blob: c1515571aae5782b43f108b54d6e0db432aa706c [file] [log] [blame]
Dylan McKay7549b0a2016-11-02 06:47:40 +00001//===-- AVRISelLowering.cpp - AVR DAG Lowering Implementation -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that AVR uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "AVRISelLowering.h"
16
Dylan McKay8fa6d8d2017-01-07 23:39:47 +000017#include "llvm/ADT/StringSwitch.h"
Dylan McKay7549b0a2016-11-02 06:47:40 +000018#include "llvm/CodeGen/CallingConvLower.h"
19#include "llvm/CodeGen/MachineFrameInfo.h"
20#include "llvm/CodeGen/MachineInstrBuilder.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/SelectionDAG.h"
23#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
24#include "llvm/IR/Function.h"
25#include "llvm/Support/ErrorHandling.h"
26
27#include "AVR.h"
28#include "AVRMachineFunctionInfo.h"
29#include "AVRTargetMachine.h"
30#include "MCTargetDesc/AVRMCTargetDesc.h"
31
32namespace llvm {
33
34AVRTargetLowering::AVRTargetLowering(AVRTargetMachine &tm)
35 : TargetLowering(tm) {
36 // Set up the register classes.
37 addRegisterClass(MVT::i8, &AVR::GPR8RegClass);
38 addRegisterClass(MVT::i16, &AVR::DREGSRegClass);
39
40 // Compute derived properties from the register classes.
41 computeRegisterProperties(tm.getSubtargetImpl()->getRegisterInfo());
42
43 setBooleanContents(ZeroOrOneBooleanContent);
44 setBooleanVectorContents(ZeroOrOneBooleanContent);
45 setSchedulingPreference(Sched::RegPressure);
46 setStackPointerRegisterToSaveRestore(AVR::SP);
Dylan McKay80463fe2017-12-09 06:45:36 +000047 setSupportsUnalignedAtomics(true);
Dylan McKay7549b0a2016-11-02 06:47:40 +000048
49 setOperationAction(ISD::GlobalAddress, MVT::i16, Custom);
50 setOperationAction(ISD::BlockAddress, MVT::i16, Custom);
51
Dylan McKayccd819a2017-02-05 21:35:45 +000052 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
53 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
Dylan McKay7549b0a2016-11-02 06:47:40 +000054 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i8, Expand);
55 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i16, Expand);
56
57 for (MVT VT : MVT::integer_valuetypes()) {
58 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
59 setLoadExtAction(N, VT, MVT::i1, Promote);
60 setLoadExtAction(N, VT, MVT::i8, Expand);
61 }
62 }
63
64 setTruncStoreAction(MVT::i16, MVT::i8, Expand);
65
66 // sub (x, imm) gets canonicalized to add (x, -imm), so for illegal types
67 // revert into a sub since we don't have an add with immediate instruction.
68 setOperationAction(ISD::ADD, MVT::i32, Custom);
69 setOperationAction(ISD::ADD, MVT::i64, Custom);
70
71 // our shift instructions are only able to shift 1 bit at a time, so handle
72 // this in a custom way.
73 setOperationAction(ISD::SRA, MVT::i8, Custom);
74 setOperationAction(ISD::SHL, MVT::i8, Custom);
75 setOperationAction(ISD::SRL, MVT::i8, Custom);
76 setOperationAction(ISD::SRA, MVT::i16, Custom);
77 setOperationAction(ISD::SHL, MVT::i16, Custom);
78 setOperationAction(ISD::SRL, MVT::i16, Custom);
79 setOperationAction(ISD::SHL_PARTS, MVT::i16, Expand);
80 setOperationAction(ISD::SRA_PARTS, MVT::i16, Expand);
81 setOperationAction(ISD::SRL_PARTS, MVT::i16, Expand);
82
Dylan McKay59e7fe32017-05-01 09:48:55 +000083 setOperationAction(ISD::ROTL, MVT::i8, Custom);
84 setOperationAction(ISD::ROTL, MVT::i16, Custom);
85 setOperationAction(ISD::ROTR, MVT::i8, Custom);
86 setOperationAction(ISD::ROTR, MVT::i16, Custom);
87
Dylan McKay7549b0a2016-11-02 06:47:40 +000088 setOperationAction(ISD::BR_CC, MVT::i8, Custom);
89 setOperationAction(ISD::BR_CC, MVT::i16, Custom);
90 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
91 setOperationAction(ISD::BR_CC, MVT::i64, Custom);
92 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
93
94 setOperationAction(ISD::SELECT_CC, MVT::i8, Custom);
95 setOperationAction(ISD::SELECT_CC, MVT::i16, Custom);
Dylan McKay99b756e2016-12-07 12:34:47 +000096 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
97 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
Dylan McKay7549b0a2016-11-02 06:47:40 +000098 setOperationAction(ISD::SETCC, MVT::i8, Custom);
99 setOperationAction(ISD::SETCC, MVT::i16, Custom);
100 setOperationAction(ISD::SETCC, MVT::i32, Custom);
101 setOperationAction(ISD::SETCC, MVT::i64, Custom);
102 setOperationAction(ISD::SELECT, MVT::i8, Expand);
103 setOperationAction(ISD::SELECT, MVT::i16, Expand);
104
105 setOperationAction(ISD::BSWAP, MVT::i16, Expand);
106
107 // Add support for postincrement and predecrement load/stores.
108 setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal);
109 setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal);
110 setIndexedLoadAction(ISD::PRE_DEC, MVT::i8, Legal);
111 setIndexedLoadAction(ISD::PRE_DEC, MVT::i16, Legal);
112 setIndexedStoreAction(ISD::POST_INC, MVT::i8, Legal);
113 setIndexedStoreAction(ISD::POST_INC, MVT::i16, Legal);
114 setIndexedStoreAction(ISD::PRE_DEC, MVT::i8, Legal);
115 setIndexedStoreAction(ISD::PRE_DEC, MVT::i16, Legal);
116
117 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
118
119 setOperationAction(ISD::VASTART, MVT::Other, Custom);
120 setOperationAction(ISD::VAEND, MVT::Other, Expand);
121 setOperationAction(ISD::VAARG, MVT::Other, Expand);
122 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
123
124 // Atomic operations which must be lowered to rtlib calls
125 for (MVT VT : MVT::integer_valuetypes()) {
126 setOperationAction(ISD::ATOMIC_SWAP, VT, Expand);
127 setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Expand);
128 setOperationAction(ISD::ATOMIC_LOAD_NAND, VT, Expand);
129 setOperationAction(ISD::ATOMIC_LOAD_MAX, VT, Expand);
130 setOperationAction(ISD::ATOMIC_LOAD_MIN, VT, Expand);
131 setOperationAction(ISD::ATOMIC_LOAD_UMAX, VT, Expand);
132 setOperationAction(ISD::ATOMIC_LOAD_UMIN, VT, Expand);
133 }
134
135 // Division/remainder
136 setOperationAction(ISD::UDIV, MVT::i8, Expand);
137 setOperationAction(ISD::UDIV, MVT::i16, Expand);
138 setOperationAction(ISD::UREM, MVT::i8, Expand);
139 setOperationAction(ISD::UREM, MVT::i16, Expand);
140 setOperationAction(ISD::SDIV, MVT::i8, Expand);
141 setOperationAction(ISD::SDIV, MVT::i16, Expand);
142 setOperationAction(ISD::SREM, MVT::i8, Expand);
143 setOperationAction(ISD::SREM, MVT::i16, Expand);
144
145 // Make division and modulus custom
146 for (MVT VT : MVT::integer_valuetypes()) {
147 setOperationAction(ISD::UDIVREM, VT, Custom);
148 setOperationAction(ISD::SDIVREM, VT, Custom);
149 }
150
151 // Do not use MUL. The AVR instructions are closer to SMUL_LOHI &co.
152 setOperationAction(ISD::MUL, MVT::i8, Expand);
153 setOperationAction(ISD::MUL, MVT::i16, Expand);
154
155 // Expand 16 bit multiplications.
156 setOperationAction(ISD::SMUL_LOHI, MVT::i16, Expand);
157 setOperationAction(ISD::UMUL_LOHI, MVT::i16, Expand);
158
159 for (MVT VT : MVT::integer_valuetypes()) {
160 setOperationAction(ISD::MULHS, VT, Expand);
161 setOperationAction(ISD::MULHU, VT, Expand);
162 }
163
164 for (MVT VT : MVT::integer_valuetypes()) {
165 setOperationAction(ISD::CTPOP, VT, Expand);
166 setOperationAction(ISD::CTLZ, VT, Expand);
167 setOperationAction(ISD::CTTZ, VT, Expand);
168 }
169
170 for (MVT VT : MVT::integer_valuetypes()) {
171 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
172 // TODO: The generated code is pretty poor. Investigate using the
173 // same "shift and subtract with carry" trick that we do for
174 // extending 8-bit to 16-bit. This may require infrastructure
175 // improvements in how we treat 16-bit "registers" to be feasible.
