blob: d06d7e22d4979e3bbdddb43c98b8d1b77560c487 [file] [log] [blame]
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the X86-specific support for the FastISel class. Much
11// of the target-specific code is generated by tablegen in the file
12// X86GenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "X86.h"
17#include "X86CallingConv.h"
18#include "X86InstrBuilder.h"
19#include "X86InstrInfo.h"
20#include "X86MachineFunctionInfo.h"
21#include "X86RegisterInfo.h"
22#include "X86Subtarget.h"
23#include "X86TargetMachine.h"
24#include "llvm/Analysis/BranchProbabilityInfo.h"
25#include "llvm/CodeGen/Analysis.h"
26#include "llvm/CodeGen/FastISel.h"
27#include "llvm/CodeGen/FunctionLoweringInfo.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineRegisterInfo.h"
31#include "llvm/IR/CallSite.h"
32#include "llvm/IR/CallingConv.h"
Reid Kleckner28865802016-04-14 18:29:59 +000033#include "llvm/IR/DebugInfo.h"
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000034#include "llvm/IR/DerivedTypes.h"
35#include "llvm/IR/GetElementPtrTypeIterator.h"
36#include "llvm/IR/GlobalAlias.h"
37#include "llvm/IR/GlobalVariable.h"
38#include "llvm/IR/Instructions.h"
39#include "llvm/IR/IntrinsicInst.h"
40#include "llvm/IR/Operator.h"
David Majnemerca194852015-02-10 22:00:34 +000041#include "llvm/MC/MCAsmInfo.h"
Rafael Espindolace4c2bc2015-06-23 12:21:54 +000042#include "llvm/MC/MCSymbol.h"
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000043#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Target/TargetOptions.h"
45using namespace llvm;
46
47namespace {
48
49class X86FastISel final : public FastISel {
50 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
51 /// make the right decision when generating code for different targets.
52 const X86Subtarget *Subtarget;
53
54 /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
55 /// floating point ops.
56 /// When SSE is available, use it for f32 operations.
57 /// When SSE2 is available, use it for f64 operations.
58 bool X86ScalarSSEf64;
59 bool X86ScalarSSEf32;
60
61public:
62 explicit X86FastISel(FunctionLoweringInfo &funcInfo,
63 const TargetLibraryInfo *libInfo)
Eric Christophera1c535b2015-02-02 23:03:45 +000064 : FastISel(funcInfo, libInfo) {
65 Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>();
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000066 X86ScalarSSEf64 = Subtarget->hasSSE2();
67 X86ScalarSSEf32 = Subtarget->hasSSE1();
68 }
69
70 bool fastSelectInstruction(const Instruction *I) override;
71
72 /// \brief The specified machine instr operand is a vreg, and that
73 /// vreg is being provided by the specified load instruction. If possible,
74 /// try to fold the load as an operand to the instruction, returning true if
75 /// possible.
76 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
77 const LoadInst *LI) override;
78
79 bool fastLowerArguments() override;
80 bool fastLowerCall(CallLoweringInfo &CLI) override;
81 bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
82
83#include "X86GenFastISel.inc"
84
85private:
86 bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT, DebugLoc DL);
87
Pete Cooperd0dae3e2015-05-05 23:41:53 +000088 bool X86FastEmitLoad(EVT VT, X86AddressMode &AM, MachineMemOperand *MMO,
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +000089 unsigned &ResultReg, unsigned Alignment = 1);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000090
Pete Cooperd0dae3e2015-05-05 23:41:53 +000091 bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000092 MachineMemOperand *MMO = nullptr, bool Aligned = false);
93 bool X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
Pete Cooperd0dae3e2015-05-05 23:41:53 +000094 X86AddressMode &AM,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000095 MachineMemOperand *MMO = nullptr, bool Aligned = false);
96
97 bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
98 unsigned &ResultReg);
99
100 bool X86SelectAddress(const Value *V, X86AddressMode &AM);
101 bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
102
103 bool X86SelectLoad(const Instruction *I);
104
105 bool X86SelectStore(const Instruction *I);
106
107 bool X86SelectRet(const Instruction *I);
108
109 bool X86SelectCmp(const Instruction *I);
110
111 bool X86SelectZExt(const Instruction *I);
112
113 bool X86SelectBranch(const Instruction *I);
114
115 bool X86SelectShift(const Instruction *I);
116
117 bool X86SelectDivRem(const Instruction *I);
118
119 bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I);
120
121 bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I);
122
123 bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I);
124
125 bool X86SelectSelect(const Instruction *I);
126
127 bool X86SelectTrunc(const Instruction *I);
128
Andrea Di Biagio62622d22015-02-10 12:04:41 +0000129 bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc,
130 const TargetRegisterClass *RC);
131
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000132 bool X86SelectFPExt(const Instruction *I);
133 bool X86SelectFPTrunc(const Instruction *I);
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +0000134 bool X86SelectSIToFP(const Instruction *I);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000135
136 const X86InstrInfo *getInstrInfo() const {
Eric Christophera1c535b2015-02-02 23:03:45 +0000137 return Subtarget->getInstrInfo();
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000138 }
139 const X86TargetMachine *getTargetMachine() const {
140 return static_cast<const X86TargetMachine *>(&TM);
141 }
142
143 bool handleConstantAddresses(const Value *V, X86AddressMode &AM);
144
145 unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT);
146 unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT);
147 unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT);
148 unsigned fastMaterializeConstant(const Constant *C) override;
149
150 unsigned fastMaterializeAlloca(const AllocaInst *C) override;
151
152 unsigned fastMaterializeFloatZero(const ConstantFP *CF) override;
153
154 /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
155 /// computed in an SSE register, not on the X87 floating point stack.
156 bool isScalarFPTypeInSSEReg(EVT VT) const {
157 return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
158 (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1
159 }
160
161 bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false);
162
163 bool IsMemcpySmall(uint64_t Len);
164
165 bool TryEmitSmallMemcpy(X86AddressMode DestAM,
166 X86AddressMode SrcAM, uint64_t Len);
167
168 bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
169 const Value *Cond);
Pete Cooperd0dae3e2015-05-05 23:41:53 +0000170
171 const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB,
172 X86AddressMode &AM);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000173};
174
175} // end anonymous namespace.
176
177static std::pair<X86::CondCode, bool>
178getX86ConditionCode(CmpInst::Predicate Predicate) {
179 X86::CondCode CC = X86::COND_INVALID;
180 bool NeedSwap = false;
181 switch (Predicate) {
182 default: break;
183 // Floating-point Predicates
184 case CmpInst::FCMP_UEQ: CC = X86::COND_E; break;
185 case CmpInst::FCMP_OLT: NeedSwap = true; // fall-through
186 case CmpInst::FCMP_OGT: CC = X86::COND_A; break;
187 case CmpInst::FCMP_OLE: NeedSwap = true; // fall-through
188 case CmpInst::FCMP_OGE: CC = X86::COND_AE; break;
189 case CmpInst::FCMP_UGT: NeedSwap = true; // fall-through
190 case CmpInst::FCMP_ULT: CC = X86::COND_B; break;
191 case CmpInst::FCMP_UGE: NeedSwap = true; // fall-through
192 case CmpInst::FCMP_ULE: CC = X86::COND_BE; break;
193 case CmpInst::FCMP_ONE: CC = X86::COND_NE; break;
194 case CmpInst::FCMP_UNO: CC = X86::COND_P; break;
195 case CmpInst::FCMP_ORD: CC = X86::COND_NP; break;
196 case CmpInst::FCMP_OEQ: // fall-through
197 case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break;
198
199 // Integer Predicates
200 case CmpInst::ICMP_EQ: CC = X86::COND_E; break;
201 case CmpInst::ICMP_NE: CC = X86::COND_NE; break;
202 case CmpInst::ICMP_UGT: CC = X86::COND_A; break;
203 case CmpInst::ICMP_UGE: CC = X86::COND_AE; break;
204 case CmpInst::ICMP_ULT: CC = X86::COND_B; break;
205 case CmpInst::ICMP_ULE: CC = X86::COND_BE; break;
206 case CmpInst::ICMP_SGT: CC = X86::COND_G; break;
207 case CmpInst::ICMP_SGE: CC = X86::COND_GE; break;
208 case CmpInst::ICMP_SLT: CC = X86::COND_L; break;
209 case CmpInst::ICMP_SLE: CC = X86::COND_LE; break;
210 }
211
212 return std::make_pair(CC, NeedSwap);
213}
214
215static std::pair<unsigned, bool>
216getX86SSEConditionCode(CmpInst::Predicate Predicate) {
217 unsigned CC;
218 bool NeedSwap = false;
219
220 // SSE Condition code mapping:
221 // 0 - EQ
222 // 1 - LT
223 // 2 - LE
224 // 3 - UNORD
225 // 4 - NEQ
226 // 5 - NLT
227 // 6 - NLE
228 // 7 - ORD
229 switch (Predicate) {
230 default: llvm_unreachable("Unexpected predicate");
231 case CmpInst::FCMP_OEQ: CC = 0; break;
232 case CmpInst::FCMP_OGT: NeedSwap = true; // fall-through
233 case CmpInst::FCMP_OLT: CC = 1; break;
234 case CmpInst::FCMP_OGE: NeedSwap = true; // fall-through
235 case CmpInst::FCMP_OLE: CC = 2; break;
236 case CmpInst::FCMP_UNO: CC = 3; break;
237 case CmpInst::FCMP_UNE: CC = 4; break;
238 case CmpInst::FCMP_ULE: NeedSwap = true; // fall-through
239 case CmpInst::FCMP_UGE: CC = 5; break;
240 case CmpInst::FCMP_ULT: NeedSwap = true; // fall-through
241 case CmpInst::FCMP_UGT: CC = 6; break;
242 case CmpInst::FCMP_ORD: CC = 7; break;
243 case CmpInst::FCMP_UEQ:
244 case CmpInst::FCMP_ONE: CC = 8; break;
245 }
246
247 return std::make_pair(CC, NeedSwap);
248}
249
Pete Cooperd0dae3e2015-05-05 23:41:53 +0000250/// \brief Adds a complex addressing mode to the given machine instr builder.
251/// Note, this will constrain the index register. If its not possible to
252/// constrain the given index register, then a new one will be created. The
253/// IndexReg field of the addressing mode will be updated to match in this case.
254const MachineInstrBuilder &
255X86FastISel::addFullAddress(const MachineInstrBuilder &MIB,
256 X86AddressMode &AM) {
257 // First constrain the index register. It needs to be a GR64_NOSP.
258 AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg,
259 MIB->getNumOperands() +
260 X86::AddrIndexReg);
261 return ::addFullAddress(MIB, AM);
262}
263
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000264/// \brief Check if it is possible to fold the condition from the XALU intrinsic
265/// into the user. The condition code will only be updated on success.
266bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
267 const Value *Cond) {
268 if (!isa<ExtractValueInst>(Cond))
269 return false;
270
271 const auto *EV = cast<ExtractValueInst>(Cond);
272 if (!isa<IntrinsicInst>(EV->getAggregateOperand()))
273 return false;
274
275 const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());
276 MVT RetVT;
277 const Function *Callee = II->getCalledFunction();
278 Type *RetTy =
279 cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);
280 if (!isTypeLegal(RetTy, RetVT))
281 return false;
282
283 if (RetVT != MVT::i32 && RetVT != MVT::i64)
284 return false;
285
286 X86::CondCode TmpCC;
287 switch (II->getIntrinsicID()) {
288 default: return false;
289 case Intrinsic::sadd_with_overflow:
290 case Intrinsic::ssub_with_overflow:
291 case Intrinsic::smul_with_overflow:
292 case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break;
293 case Intrinsic::uadd_with_overflow:
294 case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break;
295 }
296
297 // Check if both instructions are in the same basic block.
298 if (II->getParent() != I->getParent())
299 return false;
300
301 // Make sure nothing is in the way
Duncan P. N. Exon Smithd77de642015-10-19 21:48:29 +0000302 BasicBlock::const_iterator Start(I);
303 BasicBlock::const_iterator End(II);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000304 for (auto Itr = std::prev(Start); Itr != End; --Itr) {
305 // We only expect extractvalue instructions between the intrinsic and the
306 // instruction to be selected.
307 if (!isa<ExtractValueInst>(Itr))
308 return false;
309
310 // Check that the extractvalue operand comes from the intrinsic.
311 const auto *EVI = cast<ExtractValueInst>(Itr);
312 if (EVI->getAggregateOperand() != II)
313 return false;
314 }
315
316 CC = TmpCC;
317 return true;
318}
319
320bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) {
Mehdi Amini44ede332015-07-09 02:09:04 +0000321 EVT evt = TLI.getValueType(DL, Ty, /*HandleUnknown=*/true);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000322 if (evt == MVT::Other || !evt.isSimple())
323 // Unhandled type. Halt "fast" selection and bail.
324 return false;
325
326 VT = evt.getSimpleVT();
327 // For now, require SSE/SSE2 for performing floating-point operations,
328 // since x87 requires additional work.
329 if (VT == MVT::f64 && !X86ScalarSSEf64)
330 return false;
331 if (VT == MVT::f32 && !X86ScalarSSEf32)
332 return false;
333 // Similarly, no f80 support yet.
334 if (VT == MVT::f80)
335 return false;
336 // We only handle legal types. For example, on x86-32 the instruction
337 // selector contains all of the 64-bit instructions from x86-64,
338 // under the assumption that i64 won't be used if the target doesn't
339 // support it.
340 return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
341}
342
343#include "X86GenCallingConv.inc"
344
345/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
346/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
347/// Return true and the result register by reference if it is possible.
Pete Cooperd0dae3e2015-05-05 23:41:53 +0000348bool X86FastISel::X86FastEmitLoad(EVT VT, X86AddressMode &AM,
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +0000349 MachineMemOperand *MMO, unsigned &ResultReg,
350 unsigned Alignment) {
Craig Topperca9c0802016-06-02 04:19:45 +0000351 bool HasAVX = Subtarget->hasAVX();
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000352 // Get opcode and regclass of the output for the given load instruction.
353 unsigned Opc = 0;
354 const TargetRegisterClass *RC = nullptr;
355 switch (VT.getSimpleVT().SimpleTy) {
356 default: return false;
357 case MVT::i1:
358 case MVT::i8:
359 Opc = X86::MOV8rm;
360 RC = &X86::GR8RegClass;
361 break;
362 case MVT::i16:
363 Opc = X86::MOV16rm;
364 RC = &X86::GR16RegClass;
365 break;
366 case MVT::i32:
367 Opc = X86::MOV32rm;
368 RC = &X86::GR32RegClass;
369 break;
370 case MVT::i64:
371 // Must be in x86-64 mode.
372 Opc = X86::MOV64rm;
373 RC = &X86::GR64RegClass;
374 break;
375 case MVT::f32:
376 if (X86ScalarSSEf32) {
Craig Topperca9c0802016-06-02 04:19:45 +0000377 Opc = HasAVX ? X86::VMOVSSrm : X86::MOVSSrm;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000378 RC = &X86::FR32RegClass;
379 } else {
380 Opc = X86::LD_Fp32m;
381 RC = &X86::RFP32RegClass;
382 }
383 break;
384 case MVT::f64:
385 if (X86ScalarSSEf64) {
Craig Topperca9c0802016-06-02 04:19:45 +0000386 Opc = HasAVX ? X86::VMOVSDrm : X86::MOVSDrm;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000387 RC = &X86::FR64RegClass;
388 } else {
389 Opc = X86::LD_Fp64m;
390 RC = &X86::RFP64RegClass;
391 }
392 break;
393 case MVT::f80:
394 // No f80 support yet.
395 return false;
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +0000396 case MVT::v4f32:
397 if (Alignment >= 16)
Craig Topperca9c0802016-06-02 04:19:45 +0000398 Opc = HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm;
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +0000399 else
Craig Topperca9c0802016-06-02 04:19:45 +0000400 Opc = HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm;
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +0000401 RC = &X86::VR128RegClass;
402 break;
403 case MVT::v2f64:
404 if (Alignment >= 16)
Craig Topperca9c0802016-06-02 04:19:45 +0000405 Opc = HasAVX ? X86::VMOVAPDrm : X86::MOVAPDrm;
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +0000406 else
Craig Topperca9c0802016-06-02 04:19:45 +0000407 Opc = HasAVX ? X86::VMOVUPDrm : X86::MOVUPDrm;
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +0000408 RC = &X86::VR128RegClass;
409 break;
410 case MVT::v4i32:
411 case MVT::v2i64:
412 case MVT::v8i16:
413 case MVT::v16i8:
414 if (Alignment >= 16)
Craig Topperca9c0802016-06-02 04:19:45 +0000415 Opc = HasAVX ? X86::VMOVDQArm : X86::MOVDQArm;
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +0000416 else
Craig Topperca9c0802016-06-02 04:19:45 +0000417 Opc = HasAVX ? X86::VMOVDQUrm : X86::MOVDQUrm;
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +0000418 RC = &X86::VR128RegClass;
419 break;
Craig Topperca9c0802016-06-02 04:19:45 +0000420 case MVT::v8f32:
421 assert(HasAVX);
422 Opc = (Alignment >= 32) ? X86::VMOVAPSYrm : X86::VMOVUPSYrm;
423 RC = &X86::VR256RegClass;
424 break;
425 case MVT::v4f64:
426 assert(HasAVX);
427 Opc = (Alignment >= 32) ? X86::VMOVAPDYrm : X86::VMOVUPDYrm;
428 RC = &X86::VR256RegClass;
429 break;
430 case MVT::v8i32:
431 case MVT::v4i64:
432 case MVT::v16i16:
433 case MVT::v32i8:
434 assert(HasAVX);
435 Opc = (Alignment >= 32) ? X86::VMOVDQAYrm : X86::VMOVDQUYrm;
436 RC = &X86::VR256RegClass;
437 break;
Craig Topper048a08a2016-06-02 04:51:37 +0000438 case MVT::v16f32:
439 assert(Subtarget->hasAVX512());
440 Opc = (Alignment >= 64) ? X86::VMOVAPSZrm : X86::VMOVUPSZrm;
441 RC = &X86::VR512RegClass;
442 break;
443 case MVT::v8f64:
444 assert(Subtarget->hasAVX512());
445 Opc = (Alignment >= 64) ? X86::VMOVAPDZrm : X86::VMOVUPDZrm;
446 RC = &X86::VR512RegClass;
447 break;
448 case MVT::v8i64:
449 case MVT::v16i32:
450 case MVT::v32i16:
451 case MVT::v64i8:
452 assert(Subtarget->hasAVX512());
453 // Note: There are a lot more choices based on type with AVX-512, but
454 // there's really no advantage when the load isn't masked.
