blob: e101aeb0ff0206a5d9e40991ea37858fcb092be2 [file] [log] [blame]
Chris Lattnere6794492002-08-12 21:17:25 +00001//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnerca081252001-12-14 16:52:21 +00009//
10// InstructionCombining - Combine instructions to form fewer, simple
Chris Lattner99f48c62002-09-02 04:59:56 +000011// instructions. This pass does not modify the CFG This pass is where algebraic
12// simplification happens.
Chris Lattnerca081252001-12-14 16:52:21 +000013//
14// This pass combines things like:
Chris Lattnerdd1a86d2004-05-04 15:19:33 +000015// %Y = add int %X, 1
16// %Z = add int %Y, 1
Chris Lattnerca081252001-12-14 16:52:21 +000017// into:
Chris Lattnerdd1a86d2004-05-04 15:19:33 +000018// %Z = add int %X, 2
Chris Lattnerca081252001-12-14 16:52:21 +000019//
20// This is a simple worklist driven algorithm.
21//
Chris Lattner216c7b82003-09-10 05:29:43 +000022// This pass guarantees that the following canonicalizations are performed on
Chris Lattnerbfb1d032003-07-23 21:41:57 +000023// the program:
24// 1. If a binary operator has a constant operand, it is moved to the RHS
Chris Lattnerdeaa0dd2003-08-12 21:53:41 +000025// 2. Bitwise operators with constant operands are always grouped so that
26// shifts are performed first, then or's, then and's, then xor's.
Chris Lattnerbfb1d032003-07-23 21:41:57 +000027// 3. SetCC instructions are converted from <,>,<=,>= to ==,!= if possible
28// 4. All SetCC instructions on boolean values are replaced with logical ops
Chris Lattnerede3fe02003-08-13 04:18:28 +000029// 5. add X, X is represented as (X*2) => (X << 1)
30// 6. Multiplies with a power-of-two constant argument are transformed into
31// shifts.
Chris Lattner7515cab2004-11-14 19:13:23 +000032// ... etc.
Chris Lattnerbfb1d032003-07-23 21:41:57 +000033//
Chris Lattnerca081252001-12-14 16:52:21 +000034//===----------------------------------------------------------------------===//
35
Chris Lattner7d2a5392004-03-13 23:54:27 +000036#define DEBUG_TYPE "instcombine"
Chris Lattnerb4cfa7f2002-05-07 20:03:00 +000037#include "llvm/Transforms/Scalar.h"
Chris Lattner00648e12004-10-12 04:52:52 +000038#include "llvm/IntrinsicInst.h"
Chris Lattner04805fa2002-02-26 21:46:54 +000039#include "llvm/Pass.h"
Chris Lattner1085bdf2002-11-04 16:18:53 +000040#include "llvm/DerivedTypes.h"
Chris Lattner0f1d8a32003-06-26 05:06:25 +000041#include "llvm/GlobalVariable.h"
Chris Lattnerf4ad1652003-11-02 05:57:39 +000042#include "llvm/Target/TargetData.h"
43#include "llvm/Transforms/Utils/BasicBlockUtils.h"
44#include "llvm/Transforms/Utils/Local.h"
Chris Lattner69193f92004-04-05 01:30:19 +000045#include "llvm/Support/CallSite.h"
Chris Lattner39c98bb2004-12-08 23:43:58 +000046#include "llvm/Support/Debug.h"
Chris Lattner69193f92004-04-05 01:30:19 +000047#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner260ab202002-04-18 17:39:14 +000048#include "llvm/Support/InstVisitor.h"
Chris Lattner22d00a82005-08-02 19:16:58 +000049#include "llvm/Support/MathExtras.h"
Chris Lattnerd4252a72004-07-30 07:50:03 +000050#include "llvm/Support/PatternMatch.h"
Chris Lattner4ed40f72005-07-07 20:40:38 +000051#include "llvm/ADT/DepthFirstIterator.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000052#include "llvm/ADT/Statistic.h"
Chris Lattner39c98bb2004-12-08 23:43:58 +000053#include "llvm/ADT/STLExtras.h"
Chris Lattner053c0932002-05-14 15:24:07 +000054#include <algorithm>
Chris Lattnerc597b8a2006-01-22 23:32:06 +000055#include <iostream>
Chris Lattner8427bff2003-12-07 01:24:23 +000056using namespace llvm;
Chris Lattnerd4252a72004-07-30 07:50:03 +000057using namespace llvm::PatternMatch;
Brian Gaeke960707c2003-11-11 22:41:34 +000058
Chris Lattner260ab202002-04-18 17:39:14 +000059namespace {
Chris Lattnerbf3a0992002-10-01 22:38:41 +000060 Statistic<> NumCombined ("instcombine", "Number of insts combined");
61 Statistic<> NumConstProp("instcombine", "Number of constant folds");
62 Statistic<> NumDeadInst ("instcombine", "Number of dead inst eliminated");
Chris Lattner5997cf92006-02-08 03:25:32 +000063 Statistic<> NumDeadStore("instcombine", "Number of dead stores eliminated");
Chris Lattner39c98bb2004-12-08 23:43:58 +000064 Statistic<> NumSunkInst ("instcombine", "Number of instructions sunk");
Chris Lattnerbf3a0992002-10-01 22:38:41 +000065
Chris Lattnerc8e66542002-04-27 06:56:12 +000066 class InstCombiner : public FunctionPass,
Chris Lattner260ab202002-04-18 17:39:14 +000067 public InstVisitor<InstCombiner, Instruction*> {
68 // Worklist of all of the instructions that need to be simplified.
69 std::vector<Instruction*> WorkList;
Chris Lattnerf4ad1652003-11-02 05:57:39 +000070 TargetData *TD;
Chris Lattner260ab202002-04-18 17:39:14 +000071
Chris Lattner51ea1272004-02-28 05:22:00 +000072 /// AddUsersToWorkList - When an instruction is simplified, add all users of
73 /// the instruction to the work lists because they might get more simplified
74 /// now.
75 ///
Chris Lattner2590e512006-02-07 06:56:34 +000076 void AddUsersToWorkList(Value &I) {
Chris Lattner113f4f42002-06-25 16:13:24 +000077 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
Chris Lattner260ab202002-04-18 17:39:14 +000078 UI != UE; ++UI)
79 WorkList.push_back(cast<Instruction>(*UI));
80 }
81
Chris Lattner51ea1272004-02-28 05:22:00 +000082 /// AddUsesToWorkList - When an instruction is simplified, add operands to
83 /// the work lists because they might get more simplified now.
84 ///
85 void AddUsesToWorkList(Instruction &I) {
86 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
87 if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i)))
88 WorkList.push_back(Op);
89 }
90
Chris Lattner99f48c62002-09-02 04:59:56 +000091 // removeFromWorkList - remove all instances of I from the worklist.
92 void removeFromWorkList(Instruction *I);
Chris Lattner260ab202002-04-18 17:39:14 +000093 public:
Chris Lattner113f4f42002-06-25 16:13:24 +000094 virtual bool runOnFunction(Function &F);
Chris Lattner260ab202002-04-18 17:39:14 +000095
Chris Lattnerf12cc842002-04-28 21:27:06 +000096 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattnerf4ad1652003-11-02 05:57:39 +000097 AU.addRequired<TargetData>();
Chris Lattner820d9712002-10-21 20:00:28 +000098 AU.setPreservesCFG();
Chris Lattnerf12cc842002-04-28 21:27:06 +000099 }
100
Chris Lattner69193f92004-04-05 01:30:19 +0000101 TargetData &getTargetData() const { return *TD; }
102
Chris Lattner260ab202002-04-18 17:39:14 +0000103 // Visitation implementation - Implement instruction combining for different
104 // instruction types. The semantics are as follows:
105 // Return Value:
106 // null - No change was made
Chris Lattnere6794492002-08-12 21:17:25 +0000107 // I - Change was made, I is still valid, I may be dead though
Chris Lattner260ab202002-04-18 17:39:14 +0000108 // otherwise - Change was made, replace I with returned instruction
Misha Brukmanb1c93172005-04-21 23:48:37 +0000109 //
Chris Lattner113f4f42002-06-25 16:13:24 +0000110 Instruction *visitAdd(BinaryOperator &I);
111 Instruction *visitSub(BinaryOperator &I);
112 Instruction *visitMul(BinaryOperator &I);
113 Instruction *visitDiv(BinaryOperator &I);
114 Instruction *visitRem(BinaryOperator &I);
115 Instruction *visitAnd(BinaryOperator &I);
116 Instruction *visitOr (BinaryOperator &I);
117 Instruction *visitXor(BinaryOperator &I);
Chris Lattnerd1f46d32005-04-24 06:59:08 +0000118 Instruction *visitSetCondInst(SetCondInst &I);
119 Instruction *visitSetCondInstWithCastAndCast(SetCondInst &SCI);
120
Chris Lattner0798af32005-01-13 20:14:25 +0000121 Instruction *FoldGEPSetCC(User *GEPLHS, Value *RHS,
122 Instruction::BinaryOps Cond, Instruction &I);
Chris Lattnere8d6c602003-03-10 19:16:08 +0000123 Instruction *visitShiftInst(ShiftInst &I);
Chris Lattner14553932006-01-06 07:12:35 +0000124 Instruction *FoldShiftByConstant(Value *Op0, ConstantUInt *Op1,
125 ShiftInst &I);
Chris Lattner113f4f42002-06-25 16:13:24 +0000126 Instruction *visitCastInst(CastInst &CI);
Chris Lattner411336f2005-01-19 21:50:18 +0000127 Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
128 Instruction *FI);
Chris Lattnerb909e8b2004-03-12 05:52:32 +0000129 Instruction *visitSelectInst(SelectInst &CI);
Chris Lattner970c33a2003-06-19 17:00:31 +0000130 Instruction *visitCallInst(CallInst &CI);
131 Instruction *visitInvokeInst(InvokeInst &II);
Chris Lattner113f4f42002-06-25 16:13:24 +0000132 Instruction *visitPHINode(PHINode &PN);
133 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
Chris Lattner1085bdf2002-11-04 16:18:53 +0000134 Instruction *visitAllocationInst(AllocationInst &AI);
Chris Lattner8427bff2003-12-07 01:24:23 +0000135 Instruction *visitFreeInst(FreeInst &FI);
Chris Lattner0f1d8a32003-06-26 05:06:25 +0000136 Instruction *visitLoadInst(LoadInst &LI);
Chris Lattner31f486c2005-01-31 05:36:43 +0000137 Instruction *visitStoreInst(StoreInst &SI);
Chris Lattner9eef8a72003-06-04 04:46:00 +0000138 Instruction *visitBranchInst(BranchInst &BI);
Chris Lattner4c9c20a2004-07-03 00:26:11 +0000139 Instruction *visitSwitchInst(SwitchInst &SI);
Robert Bocchinoa8352962006-01-13 22:48:06 +0000140 Instruction *visitExtractElementInst(ExtractElementInst &EI);
Chris Lattner260ab202002-04-18 17:39:14 +0000141
142 // visitInstruction - Specify what to return for unhandled instructions...
Chris Lattner113f4f42002-06-25 16:13:24 +0000143 Instruction *visitInstruction(Instruction &I) { return 0; }
Chris Lattner6d14f2a2002-08-09 23:47:40 +0000144
Chris Lattner970c33a2003-06-19 17:00:31 +0000145 private:
Chris Lattneraec3d942003-10-07 22:32:43 +0000146 Instruction *visitCallSite(CallSite CS);
Chris Lattner970c33a2003-06-19 17:00:31 +0000147 bool transformConstExprCastCall(CallSite CS);
148
Chris Lattner69193f92004-04-05 01:30:19 +0000149 public:
Chris Lattner6d14f2a2002-08-09 23:47:40 +0000150 // InsertNewInstBefore - insert an instruction New before instruction Old
151 // in the program. Add the new instruction to the worklist.
152 //
Chris Lattner623826c2004-09-28 21:48:02 +0000153 Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
Chris Lattner65217ff2002-08-23 18:32:43 +0000154 assert(New && New->getParent() == 0 &&
155 "New instruction already inserted into a basic block!");
Chris Lattner6d14f2a2002-08-09 23:47:40 +0000156 BasicBlock *BB = Old.getParent();
157 BB->getInstList().insert(&Old, New); // Insert inst
158 WorkList.push_back(New); // Add to worklist
Chris Lattnere79e8542004-02-23 06:38:22 +0000159 return New;
Chris Lattner6d14f2a2002-08-09 23:47:40 +0000160 }
161
Chris Lattner7e794272004-09-24 15:21:34 +0000162 /// InsertCastBefore - Insert a cast of V to TY before the instruction POS.
163 /// This also adds the cast to the worklist. Finally, this returns the
164 /// cast.
165 Value *InsertCastBefore(Value *V, const Type *Ty, Instruction &Pos) {
166 if (V->getType() == Ty) return V;
Misha Brukmanb1c93172005-04-21 23:48:37 +0000167
Chris Lattner7e794272004-09-24 15:21:34 +0000168 Instruction *C = new CastInst(V, Ty, V->getName(), &Pos);
169 WorkList.push_back(C);
170 return C;
171 }
172
Chris Lattner6d14f2a2002-08-09 23:47:40 +0000173 // ReplaceInstUsesWith - This method is to be used when an instruction is
174 // found to be dead, replacable with another preexisting expression. Here
175 // we add all uses of I to the worklist, replace all uses of I with the new
176 // value, then return I, so that the inst combiner will know that I was
177 // modified.
178 //
179 Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
Chris Lattner51ea1272004-02-28 05:22:00 +0000180 AddUsersToWorkList(I); // Add all modified instrs to worklist
Chris Lattner8953b902004-04-05 02:10:19 +0000181 if (&I != V) {
182 I.replaceAllUsesWith(V);
183 return &I;
184 } else {
185 // If we are replacing the instruction with itself, this must be in a
186 // segment of unreachable code, so just clobber the instruction.
Chris Lattner8ba9ec92004-10-18 02:59:09 +0000187 I.replaceAllUsesWith(UndefValue::get(I.getType()));
Chris Lattner8953b902004-04-05 02:10:19 +0000188 return &I;
189 }
Chris Lattner6d14f2a2002-08-09 23:47:40 +0000190 }
Chris Lattner51ea1272004-02-28 05:22:00 +0000191
Chris Lattner2590e512006-02-07 06:56:34 +0000192 // UpdateValueUsesWith - This method is to be used when an value is
193 // found to be replacable with another preexisting expression or was
194 // updated. Here we add all uses of I to the worklist, replace all uses of
195 // I with the new value (unless the instruction was just updated), then
196 // return true, so that the inst combiner will know that I was modified.
197 //
198 bool UpdateValueUsesWith(Value *Old, Value *New) {
199 AddUsersToWorkList(*Old); // Add all modified instrs to worklist
200 if (Old != New)
201 Old->replaceAllUsesWith(New);
202 if (Instruction *I = dyn_cast<Instruction>(Old))
203 WorkList.push_back(I);
Chris Lattner5b2edb12006-02-12 08:02:11 +0000204 if (Instruction *I = dyn_cast<Instruction>(New))
205 WorkList.push_back(I);
Chris Lattner2590e512006-02-07 06:56:34 +0000206 return true;
207 }
208
Chris Lattner51ea1272004-02-28 05:22:00 +0000209 // EraseInstFromFunction - When dealing with an instruction that has side
210 // effects or produces a void value, we can't rely on DCE to delete the
211 // instruction. Instead, visit methods should return the value returned by
212 // this function.
213 Instruction *EraseInstFromFunction(Instruction &I) {
214 assert(I.use_empty() && "Cannot erase instruction that is used!");
215 AddUsesToWorkList(I);
216 removeFromWorkList(&I);
Chris Lattner95307542004-11-18 21:41:39 +0000217 I.eraseFromParent();
Chris Lattner51ea1272004-02-28 05:22:00 +0000218 return 0; // Don't do anything with FI
219 }
220
Chris Lattner3ac7c262003-08-13 20:16:26 +0000221 private:
Chris Lattnerdfae8be2003-07-24 17:35:25 +0000222 /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
223 /// InsertBefore instruction. This is specialized a bit to avoid inserting
224 /// casts that are known to not do anything...
225 ///
226 Value *InsertOperandCastBefore(Value *V, const Type *DestTy,
227 Instruction *InsertBefore);
228
Chris Lattner7fb29e12003-03-11 00:12:48 +0000229 // SimplifyCommutative - This performs a few simplifications for commutative
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000230 // operators.
Chris Lattner7fb29e12003-03-11 00:12:48 +0000231 bool SimplifyCommutative(BinaryOperator &I);
Chris Lattnerba1cb382003-09-19 17:17:26 +0000232
Chris Lattner0157e7f2006-02-11 09:31:47 +0000233 bool SimplifyDemandedBits(Value *V, uint64_t Mask,
234 uint64_t &KnownZero, uint64_t &KnownOne,
235 unsigned Depth = 0);
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000236
237 // FoldOpIntoPhi - Given a binary operator or cast instruction which has a
238 // PHI node as operand #0, see if we can fold the instruction into the PHI
239 // (which is only possible if all operands to the PHI are constants).
240 Instruction *FoldOpIntoPhi(Instruction &I);
241
Chris Lattner7515cab2004-11-14 19:13:23 +0000242 // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
243 // operator and they all are only used by the PHI, PHI together their
244 // inputs, and do the operation once, to the result of the PHI.
245 Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
246
Chris Lattnerba1cb382003-09-19 17:17:26 +0000247 Instruction *OptAndOp(Instruction *Op, ConstantIntegral *OpRHS,
248 ConstantIntegral *AndRHS, BinaryOperator &TheAnd);
Chris Lattneraf517572005-09-18 04:24:45 +0000249
250 Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantIntegral *Mask,
251 bool isSub, Instruction &I);
Chris Lattner6862fbd2004-09-29 17:40:11 +0000252 Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
253 bool Inside, Instruction &IB);
Chris Lattner216be912005-10-24 06:03:58 +0000254 Instruction *PromoteCastOfAllocation(CastInst &CI, AllocationInst &AI);
Chris Lattner260ab202002-04-18 17:39:14 +0000255 };
Chris Lattnerb28b6802002-07-23 18:06:35 +0000256
Chris Lattnerc8b70922002-07-26 21:12:46 +0000257 RegisterOpt<InstCombiner> X("instcombine", "Combine redundant instructions");
Chris Lattner260ab202002-04-18 17:39:14 +0000258}
259
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000260// getComplexity: Assign a complexity or rank value to LLVM Values...
Chris Lattner81a7a232004-10-16 18:11:37 +0000261// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000262static unsigned getComplexity(Value *V) {
263 if (isa<Instruction>(V)) {
264 if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V))
Chris Lattner81a7a232004-10-16 18:11:37 +0000265 return 3;
266 return 4;
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000267 }
Chris Lattner81a7a232004-10-16 18:11:37 +0000268 if (isa<Argument>(V)) return 3;
269 return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000270}
Chris Lattner260ab202002-04-18 17:39:14 +0000271
Chris Lattner7fb29e12003-03-11 00:12:48 +0000272// isOnlyUse - Return true if this instruction will be deleted if we stop using
273// it.
274static bool isOnlyUse(Value *V) {
Chris Lattnerf95d9b92003-10-15 16:48:29 +0000275 return V->hasOneUse() || isa<Constant>(V);
Chris Lattner7fb29e12003-03-11 00:12:48 +0000276}
277
Chris Lattnere79e8542004-02-23 06:38:22 +0000278// getPromotedType - Return the specified type promoted as it would be to pass
279// though a va_arg area...
280static const Type *getPromotedType(const Type *Ty) {
Chris Lattner97bfcea2004-06-17 18:16:02 +0000281 switch (Ty->getTypeID()) {
Chris Lattnere79e8542004-02-23 06:38:22 +0000282 case Type::SByteTyID:
283 case Type::ShortTyID: return Type::IntTy;
284 case Type::UByteTyID:
285 case Type::UShortTyID: return Type::UIntTy;
286 case Type::FloatTyID: return Type::DoubleTy;
287 default: return Ty;
288 }
289}
290
Chris Lattner567b81f2005-09-13 00:40:14 +0000291/// isCast - If the specified operand is a CastInst or a constant expr cast,
292/// return the operand value, otherwise return null.
293static Value *isCast(Value *V) {
294 if (CastInst *I = dyn_cast<CastInst>(V))
295 return I->getOperand(0);
296 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
297 if (CE->getOpcode() == Instruction::Cast)
298 return CE->getOperand(0);
299 return 0;
300}
301
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000302// SimplifyCommutative - This performs a few simplifications for commutative
303// operators:
Chris Lattner260ab202002-04-18 17:39:14 +0000304//
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000305// 1. Order operands such that they are listed from right (least complex) to
306// left (most complex). This puts constants before unary operators before
307// binary operators.
308//
Chris Lattner7fb29e12003-03-11 00:12:48 +0000309// 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
310// 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000311//
Chris Lattner7fb29e12003-03-11 00:12:48 +0000312bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000313 bool Changed = false;
314 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
315 Changed = !I.swapOperands();
Misha Brukmanb1c93172005-04-21 23:48:37 +0000316
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000317 if (!I.isAssociative()) return Changed;
318 Instruction::BinaryOps Opcode = I.getOpcode();
Chris Lattner7fb29e12003-03-11 00:12:48 +0000319 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
320 if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
321 if (isa<Constant>(I.getOperand(1))) {
Chris Lattner34428442003-05-27 16:40:51 +0000322 Constant *Folded = ConstantExpr::get(I.getOpcode(),
323 cast<Constant>(I.getOperand(1)),
324 cast<Constant>(Op->getOperand(1)));
Chris Lattner7fb29e12003-03-11 00:12:48 +0000325 I.setOperand(0, Op->getOperand(0));
326 I.setOperand(1, Folded);
327 return true;
328 } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
329 if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
330 isOnlyUse(Op) && isOnlyUse(Op1)) {
331 Constant *C1 = cast<Constant>(Op->getOperand(1));
332 Constant *C2 = cast<Constant>(Op1->getOperand(1));
333
334 // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
Chris Lattner34428442003-05-27 16:40:51 +0000335 Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
Chris Lattner7fb29e12003-03-11 00:12:48 +0000336 Instruction *New = BinaryOperator::create(Opcode, Op->getOperand(0),
337 Op1->getOperand(0),
338 Op1->getName(), &I);
339 WorkList.push_back(New);
340 I.setOperand(0, New);
341 I.setOperand(1, Folded);
342 return true;
Misha Brukmanb1c93172005-04-21 23:48:37 +0000343 }
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000344 }
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000345 return Changed;
Chris Lattner260ab202002-04-18 17:39:14 +0000346}
Chris Lattnerca081252001-12-14 16:52:21 +0000347
Chris Lattnerbb74e222003-03-10 23:06:50 +0000348// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
349// if the LHS is a constant zero (which is the 'negate' form).
Chris Lattner9fa53de2002-05-06 16:49:18 +0000350//
Chris Lattnerbb74e222003-03-10 23:06:50 +0000351static inline Value *dyn_castNegVal(Value *V) {
352 if (BinaryOperator::isNeg(V))
Chris Lattnerd6f636a2005-04-24 07:30:14 +0000353 return BinaryOperator::getNegArgument(V);
Chris Lattnerbb74e222003-03-10 23:06:50 +0000354
Chris Lattner9ad0d552004-12-14 20:08:06 +0000355 // Constants can be considered to be negated values if they can be folded.
356 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
357 return ConstantExpr::getNeg(C);
Chris Lattnerbb74e222003-03-10 23:06:50 +0000358 return 0;
Chris Lattner9fa53de2002-05-06 16:49:18 +0000359}
360
Chris Lattnerbb74e222003-03-10 23:06:50 +0000361static inline Value *dyn_castNotVal(Value *V) {
362 if (BinaryOperator::isNot(V))
Chris Lattnerd6f636a2005-04-24 07:30:14 +0000363 return BinaryOperator::getNotArgument(V);
Chris Lattnerbb74e222003-03-10 23:06:50 +0000364
365 // Constants can be considered to be not'ed values...
Chris Lattnerdd65d862003-04-30 22:34:06 +0000366 if (ConstantIntegral *C = dyn_cast<ConstantIntegral>(V))
Chris Lattnerc8e7e292004-06-10 02:12:35 +0000367 return ConstantExpr::getNot(C);
Chris Lattnerbb74e222003-03-10 23:06:50 +0000368 return 0;
369}
370
Chris Lattner7fb29e12003-03-11 00:12:48 +0000371// dyn_castFoldableMul - If this value is a multiply that can be folded into
372// other computations (because it has a constant operand), return the
Chris Lattner8c3e7b92004-11-13 19:50:12 +0000373// non-constant operand of the multiply, and set CST to point to the multiplier.
374// Otherwise, return null.
Chris Lattner7fb29e12003-03-11 00:12:48 +0000375//
Chris Lattner8c3e7b92004-11-13 19:50:12 +0000376static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
Chris Lattnerf95d9b92003-10-15 16:48:29 +0000377 if (V->hasOneUse() && V->getType()->isInteger())
Chris Lattner8c3e7b92004-11-13 19:50:12 +0000378 if (Instruction *I = dyn_cast<Instruction>(V)) {
Chris Lattner7fb29e12003-03-11 00:12:48 +0000379 if (I->getOpcode() == Instruction::Mul)
Chris Lattner970136362004-11-15 05:54:07 +0000380 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
Chris Lattner7fb29e12003-03-11 00:12:48 +0000381 return I->getOperand(0);
Chris Lattner8c3e7b92004-11-13 19:50:12 +0000382 if (I->getOpcode() == Instruction::Shl)
Chris Lattner970136362004-11-15 05:54:07 +0000383 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
Chris Lattner8c3e7b92004-11-13 19:50:12 +0000384 // The multiplier is really 1 << CST.
385 Constant *One = ConstantInt::get(V->getType(), 1);
386 CST = cast<ConstantInt>(ConstantExpr::getShl(One, CST));
387 return I->getOperand(0);
388 }
389 }
Chris Lattner7fb29e12003-03-11 00:12:48 +0000390 return 0;
Chris Lattner3082c5a2003-02-18 19:28:33 +0000391}
Chris Lattner31ae8632002-08-14 17:51:49 +0000392
Chris Lattner0798af32005-01-13 20:14:25 +0000393/// dyn_castGetElementPtr - If this is a getelementptr instruction or constant
394/// expression, return it.
395static User *dyn_castGetElementPtr(Value *V) {
396 if (isa<GetElementPtrInst>(V)) return cast<User>(V);
397 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
398 if (CE->getOpcode() == Instruction::GetElementPtr)
399 return cast<User>(V);
400 return false;
401}
402
Chris Lattner623826c2004-09-28 21:48:02 +0000403// AddOne, SubOne - Add or subtract a constant one from an integer constant...
Chris Lattner6862fbd2004-09-29 17:40:11 +0000404static ConstantInt *AddOne(ConstantInt *C) {
405 return cast<ConstantInt>(ConstantExpr::getAdd(C,
406 ConstantInt::get(C->getType(), 1)));
Chris Lattner623826c2004-09-28 21:48:02 +0000407}
Chris Lattner6862fbd2004-09-29 17:40:11 +0000408static ConstantInt *SubOne(ConstantInt *C) {
409 return cast<ConstantInt>(ConstantExpr::getSub(C,
410 ConstantInt::get(C->getType(), 1)));
Chris Lattner623826c2004-09-28 21:48:02 +0000411}
412
Chris Lattner0157e7f2006-02-11 09:31:47 +0000413/// GetConstantInType - Return a ConstantInt with the specified type and value.
414///
Chris Lattneree0f2802006-02-12 02:07:56 +0000415static ConstantIntegral *GetConstantInType(const Type *Ty, uint64_t Val) {
Chris Lattner0157e7f2006-02-11 09:31:47 +0000416 if (Ty->isUnsigned())
417 return ConstantUInt::get(Ty, Val);
Chris Lattneree0f2802006-02-12 02:07:56 +0000418 else if (Ty->getTypeID() == Type::BoolTyID)
419 return ConstantBool::get(Val);
Chris Lattner0157e7f2006-02-11 09:31:47 +0000420 int64_t SVal = Val;
421 SVal <<= 64-Ty->getPrimitiveSizeInBits();
422 SVal >>= 64-Ty->getPrimitiveSizeInBits();
423 return ConstantSInt::get(Ty, SVal);
424}
425
426
Chris Lattner4534dd592006-02-09 07:38:58 +0000427/// ComputeMaskedBits - Determine which of the bits specified in Mask are
428/// known to be either zero or one and return them in the KnownZero/KnownOne
429/// bitsets. This code only analyzes bits in Mask, in order to short-circuit
430/// processing.
431static void ComputeMaskedBits(Value *V, uint64_t Mask, uint64_t &KnownZero,
432 uint64_t &KnownOne, unsigned Depth = 0) {
Chris Lattner0b3557f2005-09-24 23:43:33 +0000433 // Note, we cannot consider 'undef' to be "IsZero" here. The problem is that
434 // we cannot optimize based on the assumption that it is zero without changing
Chris Lattnerc3ebf402006-02-07 07:27:52 +0000435 // it to be an explicit zero. If we don't change it to zero, other code could
Chris Lattner0b3557f2005-09-24 23:43:33 +0000436 // optimized based on the contradictory assumption that it is non-zero.
437 // Because instcombine aggressively folds operations with undef args anyway,
438 // this won't lose us code quality.
Chris Lattner4534dd592006-02-09 07:38:58 +0000439 if (ConstantIntegral *CI = dyn_cast<ConstantIntegral>(V)) {
440 // We know all of the bits for a constant!
Chris Lattner0157e7f2006-02-11 09:31:47 +0000441 KnownOne = CI->getZExtValue() & Mask;
Chris Lattner4534dd592006-02-09 07:38:58 +0000442 KnownZero = ~KnownOne & Mask;
443 return;
444 }
445
446 KnownZero = KnownOne = 0; // Don't know anything.
Chris Lattner92a68652006-02-07 08:05:22 +0000447 if (Depth == 6 || Mask == 0)
Chris Lattner4534dd592006-02-09 07:38:58 +0000448 return; // Limit search depth.
449
450 uint64_t KnownZero2, KnownOne2;
Chris Lattner0157e7f2006-02-11 09:31:47 +0000451 Instruction *I = dyn_cast<Instruction>(V);
452 if (!I) return;
453
454 switch (I->getOpcode()) {
455 case Instruction::And:
456 // If either the LHS or the RHS are Zero, the result is zero.
457 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
458 Mask &= ~KnownZero;
459 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
460 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
461 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
462
463 // Output known-1 bits are only known if set in both the LHS & RHS.
464 KnownOne &= KnownOne2;
465 // Output known-0 are known to be clear if zero in either the LHS | RHS.
466 KnownZero |= KnownZero2;
467 return;
468 case Instruction::Or:
469 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
470 Mask &= ~KnownOne;
471 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
472 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
473 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
474
475 // Output known-0 bits are only known if clear in both the LHS & RHS.
476 KnownZero &= KnownZero2;
477 // Output known-1 are known to be set if set in either the LHS | RHS.
478 KnownOne |= KnownOne2;
479 return;
480 case Instruction::Xor: {
481 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
482 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
483 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
484 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
485
486 // Output known-0 bits are known if clear or set in both the LHS & RHS.
487 uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
488 // Output known-1 are known to be set if set in only one of the LHS, RHS.
489 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
490 KnownZero = KnownZeroOut;
491 return;
492 }
493 case Instruction::Select:
494 ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
495 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
496 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
497 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
498
499 // Only known if known in both the LHS and RHS.
500 KnownOne &= KnownOne2;
501 KnownZero &= KnownZero2;
502 return;
503 case Instruction::Cast: {
504 const Type *SrcTy = I->getOperand(0)->getType();
505 if (!SrcTy->isIntegral()) return;
506
507 // If this is an integer truncate or noop, just look in the input.
508 if (SrcTy->getPrimitiveSizeInBits() >=
509 I->getType()->getPrimitiveSizeInBits()) {
510 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
Chris Lattner4534dd592006-02-09 07:38:58 +0000511 return;
512 }
Chris Lattner4534dd592006-02-09 07:38:58 +0000513
Chris Lattner0157e7f2006-02-11 09:31:47 +0000514 // Sign or Zero extension. Compute the bits in the result that are not
515 // present in the input.
516 uint64_t NotIn = ~SrcTy->getIntegralTypeMask();
517 uint64_t NewBits = I->getType()->getIntegralTypeMask() & NotIn;
Chris Lattner62010c42005-10-09 06:36:35 +0000518
Chris Lattner0157e7f2006-02-11 09:31:47 +0000519 // Handle zero extension.
520 if (!SrcTy->isSigned()) {
521 Mask &= SrcTy->getIntegralTypeMask();
522 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
523 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
524 // The top bits are known to be zero.
525 KnownZero |= NewBits;
526 } else {
527 // Sign extension.
528 Mask &= SrcTy->getIntegralTypeMask();
529 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
530 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner92a68652006-02-07 08:05:22 +0000531
Chris Lattner0157e7f2006-02-11 09:31:47 +0000532 // If the sign bit of the input is known set or clear, then we know the
533 // top bits of the result.
534 uint64_t InSignBit = 1ULL << (SrcTy->getPrimitiveSizeInBits()-1);
535 if (KnownZero & InSignBit) { // Input sign bit known zero
Chris Lattner4534dd592006-02-09 07:38:58 +0000536 KnownZero |= NewBits;
Chris Lattner0157e7f2006-02-11 09:31:47 +0000537 KnownOne &= ~NewBits;
538 } else if (KnownOne & InSignBit) { // Input sign bit known set
539 KnownOne |= NewBits;
540 KnownZero &= ~NewBits;
541 } else { // Input sign bit unknown
542 KnownZero &= ~NewBits;
543 KnownOne &= ~NewBits;
544 }
545 }
546 return;
547 }
548 case Instruction::Shl:
549 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
550 if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1))) {
551 Mask >>= SA->getValue();
552 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
553 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
554 KnownZero <<= SA->getValue();
555 KnownOne <<= SA->getValue();
556 KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
557 return;
558 }
559 break;
560 case Instruction::Shr:
561 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
562 if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1))) {
563 // Compute the new bits that are at the top now.
564 uint64_t HighBits = (1ULL << SA->getValue())-1;
565 HighBits <<= I->getType()->getPrimitiveSizeInBits()-SA->getValue();
566
567 if (I->getType()->isUnsigned()) { // Unsigned shift right.
568 Mask <<= SA->getValue();
569 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero,KnownOne,Depth+1);
570 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
571 KnownZero >>= SA->getValue();
572 KnownOne >>= SA->getValue();
573 KnownZero |= HighBits; // high bits known zero.
Chris Lattner4534dd592006-02-09 07:38:58 +0000574 } else {
Chris Lattner0157e7f2006-02-11 09:31:47 +0000575 Mask <<= SA->getValue();
576 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero,KnownOne,Depth+1);
577 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
578 KnownZero >>= SA->getValue();
579 KnownOne >>= SA->getValue();
580
581 // Handle the sign bits.
582 uint64_t SignBit = 1ULL << (I->getType()->getPrimitiveSizeInBits()-1);
583 SignBit >>= SA->getValue(); // Adjust to where it is now in the mask.
584
585 if (KnownZero & SignBit) { // New bits are known zero.
586 KnownZero |= HighBits;
587 } else if (KnownOne & SignBit) { // New bits are known one.
588 KnownOne |= HighBits;
Chris Lattner4534dd592006-02-09 07:38:58 +0000589 }
590 }
591 return;
Chris Lattner62010c42005-10-09 06:36:35 +0000592 }
Chris Lattner0157e7f2006-02-11 09:31:47 +0000593 break;
Chris Lattner0b3557f2005-09-24 23:43:33 +0000594 }
Chris Lattner92a68652006-02-07 08:05:22 +0000595}
596
597/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
598/// this predicate to simplify operations downstream. Mask is known to be zero
599/// for bits that V cannot have.
600static bool MaskedValueIsZero(Value *V, uint64_t Mask, unsigned Depth = 0) {
Chris Lattner4534dd592006-02-09 07:38:58 +0000601 uint64_t KnownZero, KnownOne;
602 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, Depth);
603 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
604 return (KnownZero & Mask) == Mask;
Chris Lattner0b3557f2005-09-24 23:43:33 +0000605}
606
Chris Lattner0157e7f2006-02-11 09:31:47 +0000607/// ShrinkDemandedConstant - Check to see if the specified operand of the
608/// specified instruction is a constant integer. If so, check to see if there
609/// are any bits set in the constant that are not demanded. If so, shrink the
610/// constant and return true.
611static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
612 uint64_t Demanded) {
613 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
614 if (!OpC) return false;
615
616 // If there are no bits set that aren't demanded, nothing to do.
617 if ((~Demanded & OpC->getZExtValue()) == 0)
618 return false;
619
620 // This is producing any bits that are not needed, shrink the RHS.
621 uint64_t Val = Demanded & OpC->getZExtValue();
622 I->setOperand(OpNo, GetConstantInType(OpC->getType(), Val));
623 return true;
624}
625
Chris Lattneree0f2802006-02-12 02:07:56 +0000626// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
627// set of known zero and one bits, compute the maximum and minimum values that
628// could have the specified known zero and known one bits, returning them in
629// min/max.
630static void ComputeSignedMinMaxValuesFromKnownBits(const Type *Ty,
631 uint64_t KnownZero,
632 uint64_t KnownOne,
633 int64_t &Min, int64_t &Max) {
634 uint64_t TypeBits = Ty->getIntegralTypeMask();
635 uint64_t UnknownBits = ~(KnownZero|KnownOne) & TypeBits;
636
637 uint64_t SignBit = 1ULL << (Ty->getPrimitiveSizeInBits()-1);
638
639 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
640 // bit if it is unknown.
641 Min = KnownOne;
642 Max = KnownOne|UnknownBits;
643
644 if (SignBit & UnknownBits) { // Sign bit is unknown
645 Min |= SignBit;
646 Max &= ~SignBit;
647 }
648
649 // Sign extend the min/max values.
650 int ShAmt = 64-Ty->getPrimitiveSizeInBits();
651 Min = (Min << ShAmt) >> ShAmt;
652 Max = (Max << ShAmt) >> ShAmt;
653}
654
655// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
656// a set of known zero and one bits, compute the maximum and minimum values that
657// could have the specified known zero and known one bits, returning them in
658// min/max.
659static void ComputeUnsignedMinMaxValuesFromKnownBits(const Type *Ty,
660 uint64_t KnownZero,
661 uint64_t KnownOne,
662 uint64_t &Min,
663 uint64_t &Max) {
664 uint64_t TypeBits = Ty->getIntegralTypeMask();
665 uint64_t UnknownBits = ~(KnownZero|KnownOne) & TypeBits;
666
667 // The minimum value is when the unknown bits are all zeros.
668 Min = KnownOne;
669 // The maximum value is when the unknown bits are all ones.
670 Max = KnownOne|UnknownBits;
671}
Chris Lattner0157e7f2006-02-11 09:31:47 +0000672
673
674/// SimplifyDemandedBits - Look at V. At this point, we know that only the
675/// DemandedMask bits of the result of V are ever used downstream. If we can
676/// use this information to simplify V, do so and return true. Otherwise,
677/// analyze the expression and return a mask of KnownOne and KnownZero bits for
678/// the expression (used to simplify the caller). The KnownZero/One bits may
679/// only be accurate for those bits in the DemandedMask.
680bool InstCombiner::SimplifyDemandedBits(Value *V, uint64_t DemandedMask,
681 uint64_t &KnownZero, uint64_t &KnownOne,
Chris Lattner2590e512006-02-07 06:56:34 +0000682 unsigned Depth) {
Chris Lattner0157e7f2006-02-11 09:31:47 +0000683 if (ConstantIntegral *CI = dyn_cast<ConstantIntegral>(V)) {
684 // We know all of the bits for a constant!
685 KnownOne = CI->getZExtValue() & DemandedMask;
686 KnownZero = ~KnownOne & DemandedMask;
687 return false;
688 }
689
690 KnownZero = KnownOne = 0;
Chris Lattner2590e512006-02-07 06:56:34 +0000691 if (!V->hasOneUse()) { // Other users may use these bits.
Chris Lattner0157e7f2006-02-11 09:31:47 +0000692 if (Depth != 0) { // Not at the root.
693 // Just compute the KnownZero/KnownOne bits to simplify things downstream.
694 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
Chris Lattner2590e512006-02-07 06:56:34 +0000695 return false;
Chris Lattner0157e7f2006-02-11 09:31:47 +0000696 }
Chris Lattner2590e512006-02-07 06:56:34 +0000697 // If this is the root being simplified, allow it to have multiple uses,
Chris Lattner0157e7f2006-02-11 09:31:47 +0000698 // just set the DemandedMask to all bits.
699 DemandedMask = V->getType()->getIntegralTypeMask();
700 } else if (DemandedMask == 0) { // Not demanding any bits from V.
Chris Lattner92a68652006-02-07 08:05:22 +0000701 if (V != UndefValue::get(V->getType()))
702 return UpdateValueUsesWith(V, UndefValue::get(V->getType()));
703 return false;
Chris Lattner2590e512006-02-07 06:56:34 +0000704 } else if (Depth == 6) { // Limit search depth.
705 return false;
706 }
707
708 Instruction *I = dyn_cast<Instruction>(V);
709 if (!I) return false; // Only analyze instructions.
710
Chris Lattner0157e7f2006-02-11 09:31:47 +0000711 uint64_t KnownZero2, KnownOne2;
Chris Lattner2590e512006-02-07 06:56:34 +0000712 switch (I->getOpcode()) {
713 default: break;
714 case Instruction::And:
Chris Lattner0157e7f2006-02-11 09:31:47 +0000715 // If either the LHS or the RHS are Zero, the result is zero.
716 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
717 KnownZero, KnownOne, Depth+1))
718 return true;
719 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
720
721 // If something is known zero on the RHS, the bits aren't demanded on the
722 // LHS.
723 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~KnownZero,
724 KnownZero2, KnownOne2, Depth+1))
725 return true;
726 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
727
728 // If all of the demanded bits are known one on one side, return the other.
729 // These bits cannot contribute to the result of the 'and'.
730 if ((DemandedMask & ~KnownZero2 & KnownOne) == (DemandedMask & ~KnownZero2))
731 return UpdateValueUsesWith(I, I->getOperand(0));
732 if ((DemandedMask & ~KnownZero & KnownOne2) == (DemandedMask & ~KnownZero))
733 return UpdateValueUsesWith(I, I->getOperand(1));
Chris Lattner5b2edb12006-02-12 08:02:11 +0000734
735 // If all of the demanded bits in the inputs are known zeros, return zero.
736 if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask)
737 return UpdateValueUsesWith(I, Constant::getNullValue(I->getType()));
738
Chris Lattner0157e7f2006-02-11 09:31:47 +0000739 // If the RHS is a constant, see if we can simplify it.
Chris Lattner5b2edb12006-02-12 08:02:11 +0000740 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~KnownZero2))
Chris Lattner0157e7f2006-02-11 09:31:47 +0000741 return UpdateValueUsesWith(I, I);
742
743 // Output known-1 bits are only known if set in both the LHS & RHS.
744 KnownOne &= KnownOne2;
745 // Output known-0 are known to be clear if zero in either the LHS | RHS.
746 KnownZero |= KnownZero2;
747 break;
748 case Instruction::Or:
749 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
750 KnownZero, KnownOne, Depth+1))
751 return true;
752 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
753 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~KnownOne,
754 KnownZero2, KnownOne2, Depth+1))
755 return true;
756 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
757
758 // If all of the demanded bits are known zero on one side, return the other.