176 }
177
178 // Division rtlib functions (not supported)
179 setLibcallName(RTLIB::SDIV_I8, nullptr);
180 setLibcallName(RTLIB::SDIV_I16, nullptr);
181 setLibcallName(RTLIB::SDIV_I32, nullptr);
182 setLibcallName(RTLIB::SDIV_I64, nullptr);
183 setLibcallName(RTLIB::SDIV_I128, nullptr);
184 setLibcallName(RTLIB::UDIV_I8, nullptr);
185 setLibcallName(RTLIB::UDIV_I16, nullptr);
186 setLibcallName(RTLIB::UDIV_I32, nullptr);
187 setLibcallName(RTLIB::UDIV_I64, nullptr);
188 setLibcallName(RTLIB::UDIV_I128, nullptr);
189
190 // Modulus rtlib functions (not supported)
191 setLibcallName(RTLIB::SREM_I8, nullptr);
192 setLibcallName(RTLIB::SREM_I16, nullptr);
193 setLibcallName(RTLIB::SREM_I32, nullptr);
194 setLibcallName(RTLIB::SREM_I64, nullptr);
195 setLibcallName(RTLIB::SREM_I128, nullptr);
196 setLibcallName(RTLIB::UREM_I8, nullptr);
197 setLibcallName(RTLIB::UREM_I16, nullptr);
198 setLibcallName(RTLIB::UREM_I32, nullptr);
199 setLibcallName(RTLIB::UREM_I64, nullptr);
200 setLibcallName(RTLIB::UREM_I128, nullptr);
201
202 // Division and modulus rtlib functions
203 setLibcallName(RTLIB::SDIVREM_I8, "__divmodqi4");
204 setLibcallName(RTLIB::SDIVREM_I16, "__divmodhi4");
205 setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
206 setLibcallName(RTLIB::SDIVREM_I64, "__divmoddi4");
207 setLibcallName(RTLIB::SDIVREM_I128, "__divmodti4");
208 setLibcallName(RTLIB::UDIVREM_I8, "__udivmodqi4");
209 setLibcallName(RTLIB::UDIVREM_I16, "__udivmodhi4");
210 setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
211 setLibcallName(RTLIB::UDIVREM_I64, "__udivmoddi4");
212 setLibcallName(RTLIB::UDIVREM_I128, "__udivmodti4");
213
214 // Several of the runtime library functions use a special calling conv
215 setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::AVR_BUILTIN);
216 setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::AVR_BUILTIN);
217 setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::AVR_BUILTIN);
218 setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::AVR_BUILTIN);
219
220 // Trigonometric rtlib functions
221 setLibcallName(RTLIB::SIN_F32, "sin");
222 setLibcallName(RTLIB::COS_F32, "cos");
223
224 setMinFunctionAlignment(1);
225 setMinimumJumpTableEntries(INT_MAX);
226}
227
228const char *AVRTargetLowering::getTargetNodeName(unsigned Opcode) const {
229#define NODE(name) \
230 case AVRISD::name: \
231 return #name
232
233 switch (Opcode) {
234 default:
235 return nullptr;
236 NODE(RET_FLAG);
237 NODE(RETI_FLAG);
238 NODE(CALL);
239 NODE(WRAPPER);
240 NODE(LSL);
241 NODE(LSR);
242 NODE(ROL);
243 NODE(ROR);
244 NODE(ASR);
245 NODE(LSLLOOP);
246 NODE(LSRLOOP);
247 NODE(ASRLOOP);
248 NODE(BRCOND);
249 NODE(CMP);
250 NODE(CMPC);
251 NODE(TST);
252 NODE(SELECT_CC);
253#undef NODE
254 }
255}
256
257EVT AVRTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
258 EVT VT) const {
259 assert(!VT.isVector() && "No AVR SetCC type for vectors!");
260 return MVT::i8;
261}
262
263SDValue AVRTargetLowering::LowerShifts(SDValue Op, SelectionDAG &DAG) const {
264 //:TODO: this function has to be completely rewritten to produce optimal
265 // code, for now it's producing very long but correct code.
266 unsigned Opc8;
267 const SDNode *N = Op.getNode();
268 EVT VT = Op.getValueType();
269 SDLoc dl(N);
270
271 // Expand non-constant shifts to loops.
272 if (!isa<ConstantSDNode>(N->getOperand(1))) {
273 switch (Op.getOpcode()) {
274 default:
275 llvm_unreachable("Invalid shift opcode!");
276 case ISD::SHL:
277 return DAG.getNode(AVRISD::LSLLOOP, dl, VT, N->getOperand(0),
278 N->getOperand(1));
279 case ISD::SRL:
280 return DAG.getNode(AVRISD::LSRLOOP, dl, VT, N->getOperand(0),
281 N->getOperand(1));
Dylan McKay59e7fe32017-05-01 09:48:55 +0000282 case ISD::ROTL:
283 return DAG.getNode(AVRISD::ROLLOOP, dl, VT, N->getOperand(0),
284 N->getOperand(1));
285 case ISD::ROTR:
286 return DAG.getNode(AVRISD::RORLOOP, dl, VT, N->getOperand(0),
287 N->getOperand(1));
Dylan McKay7549b0a2016-11-02 06:47:40 +0000288 case ISD::SRA:
289 return DAG.getNode(AVRISD::ASRLOOP, dl, VT, N->getOperand(0),
290 N->getOperand(1));
291 }
292 }
293
294 uint64_t ShiftAmount = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
295 SDValue Victim = N->getOperand(0);
296
297 switch (Op.getOpcode()) {
298 case ISD::SRA:
299 Opc8 = AVRISD::ASR;
300 break;
301 case ISD::ROTL:
302 Opc8 = AVRISD::ROL;
303 break;
304 case ISD::ROTR:
305 Opc8 = AVRISD::ROR;
306 break;
307 case ISD::SRL:
308 Opc8 = AVRISD::LSR;
309 break;
310 case ISD::SHL:
311 Opc8 = AVRISD::LSL;
312 break;
313 default:
314 llvm_unreachable("Invalid shift opcode");
315 }
316
317 while (ShiftAmount--) {
318 Victim = DAG.getNode(Opc8, dl, VT, Victim);
319 }
320
321 return Victim;
322}
323
324SDValue AVRTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
325 unsigned Opcode = Op->getOpcode();
326 assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
327 "Invalid opcode for Div/Rem lowering");
Meador Inge5d3c5992017-03-24 01:57:29 +0000328 bool IsSigned = (Opcode == ISD::SDIVREM);
Dylan McKay7549b0a2016-11-02 06:47:40 +0000329 EVT VT = Op->getValueType(0);
330 Type *Ty = VT.getTypeForEVT(*DAG.getContext());
331
332 RTLIB::Libcall LC;
333 switch (VT.getSimpleVT().SimpleTy) {
334 default:
335 llvm_unreachable("Unexpected request for libcall!");
336 case MVT::i8:
Meador Inge5d3c5992017-03-24 01:57:29 +0000337 LC = IsSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8;
Dylan McKay7549b0a2016-11-02 06:47:40 +0000338 break;
339 case MVT::i16:
Meador Inge5d3c5992017-03-24 01:57:29 +0000340 LC = IsSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16;
Dylan McKay7549b0a2016-11-02 06:47:40 +0000341 break;
342 case MVT::i32:
Meador Inge5d3c5992017-03-24 01:57:29 +0000343 LC = IsSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32;
Dylan McKay7549b0a2016-11-02 06:47:40 +0000344 break;
345 case MVT::i64:
Meador Inge5d3c5992017-03-24 01:57:29 +0000346 LC = IsSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64;
Dylan McKay7549b0a2016-11-02 06:47:40 +0000347 break;
Dylan McKaya35ee702018-03-19 00:55:50 +0000348 case MVT::i128:
349 LC = IsSigned ? RTLIB::SDIVREM_I128 : RTLIB::UDIVREM_I128;
350 break;
Dylan McKay7549b0a2016-11-02 06:47:40 +0000351 }
352
353 SDValue InChain = DAG.getEntryNode();
354
355 TargetLowering::ArgListTy Args;
356 TargetLowering::ArgListEntry Entry;
357 for (SDValue const &Value : Op->op_values()) {
358 Entry.Node = Value;
359 Entry.Ty = Value.getValueType().getTypeForEVT(*DAG.getContext());
Meador Inge5d3c5992017-03-24 01:57:29 +0000360 Entry.IsSExt = IsSigned;
361 Entry.IsZExt = !IsSigned;
Dylan McKay7549b0a2016-11-02 06:47:40 +0000362 Args.push_back(Entry);
363 }
364
365 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
366 getPointerTy(DAG.getDataLayout()));
367
Leslie Zhaia1149e02017-05-12 09:08:03 +0000368 Type *RetTy = (Type *)StructType::get(Ty, Ty);
Dylan McKay7549b0a2016-11-02 06:47:40 +0000369
370 SDLoc dl(Op);
371 TargetLowering::CallLoweringInfo CLI(DAG);
372 CLI.setDebugLoc(dl)
373 .setChain(InChain)
Nirav Daveac6081c2017-03-18 00:44:07 +0000374 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
Dylan McKay7549b0a2016-11-02 06:47:40 +0000375 .setInRegister()
Meador Inge5d3c5992017-03-24 01:57:29 +0000376 .setSExtResult(IsSigned)
377 .setZExtResult(!IsSigned);
Dylan McKay7549b0a2016-11-02 06:47:40 +0000378
379 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
380 return CallInfo.first;
381}
382
383SDValue AVRTargetLowering::LowerGlobalAddress(SDValue Op,
384 SelectionDAG &DAG) const {
385 auto DL = DAG.getDataLayout();
386
387 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
388 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
389
390 // Create the TargetGlobalAddress node, folding in the constant offset.
391 SDValue Result =
392 DAG.getTargetGlobalAddress(GV, SDLoc(Op), getPointerTy(DL), Offset);
393 return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result);
394}
395
396SDValue AVRTargetLowering::LowerBlockAddress(SDValue Op,
397 SelectionDAG &DAG) const {
398 auto DL = DAG.getDataLayout();
399 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
400
401 SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(DL));
402
403 return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result);
404}
405
406/// IntCCToAVRCC - Convert a DAG integer condition code to an AVR CC.
407static AVRCC::CondCodes intCCToAVRCC(ISD::CondCode CC) {
408 switch (CC) {
409 default:
410 llvm_unreachable("Unknown condition code!");
411 case ISD::SETEQ:
412 return AVRCC::COND_EQ;
413 case ISD::SETNE:
414 return AVRCC::COND_NE;
415 case ISD::SETGE:
416 return AVRCC::COND_GE;
417 case ISD::SETLT:
418 return AVRCC::COND_LT;
419 case ISD::SETUGE:
420 return AVRCC::COND_SH;
421 case ISD::SETULT:
422 return AVRCC::COND_LO;
423 }
424}
425
426/// Returns appropriate AVR CMP/CMPC nodes and corresponding condition code for
427/// the given operands.
428SDValue AVRTargetLowering::getAVRCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
429 SDValue &AVRcc, SelectionDAG &DAG,
430 SDLoc DL) const {
431 SDValue Cmp;
432 EVT VT = LHS.getValueType();
433 bool UseTest = false;
434
435 switch (CC) {
436 default:
437 break;
438 case ISD::SETLE: {
439 // Swap operands and reverse the branching condition.