455 Opc = (Alignment >= 64) ? X86::VMOVDQA64Zmr : X86::VMOVDQU64Zmr;
456 RC = &X86::VR512RegClass;
457 break;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000458 }
459
460 ResultReg = createResultReg(RC);
461 MachineInstrBuilder MIB =
462 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
463 addFullAddress(MIB, AM);
464 if (MMO)
465 MIB->addMemOperand(*FuncInfo.MF, MMO);
466 return true;
467}
468
469/// X86FastEmitStore - Emit a machine instruction to store a value Val of
470/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
471/// and a displacement offset, or a GlobalAddress,
472/// i.e. V. Return true if it is possible.
473bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
Pete Cooperd0dae3e2015-05-05 23:41:53 +0000474 X86AddressMode &AM,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000475 MachineMemOperand *MMO, bool Aligned) {
Andrea Di Biagioc47edbe2015-10-14 10:03:13 +0000476 bool HasSSE2 = Subtarget->hasSSE2();
Simon Pilgrim5b65f282015-10-17 13:04:42 +0000477 bool HasSSE4A = Subtarget->hasSSE4A();
Andrea Di Biagioc47edbe2015-10-14 10:03:13 +0000478 bool HasAVX = Subtarget->hasAVX();
479 bool IsNonTemporal = MMO && MMO->isNonTemporal();
480
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000481 // Get opcode and regclass of the output for the given store instruction.
482 unsigned Opc = 0;
483 switch (VT.getSimpleVT().SimpleTy) {
484 case MVT::f80: // No f80 support yet.
485 default: return false;
486 case MVT::i1: {
487 // Mask out all but lowest bit.
488 unsigned AndResult = createResultReg(&X86::GR8RegClass);
489 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
490 TII.get(X86::AND8ri), AndResult)
491 .addReg(ValReg, getKillRegState(ValIsKill)).addImm(1);
492 ValReg = AndResult;
493 }
494 // FALLTHROUGH, handling i1 as i8.
495 case MVT::i8: Opc = X86::MOV8mr; break;
496 case MVT::i16: Opc = X86::MOV16mr; break;
Andrea Di Biagioc47edbe2015-10-14 10:03:13 +0000497 case MVT::i32:
498 Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr;
499 break;
500 case MVT::i64:
501 // Must be in x86-64 mode.
502 Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr;
503 break;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000504 case MVT::f32:
Simon Pilgrim5b65f282015-10-17 13:04:42 +0000505 if (X86ScalarSSEf32) {
506 if (IsNonTemporal && HasSSE4A)
507 Opc = X86::MOVNTSS;
508 else
509 Opc = HasAVX ? X86::VMOVSSmr : X86::MOVSSmr;
510 } else
511 Opc = X86::ST_Fp32m;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000512 break;
513 case MVT::f64:
Simon Pilgrim5b65f282015-10-17 13:04:42 +0000514 if (X86ScalarSSEf32) {
515 if (IsNonTemporal && HasSSE4A)
516 Opc = X86::MOVNTSD;
517 else
518 Opc = HasAVX ? X86::VMOVSDmr : X86::MOVSDmr;
519 } else
520 Opc = X86::ST_Fp64m;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000521 break;
522 case MVT::v4f32:
Andrea Di Biagioc47edbe2015-10-14 10:03:13 +0000523 if (Aligned) {
524 if (IsNonTemporal)
525 Opc = HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr;
526 else
527 Opc = HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr;
528 } else
529 Opc = HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000530 break;
531 case MVT::v2f64:
Andrea Di Biagioc47edbe2015-10-14 10:03:13 +0000532 if (Aligned) {
533 if (IsNonTemporal)
534 Opc = HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr;
535 else
536 Opc = HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr;
537 } else
538 Opc = HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000539 break;
540 case MVT::v4i32:
541 case MVT::v2i64:
542 case MVT::v8i16:
543 case MVT::v16i8:
Andrea Di Biagioc47edbe2015-10-14 10:03:13 +0000544 if (Aligned) {
545 if (IsNonTemporal)
546 Opc = HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr;
547 else
548 Opc = HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr;
549 } else
Craig Topperca9c0802016-06-02 04:19:45 +0000550 Opc = HasAVX ? X86::VMOVDQUmr : X86::MOVDQUmr;
551 break;
552 case MVT::v8f32:
553 assert(HasAVX);
554 if (Aligned)
555 Opc = IsNonTemporal ? X86::VMOVNTPSYmr : X86::VMOVAPSYmr;
556 else
557 Opc = X86::VMOVUPSYmr;
558 break;
559 case MVT::v4f64:
560 assert(HasAVX);
561 if (Aligned) {
562 Opc = IsNonTemporal ? X86::VMOVNTPDYmr : X86::VMOVAPDYmr;
563 } else
564 Opc = X86::VMOVUPDYmr;
565 break;
566 case MVT::v8i32:
567 case MVT::v4i64:
568 case MVT::v16i16:
569 case MVT::v32i8:
570 assert(HasAVX);
571 if (Aligned)
572 Opc = IsNonTemporal ? X86::VMOVNTDQYmr : X86::VMOVDQAYmr;
573 else
574 Opc = X86::VMOVDQUYmr;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000575 break;
Craig Topper048a08a2016-06-02 04:51:37 +0000576 case MVT::v16f32:
577 assert(Subtarget->hasAVX512());
578 if (Aligned)
579 Opc = IsNonTemporal ? X86::VMOVNTPSZmr : X86::VMOVAPSZmr;
580 else
581 Opc = X86::VMOVUPSZmr;
582 break;
583 case MVT::v8f64:
584 assert(Subtarget->hasAVX512());
585 if (Aligned) {
586 Opc = IsNonTemporal ? X86::VMOVNTPDZmr : X86::VMOVAPDZmr;
587 } else
588 Opc = X86::VMOVUPDZmr;
589 break;
590 case MVT::v8i64:
591 case MVT::v16i32:
592 case MVT::v32i16:
593 case MVT::v64i8:
594 assert(Subtarget->hasAVX512());
595 // Note: There are a lot more choices based on type with AVX-512, but
596 // there's really no advantage when the store isn't masked.
597 if (Aligned)
598 Opc = IsNonTemporal ? X86::VMOVNTDQZmr : X86::VMOVDQA64Zmr;
599 else
600 Opc = X86::VMOVDQU64Zmr;
601 break;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000602 }
603
Quentin Colombetbf200682016-04-27 22:33:42 +0000604 const MCInstrDesc &Desc = TII.get(Opc);
605 // Some of the instructions in the previous switch use FR128 instead
606 // of FR32 for ValReg. Make sure the register we feed the instruction
607 // matches its register class constraints.
608 // Note: This is fine to do a copy from FR32 to FR128, this is the
609 // same registers behind the scene and actually why it did not trigger
610 // any bugs before.
611 ValReg = constrainOperandRegClass(Desc, ValReg, Desc.getNumOperands() - 1);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000612 MachineInstrBuilder MIB =
Quentin Colombetbf200682016-04-27 22:33:42 +0000613 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, Desc);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000614 addFullAddress(MIB, AM).addReg(ValReg, getKillRegState(ValIsKill));
615 if (MMO)
616 MIB->addMemOperand(*FuncInfo.MF, MMO);
617
618 return true;
619}
620
621bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
Pete Cooperd0dae3e2015-05-05 23:41:53 +0000622 X86AddressMode &AM,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000623 MachineMemOperand *MMO, bool Aligned) {
624 // Handle 'null' like i32/i64 0.
625 if (isa<ConstantPointerNull>(Val))
626 Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext()));
627
628 // If this is a store of a simple constant, fold the constant into the store.
629 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
630 unsigned Opc = 0;
631 bool Signed = true;
632 switch (VT.getSimpleVT().SimpleTy) {
633 default: break;
634 case MVT::i1: Signed = false; // FALLTHROUGH to handle as i8.
635 case MVT::i8: Opc = X86::MOV8mi; break;
636 case MVT::i16: Opc = X86::MOV16mi; break;
637 case MVT::i32: Opc = X86::MOV32mi; break;
638 case MVT::i64:
639 // Must be a 32-bit sign extended value.
640 if (isInt<32>(CI->getSExtValue()))
641 Opc = X86::MOV64mi32;
642 break;
643 }
644
645 if (Opc) {
646 MachineInstrBuilder MIB =
647 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
648 addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue()
649 : CI->getZExtValue());
650 if (MMO)
651 MIB->addMemOperand(*FuncInfo.MF, MMO);
652 return true;
653 }
654 }
655
656 unsigned ValReg = getRegForValue(Val);
657 if (ValReg == 0)
658 return false;
659
660 bool ValKill = hasTrivialKill(Val);
661 return X86FastEmitStore(VT, ValReg, ValKill, AM, MMO, Aligned);
662}
663
664/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
665/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
666/// ISD::SIGN_EXTEND).
667bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
668 unsigned Src, EVT SrcVT,
669 unsigned &ResultReg) {
670 unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
671 Src, /*TODO: Kill=*/false);
672 if (RR == 0)
673 return false;
674
675 ResultReg = RR;
676 return true;
677}
678
679bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) {
680 // Handle constant address.
681 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
682 // Can't handle alternate code models yet.
683 if (TM.getCodeModel() != CodeModel::Small)
684 return false;
685
686 // Can't handle TLS yet.
687 if (GV->isThreadLocal())
688 return false;
689
690 // RIP-relative addresses can't have additional register operands, so if
691 // we've already folded stuff into the addressing mode, just force the
692 // global value into its own register, which we can use as the basereg.
693 if (!Subtarget->isPICStyleRIPRel() ||
694 (AM.Base.Reg == 0 && AM.IndexReg == 0)) {
695 // Okay, we've committed to selecting this global. Set up the address.
696 AM.GV = GV;
697
698 // Allow the subtarget to classify the global.
Rafael Espindolaab03eb02016-05-19 22:07:57 +0000699 unsigned char GVFlags = Subtarget->classifyGlobalReference(GV);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000700
701 // If this reference is relative to the pic base, set it now.
702 if (isGlobalRelativeToPICBase(GVFlags)) {
703 // FIXME: How do we know Base.Reg is free??
704 AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
705 }
706
707 // Unless the ABI requires an extra load, return a direct reference to
708 // the global.
709 if (!isGlobalStubReference(GVFlags)) {
710 if (Subtarget->isPICStyleRIPRel()) {
711 // Use rip-relative addressing if we can. Above we verified that the
712 // base and index registers are unused.
713 assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
714 AM.Base.Reg = X86::RIP;
715 }
716 AM.GVOpFlags = GVFlags;
717 return true;
718 }
719
720 // Ok, we need to do a load from a stub. If we've already loaded from
721 // this stub, reuse the loaded pointer, otherwise emit the load now.
722 DenseMap<const Value *, unsigned>::iterator I = LocalValueMap.find(V);
723 unsigned LoadReg;
724 if (I != LocalValueMap.end() && I->second != 0) {
725 LoadReg = I->second;
726 } else {
727 // Issue load from stub.
728 unsigned Opc = 0;
729 const TargetRegisterClass *RC = nullptr;
730 X86AddressMode StubAM;
731 StubAM.Base.Reg = AM.Base.Reg;
732 StubAM.GV = GV;
733 StubAM.GVOpFlags = GVFlags;
734
735 // Prepare for inserting code in the local-value area.
736 SavePoint SaveInsertPt = enterLocalValueArea();
737
Mehdi Amini44ede332015-07-09 02:09:04 +0000738 if (TLI.getPointerTy(DL) == MVT::i64) {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000739 Opc = X86::MOV64rm;
740 RC = &X86::GR64RegClass;
741
742 if (Subtarget->isPICStyleRIPRel())
743 StubAM.Base.Reg = X86::RIP;
744 } else {
745 Opc = X86::MOV32rm;
746 RC = &X86::GR32RegClass;
747 }
748
749 LoadReg = createResultReg(RC);
750 MachineInstrBuilder LoadMI =
751 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), LoadReg);
752 addFullAddress(LoadMI, StubAM);
753
754 // Ok, back to normal mode.
755 leaveLocalValueArea(SaveInsertPt);
756
757 // Prevent loading GV stub multiple times in same MBB.
758 LocalValueMap[V] = LoadReg;
759 }
760
761 // Now construct the final address. Note that the Disp, Scale,
762 // and Index values may already be set here.
763 AM.Base.Reg = LoadReg;
764 AM.GV = nullptr;
765 return true;
766 }
767 }
768
769 // If all else fails, try to materialize the value in a register.
770 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
771 if (AM.Base.Reg == 0) {
772 AM.Base.Reg = getRegForValue(V);
773 return AM.Base.Reg != 0;
774 }
775 if (AM.IndexReg == 0) {
776 assert(AM.Scale == 1 && "Scale with no index!");
777 AM.IndexReg = getRegForValue(V);
778 return AM.IndexReg != 0;
779 }
780 }
781
782 return false;
783}
784
785/// X86SelectAddress - Attempt to fill in an address from the given value.
786///
787bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
788 SmallVector<const Value *, 32> GEPs;
789redo_gep:
790 const User *U = nullptr;
791 unsigned Opcode = Instruction::UserOp1;
792 if (const Instruction *I = dyn_cast<Instruction>(V)) {
793 // Don't walk into other basic blocks; it's possible we haven't
794 // visited them yet, so the instructions may not yet be assigned
795 // virtual registers.
796 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) ||
797 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
798 Opcode = I->getOpcode();
799 U = I;
800 }
801 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
802 Opcode = C->getOpcode();
803 U = C;
804 }
805
806 if (PointerType *Ty = dyn_cast<PointerType>(V->getType()))
807 if (Ty->getAddressSpace() > 255)
808 // Fast instruction selection doesn't support the special
809 // address spaces.
810 return false;
811
812 switch (Opcode) {
813 default: break;
814 case Instruction::BitCast:
815 // Look past bitcasts.
816 return X86SelectAddress(U->getOperand(0), AM);
817
818 case Instruction::IntToPtr:
819 // Look past no-op inttoptrs.
Mehdi Amini44ede332015-07-09 02:09:04 +0000820 if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
821 TLI.getPointerTy(DL))
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000822 return X86SelectAddress(U->getOperand(0), AM);
823 break;
824
825 case Instruction::PtrToInt:
826 // Look past no-op ptrtoints.
Mehdi Amini44ede332015-07-09 02:09:04 +0000827 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000828 return X86SelectAddress(U->getOperand(0), AM);
829 break;
830
831 case Instruction::Alloca: {
832 // Do static allocas.
833 const AllocaInst *A = cast<AllocaInst>(V);
834 DenseMap<const AllocaInst *, int>::iterator SI =
835 FuncInfo.StaticAllocaMap.find(A);
836 if (SI != FuncInfo.StaticAllocaMap.end()) {
837 AM.BaseType = X86AddressMode::FrameIndexBase;
838 AM.Base.FrameIndex = SI->second;
839 return true;
840 }
841 break;
842 }
843
844 case Instruction::Add: {
845 // Adds of constants are common and easy enough.
846 if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
847 uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
848 // They have to fit in the 32-bit signed displacement field though.
849 if (isInt<32>(Disp)) {
850 AM.Disp = (uint32_t)Disp;
851 return X86SelectAddress(U->getOperand(0), AM);
852 }
853 }
854 break;
855 }
856
857 case Instruction::GetElementPtr: {
858 X86AddressMode SavedAM = AM;
859
860 // Pattern-match simple GEPs.
861 uint64_t Disp = (int32_t)AM.Disp;
862 unsigned IndexReg = AM.IndexReg;
863 unsigned Scale = AM.Scale;
864 gep_type_iterator GTI = gep_type_begin(U);
865 // Iterate through the indices, folding what we can. Constants can be
866 // folded, and one dynamic index can be handled, if the scale is supported.
867 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
868 i != e; ++i, ++GTI) {
869 const Value *Op = *i;
870 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
871 const StructLayout *SL = DL.getStructLayout(STy);
872 Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());
873 continue;
874 }
875
876 // A array/variable index is always of the form i*S where S is the
877 // constant scale size. See if we can push the scale into immediates.
878 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
879 for (;;) {
880 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
881 // Constant-offset addressing.
882 Disp += CI->getSExtValue() * S;
883 break;
884 }
885 if (canFoldAddIntoGEP(U, Op)) {
886 // A compatible add with a constant operand. Fold the constant.
887 ConstantInt *CI =
888 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
889 Disp += CI->getSExtValue() * S;
890 // Iterate on the other operand.
891 Op = cast<AddOperator>(Op)->getOperand(0);
892 continue;
893 }
894 if (IndexReg == 0 &&
895 (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
896 (S == 1 || S == 2 || S == 4 || S == 8)) {
897 // Scaled-index addressing.
898 Scale = S;
899 IndexReg = getRegForGEPIndex(Op).first;
900 if (IndexReg == 0)
901 return false;
902 break;
903 }
904 // Unsupported.
905 goto unsupported_gep;
906 }
907 }
908
909 // Check for displacement overflow.
910 if (!isInt<32>(Disp))
911 break;
912
913 AM.IndexReg = IndexReg;
914 AM.Scale = Scale;
915 AM.Disp = (uint32_t)Disp;
916 GEPs.push_back(V);
917
918 if (const GetElementPtrInst *GEP =
919 dyn_cast<GetElementPtrInst>(U->getOperand(0))) {
920 // Ok, the GEP indices were covered by constant-offset and scaled-index
921 // addressing. Update the address state and move on to examining the base.
922 V = GEP;
923 goto redo_gep;
924 } else if (X86SelectAddress(U->getOperand(0), AM)) {
925 return true;
926 }
927
928 // If we couldn't merge the gep value into this addr mode, revert back to
929 // our address and just match the value instead of completely failing.
930 AM = SavedAM;
931
932 for (SmallVectorImpl<const Value *>::reverse_iterator
933 I = GEPs.rbegin(), E = GEPs.rend(); I != E; ++I)
934 if (handleConstantAddresses(*I, AM))
935 return true;
936
937 return false;
938 unsupported_gep:
939 // Ok, the GEP indices weren't all covered.
940 break;
941 }
942 }
943
944 return handleConstantAddresses(V, AM);
945}
946
947/// X86SelectCallAddress - Attempt to fill in an address from the given value.