759 // These bits cannot contribute to the result of the 'or'.
Jeff Cohen0add83e2006-02-18 03:20:33 +0000760 if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2))
Chris Lattner0157e7f2006-02-11 09:31:47 +0000761 return UpdateValueUsesWith(I, I->getOperand(0));
Jeff Cohen0add83e2006-02-18 03:20:33 +0000762 if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne))
Chris Lattner0157e7f2006-02-11 09:31:47 +0000763 return UpdateValueUsesWith(I, I->getOperand(1));
Chris Lattner5b2edb12006-02-12 08:02:11 +0000764
765 // If all of the potentially set bits on one side are known to be set on
766 // the other side, just use the 'other' side.
767 if ((DemandedMask & (~KnownZero) & KnownOne2) ==
768 (DemandedMask & (~KnownZero)))
769 return UpdateValueUsesWith(I, I->getOperand(0));
Nate Begeman8a77efe2006-02-16 21:11:51 +0000770 if ((DemandedMask & (~KnownZero2) & KnownOne) ==
771 (DemandedMask & (~KnownZero2)))
772 return UpdateValueUsesWith(I, I->getOperand(1));
Chris Lattner0157e7f2006-02-11 09:31:47 +0000773
774 // If the RHS is a constant, see if we can simplify it.
775 if (ShrinkDemandedConstant(I, 1, DemandedMask))
776 return UpdateValueUsesWith(I, I);
777
778 // Output known-0 bits are only known if clear in both the LHS & RHS.
779 KnownZero &= KnownZero2;
780 // Output known-1 are known to be set if set in either the LHS | RHS.
781 KnownOne |= KnownOne2;
782 break;
783 case Instruction::Xor: {
784 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
785 KnownZero, KnownOne, Depth+1))
786 return true;
787 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
788 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
789 KnownZero2, KnownOne2, Depth+1))
790 return true;
791 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
792
793 // If all of the demanded bits are known zero on one side, return the other.
794 // These bits cannot contribute to the result of the 'xor'.
795 if ((DemandedMask & KnownZero) == DemandedMask)
796 return UpdateValueUsesWith(I, I->getOperand(0));
797 if ((DemandedMask & KnownZero2) == DemandedMask)
798 return UpdateValueUsesWith(I, I->getOperand(1));
799
800 // Output known-0 bits are known if clear or set in both the LHS & RHS.
801 uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
802 // Output known-1 are known to be set if set in only one of the LHS, RHS.
803 uint64_t KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
804
805 // If all of the unknown bits are known to be zero on one side or the other
806 // (but not both) turn this into an *inclusive* or.
Chris Lattner5b2edb12006-02-12 08:02:11 +0000807 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
Chris Lattner0157e7f2006-02-11 09:31:47 +0000808 if (uint64_t UnknownBits = DemandedMask & ~(KnownZeroOut|KnownOneOut)) {
809 if ((UnknownBits & (KnownZero|KnownZero2)) == UnknownBits) {
810 Instruction *Or =
811 BinaryOperator::createOr(I->getOperand(0), I->getOperand(1),
812 I->getName());
813 InsertNewInstBefore(Or, *I);
814 return UpdateValueUsesWith(I, Or);
Chris Lattner2590e512006-02-07 06:56:34 +0000815 }
816 }
Chris Lattner0157e7f2006-02-11 09:31:47 +0000817
Chris Lattner5b2edb12006-02-12 08:02:11 +0000818 // If all of the demanded bits on one side are known, and all of the set
819 // bits on that side are also known to be set on the other side, turn this
820 // into an AND, as we know the bits will be cleared.
821 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
822 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known
823 if ((KnownOne & KnownOne2) == KnownOne) {
824 Constant *AndC = GetConstantInType(I->getType(),
825 ~KnownOne & DemandedMask);
826 Instruction *And =
827 BinaryOperator::createAnd(I->getOperand(0), AndC, "tmp");
828 InsertNewInstBefore(And, *I);
829 return UpdateValueUsesWith(I, And);
830 }
831 }
832
Chris Lattner0157e7f2006-02-11 09:31:47 +0000833 // If the RHS is a constant, see if we can simplify it.
834 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
835 if (ShrinkDemandedConstant(I, 1, DemandedMask))
836 return UpdateValueUsesWith(I, I);
837
838 KnownZero = KnownZeroOut;
839 KnownOne = KnownOneOut;
840 break;
841 }
842 case Instruction::Select:
843 if (SimplifyDemandedBits(I->getOperand(2), DemandedMask,
844 KnownZero, KnownOne, Depth+1))
845 return true;
846 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
847 KnownZero2, KnownOne2, Depth+1))
848 return true;
849 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
850 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
851
852 // If the operands are constants, see if we can simplify them.
853 if (ShrinkDemandedConstant(I, 1, DemandedMask))
854 return UpdateValueUsesWith(I, I);
855 if (ShrinkDemandedConstant(I, 2, DemandedMask))
856 return UpdateValueUsesWith(I, I);
857
858 // Only known if known in both the LHS and RHS.
859 KnownOne &= KnownOne2;
860 KnownZero &= KnownZero2;
861 break;
Chris Lattner2590e512006-02-07 06:56:34 +0000862 case Instruction::Cast: {
863 const Type *SrcTy = I->getOperand(0)->getType();
Chris Lattner0157e7f2006-02-11 09:31:47 +0000864 if (!SrcTy->isIntegral()) return false;
Chris Lattner2590e512006-02-07 06:56:34 +0000865
Chris Lattner0157e7f2006-02-11 09:31:47 +0000866 // If this is an integer truncate or noop, just look in the input.
867 if (SrcTy->getPrimitiveSizeInBits() >=
868 I->getType()->getPrimitiveSizeInBits()) {
869 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
870 KnownZero, KnownOne, Depth+1))
871 return true;
872 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
873 break;
874 }
875
876 // Sign or Zero extension. Compute the bits in the result that are not
877 // present in the input.
878 uint64_t NotIn = ~SrcTy->getIntegralTypeMask();
879 uint64_t NewBits = I->getType()->getIntegralTypeMask() & NotIn;
880
881 // Handle zero extension.
882 if (!SrcTy->isSigned()) {
883 DemandedMask &= SrcTy->getIntegralTypeMask();
884 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
885 KnownZero, KnownOne, Depth+1))
886 return true;
887 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
888 // The top bits are known to be zero.
889 KnownZero |= NewBits;
890 } else {
891 // Sign extension.
Chris Lattner7d852282006-02-13 22:41:07 +0000892 uint64_t InSignBit = 1ULL << (SrcTy->getPrimitiveSizeInBits()-1);
893 int64_t InputDemandedBits = DemandedMask & SrcTy->getIntegralTypeMask();
894
895 // If any of the sign extended bits are demanded, we know that the sign
896 // bit is demanded.
897 if (NewBits & DemandedMask)
898 InputDemandedBits |= InSignBit;
899
900 if (SimplifyDemandedBits(I->getOperand(0), InputDemandedBits,
Chris Lattner0157e7f2006-02-11 09:31:47 +0000901 KnownZero, KnownOne, Depth+1))
902 return true;
903 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
904
905 // If the sign bit of the input is known set or clear, then we know the
906 // top bits of the result.
Chris Lattner2590e512006-02-07 06:56:34 +0000907
Chris Lattner0157e7f2006-02-11 09:31:47 +0000908 // If the input sign bit is known zero, or if the NewBits are not demanded
909 // convert this into a zero extension.
910 if ((KnownZero & InSignBit) || (NewBits & ~DemandedMask) == NewBits) {
Chris Lattner2590e512006-02-07 06:56:34 +0000911 // Convert to unsigned first.
Chris Lattner44314822006-02-07 19:07:40 +0000912 Instruction *NewVal;
Chris Lattner2590e512006-02-07 06:56:34 +0000913 NewVal = new CastInst(I->getOperand(0), SrcTy->getUnsignedVersion(),
Chris Lattner44314822006-02-07 19:07:40 +0000914 I->getOperand(0)->getName());
915 InsertNewInstBefore(NewVal, *I);
Chris Lattner0157e7f2006-02-11 09:31:47 +0000916 // Then cast that to the destination type.
Chris Lattner44314822006-02-07 19:07:40 +0000917 NewVal = new CastInst(NewVal, I->getType(), I->getName());
918 InsertNewInstBefore(NewVal, *I);
Chris Lattner2590e512006-02-07 06:56:34 +0000919 return UpdateValueUsesWith(I, NewVal);
Chris Lattner0157e7f2006-02-11 09:31:47 +0000920 } else if (KnownOne & InSignBit) { // Input sign bit known set
921 KnownOne |= NewBits;
922 KnownZero &= ~NewBits;
923 } else { // Input sign bit unknown
924 KnownZero &= ~NewBits;
925 KnownOne &= ~NewBits;
Chris Lattner2590e512006-02-07 06:56:34 +0000926 }
Chris Lattner2590e512006-02-07 06:56:34 +0000927 }
Chris Lattner0157e7f2006-02-11 09:31:47 +0000928 break;
Chris Lattner2590e512006-02-07 06:56:34 +0000929 }
Chris Lattner2590e512006-02-07 06:56:34 +0000930 case Instruction::Shl:
Chris Lattner0157e7f2006-02-11 09:31:47 +0000931 if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1))) {
932 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask >> SA->getValue(),
933 KnownZero, KnownOne, Depth+1))
934 return true;
935 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
936 KnownZero <<= SA->getValue();
937 KnownOne <<= SA->getValue();
938 KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
939 }
Chris Lattner2590e512006-02-07 06:56:34 +0000940 break;
941 case Instruction::Shr:
Chris Lattner0157e7f2006-02-11 09:31:47 +0000942 if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1))) {
943 unsigned ShAmt = SA->getValue();
944
945 // Compute the new bits that are at the top now.
946 uint64_t HighBits = (1ULL << ShAmt)-1;
947 HighBits <<= I->getType()->getPrimitiveSizeInBits() - ShAmt;
Chris Lattner68e74752006-02-13 06:09:08 +0000948 uint64_t TypeMask = I->getType()->getIntegralTypeMask();
Chris Lattner0157e7f2006-02-11 09:31:47 +0000949 if (I->getType()->isUnsigned()) { // Unsigned shift right.
Chris Lattner68e74752006-02-13 06:09:08 +0000950 if (SimplifyDemandedBits(I->getOperand(0),
951 (DemandedMask << ShAmt) & TypeMask,
Chris Lattner0157e7f2006-02-11 09:31:47 +0000952 KnownZero, KnownOne, Depth+1))
953 return true;
954 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner68e74752006-02-13 06:09:08 +0000955 KnownZero &= TypeMask;
956 KnownOne &= TypeMask;
Chris Lattner0157e7f2006-02-11 09:31:47 +0000957 KnownZero >>= ShAmt;
958 KnownOne >>= ShAmt;
959 KnownZero |= HighBits; // high bits known zero.
960 } else { // Signed shift right.
Chris Lattner68e74752006-02-13 06:09:08 +0000961 if (SimplifyDemandedBits(I->getOperand(0),
962 (DemandedMask << ShAmt) & TypeMask,
Chris Lattner0157e7f2006-02-11 09:31:47 +0000963 KnownZero, KnownOne, Depth+1))
964 return true;
965 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner68e74752006-02-13 06:09:08 +0000966 KnownZero &= TypeMask;
967 KnownOne &= TypeMask;
Chris Lattner0157e7f2006-02-11 09:31:47 +0000968 KnownZero >>= SA->getValue();
969 KnownOne >>= SA->getValue();
970
971 // Handle the sign bits.
972 uint64_t SignBit = 1ULL << (I->getType()->getPrimitiveSizeInBits()-1);
973 SignBit >>= SA->getValue(); // Adjust to where it is now in the mask.
974
975 // If the input sign bit is known to be zero, or if none of the top bits
976 // are demanded, turn this into an unsigned shift right.
977 if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) {
978 // Convert the input to unsigned.
979 Instruction *NewVal;
980 NewVal = new CastInst(I->getOperand(0),
981 I->getType()->getUnsignedVersion(),
982 I->getOperand(0)->getName());
983 InsertNewInstBefore(NewVal, *I);
984 // Perform the unsigned shift right.
985 NewVal = new ShiftInst(Instruction::Shr, NewVal, SA, I->getName());
986 InsertNewInstBefore(NewVal, *I);
987 // Then cast that to the destination type.
988 NewVal = new CastInst(NewVal, I->getType(), I->getName());
989 InsertNewInstBefore(NewVal, *I);
990 return UpdateValueUsesWith(I, NewVal);
991 } else if (KnownOne & SignBit) { // New bits are known one.
992 KnownOne |= HighBits;
993 }
Chris Lattner2590e512006-02-07 06:56:34 +0000994 }
Chris Lattner0157e7f2006-02-11 09:31:47 +0000995 }
Chris Lattner2590e512006-02-07 06:56:34 +0000996 break;
997 }
Chris Lattner0157e7f2006-02-11 09:31:47 +0000998
999 // If the client is only demanding bits that we know, return the known
1000 // constant.
1001 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
1002 return UpdateValueUsesWith(I, GetConstantInType(I->getType(), KnownOne));
Chris Lattner2590e512006-02-07 06:56:34 +00001003 return false;
1004}
1005
Chris Lattner623826c2004-09-28 21:48:02 +00001006// isTrueWhenEqual - Return true if the specified setcondinst instruction is
1007// true when both operands are equal...
1008//
1009static bool isTrueWhenEqual(Instruction &I) {
1010 return I.getOpcode() == Instruction::SetEQ ||
1011 I.getOpcode() == Instruction::SetGE ||
1012 I.getOpcode() == Instruction::SetLE;
1013}
Chris Lattnerb8b97502003-08-13 19:01:45 +00001014
1015/// AssociativeOpt - Perform an optimization on an associative operator. This
1016/// function is designed to check a chain of associative operators for a
1017/// potential to apply a certain optimization. Since the optimization may be
1018/// applicable if the expression was reassociated, this checks the chain, then
1019/// reassociates the expression as necessary to expose the optimization
1020/// opportunity. This makes use of a special Functor, which must define
1021/// 'shouldApply' and 'apply' methods.
1022///
1023template<typename Functor>
1024Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
1025 unsigned Opcode = Root.getOpcode();
1026 Value *LHS = Root.getOperand(0);
1027
1028 // Quick check, see if the immediate LHS matches...
1029 if (F.shouldApply(LHS))
1030 return F.apply(Root);
1031
1032 // Otherwise, if the LHS is not of the same opcode as the root, return.
1033 Instruction *LHSI = dyn_cast<Instruction>(LHS);
Chris Lattnerf95d9b92003-10-15 16:48:29 +00001034 while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
Chris Lattnerb8b97502003-08-13 19:01:45 +00001035 // Should we apply this transform to the RHS?
1036 bool ShouldApply = F.shouldApply(LHSI->getOperand(1));
1037
1038 // If not to the RHS, check to see if we should apply to the LHS...
1039 if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) {
1040 cast<BinaryOperator>(LHSI)->swapOperands(); // Make the LHS the RHS
1041 ShouldApply = true;
1042 }
1043
1044 // If the functor wants to apply the optimization to the RHS of LHSI,
1045 // reassociate the expression from ((? op A) op B) to (? op (A op B))
1046 if (ShouldApply) {
1047 BasicBlock *BB = Root.getParent();
Misha Brukmanb1c93172005-04-21 23:48:37 +00001048
Chris Lattnerb8b97502003-08-13 19:01:45 +00001049 // Now all of the instructions are in the current basic block, go ahead
1050 // and perform the reassociation.
1051 Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
1052
1053 // First move the selected RHS to the LHS of the root...
1054 Root.setOperand(0, LHSI->getOperand(1));
1055
1056 // Make what used to be the LHS of the root be the user of the root...
1057 Value *ExtraOperand = TmpLHSI->getOperand(1);
Chris Lattner284d3b02004-04-16 18:08:07 +00001058 if (&Root == TmpLHSI) {
Chris Lattner8953b902004-04-05 02:10:19 +00001059 Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType()));
1060 return 0;
1061 }
Chris Lattner284d3b02004-04-16 18:08:07 +00001062 Root.replaceAllUsesWith(TmpLHSI); // Users now use TmpLHSI
Chris Lattnerb8b97502003-08-13 19:01:45 +00001063 TmpLHSI->setOperand(1, &Root); // TmpLHSI now uses the root
Chris Lattner284d3b02004-04-16 18:08:07 +00001064 TmpLHSI->getParent()->getInstList().remove(TmpLHSI);
1065 BasicBlock::iterator ARI = &Root; ++ARI;
1066 BB->getInstList().insert(ARI, TmpLHSI); // Move TmpLHSI to after Root
1067 ARI = Root;
Chris Lattnerb8b97502003-08-13 19:01:45 +00001068
1069 // Now propagate the ExtraOperand down the chain of instructions until we
1070 // get to LHSI.
1071 while (TmpLHSI != LHSI) {
1072 Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
Chris Lattner284d3b02004-04-16 18:08:07 +00001073 // Move the instruction to immediately before the chain we are
1074 // constructing to avoid breaking dominance properties.
1075 NextLHSI->getParent()->getInstList().remove(NextLHSI);
1076 BB->getInstList().insert(ARI, NextLHSI);
1077 ARI = NextLHSI;
1078
Chris Lattnerb8b97502003-08-13 19:01:45 +00001079 Value *NextOp = NextLHSI->getOperand(1);
1080 NextLHSI->setOperand(1, ExtraOperand);
1081 TmpLHSI = NextLHSI;
1082 ExtraOperand = NextOp;
1083 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00001084
Chris Lattnerb8b97502003-08-13 19:01:45 +00001085 // Now that the instructions are reassociated, have the functor perform
1086 // the transformation...
1087 return F.apply(Root);
1088 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00001089
Chris Lattnerb8b97502003-08-13 19:01:45 +00001090 LHSI = dyn_cast<Instruction>(LHSI->getOperand(0));
1091 }
1092 return 0;
1093}
1094
1095
1096// AddRHS - Implements: X + X --> X << 1
1097struct AddRHS {
1098 Value *RHS;
1099 AddRHS(Value *rhs) : RHS(rhs) {}
1100 bool shouldApply(Value *LHS) const { return LHS == RHS; }
1101 Instruction *apply(BinaryOperator &Add) const {
1102 return new ShiftInst(Instruction::Shl, Add.getOperand(0),
1103 ConstantInt::get(Type::UByteTy, 1));
1104 }
1105};
1106
1107// AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
1108// iff C1&C2 == 0
1109struct AddMaskingAnd {
1110 Constant *C2;
1111 AddMaskingAnd(Constant *c) : C2(c) {}
1112 bool shouldApply(Value *LHS) const {
Chris Lattnerd4252a72004-07-30 07:50:03 +00001113 ConstantInt *C1;
Misha Brukmanb1c93172005-04-21 23:48:37 +00001114 return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) &&
Chris Lattnerd4252a72004-07-30 07:50:03 +00001115 ConstantExpr::getAnd(C1, C2)->isNullValue();
Chris Lattnerb8b97502003-08-13 19:01:45 +00001116 }
1117 Instruction *apply(BinaryOperator &Add) const {
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00001118 return BinaryOperator::createOr(Add.getOperand(0), Add.getOperand(1));
Chris Lattnerb8b97502003-08-13 19:01:45 +00001119 }
1120};
1121
Chris Lattner86102b82005-01-01 16:22:27 +00001122static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
Chris Lattner183b3362004-04-09 19:05:30 +00001123 InstCombiner *IC) {
Chris Lattner86102b82005-01-01 16:22:27 +00001124 if (isa<CastInst>(I)) {
1125 if (Constant *SOC = dyn_cast<Constant>(SO))
1126 return ConstantExpr::getCast(SOC, I.getType());
Misha Brukmanb1c93172005-04-21 23:48:37 +00001127
Chris Lattner86102b82005-01-01 16:22:27 +00001128 return IC->InsertNewInstBefore(new CastInst(SO, I.getType(),
1129 SO->getName() + ".cast"), I);
1130 }
1131
Chris Lattner183b3362004-04-09 19:05:30 +00001132 // Figure out if the constant is the left or the right argument.
Chris Lattner86102b82005-01-01 16:22:27 +00001133 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
1134 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
Chris Lattnerb8b97502003-08-13 19:01:45 +00001135
Chris Lattner183b3362004-04-09 19:05:30 +00001136 if (Constant *SOC = dyn_cast<Constant>(SO)) {
1137 if (ConstIsRHS)
Chris Lattner86102b82005-01-01 16:22:27 +00001138 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
1139 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
Chris Lattner183b3362004-04-09 19:05:30 +00001140 }
1141
1142 Value *Op0 = SO, *Op1 = ConstOperand;
1143 if (!ConstIsRHS)
1144 std::swap(Op0, Op1);
1145 Instruction *New;
Chris Lattner86102b82005-01-01 16:22:27 +00001146 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
1147 New = BinaryOperator::create(BO->getOpcode(), Op0, Op1,SO->getName()+".op");
1148 else if (ShiftInst *SI = dyn_cast<ShiftInst>(&I))
1149 New = new ShiftInst(SI->getOpcode(), Op0, Op1, SO->getName()+".sh");
Chris Lattnerf9d96652004-04-10 19:15:56 +00001150 else {
Chris Lattner183b3362004-04-09 19:05:30 +00001151 assert(0 && "Unknown binary instruction type!");
Chris Lattnerf9d96652004-04-10 19:15:56 +00001152 abort();
1153 }
Chris Lattner86102b82005-01-01 16:22:27 +00001154 return IC->InsertNewInstBefore(New, I);
1155}
1156
1157// FoldOpIntoSelect - Given an instruction with a select as one operand and a
1158// constant as the other operand, try to fold the binary operator into the
1159// select arguments. This also works for Cast instructions, which obviously do
1160// not have a second operand.
1161static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
1162 InstCombiner *IC) {
1163 // Don't modify shared select instructions
1164 if (!SI->hasOneUse()) return 0;
1165 Value *TV = SI->getOperand(1);
1166 Value *FV = SI->getOperand(2);
1167
1168 if (isa<Constant>(TV) || isa<Constant>(FV)) {
Chris Lattner374e6592005-04-21 05:43:13 +00001169 // Bool selects with constant operands can be folded to logical ops.
1170 if (SI->getType() == Type::BoolTy) return 0;
1171
Chris Lattner86102b82005-01-01 16:22:27 +00001172 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC);
1173 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC);
1174
1175 return new SelectInst(SI->getCondition(), SelectTrueVal,
1176 SelectFalseVal);
1177 }
1178 return 0;
Chris Lattner183b3362004-04-09 19:05:30 +00001179}
1180
Chris Lattner6a4adcd2004-09-29 05:07:12 +00001181
1182/// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI
1183/// node as operand #0, see if we can fold the instruction into the PHI (which
1184/// is only possible if all operands to the PHI are constants).
1185Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
1186 PHINode *PN = cast<PHINode>(I.getOperand(0));
Chris Lattner7515cab2004-11-14 19:13:23 +00001187 unsigned NumPHIValues = PN->getNumIncomingValues();
1188 if (!PN->hasOneUse() || NumPHIValues == 0 ||
1189 !isa<Constant>(PN->getIncomingValue(0))) return 0;
Chris Lattner6a4adcd2004-09-29 05:07:12 +00001190
1191 // Check to see if all of the operands of the PHI are constants. If not, we
1192 // cannot do the transformation.
Chris Lattner7515cab2004-11-14 19:13:23 +00001193 for (unsigned i = 1; i != NumPHIValues; ++i)
Chris Lattner6a4adcd2004-09-29 05:07:12 +00001194 if (!isa<Constant>(PN->getIncomingValue(i)))
1195 return 0;
1196
1197 // Okay, we can do the transformation: create the new PHI node.
1198 PHINode *NewPN = new PHINode(I.getType(), I.getName());
1199 I.setName("");
Chris Lattnerd8e20182005-01-29 00:39:08 +00001200 NewPN->reserveOperandSpace(PN->getNumOperands()/2);
Chris Lattner6a4adcd2004-09-29 05:07:12 +00001201 InsertNewInstBefore(NewPN, *PN);
1202
1203 // Next, add all of the operands to the PHI.
1204 if (I.getNumOperands() == 2) {
1205 Constant *C = cast<Constant>(I.getOperand(1));
Chris Lattner7515cab2004-11-14 19:13:23 +00001206 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattner6a4adcd2004-09-29 05:07:12 +00001207 Constant *InV = cast<Constant>(PN->getIncomingValue(i));
1208 NewPN->addIncoming(ConstantExpr::get(I.getOpcode(), InV, C),
1209 PN->getIncomingBlock(i));
1210 }
1211 } else {
1212 assert(isa<CastInst>(I) && "Unary op should be a cast!");
1213 const Type *RetTy = I.getType();
Chris Lattner7515cab2004-11-14 19:13:23 +00001214 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattner6a4adcd2004-09-29 05:07:12 +00001215 Constant *InV = cast<Constant>(PN->getIncomingValue(i));
1216 NewPN->addIncoming(ConstantExpr::getCast(InV, RetTy),
1217 PN->getIncomingBlock(i));
1218 }
1219 }
1220 return ReplaceInstUsesWith(I, NewPN);
1221}
1222
Chris Lattner113f4f42002-06-25 16:13:24 +00001223Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
Chris Lattnerdcf240a2003-03-10 21:43:22 +00001224 bool Changed = SimplifyCommutative(I);
Chris Lattner113f4f42002-06-25 16:13:24 +00001225 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
Chris Lattner9fa53de2002-05-06 16:49:18 +00001226
Chris Lattnercf4a9962004-04-10 22:01:55 +00001227 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
Chris Lattner81a7a232004-10-16 18:11:37 +00001228 // X + undef -> undef
1229 if (isa<UndefValue>(RHS))
1230 return ReplaceInstUsesWith(I, RHS);
1231
Chris Lattnercf4a9962004-04-10 22:01:55 +00001232 // X + 0 --> X
Chris Lattner7fde91e2005-10-17 17:56:38 +00001233 if (!I.getType()->isFloatingPoint()) { // NOTE: -0 + +0 = +0.
1234 if (RHSC->isNullValue())
1235 return ReplaceInstUsesWith(I, LHS);
Chris Lattnerda1b1522005-10-17 20:18:38 +00001236 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
1237 if (CFP->isExactlyValue(-0.0))
1238 return ReplaceInstUsesWith(I, LHS);
Chris Lattner7fde91e2005-10-17 17:56:38 +00001239 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00001240
Chris Lattnercf4a9962004-04-10 22:01:55 +00001241 // X + (signbit) --> X ^ signbit
1242 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
Chris Lattner92a68652006-02-07 08:05:22 +00001243 uint64_t Val = CI->getZExtValue();
Chris Lattner77defba2006-02-07 07:00:41 +00001244 if (Val == (1ULL << (CI->getType()->getPrimitiveSizeInBits()-1)))
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00001245 return BinaryOperator::createXor(LHS, RHS);
Chris Lattnercf4a9962004-04-10 22:01:55 +00001246 }
Chris Lattner6a4adcd2004-09-29 05:07:12 +00001247
1248 if (isa<PHINode>(LHS))
1249 if (Instruction *NV = FoldOpIntoPhi(I))
1250 return NV;
Chris Lattner0b3557f2005-09-24 23:43:33 +00001251
Chris Lattner330628a2006-01-06 17:59:59 +00001252 ConstantInt *XorRHS = 0;
1253 Value *XorLHS = 0;
Chris Lattner0b3557f2005-09-24 23:43:33 +00001254 if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
1255 unsigned TySizeBits = I.getType()->getPrimitiveSizeInBits();
1256 int64_t RHSSExt = cast<ConstantInt>(RHSC)->getSExtValue();
1257 uint64_t RHSZExt = cast<ConstantInt>(RHSC)->getZExtValue();
1258
1259 uint64_t C0080Val = 1ULL << 31;
1260 int64_t CFF80Val = -C0080Val;
1261 unsigned Size = 32;
1262 do {
1263 if (TySizeBits > Size) {
1264 bool Found = false;
1265 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
1266 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
1267 if (RHSSExt == CFF80Val) {
1268 if (XorRHS->getZExtValue() == C0080Val)
1269 Found = true;
1270 } else if (RHSZExt == C0080Val) {
1271 if (XorRHS->getSExtValue() == CFF80Val)
1272 Found = true;
1273 }
1274 if (Found) {
1275 // This is a sign extend if the top bits are known zero.
Chris Lattner4534dd592006-02-09 07:38:58 +00001276 uint64_t Mask = ~0ULL;
Chris Lattnerc3ebf402006-02-07 07:27:52 +00001277 Mask <<= 64-(TySizeBits-Size);
Chris Lattner4534dd592006-02-09 07:38:58 +00001278 Mask &= XorLHS->getType()->getIntegralTypeMask();
Chris Lattnerc3ebf402006-02-07 07:27:52 +00001279 if (!MaskedValueIsZero(XorLHS, Mask))
Chris Lattner0b3557f2005-09-24 23:43:33 +00001280 Size = 0; // Not a sign ext, but can't be any others either.
1281 goto FoundSExt;
1282 }
1283 }
1284 Size >>= 1;
1285 C0080Val >>= Size;
1286 CFF80Val >>= Size;
1287 } while (Size >= 8);
1288
1289FoundSExt:
1290 const Type *MiddleType = 0;
1291 switch (Size) {
1292 default: break;
1293 case 32: MiddleType = Type::IntTy; break;
1294 case 16: MiddleType = Type::ShortTy; break;
1295 case 8: MiddleType = Type::SByteTy; break;
1296 }
1297 if (MiddleType) {
1298 Instruction *NewTrunc = new CastInst(XorLHS, MiddleType, "sext");
1299 InsertNewInstBefore(NewTrunc, I);
1300 return new CastInst(NewTrunc, I.getType());
1301 }
1302 }
Chris Lattnercf4a9962004-04-10 22:01:55 +00001303 }
Chris Lattner9fa53de2002-05-06 16:49:18 +00001304
Chris Lattnerb8b97502003-08-13 19:01:45 +00001305 // X + X --> X << 1
Robert Bocchino7b5b86c2004-07-27 21:02:21 +00001306 if (I.getType()->isInteger()) {
Chris Lattnerb8b97502003-08-13 19:01:45 +00001307 if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result;
Chris Lattner47060462005-04-07 17:14:51 +00001308
1309 if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
1310 if (RHSI->getOpcode() == Instruction::Sub)
1311 if (LHS == RHSI->getOperand(1)) // A + (B - A) --> B
1312 return ReplaceInstUsesWith(I, RHSI->getOperand(0));
1313 }
1314 if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
1315 if (LHSI->getOpcode() == Instruction::Sub)
1316 if (RHS == LHSI->getOperand(1)) // (B - A) + A --> B
1317 return ReplaceInstUsesWith(I, LHSI->getOperand(0));
1318 }
Robert Bocchino7b5b86c2004-07-27 21:02:21 +00001319 }
Chris Lattnerede3fe02003-08-13 04:18:28 +00001320
Chris Lattner147e9752002-05-08 22:46:53 +00001321 // -A + B --> B - A
Chris Lattnerbb74e222003-03-10 23:06:50 +00001322 if (Value *V = dyn_castNegVal(LHS))
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00001323 return BinaryOperator::createSub(RHS, V);
Chris Lattner9fa53de2002-05-06 16:49:18 +00001324
1325 // A + -B --> A - B
Chris Lattnerbb74e222003-03-10 23:06:50 +00001326 if (!isa<Constant>(RHS))
1327 if (Value *V = dyn_castNegVal(RHS))
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00001328 return BinaryOperator::createSub(LHS, V);
Chris Lattner260ab202002-04-18 17:39:14 +00001329
Misha Brukmanb1c93172005-04-21 23:48:37 +00001330
Chris Lattner8c3e7b92004-11-13 19:50:12 +00001331 ConstantInt *C2;
1332 if (Value *X = dyn_castFoldableMul(LHS, C2)) {
1333 if (X == RHS) // X*C + X --> X * (C+1)
1334 return BinaryOperator::createMul(RHS, AddOne(C2));
1335
1336 // X*C1 + X*C2 --> X * (C1+C2)
1337 ConstantInt *C1;
1338 if (X == dyn_castFoldableMul(RHS, C1))
1339 return BinaryOperator::createMul(X, ConstantExpr::getAdd(C1, C2));
Chris Lattner57c8d992003-02-18 19:57:07 +00001340 }
1341
1342 // X + X*C --> X * (C+1)
Chris Lattner8c3e7b92004-11-13 19:50:12 +00001343 if (dyn_castFoldableMul(RHS, C2) == LHS)
1344 return BinaryOperator::createMul(LHS, AddOne(C2));
1345
Chris Lattner57c8d992003-02-18 19:57:07 +00001346
Chris Lattnerb8b97502003-08-13 19:01:45 +00001347 // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
Chris Lattnerd4252a72004-07-30 07:50:03 +00001348 if (match(RHS, m_And(m_Value(), m_ConstantInt(C2))))
Chris Lattnerb8b97502003-08-13 19:01:45 +00001349 if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2))) return R;
Chris Lattner7fb29e12003-03-11 00:12:48 +00001350
Chris Lattnerb9cde762003-10-02 15:11:26 +00001351 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
Chris Lattner330628a2006-01-06 17:59:59 +00001352 Value *X = 0;
Chris Lattnerd4252a72004-07-30 07:50:03 +00001353 if (match(LHS, m_Not(m_Value(X)))) { // ~X + C --> (C-1) - X
1354 Constant *C= ConstantExpr::getSub(CRHS, ConstantInt::get(I.getType(), 1));
1355 return BinaryOperator::createSub(C, X);
Chris Lattnerb9cde762003-10-02 15:11:26 +00001356 }
Chris Lattnerd4252a72004-07-30 07:50:03 +00001357
Chris Lattnerbff91d92004-10-08 05:07:56 +00001358 // (X & FF00) + xx00 -> (X+xx00) & FF00
1359 if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
1360 Constant *Anded = ConstantExpr::getAnd(CRHS, C2);
1361 if (Anded == CRHS) {
1362 // See if all bits from the first bit set in the Add RHS up are included
1363 // in the mask. First, get the rightmost bit.
1364 uint64_t AddRHSV = CRHS->getRawValue();
1365
1366 // Form a mask of all bits from the lowest bit added through the top.
1367 uint64_t AddRHSHighBits = ~((AddRHSV & -AddRHSV)-1);
Chris Lattner77defba2006-02-07 07:00:41 +00001368 AddRHSHighBits &= C2->getType()->getIntegralTypeMask();
Chris Lattnerbff91d92004-10-08 05:07:56 +00001369
1370 // See if the and mask includes all of these bits.
1371 uint64_t AddRHSHighBitsAnd = AddRHSHighBits & C2->getRawValue();
Misha Brukmanb1c93172005-04-21 23:48:37 +00001372
Chris Lattnerbff91d92004-10-08 05:07:56 +00001373 if (AddRHSHighBits == AddRHSHighBitsAnd) {
1374 // Okay, the xform is safe. Insert the new add pronto.
1375 Value *NewAdd = InsertNewInstBefore(BinaryOperator::createAdd(X, CRHS,
1376 LHS->getName()), I);
1377 return BinaryOperator::createAnd(NewAdd, C2);
1378 }
1379 }
1380 }
1381
Chris Lattnerd4252a72004-07-30 07:50:03 +00001382 // Try to fold constant add into select arguments.
1383 if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
Chris Lattner86102b82005-01-01 16:22:27 +00001384 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattnerd4252a72004-07-30 07:50:03 +00001385 return R;
Chris Lattnerb9cde762003-10-02 15:11:26 +00001386 }
1387
Chris Lattner113f4f42002-06-25 16:13:24 +00001388 return Changed ? &I : 0;
Chris Lattner260ab202002-04-18 17:39:14 +00001389}
1390
Chris Lattnerbdb0ce02003-07-22 21:46:59 +00001391// isSignBit - Return true if the value represented by the constant only has the
1392// highest order bit set.
1393static bool isSignBit(ConstantInt *CI) {
Chris Lattnerd1f46d32005-04-24 06:59:08 +00001394 unsigned NumBits = CI->getType()->getPrimitiveSizeInBits();
Chris Lattner2f1457f2005-04-24 17:46:05 +00001395 return (CI->getRawValue() & (~0ULL >> (64-NumBits))) == (1ULL << (NumBits-1));
Chris Lattnerbdb0ce02003-07-22 21:46:59 +00001396}
1397
Chris Lattner022167f2004-03-13 00:11:49 +00001398/// RemoveNoopCast - Strip off nonconverting casts from the value.
1399///
1400static Value *RemoveNoopCast(Value *V) {
1401 if (CastInst *CI = dyn_cast<CastInst>(V)) {
1402 const Type *CTy = CI->getType();
1403 const Type *OpTy = CI->getOperand(0)->getType();
1404 if (CTy->isInteger() && OpTy->isInteger()) {
Chris Lattnerd1f46d32005-04-24 06:59:08 +00001405 if (CTy->getPrimitiveSizeInBits() == OpTy->getPrimitiveSizeInBits())
Chris Lattner022167f2004-03-13 00:11:49 +00001406 return RemoveNoopCast(CI->getOperand(0));
1407 } else if (isa<PointerType>(CTy) && isa<PointerType>(OpTy))
1408 return RemoveNoopCast(CI->getOperand(0));
1409 }
1410 return V;
1411}
1412
Chris Lattner113f4f42002-06-25 16:13:24 +00001413Instruction *InstCombiner::visitSub(BinaryOperator &I) {
Chris Lattner113f4f42002-06-25 16:13:24 +00001414 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00001415
Chris Lattnere6794492002-08-12 21:17:25 +00001416 if (Op0 == Op1) // sub X, X -> 0
1417 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner260ab202002-04-18 17:39:14 +00001418
Chris Lattnere6794492002-08-12 21:17:25 +00001419 // If this is a 'B = x-(-A)', change to B = x+A...
Chris Lattnerbb74e222003-03-10 23:06:50 +00001420 if (Value *V = dyn_castNegVal(Op1))
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00001421 return BinaryOperator::createAdd(Op0, V);
Chris Lattner9fa53de2002-05-06 16:49:18 +00001422
Chris Lattner81a7a232004-10-16 18:11:37 +00001423 if (isa<UndefValue>(Op0))
1424 return ReplaceInstUsesWith(I, Op0); // undef - X -> undef
1425 if (isa<UndefValue>(Op1))
1426 return ReplaceInstUsesWith(I, Op1); // X - undef -> undef
1427
Chris Lattner8f2f5982003-11-05 01:06:05 +00001428 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
1429 // Replace (-1 - A) with (~A)...
Chris Lattner3082c5a2003-02-18 19:28:33 +00001430 if (C->isAllOnesValue())
1431 return BinaryOperator::createNot(Op1);
Chris Lattnerad3c4952002-05-09 01:29:19 +00001432
Chris Lattner8f2f5982003-11-05 01:06:05 +00001433 // C - ~X == X + (1+C)
Reid Spencer4fdd96c2005-06-18 17:37:34 +00001434 Value *X = 0;
Chris Lattnerd4252a72004-07-30 07:50:03 +00001435 if (match(Op1, m_Not(m_Value(X))))
1436 return BinaryOperator::createAdd(X,
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00001437 ConstantExpr::getAdd(C, ConstantInt::get(I.getType(), 1)));
Chris Lattner92295c52004-03-12 23:53:13 +00001438 // -((uint)X >> 31) -> ((int)X >> 31)
1439 // -((int)X >> 31) -> ((uint)X >> 31)
Chris Lattner022167f2004-03-13 00:11:49 +00001440 if (C->isNullValue()) {
1441 Value *NoopCastedRHS = RemoveNoopCast(Op1);
1442 if (ShiftInst *SI = dyn_cast<ShiftInst>(NoopCastedRHS))
Chris Lattner92295c52004-03-12 23:53:13 +00001443 if (SI->getOpcode() == Instruction::Shr)
1444 if (ConstantUInt *CU = dyn_cast<ConstantUInt>(SI->getOperand(1))) {
1445 const Type *NewTy;
Chris Lattner022167f2004-03-13 00:11:49 +00001446 if (SI->getType()->isSigned())
Chris Lattner97bfcea2004-06-17 18:16:02 +00001447 NewTy = SI->getType()->getUnsignedVersion();
Chris Lattner92295c52004-03-12 23:53:13 +00001448 else
Chris Lattner97bfcea2004-06-17 18:16:02 +00001449 NewTy = SI->getType()->getSignedVersion();
Chris Lattner92295c52004-03-12 23:53:13 +00001450 // Check to see if we are shifting out everything but the sign bit.
Chris Lattnerd1f46d32005-04-24 06:59:08 +00001451 if (CU->getValue() == SI->getType()->getPrimitiveSizeInBits()-1) {
Chris Lattner92295c52004-03-12 23:53:13 +00001452 // Ok, the transformation is safe. Insert a cast of the incoming
1453 // value, then the new shift, then the new cast.
1454 Instruction *FirstCast = new CastInst(SI->getOperand(0), NewTy,
1455 SI->getOperand(0)->getName());
1456 Value *InV = InsertNewInstBefore(FirstCast, I);
1457 Instruction *NewShift = new ShiftInst(Instruction::Shr, FirstCast,
1458 CU, SI->getName());
Chris Lattner022167f2004-03-13 00:11:49 +00001459 if (NewShift->getType() == I.getType())
1460 return NewShift;
1461 else {
1462 InV = InsertNewInstBefore(NewShift, I);
1463 return new CastInst(NewShift, I.getType());
1464 }
Chris Lattner92295c52004-03-12 23:53:13 +00001465 }
1466 }
Chris Lattner022167f2004-03-13 00:11:49 +00001467 }
Chris Lattner183b3362004-04-09 19:05:30 +00001468
1469 // Try to fold constant sub into select arguments.
1470 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
Chris Lattner86102b82005-01-01 16:22:27 +00001471 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner183b3362004-04-09 19:05:30 +00001472 return R;
Chris Lattner6a4adcd2004-09-29 05:07:12 +00001473
1474 if (isa<PHINode>(Op0))
1475 if (Instruction *NV = FoldOpIntoPhi(I))
1476 return NV;
Chris Lattner8f2f5982003-11-05 01:06:05 +00001477 }
1478
Chris Lattnera9be4492005-04-07 16:15:25 +00001479 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
1480 if (Op1I->getOpcode() == Instruction::Add &&
1481 !Op0->getType()->isFloatingPoint()) {
Chris Lattnerc7f3c1a2005-04-07 16:28:01 +00001482 if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
Chris Lattnera9be4492005-04-07 16:15:25 +00001483 return BinaryOperator::createNeg(Op1I->getOperand(1), I.getName());
Chris Lattnerc7f3c1a2005-04-07 16:28:01 +00001484 else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
Chris Lattnera9be4492005-04-07 16:15:25 +00001485 return BinaryOperator::createNeg(Op1I->getOperand(0), I.getName());
Chris Lattnerc7f3c1a2005-04-07 16:28:01 +00001486 else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
1487 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
1488 // C1-(X+C2) --> (C1-C2)-X
1489 return BinaryOperator::createSub(ConstantExpr::getSub(CI1, CI2),
1490 Op1I->getOperand(0));
1491 }
Chris Lattnera9be4492005-04-07 16:15:25 +00001492 }
1493
Chris Lattnerf95d9b92003-10-15 16:48:29 +00001494 if (Op1I->hasOneUse()) {
Chris Lattner3082c5a2003-02-18 19:28:33 +00001495 // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
1496 // is not used by anyone else...