440 std::swap(LHS, RHS);
441 CC = ISD::SETGE;
442 break;
443 }
444 case ISD::SETGT: {
445 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
446 switch (C->getSExtValue()) {
447 case -1: {
448 // When doing lhs > -1 use a tst instruction on the top part of lhs
449 // and use brpl instead of using a chain of cp/cpc.
450 UseTest = true;
451 AVRcc = DAG.getConstant(AVRCC::COND_PL, DL, MVT::i8);
452 break;
453 }
454 case 0: {
455 // Turn lhs > 0 into 0 < lhs since 0 can be materialized with
456 // __zero_reg__ in lhs.
457 RHS = LHS;
458 LHS = DAG.getConstant(0, DL, VT);
459 CC = ISD::SETLT;
460 break;
461 }
462 default: {
463 // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows
464 // us to fold the constant into the cmp instruction.
465 RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT);
466 CC = ISD::SETGE;
467 break;
468 }
469 }
470 break;
471 }
472 // Swap operands and reverse the branching condition.
473 std::swap(LHS, RHS);
474 CC = ISD::SETLT;
475 break;
476 }
477 case ISD::SETLT: {
478 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
479 switch (C->getSExtValue()) {
480 case 1: {
481 // Turn lhs < 1 into 0 >= lhs since 0 can be materialized with
482 // __zero_reg__ in lhs.
483 RHS = LHS;
484 LHS = DAG.getConstant(0, DL, VT);
485 CC = ISD::SETGE;
486 break;
487 }
488 case 0: {
489 // When doing lhs < 0 use a tst instruction on the top part of lhs
490 // and use brmi instead of using a chain of cp/cpc.
491 UseTest = true;
492 AVRcc = DAG.getConstant(AVRCC::COND_MI, DL, MVT::i8);
493 break;
494 }
495 }
496 }
497 break;
498 }
499 case ISD::SETULE: {
500 // Swap operands and reverse the branching condition.
501 std::swap(LHS, RHS);
502 CC = ISD::SETUGE;
503 break;
504 }
505 case ISD::SETUGT: {
506 // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to
507 // fold the constant into the cmp instruction.
508 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
509 RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT);
510 CC = ISD::SETUGE;
511 break;
512 }
513 // Swap operands and reverse the branching condition.
514 std::swap(LHS, RHS);
515 CC = ISD::SETULT;
516 break;
517 }
518 }
519
520 // Expand 32 and 64 bit comparisons with custom CMP and CMPC nodes instead of
521 // using the default and/or/xor expansion code which is much longer.
522 if (VT == MVT::i32) {
523 SDValue LHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS,
524 DAG.getIntPtrConstant(0, DL));
525 SDValue LHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS,
526 DAG.getIntPtrConstant(1, DL));
527 SDValue RHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS,
528 DAG.getIntPtrConstant(0, DL));
529 SDValue RHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS,
530 DAG.getIntPtrConstant(1, DL));
531
532 if (UseTest) {
533 // When using tst we only care about the highest part.
534 SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHShi,
535 DAG.getIntPtrConstant(1, DL));
536 Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top);
537 } else {
538 Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHSlo, RHSlo);
539 Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHShi, RHShi, Cmp);
540 }
541 } else if (VT == MVT::i64) {
542 SDValue LHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS,
543 DAG.getIntPtrConstant(0, DL));
544 SDValue LHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS,
545 DAG.getIntPtrConstant(1, DL));
546
547 SDValue LHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0,
548 DAG.getIntPtrConstant(0, DL));
549 SDValue LHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0,
550 DAG.getIntPtrConstant(1, DL));
551 SDValue LHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1,
552 DAG.getIntPtrConstant(0, DL));
553 SDValue LHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1,
554 DAG.getIntPtrConstant(1, DL));
555
556 SDValue RHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS,
557 DAG.getIntPtrConstant(0, DL));
558 SDValue RHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS,
559 DAG.getIntPtrConstant(1, DL));
560
561 SDValue RHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0,
562 DAG.getIntPtrConstant(0, DL));
563 SDValue RHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0,
564 DAG.getIntPtrConstant(1, DL));
565 SDValue RHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1,
566 DAG.getIntPtrConstant(0, DL));
567 SDValue RHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1,
568 DAG.getIntPtrConstant(1, DL));
569
570 if (UseTest) {
571 // When using tst we only care about the highest part.
572 SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHS3,
573 DAG.getIntPtrConstant(1, DL));
574 Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top);
575 } else {
576 Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHS0, RHS0);
577 Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS1, RHS1, Cmp);
578 Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS2, RHS2, Cmp);
579 Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS3, RHS3, Cmp);
580 }
581 } else if (VT == MVT::i8 || VT == MVT::i16) {
582 if (UseTest) {
583 // When using tst we only care about the highest part.
584 Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue,
585 (VT == MVT::i8)
586 ? LHS
587 : DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8,
588 LHS, DAG.getIntPtrConstant(1, DL)));
589 } else {
590 Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHS, RHS);
591 }
592 } else {
593 llvm_unreachable("Invalid comparison size");
594 }
595
596 // When using a test instruction AVRcc is already set.
597 if (!UseTest) {
598 AVRcc = DAG.getConstant(intCCToAVRCC(CC), DL, MVT::i8);
599 }
600
601 return Cmp;
602}
603
604SDValue AVRTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
605 SDValue Chain = Op.getOperand(0);
606 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
607 SDValue LHS = Op.getOperand(2);
608 SDValue RHS = Op.getOperand(3);
609 SDValue Dest = Op.getOperand(4);
610 SDLoc dl(Op);
611
612 SDValue TargetCC;
613 SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl);
614
615 return DAG.getNode(AVRISD::BRCOND, dl, MVT::Other, Chain, Dest, TargetCC,
616 Cmp);
617}
618
619SDValue AVRTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
620 SDValue LHS = Op.getOperand(0);
621 SDValue RHS = Op.getOperand(1);
622 SDValue TrueV = Op.getOperand(2);
623 SDValue FalseV = Op.getOperand(3);
624 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
625 SDLoc dl(Op);
626
627 SDValue TargetCC;
628 SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl);
629
630 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
631 SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp};
632
633 return DAG.getNode(AVRISD::SELECT_CC, dl, VTs, Ops);
634}
635
636SDValue AVRTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
637 SDValue LHS = Op.getOperand(0);
638 SDValue RHS = Op.getOperand(1);
639 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
640 SDLoc DL(Op);
641
642 SDValue TargetCC;
643 SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, DL);
644
645 SDValue TrueV = DAG.getConstant(1, DL, Op.getValueType());
646 SDValue FalseV = DAG.getConstant(0, DL, Op.getValueType());
647 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
648 SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp};
649
650 return DAG.getNode(AVRISD::SELECT_CC, DL, VTs, Ops);
651}
652
653SDValue AVRTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
654 const MachineFunction &MF = DAG.getMachineFunction();
655 const AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
656 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
657 auto DL = DAG.getDataLayout();
658 SDLoc dl(Op);
659
660 // Vastart just stores the address of the VarArgsFrameIndex slot into the
661 // memory location argument.
662 SDValue FI = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(), getPointerTy(DL));
663
664 return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
665 MachinePointerInfo(SV), 0);
666}
667
668SDValue AVRTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
669 switch (Op.getOpcode()) {
670 default:
671 llvm_unreachable("Don't know how to custom lower this!");
672 case ISD::SHL:
673 case ISD::SRA:
674 case ISD::SRL:
675 case ISD::ROTL:
676 case ISD::ROTR:
677 return LowerShifts(Op, DAG);
678 case ISD::GlobalAddress:
679 return LowerGlobalAddress(Op, DAG);
680 case ISD::BlockAddress:
681 return LowerBlockAddress(Op, DAG);
682 case ISD::BR_CC:
683 return LowerBR_CC(Op, DAG);
684 case ISD::SELECT_CC:
685 return LowerSELECT_CC(Op, DAG);
686 case ISD::SETCC:
687 return LowerSETCC(Op, DAG);
688 case ISD::VASTART:
689 return LowerVASTART(Op, DAG);
690 case ISD::SDIVREM:
691 case ISD::UDIVREM:
692 return LowerDivRem(Op, DAG);
693 }
694
695 return SDValue();
696}
697
698/// Replace a node with an illegal result type
699/// with a new node built out of custom code.
700void AVRTargetLowering::ReplaceNodeResults(SDNode *N,
701 SmallVectorImpl<SDValue> &Results,
702 SelectionDAG &DAG) const {
703 SDLoc DL(N);
704
705 switch (N->getOpcode()) {
706 case ISD::ADD: {
707 // Convert add (x, imm) into sub (x, -imm).
708 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
709 SDValue Sub = DAG.getNode(
710 ISD::SUB, DL, N->getValueType(0), N->getOperand(0),
711 DAG.getConstant(-C->getAPIntValue(), DL, C->getValueType(0)));
712 Results.push_back(Sub);
713 }
714 break;
715 }
716 default: {
717 SDValue Res = LowerOperation(SDValue(N, 0), DAG);
718
719 for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
720 Results.push_back(Res.getValue(I));
721
722 break;
723 }
724 }
725}
726
727/// Return true if the addressing mode represented
728/// by AM is legal for this target, for a load/store of the specified type.
729bool AVRTargetLowering::isLegalAddressingMode(const DataLayout &DL,
730 const AddrMode &AM, Type *Ty,
Jonas Paulsson024e3192017-07-21 11:59:37 +0000731 unsigned AS, Instruction *I) const {
Dylan McKay7549b0a2016-11-02 06:47:40 +0000732 int64_t Offs = AM.BaseOffs;
733
734 // Allow absolute addresses.
735 if (AM.BaseGV && !AM.HasBaseReg && AM.Scale == 0 && Offs == 0) {
736 return true;
737 }
738
739 // Flash memory instructions only allow zero offsets.
740 if (isa<PointerType>(Ty) && AS == AVR::ProgramMemory) {
741 return false;
742 }
743
744 // Allow reg+<6bit> offset.
745 if (Offs < 0)
746 Offs = -Offs;
747 if (AM.BaseGV == 0 && AM.HasBaseReg && AM.Scale == 0 && isUInt<6>(Offs)) {
748 return true;
749 }
750
751 return false;
752}
753
754/// Returns true by value, base pointer and
755/// offset pointer and addressing mode by reference if the node's address
756/// can be legally represented as pre-indexed load / store address.