948///
949bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
950 const User *U = nullptr;
951 unsigned Opcode = Instruction::UserOp1;
952 const Instruction *I = dyn_cast<Instruction>(V);
953 // Record if the value is defined in the same basic block.
954 //
955 // This information is crucial to know whether or not folding an
956 // operand is valid.
957 // Indeed, FastISel generates or reuses a virtual register for all
958 // operands of all instructions it selects. Obviously, the definition and
959 // its uses must use the same virtual register otherwise the produced
960 // code is incorrect.
961 // Before instruction selection, FunctionLoweringInfo::set sets the virtual
962 // registers for values that are alive across basic blocks. This ensures
963 // that the values are consistently set between across basic block, even
964 // if different instruction selection mechanisms are used (e.g., a mix of
965 // SDISel and FastISel).
966 // For values local to a basic block, the instruction selection process
967 // generates these virtual registers with whatever method is appropriate
968 // for its needs. In particular, FastISel and SDISel do not share the way
969 // local virtual registers are set.
970 // Therefore, this is impossible (or at least unsafe) to share values
971 // between basic blocks unless they use the same instruction selection
972 // method, which is not guarantee for X86.
973 // Moreover, things like hasOneUse could not be used accurately, if we
974 // allow to reference values across basic blocks whereas they are not
975 // alive across basic blocks initially.
976 bool InMBB = true;
977 if (I) {
978 Opcode = I->getOpcode();
979 U = I;
980 InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
981 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
982 Opcode = C->getOpcode();
983 U = C;
984 }
985
986 switch (Opcode) {
987 default: break;
988 case Instruction::BitCast:
989 // Look past bitcasts if its operand is in the same BB.
990 if (InMBB)
991 return X86SelectCallAddress(U->getOperand(0), AM);
992 break;
993
994 case Instruction::IntToPtr:
995 // Look past no-op inttoptrs if its operand is in the same BB.
996 if (InMBB &&
Mehdi Amini44ede332015-07-09 02:09:04 +0000997 TLI.getValueType(DL, U->getOperand(0)->getType()) ==
998 TLI.getPointerTy(DL))
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000999 return X86SelectCallAddress(U->getOperand(0), AM);
1000 break;
1001
1002 case Instruction::PtrToInt:
1003 // Look past no-op ptrtoints if its operand is in the same BB.
Mehdi Amini44ede332015-07-09 02:09:04 +00001004 if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001005 return X86SelectCallAddress(U->getOperand(0), AM);
1006 break;
1007 }
1008
1009 // Handle constant address.
1010 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1011 // Can't handle alternate code models yet.
1012 if (TM.getCodeModel() != CodeModel::Small)
1013 return false;
1014
1015 // RIP-relative addresses can't have additional register operands.
1016 if (Subtarget->isPICStyleRIPRel() &&
1017 (AM.Base.Reg != 0 || AM.IndexReg != 0))
1018 return false;
1019
1020 // Can't handle DLL Import.
1021 if (GV->hasDLLImportStorageClass())
1022 return false;
1023
1024 // Can't handle TLS.
1025 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1026 if (GVar->isThreadLocal())
1027 return false;
1028
1029 // Okay, we've committed to selecting this global. Set up the basic address.
1030 AM.GV = GV;
1031
1032 // No ABI requires an extra load for anything other than DLLImport, which
1033 // we rejected above. Return a direct reference to the global.
1034 if (Subtarget->isPICStyleRIPRel()) {
1035 // Use rip-relative addressing if we can. Above we verified that the
1036 // base and index registers are unused.
1037 assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
1038 AM.Base.Reg = X86::RIP;
Rafael Espindolac7e98132016-05-20 12:20:10 +00001039 } else {
1040 AM.GVOpFlags = Subtarget->classifyLocalReference(nullptr);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001041 }
1042
1043 return true;
1044 }
1045
1046 // If all else fails, try to materialize the value in a register.
1047 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
1048 if (AM.Base.Reg == 0) {
1049 AM.Base.Reg = getRegForValue(V);
1050 return AM.Base.Reg != 0;
1051 }
1052 if (AM.IndexReg == 0) {
1053 assert(AM.Scale == 1 && "Scale with no index!");
1054 AM.IndexReg = getRegForValue(V);
1055 return AM.IndexReg != 0;
1056 }
1057 }
1058
1059 return false;
1060}
1061
1062
1063/// X86SelectStore - Select and emit code to implement store instructions.
1064bool X86FastISel::X86SelectStore(const Instruction *I) {
1065 // Atomic stores need special handling.
1066 const StoreInst *S = cast<StoreInst>(I);
1067
1068 if (S->isAtomic())
1069 return false;
1070
Manman Ren57518142016-04-11 21:08:06 +00001071 const Value *PtrV = I->getOperand(1);
1072 if (TLI.supportSwiftError()) {
1073 // Swifterror values can come from either a function parameter with
1074 // swifterror attribute or an alloca with swifterror attribute.
1075 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
1076 if (Arg->hasSwiftErrorAttr())
1077 return false;
1078 }
1079
1080 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
1081 if (Alloca->isSwiftError())
1082 return false;
1083 }
1084 }
1085
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001086 const Value *Val = S->getValueOperand();
1087 const Value *Ptr = S->getPointerOperand();
1088
1089 MVT VT;
1090 if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true))
1091 return false;
1092
1093 unsigned Alignment = S->getAlignment();
1094 unsigned ABIAlignment = DL.getABITypeAlignment(Val->getType());
1095 if (Alignment == 0) // Ensure that codegen never sees alignment 0
1096 Alignment = ABIAlignment;
1097 bool Aligned = Alignment >= ABIAlignment;
1098
1099 X86AddressMode AM;
1100 if (!X86SelectAddress(Ptr, AM))
1101 return false;
1102
1103 return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned);
1104}
1105
1106/// X86SelectRet - Select and emit code to implement ret instructions.
1107bool X86FastISel::X86SelectRet(const Instruction *I) {
1108 const ReturnInst *Ret = cast<ReturnInst>(I);
1109 const Function &F = *I->getParent()->getParent();
1110 const X86MachineFunctionInfo *X86MFInfo =
1111 FuncInfo.MF->getInfo<X86MachineFunctionInfo>();
1112
1113 if (!FuncInfo.CanLowerReturn)
1114 return false;
1115
Manman Ren57518142016-04-11 21:08:06 +00001116 if (TLI.supportSwiftError() &&
1117 F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
1118 return false;
1119
Manman Rened967f32016-01-12 01:08:46 +00001120 if (TLI.supportSplitCSR(FuncInfo.MF))
1121 return false;
1122
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001123 CallingConv::ID CC = F.getCallingConv();
1124 if (CC != CallingConv::C &&
1125 CC != CallingConv::Fast &&
1126 CC != CallingConv::X86_FastCall &&
1127 CC != CallingConv::X86_64_SysV)
1128 return false;
1129
1130 if (Subtarget->isCallingConvWin64(CC))
1131 return false;
1132
1133 // Don't handle popping bytes on return for now.
1134 if (X86MFInfo->getBytesToPopOnReturn() != 0)
1135 return false;
1136
1137 // fastcc with -tailcallopt is intended to provide a guaranteed
1138 // tail call optimization. Fastisel doesn't know how to do that.
1139 if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
1140 return false;
1141
1142 // Let SDISel handle vararg functions.
1143 if (F.isVarArg())
1144 return false;
1145
1146 // Build a list of return value registers.
1147 SmallVector<unsigned, 4> RetRegs;
1148
1149 if (Ret->getNumOperands() > 0) {
1150 SmallVector<ISD::OutputArg, 4> Outs;
Mehdi Amini44ede332015-07-09 02:09:04 +00001151 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001152
1153 // Analyze operands of the call, assigning locations to each operand.
1154 SmallVector<CCValAssign, 16> ValLocs;
1155 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
1156 CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1157
1158 const Value *RV = Ret->getOperand(0);
1159 unsigned Reg = getRegForValue(RV);
1160 if (Reg == 0)
1161 return false;
1162
1163 // Only handle a single return value for now.
1164 if (ValLocs.size() != 1)
1165 return false;
1166
1167 CCValAssign &VA = ValLocs[0];
1168
1169 // Don't bother handling odd stuff for now.
1170 if (VA.getLocInfo() != CCValAssign::Full)
1171 return false;
1172 // Only handle register returns for now.
1173 if (!VA.isRegLoc())
1174 return false;
1175
1176 // The calling-convention tables for x87 returns don't tell
1177 // the whole story.
1178 if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
1179 return false;
1180
1181 unsigned SrcReg = Reg + VA.getValNo();
Mehdi Amini44ede332015-07-09 02:09:04 +00001182 EVT SrcVT = TLI.getValueType(DL, RV->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001183 EVT DstVT = VA.getValVT();
1184 // Special handling for extended integers.
1185 if (SrcVT != DstVT) {
1186 if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16)
1187 return false;
1188
1189 if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
1190 return false;
1191
1192 assert(DstVT == MVT::i32 && "X86 should always ext to i32");
1193
1194 if (SrcVT == MVT::i1) {
1195 if (Outs[0].Flags.isSExt())
1196 return false;
1197 SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false);
1198 SrcVT = MVT::i8;
1199 }
1200 unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND :
1201 ISD::SIGN_EXTEND;
1202 SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op,
1203 SrcReg, /*TODO: Kill=*/false);
1204 }
1205
1206 // Make the copy.
1207 unsigned DstReg = VA.getLocReg();
1208 const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg);
1209 // Avoid a cross-class copy. This is very unlikely.
1210 if (!SrcRC->contains(DstReg))
1211 return false;
1212 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1213 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
1214
1215 // Add register to return instruction.
1216 RetRegs.push_back(VA.getLocReg());
1217 }
1218
Manman Ren1c3f65a2016-04-26 18:08:06 +00001219 // Swift calling convention does not require we copy the sret argument
1220 // into %rax/%eax for the return, and SRetReturnReg is not set for Swift.
1221
Dimitry Andric227b9282016-01-03 17:22:03 +00001222 // All x86 ABIs require that for returning structs by value we copy
1223 // the sret argument into %rax/%eax (depending on ABI) for the return.
1224 // We saved the argument into a virtual register in the entry block,
Michael Kuperstein2ea81ba2015-12-28 14:39:21 +00001225 // so now we copy the value out and into %rax/%eax.
Manman Ren1c3f65a2016-04-26 18:08:06 +00001226 if (F.hasStructRetAttr() && CC != CallingConv::Swift) {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001227 unsigned Reg = X86MFInfo->getSRetReturnReg();
1228 assert(Reg &&
1229 "SRetReturnReg should have been set in LowerFormalArguments()!");
1230 unsigned RetReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
1231 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1232 TII.get(TargetOpcode::COPY), RetReg).addReg(Reg);
1233 RetRegs.push_back(RetReg);
1234 }
1235
1236 // Now emit the RET.
1237 MachineInstrBuilder MIB =
1238 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1239 TII.get(Subtarget->is64Bit() ? X86::RETQ : X86::RETL));
1240 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1241 MIB.addReg(RetRegs[i], RegState::Implicit);
1242 return true;
1243}
1244
1245/// X86SelectLoad - Select and emit code to implement load instructions.
1246///
1247bool X86FastISel::X86SelectLoad(const Instruction *I) {
1248 const LoadInst *LI = cast<LoadInst>(I);
1249
1250 // Atomic loads need special handling.
1251 if (LI->isAtomic())
1252 return false;
1253
Manman Ren57518142016-04-11 21:08:06 +00001254 const Value *SV = I->getOperand(0);
1255 if (TLI.supportSwiftError()) {
1256 // Swifterror values can come from either a function parameter with
1257 // swifterror attribute or an alloca with swifterror attribute.
1258 if (const Argument *Arg = dyn_cast<Argument>(SV)) {
1259 if (Arg->hasSwiftErrorAttr())
1260 return false;
1261 }
1262
1263 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
1264 if (Alloca->isSwiftError())
1265 return false;
1266 }
1267 }
1268
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001269 MVT VT;
1270 if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true))
1271 return false;
1272
1273 const Value *Ptr = LI->getPointerOperand();
1274
1275 X86AddressMode AM;
1276 if (!X86SelectAddress(Ptr, AM))
1277 return false;
1278
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +00001279 unsigned Alignment = LI->getAlignment();
1280 unsigned ABIAlignment = DL.getABITypeAlignment(LI->getType());
1281 if (Alignment == 0) // Ensure that codegen never sees alignment 0
1282 Alignment = ABIAlignment;
1283
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001284 unsigned ResultReg = 0;
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +00001285 if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg,
1286 Alignment))
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001287 return false;
1288
1289 updateValueMap(I, ResultReg);
1290 return true;
1291}
1292
1293static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
1294 bool HasAVX = Subtarget->hasAVX();
1295 bool X86ScalarSSEf32 = Subtarget->hasSSE1();
1296 bool X86ScalarSSEf64 = Subtarget->hasSSE2();
1297
1298 switch (VT.getSimpleVT().SimpleTy) {
1299 default: return 0;
1300 case MVT::i8: return X86::CMP8rr;
1301 case MVT::i16: return X86::CMP16rr;
1302 case MVT::i32: return X86::CMP32rr;
1303 case MVT::i64: return X86::CMP64rr;
1304 case MVT::f32:
1305 return X86ScalarSSEf32 ? (HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr) : 0;
1306 case MVT::f64:
1307 return X86ScalarSSEf64 ? (HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr) : 0;
1308 }
1309}
1310
Rafael Espindola19141f22015-03-16 14:05:49 +00001311/// If we have a comparison with RHS as the RHS of the comparison, return an
1312/// opcode that works for the compare (e.g. CMP32ri) otherwise return 0.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001313static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
Rafael Espindola933f51a2015-03-16 14:25:08 +00001314 int64_t Val = RHSC->getSExtValue();
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001315 switch (VT.getSimpleVT().SimpleTy) {
1316 // Otherwise, we can't fold the immediate into this comparison.
Rafael Espindola19141f22015-03-16 14:05:49 +00001317 default:
1318 return 0;
1319 case MVT::i8:
1320 return X86::CMP8ri;
1321 case MVT::i16:
Rafael Espindola933f51a2015-03-16 14:25:08 +00001322 if (isInt<8>(Val))
1323 return X86::CMP16ri8;
Rafael Espindola19141f22015-03-16 14:05:49 +00001324 return X86::CMP16ri;
1325 case MVT::i32:
Rafael Espindola933f51a2015-03-16 14:25:08 +00001326 if (isInt<8>(Val))
1327 return X86::CMP32ri8;
Rafael Espindola19141f22015-03-16 14:05:49 +00001328 return X86::CMP32ri;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001329 case MVT::i64:
Rafael Espindola933f51a2015-03-16 14:25:08 +00001330 if (isInt<8>(Val))
1331 return X86::CMP64ri8;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001332 // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
1333 // field.
Rafael Espindola933f51a2015-03-16 14:25:08 +00001334 if (isInt<32>(Val))
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001335 return X86::CMP64ri32;
1336 return 0;
1337 }
1338}
1339
1340bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1,
1341 EVT VT, DebugLoc CurDbgLoc) {
1342 unsigned Op0Reg = getRegForValue(Op0);
1343 if (Op0Reg == 0) return false;
1344
1345 // Handle 'null' like i32/i64 0.
1346 if (isa<ConstantPointerNull>(Op1))
1347 Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext()));
1348
1349 // We have two options: compare with register or immediate. If the RHS of
1350 // the compare is an immediate that we can fold into this compare, use
1351 // CMPri, otherwise use CMPrr.
1352 if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1353 if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
1354 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareImmOpc))
1355 .addReg(Op0Reg)
1356 .addImm(Op1C->getSExtValue());
1357 return true;
1358 }
1359 }
1360
1361 unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
1362 if (CompareOpc == 0) return false;
1363
1364 unsigned Op1Reg = getRegForValue(Op1);
1365 if (Op1Reg == 0) return false;
1366 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareOpc))
1367 .addReg(Op0Reg)
1368 .addReg(Op1Reg);
1369
1370 return true;
1371}
1372
1373bool X86FastISel::X86SelectCmp(const Instruction *I) {
1374 const CmpInst *CI = cast<CmpInst>(I);
1375
1376 MVT VT;
1377 if (!isTypeLegal(I->getOperand(0)->getType(), VT))
1378 return false;
1379
1380 // Try to optimize or fold the cmp.
1381 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1382 unsigned ResultReg = 0;
1383 switch (Predicate) {
1384 default: break;
1385 case CmpInst::FCMP_FALSE: {
1386 ResultReg = createResultReg(&X86::GR32RegClass);
1387 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32r0),
1388 ResultReg);
1389 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, /*Kill=*/true,
1390 X86::sub_8bit);
1391 if (!ResultReg)
1392 return false;
1393 break;
1394 }
1395 case CmpInst::FCMP_TRUE: {
1396 ResultReg = createResultReg(&X86::GR8RegClass);
1397 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
1398 ResultReg).addImm(1);
1399 break;
1400 }
1401 }
1402
1403 if (ResultReg) {
1404 updateValueMap(I, ResultReg);
1405 return true;
1406 }
1407
1408 const Value *LHS = CI->getOperand(0);
1409 const Value *RHS = CI->getOperand(1);
1410
1411 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
1412 // We don't have to materialize a zero constant for this case and can just use
1413 // %x again on the RHS.
1414 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1415 const auto *RHSC = dyn_cast<ConstantFP>(RHS);
1416 if (RHSC && RHSC->isNullValue())
1417 RHS = LHS;
1418 }
1419
1420 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
1421 static unsigned SETFOpcTable[2][3] = {
1422 { X86::SETEr, X86::SETNPr, X86::AND8rr },
1423 { X86::SETNEr, X86::SETPr, X86::OR8rr }
1424 };
1425 unsigned *SETFOpc = nullptr;
1426 switch (Predicate) {
1427 default: break;
1428 case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break;
1429 case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break;
1430 }
1431
1432 ResultReg = createResultReg(&X86::GR8RegClass);
1433 if (SETFOpc) {
1434 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1435 return false;
1436
1437 unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
1438 unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
1439 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]),
1440 FlagReg1);
1441 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]),
1442 FlagReg2);
1443 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[2]),
1444 ResultReg).addReg(FlagReg1).addReg(FlagReg2);
1445 updateValueMap(I, ResultReg);
1446 return true;
1447 }
1448
1449 X86::CondCode CC;
1450 bool SwapArgs;
1451 std::tie(CC, SwapArgs) = getX86ConditionCode(Predicate);
1452 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1453 unsigned Opc = X86::getSETFromCond(CC);
1454
1455 if (SwapArgs)
1456 std::swap(LHS, RHS);
1457
1458 // Emit a compare of LHS/RHS.