1497 //
Chris Lattnerc2f0aa52004-02-02 20:09:56 +00001498 if (Op1I->getOpcode() == Instruction::Sub &&
1499 !Op1I->getType()->isFloatingPoint()) {
Chris Lattner3082c5a2003-02-18 19:28:33 +00001500 // Swap the two operands of the subexpr...
1501 Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
1502 Op1I->setOperand(0, IIOp1);
1503 Op1I->setOperand(1, IIOp0);
Misha Brukmanb1c93172005-04-21 23:48:37 +00001504
Chris Lattner3082c5a2003-02-18 19:28:33 +00001505 // Create the new top level add instruction...
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00001506 return BinaryOperator::createAdd(Op0, Op1);
Chris Lattner3082c5a2003-02-18 19:28:33 +00001507 }
1508
1509 // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
1510 //
1511 if (Op1I->getOpcode() == Instruction::And &&
1512 (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
1513 Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
1514
Chris Lattner396dbfe2004-06-09 05:08:07 +00001515 Value *NewNot =
1516 InsertNewInstBefore(BinaryOperator::createNot(OtherOp, "B.not"), I);
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00001517 return BinaryOperator::createAnd(Op0, NewNot);
Chris Lattner3082c5a2003-02-18 19:28:33 +00001518 }
Chris Lattner57c8d992003-02-18 19:57:07 +00001519
Chris Lattner0aee4b72004-10-06 15:08:25 +00001520 // -(X sdiv C) -> (X sdiv -C)
1521 if (Op1I->getOpcode() == Instruction::Div)
1522 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(Op0))
Chris Lattnera9be4492005-04-07 16:15:25 +00001523 if (CSI->isNullValue())
Chris Lattner0aee4b72004-10-06 15:08:25 +00001524 if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
Misha Brukmanb1c93172005-04-21 23:48:37 +00001525 return BinaryOperator::createDiv(Op1I->getOperand(0),
Chris Lattner0aee4b72004-10-06 15:08:25 +00001526 ConstantExpr::getNeg(DivRHS));
1527
Chris Lattner57c8d992003-02-18 19:57:07 +00001528 // X - X*C --> X * (1-C)
Reid Spencer4fdd96c2005-06-18 17:37:34 +00001529 ConstantInt *C2 = 0;
Chris Lattner8c3e7b92004-11-13 19:50:12 +00001530 if (dyn_castFoldableMul(Op1I, C2) == Op0) {
Misha Brukmanb1c93172005-04-21 23:48:37 +00001531 Constant *CP1 =
Chris Lattner8c3e7b92004-11-13 19:50:12 +00001532 ConstantExpr::getSub(ConstantInt::get(I.getType(), 1), C2);
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00001533 return BinaryOperator::createMul(Op0, CP1);
Chris Lattner57c8d992003-02-18 19:57:07 +00001534 }
Chris Lattnerad3c4952002-05-09 01:29:19 +00001535 }
Chris Lattnera9be4492005-04-07 16:15:25 +00001536 }
Chris Lattner3082c5a2003-02-18 19:28:33 +00001537
Chris Lattner47060462005-04-07 17:14:51 +00001538 if (!Op0->getType()->isFloatingPoint())
1539 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
1540 if (Op0I->getOpcode() == Instruction::Add) {
Chris Lattner411336f2005-01-19 21:50:18 +00001541 if (Op0I->getOperand(0) == Op1) // (Y+X)-Y == X
1542 return ReplaceInstUsesWith(I, Op0I->getOperand(1));
1543 else if (Op0I->getOperand(1) == Op1) // (X+Y)-Y == X
1544 return ReplaceInstUsesWith(I, Op0I->getOperand(0));
Chris Lattner47060462005-04-07 17:14:51 +00001545 } else if (Op0I->getOpcode() == Instruction::Sub) {
1546 if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y
1547 return BinaryOperator::createNeg(Op0I->getOperand(1), I.getName());
Chris Lattner411336f2005-01-19 21:50:18 +00001548 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00001549
Chris Lattner8c3e7b92004-11-13 19:50:12 +00001550 ConstantInt *C1;
1551 if (Value *X = dyn_castFoldableMul(Op0, C1)) {
1552 if (X == Op1) { // X*C - X --> X * (C-1)
1553 Constant *CP1 = ConstantExpr::getSub(C1, ConstantInt::get(I.getType(),1));
1554 return BinaryOperator::createMul(Op1, CP1);
1555 }
Chris Lattner57c8d992003-02-18 19:57:07 +00001556
Chris Lattner8c3e7b92004-11-13 19:50:12 +00001557 ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2)
1558 if (X == dyn_castFoldableMul(Op1, C2))
1559 return BinaryOperator::createMul(Op1, ConstantExpr::getSub(C1, C2));
1560 }
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00001561 return 0;
Chris Lattner260ab202002-04-18 17:39:14 +00001562}
1563
Chris Lattnere79e8542004-02-23 06:38:22 +00001564/// isSignBitCheck - Given an exploded setcc instruction, return true if it is
1565/// really just returns true if the most significant (sign) bit is set.
1566static bool isSignBitCheck(unsigned Opcode, Value *LHS, ConstantInt *RHS) {
1567 if (RHS->getType()->isSigned()) {
1568 // True if source is LHS < 0 or LHS <= -1
1569 return Opcode == Instruction::SetLT && RHS->isNullValue() ||
1570 Opcode == Instruction::SetLE && RHS->isAllOnesValue();
1571 } else {
1572 ConstantUInt *RHSC = cast<ConstantUInt>(RHS);
1573 // True if source is LHS > 127 or LHS >= 128, where the constants depend on
1574 // the size of the integer type.
1575 if (Opcode == Instruction::SetGE)
Chris Lattnerd1f46d32005-04-24 06:59:08 +00001576 return RHSC->getValue() ==
1577 1ULL << (RHS->getType()->getPrimitiveSizeInBits()-1);
Chris Lattnere79e8542004-02-23 06:38:22 +00001578 if (Opcode == Instruction::SetGT)
1579 return RHSC->getValue() ==
Chris Lattnerd1f46d32005-04-24 06:59:08 +00001580 (1ULL << (RHS->getType()->getPrimitiveSizeInBits()-1))-1;
Chris Lattnere79e8542004-02-23 06:38:22 +00001581 }
1582 return false;
1583}
1584
Chris Lattner113f4f42002-06-25 16:13:24 +00001585Instruction *InstCombiner::visitMul(BinaryOperator &I) {
Chris Lattnerdcf240a2003-03-10 21:43:22 +00001586 bool Changed = SimplifyCommutative(I);
Chris Lattner3082c5a2003-02-18 19:28:33 +00001587 Value *Op0 = I.getOperand(0);
Chris Lattner260ab202002-04-18 17:39:14 +00001588
Chris Lattner81a7a232004-10-16 18:11:37 +00001589 if (isa<UndefValue>(I.getOperand(1))) // undef * X -> 0
1590 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
1591
Chris Lattnere6794492002-08-12 21:17:25 +00001592 // Simplify mul instructions with a constant RHS...
Chris Lattner3082c5a2003-02-18 19:28:33 +00001593 if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
1594 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnerede3fe02003-08-13 04:18:28 +00001595
1596 // ((X << C1)*C2) == (X * (C2 << C1))
1597 if (ShiftInst *SI = dyn_cast<ShiftInst>(Op0))
1598 if (SI->getOpcode() == Instruction::Shl)
1599 if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00001600 return BinaryOperator::createMul(SI->getOperand(0),
1601 ConstantExpr::getShl(CI, ShOp));
Misha Brukmanb1c93172005-04-21 23:48:37 +00001602
Chris Lattnercce81be2003-09-11 22:24:54 +00001603 if (CI->isNullValue())
1604 return ReplaceInstUsesWith(I, Op1); // X * 0 == 0
1605 if (CI->equalsInt(1)) // X * 1 == X
1606 return ReplaceInstUsesWith(I, Op0);
1607 if (CI->isAllOnesValue()) // X * -1 == 0 - X
Chris Lattner35236d82003-06-25 17:09:20 +00001608 return BinaryOperator::createNeg(Op0, I.getName());
Chris Lattner31ba1292002-04-29 22:24:47 +00001609
Chris Lattnercce81be2003-09-11 22:24:54 +00001610 int64_t Val = (int64_t)cast<ConstantInt>(CI)->getRawValue();
Chris Lattner22d00a82005-08-02 19:16:58 +00001611 if (isPowerOf2_64(Val)) { // Replace X*(2^C) with X << C
1612 uint64_t C = Log2_64(Val);
Chris Lattner3082c5a2003-02-18 19:28:33 +00001613 return new ShiftInst(Instruction::Shl, Op0,
1614 ConstantUInt::get(Type::UByteTy, C));
Chris Lattner22d00a82005-08-02 19:16:58 +00001615 }
Robert Bocchino7b5b86c2004-07-27 21:02:21 +00001616 } else if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1)) {
Chris Lattner3082c5a2003-02-18 19:28:33 +00001617 if (Op1F->isNullValue())
1618 return ReplaceInstUsesWith(I, Op1);
Chris Lattner31ba1292002-04-29 22:24:47 +00001619
Chris Lattner3082c5a2003-02-18 19:28:33 +00001620 // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
1621 // ANSI says we can drop signals, so we can do this anyway." (from GCC)
1622 if (Op1F->getValue() == 1.0)
1623 return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0'
1624 }
Chris Lattner32c01df2006-03-04 06:04:02 +00001625
1626 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
1627 if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() &&
1628 isa<ConstantInt>(Op0I->getOperand(1))) {
1629 // Canonicalize (X+C1)*C2 -> X*C2+C1*C2.
1630 Instruction *Add = BinaryOperator::createMul(Op0I->getOperand(0),
1631 Op1, "tmp");
1632 InsertNewInstBefore(Add, I);
1633 Value *C1C2 = ConstantExpr::getMul(Op1,
1634 cast<Constant>(Op0I->getOperand(1)));
1635 return BinaryOperator::createAdd(Add, C1C2);
1636
1637 }
Chris Lattner183b3362004-04-09 19:05:30 +00001638
1639 // Try to fold constant mul into select arguments.
1640 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
Chris Lattner86102b82005-01-01 16:22:27 +00001641 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner183b3362004-04-09 19:05:30 +00001642 return R;
Chris Lattner6a4adcd2004-09-29 05:07:12 +00001643
1644 if (isa<PHINode>(Op0))
1645 if (Instruction *NV = FoldOpIntoPhi(I))
1646 return NV;
Chris Lattner260ab202002-04-18 17:39:14 +00001647 }
1648
Chris Lattner934a64cf2003-03-10 23:23:04 +00001649 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
1650 if (Value *Op1v = dyn_castNegVal(I.getOperand(1)))
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00001651 return BinaryOperator::createMul(Op0v, Op1v);
Chris Lattner934a64cf2003-03-10 23:23:04 +00001652
Chris Lattner2635b522004-02-23 05:39:21 +00001653 // If one of the operands of the multiply is a cast from a boolean value, then
1654 // we know the bool is either zero or one, so this is a 'masking' multiply.
1655 // See if we can simplify things based on how the boolean was originally
1656 // formed.
1657 CastInst *BoolCast = 0;
1658 if (CastInst *CI = dyn_cast<CastInst>(I.getOperand(0)))
1659 if (CI->getOperand(0)->getType() == Type::BoolTy)
1660 BoolCast = CI;
1661 if (!BoolCast)
1662 if (CastInst *CI = dyn_cast<CastInst>(I.getOperand(1)))
1663 if (CI->getOperand(0)->getType() == Type::BoolTy)
1664 BoolCast = CI;
1665 if (BoolCast) {
1666 if (SetCondInst *SCI = dyn_cast<SetCondInst>(BoolCast->getOperand(0))) {
1667 Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1);
1668 const Type *SCOpTy = SCIOp0->getType();
1669
Chris Lattnere79e8542004-02-23 06:38:22 +00001670 // If the setcc is true iff the sign bit of X is set, then convert this
1671 // multiply into a shift/and combination.
1672 if (isa<ConstantInt>(SCIOp1) &&
1673 isSignBitCheck(SCI->getOpcode(), SCIOp0, cast<ConstantInt>(SCIOp1))) {
Chris Lattner2635b522004-02-23 05:39:21 +00001674 // Shift the X value right to turn it into "all signbits".
1675 Constant *Amt = ConstantUInt::get(Type::UByteTy,
Chris Lattnerd1f46d32005-04-24 06:59:08 +00001676 SCOpTy->getPrimitiveSizeInBits()-1);
Chris Lattnere79e8542004-02-23 06:38:22 +00001677 if (SCIOp0->getType()->isUnsigned()) {
Chris Lattner97bfcea2004-06-17 18:16:02 +00001678 const Type *NewTy = SCIOp0->getType()->getSignedVersion();
Chris Lattnere79e8542004-02-23 06:38:22 +00001679 SCIOp0 = InsertNewInstBefore(new CastInst(SCIOp0, NewTy,
1680 SCIOp0->getName()), I);
1681 }
1682
1683 Value *V =
1684 InsertNewInstBefore(new ShiftInst(Instruction::Shr, SCIOp0, Amt,
1685 BoolCast->getOperand(0)->getName()+
1686 ".mask"), I);
Chris Lattner2635b522004-02-23 05:39:21 +00001687
1688 // If the multiply type is not the same as the source type, sign extend
1689 // or truncate to the multiply type.
1690 if (I.getType() != V->getType())
Chris Lattnere79e8542004-02-23 06:38:22 +00001691 V = InsertNewInstBefore(new CastInst(V, I.getType(), V->getName()),I);
Misha Brukmanb1c93172005-04-21 23:48:37 +00001692
Chris Lattner2635b522004-02-23 05:39:21 +00001693 Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0;
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00001694 return BinaryOperator::createAnd(V, OtherOp);
Chris Lattner2635b522004-02-23 05:39:21 +00001695 }
1696 }
1697 }
1698
Chris Lattner113f4f42002-06-25 16:13:24 +00001699 return Changed ? &I : 0;
Chris Lattner260ab202002-04-18 17:39:14 +00001700}
1701
Chris Lattner113f4f42002-06-25 16:13:24 +00001702Instruction *InstCombiner::visitDiv(BinaryOperator &I) {
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00001703 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattner81a7a232004-10-16 18:11:37 +00001704
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00001705 if (isa<UndefValue>(Op0)) // undef / X -> 0
1706 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
1707 if (isa<UndefValue>(Op1))
1708 return ReplaceInstUsesWith(I, Op1); // X / undef -> undef
1709
1710 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnere20c3342004-04-26 14:01:59 +00001711 // div X, 1 == X
Chris Lattnere6794492002-08-12 21:17:25 +00001712 if (RHS->equalsInt(1))
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00001713 return ReplaceInstUsesWith(I, Op0);
Chris Lattner3082c5a2003-02-18 19:28:33 +00001714
Chris Lattnere20c3342004-04-26 14:01:59 +00001715 // div X, -1 == -X
1716 if (RHS->isAllOnesValue())
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00001717 return BinaryOperator::createNeg(Op0);
Chris Lattnere20c3342004-04-26 14:01:59 +00001718
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00001719 if (Instruction *LHS = dyn_cast<Instruction>(Op0))
Chris Lattner272d5ca2004-09-28 18:22:15 +00001720 if (LHS->getOpcode() == Instruction::Div)
1721 if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
Chris Lattner272d5ca2004-09-28 18:22:15 +00001722 // (X / C1) / C2 -> X / (C1*C2)
1723 return BinaryOperator::createDiv(LHS->getOperand(0),
1724 ConstantExpr::getMul(RHS, LHSRHS));
1725 }
1726
Chris Lattner3082c5a2003-02-18 19:28:33 +00001727 // Check to see if this is an unsigned division with an exact power of 2,
1728 // if so, convert to a right shift.
1729 if (ConstantUInt *C = dyn_cast<ConstantUInt>(RHS))
1730 if (uint64_t Val = C->getValue()) // Don't break X / 0
Chris Lattner22d00a82005-08-02 19:16:58 +00001731 if (isPowerOf2_64(Val)) {
1732 uint64_t C = Log2_64(Val);
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00001733 return new ShiftInst(Instruction::Shr, Op0,
Chris Lattner3082c5a2003-02-18 19:28:33 +00001734 ConstantUInt::get(Type::UByteTy, C));
Chris Lattner22d00a82005-08-02 19:16:58 +00001735 }
Chris Lattner6a4adcd2004-09-29 05:07:12 +00001736
Chris Lattner4ad08352004-10-09 02:50:40 +00001737 // -X/C -> X/-C
1738 if (RHS->getType()->isSigned())
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00001739 if (Value *LHSNeg = dyn_castNegVal(Op0))
Chris Lattner4ad08352004-10-09 02:50:40 +00001740 return BinaryOperator::createDiv(LHSNeg, ConstantExpr::getNeg(RHS));
1741
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00001742 if (!RHS->isNullValue()) {
1743 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
Chris Lattner86102b82005-01-01 16:22:27 +00001744 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00001745 return R;
1746 if (isa<PHINode>(Op0))
1747 if (Instruction *NV = FoldOpIntoPhi(I))
1748 return NV;
1749 }
Chris Lattner3082c5a2003-02-18 19:28:33 +00001750 }
1751
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00001752 // If this is 'udiv X, (Cond ? C1, C2)' where C1&C2 are powers of two,
1753 // transform this into: '(Cond ? (udiv X, C1) : (udiv X, C2))'.
1754 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1755 if (ConstantUInt *STO = dyn_cast<ConstantUInt>(SI->getOperand(1)))
1756 if (ConstantUInt *SFO = dyn_cast<ConstantUInt>(SI->getOperand(2))) {
1757 if (STO->getValue() == 0) { // Couldn't be this argument.
1758 I.setOperand(1, SFO);
Misha Brukmanb1c93172005-04-21 23:48:37 +00001759 return &I;
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00001760 } else if (SFO->getValue() == 0) {
Chris Lattner89dc4f12005-06-16 04:55:52 +00001761 I.setOperand(1, STO);
Misha Brukmanb1c93172005-04-21 23:48:37 +00001762 return &I;
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00001763 }
1764
Chris Lattner42362612005-04-08 04:03:26 +00001765 uint64_t TVA = STO->getValue(), FVA = SFO->getValue();
Chris Lattner22d00a82005-08-02 19:16:58 +00001766 if (isPowerOf2_64(TVA) && isPowerOf2_64(FVA)) {
1767 unsigned TSA = Log2_64(TVA), FSA = Log2_64(FVA);
Chris Lattner42362612005-04-08 04:03:26 +00001768 Constant *TC = ConstantUInt::get(Type::UByteTy, TSA);
1769 Instruction *TSI = new ShiftInst(Instruction::Shr, Op0,
1770 TC, SI->getName()+".t");
1771 TSI = InsertNewInstBefore(TSI, I);
Misha Brukmanb1c93172005-04-21 23:48:37 +00001772
Chris Lattner42362612005-04-08 04:03:26 +00001773 Constant *FC = ConstantUInt::get(Type::UByteTy, FSA);
1774 Instruction *FSI = new ShiftInst(Instruction::Shr, Op0,
1775 FC, SI->getName()+".f");
1776 FSI = InsertNewInstBefore(FSI, I);
1777 return new SelectInst(SI->getOperand(0), TSI, FSI);
1778 }
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00001779 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00001780
Chris Lattner3082c5a2003-02-18 19:28:33 +00001781 // 0 / X == 0, we don't need to preserve faults!
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00001782 if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
Chris Lattner3082c5a2003-02-18 19:28:33 +00001783 if (LHS->equalsInt(0))
1784 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
1785
Chris Lattnerdd0c1742005-11-05 07:40:31 +00001786 if (I.getType()->isSigned()) {
Chris Lattnerc3ebf402006-02-07 07:27:52 +00001787 // If the sign bits of both operands are zero (i.e. we can prove they are
Chris Lattnerdd0c1742005-11-05 07:40:31 +00001788 // unsigned inputs), turn this into a udiv.
Chris Lattnerc3ebf402006-02-07 07:27:52 +00001789 uint64_t Mask = 1ULL << (I.getType()->getPrimitiveSizeInBits()-1);
1790 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
Chris Lattnerdd0c1742005-11-05 07:40:31 +00001791 const Type *NTy = Op0->getType()->getUnsignedVersion();
1792 Instruction *LHS = new CastInst(Op0, NTy, Op0->getName());
1793 InsertNewInstBefore(LHS, I);
1794 Value *RHS;
1795 if (Constant *R = dyn_cast<Constant>(Op1))
1796 RHS = ConstantExpr::getCast(R, NTy);
1797 else
1798 RHS = InsertNewInstBefore(new CastInst(Op1, NTy, Op1->getName()), I);
1799 Instruction *Div = BinaryOperator::createDiv(LHS, RHS, I.getName());
1800 InsertNewInstBefore(Div, I);
1801 return new CastInst(Div, I.getType());
1802 }
Chris Lattner2e90b732006-02-05 07:54:04 +00001803 } else {
1804 // Known to be an unsigned division.
1805 if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
1806 // Turn A / (C1 << N), where C1 is "1<<C2" into A >> (N+C2) [udiv only].
1807 if (RHSI->getOpcode() == Instruction::Shl &&
1808 isa<ConstantUInt>(RHSI->getOperand(0))) {
1809 unsigned C1 = cast<ConstantUInt>(RHSI->getOperand(0))->getRawValue();
1810 if (isPowerOf2_64(C1)) {
1811 unsigned C2 = Log2_64(C1);
1812 Value *Add = RHSI->getOperand(1);
1813 if (C2) {
1814 Constant *C2V = ConstantUInt::get(Add->getType(), C2);
1815 Add = InsertNewInstBefore(BinaryOperator::createAdd(Add, C2V,
1816 "tmp"), I);
1817 }
1818 return new ShiftInst(Instruction::Shr, Op0, Add);
1819 }
1820 }
1821 }
Chris Lattnerdd0c1742005-11-05 07:40:31 +00001822 }
1823
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00001824 return 0;
1825}
1826
1827
Chris Lattner85dda9a2006-03-02 06:50:58 +00001828/// GetFactor - If we can prove that the specified value is at least a multiple
1829/// of some factor, return that factor.
1830static Constant *GetFactor(Value *V) {
1831 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
1832 return CI;
1833
1834 // Unless we can be tricky, we know this is a multiple of 1.
1835 Constant *Result = ConstantInt::get(V->getType(), 1);
1836
1837 Instruction *I = dyn_cast<Instruction>(V);
1838 if (!I) return Result;
1839
1840 if (I->getOpcode() == Instruction::Mul) {
1841 // Handle multiplies by a constant, etc.
1842 return ConstantExpr::getMul(GetFactor(I->getOperand(0)),
1843 GetFactor(I->getOperand(1)));
1844 } else if (I->getOpcode() == Instruction::Shl) {
1845 // (X<<C) -> X * (1 << C)
1846 if (Constant *ShRHS = dyn_cast<Constant>(I->getOperand(1))) {
1847 ShRHS = ConstantExpr::getShl(Result, ShRHS);
1848 return ConstantExpr::getMul(GetFactor(I->getOperand(0)), ShRHS);
1849 }
1850 } else if (I->getOpcode() == Instruction::And) {
1851 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1852 // X & 0xFFF0 is known to be a multiple of 16.
1853 unsigned Zeros = CountTrailingZeros_64(RHS->getZExtValue());
1854 if (Zeros != V->getType()->getPrimitiveSizeInBits())
1855 return ConstantExpr::getShl(Result,
1856 ConstantUInt::get(Type::UByteTy, Zeros));
1857 }
1858 } else if (I->getOpcode() == Instruction::Cast) {
1859 Value *Op = I->getOperand(0);
1860 // Only handle int->int casts.
1861 if (!Op->getType()->isInteger()) return Result;
1862 return ConstantExpr::getCast(GetFactor(Op), V->getType());
1863 }
1864 return Result;
1865}
1866
Chris Lattner113f4f42002-06-25 16:13:24 +00001867Instruction *InstCombiner::visitRem(BinaryOperator &I) {
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00001868 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattner0de4a8d2006-02-28 05:30:45 +00001869
1870 // 0 % X == 0, we don't need to preserve faults!
1871 if (Constant *LHS = dyn_cast<Constant>(Op0))
1872 if (LHS->isNullValue())
1873 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
1874
1875 if (isa<UndefValue>(Op0)) // undef % X -> 0
1876 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
1877 if (isa<UndefValue>(Op1))
1878 return ReplaceInstUsesWith(I, Op1); // X % undef -> undef
1879
Chris Lattnere9ff0ea2005-11-05 07:28:37 +00001880 if (I.getType()->isSigned()) {
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00001881 if (Value *RHSNeg = dyn_castNegVal(Op1))
Chris Lattner98c6bdf2004-07-06 07:11:42 +00001882 if (!isa<ConstantSInt>(RHSNeg) ||
Chris Lattner8e726062004-08-09 21:05:48 +00001883 cast<ConstantSInt>(RHSNeg)->getValue() > 0) {
Chris Lattner7fd5f072004-07-06 07:01:22 +00001884 // X % -Y -> X % Y
1885 AddUsesToWorkList(I);
1886 I.setOperand(1, RHSNeg);
1887 return &I;
1888 }
Chris Lattnere9ff0ea2005-11-05 07:28:37 +00001889
1890 // If the top bits of both operands are zero (i.e. we can prove they are
1891 // unsigned inputs), turn this into a urem.
Chris Lattnerc3ebf402006-02-07 07:27:52 +00001892 uint64_t Mask = 1ULL << (I.getType()->getPrimitiveSizeInBits()-1);
1893 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
Chris Lattnere9ff0ea2005-11-05 07:28:37 +00001894 const Type *NTy = Op0->getType()->getUnsignedVersion();
1895 Instruction *LHS = new CastInst(Op0, NTy, Op0->getName());
1896 InsertNewInstBefore(LHS, I);
1897 Value *RHS;
1898 if (Constant *R = dyn_cast<Constant>(Op1))
1899 RHS = ConstantExpr::getCast(R, NTy);
1900 else
1901 RHS = InsertNewInstBefore(new CastInst(Op1, NTy, Op1->getName()), I);
1902 Instruction *Rem = BinaryOperator::createRem(LHS, RHS, I.getName());
1903 InsertNewInstBefore(Rem, I);
1904 return new CastInst(Rem, I.getType());
1905 }
1906 }
Chris Lattner7fd5f072004-07-06 07:01:22 +00001907
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00001908 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner0de4a8d2006-02-28 05:30:45 +00001909 // X % 0 == undef, we don't need to preserve faults!
1910 if (RHS->equalsInt(0))
1911 return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
1912
Chris Lattner3082c5a2003-02-18 19:28:33 +00001913 if (RHS->equalsInt(1)) // X % 1 == 0
1914 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
1915
1916 // Check to see if this is an unsigned remainder with an exact power of 2,
1917 // if so, convert to a bitwise and.
1918 if (ConstantUInt *C = dyn_cast<ConstantUInt>(RHS))
Chris Lattner0de4a8d2006-02-28 05:30:45 +00001919 if (isPowerOf2_64(C->getValue()))
1920 return BinaryOperator::createAnd(Op0, SubOne(C));
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00001921
Chris Lattnerb70f1412006-02-28 05:49:21 +00001922 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
1923 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
1924 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
1925 return R;
1926 } else if (isa<PHINode>(Op0I)) {
1927 if (Instruction *NV = FoldOpIntoPhi(I))
1928 return NV;
Chris Lattnerb70f1412006-02-28 05:49:21 +00001929 }
Chris Lattner85dda9a2006-03-02 06:50:58 +00001930
1931 // X*C1%C2 --> 0 iff C1%C2 == 0
1932 if (ConstantExpr::getRem(GetFactor(Op0I), RHS)->isNullValue())
1933 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattnerb70f1412006-02-28 05:49:21 +00001934 }
Chris Lattner3082c5a2003-02-18 19:28:33 +00001935 }
1936
Chris Lattner2e90b732006-02-05 07:54:04 +00001937 if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
1938 // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1) [urem only].
1939 if (I.getType()->isUnsigned() &&
1940 RHSI->getOpcode() == Instruction::Shl &&
1941 isa<ConstantUInt>(RHSI->getOperand(0))) {
1942 unsigned C1 = cast<ConstantUInt>(RHSI->getOperand(0))->getRawValue();
1943 if (isPowerOf2_64(C1)) {
1944 Constant *N1 = ConstantInt::getAllOnesValue(I.getType());
1945 Value *Add = InsertNewInstBefore(BinaryOperator::createAdd(RHSI, N1,
1946 "tmp"), I);
1947 return BinaryOperator::createAnd(Op0, Add);
1948 }
1949 }
Chris Lattner0de4a8d2006-02-28 05:30:45 +00001950
1951 // If this is 'urem X, (Cond ? C1, C2)' where C1&C2 are powers of two,
1952 // transform this into: '(Cond ? (urem X, C1) : (urem X, C2))'.
1953 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1954 if (ConstantUInt *STO = dyn_cast<ConstantUInt>(SI->getOperand(1)))
1955 if (ConstantUInt *SFO = dyn_cast<ConstantUInt>(SI->getOperand(2))) {
1956 if (STO->getValue() == 0) { // Couldn't be this argument.
1957 I.setOperand(1, SFO);
1958 return &I;
1959 } else if (SFO->getValue() == 0) {
1960 I.setOperand(1, STO);
1961 return &I;
1962 }
1963
1964 if (isPowerOf2_64(STO->getValue()) && isPowerOf2_64(SFO->getValue())){
1965 Value *TrueAnd = InsertNewInstBefore(BinaryOperator::createAnd(Op0,
1966 SubOne(STO), SI->getName()+".t"), I);
1967 Value *FalseAnd = InsertNewInstBefore(BinaryOperator::createAnd(Op0,
1968 SubOne(SFO), SI->getName()+".f"), I);
1969 return new SelectInst(SI->getOperand(0), TrueAnd, FalseAnd);
1970 }
1971 }
Chris Lattner2e90b732006-02-05 07:54:04 +00001972 }
1973
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00001974 return 0;
1975}
1976
Chris Lattner6d14f2a2002-08-09 23:47:40 +00001977// isMaxValueMinusOne - return true if this is Max-1
Chris Lattnere6794492002-08-12 21:17:25 +00001978static bool isMaxValueMinusOne(const ConstantInt *C) {
Chris Lattner77defba2006-02-07 07:00:41 +00001979 if (const ConstantUInt *CU = dyn_cast<ConstantUInt>(C))
1980 return CU->getValue() == C->getType()->getIntegralTypeMask()-1;
Chris Lattner6d14f2a2002-08-09 23:47:40 +00001981
1982 const ConstantSInt *CS = cast<ConstantSInt>(C);
Misha Brukmanb1c93172005-04-21 23:48:37 +00001983
Chris Lattner6d14f2a2002-08-09 23:47:40 +00001984 // Calculate 0111111111..11111
Chris Lattnerd1f46d32005-04-24 06:59:08 +00001985 unsigned TypeBits = C->getType()->getPrimitiveSizeInBits();
Chris Lattner6d14f2a2002-08-09 23:47:40 +00001986 int64_t Val = INT64_MAX; // All ones
1987 Val >>= 64-TypeBits; // Shift out unwanted 1 bits...
1988 return CS->getValue() == Val-1;
1989}
1990
1991// isMinValuePlusOne - return true if this is Min+1
Chris Lattnere6794492002-08-12 21:17:25 +00001992static bool isMinValuePlusOne(const ConstantInt *C) {
Chris Lattner6d14f2a2002-08-09 23:47:40 +00001993 if (const ConstantUInt *CU = dyn_cast<ConstantUInt>(C))
1994 return CU->getValue() == 1;
1995
1996 const ConstantSInt *CS = cast<ConstantSInt>(C);
Misha Brukmanb1c93172005-04-21 23:48:37 +00001997
1998 // Calculate 1111111111000000000000
Chris Lattnerd1f46d32005-04-24 06:59:08 +00001999 unsigned TypeBits = C->getType()->getPrimitiveSizeInBits();
Chris Lattner6d14f2a2002-08-09 23:47:40 +00002000 int64_t Val = -1; // All ones
2001 Val <<= TypeBits-1; // Shift over to the right spot
2002 return CS->getValue() == Val+1;
2003}
2004
Chris Lattner35167c32004-06-09 07:59:58 +00002005// isOneBitSet - Return true if there is exactly one bit set in the specified
2006// constant.
2007static bool isOneBitSet(const ConstantInt *CI) {
2008 uint64_t V = CI->getRawValue();
2009 return V && (V & (V-1)) == 0;
2010}
2011
Chris Lattner8fc5af42004-09-23 21:46:38 +00002012#if 0 // Currently unused
2013// isLowOnes - Return true if the constant is of the form 0+1+.
2014static bool isLowOnes(const ConstantInt *CI) {
2015 uint64_t V = CI->getRawValue();
2016
2017 // There won't be bits set in parts that the type doesn't contain.
2018 V &= ConstantInt::getAllOnesValue(CI->getType())->getRawValue();
2019
2020 uint64_t U = V+1; // If it is low ones, this should be a power of two.
2021 return U && V && (U & V) == 0;
2022}
2023#endif
2024
2025// isHighOnes - Return true if the constant is of the form 1+0+.
2026// This is the same as lowones(~X).
2027static bool isHighOnes(const ConstantInt *CI) {
2028 uint64_t V = ~CI->getRawValue();
Chris Lattner2c14cf72005-08-07 07:03:10 +00002029 if (~V == 0) return false; // 0's does not match "1+"
Chris Lattner8fc5af42004-09-23 21:46:38 +00002030
2031 // There won't be bits set in parts that the type doesn't contain.
2032 V &= ConstantInt::getAllOnesValue(CI->getType())->getRawValue();
2033
2034 uint64_t U = V+1; // If it is low ones, this should be a power of two.
2035 return U && V && (U & V) == 0;
2036}
2037
2038
Chris Lattner3ac7c262003-08-13 20:16:26 +00002039/// getSetCondCode - Encode a setcc opcode into a three bit mask. These bits
2040/// are carefully arranged to allow folding of expressions such as:
2041///
2042/// (A < B) | (A > B) --> (A != B)
2043///
2044/// Bit value '4' represents that the comparison is true if A > B, bit value '2'
2045/// represents that the comparison is true if A == B, and bit value '1' is true
2046/// if A < B.
2047///
2048static unsigned getSetCondCode(const SetCondInst *SCI) {
2049 switch (SCI->getOpcode()) {
2050 // False -> 0
2051 case Instruction::SetGT: return 1;
2052 case Instruction::SetEQ: return 2;
2053 case Instruction::SetGE: return 3;
2054 case Instruction::SetLT: return 4;
2055 case Instruction::SetNE: return 5;
2056 case Instruction::SetLE: return 6;
2057 // True -> 7
2058 default:
2059 assert(0 && "Invalid SetCC opcode!");
2060 return 0;
2061 }
2062}
2063
2064/// getSetCCValue - This is the complement of getSetCondCode, which turns an
2065/// opcode and two operands into either a constant true or false, or a brand new
2066/// SetCC instruction.
2067static Value *getSetCCValue(unsigned Opcode, Value *LHS, Value *RHS) {
2068 switch (Opcode) {
2069 case 0: return ConstantBool::False;
2070 case 1: return new SetCondInst(Instruction::SetGT, LHS, RHS);
2071 case 2: return new SetCondInst(Instruction::SetEQ, LHS, RHS);
2072 case 3: return new SetCondInst(Instruction::SetGE, LHS, RHS);
2073 case 4: return new SetCondInst(Instruction::SetLT, LHS, RHS);
2074 case 5: return new SetCondInst(Instruction::SetNE, LHS, RHS);
2075 case 6: return new SetCondInst(Instruction::SetLE, LHS, RHS);
2076 case 7: return ConstantBool::True;
2077 default: assert(0 && "Illegal SetCCCode!"); return 0;
2078 }
2079}
2080
2081// FoldSetCCLogical - Implements (setcc1 A, B) & (setcc2 A, B) --> (setcc3 A, B)
2082struct FoldSetCCLogical {
2083 InstCombiner &IC;
2084 Value *LHS, *RHS;
2085 FoldSetCCLogical(InstCombiner &ic, SetCondInst *SCI)
2086 : IC(ic), LHS(SCI->getOperand(0)), RHS(SCI->getOperand(1)) {}
2087 bool shouldApply(Value *V) const {
2088 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
2089 return (SCI->getOperand(0) == LHS && SCI->getOperand(1) == RHS ||
2090 SCI->getOperand(0) == RHS && SCI->getOperand(1) == LHS);
2091 return false;
2092 }
2093 Instruction *apply(BinaryOperator &Log) const {
2094 SetCondInst *SCI = cast<SetCondInst>(Log.getOperand(0));
2095 if (SCI->getOperand(0) != LHS) {
2096 assert(SCI->getOperand(1) == LHS);
2097 SCI->swapOperands(); // Swap the LHS and RHS of the SetCC
2098 }
2099
2100 unsigned LHSCode = getSetCondCode(SCI);
2101 unsigned RHSCode = getSetCondCode(cast<SetCondInst>(Log.getOperand(1)));
2102 unsigned Code;
2103 switch (Log.getOpcode()) {
2104 case Instruction::And: Code = LHSCode & RHSCode; break;
2105 case Instruction::Or: Code = LHSCode | RHSCode; break;
2106 case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
Chris Lattner2caaaba2003-09-22 20:33:34 +00002107 default: assert(0 && "Illegal logical opcode!"); return 0;
Chris Lattner3ac7c262003-08-13 20:16:26 +00002108 }
2109
2110 Value *RV = getSetCCValue(Code, LHS, RHS);
2111 if (Instruction *I = dyn_cast<Instruction>(RV))
2112 return I;
2113 // Otherwise, it's a constant boolean value...
2114 return IC.ReplaceInstUsesWith(Log, RV);
2115 }
2116};
2117
Chris Lattnerba1cb382003-09-19 17:17:26 +00002118// OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
2119// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
2120// guaranteed to be either a shift instruction or a binary operator.
2121Instruction *InstCombiner::OptAndOp(Instruction *Op,
2122 ConstantIntegral *OpRHS,
2123 ConstantIntegral *AndRHS,
2124 BinaryOperator &TheAnd) {
2125 Value *X = Op->getOperand(0);
Chris Lattnerfcf21a72004-01-12 19:47:05 +00002126 Constant *Together = 0;
2127 if (!isa<ShiftInst>(Op))
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00002128 Together = ConstantExpr::getAnd(AndRHS, OpRHS);
Chris Lattnerc1e7cc02004-01-12 19:35:11 +00002129
Chris Lattnerba1cb382003-09-19 17:17:26 +00002130 switch (Op->getOpcode()) {
2131 case Instruction::Xor:
Chris Lattner86102b82005-01-01 16:22:27 +00002132 if (Op->hasOneUse()) {
Chris Lattnerba1cb382003-09-19 17:17:26 +00002133 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
2134 std::string OpName = Op->getName(); Op->setName("");
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00002135 Instruction *And = BinaryOperator::createAnd(X, AndRHS, OpName);
Chris Lattnerba1cb382003-09-19 17:17:26 +00002136 InsertNewInstBefore(And, TheAnd);
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00002137 return BinaryOperator::createXor(And, Together);
Chris Lattnerba1cb382003-09-19 17:17:26 +00002138 }
2139 break;
2140 case Instruction::Or:
Chris Lattner86102b82005-01-01 16:22:27 +00002141 if (Together == AndRHS) // (X | C) & C --> C
2142 return ReplaceInstUsesWith(TheAnd, AndRHS);
Misha Brukmanb1c93172005-04-21 23:48:37 +00002143
Chris Lattner86102b82005-01-01 16:22:27 +00002144 if (Op->hasOneUse() && Together != OpRHS) {
2145 // (X | C1) & C2 --> (X | (C1&C2)) & C2
2146 std::string Op0Name = Op->getName(); Op->setName("");
2147 Instruction *Or = BinaryOperator::createOr(X, Together, Op0Name);
2148 InsertNewInstBefore(Or, TheAnd);
2149 return BinaryOperator::createAnd(Or, AndRHS);
Chris Lattnerba1cb382003-09-19 17:17:26 +00002150 }
2151 break;
2152 case Instruction::Add:
Chris Lattnerf95d9b92003-10-15 16:48:29 +00002153 if (Op->hasOneUse()) {
Chris Lattnerba1cb382003-09-19 17:17:26 +00002154 // Adding a one to a single bit bit-field should be turned into an XOR
2155 // of the bit. First thing to check is to see if this AND is with a
2156 // single bit constant.
Chris Lattner35167c32004-06-09 07:59:58 +00002157 uint64_t AndRHSV = cast<ConstantInt>(AndRHS)->getRawValue();
Chris Lattnerba1cb382003-09-19 17:17:26 +00002158
2159 // Clear bits that are not part of the constant.
Chris Lattner77defba2006-02-07 07:00:41 +00002160 AndRHSV &= AndRHS->getType()->getIntegralTypeMask();
Chris Lattnerba1cb382003-09-19 17:17:26 +00002161
2162 // If there is only one bit set...
Chris Lattner35167c32004-06-09 07:59:58 +00002163 if (isOneBitSet(cast<ConstantInt>(AndRHS))) {
Chris Lattnerba1cb382003-09-19 17:17:26 +00002164 // Ok, at this point, we know that we are masking the result of the
2165 // ADD down to exactly one bit. If the constant we are adding has
2166 // no bits set below this bit, then we can eliminate the ADD.
Chris Lattner35167c32004-06-09 07:59:58 +00002167 uint64_t AddRHS = cast<ConstantInt>(OpRHS)->getRawValue();
Misha Brukmanb1c93172005-04-21 23:48:37 +00002168
Chris Lattnerba1cb382003-09-19 17:17:26 +00002169 // Check to see if any bits below the one bit set in AndRHSV are set.
2170 if ((AddRHS & (AndRHSV-1)) == 0) {
2171 // If not, the only thing that can effect the output of the AND is
2172 // the bit specified by AndRHSV. If that bit is set, the effect of
2173 // the XOR is to toggle the bit. If it is clear, then the ADD has
2174 // no effect.
2175 if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
2176 TheAnd.setOperand(0, X);
2177 return &TheAnd;
2178 } else {
2179 std::string Name = Op->getName(); Op->setName("");
2180 // Pull the XOR out of the AND.
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00002181 Instruction *NewAnd = BinaryOperator::createAnd(X, AndRHS, Name);
Chris Lattnerba1cb382003-09-19 17:17:26 +00002182 InsertNewInstBefore(NewAnd, TheAnd);
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00002183 return BinaryOperator::createXor(NewAnd, AndRHS);
Chris Lattnerba1cb382003-09-19 17:17:26 +00002184 }
2185 }
2186 }
2187 }
2188 break;
Chris Lattner2da29172003-09-19 19:05:02 +00002189
2190 case Instruction::Shl: {
2191 // We know that the AND will not produce any of the bits shifted in, so if
2192 // the anded constant includes them, clear them now!
2193 //
2194 Constant *AllOne = ConstantIntegral::getAllOnesValue(AndRHS->getType());
Chris Lattner7e794272004-09-24 15:21:34 +00002195 Constant *ShlMask = ConstantExpr::getShl(AllOne, OpRHS);
2196 Constant *CI = ConstantExpr::getAnd(AndRHS, ShlMask);
Misha Brukmanb1c93172005-04-21 23:48:37 +00002197
Chris Lattner7e794272004-09-24 15:21:34 +00002198 if (CI == ShlMask) { // Masking out bits that the shift already masks
2199 return ReplaceInstUsesWith(TheAnd, Op); // No need for the and.