757bool AVRTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
758 SDValue &Offset,
759 ISD::MemIndexedMode &AM,
760 SelectionDAG &DAG) const {
761 EVT VT;
762 const SDNode *Op;
763 SDLoc DL(N);
764
765 if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
766 VT = LD->getMemoryVT();
767 Op = LD->getBasePtr().getNode();
768 if (LD->getExtensionType() != ISD::NON_EXTLOAD)
769 return false;
770 if (AVR::isProgramMemoryAccess(LD)) {
771 return false;
772 }
773 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
774 VT = ST->getMemoryVT();
775 Op = ST->getBasePtr().getNode();
776 if (AVR::isProgramMemoryAccess(ST)) {
777 return false;
778 }
779 } else {
780 return false;
781 }
782
783 if (VT != MVT::i8 && VT != MVT::i16) {
784 return false;
785 }
786
787 if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) {
788 return false;
789 }
790
791 if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
792 int RHSC = RHS->getSExtValue();
793 if (Op->getOpcode() == ISD::SUB)
794 RHSC = -RHSC;
795
796 if ((VT == MVT::i16 && RHSC != -2) || (VT == MVT::i8 && RHSC != -1)) {
797 return false;
798 }
799
800 Base = Op->getOperand(0);
801 Offset = DAG.getConstant(RHSC, DL, MVT::i8);
802 AM = ISD::PRE_DEC;
803
804 return true;
805 }
806
807 return false;
808}
809
810/// Returns true by value, base pointer and
811/// offset pointer and addressing mode by reference if this node can be
812/// combined with a load / store to form a post-indexed load / store.
813bool AVRTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
814 SDValue &Base,
815 SDValue &Offset,
816 ISD::MemIndexedMode &AM,
817 SelectionDAG &DAG) const {
818 EVT VT;
819 SDLoc DL(N);
820
821 if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
822 VT = LD->getMemoryVT();
823 if (LD->getExtensionType() != ISD::NON_EXTLOAD)
824 return false;
825 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
826 VT = ST->getMemoryVT();
827 if (AVR::isProgramMemoryAccess(ST)) {
828 return false;
829 }
830 } else {
831 return false;
832 }
833
834 if (VT != MVT::i8 && VT != MVT::i16) {
835 return false;
836 }
837
838 if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) {
839 return false;
840 }
841
842 if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
843 int RHSC = RHS->getSExtValue();
844 if (Op->getOpcode() == ISD::SUB)
845 RHSC = -RHSC;
846 if ((VT == MVT::i16 && RHSC != 2) || (VT == MVT::i8 && RHSC != 1)) {
847 return false;
848 }
849
850 Base = Op->getOperand(0);
851 Offset = DAG.getConstant(RHSC, DL, MVT::i8);
852 AM = ISD::POST_INC;
853
854 return true;
855 }
856
857 return false;
858}
859
860bool AVRTargetLowering::isOffsetFoldingLegal(
861 const GlobalAddressSDNode *GA) const {
862 return true;
863}
864
865//===----------------------------------------------------------------------===//
866// Formal Arguments Calling Convention Implementation
867//===----------------------------------------------------------------------===//
868
869#include "AVRGenCallingConv.inc"
870
871/// For each argument in a function store the number of pieces it is composed
872/// of.
Dylan McKay05d3e412018-02-19 08:28:38 +0000873static void parseFunctionArgs(const SmallVectorImpl<ISD::InputArg> &Ins,
Dylan McKay7549b0a2016-11-02 06:47:40 +0000874 SmallVectorImpl<unsigned> &Out) {
Dylan McKay05d3e412018-02-19 08:28:38 +0000875 for (const ISD::InputArg &Arg : Ins) {
876 if(Arg.PartOffset > 0) continue;
877 unsigned Bytes = ((Arg.ArgVT.getSizeInBits()) + 7) / 8;
878
Dylan McKay7549b0a2016-11-02 06:47:40 +0000879 Out.push_back((Bytes + 1) / 2);
880 }
881}
882
883/// For external symbols there is no function prototype information so we
884/// have to rely directly on argument sizes.
885static void parseExternFuncCallArgs(const SmallVectorImpl<ISD::OutputArg> &In,
886 SmallVectorImpl<unsigned> &Out) {
887 for (unsigned i = 0, e = In.size(); i != e;) {
888 unsigned Size = 0;
889 unsigned Offset = 0;
890 while ((i != e) && (In[i].PartOffset == Offset)) {
891 Offset += In[i].VT.getStoreSize();
892 ++i;
893 ++Size;
894 }
895 Out.push_back(Size);
896 }
897}
898
899static StringRef getFunctionName(TargetLowering::CallLoweringInfo &CLI) {
900 SDValue Callee = CLI.Callee;
901
902 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) {
903 return G->getSymbol();
904 }
905
906 if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
907 return G->getGlobal()->getName();
908 }
909
910 llvm_unreachable("don't know how to get the name for this callee");
911}
912
913/// Analyze incoming and outgoing function arguments. We need custom C++ code
914/// to handle special constraints in the ABI like reversing the order of the
915/// pieces of splitted arguments. In addition, all pieces of a certain argument
916/// have to be passed either using registers or the stack but never mixing both.
917static void analyzeStandardArguments(TargetLowering::CallLoweringInfo *CLI,
918 const Function *F, const DataLayout *TD,
919 const SmallVectorImpl<ISD::OutputArg> *Outs,
920 const SmallVectorImpl<ISD::InputArg> *Ins,
921 CallingConv::ID CallConv,
922 SmallVectorImpl<CCValAssign> &ArgLocs,
923 CCState &CCInfo, bool IsCall, bool IsVarArg) {
924 static const MCPhysReg RegList8[] = {AVR::R24, AVR::R22, AVR::R20,
925 AVR::R18, AVR::R16, AVR::R14,
926 AVR::R12, AVR::R10, AVR::R8};
927 static const MCPhysReg RegList16[] = {AVR::R25R24, AVR::R23R22, AVR::R21R20,
928 AVR::R19R18, AVR::R17R16, AVR::R15R14,
929 AVR::R13R12, AVR::R11R10, AVR::R9R8};
930 if (IsVarArg) {
931 // Variadic functions do not need all the analisys below.
932 if (IsCall) {
933 CCInfo.AnalyzeCallOperands(*Outs, ArgCC_AVR_Vararg);
934 } else {
935 CCInfo.AnalyzeFormalArguments(*Ins, ArgCC_AVR_Vararg);
936 }
937 return;
938 }
939
940 // Fill in the Args array which will contain original argument sizes.
941 SmallVector<unsigned, 8> Args;
942 if (IsCall) {
943 parseExternFuncCallArgs(*Outs, Args);
944 } else {
945 assert(F != nullptr && "function should not be null");
Dylan McKay05d3e412018-02-19 08:28:38 +0000946 parseFunctionArgs(*Ins, Args);
Dylan McKay7549b0a2016-11-02 06:47:40 +0000947 }
948
949 unsigned RegsLeft = array_lengthof(RegList8), ValNo = 0;
950 // Variadic functions always use the stack.
951 bool UsesStack = false;
952 for (unsigned i = 0, pos = 0, e = Args.size(); i != e; ++i) {
953 unsigned Size = Args[i];
Dylan McKay7a3eb292017-02-05 09:53:45 +0000954
955 // If we have a zero-sized argument, don't attempt to lower it.
956 // AVR-GCC does not support zero-sized arguments and so we need not
957 // worry about ABI compatibility.
958 if (Size == 0) continue;
959
Dylan McKay7549b0a2016-11-02 06:47:40 +0000960 MVT LocVT = (IsCall) ? (*Outs)[pos].VT : (*Ins)[pos].VT;
961
962 // If we have plenty of regs to pass the whole argument do it.
963 if (!UsesStack && (Size <= RegsLeft)) {
964 const MCPhysReg *RegList = (LocVT == MVT::i16) ? RegList16 : RegList8;
965
966 for (unsigned j = 0; j != Size; ++j) {
967 unsigned Reg = CCInfo.AllocateReg(
968 ArrayRef<MCPhysReg>(RegList, array_lengthof(RegList8)));
969 CCInfo.addLoc(
970 CCValAssign::getReg(ValNo++, LocVT, Reg, LocVT, CCValAssign::Full));
971 --RegsLeft;
972 }
973
974 // Reverse the order of the pieces to agree with the "big endian" format
975 // required in the calling convention ABI.
976 std::reverse(ArgLocs.begin() + pos, ArgLocs.begin() + pos + Size);
977 } else {
978 // Pass the rest of arguments using the stack.
979 UsesStack = true;
980 for (unsigned j = 0; j != Size; ++j) {
981 unsigned Offset = CCInfo.AllocateStack(
982 TD->getTypeAllocSize(EVT(LocVT).getTypeForEVT(CCInfo.getContext())),
983 TD->getABITypeAlignment(
984 EVT(LocVT).getTypeForEVT(CCInfo.getContext())));
985 CCInfo.addLoc(CCValAssign::getMem(ValNo++, LocVT, Offset, LocVT,
986 CCValAssign::Full));
987 }
988 }
989 pos += Size;
990 }
991}
992
993static void analyzeBuiltinArguments(TargetLowering::CallLoweringInfo &CLI,
994 const Function *F, const DataLayout *TD,
995 const SmallVectorImpl<ISD::OutputArg> *Outs,
996 const SmallVectorImpl<ISD::InputArg> *Ins,
997 CallingConv::ID CallConv,
998 SmallVectorImpl<CCValAssign> &ArgLocs,
999 CCState &CCInfo, bool IsCall, bool IsVarArg) {
1000 StringRef FuncName = getFunctionName(CLI);
1001
1002 if (FuncName.startswith("__udivmod") || FuncName.startswith("__divmod")) {
1003 CCInfo.AnalyzeCallOperands(*Outs, ArgCC_AVR_BUILTIN_DIV);
1004 } else {
1005 analyzeStandardArguments(&CLI, F, TD, Outs, Ins,
1006 CallConv, ArgLocs, CCInfo,
1007 IsCall, IsVarArg);
1008 }
1009}
1010
1011static void analyzeArguments(TargetLowering::CallLoweringInfo *CLI,
1012 const Function *F, const DataLayout *TD,
1013 const SmallVectorImpl<ISD::OutputArg> *Outs,
1014 const SmallVectorImpl<ISD::InputArg> *Ins,
1015 CallingConv::ID CallConv,
1016 SmallVectorImpl<CCValAssign> &ArgLocs,
1017 CCState &CCInfo, bool IsCall, bool IsVarArg) {
1018 switch (CallConv) {
1019 case CallingConv::AVR_BUILTIN: {
1020 analyzeBuiltinArguments(*CLI, F, TD, Outs, Ins,
1021 CallConv, ArgLocs, CCInfo,
1022 IsCall, IsVarArg);
1023 return;
1024 }
1025 default: {
1026 analyzeStandardArguments(CLI, F, TD, Outs, Ins,
1027 CallConv, ArgLocs, CCInfo,
1028 IsCall, IsVarArg);
1029 return;
1030 }
1031 }
1032}
1033
1034SDValue AVRTargetLowering::LowerFormalArguments(
1035 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1036 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, SelectionDAG &DAG,
1037 SmallVectorImpl<SDValue> &InVals) const {
1038 MachineFunction &MF = DAG.getMachineFunction();
1039 MachineFrameInfo &MFI = MF.getFrameInfo();
1040 auto DL = DAG.getDataLayout();
1041
1042 // Assign locations to all of the incoming arguments.