1459 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1460 return false;
1461
1462 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
1463 updateValueMap(I, ResultReg);
1464 return true;
1465}
1466
1467bool X86FastISel::X86SelectZExt(const Instruction *I) {
Mehdi Amini44ede332015-07-09 02:09:04 +00001468 EVT DstVT = TLI.getValueType(DL, I->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001469 if (!TLI.isTypeLegal(DstVT))
1470 return false;
1471
1472 unsigned ResultReg = getRegForValue(I->getOperand(0));
1473 if (ResultReg == 0)
1474 return false;
1475
1476 // Handle zero-extension from i1 to i8, which is common.
Mehdi Amini44ede332015-07-09 02:09:04 +00001477 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001478 if (SrcVT.SimpleTy == MVT::i1) {
1479 // Set the high bits to zero.
1480 ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false);
1481 SrcVT = MVT::i8;
1482
1483 if (ResultReg == 0)
1484 return false;
1485 }
1486
1487 if (DstVT == MVT::i64) {
1488 // Handle extension to 64-bits via sub-register shenanigans.
1489 unsigned MovInst;
1490
1491 switch (SrcVT.SimpleTy) {
1492 case MVT::i8: MovInst = X86::MOVZX32rr8; break;
1493 case MVT::i16: MovInst = X86::MOVZX32rr16; break;
1494 case MVT::i32: MovInst = X86::MOV32rr; break;
1495 default: llvm_unreachable("Unexpected zext to i64 source type");
1496 }
1497
1498 unsigned Result32 = createResultReg(&X86::GR32RegClass);
1499 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovInst), Result32)
1500 .addReg(ResultReg);
1501
1502 ResultReg = createResultReg(&X86::GR64RegClass);
1503 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::SUBREG_TO_REG),
1504 ResultReg)
1505 .addImm(0).addReg(Result32).addImm(X86::sub_32bit);
1506 } else if (DstVT != MVT::i8) {
1507 ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
1508 ResultReg, /*Kill=*/true);
1509 if (ResultReg == 0)
1510 return false;
1511 }
1512
1513 updateValueMap(I, ResultReg);
1514 return true;
1515}
1516
1517bool X86FastISel::X86SelectBranch(const Instruction *I) {
1518 // Unconditional branches are selected by tablegen-generated code.
1519 // Handle a conditional branch.
1520 const BranchInst *BI = cast<BranchInst>(I);
1521 MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1522 MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1523
1524 // Fold the common case of a conditional branch with a comparison
1525 // in the same block (values defined on other blocks may not have
1526 // initialized registers).
1527 X86::CondCode CC;
1528 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1529 if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
Mehdi Amini44ede332015-07-09 02:09:04 +00001530 EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001531
1532 // Try to optimize or fold the cmp.
1533 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1534 switch (Predicate) {
1535 default: break;
1536 case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, DbgLoc); return true;
1537 case CmpInst::FCMP_TRUE: fastEmitBranch(TrueMBB, DbgLoc); return true;
1538 }
1539
1540 const Value *CmpLHS = CI->getOperand(0);
1541 const Value *CmpRHS = CI->getOperand(1);
1542
1543 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x,
1544 // 0.0.
1545 // We don't have to materialize a zero constant for this case and can just
1546 // use %x again on the RHS.
1547 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1548 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
1549 if (CmpRHSC && CmpRHSC->isNullValue())
1550 CmpRHS = CmpLHS;
1551 }
1552
1553 // Try to take advantage of fallthrough opportunities.
1554 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1555 std::swap(TrueMBB, FalseMBB);
1556 Predicate = CmpInst::getInversePredicate(Predicate);
1557 }
1558
1559 // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition
1560 // code check. Instead two branch instructions are required to check all
1561 // the flags. First we change the predicate to a supported condition code,
1562 // which will be the first branch. Later one we will emit the second
1563 // branch.
1564 bool NeedExtraBranch = false;
1565 switch (Predicate) {
1566 default: break;
1567 case CmpInst::FCMP_OEQ:
1568 std::swap(TrueMBB, FalseMBB); // fall-through
1569 case CmpInst::FCMP_UNE:
1570 NeedExtraBranch = true;
1571 Predicate = CmpInst::FCMP_ONE;
1572 break;
1573 }
1574
1575 bool SwapArgs;
1576 unsigned BranchOpc;
1577 std::tie(CC, SwapArgs) = getX86ConditionCode(Predicate);
1578 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1579
1580 BranchOpc = X86::GetCondBranchFromCond(CC);
1581 if (SwapArgs)
1582 std::swap(CmpLHS, CmpRHS);
1583
1584 // Emit a compare of the LHS and RHS, setting the flags.
1585 if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc()))
1586 return false;
1587
1588 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc))
1589 .addMBB(TrueMBB);
1590
1591 // X86 requires a second branch to handle UNE (and OEQ, which is mapped
1592 // to UNE above).
1593 if (NeedExtraBranch) {
1594 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JP_1))
1595 .addMBB(TrueMBB);
1596 }
1597
Matthias Braun17af6072015-08-26 01:38:00 +00001598 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001599 return true;
1600 }
1601 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1602 // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which
1603 // typically happen for _Bool and C++ bools.
1604 MVT SourceVT;
1605 if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1606 isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) {
1607 unsigned TestOpc = 0;
1608 switch (SourceVT.SimpleTy) {
1609 default: break;
1610 case MVT::i8: TestOpc = X86::TEST8ri; break;
1611 case MVT::i16: TestOpc = X86::TEST16ri; break;
1612 case MVT::i32: TestOpc = X86::TEST32ri; break;
1613 case MVT::i64: TestOpc = X86::TEST64ri32; break;
1614 }
1615 if (TestOpc) {
1616 unsigned OpReg = getRegForValue(TI->getOperand(0));
1617 if (OpReg == 0) return false;
1618 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TestOpc))
1619 .addReg(OpReg).addImm(1);
1620
1621 unsigned JmpOpc = X86::JNE_1;
1622 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1623 std::swap(TrueMBB, FalseMBB);
1624 JmpOpc = X86::JE_1;
1625 }
1626
1627 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(JmpOpc))
1628 .addMBB(TrueMBB);
Matthias Braun17af6072015-08-26 01:38:00 +00001629
1630 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001631 return true;
1632 }
1633 }
1634 } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) {
1635 // Fake request the condition, otherwise the intrinsic might be completely
1636 // optimized away.
1637 unsigned TmpReg = getRegForValue(BI->getCondition());
1638 if (TmpReg == 0)
1639 return false;
1640
1641 unsigned BranchOpc = X86::GetCondBranchFromCond(CC);
1642
1643 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc))
1644 .addMBB(TrueMBB);
Matthias Braun17af6072015-08-26 01:38:00 +00001645 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001646 return true;
1647 }
1648
1649 // Otherwise do a clumsy setcc and re-test it.
1650 // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used
1651 // in an explicit cast, so make sure to handle that correctly.
1652 unsigned OpReg = getRegForValue(BI->getCondition());
1653 if (OpReg == 0) return false;
1654
1655 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
1656 .addReg(OpReg).addImm(1);
1657 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JNE_1))
1658 .addMBB(TrueMBB);
Matthias Braun17af6072015-08-26 01:38:00 +00001659 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001660 return true;
1661}
1662
1663bool X86FastISel::X86SelectShift(const Instruction *I) {
1664 unsigned CReg = 0, OpReg = 0;
1665 const TargetRegisterClass *RC = nullptr;
1666 if (I->getType()->isIntegerTy(8)) {
1667 CReg = X86::CL;
1668 RC = &X86::GR8RegClass;
1669 switch (I->getOpcode()) {
1670 case Instruction::LShr: OpReg = X86::SHR8rCL; break;
1671 case Instruction::AShr: OpReg = X86::SAR8rCL; break;
1672 case Instruction::Shl: OpReg = X86::SHL8rCL; break;
1673 default: return false;
1674 }
1675 } else if (I->getType()->isIntegerTy(16)) {
1676 CReg = X86::CX;
1677 RC = &X86::GR16RegClass;
1678 switch (I->getOpcode()) {
1679 case Instruction::LShr: OpReg = X86::SHR16rCL; break;
1680 case Instruction::AShr: OpReg = X86::SAR16rCL; break;
1681 case Instruction::Shl: OpReg = X86::SHL16rCL; break;
1682 default: return false;
1683 }
1684 } else if (I->getType()->isIntegerTy(32)) {
1685 CReg = X86::ECX;
1686 RC = &X86::GR32RegClass;
1687 switch (I->getOpcode()) {
1688 case Instruction::LShr: OpReg = X86::SHR32rCL; break;
1689 case Instruction::AShr: OpReg = X86::SAR32rCL; break;
1690 case Instruction::Shl: OpReg = X86::SHL32rCL; break;
1691 default: return false;
1692 }
1693 } else if (I->getType()->isIntegerTy(64)) {
1694 CReg = X86::RCX;
1695 RC = &X86::GR64RegClass;
1696 switch (I->getOpcode()) {
1697 case Instruction::LShr: OpReg = X86::SHR64rCL; break;
1698 case Instruction::AShr: OpReg = X86::SAR64rCL; break;
1699 case Instruction::Shl: OpReg = X86::SHL64rCL; break;
1700 default: return false;
1701 }
1702 } else {
1703 return false;
1704 }
1705
1706 MVT VT;
1707 if (!isTypeLegal(I->getType(), VT))
1708 return false;
1709
1710 unsigned Op0Reg = getRegForValue(I->getOperand(0));
1711 if (Op0Reg == 0) return false;
1712
1713 unsigned Op1Reg = getRegForValue(I->getOperand(1));
1714 if (Op1Reg == 0) return false;
1715 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
1716 CReg).addReg(Op1Reg);
1717
1718 // The shift instruction uses X86::CL. If we defined a super-register
1719 // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
1720 if (CReg != X86::CL)
1721 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1722 TII.get(TargetOpcode::KILL), X86::CL)
1723 .addReg(CReg, RegState::Kill);
1724
1725 unsigned ResultReg = createResultReg(RC);
1726 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpReg), ResultReg)
1727 .addReg(Op0Reg);
1728 updateValueMap(I, ResultReg);
1729 return true;
1730}
1731
1732bool X86FastISel::X86SelectDivRem(const Instruction *I) {
1733 const static unsigned NumTypes = 4; // i8, i16, i32, i64
1734 const static unsigned NumOps = 4; // SDiv, SRem, UDiv, URem
1735 const static bool S = true; // IsSigned
1736 const static bool U = false; // !IsSigned
1737 const static unsigned Copy = TargetOpcode::COPY;
1738 // For the X86 DIV/IDIV instruction, in most cases the dividend
1739 // (numerator) must be in a specific register pair highreg:lowreg,
1740 // producing the quotient in lowreg and the remainder in highreg.
1741 // For most data types, to set up the instruction, the dividend is
1742 // copied into lowreg, and lowreg is sign-extended or zero-extended
1743 // into highreg. The exception is i8, where the dividend is defined
1744 // as a single register rather than a register pair, and we
1745 // therefore directly sign-extend or zero-extend the dividend into
1746 // lowreg, instead of copying, and ignore the highreg.
1747 const static struct DivRemEntry {
1748 // The following portion depends only on the data type.
1749 const TargetRegisterClass *RC;
1750 unsigned LowInReg; // low part of the register pair
1751 unsigned HighInReg; // high part of the register pair
1752 // The following portion depends on both the data type and the operation.
1753 struct DivRemResult {
1754 unsigned OpDivRem; // The specific DIV/IDIV opcode to use.
1755 unsigned OpSignExtend; // Opcode for sign-extending lowreg into
1756 // highreg, or copying a zero into highreg.
1757 unsigned OpCopy; // Opcode for copying dividend into lowreg, or
1758 // zero/sign-extending into lowreg for i8.
1759 unsigned DivRemResultReg; // Register containing the desired result.
1760 bool IsOpSigned; // Whether to use signed or unsigned form.
1761 } ResultTable[NumOps];
1762 } OpTable[NumTypes] = {
1763 { &X86::GR8RegClass, X86::AX, 0, {
1764 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AL, S }, // SDiv
1765 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AH, S }, // SRem
1766 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AL, U }, // UDiv
1767 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AH, U }, // URem
1768 }
1769 }, // i8
1770 { &X86::GR16RegClass, X86::AX, X86::DX, {
1771 { X86::IDIV16r, X86::CWD, Copy, X86::AX, S }, // SDiv
1772 { X86::IDIV16r, X86::CWD, Copy, X86::DX, S }, // SRem
1773 { X86::DIV16r, X86::MOV32r0, Copy, X86::AX, U }, // UDiv
1774 { X86::DIV16r, X86::MOV32r0, Copy, X86::DX, U }, // URem
1775 }
1776 }, // i16
1777 { &X86::GR32RegClass, X86::EAX, X86::EDX, {
1778 { X86::IDIV32r, X86::CDQ, Copy, X86::EAX, S }, // SDiv
1779 { X86::IDIV32r, X86::CDQ, Copy, X86::EDX, S }, // SRem
1780 { X86::DIV32r, X86::MOV32r0, Copy, X86::EAX, U }, // UDiv
1781 { X86::DIV32r, X86::MOV32r0, Copy, X86::EDX, U }, // URem
1782 }
1783 }, // i32
1784 { &X86::GR64RegClass, X86::RAX, X86::RDX, {
1785 { X86::IDIV64r, X86::CQO, Copy, X86::RAX, S }, // SDiv
1786 { X86::IDIV64r, X86::CQO, Copy, X86::RDX, S }, // SRem
1787 { X86::DIV64r, X86::MOV32r0, Copy, X86::RAX, U }, // UDiv
1788 { X86::DIV64r, X86::MOV32r0, Copy, X86::RDX, U }, // URem
1789 }
1790 }, // i64
1791 };
1792
1793 MVT VT;
1794 if (!isTypeLegal(I->getType(), VT))
1795 return false;
1796
1797 unsigned TypeIndex, OpIndex;
1798 switch (VT.SimpleTy) {
1799 default: return false;
1800 case MVT::i8: TypeIndex = 0; break;
1801 case MVT::i16: TypeIndex = 1; break;
1802 case MVT::i32: TypeIndex = 2; break;
1803 case MVT::i64: TypeIndex = 3;
1804 if (!Subtarget->is64Bit())
1805 return false;
1806 break;
1807 }
1808
1809 switch (I->getOpcode()) {
1810 default: llvm_unreachable("Unexpected div/rem opcode");
1811 case Instruction::SDiv: OpIndex = 0; break;
1812 case Instruction::SRem: OpIndex = 1; break;
1813 case Instruction::UDiv: OpIndex = 2; break;
1814 case Instruction::URem: OpIndex = 3; break;
1815 }
1816
1817 const DivRemEntry &TypeEntry = OpTable[TypeIndex];
1818 const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex];
1819 unsigned Op0Reg = getRegForValue(I->getOperand(0));
1820 if (Op0Reg == 0)
1821 return false;
1822 unsigned Op1Reg = getRegForValue(I->getOperand(1));
1823 if (Op1Reg == 0)
1824 return false;
1825
1826 // Move op0 into low-order input register.
1827 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1828 TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg);
1829 // Zero-extend or sign-extend into high-order input register.
1830 if (OpEntry.OpSignExtend) {
1831 if (OpEntry.IsOpSigned)
1832 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1833 TII.get(OpEntry.OpSignExtend));
1834 else {
1835 unsigned Zero32 = createResultReg(&X86::GR32RegClass);
1836 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1837 TII.get(X86::MOV32r0), Zero32);
1838
1839 // Copy the zero into the appropriate sub/super/identical physical
1840 // register. Unfortunately the operations needed are not uniform enough
1841 // to fit neatly into the table above.
1842 if (VT.SimpleTy == MVT::i16) {
1843 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1844 TII.get(Copy), TypeEntry.HighInReg)
1845 .addReg(Zero32, 0, X86::sub_16bit);
1846 } else if (VT.SimpleTy == MVT::i32) {
1847 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1848 TII.get(Copy), TypeEntry.HighInReg)
1849 .addReg(Zero32);
1850 } else if (VT.SimpleTy == MVT::i64) {
1851 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1852 TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg)
1853 .addImm(0).addReg(Zero32).addImm(X86::sub_32bit);
1854 }
1855 }
1856 }
1857 // Generate the DIV/IDIV instruction.
1858 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1859 TII.get(OpEntry.OpDivRem)).addReg(Op1Reg);
1860 // For i8 remainder, we can't reference AH directly, as we'll end
1861 // up with bogus copies like %R9B = COPY %AH. Reference AX
1862 // instead to prevent AH references in a REX instruction.
1863 //
1864 // The current assumption of the fast register allocator is that isel
1865 // won't generate explicit references to the GPR8_NOREX registers. If
1866 // the allocator and/or the backend get enhanced to be more robust in
1867 // that regard, this can be, and should be, removed.
1868 unsigned ResultReg = 0;
1869 if ((I->getOpcode() == Instruction::SRem ||
1870 I->getOpcode() == Instruction::URem) &&
1871 OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) {
1872 unsigned SourceSuperReg = createResultReg(&X86::GR16RegClass);
1873 unsigned ResultSuperReg = createResultReg(&X86::GR16RegClass);
1874 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1875 TII.get(Copy), SourceSuperReg).addReg(X86::AX);
1876
1877 // Shift AX right by 8 bits instead of using AH.
1878 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SHR16ri),
1879 ResultSuperReg).addReg(SourceSuperReg).addImm(8);
1880
1881 // Now reference the 8-bit subreg of the result.
1882 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg,
1883 /*Kill=*/true, X86::sub_8bit);
1884 }
1885 // Copy the result out of the physreg if we haven't already.
1886 if (!ResultReg) {
1887 ResultReg = createResultReg(TypeEntry.RC);
1888 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), ResultReg)
1889 .addReg(OpEntry.DivRemResultReg);
1890 }
1891 updateValueMap(I, ResultReg);
1892
1893 return true;
1894}
1895
1896/// \brief Emit a conditional move instruction (if the are supported) to lower
1897/// the select.
1898bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) {
1899 // Check if the subtarget supports these instructions.