2200 } else if (CI != AndRHS) { // Reducing bits set in and.
Chris Lattner2da29172003-09-19 19:05:02 +00002201 TheAnd.setOperand(1, CI);
2202 return &TheAnd;
2203 }
2204 break;
Misha Brukmanb1c93172005-04-21 23:48:37 +00002205 }
Chris Lattner2da29172003-09-19 19:05:02 +00002206 case Instruction::Shr:
2207 // We know that the AND will not produce any of the bits shifted in, so if
2208 // the anded constant includes them, clear them now! This only applies to
2209 // unsigned shifts, because a signed shr may bring in set bits!
2210 //
2211 if (AndRHS->getType()->isUnsigned()) {
2212 Constant *AllOne = ConstantIntegral::getAllOnesValue(AndRHS->getType());
Chris Lattner7e794272004-09-24 15:21:34 +00002213 Constant *ShrMask = ConstantExpr::getShr(AllOne, OpRHS);
2214 Constant *CI = ConstantExpr::getAnd(AndRHS, ShrMask);
2215
2216 if (CI == ShrMask) { // Masking out bits that the shift already masks.
2217 return ReplaceInstUsesWith(TheAnd, Op);
2218 } else if (CI != AndRHS) {
2219 TheAnd.setOperand(1, CI); // Reduce bits set in and cst.
Chris Lattner2da29172003-09-19 19:05:02 +00002220 return &TheAnd;
2221 }
Chris Lattner7e794272004-09-24 15:21:34 +00002222 } else { // Signed shr.
2223 // See if this is shifting in some sign extension, then masking it out
2224 // with an and.
2225 if (Op->hasOneUse()) {
2226 Constant *AllOne = ConstantIntegral::getAllOnesValue(AndRHS->getType());
2227 Constant *ShrMask = ConstantExpr::getUShr(AllOne, OpRHS);
2228 Constant *CI = ConstantExpr::getAnd(AndRHS, ShrMask);
Chris Lattner5c3c21e2004-10-22 04:53:16 +00002229 if (CI == AndRHS) { // Masking out bits shifted in.
Chris Lattner7e794272004-09-24 15:21:34 +00002230 // Make the argument unsigned.
2231 Value *ShVal = Op->getOperand(0);
2232 ShVal = InsertCastBefore(ShVal,
2233 ShVal->getType()->getUnsignedVersion(),
2234 TheAnd);
2235 ShVal = InsertNewInstBefore(new ShiftInst(Instruction::Shr, ShVal,
2236 OpRHS, Op->getName()),
2237 TheAnd);
Chris Lattner70c20392004-10-27 05:57:15 +00002238 Value *AndRHS2 = ConstantExpr::getCast(AndRHS, ShVal->getType());
2239 ShVal = InsertNewInstBefore(BinaryOperator::createAnd(ShVal, AndRHS2,
2240 TheAnd.getName()),
2241 TheAnd);
Chris Lattner7e794272004-09-24 15:21:34 +00002242 return new CastInst(ShVal, Op->getType());
2243 }
2244 }
Chris Lattner2da29172003-09-19 19:05:02 +00002245 }
2246 break;
Chris Lattnerba1cb382003-09-19 17:17:26 +00002247 }
2248 return 0;
2249}
2250
Chris Lattner6d14f2a2002-08-09 23:47:40 +00002251
Chris Lattner6862fbd2004-09-29 17:40:11 +00002252/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
2253/// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient
2254/// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. IB is the location to
2255/// insert new instructions.
2256Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
2257 bool Inside, Instruction &IB) {
2258 assert(cast<ConstantBool>(ConstantExpr::getSetLE(Lo, Hi))->getValue() &&
2259 "Lo is not <= Hi in range emission code!");
2260 if (Inside) {
2261 if (Lo == Hi) // Trivially false.
2262 return new SetCondInst(Instruction::SetNE, V, V);
2263 if (cast<ConstantIntegral>(Lo)->isMinValue())
2264 return new SetCondInst(Instruction::SetLT, V, Hi);
Misha Brukmanb1c93172005-04-21 23:48:37 +00002265
Chris Lattner6862fbd2004-09-29 17:40:11 +00002266 Constant *AddCST = ConstantExpr::getNeg(Lo);
2267 Instruction *Add = BinaryOperator::createAdd(V, AddCST,V->getName()+".off");
2268 InsertNewInstBefore(Add, IB);
2269 // Convert to unsigned for the comparison.
2270 const Type *UnsType = Add->getType()->getUnsignedVersion();
2271 Value *OffsetVal = InsertCastBefore(Add, UnsType, IB);
2272 AddCST = ConstantExpr::getAdd(AddCST, Hi);
2273 AddCST = ConstantExpr::getCast(AddCST, UnsType);
2274 return new SetCondInst(Instruction::SetLT, OffsetVal, AddCST);
2275 }
2276
2277 if (Lo == Hi) // Trivially true.
2278 return new SetCondInst(Instruction::SetEQ, V, V);
2279
2280 Hi = SubOne(cast<ConstantInt>(Hi));
2281 if (cast<ConstantIntegral>(Lo)->isMinValue()) // V < 0 || V >= Hi ->'V > Hi-1'
2282 return new SetCondInst(Instruction::SetGT, V, Hi);
2283
2284 // Emit X-Lo > Hi-Lo-1
2285 Constant *AddCST = ConstantExpr::getNeg(Lo);
2286 Instruction *Add = BinaryOperator::createAdd(V, AddCST, V->getName()+".off");
2287 InsertNewInstBefore(Add, IB);
2288 // Convert to unsigned for the comparison.
2289 const Type *UnsType = Add->getType()->getUnsignedVersion();
2290 Value *OffsetVal = InsertCastBefore(Add, UnsType, IB);
2291 AddCST = ConstantExpr::getAdd(AddCST, Hi);
2292 AddCST = ConstantExpr::getCast(AddCST, UnsType);
2293 return new SetCondInst(Instruction::SetGT, OffsetVal, AddCST);
2294}
2295
Chris Lattnerb4b25302005-09-18 07:22:02 +00002296// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
2297// any number of 0s on either side. The 1s are allowed to wrap from LSB to
2298// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
2299// not, since all 1s are not contiguous.
2300static bool isRunOfOnes(ConstantIntegral *Val, unsigned &MB, unsigned &ME) {
2301 uint64_t V = Val->getRawValue();
2302 if (!isShiftedMask_64(V)) return false;
2303
2304 // look for the first zero bit after the run of ones
2305 MB = 64-CountLeadingZeros_64((V - 1) ^ V);
2306 // look for the first non-zero bit
2307 ME = 64-CountLeadingZeros_64(V);
2308 return true;
2309}
2310
2311
2312
2313/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
2314/// where isSub determines whether the operator is a sub. If we can fold one of
2315/// the following xforms:
Chris Lattneraf517572005-09-18 04:24:45 +00002316///
2317/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
2318/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
2319/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
2320///
2321/// return (A +/- B).
2322///
2323Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
2324 ConstantIntegral *Mask, bool isSub,
2325 Instruction &I) {
2326 Instruction *LHSI = dyn_cast<Instruction>(LHS);
2327 if (!LHSI || LHSI->getNumOperands() != 2 ||
2328 !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
2329
2330 ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
2331
2332 switch (LHSI->getOpcode()) {
2333 default: return 0;
2334 case Instruction::And:
Chris Lattnerb4b25302005-09-18 07:22:02 +00002335 if (ConstantExpr::getAnd(N, Mask) == Mask) {
2336 // If the AndRHS is a power of two minus one (0+1+), this is simple.
2337 if ((Mask->getRawValue() & Mask->getRawValue()+1) == 0)
2338 break;
2339
2340 // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
2341 // part, we don't need any explicit masks to take them out of A. If that
2342 // is all N is, ignore it.
2343 unsigned MB, ME;
2344 if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive
Chris Lattnerc3ebf402006-02-07 07:27:52 +00002345 uint64_t Mask = RHS->getType()->getIntegralTypeMask();
2346 Mask >>= 64-MB+1;
2347 if (MaskedValueIsZero(RHS, Mask))
Chris Lattnerb4b25302005-09-18 07:22:02 +00002348 break;
2349 }
2350 }
Chris Lattneraf517572005-09-18 04:24:45 +00002351 return 0;
2352 case Instruction::Or:
2353 case Instruction::Xor:
Chris Lattnerb4b25302005-09-18 07:22:02 +00002354 // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
2355 if ((Mask->getRawValue() & Mask->getRawValue()+1) == 0 &&
2356 ConstantExpr::getAnd(N, Mask)->isNullValue())
Chris Lattneraf517572005-09-18 04:24:45 +00002357 break;
2358 return 0;
2359 }
2360
2361 Instruction *New;
2362 if (isSub)
2363 New = BinaryOperator::createSub(LHSI->getOperand(0), RHS, "fold");
2364 else
2365 New = BinaryOperator::createAdd(LHSI->getOperand(0), RHS, "fold");
2366 return InsertNewInstBefore(New, I);
2367}
2368
Chris Lattner113f4f42002-06-25 16:13:24 +00002369Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
Chris Lattnerdcf240a2003-03-10 21:43:22 +00002370 bool Changed = SimplifyCommutative(I);
Chris Lattner113f4f42002-06-25 16:13:24 +00002371 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00002372
Chris Lattner81a7a232004-10-16 18:11:37 +00002373 if (isa<UndefValue>(Op1)) // X & undef -> 0
2374 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2375
Chris Lattner86102b82005-01-01 16:22:27 +00002376 // and X, X = X
2377 if (Op0 == Op1)
Chris Lattnere6794492002-08-12 21:17:25 +00002378 return ReplaceInstUsesWith(I, Op1);
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00002379
Chris Lattner5b2edb12006-02-12 08:02:11 +00002380 // See if we can simplify any instructions used by the instruction whose sole
Chris Lattner5997cf92006-02-08 03:25:32 +00002381 // purpose is to compute bits we don't care about.
Chris Lattner0157e7f2006-02-11 09:31:47 +00002382 uint64_t KnownZero, KnownOne;
Chris Lattnerd70d9f52006-03-25 21:58:26 +00002383 if (!isa<PackedType>(I.getType()) &&
2384 SimplifyDemandedBits(&I, I.getType()->getIntegralTypeMask(),
Chris Lattner0157e7f2006-02-11 09:31:47 +00002385 KnownZero, KnownOne))
Chris Lattner5997cf92006-02-08 03:25:32 +00002386 return &I;
2387
Chris Lattner86102b82005-01-01 16:22:27 +00002388 if (ConstantIntegral *AndRHS = dyn_cast<ConstantIntegral>(Op1)) {
Chris Lattnerab2dc4d2006-02-08 07:34:50 +00002389 uint64_t AndRHSMask = AndRHS->getZExtValue();
2390 uint64_t TypeMask = Op0->getType()->getIntegralTypeMask();
Chris Lattnerab2dc4d2006-02-08 07:34:50 +00002391 uint64_t NotAndRHS = AndRHSMask^TypeMask;
Chris Lattner86102b82005-01-01 16:22:27 +00002392
Chris Lattnerba1cb382003-09-19 17:17:26 +00002393 // Optimize a variety of ((val OP C1) & C2) combinations...
2394 if (isa<BinaryOperator>(Op0) || isa<ShiftInst>(Op0)) {
2395 Instruction *Op0I = cast<Instruction>(Op0);
Chris Lattner86102b82005-01-01 16:22:27 +00002396 Value *Op0LHS = Op0I->getOperand(0);
2397 Value *Op0RHS = Op0I->getOperand(1);
2398 switch (Op0I->getOpcode()) {
2399 case Instruction::Xor:
2400 case Instruction::Or:
Chris Lattner9e2c7fa2005-01-23 20:26:55 +00002401 // If the mask is only needed on one incoming arm, push it up.
2402 if (Op0I->hasOneUse()) {
2403 if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
2404 // Not masking anything out for the LHS, move to RHS.
2405 Instruction *NewRHS = BinaryOperator::createAnd(Op0RHS, AndRHS,
2406 Op0RHS->getName()+".masked");
2407 InsertNewInstBefore(NewRHS, I);
2408 return BinaryOperator::create(
2409 cast<BinaryOperator>(Op0I)->getOpcode(), Op0LHS, NewRHS);
Misha Brukmanb1c93172005-04-21 23:48:37 +00002410 }
Chris Lattnerc3ebf402006-02-07 07:27:52 +00002411 if (!isa<Constant>(Op0RHS) &&
Chris Lattner9e2c7fa2005-01-23 20:26:55 +00002412 MaskedValueIsZero(Op0RHS, NotAndRHS)) {
2413 // Not masking anything out for the RHS, move to LHS.
2414 Instruction *NewLHS = BinaryOperator::createAnd(Op0LHS, AndRHS,
2415 Op0LHS->getName()+".masked");
2416 InsertNewInstBefore(NewLHS, I);
2417 return BinaryOperator::create(
2418 cast<BinaryOperator>(Op0I)->getOpcode(), NewLHS, Op0RHS);
2419 }
2420 }
2421
Chris Lattner86102b82005-01-01 16:22:27 +00002422 break;
Chris Lattneraf517572005-09-18 04:24:45 +00002423 case Instruction::Add:
Chris Lattnerb4b25302005-09-18 07:22:02 +00002424 // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
2425 // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
2426 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
2427 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
2428 return BinaryOperator::createAnd(V, AndRHS);
2429 if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
2430 return BinaryOperator::createAnd(V, AndRHS); // Add commutes
Chris Lattneraf517572005-09-18 04:24:45 +00002431 break;
2432
2433 case Instruction::Sub:
Chris Lattnerb4b25302005-09-18 07:22:02 +00002434 // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
2435 // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
2436 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
2437 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
2438 return BinaryOperator::createAnd(V, AndRHS);
Chris Lattneraf517572005-09-18 04:24:45 +00002439 break;
Chris Lattner86102b82005-01-01 16:22:27 +00002440 }
2441
Chris Lattner16464b32003-07-23 19:25:52 +00002442 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
Chris Lattner86102b82005-01-01 16:22:27 +00002443 if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
Chris Lattnerba1cb382003-09-19 17:17:26 +00002444 return Res;
Chris Lattner86102b82005-01-01 16:22:27 +00002445 } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
2446 const Type *SrcTy = CI->getOperand(0)->getType();
2447
Chris Lattner2c14cf72005-08-07 07:03:10 +00002448 // If this is an integer truncation or change from signed-to-unsigned, and
2449 // if the source is an and/or with immediate, transform it. This
2450 // frequently occurs for bitfield accesses.
2451 if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) {
2452 if (SrcTy->getPrimitiveSizeInBits() >=
2453 I.getType()->getPrimitiveSizeInBits() &&
2454 CastOp->getNumOperands() == 2)
Chris Lattnerab2dc4d2006-02-08 07:34:50 +00002455 if (ConstantInt *AndCI = dyn_cast<ConstantInt>(CastOp->getOperand(1)))
Chris Lattner2c14cf72005-08-07 07:03:10 +00002456 if (CastOp->getOpcode() == Instruction::And) {
2457 // Change: and (cast (and X, C1) to T), C2
2458 // into : and (cast X to T), trunc(C1)&C2
2459 // This will folds the two ands together, which may allow other
2460 // simplifications.
2461 Instruction *NewCast =
2462 new CastInst(CastOp->getOperand(0), I.getType(),
2463 CastOp->getName()+".shrunk");
2464 NewCast = InsertNewInstBefore(NewCast, I);
2465
2466 Constant *C3=ConstantExpr::getCast(AndCI, I.getType());//trunc(C1)
2467 C3 = ConstantExpr::getAnd(C3, AndRHS); // trunc(C1)&C2
2468 return BinaryOperator::createAnd(NewCast, C3);
2469 } else if (CastOp->getOpcode() == Instruction::Or) {
2470 // Change: and (cast (or X, C1) to T), C2
2471 // into : trunc(C1)&C2 iff trunc(C1)&C2 == C2
2472 Constant *C3=ConstantExpr::getCast(AndCI, I.getType());//trunc(C1)
2473 if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS) // trunc(C1)&C2
2474 return ReplaceInstUsesWith(I, AndRHS);
2475 }
2476 }
Chris Lattner33217db2003-07-23 19:36:21 +00002477 }
Chris Lattner183b3362004-04-09 19:05:30 +00002478
2479 // Try to fold constant and into select arguments.
2480 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
Chris Lattner86102b82005-01-01 16:22:27 +00002481 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner183b3362004-04-09 19:05:30 +00002482 return R;
Chris Lattner6a4adcd2004-09-29 05:07:12 +00002483 if (isa<PHINode>(Op0))
2484 if (Instruction *NV = FoldOpIntoPhi(I))
2485 return NV;
Chris Lattner49b47ae2003-07-23 17:57:01 +00002486 }
2487
Chris Lattnerbb74e222003-03-10 23:06:50 +00002488 Value *Op0NotVal = dyn_castNotVal(Op0);
2489 Value *Op1NotVal = dyn_castNotVal(Op1);
Chris Lattner3082c5a2003-02-18 19:28:33 +00002490
Chris Lattner023a4832004-06-18 06:07:51 +00002491 if (Op0NotVal == Op1 || Op1NotVal == Op0) // A & ~A == ~A & A == 0
2492 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2493
Misha Brukman9c003d82004-07-30 12:50:08 +00002494 // (~A & ~B) == (~(A | B)) - De Morgan's Law
Chris Lattnerbb74e222003-03-10 23:06:50 +00002495 if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00002496 Instruction *Or = BinaryOperator::createOr(Op0NotVal, Op1NotVal,
2497 I.getName()+".demorgan");
Chris Lattner49b47ae2003-07-23 17:57:01 +00002498 InsertNewInstBefore(Or, I);
Chris Lattner3082c5a2003-02-18 19:28:33 +00002499 return BinaryOperator::createNot(Or);
2500 }
Chris Lattner8b10ab32006-02-13 23:07:23 +00002501
2502 {
2503 Value *A = 0, *B = 0;
2504 ConstantInt *C1 = 0, *C2 = 0;
2505 if (match(Op0, m_Or(m_Value(A), m_Value(B))))
2506 if (A == Op1 || B == Op1) // (A | ?) & A --> A
2507 return ReplaceInstUsesWith(I, Op1);
2508 if (match(Op1, m_Or(m_Value(A), m_Value(B))))
2509 if (A == Op0 || B == Op0) // A & (A | ?) --> A
2510 return ReplaceInstUsesWith(I, Op0);
2511 }
2512
Chris Lattner3082c5a2003-02-18 19:28:33 +00002513
Chris Lattner623826c2004-09-28 21:48:02 +00002514 if (SetCondInst *RHS = dyn_cast<SetCondInst>(Op1)) {
2515 // (setcc1 A, B) & (setcc2 A, B) --> (setcc3 A, B)
Chris Lattner3ac7c262003-08-13 20:16:26 +00002516 if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS)))
2517 return R;
2518
Chris Lattner623826c2004-09-28 21:48:02 +00002519 Value *LHSVal, *RHSVal;
2520 ConstantInt *LHSCst, *RHSCst;
2521 Instruction::BinaryOps LHSCC, RHSCC;
2522 if (match(Op0, m_SetCond(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
2523 if (match(RHS, m_SetCond(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
2524 if (LHSVal == RHSVal && // Found (X setcc C1) & (X setcc C2)
2525 // Set[GL]E X, CST is folded to Set[GL]T elsewhere.
Misha Brukmanb1c93172005-04-21 23:48:37 +00002526 LHSCC != Instruction::SetGE && LHSCC != Instruction::SetLE &&
Chris Lattner623826c2004-09-28 21:48:02 +00002527 RHSCC != Instruction::SetGE && RHSCC != Instruction::SetLE) {
2528 // Ensure that the larger constant is on the RHS.
2529 Constant *Cmp = ConstantExpr::getSetGT(LHSCst, RHSCst);
2530 SetCondInst *LHS = cast<SetCondInst>(Op0);
2531 if (cast<ConstantBool>(Cmp)->getValue()) {
2532 std::swap(LHS, RHS);
2533 std::swap(LHSCst, RHSCst);
2534 std::swap(LHSCC, RHSCC);
2535 }
2536
2537 // At this point, we know we have have two setcc instructions
2538 // comparing a value against two constants and and'ing the result
2539 // together. Because of the above check, we know that we only have
2540 // SetEQ, SetNE, SetLT, and SetGT here. We also know (from the
2541 // FoldSetCCLogical check above), that the two constants are not
2542 // equal.
2543 assert(LHSCst != RHSCst && "Compares not folded above?");
2544
2545 switch (LHSCC) {
2546 default: assert(0 && "Unknown integer condition code!");
2547 case Instruction::SetEQ:
2548 switch (RHSCC) {
2549 default: assert(0 && "Unknown integer condition code!");
2550 case Instruction::SetEQ: // (X == 13 & X == 15) -> false
2551 case Instruction::SetGT: // (X == 13 & X > 15) -> false
2552 return ReplaceInstUsesWith(I, ConstantBool::False);
2553 case Instruction::SetNE: // (X == 13 & X != 15) -> X == 13
2554 case Instruction::SetLT: // (X == 13 & X < 15) -> X == 13
2555 return ReplaceInstUsesWith(I, LHS);
2556 }
2557 case Instruction::SetNE:
2558 switch (RHSCC) {
2559 default: assert(0 && "Unknown integer condition code!");
2560 case Instruction::SetLT:
2561 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X < 14) -> X < 13
2562 return new SetCondInst(Instruction::SetLT, LHSVal, LHSCst);
2563 break; // (X != 13 & X < 15) -> no change
2564 case Instruction::SetEQ: // (X != 13 & X == 15) -> X == 15
2565 case Instruction::SetGT: // (X != 13 & X > 15) -> X > 15
2566 return ReplaceInstUsesWith(I, RHS);
2567 case Instruction::SetNE:
2568 if (LHSCst == SubOne(RHSCst)) {// (X != 13 & X != 14) -> X-13 >u 1
2569 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
2570 Instruction *Add = BinaryOperator::createAdd(LHSVal, AddCST,
2571 LHSVal->getName()+".off");
2572 InsertNewInstBefore(Add, I);
2573 const Type *UnsType = Add->getType()->getUnsignedVersion();
2574 Value *OffsetVal = InsertCastBefore(Add, UnsType, I);
2575 AddCST = ConstantExpr::getSub(RHSCst, LHSCst);
2576 AddCST = ConstantExpr::getCast(AddCST, UnsType);
2577 return new SetCondInst(Instruction::SetGT, OffsetVal, AddCST);
2578 }
2579 break; // (X != 13 & X != 15) -> no change
2580 }
2581 break;
2582 case Instruction::SetLT:
2583 switch (RHSCC) {
2584 default: assert(0 && "Unknown integer condition code!");
2585 case Instruction::SetEQ: // (X < 13 & X == 15) -> false
2586 case Instruction::SetGT: // (X < 13 & X > 15) -> false
2587 return ReplaceInstUsesWith(I, ConstantBool::False);
2588 case Instruction::SetNE: // (X < 13 & X != 15) -> X < 13
2589 case Instruction::SetLT: // (X < 13 & X < 15) -> X < 13
2590 return ReplaceInstUsesWith(I, LHS);
2591 }
2592 case Instruction::SetGT:
2593 switch (RHSCC) {
2594 default: assert(0 && "Unknown integer condition code!");
2595 case Instruction::SetEQ: // (X > 13 & X == 15) -> X > 13
2596 return ReplaceInstUsesWith(I, LHS);
2597 case Instruction::SetGT: // (X > 13 & X > 15) -> X > 15
2598 return ReplaceInstUsesWith(I, RHS);
2599 case Instruction::SetNE:
2600 if (RHSCst == AddOne(LHSCst)) // (X > 13 & X != 14) -> X > 14
2601 return new SetCondInst(Instruction::SetGT, LHSVal, RHSCst);
2602 break; // (X > 13 & X != 15) -> no change
Chris Lattner6862fbd2004-09-29 17:40:11 +00002603 case Instruction::SetLT: // (X > 13 & X < 15) -> (X-14) <u 1
2604 return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, true, I);
Chris Lattner623826c2004-09-28 21:48:02 +00002605 }
2606 }
2607 }
2608 }
2609
Chris Lattner113f4f42002-06-25 16:13:24 +00002610 return Changed ? &I : 0;
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00002611}
2612
Chris Lattner113f4f42002-06-25 16:13:24 +00002613Instruction *InstCombiner::visitOr(BinaryOperator &I) {
Chris Lattnerdcf240a2003-03-10 21:43:22 +00002614 bool Changed = SimplifyCommutative(I);
Chris Lattner113f4f42002-06-25 16:13:24 +00002615 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00002616
Chris Lattner81a7a232004-10-16 18:11:37 +00002617 if (isa<UndefValue>(Op1))
2618 return ReplaceInstUsesWith(I, // X | undef -> -1
2619 ConstantIntegral::getAllOnesValue(I.getType()));
2620
Chris Lattner5b2edb12006-02-12 08:02:11 +00002621 // or X, X = X
2622 if (Op0 == Op1)
Chris Lattnere6794492002-08-12 21:17:25 +00002623 return ReplaceInstUsesWith(I, Op0);
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00002624
Chris Lattner5b2edb12006-02-12 08:02:11 +00002625 // See if we can simplify any instructions used by the instruction whose sole
2626 // purpose is to compute bits we don't care about.
2627 uint64_t KnownZero, KnownOne;
Chris Lattnerd70d9f52006-03-25 21:58:26 +00002628 if (!isa<PackedType>(I.getType()) &&
2629 SimplifyDemandedBits(&I, I.getType()->getIntegralTypeMask(),
Chris Lattner5b2edb12006-02-12 08:02:11 +00002630 KnownZero, KnownOne))
2631 return &I;
2632
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00002633 // or X, -1 == -1
Chris Lattner8f0d1562003-07-23 18:29:44 +00002634 if (ConstantIntegral *RHS = dyn_cast<ConstantIntegral>(Op1)) {
Chris Lattner330628a2006-01-06 17:59:59 +00002635 ConstantInt *C1 = 0; Value *X = 0;
Chris Lattnerd4252a72004-07-30 07:50:03 +00002636 // (X & C1) | C2 --> (X | C2) & (C1|C2)
2637 if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Chris Lattnerb62f5082005-05-09 04:58:36 +00002638 Instruction *Or = BinaryOperator::createOr(X, RHS, Op0->getName());
2639 Op0->setName("");
Chris Lattnerd4252a72004-07-30 07:50:03 +00002640 InsertNewInstBefore(Or, I);
2641 return BinaryOperator::createAnd(Or, ConstantExpr::getOr(RHS, C1));
2642 }
Chris Lattner8f0d1562003-07-23 18:29:44 +00002643
Chris Lattnerd4252a72004-07-30 07:50:03 +00002644 // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
2645 if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
2646 std::string Op0Name = Op0->getName(); Op0->setName("");
2647 Instruction *Or = BinaryOperator::createOr(X, RHS, Op0Name);
2648 InsertNewInstBefore(Or, I);
2649 return BinaryOperator::createXor(Or,
2650 ConstantExpr::getAnd(C1, ConstantExpr::getNot(RHS)));
Chris Lattner8f0d1562003-07-23 18:29:44 +00002651 }
Chris Lattner183b3362004-04-09 19:05:30 +00002652
2653 // Try to fold constant and into select arguments.
2654 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
Chris Lattner86102b82005-01-01 16:22:27 +00002655 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner183b3362004-04-09 19:05:30 +00002656 return R;
Chris Lattner6a4adcd2004-09-29 05:07:12 +00002657 if (isa<PHINode>(Op0))
2658 if (Instruction *NV = FoldOpIntoPhi(I))
2659 return NV;
Chris Lattner8f0d1562003-07-23 18:29:44 +00002660 }
2661
Chris Lattner330628a2006-01-06 17:59:59 +00002662 Value *A = 0, *B = 0;
2663 ConstantInt *C1 = 0, *C2 = 0;
Chris Lattner4294cec2005-05-07 23:49:08 +00002664
2665 if (match(Op0, m_And(m_Value(A), m_Value(B))))
2666 if (A == Op1 || B == Op1) // (A & ?) | A --> A
2667 return ReplaceInstUsesWith(I, Op1);
2668 if (match(Op1, m_And(m_Value(A), m_Value(B))))
2669 if (A == Op0 || B == Op0) // A | (A & ?) --> A
2670 return ReplaceInstUsesWith(I, Op0);
2671
Chris Lattnerb62f5082005-05-09 04:58:36 +00002672 // (X^C)|Y -> (X|Y)^C iff Y&C == 0
2673 if (Op0->hasOneUse() && match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
Chris Lattnerc3ebf402006-02-07 07:27:52 +00002674 MaskedValueIsZero(Op1, C1->getZExtValue())) {
Chris Lattnerb62f5082005-05-09 04:58:36 +00002675 Instruction *NOr = BinaryOperator::createOr(A, Op1, Op0->getName());
2676 Op0->setName("");
2677 return BinaryOperator::createXor(InsertNewInstBefore(NOr, I), C1);
2678 }
2679
2680 // Y|(X^C) -> (X|Y)^C iff Y&C == 0
2681 if (Op1->hasOneUse() && match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
Chris Lattnerc3ebf402006-02-07 07:27:52 +00002682 MaskedValueIsZero(Op0, C1->getZExtValue())) {
Chris Lattnerb62f5082005-05-09 04:58:36 +00002683 Instruction *NOr = BinaryOperator::createOr(A, Op0, Op1->getName());
2684 Op0->setName("");
2685 return BinaryOperator::createXor(InsertNewInstBefore(NOr, I), C1);
2686 }
2687
Chris Lattner15212982005-09-18 03:42:07 +00002688 // (A & C1)|(B & C2)
Chris Lattnerd4252a72004-07-30 07:50:03 +00002689 if (match(Op0, m_And(m_Value(A), m_ConstantInt(C1))) &&
Chris Lattner15212982005-09-18 03:42:07 +00002690 match(Op1, m_And(m_Value(B), m_ConstantInt(C2)))) {
2691
2692 if (A == B) // (A & C1)|(A & C2) == A & (C1|C2)
2693 return BinaryOperator::createAnd(A, ConstantExpr::getOr(C1, C2));
2694
2695
Chris Lattner01f56c62005-09-18 06:02:59 +00002696 // If we have: ((V + N) & C1) | (V & C2)
2697 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
2698 // replace with V+N.
2699 if (C1 == ConstantExpr::getNot(C2)) {
Chris Lattner330628a2006-01-06 17:59:59 +00002700 Value *V1 = 0, *V2 = 0;
Chris Lattner01f56c62005-09-18 06:02:59 +00002701 if ((C2->getRawValue() & (C2->getRawValue()+1)) == 0 && // C2 == 0+1+
2702 match(A, m_Add(m_Value(V1), m_Value(V2)))) {
2703 // Add commutes, try both ways.
Chris Lattnerc3ebf402006-02-07 07:27:52 +00002704 if (V1 == B && MaskedValueIsZero(V2, C2->getZExtValue()))
Chris Lattner01f56c62005-09-18 06:02:59 +00002705 return ReplaceInstUsesWith(I, A);
Chris Lattnerc3ebf402006-02-07 07:27:52 +00002706 if (V2 == B && MaskedValueIsZero(V1, C2->getZExtValue()))
Chris Lattner01f56c62005-09-18 06:02:59 +00002707 return ReplaceInstUsesWith(I, A);
2708 }
2709 // Or commutes, try both ways.
2710 if ((C1->getRawValue() & (C1->getRawValue()+1)) == 0 &&
2711 match(B, m_Add(m_Value(V1), m_Value(V2)))) {
2712 // Add commutes, try both ways.
Chris Lattnerc3ebf402006-02-07 07:27:52 +00002713 if (V1 == A && MaskedValueIsZero(V2, C1->getZExtValue()))
Chris Lattner01f56c62005-09-18 06:02:59 +00002714 return ReplaceInstUsesWith(I, B);
Chris Lattnerc3ebf402006-02-07 07:27:52 +00002715 if (V2 == A && MaskedValueIsZero(V1, C1->getZExtValue()))
Chris Lattner01f56c62005-09-18 06:02:59 +00002716 return ReplaceInstUsesWith(I, B);
Chris Lattner15212982005-09-18 03:42:07 +00002717 }
2718 }
2719 }
Chris Lattner812aab72003-08-12 19:11:07 +00002720
Chris Lattnerd4252a72004-07-30 07:50:03 +00002721 if (match(Op0, m_Not(m_Value(A)))) { // ~A | Op1
2722 if (A == Op1) // ~A | A == -1
Misha Brukmanb1c93172005-04-21 23:48:37 +00002723 return ReplaceInstUsesWith(I,
Chris Lattnerd4252a72004-07-30 07:50:03 +00002724 ConstantIntegral::getAllOnesValue(I.getType()));
2725 } else {
2726 A = 0;
2727 }
Chris Lattner4294cec2005-05-07 23:49:08 +00002728 // Note, A is still live here!
Chris Lattnerd4252a72004-07-30 07:50:03 +00002729 if (match(Op1, m_Not(m_Value(B)))) { // Op0 | ~B
2730 if (Op0 == B)
Misha Brukmanb1c93172005-04-21 23:48:37 +00002731 return ReplaceInstUsesWith(I,
Chris Lattnerd4252a72004-07-30 07:50:03 +00002732 ConstantIntegral::getAllOnesValue(I.getType()));
Chris Lattner3e327a42003-03-10 23:13:59 +00002733
Misha Brukman9c003d82004-07-30 12:50:08 +00002734 // (~A | ~B) == (~(A & B)) - De Morgan's Law
Chris Lattnerd4252a72004-07-30 07:50:03 +00002735 if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) {
2736 Value *And = InsertNewInstBefore(BinaryOperator::createAnd(A, B,
2737 I.getName()+".demorgan"), I);
2738 return BinaryOperator::createNot(And);
2739 }
Chris Lattner3e327a42003-03-10 23:13:59 +00002740 }
Chris Lattner3082c5a2003-02-18 19:28:33 +00002741
Chris Lattner3ac7c262003-08-13 20:16:26 +00002742 // (setcc1 A, B) | (setcc2 A, B) --> (setcc3 A, B)
Chris Lattnerdcf756e2004-09-28 22:33:08 +00002743 if (SetCondInst *RHS = dyn_cast<SetCondInst>(I.getOperand(1))) {
Chris Lattner3ac7c262003-08-13 20:16:26 +00002744 if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS)))
2745 return R;
2746
Chris Lattnerdcf756e2004-09-28 22:33:08 +00002747 Value *LHSVal, *RHSVal;
2748 ConstantInt *LHSCst, *RHSCst;
2749 Instruction::BinaryOps LHSCC, RHSCC;
2750 if (match(Op0, m_SetCond(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
2751 if (match(RHS, m_SetCond(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
2752 if (LHSVal == RHSVal && // Found (X setcc C1) | (X setcc C2)
2753 // Set[GL]E X, CST is folded to Set[GL]T elsewhere.
Misha Brukmanb1c93172005-04-21 23:48:37 +00002754 LHSCC != Instruction::SetGE && LHSCC != Instruction::SetLE &&
Chris Lattnerdcf756e2004-09-28 22:33:08 +00002755 RHSCC != Instruction::SetGE && RHSCC != Instruction::SetLE) {
2756 // Ensure that the larger constant is on the RHS.
2757 Constant *Cmp = ConstantExpr::getSetGT(LHSCst, RHSCst);
2758 SetCondInst *LHS = cast<SetCondInst>(Op0);
2759 if (cast<ConstantBool>(Cmp)->getValue()) {
2760 std::swap(LHS, RHS);
2761 std::swap(LHSCst, RHSCst);
2762 std::swap(LHSCC, RHSCC);
2763 }
2764
2765 // At this point, we know we have have two setcc instructions
2766 // comparing a value against two constants and or'ing the result
2767 // together. Because of the above check, we know that we only have
2768 // SetEQ, SetNE, SetLT, and SetGT here. We also know (from the
2769 // FoldSetCCLogical check above), that the two constants are not
2770 // equal.
2771 assert(LHSCst != RHSCst && "Compares not folded above?");
2772
2773 switch (LHSCC) {
2774 default: assert(0 && "Unknown integer condition code!");
2775 case Instruction::SetEQ:
2776 switch (RHSCC) {
2777 default: assert(0 && "Unknown integer condition code!");
2778 case Instruction::SetEQ:
2779 if (LHSCst == SubOne(RHSCst)) {// (X == 13 | X == 14) -> X-13 <u 2
2780 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
2781 Instruction *Add = BinaryOperator::createAdd(LHSVal, AddCST,
2782 LHSVal->getName()+".off");
2783 InsertNewInstBefore(Add, I);
2784 const Type *UnsType = Add->getType()->getUnsignedVersion();
2785 Value *OffsetVal = InsertCastBefore(Add, UnsType, I);
2786 AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
2787 AddCST = ConstantExpr::getCast(AddCST, UnsType);
2788 return new SetCondInst(Instruction::SetLT, OffsetVal, AddCST);
2789 }
2790 break; // (X == 13 | X == 15) -> no change
2791
Chris Lattner5c219462005-04-19 06:04:18 +00002792 case Instruction::SetGT: // (X == 13 | X > 14) -> no change
2793 break;
Chris Lattnerdcf756e2004-09-28 22:33:08 +00002794 case Instruction::SetNE: // (X == 13 | X != 15) -> X != 15
2795 case Instruction::SetLT: // (X == 13 | X < 15) -> X < 15
2796 return ReplaceInstUsesWith(I, RHS);
2797 }
2798 break;
2799 case Instruction::SetNE:
2800 switch (RHSCC) {
2801 default: assert(0 && "Unknown integer condition code!");
Chris Lattnerdcf756e2004-09-28 22:33:08 +00002802 case Instruction::SetEQ: // (X != 13 | X == 15) -> X != 13
2803 case Instruction::SetGT: // (X != 13 | X > 15) -> X != 13
2804 return ReplaceInstUsesWith(I, LHS);
2805 case Instruction::SetNE: // (X != 13 | X != 15) -> true
Chris Lattner2ceb6ee2005-06-17 03:59:17 +00002806 case Instruction::SetLT: // (X != 13 | X < 15) -> true
Chris Lattnerdcf756e2004-09-28 22:33:08 +00002807 return ReplaceInstUsesWith(I, ConstantBool::True);
2808 }
2809 break;
2810 case Instruction::SetLT:
2811 switch (RHSCC) {
2812 default: assert(0 && "Unknown integer condition code!");
2813 case Instruction::SetEQ: // (X < 13 | X == 14) -> no change
2814 break;
Chris Lattner6862fbd2004-09-29 17:40:11 +00002815 case Instruction::SetGT: // (X < 13 | X > 15) -> (X-13) > 2
2816 return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), false, I);
Chris Lattnerdcf756e2004-09-28 22:33:08 +00002817 case Instruction::SetNE: // (X < 13 | X != 15) -> X != 15
2818 case Instruction::SetLT: // (X < 13 | X < 15) -> X < 15
2819 return ReplaceInstUsesWith(I, RHS);
2820 }
2821 break;
2822 case Instruction::SetGT:
2823 switch (RHSCC) {
2824 default: assert(0 && "Unknown integer condition code!");
2825 case Instruction::SetEQ: // (X > 13 | X == 15) -> X > 13
2826 case Instruction::SetGT: // (X > 13 | X > 15) -> X > 13
2827 return ReplaceInstUsesWith(I, LHS);
2828 case Instruction::SetNE: // (X > 13 | X != 15) -> true
2829 case Instruction::SetLT: // (X > 13 | X < 15) -> true
2830 return ReplaceInstUsesWith(I, ConstantBool::True);
2831 }
2832 }
2833 }
2834 }
Chris Lattner15212982005-09-18 03:42:07 +00002835
Chris Lattner113f4f42002-06-25 16:13:24 +00002836 return Changed ? &I : 0;
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00002837}
2838
Chris Lattnerc2076352004-02-16 01:20:27 +00002839// XorSelf - Implements: X ^ X --> 0
2840struct XorSelf {
2841 Value *RHS;
2842 XorSelf(Value *rhs) : RHS(rhs) {}
2843 bool shouldApply(Value *LHS) const { return LHS == RHS; }
2844 Instruction *apply(BinaryOperator &Xor) const {
2845 return &Xor;
2846 }
2847};
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00002848
2849
Chris Lattner113f4f42002-06-25 16:13:24 +00002850Instruction *InstCombiner::visitXor(BinaryOperator &I) {
Chris Lattnerdcf240a2003-03-10 21:43:22 +00002851 bool Changed = SimplifyCommutative(I);
Chris Lattner113f4f42002-06-25 16:13:24 +00002852 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00002853
Chris Lattner81a7a232004-10-16 18:11:37 +00002854 if (isa<UndefValue>(Op1))
2855 return ReplaceInstUsesWith(I, Op1); // X ^ undef -> undef
2856
Chris Lattnerc2076352004-02-16 01:20:27 +00002857 // xor X, X = 0, even if X is nested in a sequence of Xor's.
2858 if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) {
2859 assert(Result == &I && "AssociativeOpt didn't work?");
Chris Lattnere6794492002-08-12 21:17:25 +00002860 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattnerc2076352004-02-16 01:20:27 +00002861 }
Chris Lattner5b2edb12006-02-12 08:02:11 +00002862
2863 // See if we can simplify any instructions used by the instruction whose sole
2864 // purpose is to compute bits we don't care about.
2865 uint64_t KnownZero, KnownOne;
Chris Lattnerd70d9f52006-03-25 21:58:26 +00002866 if (!isa<PackedType>(I.getType()) &&
2867 SimplifyDemandedBits(&I, I.getType()->getIntegralTypeMask(),
Chris Lattner5b2edb12006-02-12 08:02:11 +00002868 KnownZero, KnownOne))
2869 return &I;
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00002870
Chris Lattner97638592003-07-23 21:37:07 +00002871 if (ConstantIntegral *RHS = dyn_cast<ConstantIntegral>(Op1)) {
Chris Lattner97638592003-07-23 21:37:07 +00002872 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
Chris Lattnerb8d6e402002-08-20 18:24:26 +00002873 // xor (setcc A, B), true = not (setcc A, B) = setncc A, B
Chris Lattner97638592003-07-23 21:37:07 +00002874 if (SetCondInst *SCI = dyn_cast<SetCondInst>(Op0I))
Chris Lattnerf95d9b92003-10-15 16:48:29 +00002875 if (RHS == ConstantBool::True && SCI->hasOneUse())
Chris Lattnerb8d6e402002-08-20 18:24:26 +00002876 return new SetCondInst(SCI->getInverseCondition(),
2877 SCI->getOperand(0), SCI->getOperand(1));
Chris Lattnere5806662003-11-04 23:50:51 +00002878
Chris Lattner8f2f5982003-11-05 01:06:05 +00002879 // ~(c-X) == X-c-1 == X+(-c-1)
Chris Lattnerc1e7cc02004-01-12 19:35:11 +00002880 if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
2881 if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00002882 Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
2883 Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
Chris Lattnerc1e7cc02004-01-12 19:35:11 +00002884 ConstantInt::get(I.getType(), 1));
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00002885 return BinaryOperator::createAdd(Op0I->getOperand(1), ConstantRHS);
Chris Lattnerc1e7cc02004-01-12 19:35:11 +00002886 }
Chris Lattner023a4832004-06-18 06:07:51 +00002887
2888 // ~(~X & Y) --> (X | ~Y)
2889 if (Op0I->getOpcode() == Instruction::And && RHS->isAllOnesValue()) {
2890 if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands();
2891 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
2892 Instruction *NotY =
Misha Brukmanb1c93172005-04-21 23:48:37 +00002893 BinaryOperator::createNot(Op0I->getOperand(1),
Chris Lattner023a4832004-06-18 06:07:51 +00002894 Op0I->getOperand(1)->getName()+".not");
2895 InsertNewInstBefore(NotY, I);
2896 return BinaryOperator::createOr(Op0NotVal, NotY);
2897 }
2898 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00002899
Chris Lattner97638592003-07-23 21:37:07 +00002900 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
Chris Lattner5b2edb12006-02-12 08:02:11 +00002901 if (Op0I->getOpcode() == Instruction::Add) {
Chris Lattner0f68fa62003-11-04 23:37:10 +00002902 // ~(X-c) --> (-c-1)-X
Chris Lattnerc1e7cc02004-01-12 19:35:11 +00002903 if (RHS->isAllOnesValue()) {
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00002904 Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
2905 return BinaryOperator::createSub(
2906 ConstantExpr::getSub(NegOp0CI,
Chris Lattnerc1e7cc02004-01-12 19:35:11 +00002907 ConstantInt::get(I.getType(), 1)),
Chris Lattner0f68fa62003-11-04 23:37:10 +00002908 Op0I->getOperand(0));
Chris Lattnerc1e7cc02004-01-12 19:35:11 +00002909 }
Chris Lattnerf78df7c2006-02-26 19:57:54 +00002910 } else if (Op0I->getOpcode() == Instruction::Or) {
2911 // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
2912 if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getZExtValue())) {
2913 Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
2914 // Anything in both C1 and C2 is known to be zero, remove it from
2915 // NewRHS.