1043 SmallVector<CCValAssign, 16> ArgLocs;
1044 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1045 *DAG.getContext());
1046
Matthias Braunf1caa282017-12-15 22:22:58 +00001047 analyzeArguments(nullptr, &MF.getFunction(), &DL, 0, &Ins, CallConv, ArgLocs, CCInfo,
Dylan McKay7549b0a2016-11-02 06:47:40 +00001048 false, isVarArg);
1049
1050 SDValue ArgValue;
1051 for (CCValAssign &VA : ArgLocs) {
1052
1053 // Arguments stored on registers.
1054 if (VA.isRegLoc()) {
1055 EVT RegVT = VA.getLocVT();
1056 const TargetRegisterClass *RC;
1057 if (RegVT == MVT::i8) {
1058 RC = &AVR::GPR8RegClass;
1059 } else if (RegVT == MVT::i16) {
1060 RC = &AVR::DREGSRegClass;
1061 } else {
1062 llvm_unreachable("Unknown argument type!");
1063 }
1064
1065 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1066 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1067
1068 // :NOTE: Clang should not promote any i8 into i16 but for safety the
1069 // following code will handle zexts or sexts generated by other
1070 // front ends. Otherwise:
1071 // If this is an 8 bit value, it is really passed promoted
1072 // to 16 bits. Insert an assert[sz]ext to capture this, then
1073 // truncate to the right size.
1074 switch (VA.getLocInfo()) {
1075 default:
1076 llvm_unreachable("Unknown loc info!");
1077 case CCValAssign::Full:
1078 break;
1079 case CCValAssign::BCvt:
1080 ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1081 break;
1082 case CCValAssign::SExt:
1083 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1084 DAG.getValueType(VA.getValVT()));
1085 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1086 break;
1087 case CCValAssign::ZExt:
1088 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1089 DAG.getValueType(VA.getValVT()));
1090 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1091 break;
1092 }
1093
1094 InVals.push_back(ArgValue);
1095 } else {
1096 // Sanity check.
1097 assert(VA.isMemLoc());
1098
1099 EVT LocVT = VA.getLocVT();
1100
1101 // Create the frame index object for this incoming parameter.
1102 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1103 VA.getLocMemOffset(), true);
1104
1105 // Create the SelectionDAG nodes corresponding to a load
1106 // from this parameter.
1107 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DL));
1108 InVals.push_back(DAG.getLoad(LocVT, dl, Chain, FIN,
1109 MachinePointerInfo::getFixedStack(MF, FI),
1110 0));
1111 }
1112 }
1113
1114 // If the function takes variable number of arguments, make a frame index for
1115 // the start of the first vararg value... for expansion of llvm.va_start.
1116 if (isVarArg) {
1117 unsigned StackSize = CCInfo.getNextStackOffset();
1118 AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
1119
1120 AFI->setVarArgsFrameIndex(MFI.CreateFixedObject(2, StackSize, true));
1121 }
1122
1123 return Chain;
1124}
1125
1126//===----------------------------------------------------------------------===//
1127// Call Calling Convention Implementation
1128//===----------------------------------------------------------------------===//
1129
1130SDValue AVRTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1131 SmallVectorImpl<SDValue> &InVals) const {
1132 SelectionDAG &DAG = CLI.DAG;
1133 SDLoc &DL = CLI.DL;
1134 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1135 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1136 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1137 SDValue Chain = CLI.Chain;
1138 SDValue Callee = CLI.Callee;
1139 bool &isTailCall = CLI.IsTailCall;
1140 CallingConv::ID CallConv = CLI.CallConv;
1141 bool isVarArg = CLI.IsVarArg;
1142
1143 MachineFunction &MF = DAG.getMachineFunction();
1144
1145 // AVR does not yet support tail call optimization.
1146 isTailCall = false;
1147
1148 // Analyze operands of the call, assigning locations to each operand.
1149 SmallVector<CCValAssign, 16> ArgLocs;
1150 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1151 *DAG.getContext());
1152
1153 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1154 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1155 // node so that legalize doesn't hack it.
1156 const Function *F = nullptr;
1157 if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1158 const GlobalValue *GV = G->getGlobal();
1159
1160 F = cast<Function>(GV);
1161 Callee =
1162 DAG.getTargetGlobalAddress(GV, DL, getPointerTy(DAG.getDataLayout()));
1163 } else if (const ExternalSymbolSDNode *ES =
1164 dyn_cast<ExternalSymbolSDNode>(Callee)) {
1165 Callee = DAG.getTargetExternalSymbol(ES->getSymbol(),
1166 getPointerTy(DAG.getDataLayout()));
1167 }
1168
1169 analyzeArguments(&CLI, F, &DAG.getDataLayout(), &Outs, 0, CallConv, ArgLocs, CCInfo,
1170 true, isVarArg);
1171
1172 // Get a count of how many bytes are to be pushed on the stack.
1173 unsigned NumBytes = CCInfo.getNextStackOffset();
1174
Serge Pavlovd526b132017-05-09 13:35:13 +00001175 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
Dylan McKay7549b0a2016-11-02 06:47:40 +00001176
1177 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1178
1179 // First, walk the register assignments, inserting copies.
1180 unsigned AI, AE;
1181 bool HasStackArgs = false;
1182 for (AI = 0, AE = ArgLocs.size(); AI != AE; ++AI) {
1183 CCValAssign &VA = ArgLocs[AI];
1184 EVT RegVT = VA.getLocVT();
1185 SDValue Arg = OutVals[AI];
1186
1187 // Promote the value if needed. With Clang this should not happen.
1188 switch (VA.getLocInfo()) {
1189 default:
1190 llvm_unreachable("Unknown loc info!");
1191 case CCValAssign::Full:
1192 break;
1193 case CCValAssign::SExt:
1194 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, RegVT, Arg);
1195 break;
1196 case CCValAssign::ZExt:
1197 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, RegVT, Arg);
1198 break;
1199 case CCValAssign::AExt:
1200 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, RegVT, Arg);
1201 break;
1202 case CCValAssign::BCvt:
1203 Arg = DAG.getNode(ISD::BITCAST, DL, RegVT, Arg);
1204 break;
1205 }
1206
1207 // Stop when we encounter a stack argument, we need to process them
1208 // in reverse order in the loop below.
1209 if (VA.isMemLoc()) {
1210 HasStackArgs = true;
1211 break;
1212 }
1213
1214 // Arguments that can be passed on registers must be kept in the RegsToPass
1215 // vector.
1216 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1217 }
1218
1219 // Second, stack arguments have to walked in reverse order by inserting
1220 // chained stores, this ensures their order is not changed by the scheduler
1221 // and that the push instruction sequence generated is correct, otherwise they
1222 // can be freely intermixed.
1223 if (HasStackArgs) {
1224 for (AE = AI, AI = ArgLocs.size(); AI != AE; --AI) {
1225 unsigned Loc = AI - 1;
1226 CCValAssign &VA = ArgLocs[Loc];
1227 SDValue Arg = OutVals[Loc];
1228
1229 assert(VA.isMemLoc());
1230
1231 // SP points to one stack slot further so add one to adjust it.
1232 SDValue PtrOff = DAG.getNode(
1233 ISD::ADD, DL, getPointerTy(DAG.getDataLayout()),
1234 DAG.getRegister(AVR::SP, getPointerTy(DAG.getDataLayout())),
1235 DAG.getIntPtrConstant(VA.getLocMemOffset() + 1, DL));
1236
1237 Chain =
1238 DAG.getStore(Chain, DL, Arg, PtrOff,
1239 MachinePointerInfo::getStack(MF, VA.getLocMemOffset()),
1240 0);
1241 }
1242 }
1243
1244 // Build a sequence of copy-to-reg nodes chained together with token chain and
1245 // flag operands which copy the outgoing args into registers. The InFlag in
1246 // necessary since all emited instructions must be stuck together.
1247 SDValue InFlag;
1248 for (auto Reg : RegsToPass) {
1249 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, InFlag);
1250 InFlag = Chain.getValue(1);
1251 }
1252
1253 // Returns a chain & a flag for retval copy to use.
1254 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1255 SmallVector<SDValue, 8> Ops;
1256 Ops.push_back(Chain);
1257 Ops.push_back(Callee);
1258
1259 // Add argument registers to the end of the list so that they are known live
1260 // into the call.
1261 for (auto Reg : RegsToPass) {
1262 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
1263 }
1264
1265 // Add a register mask operand representing the call-preserved registers.
1266 const AVRTargetMachine &TM = (const AVRTargetMachine &)getTargetMachine();
1267 const TargetRegisterInfo *TRI = TM.getSubtargetImpl()->getRegisterInfo();
1268 const uint32_t *Mask =
1269 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
1270 assert(Mask && "Missing call preserved mask for calling convention");
1271 Ops.push_back(DAG.getRegisterMask(Mask));
1272
1273 if (InFlag.getNode()) {
1274 Ops.push_back(InFlag);
1275 }
1276
1277 Chain = DAG.getNode(AVRISD::CALL, DL, NodeTys, Ops);
1278 InFlag = Chain.getValue(1);
1279
1280 // Create the CALLSEQ_END node.