1900 if (!Subtarget->hasCMov())
1901 return false;
1902
1903 // FIXME: Add support for i8.
1904 if (RetVT < MVT::i16 || RetVT > MVT::i64)
1905 return false;
1906
1907 const Value *Cond = I->getOperand(0);
1908 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
1909 bool NeedTest = true;
1910 X86::CondCode CC = X86::COND_NE;
1911
1912 // Optimize conditions coming from a compare if both instructions are in the
1913 // same basic block (values defined in other basic blocks may not have
1914 // initialized registers).
1915 const auto *CI = dyn_cast<CmpInst>(Cond);
1916 if (CI && (CI->getParent() == I->getParent())) {
1917 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1918
1919 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
1920 static unsigned SETFOpcTable[2][3] = {
1921 { X86::SETNPr, X86::SETEr , X86::TEST8rr },
1922 { X86::SETPr, X86::SETNEr, X86::OR8rr }
1923 };
1924 unsigned *SETFOpc = nullptr;
1925 switch (Predicate) {
1926 default: break;
1927 case CmpInst::FCMP_OEQ:
1928 SETFOpc = &SETFOpcTable[0][0];
1929 Predicate = CmpInst::ICMP_NE;
1930 break;
1931 case CmpInst::FCMP_UNE:
1932 SETFOpc = &SETFOpcTable[1][0];
1933 Predicate = CmpInst::ICMP_NE;
1934 break;
1935 }
1936
1937 bool NeedSwap;
1938 std::tie(CC, NeedSwap) = getX86ConditionCode(Predicate);
1939 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1940
1941 const Value *CmpLHS = CI->getOperand(0);
1942 const Value *CmpRHS = CI->getOperand(1);
1943 if (NeedSwap)
1944 std::swap(CmpLHS, CmpRHS);
1945
Mehdi Amini44ede332015-07-09 02:09:04 +00001946 EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001947 // Emit a compare of the LHS and RHS, setting the flags.
1948 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
1949 return false;
1950
1951 if (SETFOpc) {
1952 unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
1953 unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
1954 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]),
1955 FlagReg1);
1956 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]),
1957 FlagReg2);
1958 auto const &II = TII.get(SETFOpc[2]);
1959 if (II.getNumDefs()) {
1960 unsigned TmpReg = createResultReg(&X86::GR8RegClass);
1961 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, TmpReg)
1962 .addReg(FlagReg2).addReg(FlagReg1);
1963 } else {
1964 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1965 .addReg(FlagReg2).addReg(FlagReg1);
1966 }
1967 }
1968 NeedTest = false;
1969 } else if (foldX86XALUIntrinsic(CC, I, Cond)) {
1970 // Fake request the condition, otherwise the intrinsic might be completely
1971 // optimized away.
1972 unsigned TmpReg = getRegForValue(Cond);
1973 if (TmpReg == 0)
1974 return false;
1975
1976 NeedTest = false;
1977 }
1978
1979 if (NeedTest) {
1980 // Selects operate on i1, however, CondReg is 8 bits width and may contain
1981 // garbage. Indeed, only the less significant bit is supposed to be
1982 // accurate. If we read more than the lsb, we may see non-zero values
1983 // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for
1984 // the select. This is achieved by performing TEST against 1.
1985 unsigned CondReg = getRegForValue(Cond);
1986 if (CondReg == 0)
1987 return false;
1988 bool CondIsKill = hasTrivialKill(Cond);
1989
1990 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
1991 .addReg(CondReg, getKillRegState(CondIsKill)).addImm(1);
1992 }
1993
1994 const Value *LHS = I->getOperand(1);
1995 const Value *RHS = I->getOperand(2);
1996
1997 unsigned RHSReg = getRegForValue(RHS);
1998 bool RHSIsKill = hasTrivialKill(RHS);
1999
2000 unsigned LHSReg = getRegForValue(LHS);
2001 bool LHSIsKill = hasTrivialKill(LHS);
2002
2003 if (!LHSReg || !RHSReg)
2004 return false;
2005
2006 unsigned Opc = X86::getCMovFromCond(CC, RC->getSize());
2007 unsigned ResultReg = fastEmitInst_rr(Opc, RC, RHSReg, RHSIsKill,
2008 LHSReg, LHSIsKill);
2009 updateValueMap(I, ResultReg);
2010 return true;
2011}
2012
Sanjay Patel302404b2015-03-05 21:46:54 +00002013/// \brief Emit SSE or AVX instructions to lower the select.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002014///
2015/// Try to use SSE1/SSE2 instructions to simulate a select without branches.
2016/// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary
Sanjay Patel302404b2015-03-05 21:46:54 +00002017/// SSE instructions are available. If AVX is available, try to use a VBLENDV.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002018bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) {
2019 // Optimize conditions coming from a compare if both instructions are in the
2020 // same basic block (values defined in other basic blocks may not have
2021 // initialized registers).
2022 const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0));
2023 if (!CI || (CI->getParent() != I->getParent()))
2024 return false;
2025
2026 if (I->getType() != CI->getOperand(0)->getType() ||
2027 !((Subtarget->hasSSE1() && RetVT == MVT::f32) ||
2028 (Subtarget->hasSSE2() && RetVT == MVT::f64)))
2029 return false;
2030
2031 const Value *CmpLHS = CI->getOperand(0);
2032 const Value *CmpRHS = CI->getOperand(1);
2033 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2034
2035 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
2036 // We don't have to materialize a zero constant for this case and can just use
2037 // %x again on the RHS.
2038 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
2039 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
2040 if (CmpRHSC && CmpRHSC->isNullValue())
2041 CmpRHS = CmpLHS;
2042 }
2043
2044 unsigned CC;
2045 bool NeedSwap;
2046 std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate);
2047 if (CC > 7)
2048 return false;
2049
2050 if (NeedSwap)
2051 std::swap(CmpLHS, CmpRHS);
2052
Sanjay Patel302404b2015-03-05 21:46:54 +00002053 // Choose the SSE instruction sequence based on data type (float or double).
2054 static unsigned OpcTable[2][4] = {
2055 { X86::CMPSSrr, X86::FsANDPSrr, X86::FsANDNPSrr, X86::FsORPSrr },
2056 { X86::CMPSDrr, X86::FsANDPDrr, X86::FsANDNPDrr, X86::FsORPDrr }
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002057 };
2058
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002059 unsigned *Opc = nullptr;
2060 switch (RetVT.SimpleTy) {
2061 default: return false;
Sanjay Patel302404b2015-03-05 21:46:54 +00002062 case MVT::f32: Opc = &OpcTable[0][0]; break;
2063 case MVT::f64: Opc = &OpcTable[1][0]; break;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002064 }
2065
2066 const Value *LHS = I->getOperand(1);
2067 const Value *RHS = I->getOperand(2);
2068
2069 unsigned LHSReg = getRegForValue(LHS);
2070 bool LHSIsKill = hasTrivialKill(LHS);
2071
2072 unsigned RHSReg = getRegForValue(RHS);
2073 bool RHSIsKill = hasTrivialKill(RHS);
2074
2075 unsigned CmpLHSReg = getRegForValue(CmpLHS);
2076 bool CmpLHSIsKill = hasTrivialKill(CmpLHS);
2077
2078 unsigned CmpRHSReg = getRegForValue(CmpRHS);
2079 bool CmpRHSIsKill = hasTrivialKill(CmpRHS);
2080
2081 if (!LHSReg || !RHSReg || !CmpLHS || !CmpRHS)
2082 return false;
2083
2084 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
Sanjay Patel302404b2015-03-05 21:46:54 +00002085 unsigned ResultReg;
2086
2087 if (Subtarget->hasAVX()) {
Matthias Braun818c78d2015-08-31 18:25:11 +00002088 const TargetRegisterClass *FR32 = &X86::FR32RegClass;
2089 const TargetRegisterClass *VR128 = &X86::VR128RegClass;
2090
Sanjay Patel302404b2015-03-05 21:46:54 +00002091 // If we have AVX, create 1 blendv instead of 3 logic instructions.
2092 // Blendv was introduced with SSE 4.1, but the 2 register form implicitly
2093 // uses XMM0 as the selection register. That may need just as many
2094 // instructions as the AND/ANDN/OR sequence due to register moves, so
2095 // don't bother.
2096 unsigned CmpOpcode =
2097 (RetVT.SimpleTy == MVT::f32) ? X86::VCMPSSrr : X86::VCMPSDrr;
2098 unsigned BlendOpcode =
2099 (RetVT.SimpleTy == MVT::f32) ? X86::VBLENDVPSrr : X86::VBLENDVPDrr;
2100
Matthias Braun818c78d2015-08-31 18:25:11 +00002101 unsigned CmpReg = fastEmitInst_rri(CmpOpcode, FR32, CmpLHSReg, CmpLHSIsKill,
Sanjay Patel302404b2015-03-05 21:46:54 +00002102 CmpRHSReg, CmpRHSIsKill, CC);
Matthias Braun818c78d2015-08-31 18:25:11 +00002103 unsigned VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, RHSIsKill,
2104 LHSReg, LHSIsKill, CmpReg, true);
2105 ResultReg = createResultReg(RC);
2106 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2107 TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg);
Sanjay Patel302404b2015-03-05 21:46:54 +00002108 } else {
2109 unsigned CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpLHSIsKill,
2110 CmpRHSReg, CmpRHSIsKill, CC);
2111 unsigned AndReg = fastEmitInst_rr(Opc[1], RC, CmpReg, /*IsKill=*/false,
2112 LHSReg, LHSIsKill);
2113 unsigned AndNReg = fastEmitInst_rr(Opc[2], RC, CmpReg, /*IsKill=*/true,
2114 RHSReg, RHSIsKill);
2115 ResultReg = fastEmitInst_rr(Opc[3], RC, AndNReg, /*IsKill=*/true,
2116 AndReg, /*IsKill=*/true);
2117 }
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002118 updateValueMap(I, ResultReg);
2119 return true;
2120}
2121
2122bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) {
2123 // These are pseudo CMOV instructions and will be later expanded into control-
2124 // flow.
2125 unsigned Opc;
2126 switch (RetVT.SimpleTy) {
2127 default: return false;
2128 case MVT::i8: Opc = X86::CMOV_GR8; break;
2129 case MVT::i16: Opc = X86::CMOV_GR16; break;
2130 case MVT::i32: Opc = X86::CMOV_GR32; break;
2131 case MVT::f32: Opc = X86::CMOV_FR32; break;
2132 case MVT::f64: Opc = X86::CMOV_FR64; break;
2133 }
2134
2135 const Value *Cond = I->getOperand(0);
2136 X86::CondCode CC = X86::COND_NE;
2137
2138 // Optimize conditions coming from a compare if both instructions are in the
2139 // same basic block (values defined in other basic blocks may not have
2140 // initialized registers).
2141 const auto *CI = dyn_cast<CmpInst>(Cond);
2142 if (CI && (CI->getParent() == I->getParent())) {
2143 bool NeedSwap;
2144 std::tie(CC, NeedSwap) = getX86ConditionCode(CI->getPredicate());
2145 if (CC > X86::LAST_VALID_COND)
2146 return false;
2147
2148 const Value *CmpLHS = CI->getOperand(0);
2149 const Value *CmpRHS = CI->getOperand(1);
2150
2151 if (NeedSwap)
2152 std::swap(CmpLHS, CmpRHS);
2153
Mehdi Amini44ede332015-07-09 02:09:04 +00002154 EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002155 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
2156 return false;
2157 } else {
2158 unsigned CondReg = getRegForValue(Cond);
2159 if (CondReg == 0)
2160 return false;
2161 bool CondIsKill = hasTrivialKill(Cond);
2162 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
2163 .addReg(CondReg, getKillRegState(CondIsKill)).addImm(1);
2164 }
2165
2166 const Value *LHS = I->getOperand(1);
2167 const Value *RHS = I->getOperand(2);
2168
2169 unsigned LHSReg = getRegForValue(LHS);
2170 bool LHSIsKill = hasTrivialKill(LHS);
2171
2172 unsigned RHSReg = getRegForValue(RHS);
2173 bool RHSIsKill = hasTrivialKill(RHS);
2174
2175 if (!LHSReg || !RHSReg)
2176 return false;
2177
2178 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2179
2180 unsigned ResultReg =
2181 fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill, LHSReg, LHSIsKill, CC);
2182 updateValueMap(I, ResultReg);
2183 return true;
2184}
2185
2186bool X86FastISel::X86SelectSelect(const Instruction *I) {
2187 MVT RetVT;
2188 if (!isTypeLegal(I->getType(), RetVT))
2189 return false;
2190
2191 // Check if we can fold the select.
2192 if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) {
2193 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2194 const Value *Opnd = nullptr;
2195 switch (Predicate) {
2196 default: break;
2197 case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break;
2198 case CmpInst::FCMP_TRUE: Opnd = I->getOperand(1); break;
2199 }
2200 // No need for a select anymore - this is an unconditional move.
2201 if (Opnd) {
2202 unsigned OpReg = getRegForValue(Opnd);
2203 if (OpReg == 0)
2204 return false;
2205 bool OpIsKill = hasTrivialKill(Opnd);
2206 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2207 unsigned ResultReg = createResultReg(RC);
2208 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2209 TII.get(TargetOpcode::COPY), ResultReg)
2210 .addReg(OpReg, getKillRegState(OpIsKill));
2211 updateValueMap(I, ResultReg);
2212 return true;
2213 }
2214 }
2215
2216 // First try to use real conditional move instructions.
2217 if (X86FastEmitCMoveSelect(RetVT, I))
2218 return true;
2219
2220 // Try to use a sequence of SSE instructions to simulate a conditional move.
2221 if (X86FastEmitSSESelect(RetVT, I))
2222 return true;
2223
2224 // Fall-back to pseudo conditional move instructions, which will be later
2225 // converted to control-flow.
2226 if (X86FastEmitPseudoSelect(RetVT, I))
2227 return true;
2228
2229 return false;
2230}
2231
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002232bool X86FastISel::X86SelectSIToFP(const Instruction *I) {
Andrea Di Biagio98c36702015-04-20 11:56:59 +00002233 // The target-independent selection algorithm in FastISel already knows how
2234 // to select a SINT_TO_FP if the target is SSE but not AVX.
2235 // Early exit if the subtarget doesn't have AVX.
2236 if (!Subtarget->hasAVX())
2237 return false;
2238
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002239 if (!I->getOperand(0)->getType()->isIntegerTy(32))
2240 return false;
2241
2242 // Select integer to float/double conversion.
2243 unsigned OpReg = getRegForValue(I->getOperand(0));
2244 if (OpReg == 0)
2245 return false;
2246
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002247 const TargetRegisterClass *RC = nullptr;
2248 unsigned Opcode;
2249
Andrea Di Biagiodf93ccf2015-03-04 14:23:25 +00002250 if (I->getType()->isDoubleTy()) {
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002251 // sitofp int -> double
Andrea Di Biagiodf93ccf2015-03-04 14:23:25 +00002252 Opcode = X86::VCVTSI2SDrr;
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002253 RC = &X86::FR64RegClass;
Andrea Di Biagiodf93ccf2015-03-04 14:23:25 +00002254 } else if (I->getType()->isFloatTy()) {
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002255 // sitofp int -> float
Andrea Di Biagiodf93ccf2015-03-04 14:23:25 +00002256 Opcode = X86::VCVTSI2SSrr;
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002257 RC = &X86::FR32RegClass;
2258 } else
2259 return false;
2260
Andrea Di Biagiodf93ccf2015-03-04 14:23:25 +00002261 unsigned ImplicitDefReg = createResultReg(RC);
2262 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2263 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2264 unsigned ResultReg =
2265 fastEmitInst_rr(Opcode, RC, ImplicitDefReg, true, OpReg, false);
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002266 updateValueMap(I, ResultReg);
2267 return true;
2268}
2269
Andrea Di Biagio62622d22015-02-10 12:04:41 +00002270// Helper method used by X86SelectFPExt and X86SelectFPTrunc.
2271bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I,
2272 unsigned TargetOpc,
2273 const TargetRegisterClass *RC) {
2274 assert((I->getOpcode() == Instruction::FPExt ||
2275 I->getOpcode() == Instruction::FPTrunc) &&
2276 "Instruction must be an FPExt or FPTrunc!");
2277
2278 unsigned OpReg = getRegForValue(I->getOperand(0));
2279 if (OpReg == 0)
2280 return false;
2281
2282 unsigned ResultReg = createResultReg(RC);
2283 MachineInstrBuilder MIB;
2284 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpc),
2285 ResultReg);
2286 if (Subtarget->hasAVX())
2287 MIB.addReg(OpReg);
2288 MIB.addReg(OpReg);
2289 updateValueMap(I, ResultReg);
2290 return true;
2291}
2292
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002293bool X86FastISel::X86SelectFPExt(const Instruction *I) {
Andrea Di Biagio62622d22015-02-10 12:04:41 +00002294 if (X86ScalarSSEf64 && I->getType()->isDoubleTy() &&
2295 I->getOperand(0)->getType()->isFloatTy()) {
2296 // fpext from float to double.
2297 unsigned Opc = Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr;
2298 return X86SelectFPExtOrFPTrunc(I, Opc, &X86::FR64RegClass);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002299 }
2300
2301 return false;
2302}
2303
2304bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
Andrea Di Biagio62622d22015-02-10 12:04:41 +00002305 if (X86ScalarSSEf64 && I->getType()->isFloatTy() &&
2306 I->getOperand(0)->getType()->isDoubleTy()) {
2307 // fptrunc from double to float.
2308 unsigned Opc = Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr;
2309 return X86SelectFPExtOrFPTrunc(I, Opc, &X86::FR32RegClass);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002310 }
2311
2312 return false;
2313}
2314
2315bool X86FastISel::X86SelectTrunc(const Instruction *I) {
Mehdi Amini44ede332015-07-09 02:09:04 +00002316 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
2317 EVT DstVT = TLI.getValueType(DL, I->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002318
2319 // This code only handles truncation to byte.
2320 if (DstVT != MVT::i8 && DstVT != MVT::i1)
2321 return false;
2322 if (!TLI.isTypeLegal(SrcVT))
2323 return false;
2324
2325 unsigned InputReg = getRegForValue(I->getOperand(0));
2326 if (!InputReg)
2327 // Unhandled operand. Halt "fast" selection and bail.
2328 return false;
2329
2330 if (SrcVT == MVT::i8) {
2331 // Truncate from i8 to i1; no code needed.
