lowerBound.y);
1441
1442 // If the random point is in both poly 1 and 2, then it must be intersection.
1443 if (testPointInsidePolygon(testPoint, intersection, intersectionLength)) {
1444 if (!testPointInsidePolygon(testPoint, poly1, poly1Length)) {
1445 dumpPoly = true;
ztenghui50ecf842014-03-11 16:52:30 -07001446 ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
ztenghui512e6432014-09-10 13:08:20 -07001447 " not in the poly1",
ztenghuif5ca8b42014-01-27 15:53:28 -08001448 testPoint.x, testPoint.y);
1449 }
1450
1451 if (!testPointInsidePolygon(testPoint, poly2, poly2Length)) {
1452 dumpPoly = true;
ztenghui50ecf842014-03-11 16:52:30 -07001453 ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
ztenghui512e6432014-09-10 13:08:20 -07001454 " not in the poly2",
ztenghuif5ca8b42014-01-27 15:53:28 -08001455 testPoint.x, testPoint.y);
1456 }
1457 }
1458 }
1459
1460 if (dumpPoly) {
1461 dumpPolygon(intersection, intersectionLength, "intersection");
1462 for (int i = 1; i < intersectionLength; i++) {
1463 Vector2 delta = intersection[i] - intersection[i - 1];
1464 ALOGD("Intersetion i, %d Vs i-1 is delta %f", i, delta.lengthSquared());
1465 }
1466
1467 dumpPolygon(poly1, poly1Length, "poly 1");
1468 dumpPolygon(poly2, poly2Length, "poly 2");
1469 }
1470}
1471#endif
1472
ztenghui7b4516e2014-01-07 10:42:55 -08001473}; // namespace uirenderer
1474}; // namespace android