1281 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
1282 DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
1283
1284 if (!Ins.empty()) {
1285 InFlag = Chain.getValue(1);
1286 }
1287
1288 // Handle result values, copying them out of physregs into vregs that we
1289 // return.
1290 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, DL, DAG,
1291 InVals);
1292}
1293
1294/// Lower the result values of a call into the
1295/// appropriate copies out of appropriate physical registers.
1296///
1297SDValue AVRTargetLowering::LowerCallResult(
1298 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
1299 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, SelectionDAG &DAG,
1300 SmallVectorImpl<SDValue> &InVals) const {
1301
1302 // Assign locations to each value returned by this call.
1303 SmallVector<CCValAssign, 16> RVLocs;
1304 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1305 *DAG.getContext());
1306
1307 // Handle runtime calling convs.
1308 auto CCFunction = CCAssignFnForReturn(CallConv);
1309 CCInfo.AnalyzeCallResult(Ins, CCFunction);
1310
1311 if (CallConv != CallingConv::AVR_BUILTIN && RVLocs.size() > 1) {
1312 // Reverse splitted return values to get the "big endian" format required
1313 // to agree with the calling convention ABI.
1314 std::reverse(RVLocs.begin(), RVLocs.end());
1315 }
1316
1317 // Copy all of the result registers out of their specified physreg.
1318 for (CCValAssign const &RVLoc : RVLocs) {
1319 Chain = DAG.getCopyFromReg(Chain, dl, RVLoc.getLocReg(), RVLoc.getValVT(),
1320 InFlag)
1321 .getValue(1);
1322 InFlag = Chain.getValue(2);
1323 InVals.push_back(Chain.getValue(0));
1324 }
1325
1326 return Chain;
1327}
1328
1329//===----------------------------------------------------------------------===//
1330// Return Value Calling Convention Implementation
1331//===----------------------------------------------------------------------===//
1332
1333CCAssignFn *AVRTargetLowering::CCAssignFnForReturn(CallingConv::ID CC) const {
1334 switch (CC) {
1335 case CallingConv::AVR_BUILTIN:
1336 return RetCC_AVR_BUILTIN;
1337 default:
1338 return RetCC_AVR;
1339 }
1340}
1341
1342bool
1343AVRTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1344 MachineFunction &MF, bool isVarArg,
1345 const SmallVectorImpl<ISD::OutputArg> &Outs,
1346 LLVMContext &Context) const
1347{
1348 SmallVector<CCValAssign, 16> RVLocs;
1349 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
1350
1351 auto CCFunction = CCAssignFnForReturn(CallConv);
1352 return CCInfo.CheckReturn(Outs, CCFunction);
1353}
1354
1355SDValue
1356AVRTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1357 bool isVarArg,
1358 const SmallVectorImpl<ISD::OutputArg> &Outs,
1359 const SmallVectorImpl<SDValue> &OutVals,
1360 const SDLoc &dl, SelectionDAG &DAG) const {
1361 // CCValAssign - represent the assignment of the return value to locations.
1362 SmallVector<CCValAssign, 16> RVLocs;
1363
1364 // CCState - Info about the registers and stack slot.
1365 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1366 *DAG.getContext());
1367
1368 // Analyze return values.
1369 auto CCFunction = CCAssignFnForReturn(CallConv);
1370 CCInfo.AnalyzeReturn(Outs, CCFunction);
1371
1372 // If this is the first return lowered for this function, add the regs to
1373 // the liveout set for the function.
1374 MachineFunction &MF = DAG.getMachineFunction();
1375 unsigned e = RVLocs.size();
1376
1377 // Reverse splitted return values to get the "big endian" format required
1378 // to agree with the calling convention ABI.
1379 if (e > 1) {
1380 std::reverse(RVLocs.begin(), RVLocs.end());
1381 }
1382
1383 SDValue Flag;
1384 SmallVector<SDValue, 4> RetOps(1, Chain);
1385 // Copy the result values into the output registers.
1386 for (unsigned i = 0; i != e; ++i) {
1387 CCValAssign &VA = RVLocs[i];
1388 assert(VA.isRegLoc() && "Can only return in registers!");
1389
1390 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
1391
1392 // Guarantee that all emitted copies are stuck together with flags.
1393 Flag = Chain.getValue(1);
1394 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1395 }
1396
1397 // Don't emit the ret/reti instruction when the naked attribute is present in
1398 // the function being compiled.
Matthias Braunf1caa282017-12-15 22:22:58 +00001399 if (MF.getFunction().getAttributes().hasAttribute(
Reid Klecknerb5180542017-03-21 16:57:19 +00001400 AttributeList::FunctionIndex, Attribute::Naked)) {
Dylan McKay7549b0a2016-11-02 06:47:40 +00001401 return Chain;
1402 }
1403
1404 unsigned RetOpc =
1405 (CallConv == CallingConv::AVR_INTR || CallConv == CallingConv::AVR_SIGNAL)
1406 ? AVRISD::RETI_FLAG
1407 : AVRISD::RET_FLAG;
1408
1409 RetOps[0] = Chain; // Update chain.
1410
1411 if (Flag.getNode()) {
1412 RetOps.push_back(Flag);
1413 }
1414
1415 return DAG.getNode(RetOpc, dl, MVT::Other, RetOps);
1416}
1417
1418//===----------------------------------------------------------------------===//
1419// Custom Inserters
1420//===----------------------------------------------------------------------===//
1421
1422MachineBasicBlock *AVRTargetLowering::insertShift(MachineInstr &MI,
1423 MachineBasicBlock *BB) const {
1424 unsigned Opc;
1425 const TargetRegisterClass *RC;
1426 MachineFunction *F = BB->getParent();
1427 MachineRegisterInfo &RI = F->getRegInfo();
1428 const AVRTargetMachine &TM = (const AVRTargetMachine &)getTargetMachine();
1429 const TargetInstrInfo &TII = *TM.getSubtargetImpl()->getInstrInfo();
1430 DebugLoc dl = MI.getDebugLoc();
1431
1432 switch (MI.getOpcode()) {
1433 default:
1434 llvm_unreachable("Invalid shift opcode!");
1435 case AVR::Lsl8:
1436 Opc = AVR::LSLRd;
1437 RC = &AVR::GPR8RegClass;
1438 break;
1439 case AVR::Lsl16:
1440 Opc = AVR::LSLWRd;
1441 RC = &AVR::DREGSRegClass;
1442 break;
1443 case AVR::Asr8:
1444 Opc = AVR::ASRRd;
1445 RC = &AVR::GPR8RegClass;
1446 break;
1447 case AVR::Asr16:
1448 Opc = AVR::ASRWRd;
1449 RC = &AVR::DREGSRegClass;
1450 break;
1451 case AVR::Lsr8:
1452 Opc = AVR::LSRRd;
1453 RC = &AVR::GPR8RegClass;
1454 break;
1455 case AVR::Lsr16:
1456 Opc = AVR::LSRWRd;
1457 RC = &AVR::DREGSRegClass;
1458 break;
Dylan McKay59e7fe32017-05-01 09:48:55 +00001459 case AVR::Rol8:
1460 Opc = AVR::ROLRd;
1461 RC = &AVR::GPR8RegClass;
1462 break;
1463 case AVR::Rol16:
1464 Opc = AVR::ROLWRd;
1465 RC = &AVR::DREGSRegClass;
1466 break;
1467 case AVR::Ror8:
1468 Opc = AVR::RORRd;
1469 RC = &AVR::GPR8RegClass;
1470 break;
1471 case AVR::Ror16:
1472 Opc = AVR::RORWRd;
1473 RC = &AVR::DREGSRegClass;
1474 break;
Dylan McKay7549b0a2016-11-02 06:47:40 +00001475 }
1476
1477 const BasicBlock *LLVM_BB = BB->getBasicBlock();
Dylan McKaydada0142017-09-26 00:51:03 +00001478
1479 MachineFunction::iterator I;
Dylan McKay1446eed2017-09-26 01:37:53 +00001480 for (I = BB->getIterator(); I != F->end() && &(*I) != BB; ++I);
Dylan McKaydada0142017-09-26 00:51:03 +00001481 if (I != F->end()) ++I;
Dylan McKay7549b0a2016-11-02 06:47:40 +00001482
1483 // Create loop block.
1484 MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(LLVM_BB);
1485 MachineBasicBlock *RemBB = F->CreateMachineBasicBlock(LLVM_BB);
1486
1487 F->insert(I, LoopBB);
1488 F->insert(I, RemBB);
1489
1490 // Update machine-CFG edges by transferring all successors of the current
1491 // block to the block containing instructions after shift.
1492 RemBB->splice(RemBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
1493 BB->end());
1494 RemBB->transferSuccessorsAndUpdatePHIs(BB);
1495
1496 // Add adges BB => LoopBB => RemBB, BB => RemBB, LoopBB => LoopBB.