2332 updateValueMap(I, InputReg);
2333 return true;
2334 }
2335
Pete Cooper7f7c9f12015-05-08 18:29:42 +00002336 bool KillInputReg = false;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002337 if (!Subtarget->is64Bit()) {
2338 // If we're on x86-32; we can't extract an i8 from a general register.
2339 // First issue a copy to GR16_ABCD or GR32_ABCD.
2340 const TargetRegisterClass *CopyRC =
2341 (SrcVT == MVT::i16) ? &X86::GR16_ABCDRegClass : &X86::GR32_ABCDRegClass;
2342 unsigned CopyReg = createResultReg(CopyRC);
2343 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2344 TII.get(TargetOpcode::COPY), CopyReg).addReg(InputReg);
2345 InputReg = CopyReg;
Pete Cooper7f7c9f12015-05-08 18:29:42 +00002346 KillInputReg = true;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002347 }
2348
2349 // Issue an extract_subreg.
2350 unsigned ResultReg = fastEmitInst_extractsubreg(MVT::i8,
Pete Cooper7f7c9f12015-05-08 18:29:42 +00002351 InputReg, KillInputReg,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002352 X86::sub_8bit);
2353 if (!ResultReg)
2354 return false;
2355
2356 updateValueMap(I, ResultReg);
2357 return true;
2358}
2359
2360bool X86FastISel::IsMemcpySmall(uint64_t Len) {
2361 return Len <= (Subtarget->is64Bit() ? 32 : 16);
2362}
2363
2364bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
2365 X86AddressMode SrcAM, uint64_t Len) {
2366
2367 // Make sure we don't bloat code by inlining very large memcpy's.
2368 if (!IsMemcpySmall(Len))
2369 return false;
2370
2371 bool i64Legal = Subtarget->is64Bit();
2372
2373 // We don't care about alignment here since we just emit integer accesses.
2374 while (Len) {
2375 MVT VT;
2376 if (Len >= 8 && i64Legal)
2377 VT = MVT::i64;
2378 else if (Len >= 4)
2379 VT = MVT::i32;
2380 else if (Len >= 2)
2381 VT = MVT::i16;
2382 else
2383 VT = MVT::i8;
2384
2385 unsigned Reg;
2386 bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg);
2387 RV &= X86FastEmitStore(VT, Reg, /*Kill=*/true, DestAM);
2388 assert(RV && "Failed to emit load or store??");
2389
2390 unsigned Size = VT.getSizeInBits()/8;
2391 Len -= Size;
2392 DestAM.Disp += Size;
2393 SrcAM.Disp += Size;
2394 }
2395
2396 return true;
2397}
2398
2399bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
2400 // FIXME: Handle more intrinsics.
2401 switch (II->getIntrinsicID()) {
2402 default: return false;
Andrea Di Biagio70351782015-02-20 19:37:14 +00002403 case Intrinsic::convert_from_fp16:
2404 case Intrinsic::convert_to_fp16: {
Eric Christopher824f42f2015-05-12 01:26:05 +00002405 if (Subtarget->useSoftFloat() || !Subtarget->hasF16C())
Andrea Di Biagio70351782015-02-20 19:37:14 +00002406 return false;
2407
2408 const Value *Op = II->getArgOperand(0);
2409 unsigned InputReg = getRegForValue(Op);
2410 if (InputReg == 0)
2411 return false;
2412
2413 // F16C only allows converting from float to half and from half to float.
2414 bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16;
2415 if (IsFloatToHalf) {
2416 if (!Op->getType()->isFloatTy())
2417 return false;
2418 } else {
2419 if (!II->getType()->isFloatTy())
2420 return false;
2421 }
2422
2423 unsigned ResultReg = 0;
2424 const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16);
2425 if (IsFloatToHalf) {
2426 // 'InputReg' is implicitly promoted from register class FR32 to
2427 // register class VR128 by method 'constrainOperandRegClass' which is
2428 // directly called by 'fastEmitInst_ri'.
2429 // Instruction VCVTPS2PHrr takes an extra immediate operand which is
Ahmed Bougacha68a8efa2016-02-02 01:44:03 +00002430 // used to provide rounding control: use MXCSR.RC, encoded as 0b100.
2431 // It's consistent with the other FP instructions, which are usually
2432 // controlled by MXCSR.
2433 InputReg = fastEmitInst_ri(X86::VCVTPS2PHrr, RC, InputReg, false, 4);
Andrea Di Biagio70351782015-02-20 19:37:14 +00002434
2435 // Move the lower 32-bits of ResultReg to another register of class GR32.
2436 ResultReg = createResultReg(&X86::GR32RegClass);
2437 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2438 TII.get(X86::VMOVPDI2DIrr), ResultReg)
2439 .addReg(InputReg, RegState::Kill);
2440
2441 // The result value is in the lower 16-bits of ResultReg.
2442 unsigned RegIdx = X86::sub_16bit;
2443 ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, true, RegIdx);
2444 } else {
2445 assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!");
2446 // Explicitly sign-extend the input to 32-bit.
2447 InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::SIGN_EXTEND, InputReg,
2448 /*Kill=*/false);
2449
2450 // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr.
2451 InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR,
2452 InputReg, /*Kill=*/true);
2453
2454 InputReg = fastEmitInst_r(X86::VCVTPH2PSrr, RC, InputReg, /*Kill=*/true);
2455
2456 // The result value is in the lower 32-bits of ResultReg.
2457 // Emit an explicit copy from register class VR128 to register class FR32.
2458 ResultReg = createResultReg(&X86::FR32RegClass);
2459 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2460 TII.get(TargetOpcode::COPY), ResultReg)
2461 .addReg(InputReg, RegState::Kill);
2462 }
2463
2464 updateValueMap(II, ResultReg);
2465 return true;
2466 }
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002467 case Intrinsic::frameaddress: {
David Majnemerca194852015-02-10 22:00:34 +00002468 MachineFunction *MF = FuncInfo.MF;
2469 if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI())
2470 return false;
2471
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002472 Type *RetTy = II->getCalledFunction()->getReturnType();
2473
2474 MVT VT;
2475 if (!isTypeLegal(RetTy, VT))
2476 return false;
2477
2478 unsigned Opc;
2479 const TargetRegisterClass *RC = nullptr;
2480
2481 switch (VT.SimpleTy) {
2482 default: llvm_unreachable("Invalid result type for frameaddress.");
2483 case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break;
2484 case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break;
2485 }
2486
2487 // This needs to be set before we call getPtrSizedFrameRegister, otherwise
2488 // we get the wrong frame register.
David Majnemerca194852015-02-10 22:00:34 +00002489 MachineFrameInfo *MFI = MF->getFrameInfo();
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002490 MFI->setFrameAddressIsTaken(true);
2491
Eric Christophera1c535b2015-02-02 23:03:45 +00002492 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
David Majnemerca194852015-02-10 22:00:34 +00002493 unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002494 assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
2495 (FrameReg == X86::EBP && VT == MVT::i32)) &&
2496 "Invalid Frame Register!");
2497
2498 // Always make a copy of the frame register to to a vreg first, so that we
2499 // never directly reference the frame register (the TwoAddressInstruction-
2500 // Pass doesn't like that).
2501 unsigned SrcReg = createResultReg(RC);
2502 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2503 TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg);
2504
2505 // Now recursively load from the frame address.
2506 // movq (%rbp), %rax
2507 // movq (%rax), %rax
2508 // movq (%rax), %rax
2509 // ...
2510 unsigned DestReg;
2511 unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
2512 while (Depth--) {
2513 DestReg = createResultReg(RC);
2514 addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2515 TII.get(Opc), DestReg), SrcReg);
2516 SrcReg = DestReg;
2517 }
2518
2519 updateValueMap(II, SrcReg);
2520 return true;
2521 }
2522 case Intrinsic::memcpy: {
2523 const MemCpyInst *MCI = cast<MemCpyInst>(II);
2524 // Don't handle volatile or variable length memcpys.
2525 if (MCI->isVolatile())
2526 return false;
2527
2528 if (isa<ConstantInt>(MCI->getLength())) {
2529 // Small memcpy's are common enough that we want to do them
2530 // without a call if possible.
2531 uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue();
2532 if (IsMemcpySmall(Len)) {
2533 X86AddressMode DestAM, SrcAM;
2534 if (!X86SelectAddress(MCI->getRawDest(), DestAM) ||
2535 !X86SelectAddress(MCI->getRawSource(), SrcAM))
2536 return false;
2537 TryEmitSmallMemcpy(DestAM, SrcAM, Len);
2538 return true;
2539 }
2540 }
2541
2542 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2543 if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth))
2544 return false;
2545
2546 if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255)
2547 return false;
2548
Pete Cooper67cf9a72015-11-19 05:56:52 +00002549 return lowerCallTo(II, "memcpy", II->getNumArgOperands() - 2);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002550 }
2551 case Intrinsic::memset: {
2552 const MemSetInst *MSI = cast<MemSetInst>(II);
2553
2554 if (MSI->isVolatile())
2555 return false;
2556
2557 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2558 if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth))
2559 return false;
2560
2561 if (MSI->getDestAddressSpace() > 255)
2562 return false;
2563
Pete Cooper67cf9a72015-11-19 05:56:52 +00002564 return lowerCallTo(II, "memset", II->getNumArgOperands() - 2);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002565 }
2566 case Intrinsic::stackprotector: {
2567 // Emit code to store the stack guard onto the stack.
Mehdi Amini44ede332015-07-09 02:09:04 +00002568 EVT PtrTy = TLI.getPointerTy(DL);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002569
2570 const Value *Op1 = II->getArgOperand(0); // The guard's value.
2571 const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1));
2572
2573 MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]);
2574
2575 // Grab the frame index.
2576 X86AddressMode AM;
2577 if (!X86SelectAddress(Slot, AM)) return false;
2578 if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
2579 return true;
2580 }
2581 case Intrinsic::dbg_declare: {
2582 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
2583 X86AddressMode AM;
2584 assert(DI->getAddress() && "Null address should be checked earlier!");
2585 if (!X86SelectAddress(DI->getAddress(), AM))
2586 return false;
2587 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
2588 // FIXME may need to add RegState::Debug to any registers produced,
2589 // although ESP/EBP should be the only ones at the moment.
Duncan P. N. Exon Smith3bef6a32015-04-03 19:20:26 +00002590 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
2591 "Expected inlined-at fields to agree");
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002592 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II), AM)
2593 .addImm(0)
2594 .addMetadata(DI->getVariable())
2595 .addMetadata(DI->getExpression());
2596 return true;
2597 }
2598 case Intrinsic::trap: {
2599 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TRAP));
2600 return true;
2601 }
2602 case Intrinsic::sqrt: {
2603 if (!Subtarget->hasSSE1())
2604 return false;
2605
2606 Type *RetTy = II->getCalledFunction()->getReturnType();
2607
2608 MVT VT;
2609 if (!isTypeLegal(RetTy, VT))
2610 return false;
2611
2612 // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT
2613 // is not generated by FastISel yet.
2614 // FIXME: Update this code once tablegen can handle it.
Craig Toppercf65c622016-03-02 04:42:31 +00002615 static const uint16_t SqrtOpc[2][2] = {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002616 {X86::SQRTSSr, X86::VSQRTSSr},
2617 {X86::SQRTSDr, X86::VSQRTSDr}
2618 };
2619 bool HasAVX = Subtarget->hasAVX();
2620 unsigned Opc;
2621 const TargetRegisterClass *RC;
2622 switch (VT.SimpleTy) {
2623 default: return false;
2624 case MVT::f32: Opc = SqrtOpc[0][HasAVX]; RC = &X86::FR32RegClass; break;
2625 case MVT::f64: Opc = SqrtOpc[1][HasAVX]; RC = &X86::FR64RegClass; break;
2626 }
2627
2628 const Value *SrcVal = II->getArgOperand(0);
2629 unsigned SrcReg = getRegForValue(SrcVal);
2630
2631 if (SrcReg == 0)
2632 return false;
2633
2634 unsigned ImplicitDefReg = 0;
2635 if (HasAVX) {
2636 ImplicitDefReg = createResultReg(RC);
2637 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2638 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2639 }
2640
2641 unsigned ResultReg = createResultReg(RC);
2642 MachineInstrBuilder MIB;
2643 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
2644 ResultReg);
2645
2646 if (ImplicitDefReg)
2647 MIB.addReg(ImplicitDefReg);
2648
2649 MIB.addReg(SrcReg);
2650
2651 updateValueMap(II, ResultReg);
2652 return true;
2653 }
2654 case Intrinsic::sadd_with_overflow:
2655 case Intrinsic::uadd_with_overflow:
2656 case Intrinsic::ssub_with_overflow:
2657 case Intrinsic::usub_with_overflow:
2658 case Intrinsic::smul_with_overflow:
2659 case Intrinsic::umul_with_overflow: {
2660 // This implements the basic lowering of the xalu with overflow intrinsics
2661 // into add/sub/mul followed by either seto or setb.
2662 const Function *Callee = II->getCalledFunction();
2663 auto *Ty = cast<StructType>(Callee->getReturnType());
2664 Type *RetTy = Ty->getTypeAtIndex(0U);
2665 Type *CondTy = Ty->getTypeAtIndex(1);
2666
2667 MVT VT;
2668 if (!isTypeLegal(RetTy, VT))
2669 return false;
2670
2671 if (VT < MVT::i8 || VT > MVT::i64)
2672 return false;
2673
2674 const Value *LHS = II->getArgOperand(0);
2675 const Value *RHS = II->getArgOperand(1);
2676
2677 // Canonicalize immediate to the RHS.
2678 if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) &&
2679 isCommutativeIntrinsic(II))
2680 std::swap(LHS, RHS);
2681
2682 bool UseIncDec = false;
2683 if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isOne())
2684 UseIncDec = true;
2685
2686 unsigned BaseOpc, CondOpc;
2687 switch (II->getIntrinsicID()) {
2688 default: llvm_unreachable("Unexpected intrinsic!");
2689 case Intrinsic::sadd_with_overflow:
2690 BaseOpc = UseIncDec ? unsigned(X86ISD::INC) : unsigned(ISD::ADD);
2691 CondOpc = X86::SETOr;
2692 break;
2693 case Intrinsic::uadd_with_overflow:
2694 BaseOpc = ISD::ADD; CondOpc = X86::SETBr; break;
2695 case Intrinsic::ssub_with_overflow:
2696 BaseOpc = UseIncDec ? unsigned(X86ISD::DEC) : unsigned(ISD::SUB);
2697 CondOpc = X86::SETOr;
2698 break;
2699 case Intrinsic::usub_with_overflow:
2700 BaseOpc = ISD::SUB; CondOpc = X86::SETBr; break;
2701 case Intrinsic::smul_with_overflow:
2702 BaseOpc = X86ISD::SMUL; CondOpc = X86::SETOr; break;
2703 case Intrinsic::umul_with_overflow:
2704 BaseOpc = X86ISD::UMUL; CondOpc = X86::SETOr; break;
2705 }
2706
2707 unsigned LHSReg = getRegForValue(LHS);
2708 if (LHSReg == 0)
2709 return false;
2710 bool LHSIsKill = hasTrivialKill(LHS);
2711
2712 unsigned ResultReg = 0;
2713 // Check if we have an immediate version.
2714 if (const auto *CI = dyn_cast<ConstantInt>(RHS)) {
Craig Topper66111882016-06-02 04:19:42 +00002715 static const uint16_t Opc[2][4] = {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002716 { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r },
2717 { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r }
2718 };
2719
2720 if (BaseOpc == X86ISD::INC || BaseOpc == X86ISD::DEC) {
2721 ResultReg = createResultReg(TLI.getRegClassFor(VT));
2722 bool IsDec = BaseOpc == X86ISD::DEC;
2723 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2724 TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg)
2725 .addReg(LHSReg, getKillRegState(LHSIsKill));
2726 } else
2727 ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, LHSIsKill,
2728 CI->getZExtValue());
2729 }
2730
2731 unsigned RHSReg;
2732 bool RHSIsKill;
2733 if (!ResultReg) {
2734 RHSReg = getRegForValue(RHS);
2735 if (RHSReg == 0)
2736 return false;
2737 RHSIsKill = hasTrivialKill(RHS);
2738 ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, LHSIsKill, RHSReg,
2739 RHSIsKill);
2740 }
2741
2742 // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit
2743 // it manually.
2744 if (BaseOpc == X86ISD::UMUL && !ResultReg) {
Craig Toppercf65c622016-03-02 04:42:31 +00002745 static const uint16_t MULOpc[] =
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002746 { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r };
Craig Toppercf65c622016-03-02 04:42:31 +00002747 static const MCPhysReg Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX };
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002748 // First copy the first operand into RAX, which is an implicit input to
2749 // the X86::MUL*r instruction.
2750 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2751 TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8])
2752 .addReg(LHSReg, getKillRegState(LHSIsKill));
2753 ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8],
2754 TLI.getRegClassFor(VT), RHSReg, RHSIsKill);
2755 } else if (BaseOpc == X86ISD::SMUL && !ResultReg) {
Craig Toppercf65c622016-03-02 04:42:31 +00002756 static const uint16_t MULOpc[] =
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002757 { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr };
2758 if (VT == MVT::i8) {
2759 // Copy the first operand into AL, which is an implicit input to the
2760 // X86::IMUL8r instruction.