2916 Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS);
2917 NewRHS = ConstantExpr::getAnd(NewRHS,
2918 ConstantExpr::getNot(CommonBits));
2919 WorkList.push_back(Op0I);
2920 I.setOperand(0, Op0I->getOperand(0));
2921 I.setOperand(1, NewRHS);
2922 return &I;
2923 }
Chris Lattner97638592003-07-23 21:37:07 +00002924 }
Chris Lattnerb8d6e402002-08-20 18:24:26 +00002925 }
Chris Lattner183b3362004-04-09 19:05:30 +00002926
2927 // Try to fold constant and into select arguments.
2928 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
Chris Lattner86102b82005-01-01 16:22:27 +00002929 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner183b3362004-04-09 19:05:30 +00002930 return R;
Chris Lattner6a4adcd2004-09-29 05:07:12 +00002931 if (isa<PHINode>(Op0))
2932 if (Instruction *NV = FoldOpIntoPhi(I))
2933 return NV;
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00002934 }
2935
Chris Lattnerbb74e222003-03-10 23:06:50 +00002936 if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1
Chris Lattner3082c5a2003-02-18 19:28:33 +00002937 if (X == Op1)
2938 return ReplaceInstUsesWith(I,
2939 ConstantIntegral::getAllOnesValue(I.getType()));
2940
Chris Lattnerbb74e222003-03-10 23:06:50 +00002941 if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1
Chris Lattner3082c5a2003-02-18 19:28:33 +00002942 if (X == Op0)
2943 return ReplaceInstUsesWith(I,
2944 ConstantIntegral::getAllOnesValue(I.getType()));
2945
Chris Lattner1bbb7b62003-03-10 18:24:17 +00002946 if (Instruction *Op1I = dyn_cast<Instruction>(Op1))
Chris Lattnerb36d9082004-02-16 03:54:20 +00002947 if (Op1I->getOpcode() == Instruction::Or) {
Chris Lattner1bbb7b62003-03-10 18:24:17 +00002948 if (Op1I->getOperand(0) == Op0) { // B^(B|A) == (A|B)^B
2949 cast<BinaryOperator>(Op1I)->swapOperands();
2950 I.swapOperands();
2951 std::swap(Op0, Op1);
2952 } else if (Op1I->getOperand(1) == Op0) { // B^(A|B) == (A|B)^B
2953 I.swapOperands();
2954 std::swap(Op0, Op1);
Misha Brukmanb1c93172005-04-21 23:48:37 +00002955 }
Chris Lattnerb36d9082004-02-16 03:54:20 +00002956 } else if (Op1I->getOpcode() == Instruction::Xor) {
2957 if (Op0 == Op1I->getOperand(0)) // A^(A^B) == B
2958 return ReplaceInstUsesWith(I, Op1I->getOperand(1));
2959 else if (Op0 == Op1I->getOperand(1)) // A^(B^A) == B
2960 return ReplaceInstUsesWith(I, Op1I->getOperand(0));
2961 }
Chris Lattner1bbb7b62003-03-10 18:24:17 +00002962
2963 if (Instruction *Op0I = dyn_cast<Instruction>(Op0))
Chris Lattnerf95d9b92003-10-15 16:48:29 +00002964 if (Op0I->getOpcode() == Instruction::Or && Op0I->hasOneUse()) {
Chris Lattner1bbb7b62003-03-10 18:24:17 +00002965 if (Op0I->getOperand(0) == Op1) // (B|A)^B == (A|B)^B
2966 cast<BinaryOperator>(Op0I)->swapOperands();
Chris Lattnerdcf240a2003-03-10 21:43:22 +00002967 if (Op0I->getOperand(1) == Op1) { // (A|B)^B == A & ~B
Chris Lattner396dbfe2004-06-09 05:08:07 +00002968 Value *NotB = InsertNewInstBefore(BinaryOperator::createNot(Op1,
2969 Op1->getName()+".not"), I);
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00002970 return BinaryOperator::createAnd(Op0I->getOperand(0), NotB);
Chris Lattner1bbb7b62003-03-10 18:24:17 +00002971 }
Chris Lattnerb36d9082004-02-16 03:54:20 +00002972 } else if (Op0I->getOpcode() == Instruction::Xor) {
2973 if (Op1 == Op0I->getOperand(0)) // (A^B)^A == B
2974 return ReplaceInstUsesWith(I, Op0I->getOperand(1));
2975 else if (Op1 == Op0I->getOperand(1)) // (B^A)^A == B
2976 return ReplaceInstUsesWith(I, Op0I->getOperand(0));
Chris Lattner1bbb7b62003-03-10 18:24:17 +00002977 }
2978
Chris Lattner3ac7c262003-08-13 20:16:26 +00002979 // (setcc1 A, B) ^ (setcc2 A, B) --> (setcc3 A, B)
2980 if (SetCondInst *RHS = dyn_cast<SetCondInst>(I.getOperand(1)))
2981 if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS)))
2982 return R;
2983
Chris Lattner113f4f42002-06-25 16:13:24 +00002984 return Changed ? &I : 0;
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00002985}
2986
Chris Lattner6862fbd2004-09-29 17:40:11 +00002987/// MulWithOverflow - Compute Result = In1*In2, returning true if the result
2988/// overflowed for this type.
2989static bool MulWithOverflow(ConstantInt *&Result, ConstantInt *In1,
2990 ConstantInt *In2) {
2991 Result = cast<ConstantInt>(ConstantExpr::getMul(In1, In2));
2992 return !In2->isNullValue() && ConstantExpr::getDiv(Result, In2) != In1;
2993}
2994
2995static bool isPositive(ConstantInt *C) {
2996 return cast<ConstantSInt>(C)->getValue() >= 0;
2997}
2998
2999/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
3000/// overflowed for this type.
3001static bool AddWithOverflow(ConstantInt *&Result, ConstantInt *In1,
3002 ConstantInt *In2) {
3003 Result = cast<ConstantInt>(ConstantExpr::getAdd(In1, In2));
3004
3005 if (In1->getType()->isUnsigned())
3006 return cast<ConstantUInt>(Result)->getValue() <
3007 cast<ConstantUInt>(In1)->getValue();
3008 if (isPositive(In1) != isPositive(In2))
3009 return false;
3010 if (isPositive(In1))
3011 return cast<ConstantSInt>(Result)->getValue() <
3012 cast<ConstantSInt>(In1)->getValue();
3013 return cast<ConstantSInt>(Result)->getValue() >
3014 cast<ConstantSInt>(In1)->getValue();
3015}
3016
Chris Lattner0798af32005-01-13 20:14:25 +00003017/// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
3018/// code necessary to compute the offset from the base pointer (without adding
3019/// in the base pointer). Return the result as a signed integer of intptr size.
3020static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) {
3021 TargetData &TD = IC.getTargetData();
3022 gep_type_iterator GTI = gep_type_begin(GEP);
3023 const Type *UIntPtrTy = TD.getIntPtrType();
3024 const Type *SIntPtrTy = UIntPtrTy->getSignedVersion();
3025 Value *Result = Constant::getNullValue(SIntPtrTy);
3026
3027 // Build a mask for high order bits.
Chris Lattner77defba2006-02-07 07:00:41 +00003028 uint64_t PtrSizeMask = ~0ULL >> (64-TD.getPointerSize()*8);
Chris Lattner0798af32005-01-13 20:14:25 +00003029
Chris Lattner0798af32005-01-13 20:14:25 +00003030 for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
3031 Value *Op = GEP->getOperand(i);
Chris Lattnerd35d2102005-01-13 23:26:48 +00003032 uint64_t Size = TD.getTypeSize(GTI.getIndexedType()) & PtrSizeMask;
Chris Lattner0798af32005-01-13 20:14:25 +00003033 Constant *Scale = ConstantExpr::getCast(ConstantUInt::get(UIntPtrTy, Size),
3034 SIntPtrTy);
3035 if (Constant *OpC = dyn_cast<Constant>(Op)) {
3036 if (!OpC->isNullValue()) {
Chris Lattner4cb9fa32005-01-13 20:40:58 +00003037 OpC = ConstantExpr::getCast(OpC, SIntPtrTy);
Chris Lattner0798af32005-01-13 20:14:25 +00003038 Scale = ConstantExpr::getMul(OpC, Scale);
3039 if (Constant *RC = dyn_cast<Constant>(Result))
3040 Result = ConstantExpr::getAdd(RC, Scale);
3041 else {
3042 // Emit an add instruction.
3043 Result = IC.InsertNewInstBefore(
3044 BinaryOperator::createAdd(Result, Scale,
3045 GEP->getName()+".offs"), I);
3046 }
3047 }
3048 } else {
Chris Lattner7aa41cf2005-01-14 17:17:59 +00003049 // Convert to correct type.
3050 Op = IC.InsertNewInstBefore(new CastInst(Op, SIntPtrTy,
3051 Op->getName()+".c"), I);
3052 if (Size != 1)
Chris Lattner4cb9fa32005-01-13 20:40:58 +00003053 // We'll let instcombine(mul) convert this to a shl if possible.
3054 Op = IC.InsertNewInstBefore(BinaryOperator::createMul(Op, Scale,
3055 GEP->getName()+".idx"), I);
Chris Lattner0798af32005-01-13 20:14:25 +00003056
3057 // Emit an add instruction.
Chris Lattner4cb9fa32005-01-13 20:40:58 +00003058 Result = IC.InsertNewInstBefore(BinaryOperator::createAdd(Op, Result,
Chris Lattner0798af32005-01-13 20:14:25 +00003059 GEP->getName()+".offs"), I);
3060 }
3061 }
3062 return Result;
3063}
3064
3065/// FoldGEPSetCC - Fold comparisons between a GEP instruction and something
3066/// else. At this point we know that the GEP is on the LHS of the comparison.
3067Instruction *InstCombiner::FoldGEPSetCC(User *GEPLHS, Value *RHS,
3068 Instruction::BinaryOps Cond,
3069 Instruction &I) {
3070 assert(dyn_castGetElementPtr(GEPLHS) && "LHS is not a getelementptr!");
Chris Lattner81e84172005-01-13 22:25:21 +00003071
3072 if (CastInst *CI = dyn_cast<CastInst>(RHS))
3073 if (isa<PointerType>(CI->getOperand(0)->getType()))
3074 RHS = CI->getOperand(0);
3075
Chris Lattner0798af32005-01-13 20:14:25 +00003076 Value *PtrBase = GEPLHS->getOperand(0);
3077 if (PtrBase == RHS) {
3078 // As an optimization, we don't actually have to compute the actual value of
3079 // OFFSET if this is a seteq or setne comparison, just return whether each
3080 // index is zero or not.
Chris Lattner81e84172005-01-13 22:25:21 +00003081 if (Cond == Instruction::SetEQ || Cond == Instruction::SetNE) {
3082 Instruction *InVal = 0;
Chris Lattnercd517ff2005-01-28 19:32:01 +00003083 gep_type_iterator GTI = gep_type_begin(GEPLHS);
3084 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i, ++GTI) {
Chris Lattner81e84172005-01-13 22:25:21 +00003085 bool EmitIt = true;
3086 if (Constant *C = dyn_cast<Constant>(GEPLHS->getOperand(i))) {
3087 if (isa<UndefValue>(C)) // undef index -> undef.
3088 return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
3089 if (C->isNullValue())
3090 EmitIt = false;
Chris Lattnercd517ff2005-01-28 19:32:01 +00003091 else if (TD->getTypeSize(GTI.getIndexedType()) == 0) {
3092 EmitIt = false; // This is indexing into a zero sized array?
Misha Brukmanb1c93172005-04-21 23:48:37 +00003093 } else if (isa<ConstantInt>(C))
Chris Lattner81e84172005-01-13 22:25:21 +00003094 return ReplaceInstUsesWith(I, // No comparison is needed here.
3095 ConstantBool::get(Cond == Instruction::SetNE));
3096 }
3097
3098 if (EmitIt) {
Misha Brukmanb1c93172005-04-21 23:48:37 +00003099 Instruction *Comp =
Chris Lattner81e84172005-01-13 22:25:21 +00003100 new SetCondInst(Cond, GEPLHS->getOperand(i),
3101 Constant::getNullValue(GEPLHS->getOperand(i)->getType()));
3102 if (InVal == 0)
3103 InVal = Comp;
3104 else {
3105 InVal = InsertNewInstBefore(InVal, I);
3106 InsertNewInstBefore(Comp, I);
3107 if (Cond == Instruction::SetNE) // True if any are unequal
3108 InVal = BinaryOperator::createOr(InVal, Comp);
3109 else // True if all are equal
3110 InVal = BinaryOperator::createAnd(InVal, Comp);
3111 }
3112 }
3113 }
3114
3115 if (InVal)
3116 return InVal;
3117 else
3118 ReplaceInstUsesWith(I, // No comparison is needed here, all indexes = 0
3119 ConstantBool::get(Cond == Instruction::SetEQ));
3120 }
Chris Lattner0798af32005-01-13 20:14:25 +00003121
3122 // Only lower this if the setcc is the only user of the GEP or if we expect
3123 // the result to fold to a constant!
3124 if (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) {
3125 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
3126 Value *Offset = EmitGEPOffset(GEPLHS, I, *this);
3127 return new SetCondInst(Cond, Offset,
3128 Constant::getNullValue(Offset->getType()));
3129 }
3130 } else if (User *GEPRHS = dyn_castGetElementPtr(RHS)) {
Chris Lattnera21bf8d2005-04-25 20:17:30 +00003131 // If the base pointers are different, but the indices are the same, just
3132 // compare the base pointer.
3133 if (PtrBase != GEPRHS->getOperand(0)) {
3134 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +00003135 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
Chris Lattnerbd43b9d2005-04-26 14:40:41 +00003136 GEPRHS->getOperand(0)->getType();
Chris Lattnera21bf8d2005-04-25 20:17:30 +00003137 if (IndicesTheSame)
3138 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
3139 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
3140 IndicesTheSame = false;
3141 break;
3142 }
3143
3144 // If all indices are the same, just compare the base pointers.
3145 if (IndicesTheSame)
3146 return new SetCondInst(Cond, GEPLHS->getOperand(0),
3147 GEPRHS->getOperand(0));
3148
3149 // Otherwise, the base pointers are different and the indices are
3150 // different, bail out.
Chris Lattner0798af32005-01-13 20:14:25 +00003151 return 0;
Chris Lattnera21bf8d2005-04-25 20:17:30 +00003152 }
Chris Lattner0798af32005-01-13 20:14:25 +00003153
Chris Lattner81e84172005-01-13 22:25:21 +00003154 // If one of the GEPs has all zero indices, recurse.
3155 bool AllZeros = true;
3156 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
3157 if (!isa<Constant>(GEPLHS->getOperand(i)) ||
3158 !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
3159 AllZeros = false;
3160 break;
3161 }
3162 if (AllZeros)
3163 return FoldGEPSetCC(GEPRHS, GEPLHS->getOperand(0),
3164 SetCondInst::getSwappedCondition(Cond), I);
Chris Lattner4fa89822005-01-14 00:20:05 +00003165
3166 // If the other GEP has all zero indices, recurse.
Chris Lattner81e84172005-01-13 22:25:21 +00003167 AllZeros = true;
3168 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
3169 if (!isa<Constant>(GEPRHS->getOperand(i)) ||
3170 !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
3171 AllZeros = false;
3172 break;
3173 }
3174 if (AllZeros)
3175 return FoldGEPSetCC(GEPLHS, GEPRHS->getOperand(0), Cond, I);
3176
Chris Lattner4fa89822005-01-14 00:20:05 +00003177 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
3178 // If the GEPs only differ by one index, compare it.
3179 unsigned NumDifferences = 0; // Keep track of # differences.
3180 unsigned DiffOperand = 0; // The operand that differs.
3181 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
3182 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
Chris Lattnerd1f46d32005-04-24 06:59:08 +00003183 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
3184 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
Chris Lattnerfc4429e2005-01-21 23:06:49 +00003185 // Irreconcilable differences.
Chris Lattner4fa89822005-01-14 00:20:05 +00003186 NumDifferences = 2;
3187 break;
3188 } else {
3189 if (NumDifferences++) break;
3190 DiffOperand = i;
3191 }
3192 }
3193
3194 if (NumDifferences == 0) // SAME GEP?
3195 return ReplaceInstUsesWith(I, // No comparison is needed here.
3196 ConstantBool::get(Cond == Instruction::SetEQ));
3197 else if (NumDifferences == 1) {
Chris Lattnerfc4429e2005-01-21 23:06:49 +00003198 Value *LHSV = GEPLHS->getOperand(DiffOperand);
3199 Value *RHSV = GEPRHS->getOperand(DiffOperand);
Chris Lattner247aef82005-07-18 23:07:33 +00003200
3201 // Convert the operands to signed values to make sure to perform a
3202 // signed comparison.
3203 const Type *NewTy = LHSV->getType()->getSignedVersion();
3204 if (LHSV->getType() != NewTy)
3205 LHSV = InsertNewInstBefore(new CastInst(LHSV, NewTy,
3206 LHSV->getName()), I);
3207 if (RHSV->getType() != NewTy)
3208 RHSV = InsertNewInstBefore(new CastInst(RHSV, NewTy,
3209 RHSV->getName()), I);
3210 return new SetCondInst(Cond, LHSV, RHSV);
Chris Lattner4fa89822005-01-14 00:20:05 +00003211 }
3212 }
3213
Chris Lattner0798af32005-01-13 20:14:25 +00003214 // Only lower this if the setcc is the only user of the GEP or if we expect
3215 // the result to fold to a constant!
3216 if ((isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
3217 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
3218 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
3219 Value *L = EmitGEPOffset(GEPLHS, I, *this);
3220 Value *R = EmitGEPOffset(GEPRHS, I, *this);
3221 return new SetCondInst(Cond, L, R);
3222 }
3223 }
3224 return 0;
3225}
3226
3227
Chris Lattnerd1f46d32005-04-24 06:59:08 +00003228Instruction *InstCombiner::visitSetCondInst(SetCondInst &I) {
Chris Lattnerdcf240a2003-03-10 21:43:22 +00003229 bool Changed = SimplifyCommutative(I);
Chris Lattner6d14f2a2002-08-09 23:47:40 +00003230 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3231 const Type *Ty = Op0->getType();
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00003232
3233 // setcc X, X
Chris Lattner6d14f2a2002-08-09 23:47:40 +00003234 if (Op0 == Op1)
3235 return ReplaceInstUsesWith(I, ConstantBool::get(isTrueWhenEqual(I)));
Chris Lattner1fc23f32002-05-09 20:11:54 +00003236
Chris Lattner81a7a232004-10-16 18:11:37 +00003237 if (isa<UndefValue>(Op1)) // X setcc undef -> undef
3238 return ReplaceInstUsesWith(I, UndefValue::get(Type::BoolTy));
3239
Chris Lattner15ff1e12004-11-14 07:33:16 +00003240 // setcc <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
3241 // addresses never equal each other! We already know that Op0 != Op1.
Misha Brukmanb1c93172005-04-21 23:48:37 +00003242 if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) ||
3243 isa<ConstantPointerNull>(Op0)) &&
3244 (isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) ||
Chris Lattner15ff1e12004-11-14 07:33:16 +00003245 isa<ConstantPointerNull>(Op1)))
Chris Lattner6d14f2a2002-08-09 23:47:40 +00003246 return ReplaceInstUsesWith(I, ConstantBool::get(!isTrueWhenEqual(I)));
3247
3248 // setcc's with boolean values can always be turned into bitwise operations
3249 if (Ty == Type::BoolTy) {
Chris Lattner4456da62004-08-11 00:50:51 +00003250 switch (I.getOpcode()) {
3251 default: assert(0 && "Invalid setcc instruction!");
3252 case Instruction::SetEQ: { // seteq bool %A, %B -> ~(A^B)
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00003253 Instruction *Xor = BinaryOperator::createXor(Op0, Op1, I.getName()+"tmp");
Chris Lattner6d14f2a2002-08-09 23:47:40 +00003254 InsertNewInstBefore(Xor, I);
Chris Lattner16930792003-11-03 04:25:02 +00003255 return BinaryOperator::createNot(Xor);
Chris Lattner6d14f2a2002-08-09 23:47:40 +00003256 }
Chris Lattner4456da62004-08-11 00:50:51 +00003257 case Instruction::SetNE:
3258 return BinaryOperator::createXor(Op0, Op1);
Chris Lattner6d14f2a2002-08-09 23:47:40 +00003259
Chris Lattner4456da62004-08-11 00:50:51 +00003260 case Instruction::SetGT:
3261 std::swap(Op0, Op1); // Change setgt -> setlt
3262 // FALL THROUGH
3263 case Instruction::SetLT: { // setlt bool A, B -> ~X & Y
3264 Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp");
3265 InsertNewInstBefore(Not, I);
3266 return BinaryOperator::createAnd(Not, Op1);
3267 }
3268 case Instruction::SetGE:
Chris Lattner6d14f2a2002-08-09 23:47:40 +00003269 std::swap(Op0, Op1); // Change setge -> setle
Chris Lattner4456da62004-08-11 00:50:51 +00003270 // FALL THROUGH
3271 case Instruction::SetLE: { // setle bool %A, %B -> ~A | B
3272 Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp");
3273 InsertNewInstBefore(Not, I);
3274 return BinaryOperator::createOr(Not, Op1);
3275 }
3276 }
Chris Lattner6d14f2a2002-08-09 23:47:40 +00003277 }
3278
Chris Lattner2dd01742004-06-09 04:24:29 +00003279 // See if we are doing a comparison between a constant and an instruction that
3280 // can be folded into the comparison.
Chris Lattner6d14f2a2002-08-09 23:47:40 +00003281 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner6862fbd2004-09-29 17:40:11 +00003282 // Check to see if we are comparing against the minimum or maximum value...
3283 if (CI->isMinValue()) {
3284 if (I.getOpcode() == Instruction::SetLT) // A < MIN -> FALSE
3285 return ReplaceInstUsesWith(I, ConstantBool::False);
3286 if (I.getOpcode() == Instruction::SetGE) // A >= MIN -> TRUE
3287 return ReplaceInstUsesWith(I, ConstantBool::True);
3288 if (I.getOpcode() == Instruction::SetLE) // A <= MIN -> A == MIN
3289 return BinaryOperator::createSetEQ(Op0, Op1);
3290 if (I.getOpcode() == Instruction::SetGT) // A > MIN -> A != MIN
3291 return BinaryOperator::createSetNE(Op0, Op1);
3292
3293 } else if (CI->isMaxValue()) {
3294 if (I.getOpcode() == Instruction::SetGT) // A > MAX -> FALSE
3295 return ReplaceInstUsesWith(I, ConstantBool::False);
3296 if (I.getOpcode() == Instruction::SetLE) // A <= MAX -> TRUE
3297 return ReplaceInstUsesWith(I, ConstantBool::True);
3298 if (I.getOpcode() == Instruction::SetGE) // A >= MAX -> A == MAX
3299 return BinaryOperator::createSetEQ(Op0, Op1);
3300 if (I.getOpcode() == Instruction::SetLT) // A < MAX -> A != MAX
3301 return BinaryOperator::createSetNE(Op0, Op1);
3302
3303 // Comparing against a value really close to min or max?
3304 } else if (isMinValuePlusOne(CI)) {
3305 if (I.getOpcode() == Instruction::SetLT) // A < MIN+1 -> A == MIN
3306 return BinaryOperator::createSetEQ(Op0, SubOne(CI));
3307 if (I.getOpcode() == Instruction::SetGE) // A >= MIN-1 -> A != MIN
3308 return BinaryOperator::createSetNE(Op0, SubOne(CI));
3309
3310 } else if (isMaxValueMinusOne(CI)) {
3311 if (I.getOpcode() == Instruction::SetGT) // A > MAX-1 -> A == MAX
3312 return BinaryOperator::createSetEQ(Op0, AddOne(CI));
3313 if (I.getOpcode() == Instruction::SetLE) // A <= MAX-1 -> A != MAX
3314 return BinaryOperator::createSetNE(Op0, AddOne(CI));
3315 }
3316
3317 // If we still have a setle or setge instruction, turn it into the
3318 // appropriate setlt or setgt instruction. Since the border cases have
3319 // already been handled above, this requires little checking.
3320 //
3321 if (I.getOpcode() == Instruction::SetLE)
3322 return BinaryOperator::createSetLT(Op0, AddOne(CI));
3323 if (I.getOpcode() == Instruction::SetGE)
3324 return BinaryOperator::createSetGT(Op0, SubOne(CI));
3325
Chris Lattneree0f2802006-02-12 02:07:56 +00003326
3327 // See if we can fold the comparison based on bits known to be zero or one
3328 // in the input.
3329 uint64_t KnownZero, KnownOne;
3330 if (SimplifyDemandedBits(Op0, Ty->getIntegralTypeMask(),
3331 KnownZero, KnownOne, 0))
3332 return &I;
3333
3334 // Given the known and unknown bits, compute a range that the LHS could be
3335 // in.
3336 if (KnownOne | KnownZero) {
3337 if (Ty->isUnsigned()) { // Unsigned comparison.
3338 uint64_t Min, Max;
3339 uint64_t RHSVal = CI->getZExtValue();
3340 ComputeUnsignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne,
3341 Min, Max);
3342 switch (I.getOpcode()) { // LE/GE have been folded already.
3343 default: assert(0 && "Unknown setcc opcode!");
3344 case Instruction::SetEQ:
3345 if (Max < RHSVal || Min > RHSVal)
3346 return ReplaceInstUsesWith(I, ConstantBool::False);
3347 break;
3348 case Instruction::SetNE:
3349 if (Max < RHSVal || Min > RHSVal)
3350 return ReplaceInstUsesWith(I, ConstantBool::True);
3351 break;
3352 case Instruction::SetLT:
3353 if (Max < RHSVal) return ReplaceInstUsesWith(I, ConstantBool::True);
3354 if (Min > RHSVal) return ReplaceInstUsesWith(I, ConstantBool::False);
3355 break;
3356 case Instruction::SetGT:
3357 if (Min > RHSVal) return ReplaceInstUsesWith(I, ConstantBool::True);
3358 if (Max < RHSVal) return ReplaceInstUsesWith(I, ConstantBool::False);
3359 break;
3360 }
3361 } else { // Signed comparison.
3362 int64_t Min, Max;
3363 int64_t RHSVal = CI->getSExtValue();
3364 ComputeSignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne,
3365 Min, Max);
3366 switch (I.getOpcode()) { // LE/GE have been folded already.
3367 default: assert(0 && "Unknown setcc opcode!");
3368 case Instruction::SetEQ:
3369 if (Max < RHSVal || Min > RHSVal)
3370 return ReplaceInstUsesWith(I, ConstantBool::False);
3371 break;
3372 case Instruction::SetNE:
3373 if (Max < RHSVal || Min > RHSVal)
3374 return ReplaceInstUsesWith(I, ConstantBool::True);
3375 break;
3376 case Instruction::SetLT:
3377 if (Max < RHSVal) return ReplaceInstUsesWith(I, ConstantBool::True);
3378 if (Min > RHSVal) return ReplaceInstUsesWith(I, ConstantBool::False);
3379 break;
3380 case Instruction::SetGT:
3381 if (Min > RHSVal) return ReplaceInstUsesWith(I, ConstantBool::True);
3382 if (Max < RHSVal) return ReplaceInstUsesWith(I, ConstantBool::False);
3383 break;
3384 }
3385 }
3386 }
3387
3388
Chris Lattnere1e10e12004-05-25 06:32:08 +00003389 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
Chris Lattnere1b4d2a2004-09-23 21:52:49 +00003390 switch (LHSI->getOpcode()) {
3391 case Instruction::And:
3392 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
3393 LHSI->getOperand(0)->hasOneUse()) {
3394 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
3395 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
3396 // happens a LOT in code produced by the C front-end, for bitfield
3397 // access.
3398 ShiftInst *Shift = dyn_cast<ShiftInst>(LHSI->getOperand(0));
Chris Lattneree0f2802006-02-12 02:07:56 +00003399 ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
3400
3401 // Check to see if there is a noop-cast between the shift and the and.
3402 if (!Shift) {
3403 if (CastInst *CI = dyn_cast<CastInst>(LHSI->getOperand(0)))
3404 if (CI->getOperand(0)->getType()->isIntegral() &&
3405 CI->getOperand(0)->getType()->getPrimitiveSizeInBits() ==
3406 CI->getType()->getPrimitiveSizeInBits())
3407 Shift = dyn_cast<ShiftInst>(CI->getOperand(0));
3408 }
3409
Chris Lattnere1b4d2a2004-09-23 21:52:49 +00003410 ConstantUInt *ShAmt;
3411 ShAmt = Shift ? dyn_cast<ConstantUInt>(Shift->getOperand(1)) : 0;
Chris Lattneree0f2802006-02-12 02:07:56 +00003412 const Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
3413 const Type *AndTy = AndCST->getType(); // Type of the and.
Misha Brukmanb1c93172005-04-21 23:48:37 +00003414
Chris Lattnere1b4d2a2004-09-23 21:52:49 +00003415 // We can fold this as long as we can't shift unknown bits
3416 // into the mask. This can only happen with signed shift
3417 // rights, as they sign-extend.
3418 if (ShAmt) {
3419 bool CanFold = Shift->getOpcode() != Instruction::Shr ||
Chris Lattneree0f2802006-02-12 02:07:56 +00003420 Ty->isUnsigned();
Chris Lattnere1b4d2a2004-09-23 21:52:49 +00003421 if (!CanFold) {
3422 // To test for the bad case of the signed shr, see if any
3423 // of the bits shifted in could be tested after the mask.
Chris Lattnerc53cb9d2005-06-17 01:29:28 +00003424 int ShAmtVal = Ty->getPrimitiveSizeInBits()-ShAmt->getValue();
3425 if (ShAmtVal < 0) ShAmtVal = 0; // Out of range shift.
3426
3427 Constant *OShAmt = ConstantUInt::get(Type::UByteTy, ShAmtVal);
Misha Brukmanb1c93172005-04-21 23:48:37 +00003428 Constant *ShVal =
Chris Lattneree0f2802006-02-12 02:07:56 +00003429 ConstantExpr::getShl(ConstantInt::getAllOnesValue(AndTy),
3430 OShAmt);
Chris Lattnere1b4d2a2004-09-23 21:52:49 +00003431 if (ConstantExpr::getAnd(ShVal, AndCST)->isNullValue())
3432 CanFold = true;
3433 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00003434
Chris Lattnere1b4d2a2004-09-23 21:52:49 +00003435 if (CanFold) {
Chris Lattner6afc02f2004-09-28 17:54:07 +00003436 Constant *NewCst;
3437 if (Shift->getOpcode() == Instruction::Shl)
3438 NewCst = ConstantExpr::getUShr(CI, ShAmt);
3439 else
3440 NewCst = ConstantExpr::getShl(CI, ShAmt);
Chris Lattnerbfff18a2004-09-27 19:29:18 +00003441
Chris Lattnere1b4d2a2004-09-23 21:52:49 +00003442 // Check to see if we are shifting out any of the bits being
3443 // compared.
3444 if (ConstantExpr::get(Shift->getOpcode(), NewCst, ShAmt) != CI){
3445 // If we shifted bits out, the fold is not going to work out.
3446 // As a special case, check to see if this means that the
3447 // result is always true or false now.
3448 if (I.getOpcode() == Instruction::SetEQ)
3449 return ReplaceInstUsesWith(I, ConstantBool::False);
3450 if (I.getOpcode() == Instruction::SetNE)
3451 return ReplaceInstUsesWith(I, ConstantBool::True);
3452 } else {
3453 I.setOperand(1, NewCst);
Chris Lattner6afc02f2004-09-28 17:54:07 +00003454 Constant *NewAndCST;
3455 if (Shift->getOpcode() == Instruction::Shl)
3456 NewAndCST = ConstantExpr::getUShr(AndCST, ShAmt);
3457 else
3458 NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
3459 LHSI->setOperand(1, NewAndCST);
Chris Lattneree0f2802006-02-12 02:07:56 +00003460 if (AndTy == Ty)
3461 LHSI->setOperand(0, Shift->getOperand(0));
3462 else {
3463 Value *NewCast = InsertCastBefore(Shift->getOperand(0), AndTy,
3464 *Shift);
3465 LHSI->setOperand(0, NewCast);
3466 }
Chris Lattnere1b4d2a2004-09-23 21:52:49 +00003467 WorkList.push_back(Shift); // Shift is dead.
3468 AddUsesToWorkList(I);
3469 return &I;
Chris Lattner1638de42004-07-21 19:50:44 +00003470 }
3471 }
Chris Lattner35167c32004-06-09 07:59:58 +00003472 }
Chris Lattnere1b4d2a2004-09-23 21:52:49 +00003473 }
3474 break;
Chris Lattnerbfff18a2004-09-27 19:29:18 +00003475
Chris Lattner272d5ca2004-09-28 18:22:15 +00003476 case Instruction::Shl: // (setcc (shl X, ShAmt), CI)
3477 if (ConstantUInt *ShAmt = dyn_cast<ConstantUInt>(LHSI->getOperand(1))) {
3478 switch (I.getOpcode()) {
3479 default: break;
3480 case Instruction::SetEQ:
3481 case Instruction::SetNE: {
Chris Lattner19b57f52005-06-15 20:53:31 +00003482 unsigned TypeBits = CI->getType()->getPrimitiveSizeInBits();
3483
3484 // Check that the shift amount is in range. If not, don't perform
3485 // undefined shifts. When the shift is visited it will be
3486 // simplified.
3487 if (ShAmt->getValue() >= TypeBits)
3488 break;
3489
Chris Lattner272d5ca2004-09-28 18:22:15 +00003490 // If we are comparing against bits always shifted out, the
3491 // comparison cannot succeed.
Misha Brukmanb1c93172005-04-21 23:48:37 +00003492 Constant *Comp =
Chris Lattner272d5ca2004-09-28 18:22:15 +00003493 ConstantExpr::getShl(ConstantExpr::getShr(CI, ShAmt), ShAmt);
3494 if (Comp != CI) {// Comparing against a bit that we know is zero.
3495 bool IsSetNE = I.getOpcode() == Instruction::SetNE;
3496 Constant *Cst = ConstantBool::get(IsSetNE);
3497 return ReplaceInstUsesWith(I, Cst);
3498 }
3499
3500 if (LHSI->hasOneUse()) {
3501 // Otherwise strength reduce the shift into an and.
Chris Lattnerfdfe3e492005-01-08 19:42:22 +00003502 unsigned ShAmtVal = (unsigned)ShAmt->getValue();
Chris Lattner272d5ca2004-09-28 18:22:15 +00003503 uint64_t Val = (1ULL << (TypeBits-ShAmtVal))-1;
3504
3505 Constant *Mask;
3506 if (CI->getType()->isUnsigned()) {
3507 Mask = ConstantUInt::get(CI->getType(), Val);
3508 } else if (ShAmtVal != 0) {
3509 Mask = ConstantSInt::get(CI->getType(), Val);
3510 } else {
3511 Mask = ConstantInt::getAllOnesValue(CI->getType());
3512 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00003513
Chris Lattner272d5ca2004-09-28 18:22:15 +00003514 Instruction *AndI =
3515 BinaryOperator::createAnd(LHSI->getOperand(0),
3516 Mask, LHSI->getName()+".mask");
3517 Value *And = InsertNewInstBefore(AndI, I);
3518 return new SetCondInst(I.getOpcode(), And,
3519 ConstantExpr::getUShr(CI, ShAmt));
3520 }
3521 }
3522 }
3523 }
3524 break;
3525
Chris Lattnerbfff18a2004-09-27 19:29:18 +00003526 case Instruction::Shr: // (setcc (shr X, ShAmt), CI)
Chris Lattner1023b872004-09-27 16:18:50 +00003527 if (ConstantUInt *ShAmt = dyn_cast<ConstantUInt>(LHSI->getOperand(1))) {
Chris Lattner1023b872004-09-27 16:18:50 +00003528 switch (I.getOpcode()) {
3529 default: break;
3530 case Instruction::SetEQ:
3531 case Instruction::SetNE: {
Chris Lattner19b57f52005-06-15 20:53:31 +00003532
3533 // Check that the shift amount is in range. If not, don't perform
3534 // undefined shifts. When the shift is visited it will be
3535 // simplified.
Chris Lattner104002b2005-06-16 01:52:07 +00003536 unsigned TypeBits = CI->getType()->getPrimitiveSizeInBits();
Chris Lattner19b57f52005-06-15 20:53:31 +00003537 if (ShAmt->getValue() >= TypeBits)
3538 break;
3539
Chris Lattner1023b872004-09-27 16:18:50 +00003540 // If we are comparing against bits always shifted out, the
3541 // comparison cannot succeed.
Misha Brukmanb1c93172005-04-21 23:48:37 +00003542 Constant *Comp =
Chris Lattner1023b872004-09-27 16:18:50 +00003543 ConstantExpr::getShr(ConstantExpr::getShl(CI, ShAmt), ShAmt);
Misha Brukmanb1c93172005-04-21 23:48:37 +00003544
Chris Lattner1023b872004-09-27 16:18:50 +00003545 if (Comp != CI) {// Comparing against a bit that we know is zero.
3546 bool IsSetNE = I.getOpcode() == Instruction::SetNE;
3547 Constant *Cst = ConstantBool::get(IsSetNE);
3548 return ReplaceInstUsesWith(I, Cst);
3549 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00003550
Chris Lattner1023b872004-09-27 16:18:50 +00003551 if (LHSI->hasOneUse() || CI->isNullValue()) {
Chris Lattnerfdfe3e492005-01-08 19:42:22 +00003552 unsigned ShAmtVal = (unsigned)ShAmt->getValue();
Chris Lattner272d5ca2004-09-28 18:22:15 +00003553
Chris Lattner1023b872004-09-27 16:18:50 +00003554 // Otherwise strength reduce the shift into an and.
3555 uint64_t Val = ~0ULL; // All ones.
3556 Val <<= ShAmtVal; // Shift over to the right spot.
3557
3558 Constant *Mask;
3559 if (CI->getType()->isUnsigned()) {
Chris Lattner2f1457f2005-04-24 17:46:05 +00003560 Val &= ~0ULL >> (64-TypeBits);
Chris Lattner1023b872004-09-27 16:18:50 +00003561 Mask = ConstantUInt::get(CI->getType(), Val);
3562 } else {
3563 Mask = ConstantSInt::get(CI->getType(), Val);
3564 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00003565
Chris Lattner1023b872004-09-27 16:18:50 +00003566 Instruction *AndI =
3567 BinaryOperator::createAnd(LHSI->getOperand(0),
3568 Mask, LHSI->getName()+".mask");
3569 Value *And = InsertNewInstBefore(AndI, I);
3570 return new SetCondInst(I.getOpcode(), And,
3571 ConstantExpr::getShl(CI, ShAmt));
3572 }
3573 break;
3574 }
3575 }
3576 }
3577 break;
Chris Lattner7e794272004-09-24 15:21:34 +00003578
Chris Lattner6862fbd2004-09-29 17:40:11 +00003579 case Instruction::Div:
3580 // Fold: (div X, C1) op C2 -> range check
3581 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
3582 // Fold this div into the comparison, producing a range check.
3583 // Determine, based on the divide type, what the range is being
3584 // checked. If there is an overflow on the low or high side, remember
3585 // it, otherwise compute the range [low, hi) bounding the new value.
3586 bool LoOverflow = false, HiOverflow = 0;
3587 ConstantInt *LoBound = 0, *HiBound = 0;
3588
3589 ConstantInt *Prod;
3590 bool ProdOV = MulWithOverflow(Prod, CI, DivRHS);
3591
Chris Lattnera92af962004-10-11 19:40:04 +00003592 Instruction::BinaryOps Opcode = I.getOpcode();
3593
Chris Lattner6862fbd2004-09-29 17:40:11 +00003594 if (DivRHS->isNullValue()) { // Don't hack on divide by zeros.
3595 } else if (LHSI->getType()->isUnsigned()) { // udiv
3596 LoBound = Prod;
3597 LoOverflow = ProdOV;
3598 HiOverflow = ProdOV || AddWithOverflow(HiBound, LoBound, DivRHS);
3599 } else if (isPositive(DivRHS)) { // Divisor is > 0.
3600 if (CI->isNullValue()) { // (X / pos) op 0
3601 // Can't overflow.
3602 LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
3603 HiBound = DivRHS;
3604 } else if (isPositive(CI)) { // (X / pos) op pos
3605 LoBound = Prod;
3606 LoOverflow = ProdOV;
3607 HiOverflow = ProdOV || AddWithOverflow(HiBound, Prod, DivRHS);
3608 } else { // (X / pos) op neg
3609 Constant *DivRHSH = ConstantExpr::getNeg(SubOne(DivRHS));
3610 LoOverflow = AddWithOverflow(LoBound, Prod,
3611 cast<ConstantInt>(DivRHSH));
3612 HiBound = Prod;
3613 HiOverflow = ProdOV;
3614 }
3615 } else { // Divisor is < 0.
3616 if (CI->isNullValue()) { // (X / neg) op 0
3617 LoBound = AddOne(DivRHS);
3618 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
Chris Lattner73bcba52005-06-17 02:05:55 +00003619 if (HiBound == DivRHS)
3620 LoBound = 0; // - INTMIN = INTMIN
Chris Lattner6862fbd2004-09-29 17:40:11 +00003621 } else if (isPositive(CI)) { // (X / neg) op pos
3622 HiOverflow = LoOverflow = ProdOV;
3623 if (!LoOverflow)
3624 LoOverflow = AddWithOverflow(LoBound, Prod, AddOne(DivRHS));
3625 HiBound = AddOne(Prod);
3626 } else { // (X / neg) op neg
3627 LoBound = Prod;
3628 LoOverflow = HiOverflow = ProdOV;
3629 HiBound = cast<ConstantInt>(ConstantExpr::getSub(Prod, DivRHS));
3630 }
Chris Lattner0b41e862004-10-08 19:15:44 +00003631
Chris Lattnera92af962004-10-11 19:40:04 +00003632 // Dividing by a negate swaps the condition.