1497 BB->addSuccessor(LoopBB);
1498 BB->addSuccessor(RemBB);
1499 LoopBB->addSuccessor(RemBB);
1500 LoopBB->addSuccessor(LoopBB);
1501
1502 unsigned ShiftAmtReg = RI.createVirtualRegister(&AVR::LD8RegClass);
1503 unsigned ShiftAmtReg2 = RI.createVirtualRegister(&AVR::LD8RegClass);
1504 unsigned ShiftReg = RI.createVirtualRegister(RC);
1505 unsigned ShiftReg2 = RI.createVirtualRegister(RC);
1506 unsigned ShiftAmtSrcReg = MI.getOperand(2).getReg();
1507 unsigned SrcReg = MI.getOperand(1).getReg();
1508 unsigned DstReg = MI.getOperand(0).getReg();
1509
1510 // BB:
Dylan McKay043fa4b2017-05-31 06:27:46 +00001511 // cpi N, 0
Dylan McKay7549b0a2016-11-02 06:47:40 +00001512 // breq RemBB
Dylan McKay043fa4b2017-05-31 06:27:46 +00001513 BuildMI(BB, dl, TII.get(AVR::CPIRdK)).addReg(ShiftAmtSrcReg).addImm(0);
Dylan McKay7549b0a2016-11-02 06:47:40 +00001514 BuildMI(BB, dl, TII.get(AVR::BREQk)).addMBB(RemBB);
1515
1516 // LoopBB:
1517 // ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB]
1518 // ShiftAmt = phi [%N, BB], [%ShiftAmt2, LoopBB]
1519 // ShiftReg2 = shift ShiftReg
1520 // ShiftAmt2 = ShiftAmt - 1;
1521 BuildMI(LoopBB, dl, TII.get(AVR::PHI), ShiftReg)
1522 .addReg(SrcReg)
1523 .addMBB(BB)
1524 .addReg(ShiftReg2)
1525 .addMBB(LoopBB);
1526 BuildMI(LoopBB, dl, TII.get(AVR::PHI), ShiftAmtReg)
1527 .addReg(ShiftAmtSrcReg)
1528 .addMBB(BB)
1529 .addReg(ShiftAmtReg2)
1530 .addMBB(LoopBB);
1531 BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2).addReg(ShiftReg);
1532 BuildMI(LoopBB, dl, TII.get(AVR::SUBIRdK), ShiftAmtReg2)
1533 .addReg(ShiftAmtReg)
1534 .addImm(1);
1535 BuildMI(LoopBB, dl, TII.get(AVR::BRNEk)).addMBB(LoopBB);
1536
1537 // RemBB:
1538 // DestReg = phi [%SrcReg, BB], [%ShiftReg, LoopBB]
1539 BuildMI(*RemBB, RemBB->begin(), dl, TII.get(AVR::PHI), DstReg)
1540 .addReg(SrcReg)
1541 .addMBB(BB)
1542 .addReg(ShiftReg2)
1543 .addMBB(LoopBB);
1544
1545 MI.eraseFromParent(); // The pseudo instruction is gone now.
1546 return RemBB;
1547}
1548
1549static bool isCopyMulResult(MachineBasicBlock::iterator const &I) {
1550 if (I->getOpcode() == AVR::COPY) {
1551 unsigned SrcReg = I->getOperand(1).getReg();
1552 return (SrcReg == AVR::R0 || SrcReg == AVR::R1);
1553 }
1554
1555 return false;
1556}
1557
1558// The mul instructions wreak havock on our zero_reg R1. We need to clear it
1559// after the result has been evacuated. This is probably not the best way to do
1560// it, but it works for now.
1561MachineBasicBlock *AVRTargetLowering::insertMul(MachineInstr &MI,
1562 MachineBasicBlock *BB) const {
1563 const AVRTargetMachine &TM = (const AVRTargetMachine &)getTargetMachine();
1564 const TargetInstrInfo &TII = *TM.getSubtargetImpl()->getInstrInfo();
1565 MachineBasicBlock::iterator I(MI);
1566 ++I; // in any case insert *after* the mul instruction
1567 if (isCopyMulResult(I))
1568 ++I;
1569 if (isCopyMulResult(I))
1570 ++I;
1571 BuildMI(*BB, I, MI.getDebugLoc(), TII.get(AVR::EORRdRr), AVR::R1)
1572 .addReg(AVR::R1)
1573 .addReg(AVR::R1);
1574 return BB;
1575}
1576
1577MachineBasicBlock *
1578AVRTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1579 MachineBasicBlock *MBB) const {
1580 int Opc = MI.getOpcode();
1581
1582 // Pseudo shift instructions with a non constant shift amount are expanded
1583 // into a loop.
1584 switch (Opc) {
1585 case AVR::Lsl8:
1586 case AVR::Lsl16:
1587 case AVR::Lsr8:
1588 case AVR::Lsr16:
Dylan McKay59e7fe32017-05-01 09:48:55 +00001589 case AVR::Rol8:
1590 case AVR::Rol16:
1591 case AVR::Ror8:
1592 case AVR::Ror16:
Dylan McKay7549b0a2016-11-02 06:47:40 +00001593 case AVR::Asr8:
1594 case AVR::Asr16:
1595 return insertShift(MI, MBB);
1596 case AVR::MULRdRr:
1597 case AVR::MULSRdRr:
1598 return insertMul(MI, MBB);
1599 }
1600
1601 assert((Opc == AVR::Select16 || Opc == AVR::Select8) &&
1602 "Unexpected instr type to insert");
1603
1604 const AVRInstrInfo &TII = (const AVRInstrInfo &)*MI.getParent()
1605 ->getParent()
1606 ->getSubtarget()
1607 .getInstrInfo();
1608 DebugLoc dl = MI.getDebugLoc();
1609
1610 // To "insert" a SELECT instruction, we insert the diamond
1611 // control-flow pattern. The incoming instruction knows the
1612 // destination vreg to set, the condition code register to branch
1613 // on, the true/false values to select between, and a branch opcode
1614 // to use.
1615
1616 MachineFunction *MF = MBB->getParent();
1617 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
1618 MachineBasicBlock *trueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1619 MachineBasicBlock *falseMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1620
Dylan McKay0c4debc2017-05-13 00:22:34 +00001621 MachineFunction::iterator I;
1622 for (I = MF->begin(); I != MF->end() && &(*I) != MBB; ++I);
1623 if (I != MF->end()) ++I;
Dylan McKay7549b0a2016-11-02 06:47:40 +00001624 MF->insert(I, trueMBB);
1625 MF->insert(I, falseMBB);
1626
1627 // Transfer remaining instructions and all successors of the current
1628 // block to the block which will contain the Phi node for the
1629 // select.
1630 trueMBB->splice(trueMBB->begin(), MBB,
1631 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
1632 trueMBB->transferSuccessorsAndUpdatePHIs(MBB);
1633
1634 AVRCC::CondCodes CC = (AVRCC::CondCodes)MI.getOperand(3).getImm();
1635 BuildMI(MBB, dl, TII.getBrCond(CC)).addMBB(trueMBB);
1636 BuildMI(MBB, dl, TII.get(AVR::RJMPk)).addMBB(falseMBB);
1637 MBB->addSuccessor(falseMBB);
1638 MBB->addSuccessor(trueMBB);
1639
1640 // Unconditionally flow back to the true block
1641 BuildMI(falseMBB, dl, TII.get(AVR::RJMPk)).addMBB(trueMBB);
1642 falseMBB->addSuccessor(trueMBB);
1643
1644 // Set up the Phi node to determine where we came from
1645 BuildMI(*trueMBB, trueMBB->begin(), dl, TII.get(AVR::PHI), MI.getOperand(0).getReg())
1646 .addReg(MI.getOperand(1).getReg())
1647 .addMBB(MBB)
1648 .addReg(MI.getOperand(2).getReg())
1649 .addMBB(falseMBB) ;
1650
1651 MI.eraseFromParent(); // The pseudo instruction is gone now.
1652 return trueMBB;
1653}
1654
1655//===----------------------------------------------------------------------===//
1656// Inline Asm Support
1657//===----------------------------------------------------------------------===//
1658
1659AVRTargetLowering::ConstraintType
1660AVRTargetLowering::getConstraintType(StringRef Constraint) const {
1661 if (Constraint.size() == 1) {
1662 // See http://www.nongnu.org/avr-libc/user-manual/inline_asm.html
1663 switch (Constraint[0]) {
1664 case 'a': // Simple upper registers
1665 case 'b': // Base pointer registers pairs
1666 case 'd': // Upper register
1667 case 'l': // Lower registers
1668 case 'e': // Pointer register pairs
1669 case 'q': // Stack pointer register
1670 case 'r': // Any register
1671 case 'w': // Special upper register pairs
1672 return C_RegisterClass;
1673 case 't': // Temporary register
1674 case 'x': case 'X': // Pointer register pair X
1675 case 'y': case 'Y': // Pointer register pair Y
1676 case 'z': case 'Z': // Pointer register pair Z
1677 return C_Register;
1678 case 'Q': // A memory address based on Y or Z pointer with displacement.
1679 return C_Memory;
1680 case 'G': // Floating point constant
1681 case 'I': // 6-bit positive integer constant
1682 case 'J': // 6-bit negative integer constant
1683 case 'K': // Integer constant (Range: 2)
1684 case 'L': // Integer constant (Range: 0)
1685 case 'M': // 8-bit integer constant
1686 case 'N': // Integer constant (Range: -1)
1687 case 'O': // Integer constant (Range: 8, 16, 24)
1688 case 'P': // Integer constant (Range: 1)
1689 case 'R': // Integer constant (Range: -6 to 5)x
1690 return C_Other;
1691 default:
1692 break;
1693 }
1694 }
1695
1696 return TargetLowering::getConstraintType(Constraint);
1697}
1698
1699unsigned
1700AVRTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
1701 // Not sure if this is actually the right thing to do, but we got to do
1702 // *something* [agnat]
1703 switch (ConstraintCode[0]) {
1704 case 'Q':
1705 return InlineAsm::Constraint_Q;
1706 }
1707 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
1708}
1709
1710AVRTargetLowering::ConstraintWeight
1711AVRTargetLowering::getSingleConstraintMatchWeight(
1712 AsmOperandInfo &info, const char *constraint) const {
1713 ConstraintWeight weight = CW_Invalid;
1714 Value *CallOperandVal = info.CallOperandVal;
1715
1716 // If we don't have a value, we can't do a match,
1717 // but allow it at the lowest weight.
1718 // (this behaviour has been copied from the ARM backend)
1719 if (!CallOperandVal) {
1720 return CW_Default;
1721 }
1722
1723 // Look at the constraint type.