2761 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2762 TII.get(TargetOpcode::COPY), X86::AL)
2763 .addReg(LHSReg, getKillRegState(LHSIsKill));
2764 ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg,
2765 RHSIsKill);
2766 } else
2767 ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8],
2768 TLI.getRegClassFor(VT), LHSReg, LHSIsKill,
2769 RHSReg, RHSIsKill);
2770 }
2771
2772 if (!ResultReg)
2773 return false;
2774
2775 unsigned ResultReg2 = FuncInfo.CreateRegs(CondTy);
2776 assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers.");
2777 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CondOpc),
2778 ResultReg2);
2779
2780 updateValueMap(II, ResultReg, 2);
2781 return true;
2782 }
2783 case Intrinsic::x86_sse_cvttss2si:
2784 case Intrinsic::x86_sse_cvttss2si64:
2785 case Intrinsic::x86_sse2_cvttsd2si:
2786 case Intrinsic::x86_sse2_cvttsd2si64: {
2787 bool IsInputDouble;
2788 switch (II->getIntrinsicID()) {
2789 default: llvm_unreachable("Unexpected intrinsic.");
2790 case Intrinsic::x86_sse_cvttss2si:
2791 case Intrinsic::x86_sse_cvttss2si64:
2792 if (!Subtarget->hasSSE1())
2793 return false;
2794 IsInputDouble = false;
2795 break;
2796 case Intrinsic::x86_sse2_cvttsd2si:
2797 case Intrinsic::x86_sse2_cvttsd2si64:
2798 if (!Subtarget->hasSSE2())
2799 return false;
2800 IsInputDouble = true;
2801 break;
2802 }
2803
2804 Type *RetTy = II->getCalledFunction()->getReturnType();
2805 MVT VT;
2806 if (!isTypeLegal(RetTy, VT))
2807 return false;
2808
Craig Topper66111882016-06-02 04:19:42 +00002809 static const uint16_t CvtOpc[2][2][2] = {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002810 { { X86::CVTTSS2SIrr, X86::VCVTTSS2SIrr },
2811 { X86::CVTTSS2SI64rr, X86::VCVTTSS2SI64rr } },
2812 { { X86::CVTTSD2SIrr, X86::VCVTTSD2SIrr },
2813 { X86::CVTTSD2SI64rr, X86::VCVTTSD2SI64rr } }
2814 };
2815 bool HasAVX = Subtarget->hasAVX();
2816 unsigned Opc;
2817 switch (VT.SimpleTy) {
2818 default: llvm_unreachable("Unexpected result type.");
2819 case MVT::i32: Opc = CvtOpc[IsInputDouble][0][HasAVX]; break;
2820 case MVT::i64: Opc = CvtOpc[IsInputDouble][1][HasAVX]; break;
2821 }
2822
2823 // Check if we can fold insertelement instructions into the convert.
2824 const Value *Op = II->getArgOperand(0);
2825 while (auto *IE = dyn_cast<InsertElementInst>(Op)) {
2826 const Value *Index = IE->getOperand(2);
2827 if (!isa<ConstantInt>(Index))
2828 break;
2829 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
2830
2831 if (Idx == 0) {
2832 Op = IE->getOperand(1);
2833 break;
2834 }
2835 Op = IE->getOperand(0);
2836 }
2837
2838 unsigned Reg = getRegForValue(Op);
2839 if (Reg == 0)
2840 return false;
2841
2842 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
2843 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
2844 .addReg(Reg);
2845
2846 updateValueMap(II, ResultReg);
2847 return true;
2848 }
2849 }
2850}
2851
2852bool X86FastISel::fastLowerArguments() {
2853 if (!FuncInfo.CanLowerReturn)
2854 return false;
2855
2856 const Function *F = FuncInfo.Fn;
2857 if (F->isVarArg())
2858 return false;
2859
2860 CallingConv::ID CC = F->getCallingConv();
2861 if (CC != CallingConv::C)
2862 return false;
2863
2864 if (Subtarget->isCallingConvWin64(CC))
2865 return false;
2866
2867 if (!Subtarget->is64Bit())
2868 return false;
2869
2870 // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments.
2871 unsigned GPRCnt = 0;
2872 unsigned FPRCnt = 0;
2873 unsigned Idx = 0;
2874 for (auto const &Arg : F->args()) {
2875 // The first argument is at index 1.
2876 ++Idx;
2877 if (F->getAttributes().hasAttribute(Idx, Attribute::ByVal) ||
2878 F->getAttributes().hasAttribute(Idx, Attribute::InReg) ||
2879 F->getAttributes().hasAttribute(Idx, Attribute::StructRet) ||
Manman Renf46262e2016-03-29 17:37:21 +00002880 F->getAttributes().hasAttribute(Idx, Attribute::SwiftSelf) ||
Manman Ren57518142016-04-11 21:08:06 +00002881 F->getAttributes().hasAttribute(Idx, Attribute::SwiftError) ||
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002882 F->getAttributes().hasAttribute(Idx, Attribute::Nest))
2883 return false;
2884
2885 Type *ArgTy = Arg.getType();
2886 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
2887 return false;
2888
Mehdi Amini44ede332015-07-09 02:09:04 +00002889 EVT ArgVT = TLI.getValueType(DL, ArgTy);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002890 if (!ArgVT.isSimple()) return false;
2891 switch (ArgVT.getSimpleVT().SimpleTy) {
2892 default: return false;
2893 case MVT::i32:
2894 case MVT::i64:
2895 ++GPRCnt;
2896 break;
2897 case MVT::f32:
2898 case MVT::f64:
2899 if (!Subtarget->hasSSE1())
2900 return false;
2901 ++FPRCnt;
2902 break;
2903 }
2904
2905 if (GPRCnt > 6)
2906 return false;
2907
2908 if (FPRCnt > 8)
2909 return false;
2910 }
2911
2912 static const MCPhysReg GPR32ArgRegs[] = {
2913 X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
2914 };
2915 static const MCPhysReg GPR64ArgRegs[] = {
2916 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9
2917 };
2918 static const MCPhysReg XMMArgRegs[] = {
2919 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2920 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2921 };
2922
2923 unsigned GPRIdx = 0;
2924 unsigned FPRIdx = 0;
2925 for (auto const &Arg : F->args()) {
Mehdi Amini44ede332015-07-09 02:09:04 +00002926 MVT VT = TLI.getSimpleValueType(DL, Arg.getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002927 const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
2928 unsigned SrcReg;
2929 switch (VT.SimpleTy) {
2930 default: llvm_unreachable("Unexpected value type.");
2931 case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break;
2932 case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break;
2933 case MVT::f32: // fall-through
2934 case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break;
2935 }
2936 unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
2937 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
2938 // Without this, EmitLiveInCopies may eliminate the livein if its only
2939 // use is a bitcast (which isn't turned into an instruction).
2940 unsigned ResultReg = createResultReg(RC);
2941 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2942 TII.get(TargetOpcode::COPY), ResultReg)
2943 .addReg(DstReg, getKillRegState(true));
2944 updateValueMap(&Arg, ResultReg);
2945 }
2946 return true;
2947}
2948
2949static unsigned computeBytesPoppedByCallee(const X86Subtarget *Subtarget,
2950 CallingConv::ID CC,
2951 ImmutableCallSite *CS) {
2952 if (Subtarget->is64Bit())
2953 return 0;
2954 if (Subtarget->getTargetTriple().isOSMSVCRT())
2955 return 0;
2956 if (CC == CallingConv::Fast || CC == CallingConv::GHC ||
2957 CC == CallingConv::HiPE)
2958 return 0;
Sanjoy Dasb11b4402015-11-04 20:33:45 +00002959
2960 if (CS)
2961 if (CS->arg_empty() || !CS->paramHasAttr(1, Attribute::StructRet) ||
Michael Kuperstein2ea81ba2015-12-28 14:39:21 +00002962 CS->paramHasAttr(1, Attribute::InReg) || Subtarget->isTargetMCU())
Sanjoy Dasb11b4402015-11-04 20:33:45 +00002963 return 0;
2964
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002965 return 4;
2966}
2967
2968bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) {
2969 auto &OutVals = CLI.OutVals;
2970 auto &OutFlags = CLI.OutFlags;
2971 auto &OutRegs = CLI.OutRegs;
2972 auto &Ins = CLI.Ins;
2973 auto &InRegs = CLI.InRegs;
2974 CallingConv::ID CC = CLI.CallConv;
2975 bool &IsTailCall = CLI.IsTailCall;
2976 bool IsVarArg = CLI.IsVarArg;
2977 const Value *Callee = CLI.Callee;
Rafael Espindolace4c2bc2015-06-23 12:21:54 +00002978 MCSymbol *Symbol = CLI.Symbol;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002979
2980 bool Is64Bit = Subtarget->is64Bit();
2981 bool IsWin64 = Subtarget->isCallingConvWin64(CC);
2982
2983 // Handle only C, fastcc, and webkit_js calling conventions for now.
2984 switch (CC) {
2985 default: return false;
2986 case CallingConv::C:
2987 case CallingConv::Fast:
2988 case CallingConv::WebKit_JS:
Manman Renf8bdd882016-04-05 22:41:47 +00002989 case CallingConv::Swift:
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002990 case CallingConv::X86_FastCall:
2991 case CallingConv::X86_64_Win64:
2992 case CallingConv::X86_64_SysV:
2993 break;
2994 }
2995
2996 // Allow SelectionDAG isel to handle tail calls.
2997 if (IsTailCall)
2998 return false;
2999
3000 // fastcc with -tailcallopt is intended to provide a guaranteed
3001 // tail call optimization. Fastisel doesn't know how to do that.
3002 if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
3003 return false;
3004
3005 // Don't know how to handle Win64 varargs yet. Nothing special needed for
3006 // x86-32. Special handling for x86-64 is implemented.
3007 if (IsVarArg && IsWin64)
3008 return false;
3009
3010 // Don't know about inalloca yet.
3011 if (CLI.CS && CLI.CS->hasInAllocaArgument())
3012 return false;
3013
Manman Ren57518142016-04-11 21:08:06 +00003014 for (auto Flag : CLI.OutFlags)
3015 if (Flag.isSwiftError())
3016 return false;
3017
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003018 // Fast-isel doesn't know about callee-pop yet.
3019 if (X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg,
3020 TM.Options.GuaranteedTailCallOpt))
3021 return false;
3022
3023 SmallVector<MVT, 16> OutVTs;
3024 SmallVector<unsigned, 16> ArgRegs;
3025
3026 // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra
3027 // instruction. This is safe because it is common to all FastISel supported
3028 // calling conventions on x86.
3029 for (int i = 0, e = OutVals.size(); i != e; ++i) {
3030 Value *&Val = OutVals[i];
3031 ISD::ArgFlagsTy Flags = OutFlags[i];
3032 if (auto *CI = dyn_cast<ConstantInt>(Val)) {
3033 if (CI->getBitWidth() < 32) {
3034 if (Flags.isSExt())
3035 Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext()));
3036 else
3037 Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext()));
3038 }
3039 }
3040
3041 // Passing bools around ends up doing a trunc to i1 and passing it.
3042 // Codegen this as an argument + "and 1".
3043 MVT VT;
3044 auto *TI = dyn_cast<TruncInst>(Val);
3045 unsigned ResultReg;
3046 if (TI && TI->getType()->isIntegerTy(1) && CLI.CS &&
3047 (TI->getParent() == CLI.CS->getInstruction()->getParent()) &&
3048 TI->hasOneUse()) {
3049 Value *PrevVal = TI->getOperand(0);
3050 ResultReg = getRegForValue(PrevVal);
3051
3052 if (!ResultReg)
3053 return false;
3054
3055 if (!isTypeLegal(PrevVal->getType(), VT))
3056 return false;
3057
3058 ResultReg =
3059 fastEmit_ri(VT, VT, ISD::AND, ResultReg, hasTrivialKill(PrevVal), 1);
3060 } else {
3061 if (!isTypeLegal(Val->getType(), VT))
3062 return false;
3063 ResultReg = getRegForValue(Val);
3064 }
3065
3066 if (!ResultReg)
3067 return false;
3068
3069 ArgRegs.push_back(ResultReg);
3070 OutVTs.push_back(VT);
3071 }
3072
3073 // Analyze operands of the call, assigning locations to each operand.
3074 SmallVector<CCValAssign, 16> ArgLocs;
3075 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext());
3076
3077 // Allocate shadow area for Win64
3078 if (IsWin64)
3079 CCInfo.AllocateStack(32, 8);
3080
3081 CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86);
3082
3083 // Get a count of how many bytes are to be pushed on the stack.
Jeroen Ketema740f9d72015-09-29 10:12:57 +00003084 unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003085
3086 // Issue CALLSEQ_START
3087 unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
3088 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
Michael Kuperstein13fbd452015-02-01 16:56:04 +00003089 .addImm(NumBytes).addImm(0);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003090
3091 // Walk the register/memloc assignments, inserting copies/loads.
Eric Christophera1c535b2015-02-02 23:03:45 +00003092 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003093 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3094 CCValAssign const &VA = ArgLocs[i];
3095 const Value *ArgVal = OutVals[VA.getValNo()];
3096 MVT ArgVT = OutVTs[VA.getValNo()];
3097
3098 if (ArgVT == MVT::x86mmx)
3099 return false;
3100
3101 unsigned ArgReg = ArgRegs[VA.getValNo()];
3102
3103 // Promote the value if needed.
3104 switch (VA.getLocInfo()) {
3105 case CCValAssign::Full: break;
3106 case CCValAssign::SExt: {
3107 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3108 "Unexpected extend");
David Majnemer2c5aeab2016-05-04 00:22:23 +00003109
3110 if (ArgVT.SimpleTy == MVT::i1)
3111 return false;
3112
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003113 bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3114 ArgVT, ArgReg);
3115 assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
3116 ArgVT = VA.getLocVT();
3117 break;
3118 }
3119 case CCValAssign::ZExt: {
3120 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3121 "Unexpected extend");
David Majnemer2c5aeab2016-05-04 00:22:23 +00003122
3123 // Handle zero-extension from i1 to i8, which is common.
3124 if (ArgVT.SimpleTy == MVT::i1) {
3125 // Set the high bits to zero.
3126 ArgReg = fastEmitZExtFromI1(MVT::i8, ArgReg, /*TODO: Kill=*/false);
3127 ArgVT = MVT::i8;
3128
3129 if (ArgReg == 0)
3130 return false;
3131 }
3132
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003133 bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3134 ArgVT, ArgReg);
3135 assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
3136 ArgVT = VA.getLocVT();
3137 break;
3138 }
3139 case CCValAssign::AExt: {
3140 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3141 "Unexpected extend");
3142 bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg,
3143 ArgVT, ArgReg);
3144 if (!Emitted)
3145 Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3146 ArgVT, ArgReg);
3147 if (!Emitted)
3148 Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3149 ArgVT, ArgReg);
3150
3151 assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
3152 ArgVT = VA.getLocVT();
3153 break;
3154 }
3155 case CCValAssign::BCvt: {
3156 ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg,
3157 /*TODO: Kill=*/false);
3158 assert(ArgReg && "Failed to emit a bitcast!");
3159 ArgVT = VA.getLocVT();
3160 break;
3161 }
3162 case CCValAssign::VExt:
3163 // VExt has not been implemented, so this should be impossible to reach
3164 // for now. However, fallback to Selection DAG isel once implemented.
3165 return false;
3166 case CCValAssign::AExtUpper:
3167 case CCValAssign::SExtUpper:
3168 case CCValAssign::ZExtUpper:
3169 case CCValAssign::FPExt:
3170 llvm_unreachable("Unexpected loc info!");
3171 case CCValAssign::Indirect:
3172 // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully
3173 // support this.
3174 return false;
3175 }
3176
3177 if (VA.isRegLoc()) {
3178 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3179 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
3180 OutRegs.push_back(VA.getLocReg());
3181 } else {
3182 assert(VA.isMemLoc());
3183
3184 // Don't emit stores for undef values.
3185 if (isa<UndefValue>(ArgVal))
3186 continue;
3187
3188 unsigned LocMemOffset = VA.getLocMemOffset();
3189 X86AddressMode AM;
3190 AM.Base.Reg = RegInfo->getStackRegister();
3191 AM.Disp = LocMemOffset;
3192 ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()];
3193 unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
3194 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
Alex Lorenze40c8a22015-08-11 23:09:45 +00003195 MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset),
3196 MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003197 if (Flags.isByVal()) {
3198 X86AddressMode SrcAM;
3199 SrcAM.Base.Reg = ArgReg;
3200 if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize()))
3201 return false;
3202 } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
3203 // If this is a really simple value, emit this with the Value* version
3204 // of X86FastEmitStore. If it isn't simple, we don't want to do this,
3205 // as it can cause us to reevaluate the argument.
3206 if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO))
3207 return false;
3208 } else {
3209 bool ValIsKill = hasTrivialKill(ArgVal);
3210 if (!X86FastEmitStore(ArgVT, ArgReg, ValIsKill, AM, MMO))
3211 return false;
3212 }
3213 }
3214 }
3215
3216 // ELF / PIC requires GOT in the EBX register before function calls via PLT
3217 // GOT pointer.
3218 if (Subtarget->isPICStyleGOT()) {
3219 unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3220 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3221 TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base);
3222 }
3223
3224 if (Is64Bit && IsVarArg && !IsWin64) {
3225 // From AMD64 ABI document:
3226 // For calls that may call functions that use varargs or stdargs
3227 // (prototype-less calls or calls to functions containing ellipsis (...) in
3228 // the declaration) %al is used as hidden argument to specify the number
3229 // of SSE registers used. The contents of %al do not need to match exactly
3230 // the number of registers, but must be an ubound on the number of SSE
3231 // registers used and is in the range 0 - 8 inclusive.
3232
3233 // Count the number of XMM registers allocated.
3234 static const MCPhysReg XMMArgRegs[] = {
3235 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3236 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3237 };
Tim Northover3b6b7ca2015-02-21 02:11:17 +00003238 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003239 assert((Subtarget->hasSSE1() || !NumXMMRegs)
3240 && "SSE registers cannot be used when SSE is disabled");
3241 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
3242 X86::AL).addImm(NumXMMRegs);
3243 }
3244
3245 // Materialize callee address in a register. FIXME: GV address can be
3246 // handled with a CALLpcrel32 instead.
3247 X86AddressMode CalleeAM;
3248 if (!X86SelectCallAddress(Callee, CalleeAM))
3249 return false;
3250
3251 unsigned CalleeOp = 0;
3252 const GlobalValue *GV = nullptr;
3253 if (CalleeAM.GV != nullptr) {
3254 GV = CalleeAM.GV;
3255 } else if (CalleeAM.Base.Reg != 0) {
3256 CalleeOp = CalleeAM.Base.Reg;
3257 } else
3258 return false;
3259
3260 // Issue the call.
3261 MachineInstrBuilder MIB;
3262 if (CalleeOp) {
3263 // Register-indirect call.
3264 unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r;
3265 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc))
3266 .addReg(CalleeOp);
3267 } else {
3268 // Direct call.
3269 assert(GV && "Not a direct call");
3270 unsigned CallOpc = Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32;
3271
3272 // See if we need any target-specific flags on the GV operand.