3633 Opcode = SetCondInst::getSwappedCondition(Opcode);
Chris Lattner6862fbd2004-09-29 17:40:11 +00003634 }
3635
3636 if (LoBound) {
3637 Value *X = LHSI->getOperand(0);
Chris Lattnera92af962004-10-11 19:40:04 +00003638 switch (Opcode) {
Chris Lattner6862fbd2004-09-29 17:40:11 +00003639 default: assert(0 && "Unhandled setcc opcode!");
3640 case Instruction::SetEQ:
3641 if (LoOverflow && HiOverflow)
3642 return ReplaceInstUsesWith(I, ConstantBool::False);
3643 else if (HiOverflow)
3644 return new SetCondInst(Instruction::SetGE, X, LoBound);
3645 else if (LoOverflow)
3646 return new SetCondInst(Instruction::SetLT, X, HiBound);
3647 else
3648 return InsertRangeTest(X, LoBound, HiBound, true, I);
3649 case Instruction::SetNE:
3650 if (LoOverflow && HiOverflow)
3651 return ReplaceInstUsesWith(I, ConstantBool::True);
3652 else if (HiOverflow)
3653 return new SetCondInst(Instruction::SetLT, X, LoBound);
3654 else if (LoOverflow)
3655 return new SetCondInst(Instruction::SetGE, X, HiBound);
3656 else
3657 return InsertRangeTest(X, LoBound, HiBound, false, I);
3658 case Instruction::SetLT:
3659 if (LoOverflow)
3660 return ReplaceInstUsesWith(I, ConstantBool::False);
3661 return new SetCondInst(Instruction::SetLT, X, LoBound);
3662 case Instruction::SetGT:
3663 if (HiOverflow)
3664 return ReplaceInstUsesWith(I, ConstantBool::False);
3665 return new SetCondInst(Instruction::SetGE, X, HiBound);
3666 }
3667 }
3668 }
3669 break;
Chris Lattnere1b4d2a2004-09-23 21:52:49 +00003670 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00003671
Chris Lattnerd492a0b2003-07-23 17:02:11 +00003672 // Simplify seteq and setne instructions...
3673 if (I.getOpcode() == Instruction::SetEQ ||
3674 I.getOpcode() == Instruction::SetNE) {
3675 bool isSetNE = I.getOpcode() == Instruction::SetNE;
3676
Chris Lattnercfbce7c2003-07-23 17:26:36 +00003677 // If the first operand is (and|or|xor) with a constant, and the second
Chris Lattnerd492a0b2003-07-23 17:02:11 +00003678 // operand is a constant, simplify a bit.
Chris Lattnerc992add2003-08-13 05:33:12 +00003679 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0)) {
3680 switch (BO->getOpcode()) {
Chris Lattner23b47b62004-07-06 07:38:18 +00003681 case Instruction::Rem:
3682 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
3683 if (CI->isNullValue() && isa<ConstantSInt>(BO->getOperand(1)) &&
3684 BO->hasOneUse() &&
Chris Lattner22d00a82005-08-02 19:16:58 +00003685 cast<ConstantSInt>(BO->getOperand(1))->getValue() > 1) {
3686 int64_t V = cast<ConstantSInt>(BO->getOperand(1))->getValue();
3687 if (isPowerOf2_64(V)) {
3688 unsigned L2 = Log2_64(V);
Chris Lattner23b47b62004-07-06 07:38:18 +00003689 const Type *UTy = BO->getType()->getUnsignedVersion();
3690 Value *NewX = InsertNewInstBefore(new CastInst(BO->getOperand(0),
3691 UTy, "tmp"), I);
3692 Constant *RHSCst = ConstantUInt::get(UTy, 1ULL << L2);
3693 Value *NewRem =InsertNewInstBefore(BinaryOperator::createRem(NewX,
3694 RHSCst, BO->getName()), I);
3695 return BinaryOperator::create(I.getOpcode(), NewRem,
3696 Constant::getNullValue(UTy));
3697 }
Chris Lattner22d00a82005-08-02 19:16:58 +00003698 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00003699 break;
Chris Lattner23b47b62004-07-06 07:38:18 +00003700
Chris Lattnerc992add2003-08-13 05:33:12 +00003701 case Instruction::Add:
Chris Lattner6e079362004-06-27 22:51:36 +00003702 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
3703 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
Chris Lattnerb121ae12004-09-21 21:35:23 +00003704 if (BO->hasOneUse())
3705 return new SetCondInst(I.getOpcode(), BO->getOperand(0),
3706 ConstantExpr::getSub(CI, BOp1C));
Chris Lattner6e079362004-06-27 22:51:36 +00003707 } else if (CI->isNullValue()) {
Chris Lattnerc992add2003-08-13 05:33:12 +00003708 // Replace ((add A, B) != 0) with (A != -B) if A or B is
3709 // efficiently invertible, or if the add has just this one use.
3710 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
Misha Brukmanb1c93172005-04-21 23:48:37 +00003711
Chris Lattnerc992add2003-08-13 05:33:12 +00003712 if (Value *NegVal = dyn_castNegVal(BOp1))
3713 return new SetCondInst(I.getOpcode(), BOp0, NegVal);
3714 else if (Value *NegVal = dyn_castNegVal(BOp0))
3715 return new SetCondInst(I.getOpcode(), NegVal, BOp1);
Chris Lattnerf95d9b92003-10-15 16:48:29 +00003716 else if (BO->hasOneUse()) {
Chris Lattnerc992add2003-08-13 05:33:12 +00003717 Instruction *Neg = BinaryOperator::createNeg(BOp1, BO->getName());
3718 BO->setName("");
3719 InsertNewInstBefore(Neg, I);
3720 return new SetCondInst(I.getOpcode(), BOp0, Neg);
3721 }
3722 }
3723 break;
3724 case Instruction::Xor:
3725 // For the xor case, we can xor two constants together, eliminating
3726 // the explicit xor.
3727 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
3728 return BinaryOperator::create(I.getOpcode(), BO->getOperand(0),
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00003729 ConstantExpr::getXor(CI, BOC));
Chris Lattnerc992add2003-08-13 05:33:12 +00003730
3731 // FALLTHROUGH
3732 case Instruction::Sub:
3733 // Replace (([sub|xor] A, B) != 0) with (A != B)
3734 if (CI->isNullValue())
3735 return new SetCondInst(I.getOpcode(), BO->getOperand(0),
3736 BO->getOperand(1));
3737 break;
3738
3739 case Instruction::Or:
3740 // If bits are being or'd in that are not present in the constant we
3741 // are comparing against, then the comparison could never succeed!
Chris Lattnerc1e7cc02004-01-12 19:35:11 +00003742 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
Chris Lattnerc8e7e292004-06-10 02:12:35 +00003743 Constant *NotCI = ConstantExpr::getNot(CI);
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00003744 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
Chris Lattnerd492a0b2003-07-23 17:02:11 +00003745 return ReplaceInstUsesWith(I, ConstantBool::get(isSetNE));
Chris Lattnerc1e7cc02004-01-12 19:35:11 +00003746 }
Chris Lattnerc992add2003-08-13 05:33:12 +00003747 break;
3748
3749 case Instruction::And:
3750 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
Chris Lattnerd492a0b2003-07-23 17:02:11 +00003751 // If bits are being compared against that are and'd out, then the
3752 // comparison can never succeed!
Chris Lattnerc8e7e292004-06-10 02:12:35 +00003753 if (!ConstantExpr::getAnd(CI,
3754 ConstantExpr::getNot(BOC))->isNullValue())
Chris Lattnerd492a0b2003-07-23 17:02:11 +00003755 return ReplaceInstUsesWith(I, ConstantBool::get(isSetNE));
Chris Lattnerc992add2003-08-13 05:33:12 +00003756
Chris Lattner35167c32004-06-09 07:59:58 +00003757 // If we have ((X & C) == C), turn it into ((X & C) != 0).
Chris Lattneree59d4b2004-06-10 02:33:20 +00003758 if (CI == BOC && isOneBitSet(CI))
Chris Lattner35167c32004-06-09 07:59:58 +00003759 return new SetCondInst(isSetNE ? Instruction::SetEQ :
3760 Instruction::SetNE, Op0,
3761 Constant::getNullValue(CI->getType()));
Chris Lattner35167c32004-06-09 07:59:58 +00003762
Chris Lattnerc992add2003-08-13 05:33:12 +00003763 // Replace (and X, (1 << size(X)-1) != 0) with x < 0, converting X
3764 // to be a signed value as appropriate.
3765 if (isSignBit(BOC)) {
3766 Value *X = BO->getOperand(0);
3767 // If 'X' is not signed, insert a cast now...
3768 if (!BOC->getType()->isSigned()) {
Chris Lattner97bfcea2004-06-17 18:16:02 +00003769 const Type *DestTy = BOC->getType()->getSignedVersion();
Chris Lattnerbfff18a2004-09-27 19:29:18 +00003770 X = InsertCastBefore(X, DestTy, I);
Chris Lattnerc992add2003-08-13 05:33:12 +00003771 }
3772 return new SetCondInst(isSetNE ? Instruction::SetLT :
3773 Instruction::SetGE, X,
3774 Constant::getNullValue(X->getType()));
3775 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00003776
Chris Lattnerbfff18a2004-09-27 19:29:18 +00003777 // ((X & ~7) == 0) --> X < 8
Chris Lattner8fc5af42004-09-23 21:46:38 +00003778 if (CI->isNullValue() && isHighOnes(BOC)) {
3779 Value *X = BO->getOperand(0);
Chris Lattnerbfff18a2004-09-27 19:29:18 +00003780 Constant *NegX = ConstantExpr::getNeg(BOC);
Chris Lattner8fc5af42004-09-23 21:46:38 +00003781
3782 // If 'X' is signed, insert a cast now.
Chris Lattnerbfff18a2004-09-27 19:29:18 +00003783 if (NegX->getType()->isSigned()) {
3784 const Type *DestTy = NegX->getType()->getUnsignedVersion();
3785 X = InsertCastBefore(X, DestTy, I);
3786 NegX = ConstantExpr::getCast(NegX, DestTy);
Chris Lattner8fc5af42004-09-23 21:46:38 +00003787 }
3788
3789 return new SetCondInst(isSetNE ? Instruction::SetGE :
Chris Lattnerbfff18a2004-09-27 19:29:18 +00003790 Instruction::SetLT, X, NegX);
Chris Lattner8fc5af42004-09-23 21:46:38 +00003791 }
3792
Chris Lattnerd492a0b2003-07-23 17:02:11 +00003793 }
Chris Lattnerc992add2003-08-13 05:33:12 +00003794 default: break;
3795 }
3796 }
Chris Lattner2b55ea32004-02-23 07:16:20 +00003797 } else { // Not a SetEQ/SetNE
Misha Brukmanb1c93172005-04-21 23:48:37 +00003798 // If the LHS is a cast from an integral value of the same size,
Chris Lattner2b55ea32004-02-23 07:16:20 +00003799 if (CastInst *Cast = dyn_cast<CastInst>(Op0)) {
3800 Value *CastOp = Cast->getOperand(0);
3801 const Type *SrcTy = CastOp->getType();
Chris Lattnerd1f46d32005-04-24 06:59:08 +00003802 unsigned SrcTySize = SrcTy->getPrimitiveSizeInBits();
Chris Lattner2b55ea32004-02-23 07:16:20 +00003803 if (SrcTy != Cast->getType() && SrcTy->isInteger() &&
Chris Lattnerd1f46d32005-04-24 06:59:08 +00003804 SrcTySize == Cast->getType()->getPrimitiveSizeInBits()) {
Misha Brukmanb1c93172005-04-21 23:48:37 +00003805 assert((SrcTy->isSigned() ^ Cast->getType()->isSigned()) &&
Chris Lattner2b55ea32004-02-23 07:16:20 +00003806 "Source and destination signednesses should differ!");
3807 if (Cast->getType()->isSigned()) {
3808 // If this is a signed comparison, check for comparisons in the
3809 // vicinity of zero.
3810 if (I.getOpcode() == Instruction::SetLT && CI->isNullValue())
3811 // X < 0 => x > 127
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00003812 return BinaryOperator::createSetGT(CastOp,
Chris Lattnerd1f46d32005-04-24 06:59:08 +00003813 ConstantUInt::get(SrcTy, (1ULL << (SrcTySize-1))-1));
Chris Lattner2b55ea32004-02-23 07:16:20 +00003814 else if (I.getOpcode() == Instruction::SetGT &&
3815 cast<ConstantSInt>(CI)->getValue() == -1)
3816 // X > -1 => x < 128
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00003817 return BinaryOperator::createSetLT(CastOp,
Chris Lattnerd1f46d32005-04-24 06:59:08 +00003818 ConstantUInt::get(SrcTy, 1ULL << (SrcTySize-1)));
Chris Lattner2b55ea32004-02-23 07:16:20 +00003819 } else {
3820 ConstantUInt *CUI = cast<ConstantUInt>(CI);
3821 if (I.getOpcode() == Instruction::SetLT &&
Chris Lattnerd1f46d32005-04-24 06:59:08 +00003822 CUI->getValue() == 1ULL << (SrcTySize-1))
Chris Lattner2b55ea32004-02-23 07:16:20 +00003823 // X < 128 => X > -1
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00003824 return BinaryOperator::createSetGT(CastOp,
3825 ConstantSInt::get(SrcTy, -1));
Chris Lattner2b55ea32004-02-23 07:16:20 +00003826 else if (I.getOpcode() == Instruction::SetGT &&
Chris Lattnerd1f46d32005-04-24 06:59:08 +00003827 CUI->getValue() == (1ULL << (SrcTySize-1))-1)
Chris Lattner2b55ea32004-02-23 07:16:20 +00003828 // X > 127 => X < 0
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00003829 return BinaryOperator::createSetLT(CastOp,
3830 Constant::getNullValue(SrcTy));
Chris Lattner2b55ea32004-02-23 07:16:20 +00003831 }
3832 }
3833 }
Chris Lattnere967b342003-06-04 05:10:11 +00003834 }
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00003835 }
3836
Chris Lattner77c32c32005-04-23 15:31:55 +00003837 // Handle setcc with constant RHS's that can be integer, FP or pointer.
3838 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
3839 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
3840 switch (LHSI->getOpcode()) {
Chris Lattnera816eee2005-05-01 04:42:15 +00003841 case Instruction::GetElementPtr:
3842 if (RHSC->isNullValue()) {
3843 // Transform setcc GEP P, int 0, int 0, int 0, null -> setcc P, null
3844 bool isAllZeros = true;
3845 for (unsigned i = 1, e = LHSI->getNumOperands(); i != e; ++i)
3846 if (!isa<Constant>(LHSI->getOperand(i)) ||
3847 !cast<Constant>(LHSI->getOperand(i))->isNullValue()) {
3848 isAllZeros = false;
3849 break;
3850 }
3851 if (isAllZeros)
3852 return new SetCondInst(I.getOpcode(), LHSI->getOperand(0),
3853 Constant::getNullValue(LHSI->getOperand(0)->getType()));
3854 }
3855 break;
3856
Chris Lattner77c32c32005-04-23 15:31:55 +00003857 case Instruction::PHI:
3858 if (Instruction *NV = FoldOpIntoPhi(I))
3859 return NV;
3860 break;
3861 case Instruction::Select:
3862 // If either operand of the select is a constant, we can fold the
3863 // comparison into the select arms, which will cause one to be
3864 // constant folded and the select turned into a bitwise or.
3865 Value *Op1 = 0, *Op2 = 0;
3866 if (LHSI->hasOneUse()) {
3867 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
3868 // Fold the known value into the constant operand.
3869 Op1 = ConstantExpr::get(I.getOpcode(), C, RHSC);
3870 // Insert a new SetCC of the other select operand.
3871 Op2 = InsertNewInstBefore(new SetCondInst(I.getOpcode(),
3872 LHSI->getOperand(2), RHSC,
3873 I.getName()), I);
3874 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
3875 // Fold the known value into the constant operand.
3876 Op2 = ConstantExpr::get(I.getOpcode(), C, RHSC);
3877 // Insert a new SetCC of the other select operand.
3878 Op1 = InsertNewInstBefore(new SetCondInst(I.getOpcode(),
3879 LHSI->getOperand(1), RHSC,
3880 I.getName()), I);
3881 }
3882 }
Jeff Cohen82639852005-04-23 21:38:35 +00003883
Chris Lattner77c32c32005-04-23 15:31:55 +00003884 if (Op1)
3885 return new SelectInst(LHSI->getOperand(0), Op1, Op2);
3886 break;
3887 }
3888 }
3889
Chris Lattner0798af32005-01-13 20:14:25 +00003890 // If we can optimize a 'setcc GEP, P' or 'setcc P, GEP', do so now.
3891 if (User *GEP = dyn_castGetElementPtr(Op0))
3892 if (Instruction *NI = FoldGEPSetCC(GEP, Op1, I.getOpcode(), I))
3893 return NI;
3894 if (User *GEP = dyn_castGetElementPtr(Op1))
3895 if (Instruction *NI = FoldGEPSetCC(GEP, Op0,
3896 SetCondInst::getSwappedCondition(I.getOpcode()), I))
3897 return NI;
3898
Chris Lattner16930792003-11-03 04:25:02 +00003899 // Test to see if the operands of the setcc are casted versions of other
3900 // values. If the cast can be stripped off both arguments, we do so now.
Chris Lattner6444c372003-11-03 05:17:03 +00003901 if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
3902 Value *CastOp0 = CI->getOperand(0);
3903 if (CastOp0->getType()->isLosslesslyConvertibleTo(CI->getType()) &&
Chris Lattner7d2a5392004-03-13 23:54:27 +00003904 (isa<Constant>(Op1) || isa<CastInst>(Op1)) &&
Chris Lattner16930792003-11-03 04:25:02 +00003905 (I.getOpcode() == Instruction::SetEQ ||
3906 I.getOpcode() == Instruction::SetNE)) {
3907 // We keep moving the cast from the left operand over to the right
3908 // operand, where it can often be eliminated completely.
Chris Lattner6444c372003-11-03 05:17:03 +00003909 Op0 = CastOp0;
Misha Brukmanb1c93172005-04-21 23:48:37 +00003910
Chris Lattner16930792003-11-03 04:25:02 +00003911 // If operand #1 is a cast instruction, see if we can eliminate it as
3912 // well.
Chris Lattner6444c372003-11-03 05:17:03 +00003913 if (CastInst *CI2 = dyn_cast<CastInst>(Op1))
3914 if (CI2->getOperand(0)->getType()->isLosslesslyConvertibleTo(
Chris Lattner16930792003-11-03 04:25:02 +00003915 Op0->getType()))
Chris Lattner6444c372003-11-03 05:17:03 +00003916 Op1 = CI2->getOperand(0);
Misha Brukmanb1c93172005-04-21 23:48:37 +00003917
Chris Lattner16930792003-11-03 04:25:02 +00003918 // If Op1 is a constant, we can fold the cast into the constant.
3919 if (Op1->getType() != Op0->getType())
3920 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
3921 Op1 = ConstantExpr::getCast(Op1C, Op0->getType());
3922 } else {
3923 // Otherwise, cast the RHS right before the setcc
3924 Op1 = new CastInst(Op1, Op0->getType(), Op1->getName());
3925 InsertNewInstBefore(cast<Instruction>(Op1), I);
3926 }
3927 return BinaryOperator::create(I.getOpcode(), Op0, Op1);
3928 }
3929
Chris Lattner6444c372003-11-03 05:17:03 +00003930 // Handle the special case of: setcc (cast bool to X), <cst>
3931 // This comes up when you have code like
3932 // int X = A < B;
3933 // if (X) ...
3934 // For generality, we handle any zero-extension of any operand comparison
Chris Lattnerd1f46d32005-04-24 06:59:08 +00003935 // with a constant or another cast from the same type.
3936 if (isa<ConstantInt>(Op1) || isa<CastInst>(Op1))
3937 if (Instruction *R = visitSetCondInstWithCastAndCast(I))
3938 return R;
Chris Lattner6444c372003-11-03 05:17:03 +00003939 }
Chris Lattnerf5c8a0b2006-02-27 01:44:11 +00003940
3941 if (I.getOpcode() == Instruction::SetNE ||
3942 I.getOpcode() == Instruction::SetEQ) {
3943 Value *A, *B;
3944 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
3945 (A == Op1 || B == Op1)) {
3946 // (A^B) == A -> B == 0
3947 Value *OtherVal = A == Op1 ? B : A;
3948 return BinaryOperator::create(I.getOpcode(), OtherVal,
3949 Constant::getNullValue(A->getType()));
3950 } else if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
3951 (A == Op0 || B == Op0)) {
3952 // A == (A^B) -> B == 0
3953 Value *OtherVal = A == Op0 ? B : A;
3954 return BinaryOperator::create(I.getOpcode(), OtherVal,
3955 Constant::getNullValue(A->getType()));
3956 } else if (match(Op0, m_Sub(m_Value(A), m_Value(B))) && A == Op1) {
3957 // (A-B) == A -> B == 0
3958 return BinaryOperator::create(I.getOpcode(), B,
3959 Constant::getNullValue(B->getType()));
3960 } else if (match(Op1, m_Sub(m_Value(A), m_Value(B))) && A == Op0) {
3961 // A == (A-B) -> B == 0
3962 return BinaryOperator::create(I.getOpcode(), B,
3963 Constant::getNullValue(B->getType()));
3964 }
3965 }
Chris Lattner113f4f42002-06-25 16:13:24 +00003966 return Changed ? &I : 0;
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00003967}
3968
Chris Lattnerd1f46d32005-04-24 06:59:08 +00003969// visitSetCondInstWithCastAndCast - Handle setcond (cast x to y), (cast/cst).
3970// We only handle extending casts so far.
3971//
3972Instruction *InstCombiner::visitSetCondInstWithCastAndCast(SetCondInst &SCI) {
3973 Value *LHSCIOp = cast<CastInst>(SCI.getOperand(0))->getOperand(0);
3974 const Type *SrcTy = LHSCIOp->getType();
3975 const Type *DestTy = SCI.getOperand(0)->getType();
3976 Value *RHSCIOp;
3977
3978 if (!DestTy->isIntegral() || !SrcTy->isIntegral())
Chris Lattner03f06f12005-01-17 03:20:02 +00003979 return 0;
3980
Chris Lattnerd1f46d32005-04-24 06:59:08 +00003981 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
3982 unsigned DestBits = DestTy->getPrimitiveSizeInBits();
3983 if (SrcBits >= DestBits) return 0; // Only handle extending cast.
3984
3985 // Is this a sign or zero extension?
3986 bool isSignSrc = SrcTy->isSigned();
3987 bool isSignDest = DestTy->isSigned();
3988
3989 if (CastInst *CI = dyn_cast<CastInst>(SCI.getOperand(1))) {
3990 // Not an extension from the same type?
3991 RHSCIOp = CI->getOperand(0);
3992 if (RHSCIOp->getType() != LHSCIOp->getType()) return 0;
3993 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(SCI.getOperand(1))) {
3994 // Compute the constant that would happen if we truncated to SrcTy then
3995 // reextended to DestTy.
3996 Constant *Res = ConstantExpr::getCast(CI, SrcTy);
3997
3998 if (ConstantExpr::getCast(Res, DestTy) == CI) {
3999 RHSCIOp = Res;
4000 } else {
4001 // If the value cannot be represented in the shorter type, we cannot emit
4002 // a simple comparison.
4003 if (SCI.getOpcode() == Instruction::SetEQ)
4004 return ReplaceInstUsesWith(SCI, ConstantBool::False);
4005 if (SCI.getOpcode() == Instruction::SetNE)
4006 return ReplaceInstUsesWith(SCI, ConstantBool::True);
4007
Chris Lattnerd1f46d32005-04-24 06:59:08 +00004008 // Evaluate the comparison for LT.
4009 Value *Result;
4010 if (DestTy->isSigned()) {
4011 // We're performing a signed comparison.
4012 if (isSignSrc) {
4013 // Signed extend and signed comparison.
4014 if (cast<ConstantSInt>(CI)->getValue() < 0) // X < (small) --> false
4015 Result = ConstantBool::False;
4016 else
4017 Result = ConstantBool::True; // X < (large) --> true
4018 } else {
4019 // Unsigned extend and signed comparison.
4020 if (cast<ConstantSInt>(CI)->getValue() < 0)
4021 Result = ConstantBool::False;
4022 else
4023 Result = ConstantBool::True;
4024 }
4025 } else {
4026 // We're performing an unsigned comparison.
4027 if (!isSignSrc) {
4028 // Unsigned extend & compare -> always true.
4029 Result = ConstantBool::True;
4030 } else {
4031 // We're performing an unsigned comp with a sign extended value.
4032 // This is true if the input is >= 0. [aka >s -1]
4033 Constant *NegOne = ConstantIntegral::getAllOnesValue(SrcTy);
4034 Result = InsertNewInstBefore(BinaryOperator::createSetGT(LHSCIOp,
4035 NegOne, SCI.getName()), SCI);
4036 }
Reid Spencer279fa252004-11-28 21:31:15 +00004037 }
Chris Lattner03f06f12005-01-17 03:20:02 +00004038
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +00004039 // Finally, return the value computed.
Chris Lattnerd1f46d32005-04-24 06:59:08 +00004040 if (SCI.getOpcode() == Instruction::SetLT) {
4041 return ReplaceInstUsesWith(SCI, Result);
4042 } else {
4043 assert(SCI.getOpcode()==Instruction::SetGT &&"SetCC should be folded!");
4044 if (Constant *CI = dyn_cast<Constant>(Result))
4045 return ReplaceInstUsesWith(SCI, ConstantExpr::getNot(CI));
4046 else
4047 return BinaryOperator::createNot(Result);
4048 }
Chris Lattner03f06f12005-01-17 03:20:02 +00004049 }
Chris Lattnerd1f46d32005-04-24 06:59:08 +00004050 } else {
4051 return 0;
Reid Spencer279fa252004-11-28 21:31:15 +00004052 }
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00004053
Chris Lattner252a8452005-06-16 03:00:08 +00004054 // Okay, just insert a compare of the reduced operands now!
Chris Lattnerd1f46d32005-04-24 06:59:08 +00004055 return BinaryOperator::create(SCI.getOpcode(), LHSCIOp, RHSCIOp);
4056}
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00004057
Chris Lattnere8d6c602003-03-10 19:16:08 +00004058Instruction *InstCombiner::visitShiftInst(ShiftInst &I) {
Chris Lattner113f4f42002-06-25 16:13:24 +00004059 assert(I.getOperand(1)->getType() == Type::UByteTy);
4060 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattnerdeaa0dd2003-08-12 21:53:41 +00004061 bool isLeftShift = I.getOpcode() == Instruction::Shl;
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00004062
4063 // shl X, 0 == X and shr X, 0 == X
4064 // shl 0, X == 0 and shr 0, X == 0
4065 if (Op1 == Constant::getNullValue(Type::UByteTy) ||
Chris Lattnere6794492002-08-12 21:17:25 +00004066 Op0 == Constant::getNullValue(Op0->getType()))
4067 return ReplaceInstUsesWith(I, Op0);
Chris Lattnerf5b4ef72006-02-12 08:07:37 +00004068
Chris Lattner81a7a232004-10-16 18:11:37 +00004069 if (isa<UndefValue>(Op0)) { // undef >>s X -> undef
4070 if (!isLeftShift && I.getType()->isSigned())
Chris Lattner67f05452004-10-16 23:28:04 +00004071 return ReplaceInstUsesWith(I, Op0);
Chris Lattner81a7a232004-10-16 18:11:37 +00004072 else // undef << X -> 0 AND undef >>u X -> 0
4073 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
4074 }
4075 if (isa<UndefValue>(Op1)) {
Chris Lattner18aa4d82005-07-20 18:49:28 +00004076 if (isLeftShift || I.getType()->isUnsigned())// X << undef, X >>u undef -> 0
Chris Lattner81a7a232004-10-16 18:11:37 +00004077 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
4078 else
4079 return ReplaceInstUsesWith(I, Op0); // X >>s undef -> X
4080 }
4081
Chris Lattnerdeaa0dd2003-08-12 21:53:41 +00004082 // shr int -1, X = -1 (for any arithmetic shift rights of ~0)
4083 if (!isLeftShift)
4084 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(Op0))
4085 if (CSI->isAllOnesValue())
4086 return ReplaceInstUsesWith(I, CSI);
4087
Chris Lattner183b3362004-04-09 19:05:30 +00004088 // Try to fold constant and into select arguments.
4089 if (isa<Constant>(Op0))
4090 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
Chris Lattner86102b82005-01-01 16:22:27 +00004091 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner183b3362004-04-09 19:05:30 +00004092 return R;
4093
Chris Lattnerb18dbbf2005-05-08 17:34:56 +00004094 // See if we can turn a signed shr into an unsigned shr.
4095 if (!isLeftShift && I.getType()->isSigned()) {
Chris Lattnerc3ebf402006-02-07 07:27:52 +00004096 if (MaskedValueIsZero(Op0,
4097 1ULL << (I.getType()->getPrimitiveSizeInBits()-1))) {
Chris Lattnerb18dbbf2005-05-08 17:34:56 +00004098 Value *V = InsertCastBefore(Op0, I.getType()->getUnsignedVersion(), I);
4099 V = InsertNewInstBefore(new ShiftInst(Instruction::Shr, V, Op1,
4100 I.getName()), I);
4101 return new CastInst(V, I.getType());
4102 }
4103 }
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +00004104
Chris Lattner14553932006-01-06 07:12:35 +00004105 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(Op1))
4106 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
4107 return Res;
4108 return 0;
4109}
4110
4111Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantUInt *Op1,
4112 ShiftInst &I) {
4113 bool isLeftShift = I.getOpcode() == Instruction::Shl;
Chris Lattnerb3309392006-01-06 07:22:22 +00004114 bool isSignedShift = Op0->getType()->isSigned();
4115 bool isUnsignedShift = !isSignedShift;
Chris Lattner14553932006-01-06 07:12:35 +00004116
Chris Lattnerf5b4ef72006-02-12 08:07:37 +00004117 // See if we can simplify any instructions used by the instruction whose sole
4118 // purpose is to compute bits we don't care about.
4119 uint64_t KnownZero, KnownOne;
4120 if (SimplifyDemandedBits(&I, I.getType()->getIntegralTypeMask(),
4121 KnownZero, KnownOne))
4122 return &I;
4123
Chris Lattner14553932006-01-06 07:12:35 +00004124 // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr
4125 // of a signed value.
4126 //
4127 unsigned TypeBits = Op0->getType()->getPrimitiveSizeInBits();
4128 if (Op1->getValue() >= TypeBits) {
Chris Lattnerb3309392006-01-06 07:22:22 +00004129 if (isUnsignedShift || isLeftShift)
Chris Lattner14553932006-01-06 07:12:35 +00004130 return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
4131 else {
4132 I.setOperand(1, ConstantUInt::get(Type::UByteTy, TypeBits-1));
4133 return &I;
Chris Lattnerf5ce2542004-02-23 20:30:06 +00004134 }
Chris Lattner14553932006-01-06 07:12:35 +00004135 }
4136
4137 // ((X*C1) << C2) == (X * (C1 << C2))
4138 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
4139 if (BO->getOpcode() == Instruction::Mul && isLeftShift)
4140 if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
4141 return BinaryOperator::createMul(BO->getOperand(0),
4142 ConstantExpr::getShl(BOOp, Op1));
4143
4144 // Try to fold constant and into select arguments.
4145 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
4146 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
4147 return R;
4148 if (isa<PHINode>(Op0))
4149 if (Instruction *NV = FoldOpIntoPhi(I))
4150 return NV;
4151
4152 if (Op0->hasOneUse()) {
Chris Lattner14553932006-01-06 07:12:35 +00004153 if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
4154 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
4155 Value *V1, *V2;
4156 ConstantInt *CC;
4157 switch (Op0BO->getOpcode()) {
Chris Lattner27cb9db2005-09-18 05:12:10 +00004158 default: break;
4159 case Instruction::Add:
4160 case Instruction::And:
4161 case Instruction::Or:
4162 case Instruction::Xor:
4163 // These operators commute.
4164 // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
Chris Lattner797dee72005-09-18 06:30:59 +00004165 if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
4166 match(Op0BO->getOperand(1),
Chris Lattner14553932006-01-06 07:12:35 +00004167 m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
Chris Lattner797dee72005-09-18 06:30:59 +00004168 Instruction *YS = new ShiftInst(Instruction::Shl,
Chris Lattner14553932006-01-06 07:12:35 +00004169 Op0BO->getOperand(0), Op1,
Chris Lattner797dee72005-09-18 06:30:59 +00004170 Op0BO->getName());
4171 InsertNewInstBefore(YS, I); // (Y << C)
Chris Lattner24cd2fa2006-02-09 07:41:14 +00004172 Instruction *X =
4173 BinaryOperator::create(Op0BO->getOpcode(), YS, V1,
4174 Op0BO->getOperand(1)->getName());
Chris Lattner797dee72005-09-18 06:30:59 +00004175 InsertNewInstBefore(X, I); // (X + (Y << C))
4176 Constant *C2 = ConstantInt::getAllOnesValue(X->getType());
Chris Lattner14553932006-01-06 07:12:35 +00004177 C2 = ConstantExpr::getShl(C2, Op1);
Chris Lattner797dee72005-09-18 06:30:59 +00004178 return BinaryOperator::createAnd(X, C2);
4179 }
Chris Lattner14553932006-01-06 07:12:35 +00004180
Chris Lattner797dee72005-09-18 06:30:59 +00004181 // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
4182 if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
4183 match(Op0BO->getOperand(1),
4184 m_And(m_Shr(m_Value(V1), m_Value(V2)),
Chris Lattner14553932006-01-06 07:12:35 +00004185 m_ConstantInt(CC))) && V2 == Op1 &&
Chris Lattner24cd2fa2006-02-09 07:41:14 +00004186 cast<BinaryOperator>(Op0BO->getOperand(1))->getOperand(0)->hasOneUse()) {
Chris Lattner797dee72005-09-18 06:30:59 +00004187 Instruction *YS = new ShiftInst(Instruction::Shl,
Chris Lattner14553932006-01-06 07:12:35 +00004188 Op0BO->getOperand(0), Op1,
Chris Lattner797dee72005-09-18 06:30:59 +00004189 Op0BO->getName());
4190 InsertNewInstBefore(YS, I); // (Y << C)
4191 Instruction *XM =
Chris Lattner14553932006-01-06 07:12:35 +00004192 BinaryOperator::createAnd(V1, ConstantExpr::getShl(CC, Op1),
Chris Lattner797dee72005-09-18 06:30:59 +00004193 V1->getName()+".mask");
4194 InsertNewInstBefore(XM, I); // X & (CC << C)
4195
4196 return BinaryOperator::create(Op0BO->getOpcode(), YS, XM);
4197 }
Chris Lattner14553932006-01-06 07:12:35 +00004198
Chris Lattner797dee72005-09-18 06:30:59 +00004199 // FALL THROUGH.
Chris Lattner27cb9db2005-09-18 05:12:10 +00004200 case Instruction::Sub:
4201 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
Chris Lattner797dee72005-09-18 06:30:59 +00004202 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
4203 match(Op0BO->getOperand(0),
Chris Lattner14553932006-01-06 07:12:35 +00004204 m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
Chris Lattner797dee72005-09-18 06:30:59 +00004205 Instruction *YS = new ShiftInst(Instruction::Shl,
Chris Lattner14553932006-01-06 07:12:35 +00004206 Op0BO->getOperand(1), Op1,
Chris Lattner797dee72005-09-18 06:30:59 +00004207 Op0BO->getName());
4208 InsertNewInstBefore(YS, I); // (Y << C)
Chris Lattner24cd2fa2006-02-09 07:41:14 +00004209 Instruction *X =
4210 BinaryOperator::create(Op0BO->getOpcode(), YS, V1,
4211 Op0BO->getOperand(0)->getName());
Chris Lattner797dee72005-09-18 06:30:59 +00004212 InsertNewInstBefore(X, I); // (X + (Y << C))
4213 Constant *C2 = ConstantInt::getAllOnesValue(X->getType());
Chris Lattner14553932006-01-06 07:12:35 +00004214 C2 = ConstantExpr::getShl(C2, Op1);
Chris Lattner797dee72005-09-18 06:30:59 +00004215 return BinaryOperator::createAnd(X, C2);
4216 }
Chris Lattner14553932006-01-06 07:12:35 +00004217
Chris Lattner797dee72005-09-18 06:30:59 +00004218 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
4219 match(Op0BO->getOperand(0),
4220 m_And(m_Shr(m_Value(V1), m_Value(V2)),
Chris Lattner14553932006-01-06 07:12:35 +00004221 m_ConstantInt(CC))) && V2 == Op1 &&
Chris Lattner24cd2fa2006-02-09 07:41:14 +00004222 cast<BinaryOperator>(Op0BO->getOperand(0))
4223 ->getOperand(0)->hasOneUse()) {
Chris Lattner797dee72005-09-18 06:30:59 +00004224 Instruction *YS = new ShiftInst(Instruction::Shl,
Chris Lattner14553932006-01-06 07:12:35 +00004225 Op0BO->getOperand(1), Op1,
Chris Lattner797dee72005-09-18 06:30:59 +00004226 Op0BO->getName());
4227 InsertNewInstBefore(YS, I); // (Y << C)
4228 Instruction *XM =
Chris Lattner14553932006-01-06 07:12:35 +00004229 BinaryOperator::createAnd(V1, ConstantExpr::getShl(CC, Op1),
Chris Lattner797dee72005-09-18 06:30:59 +00004230 V1->getName()+".mask");
4231 InsertNewInstBefore(XM, I); // X & (CC << C)
4232
4233 return BinaryOperator::create(Op0BO->getOpcode(), YS, XM);
4234 }
Chris Lattner14553932006-01-06 07:12:35 +00004235
Chris Lattner27cb9db2005-09-18 05:12:10 +00004236 break;
Chris Lattner14553932006-01-06 07:12:35 +00004237 }
4238
4239
4240 // If the operand is an bitwise operator with a constant RHS, and the
4241 // shift is the only use, we can pull it out of the shift.
4242 if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
4243 bool isValid = true; // Valid only for And, Or, Xor
4244 bool highBitSet = false; // Transform if high bit of constant set?
4245
4246 switch (Op0BO->getOpcode()) {
Chris Lattnerdeaa0dd2003-08-12 21:53:41 +00004247 default: isValid = false; break; // Do not perform transform!
Chris Lattner44bd3922004-10-08 03:46:20 +00004248 case Instruction::Add:
4249 isValid = isLeftShift;
4250 break;
Chris Lattnerdeaa0dd2003-08-12 21:53:41 +00004251 case Instruction::Or:
4252 case Instruction::Xor:
4253 highBitSet = false;
4254 break;
4255 case Instruction::And:
4256 highBitSet = true;
4257 break;
Chris Lattner14553932006-01-06 07:12:35 +00004258 }
4259
4260 // If this is a signed shift right, and the high bit is modified
4261 // by the logical operation, do not perform the transformation.
4262 // The highBitSet boolean indicates the value of the high bit of
4263 // the constant which would cause it to be modified for this
4264 // operation.
4265 //
Chris Lattnerb3309392006-01-06 07:22:22 +00004266 if (isValid && !isLeftShift && isSignedShift) {
Chris Lattner14553932006-01-06 07:12:35 +00004267 uint64_t Val = Op0C->getRawValue();
4268 isValid = ((Val & (1 << (TypeBits-1))) != 0) == highBitSet;
4269 }
4270
4271 if (isValid) {
4272 Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
4273
4274 Instruction *NewShift =
4275 new ShiftInst(I.getOpcode(), Op0BO->getOperand(0), Op1,
4276 Op0BO->getName());
4277 Op0BO->setName("");
4278 InsertNewInstBefore(NewShift, I);
4279
4280 return BinaryOperator::create(Op0BO->getOpcode(), NewShift,
4281 NewRHS);
4282 }
4283 }
4284 }
4285 }
4286
Chris Lattnereb372a02006-01-06 07:52:12 +00004287 // Find out if this is a shift of a shift by a constant.
4288 ShiftInst *ShiftOp = 0;
Chris Lattner14553932006-01-06 07:12:35 +00004289 if (ShiftInst *Op0SI = dyn_cast<ShiftInst>(Op0))
Chris Lattnereb372a02006-01-06 07:52:12 +00004290 ShiftOp = Op0SI;
4291 else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
4292 // If this is a noop-integer case of a shift instruction, use the shift.
4293 if (CI->getOperand(0)->getType()->isInteger() &&
4294 CI->getOperand(0)->getType()->getPrimitiveSizeInBits() ==
4295 CI->getType()->getPrimitiveSizeInBits() &&
4296 isa<ShiftInst>(CI->getOperand(0))) {
4297 ShiftOp = cast<ShiftInst>(CI->getOperand(0));
4298 }
4299 }
4300
4301 if (ShiftOp && isa<ConstantUInt>(ShiftOp->getOperand(1))) {
4302 // Find the operands and properties of the input shift. Note that the
4303 // signedness of the input shift may differ from the current shift if there
4304 // is a noop cast between the two.
4305 bool isShiftOfLeftShift = ShiftOp->getOpcode() == Instruction::Shl;
4306 bool isShiftOfSignedShift = ShiftOp->getType()->isSigned();
Chris Lattner9cbfbc22006-01-07 01:32:28 +00004307 bool isShiftOfUnsignedShift = !isShiftOfSignedShift;
Chris Lattnereb372a02006-01-06 07:52:12 +00004308
4309 ConstantUInt *ShiftAmt1C = cast<ConstantUInt>(ShiftOp->getOperand(1));
4310
4311 unsigned ShiftAmt1 = (unsigned)ShiftAmt1C->getValue();
4312 unsigned ShiftAmt2 = (unsigned)Op1->getValue();
4313
4314 // Check for (A << c1) << c2 and (A >> c1) >> c2.
4315 if (isLeftShift == isShiftOfLeftShift) {
4316 // Do not fold these shifts if the first one is signed and the second one
4317 // is unsigned and this is a right shift. Further, don't do any folding
4318 // on them.
4319 if (isShiftOfSignedShift && isUnsignedShift && !isLeftShift)
4320 return 0;
Chris Lattner14553932006-01-06 07:12:35 +00004321
Chris Lattnereb372a02006-01-06 07:52:12 +00004322 unsigned Amt = ShiftAmt1+ShiftAmt2; // Fold into one big shift.
4323 if (Amt > Op0->getType()->getPrimitiveSizeInBits())
4324 Amt = Op0->getType()->getPrimitiveSizeInBits();
Chris Lattner14553932006-01-06 07:12:35 +00004325
Chris Lattnereb372a02006-01-06 07:52:12 +00004326 Value *Op = ShiftOp->getOperand(0);
4327 if (isShiftOfSignedShift != isSignedShift)
4328 Op = InsertNewInstBefore(new CastInst(Op, I.getType(), "tmp"), I);
4329 return new ShiftInst(I.getOpcode(), Op,
4330 ConstantUInt::get(Type::UByteTy, Amt));
4331 }
4332
4333 // Check for (A << c1) >> c2 or (A >> c1) << c2. If we are dealing with
4334 // signed types, we can only support the (A >> c1) << c2 configuration,
4335 // because it can not turn an arbitrary bit of A into a sign bit.