1724 switch (*constraint) {
1725 default:
1726 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1727 break;
1728 case 'd':
1729 case 'r':
1730 case 'l':
1731 weight = CW_Register;
1732 break;
1733 case 'a':
1734 case 'b':
1735 case 'e':
1736 case 'q':
1737 case 't':
1738 case 'w':
1739 case 'x': case 'X':
1740 case 'y': case 'Y':
1741 case 'z': case 'Z':
1742 weight = CW_SpecificReg;
1743 break;
1744 case 'G':
1745 if (const ConstantFP *C = dyn_cast<ConstantFP>(CallOperandVal)) {
1746 if (C->isZero()) {
1747 weight = CW_Constant;
1748 }
1749 }
1750 break;
1751 case 'I':
1752 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1753 if (isUInt<6>(C->getZExtValue())) {
1754 weight = CW_Constant;
1755 }
1756 }
1757 break;
1758 case 'J':
1759 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1760 if ((C->getSExtValue() >= -63) && (C->getSExtValue() <= 0)) {
1761 weight = CW_Constant;
1762 }
1763 }
1764 break;
1765 case 'K':
1766 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1767 if (C->getZExtValue() == 2) {
1768 weight = CW_Constant;
1769 }
1770 }
1771 break;
1772 case 'L':
1773 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1774 if (C->getZExtValue() == 0) {
1775 weight = CW_Constant;
1776 }
1777 }
1778 break;
1779 case 'M':
1780 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1781 if (isUInt<8>(C->getZExtValue())) {
1782 weight = CW_Constant;
1783 }
1784 }
1785 break;
1786 case 'N':
1787 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1788 if (C->getSExtValue() == -1) {
1789 weight = CW_Constant;
1790 }
1791 }
1792 break;
1793 case 'O':
1794 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1795 if ((C->getZExtValue() == 8) || (C->getZExtValue() == 16) ||
1796 (C->getZExtValue() == 24)) {
1797 weight = CW_Constant;
1798 }
1799 }
1800 break;
1801 case 'P':
1802 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1803 if (C->getZExtValue() == 1) {
1804 weight = CW_Constant;
1805 }
1806 }
1807 break;
1808 case 'R':
1809 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1810 if ((C->getSExtValue() >= -6) && (C->getSExtValue() <= 5)) {
1811 weight = CW_Constant;
1812 }
1813 }
1814 break;
1815 case 'Q':
1816 weight = CW_Memory;
1817 break;
1818 }
1819
1820 return weight;
1821}
1822
1823std::pair<unsigned, const TargetRegisterClass *>
1824AVRTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
1825 StringRef Constraint,
1826 MVT VT) const {
1827 auto STI = static_cast<const AVRTargetMachine &>(this->getTargetMachine())
1828 .getSubtargetImpl();
1829
1830 // We only support i8 and i16.
1831 //
1832 //:FIXME: remove this assert for now since it gets sometimes executed
1833 // assert((VT == MVT::i16 || VT == MVT::i8) && "Wrong operand type.");
1834
1835 if (Constraint.size() == 1) {
1836 switch (Constraint[0]) {
1837 case 'a': // Simple upper registers r16..r23.
1838 return std::make_pair(0U, &AVR::LD8loRegClass);
1839 case 'b': // Base pointer registers: y, z.
1840 return std::make_pair(0U, &AVR::PTRDISPREGSRegClass);
1841 case 'd': // Upper registers r16..r31.
1842 return std::make_pair(0U, &AVR::LD8RegClass);
1843 case 'l': // Lower registers r0..r15.
1844 return std::make_pair(0U, &AVR::GPR8loRegClass);
1845 case 'e': // Pointer register pairs: x, y, z.
1846 return std::make_pair(0U, &AVR::PTRREGSRegClass);
1847 case 'q': // Stack pointer register: SPH:SPL.
1848 return std::make_pair(0U, &AVR::GPRSPRegClass);
1849 case 'r': // Any register: r0..r31.
1850 if (VT == MVT::i8)
1851 return std::make_pair(0U, &AVR::GPR8RegClass);
1852
1853 assert(VT == MVT::i16 && "inline asm constraint too large");
1854 return std::make_pair(0U, &AVR::DREGSRegClass);
1855 case 't': // Temporary register: r0.
1856 return std::make_pair(unsigned(AVR::R0), &AVR::GPR8RegClass);
1857 case 'w': // Special upper register pairs: r24, r26, r28, r30.
1858 return std::make_pair(0U, &AVR::IWREGSRegClass);
1859 case 'x': // Pointer register pair X: r27:r26.
1860 case 'X':
1861 return std::make_pair(unsigned(AVR::R27R26), &AVR::PTRREGSRegClass);
1862 case 'y': // Pointer register pair Y: r29:r28.
1863 case 'Y':
1864 return std::make_pair(unsigned(AVR::R29R28), &AVR::PTRREGSRegClass);
1865 case 'z': // Pointer register pair Z: r31:r30.
1866 case 'Z':
1867 return std::make_pair(unsigned(AVR::R31R30), &AVR::PTRREGSRegClass);
1868 default:
1869 break;
1870 }
1871 }
1872
1873 return TargetLowering::getRegForInlineAsmConstraint(STI->getRegisterInfo(),
1874 Constraint, VT);
1875}
1876
1877void AVRTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
1878 std::string &Constraint,
1879 std::vector<SDValue> &Ops,
1880 SelectionDAG &DAG) const {
1881 SDValue Result(0, 0);
1882 SDLoc DL(Op);
1883 EVT Ty = Op.getValueType();
1884
1885 // Currently only support length 1 constraints.
1886 if (Constraint.length() != 1) {
1887 return;
1888 }
1889
1890 char ConstraintLetter = Constraint[0];
1891 switch (ConstraintLetter) {
1892 default:
1893 break;
1894 // Deal with integers first:
1895 case 'I':
1896 case 'J':
1897 case 'K':
1898 case 'L':
1899 case 'M':
1900 case 'N':
1901 case 'O':
1902 case 'P':
1903 case 'R': {
1904 const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1905 if (!C) {
1906 return;
1907 }
1908
1909 int64_t CVal64 = C->getSExtValue();
1910 uint64_t CUVal64 = C->getZExtValue();
1911 switch (ConstraintLetter) {
1912 case 'I': // 0..63
1913 if (!isUInt<6>(CUVal64))
1914 return;
1915 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1916 break;
1917 case 'J': // -63..0
1918 if (CVal64 < -63 || CVal64 > 0)
1919 return;
1920 Result = DAG.getTargetConstant(CVal64, DL, Ty);
1921 break;
1922 case 'K': // 2
1923 if (CUVal64 != 2)
1924 return;
1925 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1926 break;
1927 case 'L': // 0
1928 if (CUVal64 != 0)
1929 return;
1930 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1931 break;
1932 case 'M': // 0..255
1933 if (!isUInt<8>(CUVal64))
1934 return;
1935 // i8 type may be printed as a negative number,
1936 // e.g. 254 would be printed as -2,
1937 // so we force it to i16 at least.
1938 if (Ty.getSimpleVT() == MVT::i8) {
1939 Ty = MVT::i16;
1940 }
1941 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1942 break;
1943 case 'N': // -1
1944 if (CVal64 != -1)
1945 return;
1946 Result = DAG.getTargetConstant(CVal64, DL, Ty);
1947 break;
1948 case 'O': // 8, 16, 24
1949 if (CUVal64 != 8 && CUVal64 != 16 && CUVal64 != 24)
1950 return;
1951 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1952 break;
1953 case 'P': // 1
1954 if (CUVal64 != 1)
1955 return;
1956 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1957 break;
1958 case 'R': // -6..5
1959 if (CVal64 < -6 || CVal64 > 5)
1960 return;
1961 Result = DAG.getTargetConstant(CVal64, DL, Ty);
1962 break;
1963 }
1964
1965 break;
1966 }
1967 case 'G':
1968 const ConstantFPSDNode *FC = dyn_cast<ConstantFPSDNode>(Op);
1969 if (!FC || !FC->isZero())
1970 return;
1971 // Soften float to i8 0
1972 Result = DAG.getTargetConstant(0, DL, MVT::i8);
1973 break;
1974 }
1975
1976 if (Result.getNode()) {
1977 Ops.push_back(Result);
1978 return;
1979 }
1980
1981 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1982}
1983
Dylan McKay8fa6d8d2017-01-07 23:39:47 +00001984unsigned AVRTargetLowering::getRegisterByName(const char *RegName,
1985 EVT VT,
1986 SelectionDAG &DAG) const {
1987 unsigned Reg;
1988
1989 if (VT == MVT::i8) {
1990 Reg = StringSwitch<unsigned>(RegName)
1991 .Case("r0", AVR::R0).Case("r1", AVR::R1).Case("r2", AVR::R2)
1992 .Case("r3", AVR::R3).Case("r4", AVR::R4).Case("r5", AVR::R5)
1993 .Case("r6", AVR::R6).Case("r7", AVR::R7).Case("r8", AVR::R8)
1994 .Case("r9", AVR::R9).Case("r10", AVR::R10).Case("r11", AVR::R11)
1995 .Case("r12", AVR::R12).Case("r13", AVR::R13).Case("r14", AVR::R14)
1996 .Case("r15", AVR::R15).Case("r16", AVR::R16).Case("r17", AVR::R17)
1997 .Case("r18", AVR::R18).Case("r19", AVR::R19).Case("r20", AVR::R20)
1998 .Case("r21", AVR::R21).Case("r22", AVR::R22).Case("r23", AVR::R23)
1999 .Case("r24", AVR::R24).Case("r25", AVR::R25).Case("r26", AVR::R26)
2000 .Case("r27", AVR::R27).Case("r28", AVR::R28).Case("r29", AVR::R29)
2001 .Case("r30", AVR::R30).Case("r31", AVR::R31)
2002 .Case("X", AVR::R27R26).Case("Y", AVR::R29R28).Case("Z", AVR::R31R30)
2003 .Default(0);
2004 } else {
2005 Reg = StringSwitch<unsigned>(RegName)
2006 .Case("r0", AVR::R1R0).Case("r2", AVR::R3R2)
2007 .Case("r4", AVR::R5R4).Case("r6", AVR::R7R6)
2008 .Case("r8", AVR::R9R8).Case("r10", AVR::R11R10)
2009 .Case("r12", AVR::R13R12).Case("r14", AVR::R15R14)
2010 .Case("r16", AVR::R17R16).Case("r18", AVR::R19R18)
2011 .Case("r20", AVR::R21R20).Case("r22", AVR::R23R22)
2012 .Case("r24", AVR::R25R24).Case("r26", AVR::R27R26)
2013 .Case("r28", AVR::R29R28).Case("r30", AVR::R31R30)
2014 .Case("X", AVR::R27R26).Case("Y", AVR::R29R28).Case("Z", AVR::R31R30)
2015 .Default(0);
2016 }
2017
2018 if (Reg)
2019 return Reg;
2020
2021 report_fatal_error("Invalid register name global variable");
2022}
2023
Dylan McKay7549b0a2016-11-02 06:47:40 +00002024} // end of namespace llvm