Rafael Espindola46107b92016-05-19 18:49:29 +00003273 unsigned char OpFlags = Subtarget->classifyGlobalFunctionReference(GV);
Asaf Badouh89406d12016-04-20 08:32:57 +00003274 // Ignore NonLazyBind attribute in FastISel
3275 if (OpFlags == X86II::MO_GOTPCREL)
3276 OpFlags = 0;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003277
3278 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc));
Rafael Espindolace4c2bc2015-06-23 12:21:54 +00003279 if (Symbol)
3280 MIB.addSym(Symbol, OpFlags);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003281 else
3282 MIB.addGlobalAddress(GV, 0, OpFlags);
3283 }
3284
3285 // Add a register mask operand representing the call-preserved registers.
3286 // Proper defs for return values will be added by setPhysRegsDeadExcept().
Eric Christopher9deb75d2015-03-11 22:42:13 +00003287 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003288
3289 // Add an implicit use GOT pointer in EBX.
3290 if (Subtarget->isPICStyleGOT())
3291 MIB.addReg(X86::EBX, RegState::Implicit);
3292
3293 if (Is64Bit && IsVarArg && !IsWin64)
3294 MIB.addReg(X86::AL, RegState::Implicit);
3295
3296 // Add implicit physical register uses to the call.
3297 for (auto Reg : OutRegs)
3298 MIB.addReg(Reg, RegState::Implicit);
3299
3300 // Issue CALLSEQ_END
3301 unsigned NumBytesForCalleeToPop =
3302 computeBytesPoppedByCallee(Subtarget, CC, CLI.CS);
3303 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
3304 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
3305 .addImm(NumBytes).addImm(NumBytesForCalleeToPop);
3306
3307 // Now handle call return values.
3308 SmallVector<CCValAssign, 16> RVLocs;
3309 CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs,
3310 CLI.RetTy->getContext());
3311 CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
3312
3313 // Copy all of the result registers out of their specified physreg.
3314 unsigned ResultReg = FuncInfo.CreateRegs(CLI.RetTy);
3315 for (unsigned i = 0; i != RVLocs.size(); ++i) {
3316 CCValAssign &VA = RVLocs[i];
3317 EVT CopyVT = VA.getValVT();
3318 unsigned CopyReg = ResultReg + i;
3319
3320 // If this is x86-64, and we disabled SSE, we can't return FP values
3321 if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
3322 ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
3323 report_fatal_error("SSE register return with SSE disabled");
3324 }
3325
3326 // If we prefer to use the value in xmm registers, copy it out as f80 and
3327 // use a truncate to move it from fp stack reg to xmm reg.
3328 if ((VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) &&
3329 isScalarFPTypeInSSEReg(VA.getValVT())) {
3330 CopyVT = MVT::f80;
3331 CopyReg = createResultReg(&X86::RFP80RegClass);
3332 }
3333
3334 // Copy out the result.
3335 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3336 TII.get(TargetOpcode::COPY), CopyReg).addReg(VA.getLocReg());
3337 InRegs.push_back(VA.getLocReg());
3338
3339 // Round the f80 to the right size, which also moves it to the appropriate
3340 // xmm register. This is accomplished by storing the f80 value in memory
3341 // and then loading it back.
3342 if (CopyVT != VA.getValVT()) {
3343 EVT ResVT = VA.getValVT();
3344 unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
3345 unsigned MemSize = ResVT.getSizeInBits()/8;
3346 int FI = MFI.CreateStackObject(MemSize, MemSize, false);
3347 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3348 TII.get(Opc)), FI)
3349 .addReg(CopyReg);
3350 Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
3351 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3352 TII.get(Opc), ResultReg + i), FI);
3353 }
3354 }
3355
3356 CLI.ResultReg = ResultReg;
3357 CLI.NumResultRegs = RVLocs.size();
3358 CLI.Call = MIB;
3359
3360 return true;
3361}
3362
3363bool
3364X86FastISel::fastSelectInstruction(const Instruction *I) {
3365 switch (I->getOpcode()) {
3366 default: break;
3367 case Instruction::Load:
3368 return X86SelectLoad(I);
3369 case Instruction::Store:
3370 return X86SelectStore(I);
3371 case Instruction::Ret:
3372 return X86SelectRet(I);
3373 case Instruction::ICmp:
3374 case Instruction::FCmp:
3375 return X86SelectCmp(I);
3376 case Instruction::ZExt:
3377 return X86SelectZExt(I);
3378 case Instruction::Br:
3379 return X86SelectBranch(I);
3380 case Instruction::LShr:
3381 case Instruction::AShr:
3382 case Instruction::Shl:
3383 return X86SelectShift(I);
3384 case Instruction::SDiv:
3385 case Instruction::UDiv:
3386 case Instruction::SRem:
3387 case Instruction::URem:
3388 return X86SelectDivRem(I);
3389 case Instruction::Select:
3390 return X86SelectSelect(I);
3391 case Instruction::Trunc:
3392 return X86SelectTrunc(I);
3393 case Instruction::FPExt:
3394 return X86SelectFPExt(I);
3395 case Instruction::FPTrunc:
3396 return X86SelectFPTrunc(I);
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00003397 case Instruction::SIToFP:
3398 return X86SelectSIToFP(I);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003399 case Instruction::IntToPtr: // Deliberate fall-through.
3400 case Instruction::PtrToInt: {
Mehdi Amini44ede332015-07-09 02:09:04 +00003401 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
3402 EVT DstVT = TLI.getValueType(DL, I->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003403 if (DstVT.bitsGT(SrcVT))
3404 return X86SelectZExt(I);
3405 if (DstVT.bitsLT(SrcVT))
3406 return X86SelectTrunc(I);
3407 unsigned Reg = getRegForValue(I->getOperand(0));
3408 if (Reg == 0) return false;
3409 updateValueMap(I, Reg);
3410 return true;
3411 }
Andrea Di Biagio77f62652015-10-02 16:08:05 +00003412 case Instruction::BitCast: {
3413 // Select SSE2/AVX bitcasts between 128/256 bit vector types.
3414 if (!Subtarget->hasSSE2())
3415 return false;
3416
3417 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
3418 EVT DstVT = TLI.getValueType(DL, I->getType());
3419
3420 if (!SrcVT.isSimple() || !DstVT.isSimple())
3421 return false;
3422
3423 if (!SrcVT.is128BitVector() &&
3424 !(Subtarget->hasAVX() && SrcVT.is256BitVector()))
3425 return false;
3426
3427 unsigned Reg = getRegForValue(I->getOperand(0));
3428 if (Reg == 0)
3429 return false;
3430
3431 // No instruction is needed for conversion. Reuse the register used by
3432 // the fist operand.
3433 updateValueMap(I, Reg);
3434 return true;
3435 }
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003436 }
3437
3438 return false;
3439}
3440
3441unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) {
3442 if (VT > MVT::i64)
3443 return 0;
3444
3445 uint64_t Imm = CI->getZExtValue();
3446 if (Imm == 0) {
3447 unsigned SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass);
3448 switch (VT.SimpleTy) {
3449 default: llvm_unreachable("Unexpected value type");
3450 case MVT::i1:
3451 case MVT::i8:
3452 return fastEmitInst_extractsubreg(MVT::i8, SrcReg, /*Kill=*/true,
3453 X86::sub_8bit);
3454 case MVT::i16:
3455 return fastEmitInst_extractsubreg(MVT::i16, SrcReg, /*Kill=*/true,
3456 X86::sub_16bit);
3457 case MVT::i32:
3458 return SrcReg;
3459 case MVT::i64: {
3460 unsigned ResultReg = createResultReg(&X86::GR64RegClass);
3461 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3462 TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
3463 .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
3464 return ResultReg;
3465 }
3466 }
3467 }
3468
3469 unsigned Opc = 0;
3470 switch (VT.SimpleTy) {
3471 default: llvm_unreachable("Unexpected value type");
3472 case MVT::i1: VT = MVT::i8; // fall-through
3473 case MVT::i8: Opc = X86::MOV8ri; break;
3474 case MVT::i16: Opc = X86::MOV16ri; break;
3475 case MVT::i32: Opc = X86::MOV32ri; break;
3476 case MVT::i64: {
3477 if (isUInt<32>(Imm))
3478 Opc = X86::MOV32ri;
3479 else if (isInt<32>(Imm))
3480 Opc = X86::MOV64ri32;
3481 else
3482 Opc = X86::MOV64ri;
3483 break;
3484 }
3485 }
3486 if (VT == MVT::i64 && Opc == X86::MOV32ri) {
3487 unsigned SrcReg = fastEmitInst_i(Opc, &X86::GR32RegClass, Imm);
3488 unsigned ResultReg = createResultReg(&X86::GR64RegClass);
3489 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3490 TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
3491 .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
3492 return ResultReg;
3493 }
3494 return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm);
3495}
3496
3497unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) {
3498 if (CFP->isNullValue())
3499 return fastMaterializeFloatZero(CFP);
3500
3501 // Can't handle alternate code models yet.
3502 CodeModel::Model CM = TM.getCodeModel();
3503 if (CM != CodeModel::Small && CM != CodeModel::Large)
3504 return 0;
3505
3506 // Get opcode and regclass of the output for the given load instruction.
3507 unsigned Opc = 0;
3508 const TargetRegisterClass *RC = nullptr;
3509 switch (VT.SimpleTy) {
3510 default: return 0;
3511 case MVT::f32:
3512 if (X86ScalarSSEf32) {
3513 Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
3514 RC = &X86::FR32RegClass;
3515 } else {
3516 Opc = X86::LD_Fp32m;
3517 RC = &X86::RFP32RegClass;
3518 }
3519 break;
3520 case MVT::f64:
3521 if (X86ScalarSSEf64) {
3522 Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;
3523 RC = &X86::FR64RegClass;
3524 } else {
3525 Opc = X86::LD_Fp64m;
3526 RC = &X86::RFP64RegClass;
3527 }
3528 break;
3529 case MVT::f80:
3530 // No f80 support yet.
3531 return 0;
3532 }
3533
3534 // MachineConstantPool wants an explicit alignment.
3535 unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
3536 if (Align == 0) {
3537 // Alignment of vector types. FIXME!
3538 Align = DL.getTypeAllocSize(CFP->getType());
3539 }
3540
3541 // x86-32 PIC requires a PIC base register for constant pools.
3542 unsigned PICBase = 0;
Rafael Espindolac7e98132016-05-20 12:20:10 +00003543 unsigned char OpFlag = Subtarget->classifyLocalReference(nullptr);
3544 if (OpFlag == X86II::MO_PIC_BASE_OFFSET)
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003545 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
Rafael Espindolac7e98132016-05-20 12:20:10 +00003546 else if (OpFlag == X86II::MO_GOTOFF)
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003547 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
Rafael Espindolac7e98132016-05-20 12:20:10 +00003548 else if (Subtarget->is64Bit() && TM.getCodeModel() == CodeModel::Small)
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003549 PICBase = X86::RIP;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003550
3551 // Create the load from the constant pool.
3552 unsigned CPI = MCP.getConstantPoolIndex(CFP, Align);
3553 unsigned ResultReg = createResultReg(RC);
3554
3555 if (CM == CodeModel::Large) {
3556 unsigned AddrReg = createResultReg(&X86::GR64RegClass);
3557 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
3558 AddrReg)
3559 .addConstantPoolIndex(CPI, 0, OpFlag);
3560 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3561 TII.get(Opc), ResultReg);
3562 addDirectMem(MIB, AddrReg);
3563 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
Alex Lorenze40c8a22015-08-11 23:09:45 +00003564 MachinePointerInfo::getConstantPool(*FuncInfo.MF),
3565 MachineMemOperand::MOLoad, DL.getPointerSize(), Align);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003566 MIB->addMemOperand(*FuncInfo.MF, MMO);
3567 return ResultReg;
3568 }
3569
3570 addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3571 TII.get(Opc), ResultReg),
3572 CPI, PICBase, OpFlag);
3573 return ResultReg;
3574}
3575
3576unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) {
3577 // Can't handle alternate code models yet.
3578 if (TM.getCodeModel() != CodeModel::Small)
3579 return 0;
3580
3581 // Materialize addresses with LEA/MOV instructions.
3582 X86AddressMode AM;
3583 if (X86SelectAddress(GV, AM)) {
3584 // If the expression is just a basereg, then we're done, otherwise we need
3585 // to emit an LEA.
3586 if (AM.BaseType == X86AddressMode::RegBase &&
3587 AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr)
3588 return AM.Base.Reg;
3589
3590 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
3591 if (TM.getRelocationModel() == Reloc::Static &&
Mehdi Amini44ede332015-07-09 02:09:04 +00003592 TLI.getPointerTy(DL) == MVT::i64) {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003593 // The displacement code could be more than 32 bits away so we need to use
3594 // an instruction with a 64 bit immediate
3595 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
3596 ResultReg)
3597 .addGlobalAddress(GV);
3598 } else {
Mehdi Amini44ede332015-07-09 02:09:04 +00003599 unsigned Opc =
3600 TLI.getPointerTy(DL) == MVT::i32
3601 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3602 : X86::LEA64r;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003603 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3604 TII.get(Opc), ResultReg), AM);
3605 }
3606 return ResultReg;
3607 }
3608 return 0;
3609}
3610
3611unsigned X86FastISel::fastMaterializeConstant(const Constant *C) {
Mehdi Amini44ede332015-07-09 02:09:04 +00003612 EVT CEVT = TLI.getValueType(DL, C->getType(), true);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003613
3614 // Only handle simple types.
3615 if (!CEVT.isSimple())
3616 return 0;
3617 MVT VT = CEVT.getSimpleVT();
3618
3619 if (const auto *CI = dyn_cast<ConstantInt>(C))
3620 return X86MaterializeInt(CI, VT);
3621 else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
3622 return X86MaterializeFP(CFP, VT);
3623 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
3624 return X86MaterializeGV(GV, VT);
3625
3626 return 0;
3627}
3628
3629unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) {
3630 // Fail on dynamic allocas. At this point, getRegForValue has already
3631 // checked its CSE maps, so if we're here trying to handle a dynamic
3632 // alloca, we're not going to succeed. X86SelectAddress has a
3633 // check for dynamic allocas, because it's called directly from
3634 // various places, but targetMaterializeAlloca also needs a check
3635 // in order to avoid recursion between getRegForValue,
3636 // X86SelectAddrss, and targetMaterializeAlloca.
3637 if (!FuncInfo.StaticAllocaMap.count(C))
3638 return 0;
3639 assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?");
3640
3641 X86AddressMode AM;
3642 if (!X86SelectAddress(C, AM))
3643 return 0;
Mehdi Amini44ede332015-07-09 02:09:04 +00003644 unsigned Opc =
3645 TLI.getPointerTy(DL) == MVT::i32
3646 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3647 : X86::LEA64r;
3648 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003649 unsigned ResultReg = createResultReg(RC);
3650 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3651 TII.get(Opc), ResultReg), AM);
3652 return ResultReg;
3653}
3654
3655unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) {
3656 MVT VT;
3657 if (!isTypeLegal(CF->getType(), VT))
3658 return 0;
3659
3660 // Get opcode and regclass for the given zero.
3661 unsigned Opc = 0;
3662 const TargetRegisterClass *RC = nullptr;
3663 switch (VT.SimpleTy) {
3664 default: return 0;
3665 case MVT::f32:
3666 if (X86ScalarSSEf32) {
3667 Opc = X86::FsFLD0SS;
3668 RC = &X86::FR32RegClass;
3669 } else {
3670 Opc = X86::LD_Fp032;
3671 RC = &X86::RFP32RegClass;
3672 }
3673 break;
3674 case MVT::f64:
3675 if (X86ScalarSSEf64) {
3676 Opc = X86::FsFLD0SD;
3677 RC = &X86::FR64RegClass;
3678 } else {
3679 Opc = X86::LD_Fp064;
3680 RC = &X86::RFP64RegClass;
3681 }
3682 break;
3683 case MVT::f80:
3684 // No f80 support yet.
3685 return 0;
3686 }
3687
3688 unsigned ResultReg = createResultReg(RC);
3689 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
3690 return ResultReg;
3691}
3692
3693
3694bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
3695 const LoadInst *LI) {
3696 const Value *Ptr = LI->getPointerOperand();
3697 X86AddressMode AM;
3698 if (!X86SelectAddress(Ptr, AM))
3699 return false;
3700
3701 const X86InstrInfo &XII = (const X86InstrInfo &)TII;
3702
3703 unsigned Size = DL.getTypeAllocSize(LI->getType());
3704 unsigned Alignment = LI->getAlignment();
3705
3706 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3707 Alignment = DL.getABITypeAlignment(LI->getType());
3708
3709 SmallVector<MachineOperand, 8> AddrOps;
3710 AM.getFullAddress(AddrOps);
3711
Keno Fischere70b31f2015-06-08 20:09:58 +00003712 MachineInstr *Result = XII.foldMemoryOperandImpl(
3713 *FuncInfo.MF, MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, Alignment,
3714 /*AllowCommute=*/true);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003715 if (!Result)
3716 return false;
3717
Pete Cooperd31583d2015-05-06 21:37:19 +00003718 // The index register could be in the wrong register class. Unfortunately,
3719 // foldMemoryOperandImpl could have commuted the instruction so its not enough
3720 // to just look at OpNo + the offset to the index reg. We actually need to
3721 // scan the instruction to find the index reg and see if its the correct reg
3722 // class.
Matthias Braune41e1462015-05-29 02:56:46 +00003723 unsigned OperandNo = 0;
3724 for (MachineInstr::mop_iterator I = Result->operands_begin(),
3725 E = Result->operands_end(); I != E; ++I, ++OperandNo) {
3726 MachineOperand &MO = *I;
3727 if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg)
Pete Cooperd31583d2015-05-06 21:37:19 +00003728 continue;
3729 // Found the index reg, now try to rewrite it.
Pete Cooperd31583d2015-05-06 21:37:19 +00003730 unsigned IndexReg = constrainOperandRegClass(Result->getDesc(),
Matthias Braune41e1462015-05-29 02:56:46 +00003731 MO.getReg(), OperandNo);
3732 if (IndexReg == MO.getReg())
Pete Cooperd31583d2015-05-06 21:37:19 +00003733 continue;
Matthias Braune41e1462015-05-29 02:56:46 +00003734 MO.setReg(IndexReg);
Pete Cooperd31583d2015-05-06 21:37:19 +00003735 }
3736
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003737 Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI));
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003738 MI->eraseFromParent();
3739 return true;
3740}
3741
3742
3743namespace llvm {
3744 FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo,
3745 const TargetLibraryInfo *libInfo) {
3746 return new X86FastISel(funcInfo, libInfo);
3747 }
3748}