4336 if (isUnsignedShift || isLeftShift) {
4337 // Calculate bitmask for what gets shifted off the edge.
4338 Constant *C = ConstantIntegral::getAllOnesValue(I.getType());
4339 if (isLeftShift)
4340 C = ConstantExpr::getShl(C, ShiftAmt1C);
4341 else
Chris Lattner9cbfbc22006-01-07 01:32:28 +00004342 C = ConstantExpr::getUShr(C, ShiftAmt1C);
Chris Lattnereb372a02006-01-06 07:52:12 +00004343
4344 Value *Op = ShiftOp->getOperand(0);
4345 if (isShiftOfSignedShift != isSignedShift)
4346 Op = InsertNewInstBefore(new CastInst(Op, I.getType(),Op->getName()),I);
4347
4348 Instruction *Mask =
4349 BinaryOperator::createAnd(Op, C, Op->getName()+".mask");
4350 InsertNewInstBefore(Mask, I);
4351
4352 // Figure out what flavor of shift we should use...
Chris Lattner9cbfbc22006-01-07 01:32:28 +00004353 if (ShiftAmt1 == ShiftAmt2) {
Chris Lattnereb372a02006-01-06 07:52:12 +00004354 return ReplaceInstUsesWith(I, Mask); // (A << c) >> c === A & c2
Chris Lattner9cbfbc22006-01-07 01:32:28 +00004355 } else if (ShiftAmt1 < ShiftAmt2) {
Chris Lattnereb372a02006-01-06 07:52:12 +00004356 return new ShiftInst(I.getOpcode(), Mask,
4357 ConstantUInt::get(Type::UByteTy, ShiftAmt2-ShiftAmt1));
Chris Lattner9cbfbc22006-01-07 01:32:28 +00004358 } else if (isShiftOfUnsignedShift || isShiftOfLeftShift) {
4359 if (isShiftOfUnsignedShift && !isShiftOfLeftShift && isSignedShift) {
4360 // Make sure to emit an unsigned shift right, not a signed one.
4361 Mask = InsertNewInstBefore(new CastInst(Mask,
4362 Mask->getType()->getUnsignedVersion(),
4363 Op->getName()), I);
4364 Mask = new ShiftInst(Instruction::Shr, Mask,
Chris Lattnereb372a02006-01-06 07:52:12 +00004365 ConstantUInt::get(Type::UByteTy, ShiftAmt1-ShiftAmt2));
Chris Lattner9cbfbc22006-01-07 01:32:28 +00004366 InsertNewInstBefore(Mask, I);
4367 return new CastInst(Mask, I.getType());
4368 } else {
4369 return new ShiftInst(ShiftOp->getOpcode(), Mask,
4370 ConstantUInt::get(Type::UByteTy, ShiftAmt1-ShiftAmt2));
4371 }
4372 } else {
4373 // (X >>s C1) << C2 where C1 > C2 === (X >>s (C1-C2)) & mask
4374 Op = InsertNewInstBefore(new CastInst(Mask,
4375 I.getType()->getSignedVersion(),
4376 Mask->getName()), I);
4377 Instruction *Shift =
4378 new ShiftInst(ShiftOp->getOpcode(), Op,
4379 ConstantUInt::get(Type::UByteTy, ShiftAmt1-ShiftAmt2));
4380 InsertNewInstBefore(Shift, I);
4381
4382 C = ConstantIntegral::getAllOnesValue(Shift->getType());
4383 C = ConstantExpr::getShl(C, Op1);
4384 Mask = BinaryOperator::createAnd(Shift, C, Op->getName()+".mask");
4385 InsertNewInstBefore(Mask, I);
4386 return new CastInst(Mask, I.getType());
Chris Lattnereb372a02006-01-06 07:52:12 +00004387 }
4388 } else {
Chris Lattner9cbfbc22006-01-07 01:32:28 +00004389 // We can handle signed (X << C1) >>s C2 if it's a sign extend. In
Chris Lattnereb372a02006-01-06 07:52:12 +00004390 // this case, C1 == C2 and C1 is 8, 16, or 32.
4391 if (ShiftAmt1 == ShiftAmt2) {
4392 const Type *SExtType = 0;
4393 switch (ShiftAmt1) {
4394 case 8 : SExtType = Type::SByteTy; break;
4395 case 16: SExtType = Type::ShortTy; break;
4396 case 32: SExtType = Type::IntTy; break;
4397 }
4398
4399 if (SExtType) {
4400 Instruction *NewTrunc = new CastInst(ShiftOp->getOperand(0),
4401 SExtType, "sext");
4402 InsertNewInstBefore(NewTrunc, I);
4403 return new CastInst(NewTrunc, I.getType());
Chris Lattnerdeaa0dd2003-08-12 21:53:41 +00004404 }
Chris Lattner27cb9db2005-09-18 05:12:10 +00004405 }
Chris Lattner86102b82005-01-01 16:22:27 +00004406 }
Chris Lattnereb372a02006-01-06 07:52:12 +00004407 }
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00004408 return 0;
4409}
4410
Chris Lattner4e2dbc62004-07-20 00:59:32 +00004411enum CastType {
4412 Noop = 0,
4413 Truncate = 1,
4414 Signext = 2,
4415 Zeroext = 3
4416};
4417
4418/// getCastType - In the future, we will split the cast instruction into these
4419/// various types. Until then, we have to do the analysis here.
4420static CastType getCastType(const Type *Src, const Type *Dest) {
4421 assert(Src->isIntegral() && Dest->isIntegral() &&
4422 "Only works on integral types!");
Chris Lattnerd1f46d32005-04-24 06:59:08 +00004423 unsigned SrcSize = Src->getPrimitiveSizeInBits();
4424 unsigned DestSize = Dest->getPrimitiveSizeInBits();
Chris Lattner4e2dbc62004-07-20 00:59:32 +00004425
4426 if (SrcSize == DestSize) return Noop;
4427 if (SrcSize > DestSize) return Truncate;
4428 if (Src->isSigned()) return Signext;
4429 return Zeroext;
4430}
4431
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00004432
Chris Lattner48a44f72002-05-02 17:06:02 +00004433// isEliminableCastOfCast - Return true if it is valid to eliminate the CI
4434// instruction.
4435//
Chris Lattnere154abf2006-01-19 07:40:22 +00004436static bool isEliminableCastOfCast(const Type *SrcTy, const Type *MidTy,
4437 const Type *DstTy, TargetData *TD) {
Chris Lattner48a44f72002-05-02 17:06:02 +00004438
Chris Lattner650b6da2002-08-02 20:00:25 +00004439 // It is legal to eliminate the instruction if casting A->B->A if the sizes
Misha Brukmanb1c93172005-04-21 23:48:37 +00004440 // are identical and the bits don't get reinterpreted (for example
Chris Lattner1638de42004-07-21 19:50:44 +00004441 // int->float->int would not be allowed).
Misha Brukmane5838c42003-05-20 18:45:36 +00004442 if (SrcTy == DstTy && SrcTy->isLosslesslyConvertibleTo(MidTy))
Chris Lattner650b6da2002-08-02 20:00:25 +00004443 return true;
Chris Lattner48a44f72002-05-02 17:06:02 +00004444
Chris Lattner4fbad962004-07-21 04:27:24 +00004445 // If we are casting between pointer and integer types, treat pointers as
4446 // integers of the appropriate size for the code below.
4447 if (isa<PointerType>(SrcTy)) SrcTy = TD->getIntPtrType();
4448 if (isa<PointerType>(MidTy)) MidTy = TD->getIntPtrType();
4449 if (isa<PointerType>(DstTy)) DstTy = TD->getIntPtrType();
Chris Lattner11ffd592004-07-20 05:21:00 +00004450
Chris Lattner48a44f72002-05-02 17:06:02 +00004451 // Allow free casting and conversion of sizes as long as the sign doesn't
4452 // change...
Chris Lattnerb0b412e2002-09-03 01:08:28 +00004453 if (SrcTy->isIntegral() && MidTy->isIntegral() && DstTy->isIntegral()) {
Chris Lattner4e2dbc62004-07-20 00:59:32 +00004454 CastType FirstCast = getCastType(SrcTy, MidTy);
4455 CastType SecondCast = getCastType(MidTy, DstTy);
Chris Lattner650b6da2002-08-02 20:00:25 +00004456
Chris Lattner4e2dbc62004-07-20 00:59:32 +00004457 // Capture the effect of these two casts. If the result is a legal cast,
4458 // the CastType is stored here, otherwise a special code is used.
4459 static const unsigned CastResult[] = {
4460 // First cast is noop
4461 0, 1, 2, 3,
4462 // First cast is a truncate
4463 1, 1, 4, 4, // trunc->extend is not safe to eliminate
4464 // First cast is a sign ext
Chris Lattner1638de42004-07-21 19:50:44 +00004465 2, 5, 2, 4, // signext->zeroext never ok
Chris Lattner4e2dbc62004-07-20 00:59:32 +00004466 // First cast is a zero ext
Chris Lattner1638de42004-07-21 19:50:44 +00004467 3, 5, 3, 3,
Chris Lattner4e2dbc62004-07-20 00:59:32 +00004468 };
4469
4470 unsigned Result = CastResult[FirstCast*4+SecondCast];
4471 switch (Result) {
4472 default: assert(0 && "Illegal table value!");
4473 case 0:
4474 case 1:
4475 case 2:
4476 case 3:
4477 // FIXME: in the future, when LLVM has explicit sign/zeroextends and
4478 // truncates, we could eliminate more casts.
4479 return (unsigned)getCastType(SrcTy, DstTy) == Result;
4480 case 4:
4481 return false; // Not possible to eliminate this here.
4482 case 5:
Chris Lattner1638de42004-07-21 19:50:44 +00004483 // Sign or zero extend followed by truncate is always ok if the result
4484 // is a truncate or noop.
4485 CastType ResultCast = getCastType(SrcTy, DstTy);
4486 if (ResultCast == Noop || ResultCast == Truncate)
4487 return true;
Misha Brukmanb1c93172005-04-21 23:48:37 +00004488 // Otherwise we are still growing the value, we are only safe if the
Chris Lattner1638de42004-07-21 19:50:44 +00004489 // result will match the sign/zeroextendness of the result.
4490 return ResultCast == FirstCast;
Chris Lattner3732aca2002-08-15 16:15:25 +00004491 }
Chris Lattner650b6da2002-08-02 20:00:25 +00004492 }
Chris Lattnere154abf2006-01-19 07:40:22 +00004493
4494 // If this is a cast from 'float -> double -> integer', cast from
4495 // 'float -> integer' directly, as the value isn't changed by the
4496 // float->double conversion.
4497 if (SrcTy->isFloatingPoint() && MidTy->isFloatingPoint() &&
4498 DstTy->isIntegral() &&
4499 SrcTy->getPrimitiveSize() < MidTy->getPrimitiveSize())
4500 return true;
4501
Chris Lattner48a44f72002-05-02 17:06:02 +00004502 return false;
4503}
4504
Chris Lattner11ffd592004-07-20 05:21:00 +00004505static bool ValueRequiresCast(const Value *V, const Type *Ty, TargetData *TD) {
Chris Lattnerdfae8be2003-07-24 17:35:25 +00004506 if (V->getType() == Ty || isa<Constant>(V)) return false;
4507 if (const CastInst *CI = dyn_cast<CastInst>(V))
Chris Lattner11ffd592004-07-20 05:21:00 +00004508 if (isEliminableCastOfCast(CI->getOperand(0)->getType(), CI->getType(), Ty,
4509 TD))
Chris Lattnerdfae8be2003-07-24 17:35:25 +00004510 return false;
4511 return true;
4512}
4513
4514/// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
4515/// InsertBefore instruction. This is specialized a bit to avoid inserting
4516/// casts that are known to not do anything...
4517///
4518Value *InstCombiner::InsertOperandCastBefore(Value *V, const Type *DestTy,
4519 Instruction *InsertBefore) {
4520 if (V->getType() == DestTy) return V;
4521 if (Constant *C = dyn_cast<Constant>(V))
4522 return ConstantExpr::getCast(C, DestTy);
4523
4524 CastInst *CI = new CastInst(V, DestTy, V->getName());
4525 InsertNewInstBefore(CI, *InsertBefore);
4526 return CI;
4527}
Chris Lattner48a44f72002-05-02 17:06:02 +00004528
Chris Lattner8f663e82005-10-29 04:36:15 +00004529/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
4530/// expression. If so, decompose it, returning some value X, such that Val is
4531/// X*Scale+Offset.
4532///
4533static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
4534 unsigned &Offset) {
4535 assert(Val->getType() == Type::UIntTy && "Unexpected allocation size type!");
4536 if (ConstantUInt *CI = dyn_cast<ConstantUInt>(Val)) {
4537 Offset = CI->getValue();
4538 Scale = 1;
4539 return ConstantUInt::get(Type::UIntTy, 0);
4540 } else if (Instruction *I = dyn_cast<Instruction>(Val)) {
4541 if (I->getNumOperands() == 2) {
4542 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I->getOperand(1))) {
4543 if (I->getOpcode() == Instruction::Shl) {
4544 // This is a value scaled by '1 << the shift amt'.
4545 Scale = 1U << CUI->getValue();
4546 Offset = 0;
4547 return I->getOperand(0);
4548 } else if (I->getOpcode() == Instruction::Mul) {
4549 // This value is scaled by 'CUI'.
4550 Scale = CUI->getValue();
4551 Offset = 0;
4552 return I->getOperand(0);
4553 } else if (I->getOpcode() == Instruction::Add) {
4554 // We have X+C. Check to see if we really have (X*C2)+C1, where C1 is
4555 // divisible by C2.
4556 unsigned SubScale;
4557 Value *SubVal = DecomposeSimpleLinearExpr(I->getOperand(0), SubScale,
4558 Offset);
4559 Offset += CUI->getValue();
4560 if (SubScale > 1 && (Offset % SubScale == 0)) {
4561 Scale = SubScale;
4562 return SubVal;
4563 }
4564 }
4565 }
4566 }
4567 }
4568
4569 // Otherwise, we can't look past this.
4570 Scale = 1;
4571 Offset = 0;
4572 return Val;
4573}
4574
4575
Chris Lattner216be912005-10-24 06:03:58 +00004576/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
4577/// try to eliminate the cast by moving the type information into the alloc.
4578Instruction *InstCombiner::PromoteCastOfAllocation(CastInst &CI,
4579 AllocationInst &AI) {
4580 const PointerType *PTy = dyn_cast<PointerType>(CI.getType());
Chris Lattnerbb171802005-10-27 05:53:56 +00004581 if (!PTy) return 0; // Not casting the allocation to a pointer type.
Chris Lattner216be912005-10-24 06:03:58 +00004582
Chris Lattnerac87beb2005-10-24 06:22:12 +00004583 // Remove any uses of AI that are dead.
4584 assert(!CI.use_empty() && "Dead instructions should be removed earlier!");
4585 std::vector<Instruction*> DeadUsers;
4586 for (Value::use_iterator UI = AI.use_begin(), E = AI.use_end(); UI != E; ) {
4587 Instruction *User = cast<Instruction>(*UI++);
4588 if (isInstructionTriviallyDead(User)) {
4589 while (UI != E && *UI == User)
4590 ++UI; // If this instruction uses AI more than once, don't break UI.
4591
4592 // Add operands to the worklist.
4593 AddUsesToWorkList(*User);
4594 ++NumDeadInst;
4595 DEBUG(std::cerr << "IC: DCE: " << *User);
4596
4597 User->eraseFromParent();
4598 removeFromWorkList(User);
4599 }
4600 }
4601
Chris Lattner216be912005-10-24 06:03:58 +00004602 // Get the type really allocated and the type casted to.
4603 const Type *AllocElTy = AI.getAllocatedType();
4604 const Type *CastElTy = PTy->getElementType();
4605 if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
Chris Lattner355ecc02005-10-24 06:26:18 +00004606
4607 unsigned AllocElTyAlign = TD->getTypeSize(AllocElTy);
4608 unsigned CastElTyAlign = TD->getTypeSize(CastElTy);
4609 if (CastElTyAlign < AllocElTyAlign) return 0;
4610
Chris Lattner46705b22005-10-24 06:35:18 +00004611 // If the allocation has multiple uses, only promote it if we are strictly
4612 // increasing the alignment of the resultant allocation. If we keep it the
4613 // same, we open the door to infinite loops of various kinds.
4614 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
4615
Chris Lattner216be912005-10-24 06:03:58 +00004616 uint64_t AllocElTySize = TD->getTypeSize(AllocElTy);
4617 uint64_t CastElTySize = TD->getTypeSize(CastElTy);
Chris Lattnerbb171802005-10-27 05:53:56 +00004618 if (CastElTySize == 0 || AllocElTySize == 0) return 0;
Chris Lattner355ecc02005-10-24 06:26:18 +00004619
Chris Lattner8270c332005-10-29 03:19:53 +00004620 // See if we can satisfy the modulus by pulling a scale out of the array
4621 // size argument.
Chris Lattner8f663e82005-10-29 04:36:15 +00004622 unsigned ArraySizeScale, ArrayOffset;
4623 Value *NumElements = // See if the array size is a decomposable linear expr.
4624 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
4625
Chris Lattner8270c332005-10-29 03:19:53 +00004626 // If we can now satisfy the modulus, by using a non-1 scale, we really can
4627 // do the xform.
Chris Lattner8f663e82005-10-29 04:36:15 +00004628 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
4629 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0;
Chris Lattnerb3ecf962005-10-27 06:12:00 +00004630
Chris Lattner8270c332005-10-29 03:19:53 +00004631 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
4632 Value *Amt = 0;
4633 if (Scale == 1) {
4634 Amt = NumElements;
4635 } else {
4636 Amt = ConstantUInt::get(Type::UIntTy, Scale);
4637 if (ConstantUInt *CI = dyn_cast<ConstantUInt>(NumElements))
4638 Amt = ConstantExpr::getMul(CI, cast<ConstantUInt>(Amt));
4639 else if (Scale != 1) {
4640 Instruction *Tmp = BinaryOperator::createMul(Amt, NumElements, "tmp");
4641 Amt = InsertNewInstBefore(Tmp, AI);
Chris Lattnerb3ecf962005-10-27 06:12:00 +00004642 }
Chris Lattnerbb171802005-10-27 05:53:56 +00004643 }
4644
Chris Lattner8f663e82005-10-29 04:36:15 +00004645 if (unsigned Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
4646 Value *Off = ConstantUInt::get(Type::UIntTy, Offset);
4647 Instruction *Tmp = BinaryOperator::createAdd(Amt, Off, "tmp");
4648 Amt = InsertNewInstBefore(Tmp, AI);
4649 }
4650
Chris Lattner216be912005-10-24 06:03:58 +00004651 std::string Name = AI.getName(); AI.setName("");
4652 AllocationInst *New;
4653 if (isa<MallocInst>(AI))
Nate Begeman848622f2005-11-05 09:21:28 +00004654 New = new MallocInst(CastElTy, Amt, AI.getAlignment(), Name);
Chris Lattner216be912005-10-24 06:03:58 +00004655 else
Nate Begeman848622f2005-11-05 09:21:28 +00004656 New = new AllocaInst(CastElTy, Amt, AI.getAlignment(), Name);
Chris Lattner216be912005-10-24 06:03:58 +00004657 InsertNewInstBefore(New, AI);
Chris Lattner46705b22005-10-24 06:35:18 +00004658
4659 // If the allocation has multiple uses, insert a cast and change all things
4660 // that used it to use the new cast. This will also hack on CI, but it will
4661 // die soon.
4662 if (!AI.hasOneUse()) {
4663 AddUsesToWorkList(AI);
4664 CastInst *NewCast = new CastInst(New, AI.getType(), "tmpcast");
4665 InsertNewInstBefore(NewCast, AI);
4666 AI.replaceAllUsesWith(NewCast);
4667 }
Chris Lattner216be912005-10-24 06:03:58 +00004668 return ReplaceInstUsesWith(CI, New);
4669}
4670
4671
Chris Lattner48a44f72002-05-02 17:06:02 +00004672// CastInst simplification
Chris Lattner260ab202002-04-18 17:39:14 +00004673//
Chris Lattner113f4f42002-06-25 16:13:24 +00004674Instruction *InstCombiner::visitCastInst(CastInst &CI) {
Chris Lattner55d4bda2003-06-23 21:59:52 +00004675 Value *Src = CI.getOperand(0);
4676
Chris Lattner48a44f72002-05-02 17:06:02 +00004677 // If the user is casting a value to the same type, eliminate this cast
4678 // instruction...
Chris Lattner55d4bda2003-06-23 21:59:52 +00004679 if (CI.getType() == Src->getType())
4680 return ReplaceInstUsesWith(CI, Src);
Chris Lattner48a44f72002-05-02 17:06:02 +00004681
Chris Lattner81a7a232004-10-16 18:11:37 +00004682 if (isa<UndefValue>(Src)) // cast undef -> undef
4683 return ReplaceInstUsesWith(CI, UndefValue::get(CI.getType()));
4684
Chris Lattner48a44f72002-05-02 17:06:02 +00004685 // If casting the result of another cast instruction, try to eliminate this
4686 // one!
4687 //
Chris Lattner86102b82005-01-01 16:22:27 +00004688 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
4689 Value *A = CSrc->getOperand(0);
4690 if (isEliminableCastOfCast(A->getType(), CSrc->getType(),
4691 CI.getType(), TD)) {
Chris Lattner48a44f72002-05-02 17:06:02 +00004692 // This instruction now refers directly to the cast's src operand. This
4693 // has a good chance of making CSrc dead.
Chris Lattner113f4f42002-06-25 16:13:24 +00004694 CI.setOperand(0, CSrc->getOperand(0));
4695 return &CI;
Chris Lattner48a44f72002-05-02 17:06:02 +00004696 }
4697
Chris Lattner650b6da2002-08-02 20:00:25 +00004698 // If this is an A->B->A cast, and we are dealing with integral types, try
4699 // to convert this into a logical 'and' instruction.
4700 //
Misha Brukmanb1c93172005-04-21 23:48:37 +00004701 if (A->getType()->isInteger() &&
Chris Lattnerb0b412e2002-09-03 01:08:28 +00004702 CI.getType()->isInteger() && CSrc->getType()->isInteger() &&
Chris Lattner86102b82005-01-01 16:22:27 +00004703 CSrc->getType()->isUnsigned() && // B->A cast must zero extend
Chris Lattnerd1f46d32005-04-24 06:59:08 +00004704 CSrc->getType()->getPrimitiveSizeInBits() <
4705 CI.getType()->getPrimitiveSizeInBits()&&
4706 A->getType()->getPrimitiveSizeInBits() ==
4707 CI.getType()->getPrimitiveSizeInBits()) {
Chris Lattner650b6da2002-08-02 20:00:25 +00004708 assert(CSrc->getType() != Type::ULongTy &&
4709 "Cannot have type bigger than ulong!");
Chris Lattner77defba2006-02-07 07:00:41 +00004710 uint64_t AndValue = CSrc->getType()->getIntegralTypeMask();
Chris Lattner86102b82005-01-01 16:22:27 +00004711 Constant *AndOp = ConstantUInt::get(A->getType()->getUnsignedVersion(),
4712 AndValue);
4713 AndOp = ConstantExpr::getCast(AndOp, A->getType());
4714 Instruction *And = BinaryOperator::createAnd(CSrc->getOperand(0), AndOp);
4715 if (And->getType() != CI.getType()) {
4716 And->setName(CSrc->getName()+".mask");
4717 InsertNewInstBefore(And, CI);
4718 And = new CastInst(And, CI.getType());
4719 }
4720 return And;
Chris Lattner650b6da2002-08-02 20:00:25 +00004721 }
4722 }
Chris Lattner2590e512006-02-07 06:56:34 +00004723
Chris Lattner03841652004-05-25 04:29:21 +00004724 // If this is a cast to bool, turn it into the appropriate setne instruction.
4725 if (CI.getType() == Type::BoolTy)
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00004726 return BinaryOperator::createSetNE(CI.getOperand(0),
Chris Lattner03841652004-05-25 04:29:21 +00004727 Constant::getNullValue(CI.getOperand(0)->getType()));
4728
Chris Lattner2590e512006-02-07 06:56:34 +00004729 // See if we can simplify any instructions used by the LHS whose sole
4730 // purpose is to compute bits we don't care about.
Chris Lattner0157e7f2006-02-11 09:31:47 +00004731 if (CI.getType()->isInteger() && CI.getOperand(0)->getType()->isIntegral()) {
4732 uint64_t KnownZero, KnownOne;
4733 if (SimplifyDemandedBits(&CI, CI.getType()->getIntegralTypeMask(),
4734 KnownZero, KnownOne))
4735 return &CI;
4736 }
Chris Lattner2590e512006-02-07 06:56:34 +00004737
Chris Lattnerd0d51602003-06-21 23:12:02 +00004738 // If casting the result of a getelementptr instruction with no offset, turn
4739 // this into a cast of the original pointer!
4740 //
Chris Lattner55d4bda2003-06-23 21:59:52 +00004741 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
Chris Lattnerd0d51602003-06-21 23:12:02 +00004742 bool AllZeroOperands = true;
4743 for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
4744 if (!isa<Constant>(GEP->getOperand(i)) ||
4745 !cast<Constant>(GEP->getOperand(i))->isNullValue()) {
4746 AllZeroOperands = false;
4747 break;
4748 }
4749 if (AllZeroOperands) {
4750 CI.setOperand(0, GEP->getOperand(0));
4751 return &CI;
4752 }
4753 }
4754
Chris Lattnerf4ad1652003-11-02 05:57:39 +00004755 // If we are casting a malloc or alloca to a pointer to a type of the same
4756 // size, rewrite the allocation instruction to allocate the "right" type.
4757 //
4758 if (AllocationInst *AI = dyn_cast<AllocationInst>(Src))
Chris Lattner216be912005-10-24 06:03:58 +00004759 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
4760 return V;
Chris Lattnerf4ad1652003-11-02 05:57:39 +00004761
Chris Lattner86102b82005-01-01 16:22:27 +00004762 if (SelectInst *SI = dyn_cast<SelectInst>(Src))
4763 if (Instruction *NV = FoldOpIntoSelect(CI, SI, this))
4764 return NV;
Chris Lattner6a4adcd2004-09-29 05:07:12 +00004765 if (isa<PHINode>(Src))
4766 if (Instruction *NV = FoldOpIntoPhi(CI))
4767 return NV;
4768
Chris Lattnerdfae8be2003-07-24 17:35:25 +00004769 // If the source value is an instruction with only this use, we can attempt to
4770 // propagate the cast into the instruction. Also, only handle integral types
4771 // for now.
4772 if (Instruction *SrcI = dyn_cast<Instruction>(Src))
Chris Lattnerf95d9b92003-10-15 16:48:29 +00004773 if (SrcI->hasOneUse() && Src->getType()->isIntegral() &&
Chris Lattnerdfae8be2003-07-24 17:35:25 +00004774 CI.getType()->isInteger()) { // Don't mess with casts to bool here
4775 const Type *DestTy = CI.getType();
Chris Lattnerd1f46d32005-04-24 06:59:08 +00004776 unsigned SrcBitSize = Src->getType()->getPrimitiveSizeInBits();
4777 unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
Chris Lattnerdfae8be2003-07-24 17:35:25 +00004778
4779 Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
4780 Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;
4781
4782 switch (SrcI->getOpcode()) {
4783 case Instruction::Add:
4784 case Instruction::Mul:
4785 case Instruction::And:
4786 case Instruction::Or:
4787 case Instruction::Xor:
4788 // If we are discarding information, or just changing the sign, rewrite.
4789 if (DestBitSize <= SrcBitSize && DestBitSize != 1) {
4790 // Don't insert two casts if they cannot be eliminated. We allow two
4791 // casts to be inserted if the sizes are the same. This could only be
4792 // converting signedness, which is a noop.
Chris Lattner11ffd592004-07-20 05:21:00 +00004793 if (DestBitSize == SrcBitSize || !ValueRequiresCast(Op1, DestTy,TD) ||
4794 !ValueRequiresCast(Op0, DestTy, TD)) {
Chris Lattnerdfae8be2003-07-24 17:35:25 +00004795 Value *Op0c = InsertOperandCastBefore(Op0, DestTy, SrcI);
4796 Value *Op1c = InsertOperandCastBefore(Op1, DestTy, SrcI);
4797 return BinaryOperator::create(cast<BinaryOperator>(SrcI)
4798 ->getOpcode(), Op0c, Op1c);
4799 }
4800 }
Chris Lattner72086162005-05-06 02:07:39 +00004801
4802 // cast (xor bool X, true) to int --> xor (cast bool X to int), 1
4803 if (SrcBitSize == 1 && SrcI->getOpcode() == Instruction::Xor &&
4804 Op1 == ConstantBool::True &&
4805 (!Op0->hasOneUse() || !isa<SetCondInst>(Op0))) {
4806 Value *New = InsertOperandCastBefore(Op0, DestTy, &CI);
4807 return BinaryOperator::createXor(New,
4808 ConstantInt::get(CI.getType(), 1));
4809 }
Chris Lattnerdfae8be2003-07-24 17:35:25 +00004810 break;
4811 case Instruction::Shl:
4812 // Allow changing the sign of the source operand. Do not allow changing
4813 // the size of the shift, UNLESS the shift amount is a constant. We
4814 // mush not change variable sized shifts to a smaller size, because it
4815 // is undefined to shift more bits out than exist in the value.
4816 if (DestBitSize == SrcBitSize ||
4817 (DestBitSize < SrcBitSize && isa<Constant>(Op1))) {
4818 Value *Op0c = InsertOperandCastBefore(Op0, DestTy, SrcI);
4819 return new ShiftInst(Instruction::Shl, Op0c, Op1);
4820 }
4821 break;
Chris Lattner87380412005-05-06 04:18:52 +00004822 case Instruction::Shr:
4823 // If this is a signed shr, and if all bits shifted in are about to be
4824 // truncated off, turn it into an unsigned shr to allow greater
4825 // simplifications.
4826 if (DestBitSize < SrcBitSize && Src->getType()->isSigned() &&
4827 isa<ConstantInt>(Op1)) {
4828 unsigned ShiftAmt = cast<ConstantUInt>(Op1)->getValue();
4829 if (SrcBitSize > ShiftAmt && SrcBitSize-ShiftAmt >= DestBitSize) {
4830 // Convert to unsigned.
4831 Value *N1 = InsertOperandCastBefore(Op0,
4832 Op0->getType()->getUnsignedVersion(), &CI);
4833 // Insert the new shift, which is now unsigned.
4834 N1 = InsertNewInstBefore(new ShiftInst(Instruction::Shr, N1,
4835 Op1, Src->getName()), CI);
4836 return new CastInst(N1, CI.getType());
4837 }
4838 }
4839 break;
4840
Chris Lattnerc7bfed02006-02-27 02:38:23 +00004841 case Instruction::SetEQ:
Chris Lattner809dfac2005-05-04 19:10:26 +00004842 case Instruction::SetNE:
Chris Lattnerc7bfed02006-02-27 02:38:23 +00004843 // We if we are just checking for a seteq of a single bit and casting it
4844 // to an integer. If so, shift the bit to the appropriate place then
4845 // cast to integer to avoid the comparison.
Chris Lattner809dfac2005-05-04 19:10:26 +00004846 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnerc7bfed02006-02-27 02:38:23 +00004847 uint64_t Op1CV = Op1C->getZExtValue();
4848 // cast (X == 0) to int --> X^1 iff X has only the low bit set.
4849 // cast (X == 0) to int --> (X>>1)^1 iff X has only the 2nd bit set.
4850 // cast (X == 1) to int --> X iff X has only the low bit set.
4851 // cast (X == 2) to int --> X>>1 iff X has only the 2nd bit set.
4852 // cast (X != 0) to int --> X iff X has only the low bit set.
4853 // cast (X != 0) to int --> X>>1 iff X has only the 2nd bit set.
4854 // cast (X != 1) to int --> X^1 iff X has only the low bit set.
4855 // cast (X != 2) to int --> (X>>1)^1 iff X has only the 2nd bit set.
4856 if (Op1CV == 0 || isPowerOf2_64(Op1CV)) {
4857 // If Op1C some other power of two, convert:
4858 uint64_t KnownZero, KnownOne;
4859 uint64_t TypeMask = Op1->getType()->getIntegralTypeMask();
4860 ComputeMaskedBits(Op0, TypeMask, KnownZero, KnownOne);
4861
4862 if (isPowerOf2_64(KnownZero^TypeMask)) { // Exactly one possible 1?
4863 bool isSetNE = SrcI->getOpcode() == Instruction::SetNE;
4864 if (Op1CV && (Op1CV != (KnownZero^TypeMask))) {
4865 // (X&4) == 2 --> false
4866 // (X&4) != 2 --> true
Chris Lattnerc5b6c9a2006-02-28 19:47:20 +00004867 Constant *Res = ConstantBool::get(isSetNE);
4868 Res = ConstantExpr::getCast(Res, CI.getType());
4869 return ReplaceInstUsesWith(CI, Res);
Chris Lattnerc7bfed02006-02-27 02:38:23 +00004870 }
4871
4872 unsigned ShiftAmt = Log2_64(KnownZero^TypeMask);
4873 Value *In = Op0;
4874 if (ShiftAmt) {
Chris Lattner4c2d3782005-05-06 01:53:19 +00004875 // Perform an unsigned shr by shiftamt. Convert input to
4876 // unsigned if it is signed.
Chris Lattner4c2d3782005-05-06 01:53:19 +00004877 if (In->getType()->isSigned())
4878 In = InsertNewInstBefore(new CastInst(In,
4879 In->getType()->getUnsignedVersion(), In->getName()),CI);
4880 // Insert the shift to put the result in the low bit.
4881 In = InsertNewInstBefore(new ShiftInst(Instruction::Shr, In,
Chris Lattnerc7bfed02006-02-27 02:38:23 +00004882 ConstantInt::get(Type::UByteTy, ShiftAmt),
4883 In->getName()+".lobit"), CI);
Chris Lattner4c2d3782005-05-06 01:53:19 +00004884 }
Chris Lattnerc7bfed02006-02-27 02:38:23 +00004885
4886 if ((Op1CV != 0) == isSetNE) { // Toggle the low bit.
4887 Constant *One = ConstantInt::get(In->getType(), 1);
4888 In = BinaryOperator::createXor(In, One, "tmp");
4889 InsertNewInstBefore(cast<Instruction>(In), CI);
Chris Lattner4c2d3782005-05-06 01:53:19 +00004890 }
Chris Lattnerc7bfed02006-02-27 02:38:23 +00004891
4892 if (CI.getType() == In->getType())
4893 return ReplaceInstUsesWith(CI, In);
4894 else
4895 return new CastInst(In, CI.getType());
Chris Lattner4c2d3782005-05-06 01:53:19 +00004896 }
Chris Lattner809dfac2005-05-04 19:10:26 +00004897 }
4898 }
4899 break;
Chris Lattnerdfae8be2003-07-24 17:35:25 +00004900 }
4901 }
Chris Lattnerbb171802005-10-27 05:53:56 +00004902
Chris Lattner260ab202002-04-18 17:39:14 +00004903 return 0;
Chris Lattnerca081252001-12-14 16:52:21 +00004904}
4905
Chris Lattner56e4d3d2004-04-09 23:46:01 +00004906/// GetSelectFoldableOperands - We want to turn code that looks like this:
4907/// %C = or %A, %B
4908/// %D = select %cond, %C, %A
4909/// into:
4910/// %C = select %cond, %B, 0
4911/// %D = or %A, %C
4912///
4913/// Assuming that the specified instruction is an operand to the select, return
4914/// a bitmask indicating which operands of this instruction are foldable if they
4915/// equal the other incoming value of the select.
4916///
4917static unsigned GetSelectFoldableOperands(Instruction *I) {
4918 switch (I->getOpcode()) {
4919 case Instruction::Add:
4920 case Instruction::Mul:
4921 case Instruction::And:
4922 case Instruction::Or:
4923 case Instruction::Xor:
4924 return 3; // Can fold through either operand.
4925 case Instruction::Sub: // Can only fold on the amount subtracted.
4926 case Instruction::Shl: // Can only fold on the shift amount.
4927 case Instruction::Shr:
Misha Brukmanb1c93172005-04-21 23:48:37 +00004928 return 1;
Chris Lattner56e4d3d2004-04-09 23:46:01 +00004929 default:
4930 return 0; // Cannot fold
4931 }
4932}
4933
4934/// GetSelectFoldableConstant - For the same transformation as the previous
4935/// function, return the identity constant that goes into the select.
4936static Constant *GetSelectFoldableConstant(Instruction *I) {
4937 switch (I->getOpcode()) {
4938 default: assert(0 && "This cannot happen!"); abort();
4939 case Instruction::Add:
4940 case Instruction::Sub:
4941 case Instruction::Or:
4942 case Instruction::Xor:
4943 return Constant::getNullValue(I->getType());
4944 case Instruction::Shl:
4945 case Instruction::Shr:
4946 return Constant::getNullValue(Type::UByteTy);
4947 case Instruction::And:
4948 return ConstantInt::getAllOnesValue(I->getType());
4949 case Instruction::Mul:
4950 return ConstantInt::get(I->getType(), 1);
4951 }
4952}
4953
Chris Lattner411336f2005-01-19 21:50:18 +00004954/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
4955/// have the same opcode and only one use each. Try to simplify this.
4956Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
4957 Instruction *FI) {
4958 if (TI->getNumOperands() == 1) {
4959 // If this is a non-volatile load or a cast from the same type,
4960 // merge.
4961 if (TI->getOpcode() == Instruction::Cast) {
4962 if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
4963 return 0;
4964 } else {
4965 return 0; // unknown unary op.
4966 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00004967
Chris Lattner411336f2005-01-19 21:50:18 +00004968 // Fold this by inserting a select from the input values.
4969 SelectInst *NewSI = new SelectInst(SI.getCondition(), TI->getOperand(0),
4970 FI->getOperand(0), SI.getName()+".v");
4971 InsertNewInstBefore(NewSI, SI);
4972 return new CastInst(NewSI, TI->getType());
4973 }
4974
4975 // Only handle binary operators here.
4976 if (!isa<ShiftInst>(TI) && !isa<BinaryOperator>(TI))
4977 return 0;
4978
4979 // Figure out if the operations have any operands in common.
4980 Value *MatchOp, *OtherOpT, *OtherOpF;
4981 bool MatchIsOpZero;
4982 if (TI->getOperand(0) == FI->getOperand(0)) {
4983 MatchOp = TI->getOperand(0);
4984 OtherOpT = TI->getOperand(1);
4985 OtherOpF = FI->getOperand(1);
4986 MatchIsOpZero = true;
4987 } else if (TI->getOperand(1) == FI->getOperand(1)) {
4988 MatchOp = TI->getOperand(1);
4989 OtherOpT = TI->getOperand(0);
4990 OtherOpF = FI->getOperand(0);
4991 MatchIsOpZero = false;
4992 } else if (!TI->isCommutative()) {
4993 return 0;
4994 } else if (TI->getOperand(0) == FI->getOperand(1)) {
4995 MatchOp = TI->getOperand(0);
4996 OtherOpT = TI->getOperand(1);
4997 OtherOpF = FI->getOperand(0);
4998 MatchIsOpZero = true;
4999 } else if (TI->getOperand(1) == FI->getOperand(0)) {
5000 MatchOp = TI->getOperand(1);
5001 OtherOpT = TI->getOperand(0);
5002 OtherOpF = FI->getOperand(1);
5003 MatchIsOpZero = true;
5004 } else {
5005 return 0;
5006 }
5007
5008 // If we reach here, they do have operations in common.
5009 SelectInst *NewSI = new SelectInst(SI.getCondition(), OtherOpT,
5010 OtherOpF, SI.getName()+".v");
5011 InsertNewInstBefore(NewSI, SI);
5012
5013 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
5014 if (MatchIsOpZero)
5015 return BinaryOperator::create(BO->getOpcode(), MatchOp, NewSI);
5016 else
5017 return BinaryOperator::create(BO->getOpcode(), NewSI, MatchOp);
5018 } else {
5019 if (MatchIsOpZero)
5020 return new ShiftInst(cast<ShiftInst>(TI)->getOpcode(), MatchOp, NewSI);
5021 else
5022 return new ShiftInst(cast<ShiftInst>(TI)->getOpcode(), NewSI, MatchOp);
5023 }
5024}
5025
Chris Lattnerb909e8b2004-03-12 05:52:32 +00005026Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
Chris Lattner533bc492004-03-30 19:37:13 +00005027 Value *CondVal = SI.getCondition();
5028 Value *TrueVal = SI.getTrueValue();
5029 Value *FalseVal = SI.getFalseValue();
5030
5031 // select true, X, Y -> X
5032 // select false, X, Y -> Y
5033 if (ConstantBool *C = dyn_cast<ConstantBool>(CondVal))
Chris Lattnerb909e8b2004-03-12 05:52:32 +00005034 if (C == ConstantBool::True)
Chris Lattner533bc492004-03-30 19:37:13 +00005035 return ReplaceInstUsesWith(SI, TrueVal);
Chris Lattnerb909e8b2004-03-12 05:52:32 +00005036 else {
5037 assert(C == ConstantBool::False);
Chris Lattner533bc492004-03-30 19:37:13 +00005038 return ReplaceInstUsesWith(SI, FalseVal);
Chris Lattnerb909e8b2004-03-12 05:52:32 +00005039 }
Chris Lattner533bc492004-03-30 19:37:13 +00005040
5041 // select C, X, X -> X
5042 if (TrueVal == FalseVal)
5043 return ReplaceInstUsesWith(SI, TrueVal);
5044
Chris Lattner81a7a232004-10-16 18:11:37 +00005045 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
5046 return ReplaceInstUsesWith(SI, FalseVal);
5047 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
5048 return ReplaceInstUsesWith(SI, TrueVal);
5049 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
5050 if (isa<Constant>(TrueVal))
5051 return ReplaceInstUsesWith(SI, TrueVal);
5052 else
5053 return ReplaceInstUsesWith(SI, FalseVal);
5054 }
5055
Chris Lattner1c631e82004-04-08 04:43:23 +00005056 if (SI.getType() == Type::BoolTy)
5057 if (ConstantBool *C = dyn_cast<ConstantBool>(TrueVal)) {
5058 if (C == ConstantBool::True) {
5059 // Change: A = select B, true, C --> A = or B, C
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00005060 return BinaryOperator::createOr(CondVal, FalseVal);
Chris Lattner1c631e82004-04-08 04:43:23 +00005061 } else {
5062 // Change: A = select B, false, C --> A = and !B, C
5063 Value *NotCond =
5064 InsertNewInstBefore(BinaryOperator::createNot(CondVal,
5065 "not."+CondVal->getName()), SI);
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00005066 return BinaryOperator::createAnd(NotCond, FalseVal);
Chris Lattner1c631e82004-04-08 04:43:23 +00005067 }
5068 } else if (ConstantBool *C = dyn_cast<ConstantBool>(FalseVal)) {
5069 if (C == ConstantBool::False) {
5070 // Change: A = select B, C, false --> A = and B, C
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00005071 return BinaryOperator::createAnd(CondVal, TrueVal);
Chris Lattner1c631e82004-04-08 04:43:23 +00005072 } else {
5073 // Change: A = select B, C, true --> A = or !B, C
5074 Value *NotCond =
5075 InsertNewInstBefore(BinaryOperator::createNot(CondVal,
5076 "not."+CondVal->getName()), SI);
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00005077 return BinaryOperator::createOr(NotCond, TrueVal);
Chris Lattner1c631e82004-04-08 04:43:23 +00005078 }
5079 }
5080
Chris Lattner183b3362004-04-09 19:05:30 +00005081 // Selecting between two integer constants?
5082 if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
5083 if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
5084 // select C, 1, 0 -> cast C to int
5085 if (FalseValC->isNullValue() && TrueValC->getRawValue() == 1) {
5086 return new CastInst(CondVal, SI.getType());
5087 } else if (TrueValC->isNullValue() && FalseValC->getRawValue() == 1) {
5088 // select C, 0, 1 -> cast !C to int
5089 Value *NotCond =
5090 InsertNewInstBefore(BinaryOperator::createNot(CondVal,
Chris Lattnercf7baf32004-04-09 18:19:44 +00005091 "not."+CondVal->getName()), SI);
Chris Lattner183b3362004-04-09 19:05:30 +00005092 return new CastInst(NotCond, SI.getType());
Chris Lattnercf7baf32004-04-09 18:19:44 +00005093 }
Chris Lattner35167c32004-06-09 07:59:58 +00005094
5095 // If one of the constants is zero (we know they can't both be) and we
5096 // have a setcc instruction with zero, and we have an 'and' with the
5097 // non-constant value, eliminate this whole mess. This corresponds to
5098 // cases like this: ((X & 27) ? 27 : 0)
5099 if (TrueValC->isNullValue() || FalseValC->isNullValue())
5100 if (Instruction *IC = dyn_cast<Instruction>(SI.getCondition()))
5101 if ((IC->getOpcode() == Instruction::SetEQ ||
5102 IC->getOpcode() == Instruction::SetNE) &&
5103 isa<ConstantInt>(IC->getOperand(1)) &&
5104 cast<Constant>(IC->getOperand(1))->isNullValue())
5105 if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
5106 if (ICA->getOpcode() == Instruction::And &&
Misha Brukmanb1c93172005-04-21 23:48:37 +00005107 isa<ConstantInt>(ICA->getOperand(1)) &&
5108 (ICA->getOperand(1) == TrueValC ||
5109 ICA->getOperand(1) == FalseValC) &&
Chris Lattner35167c32004-06-09 07:59:58 +00005110 isOneBitSet(cast<ConstantInt>(ICA->getOperand(1)))) {
5111 // Okay, now we know that everything is set up, we just don't
5112 // know whether we have a setne or seteq and whether the true or
5113 // false val is the zero.
5114 bool ShouldNotVal = !TrueValC->isNullValue();
5115 ShouldNotVal ^= IC->getOpcode() == Instruction::SetNE;
5116 Value *V = ICA;
5117 if (ShouldNotVal)
5118 V = InsertNewInstBefore(BinaryOperator::create(
5119 Instruction::Xor, V, ICA->getOperand(1)), SI);
5120 return ReplaceInstUsesWith(SI, V);
5121 }
Chris Lattner533bc492004-03-30 19:37:13 +00005122 }
Chris Lattner623fba12004-04-10 22:21:27 +00005123
5124 // See if we are selecting two values based on a comparison of the two values.
5125 if (SetCondInst *SCI = dyn_cast<SetCondInst>(CondVal)) {
5126 if (SCI->getOperand(0) == TrueVal && SCI->getOperand(1) == FalseVal) {
5127 // Transform (X == Y) ? X : Y -> Y
5128 if (SCI->getOpcode() == Instruction::SetEQ)
5129 return ReplaceInstUsesWith(SI, FalseVal);
5130 // Transform (X != Y) ? X : Y -> X
5131 if (SCI->getOpcode() == Instruction::SetNE)
5132 return ReplaceInstUsesWith(SI, TrueVal);
5133 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
5134
5135 } else if (SCI->getOperand(0) == FalseVal && SCI->getOperand(1) == TrueVal){
5136 // Transform (X == Y) ? Y : X -> X
5137 if (SCI->getOpcode() == Instruction::SetEQ)
Chris Lattner24cf0202004-04-11 01:39:19 +00005138 return ReplaceInstUsesWith(SI, FalseVal);
Chris Lattner623fba12004-04-10 22:21:27 +00005139 // Transform (X != Y) ? Y : X -> Y
5140 if (SCI->getOpcode() == Instruction::SetNE)
Chris Lattner24cf0202004-04-11 01:39:19 +00005141 return ReplaceInstUsesWith(SI, TrueVal);
Chris Lattner623fba12004-04-10 22:21:27 +00005142 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
5143 }
5144 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00005145
Chris Lattnera04c9042005-01-13 22:52:24 +00005146 if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
5147 if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
5148 if (TI->hasOneUse() && FI->hasOneUse()) {
5149 bool isInverse = false;
5150 Instruction *AddOp = 0, *SubOp = 0;
5151
Chris Lattner411336f2005-01-19 21:50:18 +00005152 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
5153 if (TI->getOpcode() == FI->getOpcode())
5154 if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
5155 return IV;
5156
5157 // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is
5158 // even legal for FP.
Chris Lattnera04c9042005-01-13 22:52:24 +00005159 if (TI->getOpcode() == Instruction::Sub &&
5160 FI->getOpcode() == Instruction::Add) {
5161 AddOp = FI; SubOp = TI;
5162 } else if (FI->getOpcode() == Instruction::Sub &&
5163 TI->getOpcode() == Instruction::Add) {
5164 AddOp = TI; SubOp = FI;
5165 }
5166
5167 if (AddOp) {
5168 Value *OtherAddOp = 0;
5169 if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
5170 OtherAddOp = AddOp->getOperand(1);
5171 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
5172 OtherAddOp = AddOp->getOperand(0);
5173 }
5174
5175 if (OtherAddOp) {
Chris Lattnerb580d262006-02-24 18:05:58 +00005176 // So at this point we know we have (Y -> OtherAddOp):
5177 // select C, (add X, Y), (sub X, Z)
5178 Value *NegVal; // Compute -Z
5179 if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
5180 NegVal = ConstantExpr::getNeg(C);
5181 } else {
5182 NegVal = InsertNewInstBefore(
5183 BinaryOperator::createNeg(SubOp->getOperand(1), "tmp"), SI);
Chris Lattnera04c9042005-01-13 22:52:24 +00005184 }
Chris Lattnerb580d262006-02-24 18:05:58 +00005185
5186 Value *NewTrueOp = OtherAddOp;
5187 Value *NewFalseOp = NegVal;
5188 if (AddOp != TI)
5189 std::swap(NewTrueOp, NewFalseOp);
5190 Instruction *NewSel =
5191 new SelectInst(CondVal, NewTrueOp,NewFalseOp,SI.getName()+".p");
5192
5193 NewSel = InsertNewInstBefore(NewSel, SI);
5194 return BinaryOperator::createAdd(SubOp->getOperand(0), NewSel);
Chris Lattnera04c9042005-01-13 22:52:24 +00005195 }
5196 }
5197 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00005198
Chris Lattner56e4d3d2004-04-09 23:46:01 +00005199 // See if we can fold the select into one of our operands.
5200 if (SI.getType()->isInteger()) {
5201 // See the comment above GetSelectFoldableOperands for a description of the
5202 // transformation we are doing here.
5203 if (Instruction *TVI = dyn_cast<Instruction>(TrueVal))
5204 if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
5205 !isa<Constant>(FalseVal))
5206 if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
5207 unsigned OpToFold = 0;
5208 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
5209 OpToFold = 1;
5210 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
5211 OpToFold = 2;
5212 }
5213
5214 if (OpToFold) {
5215 Constant *C = GetSelectFoldableConstant(TVI);
5216 std::string Name = TVI->getName(); TVI->setName("");
5217 Instruction *NewSel =
5218 new SelectInst(SI.getCondition(), TVI->getOperand(2-OpToFold), C,
5219 Name);
5220 InsertNewInstBefore(NewSel, SI);
5221 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
5222 return BinaryOperator::create(BO->getOpcode(), FalseVal, NewSel);
5223 else if (ShiftInst *SI = dyn_cast<ShiftInst>(TVI))
5224 return new ShiftInst(SI->getOpcode(), FalseVal, NewSel);
5225 else {
5226 assert(0 && "Unknown instruction!!");
5227 }
5228 }
5229 }
Chris Lattner6862fbd2004-09-29 17:40:11 +00005230
Chris Lattner56e4d3d2004-04-09 23:46:01 +00005231 if (Instruction *FVI = dyn_cast<Instruction>(FalseVal))
5232 if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
5233 !isa<Constant>(TrueVal))
5234 if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
5235 unsigned OpToFold = 0;
5236 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
5237 OpToFold = 1;
5238 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
5239 OpToFold = 2;
5240 }
5241
5242 if (OpToFold) {
5243 Constant *C = GetSelectFoldableConstant(FVI);
5244 std::string Name = FVI->getName(); FVI->setName("");
5245 Instruction *NewSel =
5246 new SelectInst(SI.getCondition(), C, FVI->getOperand(2-OpToFold),
5247 Name);
5248 InsertNewInstBefore(NewSel, SI);
5249 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
5250 return BinaryOperator::create(BO->getOpcode(), TrueVal, NewSel);
5251 else if (ShiftInst *SI = dyn_cast<ShiftInst>(FVI))
5252 return new ShiftInst(SI->getOpcode(), TrueVal, NewSel);
5253 else {
5254 assert(0 && "Unknown instruction!!");
5255 }
5256 }
5257 }
5258 }
Chris Lattnerd6f636a2005-04-24 07:30:14 +00005259
5260 if (BinaryOperator::isNot(CondVal)) {
5261 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
5262 SI.setOperand(1, FalseVal);
5263 SI.setOperand(2, TrueVal);
5264 return &SI;
5265 }
5266
Chris Lattnerb909e8b2004-03-12 05:52:32 +00005267 return 0;
5268}
5269
Chris Lattner82f2ef22006-03-06 20:18:44 +00005270/// GetKnownAlignment - If the specified pointer has an alignment that we can
5271/// determine, return it, otherwise return 0.
5272static unsigned GetKnownAlignment(Value *V, TargetData *TD) {
5273 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
5274 unsigned Align = GV->getAlignment();
5275 if (Align == 0 && TD)
5276 Align = TD->getTypeAlignment(GV->getType()->getElementType());
5277 return Align;
5278 } else if (AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
5279 unsigned Align = AI->getAlignment();
5280 if (Align == 0 && TD) {
5281 if (isa<AllocaInst>(AI))
5282 Align = TD->getTypeAlignment(AI->getType()->getElementType());
5283 else if (isa<MallocInst>(AI)) {
5284 // Malloc returns maximally aligned memory.
5285 Align = TD->getTypeAlignment(AI->getType()->getElementType());
5286 Align = std::max(Align, (unsigned)TD->getTypeAlignment(Type::DoubleTy));
5287 Align = std::max(Align, (unsigned)TD->getTypeAlignment(Type::LongTy));
5288 }
5289 }
5290 return Align;
Chris Lattner53ef5a02006-03-07 01:28:57 +00005291 } else if (isa<CastInst>(V) ||
5292 (isa<ConstantExpr>(V) &&
5293 cast<ConstantExpr>(V)->getOpcode() == Instruction::Cast)) {
5294 User *CI = cast<User>(V);
Chris Lattner82f2ef22006-03-06 20:18:44 +00005295 if (isa<PointerType>(CI->getOperand(0)->getType()))
5296 return GetKnownAlignment(CI->getOperand(0), TD);
5297 return 0;
Chris Lattner53ef5a02006-03-07 01:28:57 +00005298 } else if (isa<GetElementPtrInst>(V) ||
5299 (isa<ConstantExpr>(V) &&
5300 cast<ConstantExpr>(V)->getOpcode()==Instruction::GetElementPtr)) {
5301 User *GEPI = cast<User>(V);
Chris Lattner82f2ef22006-03-06 20:18:44 +00005302 unsigned BaseAlignment = GetKnownAlignment(GEPI->getOperand(0), TD);
5303 if (BaseAlignment == 0) return 0;
5304
5305 // If all indexes are zero, it is just the alignment of the base pointer.
5306 bool AllZeroOperands = true;
5307 for (unsigned i = 1, e = GEPI->getNumOperands(); i != e; ++i)
5308 if (!isa<Constant>(GEPI->getOperand(i)) ||
5309 !cast<Constant>(GEPI->getOperand(i))->isNullValue()) {
5310 AllZeroOperands = false;
5311 break;
5312 }
5313 if (AllZeroOperands)
5314 return BaseAlignment;
5315
5316 // Otherwise, if the base alignment is >= the alignment we expect for the
5317 // base pointer type, then we know that the resultant pointer is aligned at
5318 // least as much as its type requires.
5319 if (!TD) return 0;
5320
5321 const Type *BasePtrTy = GEPI->getOperand(0)->getType();
5322 if (TD->getTypeAlignment(cast<PointerType>(BasePtrTy)->getElementType())
Chris Lattner53ef5a02006-03-07 01:28:57 +00005323 <= BaseAlignment) {
5324 const Type *GEPTy = GEPI->getType();
5325 return TD->getTypeAlignment(cast<PointerType>(GEPTy)->getElementType());
5326 }
Chris Lattner82f2ef22006-03-06 20:18:44 +00005327 return 0;
5328 }
5329 return 0;
5330}
5331
Chris Lattnerb909e8b2004-03-12 05:52:32 +00005332
Chris Lattnerc66b2232006-01-13 20:11:04 +00005333/// visitCallInst - CallInst simplification. This mostly only handles folding
5334/// of intrinsic instructions. For normal calls, it allows visitCallSite to do
5335/// the heavy lifting.
5336///
Chris Lattner970c33a2003-06-19 17:00:31 +00005337Instruction *InstCombiner::visitCallInst(CallInst &CI) {
Chris Lattnerc66b2232006-01-13 20:11:04 +00005338 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
5339 if (!II) return visitCallSite(&CI);
5340
Chris Lattner51ea1272004-02-28 05:22:00 +00005341 // Intrinsics cannot occur in an invoke, so handle them here instead of in
5342 // visitCallSite.
Chris Lattnerc66b2232006-01-13 20:11:04 +00005343 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
Chris Lattner00648e12004-10-12 04:52:52 +00005344 bool Changed = false;
5345
5346 // memmove/cpy/set of zero bytes is a noop.
5347 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
5348 if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
5349
Chris Lattner00648e12004-10-12 04:52:52 +00005350 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
5351 if (CI->getRawValue() == 1) {
5352 // Replace the instruction with just byte operations. We would
5353 // transform other cases to loads/stores, but we don't know if
5354 // alignment is sufficient.
5355 }
Chris Lattner51ea1272004-02-28 05:22:00 +00005356 }
5357
Chris Lattner00648e12004-10-12 04:52:52 +00005358 // If we have a memmove and the source operation is a constant global,
5359 // then the source and dest pointers can't alias, so we can change this
5360 // into a call to memcpy.
Chris Lattner82f2ef22006-03-06 20:18:44 +00005361 if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(II)) {
Chris Lattner00648e12004-10-12 04:52:52 +00005362 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
5363 if (GVSrc->isConstant()) {
5364 Module *M = CI.getParent()->getParent()->getParent();
Chris Lattner681ef2f2006-03-03 01:34:17 +00005365 const char *Name;
5366 if (CI.getCalledFunction()->getFunctionType()->getParamType(3) ==
5367 Type::UIntTy)
5368 Name = "llvm.memcpy.i32";
5369 else
5370 Name = "llvm.memcpy.i64";
5371 Function *MemCpy = M->getOrInsertFunction(Name,
Chris Lattner00648e12004-10-12 04:52:52 +00005372 CI.getCalledFunction()->getFunctionType());
5373 CI.setOperand(0, MemCpy);
5374 Changed = true;
5375 }
Chris Lattner82f2ef22006-03-06 20:18:44 +00005376 }
Chris Lattner00648e12004-10-12 04:52:52 +00005377
Chris Lattner82f2ef22006-03-06 20:18:44 +00005378 // If we can determine a pointer alignment that is bigger than currently
5379 // set, update the alignment.
5380 if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
5381 unsigned Alignment1 = GetKnownAlignment(MI->getOperand(1), TD);
5382 unsigned Alignment2 = GetKnownAlignment(MI->getOperand(2), TD);
5383 unsigned Align = std::min(Alignment1, Alignment2);
5384 if (MI->getAlignment()->getRawValue() < Align) {
5385 MI->setAlignment(ConstantUInt::get(Type::UIntTy, Align));
5386 Changed = true;
5387 }
5388 } else if (isa<MemSetInst>(MI)) {
5389 unsigned Alignment = GetKnownAlignment(MI->getDest(), TD);
5390 if (MI->getAlignment()->getRawValue() < Alignment) {
5391 MI->setAlignment(ConstantUInt::get(Type::UIntTy, Alignment));
5392 Changed = true;
5393 }
5394 }
5395
Chris Lattnerc66b2232006-01-13 20:11:04 +00005396 if (Changed) return II;
Chris Lattner503221f2006-01-13 21:28:09 +00005397 } else {
5398 switch (II->getIntrinsicID()) {
5399 default: break;
5400 case Intrinsic::stackrestore: {
5401 // If the save is right next to the restore, remove the restore. This can
5402 // happen when variable allocas are DCE'd.
5403 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
5404 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
5405 BasicBlock::iterator BI = SS;
5406 if (&*++BI == II)
5407 return EraseInstFromFunction(CI);
5408 }
5409 }
5410
5411 // If the stack restore is in a return/unwind block and if there are no
5412 // allocas or calls between the restore and the return, nuke the restore.
5413 TerminatorInst *TI = II->getParent()->getTerminator();
5414 if (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)) {
5415 BasicBlock::iterator BI = II;
5416 bool CannotRemove = false;
5417 for (++BI; &*BI != TI; ++BI) {
5418 if (isa<AllocaInst>(BI) ||
5419 (isa<CallInst>(BI) && !isa<IntrinsicInst>(BI))) {
5420 CannotRemove = true;
5421 break;
5422 }
5423 }
5424 if (!CannotRemove)
5425 return EraseInstFromFunction(CI);
5426 }
5427 break;
5428 }
5429 }
Chris Lattner00648e12004-10-12 04:52:52 +00005430 }
5431
Chris Lattnerc66b2232006-01-13 20:11:04 +00005432 return visitCallSite(II);
Chris Lattner970c33a2003-06-19 17:00:31 +00005433}
5434
5435// InvokeInst simplification
5436//
5437Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
Chris Lattneraec3d942003-10-07 22:32:43 +00005438 return visitCallSite(&II);
Chris Lattner970c33a2003-06-19 17:00:31 +00005439}
5440
Chris Lattneraec3d942003-10-07 22:32:43 +00005441// visitCallSite - Improvements for call and invoke instructions.
5442//
5443Instruction *InstCombiner::visitCallSite(CallSite CS) {
Chris Lattner75b4d1d2003-10-07 22:54:13 +00005444 bool Changed = false;
5445
5446 // If the callee is a constexpr cast of a function, attempt to move the cast
5447 // to the arguments of the call/invoke.
Chris Lattneraec3d942003-10-07 22:32:43 +00005448 if (transformConstExprCastCall(CS)) return 0;
5449
Chris Lattner75b4d1d2003-10-07 22:54:13 +00005450 Value *Callee = CS.getCalledValue();
Chris Lattner81a7a232004-10-16 18:11:37 +00005451
Chris Lattner61d9d812005-05-13 07:09:09 +00005452 if (Function *CalleeF = dyn_cast<Function>(Callee))
5453 if (CalleeF->getCallingConv() != CS.getCallingConv()) {
5454 Instruction *OldCall = CS.getInstruction();
5455 // If the call and callee calling conventions don't match, this call must
5456 // be unreachable, as the call is undefined.
5457 new StoreInst(ConstantBool::True,
5458 UndefValue::get(PointerType::get(Type::BoolTy)), OldCall);
5459 if (!OldCall->use_empty())
5460 OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
5461 if (isa<CallInst>(OldCall)) // Not worth removing an invoke here.
5462 return EraseInstFromFunction(*OldCall);
5463 return 0;
5464 }
5465
Chris Lattner8ba9ec92004-10-18 02:59:09 +00005466 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
5467 // This instruction is not reachable, just remove it. We insert a store to
5468 // undef so that we know that this code is not reachable, despite the fact
5469 // that we can't modify the CFG here.
5470 new StoreInst(ConstantBool::True,
5471 UndefValue::get(PointerType::get(Type::BoolTy)),
5472 CS.getInstruction());
5473
5474 if (!CS.getInstruction()->use_empty())
5475 CS.getInstruction()->
5476 replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
5477
5478 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
5479 // Don't break the CFG, insert a dummy cond branch.
5480 new BranchInst(II->getNormalDest(), II->getUnwindDest(),
5481 ConstantBool::True, II);
Chris Lattner81a7a232004-10-16 18:11:37 +00005482 }
Chris Lattner8ba9ec92004-10-18 02:59:09 +00005483 return EraseInstFromFunction(*CS.getInstruction());
5484 }
Chris Lattner81a7a232004-10-16 18:11:37 +00005485
Chris Lattner75b4d1d2003-10-07 22:54:13 +00005486 const PointerType *PTy = cast<PointerType>(Callee->getType());
5487 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
5488 if (FTy->isVarArg()) {
5489 // See if we can optimize any arguments passed through the varargs area of
5490 // the call.
5491 for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
5492 E = CS.arg_end(); I != E; ++I)
5493 if (CastInst *CI = dyn_cast<CastInst>(*I)) {
5494 // If this cast does not effect the value passed through the varargs
5495 // area, we can eliminate the use of the cast.
5496 Value *Op = CI->getOperand(0);
5497 if (CI->getType()->isLosslesslyConvertibleTo(Op->getType())) {
5498 *I = Op;
5499 Changed = true;
5500 }
5501 }
5502 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00005503
Chris Lattner75b4d1d2003-10-07 22:54:13 +00005504 return Changed ? CS.getInstruction() : 0;
Chris Lattneraec3d942003-10-07 22:32:43 +00005505}
5506
Chris Lattner970c33a2003-06-19 17:00:31 +00005507// transformConstExprCastCall - If the callee is a constexpr cast of a function,
5508// attempt to move the cast to the arguments of the call/invoke.
5509//
5510bool InstCombiner::transformConstExprCastCall(CallSite CS) {
5511 if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
5512 ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
Chris Lattnerf3edc492004-07-18 18:59:44 +00005513 if (CE->getOpcode() != Instruction::Cast || !isa<Function>(CE->getOperand(0)))
Chris Lattner970c33a2003-06-19 17:00:31 +00005514 return false;
Reid Spencer87436872004-07-18 00:38:32 +00005515 Function *Callee = cast<Function>(CE->getOperand(0));
Chris Lattner970c33a2003-06-19 17:00:31 +00005516 Instruction *Caller = CS.getInstruction();
5517
5518 // Okay, this is a cast from a function to a different type. Unless doing so
5519 // would cause a type conversion of one of our arguments, change this call to
5520 // be a direct call with arguments casted to the appropriate types.
5521 //
5522 const FunctionType *FT = Callee->getFunctionType();
5523 const Type *OldRetTy = Caller->getType();
5524
Chris Lattner1f7942f2004-01-14 06:06:08 +00005525 // Check to see if we are changing the return type...
5526 if (OldRetTy != FT->getReturnType()) {
5527 if (Callee->isExternal() &&
5528 !OldRetTy->isLosslesslyConvertibleTo(FT->getReturnType()) &&
5529 !Caller->use_empty())
5530 return false; // Cannot transform this return value...
5531
5532 // If the callsite is an invoke instruction, and the return value is used by
5533 // a PHI node in a successor, we cannot change the return type of the call
5534 // because there is no place to put the cast instruction (without breaking
5535 // the critical edge). Bail out in this case.
5536 if (!Caller->use_empty())
5537 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
5538 for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
5539 UI != E; ++UI)
5540 if (PHINode *PN = dyn_cast<PHINode>(*UI))
5541 if (PN->getParent() == II->getNormalDest() ||
Chris Lattnerfae8ab32004-02-08 21:44:31 +00005542 PN->getParent() == II->getUnwindDest())
Chris Lattner1f7942f2004-01-14 06:06:08 +00005543 return false;
5544 }
Chris Lattner970c33a2003-06-19 17:00:31 +00005545
5546 unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
5547 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
Misha Brukmanb1c93172005-04-21 23:48:37 +00005548
Chris Lattner970c33a2003-06-19 17:00:31 +00005549 CallSite::arg_iterator AI = CS.arg_begin();
5550 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
5551 const Type *ParamTy = FT->getParamType(i);
5552 bool isConvertible = (*AI)->getType()->isLosslesslyConvertibleTo(ParamTy);
Misha Brukmanb1c93172005-04-21 23:48:37 +00005553 if (Callee->isExternal() && !isConvertible) return false;
Chris Lattner970c33a2003-06-19 17:00:31 +00005554 }
5555
5556 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
5557 Callee->isExternal())
5558 return false; // Do not delete arguments unless we have a function body...
5559
5560 // Okay, we decided that this is a safe thing to do: go ahead and start
5561 // inserting cast instructions as necessary...
5562 std::vector<Value*> Args;
5563 Args.reserve(NumActualArgs);
5564
5565 AI = CS.arg_begin();
5566 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
5567 const Type *ParamTy = FT->getParamType(i);
5568 if ((*AI)->getType() == ParamTy) {
5569 Args.push_back(*AI);
5570 } else {
Chris Lattner1c631e82004-04-08 04:43:23 +00005571 Args.push_back(InsertNewInstBefore(new CastInst(*AI, ParamTy, "tmp"),
5572 *Caller));
Chris Lattner970c33a2003-06-19 17:00:31 +00005573 }
5574 }
5575
5576 // If the function takes more arguments than the call was taking, add them
5577 // now...
5578 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
5579 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
5580
5581 // If we are removing arguments to the function, emit an obnoxious warning...
5582 if (FT->getNumParams() < NumActualArgs)
5583 if (!FT->isVarArg()) {
5584 std::cerr << "WARNING: While resolving call to function '"
5585 << Callee->getName() << "' arguments were dropped!\n";
5586 } else {
5587 // Add all of the arguments in their promoted form to the arg list...
5588 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
5589 const Type *PTy = getPromotedType((*AI)->getType());
5590 if (PTy != (*AI)->getType()) {
5591 // Must promote to pass through va_arg area!
5592 Instruction *Cast = new CastInst(*AI, PTy, "tmp");
5593 InsertNewInstBefore(Cast, *Caller);
5594 Args.push_back(Cast);
5595 } else {
5596 Args.push_back(*AI);
5597 }
5598 }
5599 }
5600
5601 if (FT->getReturnType() == Type::VoidTy)
5602 Caller->setName(""); // Void type should not have a name...
5603
5604 Instruction *NC;
5605 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Chris Lattnerfae8ab32004-02-08 21:44:31 +00005606 NC = new InvokeInst(Callee, II->getNormalDest(), II->getUnwindDest(),
Chris Lattner970c33a2003-06-19 17:00:31 +00005607 Args, Caller->getName(), Caller);
Chris Lattner05c703e2005-05-14 12:25:32 +00005608 cast<InvokeInst>(II)->setCallingConv(II->getCallingConv());
Chris Lattner970c33a2003-06-19 17:00:31 +00005609 } else {
5610 NC = new CallInst(Callee, Args, Caller->getName(), Caller);
Chris Lattner6aacb0f2005-05-06 06:48:21 +00005611 if (cast<CallInst>(Caller)->isTailCall())
5612 cast<CallInst>(NC)->setTailCall();
Chris Lattner05c703e2005-05-14 12:25:32 +00005613 cast<CallInst>(NC)->setCallingConv(cast<CallInst>(Caller)->getCallingConv());
Chris Lattner970c33a2003-06-19 17:00:31 +00005614 }
5615
5616 // Insert a cast of the return type as necessary...
5617 Value *NV = NC;
5618 if (Caller->getType() != NV->getType() && !Caller->use_empty()) {
5619 if (NV->getType() != Type::VoidTy) {
5620 NV = NC = new CastInst(NC, Caller->getType(), "tmp");
Chris Lattner686767f2003-10-30 00:46:41 +00005621
5622 // If this is an invoke instruction, we should insert it after the first
5623 // non-phi, instruction in the normal successor block.
5624 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
5625 BasicBlock::iterator I = II->getNormalDest()->begin();
5626 while (isa<PHINode>(I)) ++I;
5627 InsertNewInstBefore(NC, *I);
5628 } else {
5629 // Otherwise, it's a call, just insert cast right after the call instr
5630 InsertNewInstBefore(NC, *Caller);
5631 }
Chris Lattner51ea1272004-02-28 05:22:00 +00005632 AddUsersToWorkList(*Caller);
Chris Lattner970c33a2003-06-19 17:00:31 +00005633 } else {
Chris Lattnere29d6342004-10-17 21:22:38 +00005634 NV = UndefValue::get(Caller->getType());
Chris Lattner970c33a2003-06-19 17:00:31 +00005635 }
5636 }
5637
5638 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
5639 Caller->replaceAllUsesWith(NV);
5640 Caller->getParent()->getInstList().erase(Caller);
5641 removeFromWorkList(Caller);
5642 return true;
5643}
5644
5645
Chris Lattner7515cab2004-11-14 19:13:23 +00005646// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
5647// operator and they all are only used by the PHI, PHI together their
5648// inputs, and do the operation once, to the result of the PHI.
5649Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
5650 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
5651
5652 // Scan the instruction, looking for input operations that can be folded away.
5653 // If all input operands to the phi are the same instruction (e.g. a cast from
5654 // the same type or "+42") we can pull the operation through the PHI, reducing
5655 // code size and simplifying code.
5656 Constant *ConstantOp = 0;
5657 const Type *CastSrcTy = 0;
5658 if (isa<CastInst>(FirstInst)) {
5659 CastSrcTy = FirstInst->getOperand(0)->getType();
5660 } else if (isa<BinaryOperator>(FirstInst) || isa<ShiftInst>(FirstInst)) {
5661 // Can fold binop or shift if the RHS is a constant.
5662 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
5663 if (ConstantOp == 0) return 0;
5664 } else {
5665 return 0; // Cannot fold this operation.
5666 }
5667
5668 // Check to see if all arguments are the same operation.
5669 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
5670 if (!isa<Instruction>(PN.getIncomingValue(i))) return 0;
5671 Instruction *I = cast<Instruction>(PN.getIncomingValue(i));
5672 if (!I->hasOneUse() || I->getOpcode() != FirstInst->getOpcode())
5673 return 0;
5674 if (CastSrcTy) {
5675 if (I->getOperand(0)->getType() != CastSrcTy)
5676 return 0; // Cast operation must match.
5677 } else if (I->getOperand(1) != ConstantOp) {
5678 return 0;
5679 }
5680 }
5681
5682 // Okay, they are all the same operation. Create a new PHI node of the
5683 // correct type, and PHI together all of the LHS's of the instructions.
5684 PHINode *NewPN = new PHINode(FirstInst->getOperand(0)->getType(),
5685 PN.getName()+".in");
Chris Lattnerd8e20182005-01-29 00:39:08 +00005686 NewPN->reserveOperandSpace(PN.getNumOperands()/2);
Chris Lattner46dd5a62004-11-14 19:29:34 +00005687
5688 Value *InVal = FirstInst->getOperand(0);
5689 NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
Chris Lattner7515cab2004-11-14 19:13:23 +00005690
5691 // Add all operands to the new PHI.
Chris Lattner46dd5a62004-11-14 19:29:34 +00005692 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
5693 Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
5694 if (NewInVal != InVal)
5695 InVal = 0;
5696 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
5697 }
5698
5699 Value *PhiVal;
5700 if (InVal) {
5701 // The new PHI unions all of the same values together. This is really
5702 // common, so we handle it intelligently here for compile-time speed.
5703 PhiVal = InVal;
5704 delete NewPN;
5705 } else {
5706 InsertNewInstBefore(NewPN, PN);
5707 PhiVal = NewPN;
5708 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00005709
Chris Lattner7515cab2004-11-14 19:13:23 +00005710 // Insert and return the new operation.
5711 if (isa<CastInst>(FirstInst))
Chris Lattner46dd5a62004-11-14 19:29:34 +00005712 return new CastInst(PhiVal, PN.getType());
Chris Lattner7515cab2004-11-14 19:13:23 +00005713 else if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Chris Lattner46dd5a62004-11-14 19:29:34 +00005714 return BinaryOperator::create(BinOp->getOpcode(), PhiVal, ConstantOp);
Chris Lattner7515cab2004-11-14 19:13:23 +00005715 else
5716 return new ShiftInst(cast<ShiftInst>(FirstInst)->getOpcode(),
Chris Lattner46dd5a62004-11-14 19:29:34 +00005717 PhiVal, ConstantOp);
Chris Lattner7515cab2004-11-14 19:13:23 +00005718}
Chris Lattner48a44f72002-05-02 17:06:02 +00005719
Chris Lattner71536432005-01-17 05:10:15 +00005720/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
5721/// that is dead.
5722static bool DeadPHICycle(PHINode *PN, std::set<PHINode*> &PotentiallyDeadPHIs) {
5723 if (PN->use_empty()) return true;
5724 if (!PN->hasOneUse()) return false;
5725
5726 // Remember this node, and if we find the cycle, return.
5727 if (!PotentiallyDeadPHIs.insert(PN).second)
5728 return true;
5729
5730 if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
5731 return DeadPHICycle(PU, PotentiallyDeadPHIs);
Misha Brukmanb1c93172005-04-21 23:48:37 +00005732
Chris Lattner71536432005-01-17 05:10:15 +00005733 return false;
5734}
5735
Chris Lattnerbbbdd852002-05-06 18:06:38 +00005736// PHINode simplification
5737//
Chris Lattner113f4f42002-06-25 16:13:24 +00005738Instruction *InstCombiner::visitPHINode(PHINode &PN) {
Chris Lattner9f9c2602005-08-05 01:04:30 +00005739 if (Value *V = PN.hasConstantValue())
5740 return ReplaceInstUsesWith(PN, V);
Chris Lattner4db2d222004-02-16 05:07:08 +00005741
5742 // If the only user of this instruction is a cast instruction, and all of the
5743 // incoming values are constants, change this PHI to merge together the casted
5744 // constants.
5745 if (PN.hasOneUse())
5746 if (CastInst *CI = dyn_cast<CastInst>(PN.use_back()))
5747 if (CI->getType() != PN.getType()) { // noop casts will be folded
5748 bool AllConstant = true;
5749 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
5750 if (!isa<Constant>(PN.getIncomingValue(i))) {
5751 AllConstant = false;
5752 break;
5753 }
5754 if (AllConstant) {
5755 // Make a new PHI with all casted values.
5756 PHINode *New = new PHINode(CI->getType(), PN.getName(), &PN);
5757 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
5758 Constant *OldArg = cast<Constant>(PN.getIncomingValue(i));
5759 New->addIncoming(ConstantExpr::getCast(OldArg, New->getType()),
5760 PN.getIncomingBlock(i));
5761 }
5762
5763 // Update the cast instruction.
5764 CI->setOperand(0, New);
5765 WorkList.push_back(CI); // revisit the cast instruction to fold.
5766 WorkList.push_back(New); // Make sure to revisit the new Phi
5767 return &PN; // PN is now dead!
5768 }
5769 }
Chris Lattner7515cab2004-11-14 19:13:23 +00005770
5771 // If all PHI operands are the same operation, pull them through the PHI,
5772 // reducing code size.
5773 if (isa<Instruction>(PN.getIncomingValue(0)) &&
5774 PN.getIncomingValue(0)->hasOneUse())
5775 if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
5776 return Result;
5777
Chris Lattner71536432005-01-17 05:10:15 +00005778 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
5779 // this PHI only has a single use (a PHI), and if that PHI only has one use (a
5780 // PHI)... break the cycle.
5781 if (PN.hasOneUse())
5782 if (PHINode *PU = dyn_cast<PHINode>(PN.use_back())) {
5783 std::set<PHINode*> PotentiallyDeadPHIs;
5784 PotentiallyDeadPHIs.insert(&PN);
5785 if (DeadPHICycle(PU, PotentiallyDeadPHIs))
5786 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
5787 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00005788
Chris Lattner91daeb52003-12-19 05:58:40 +00005789 return 0;
Chris Lattnerbbbdd852002-05-06 18:06:38 +00005790}
5791
Chris Lattner69193f92004-04-05 01:30:19 +00005792static Value *InsertSignExtendToPtrTy(Value *V, const Type *DTy,
5793 Instruction *InsertPoint,
5794 InstCombiner *IC) {
5795 unsigned PS = IC->getTargetData().getPointerSize();
5796 const Type *VTy = V->getType();
Chris Lattner69193f92004-04-05 01:30:19 +00005797 if (!VTy->isSigned() && VTy->getPrimitiveSize() < PS)
5798 // We must insert a cast to ensure we sign-extend.
5799 V = IC->InsertNewInstBefore(new CastInst(V, VTy->getSignedVersion(),
5800 V->getName()), *InsertPoint);
5801 return IC->InsertNewInstBefore(new CastInst(V, DTy, V->getName()),
5802 *InsertPoint);
5803}
5804
Chris Lattner48a44f72002-05-02 17:06:02 +00005805
Chris Lattner113f4f42002-06-25 16:13:24 +00005806Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
Chris Lattner5f667a62004-05-07 22:09:22 +00005807 Value *PtrOp = GEP.getOperand(0);
Chris Lattner471bd762003-05-22 19:07:21 +00005808 // Is it 'getelementptr %P, long 0' or 'getelementptr %P'
Chris Lattner113f4f42002-06-25 16:13:24 +00005809 // If so, eliminate the noop.
Chris Lattner8d0bacb2004-02-22 05:25:17 +00005810 if (GEP.getNumOperands() == 1)
Chris Lattner5f667a62004-05-07 22:09:22 +00005811 return ReplaceInstUsesWith(GEP, PtrOp);
Chris Lattner8d0bacb2004-02-22 05:25:17 +00005812
Chris Lattner81a7a232004-10-16 18:11:37 +00005813 if (isa<UndefValue>(GEP.getOperand(0)))
5814 return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
5815
Chris Lattner8d0bacb2004-02-22 05:25:17 +00005816 bool HasZeroPointerIndex = false;
5817 if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1)))
5818 HasZeroPointerIndex = C->isNullValue();
5819
5820 if (GEP.getNumOperands() == 2 && HasZeroPointerIndex)
Chris Lattner5f667a62004-05-07 22:09:22 +00005821 return ReplaceInstUsesWith(GEP, PtrOp);
Chris Lattner48a44f72002-05-02 17:06:02 +00005822
Chris Lattner69193f92004-04-05 01:30:19 +00005823 // Eliminate unneeded casts for indices.
5824 bool MadeChange = false;
Chris Lattner2b2412d2004-04-07 18:38:20 +00005825 gep_type_iterator GTI = gep_type_begin(GEP);
5826 for (unsigned i = 1, e = GEP.getNumOperands(); i != e; ++i, ++GTI)
5827 if (isa<SequentialType>(*GTI)) {
5828 if (CastInst *CI = dyn_cast<CastInst>(GEP.getOperand(i))) {
5829 Value *Src = CI->getOperand(0);
5830 const Type *SrcTy = Src->getType();
5831 const Type *DestTy = CI->getType();
5832 if (Src->getType()->isInteger()) {
Chris Lattnerd1f46d32005-04-24 06:59:08 +00005833 if (SrcTy->getPrimitiveSizeInBits() ==
5834 DestTy->getPrimitiveSizeInBits()) {
Chris Lattner2b2412d2004-04-07 18:38:20 +00005835 // We can always eliminate a cast from ulong or long to the other.
5836 // We can always eliminate a cast from uint to int or the other on
5837 // 32-bit pointer platforms.
Chris Lattnerd1f46d32005-04-24 06:59:08 +00005838 if (DestTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()){
Chris Lattner2b2412d2004-04-07 18:38:20 +00005839 MadeChange = true;
5840 GEP.setOperand(i, Src);
5841 }
5842 } else if (SrcTy->getPrimitiveSize() < DestTy->getPrimitiveSize() &&
5843 SrcTy->getPrimitiveSize() == 4) {
5844 // We can always eliminate a cast from int to [u]long. We can
5845 // eliminate a cast from uint to [u]long iff the target is a 32-bit
5846 // pointer target.
Misha Brukmanb1c93172005-04-21 23:48:37 +00005847 if (SrcTy->isSigned() ||
Chris Lattnerd1f46d32005-04-24 06:59:08 +00005848 SrcTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()) {
Chris Lattner2b2412d2004-04-07 18:38:20 +00005849 MadeChange = true;
5850 GEP.setOperand(i, Src);
5851 }
Chris Lattner69193f92004-04-05 01:30:19 +00005852 }
5853 }
5854 }
Chris Lattner2b2412d2004-04-07 18:38:20 +00005855 // If we are using a wider index than needed for this platform, shrink it
5856 // to what we need. If the incoming value needs a cast instruction,
5857 // insert it. This explicit cast can make subsequent optimizations more
5858 // obvious.
5859 Value *Op = GEP.getOperand(i);
5860 if (Op->getType()->getPrimitiveSize() > TD->getPointerSize())
Chris Lattner1e9ac1a2004-04-17 18:16:10 +00005861 if (Constant *C = dyn_cast<Constant>(Op)) {
Chris Lattner44d0b952004-07-20 01:48:15 +00005862 GEP.setOperand(i, ConstantExpr::getCast(C,
5863 TD->getIntPtrType()->getSignedVersion()));
Chris Lattner1e9ac1a2004-04-17 18:16:10 +00005864 MadeChange = true;
5865 } else {
Chris Lattner2b2412d2004-04-07 18:38:20 +00005866 Op = InsertNewInstBefore(new CastInst(Op, TD->getIntPtrType(),
5867 Op->getName()), GEP);
5868 GEP.setOperand(i, Op);
5869 MadeChange = true;
5870 }
Chris Lattner44d0b952004-07-20 01:48:15 +00005871
5872 // If this is a constant idx, make sure to canonicalize it to be a signed
5873 // operand, otherwise CSE and other optimizations are pessimized.
5874 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(Op)) {
5875 GEP.setOperand(i, ConstantExpr::getCast(CUI,
5876 CUI->getType()->getSignedVersion()));
5877 MadeChange = true;
5878 }
Chris Lattner69193f92004-04-05 01:30:19 +00005879 }
5880 if (MadeChange) return &GEP;
5881
Chris Lattnerae7a0d32002-08-02 19:29:35 +00005882 // Combine Indices - If the source pointer to this getelementptr instruction
5883 // is a getelementptr instruction, combine the indices of the two
5884 // getelementptr instructions into a single instruction.
5885 //
Chris Lattner57c67b02004-03-25 22:59:29 +00005886 std::vector<Value*> SrcGEPOperands;
Chris Lattner0798af32005-01-13 20:14:25 +00005887 if (User *Src = dyn_castGetElementPtr(PtrOp))
Chris Lattner57c67b02004-03-25 22:59:29 +00005888 SrcGEPOperands.assign(Src->op_begin(), Src->op_end());
Chris Lattner57c67b02004-03-25 22:59:29 +00005889
5890 if (!SrcGEPOperands.empty()) {
Chris Lattner5f667a62004-05-07 22:09:22 +00005891 // Note that if our source is a gep chain itself that we wait for that
5892 // chain to be resolved before we perform this transformation. This
5893 // avoids us creating a TON of code in some cases.
5894 //
5895 if (isa<GetElementPtrInst>(SrcGEPOperands[0]) &&
5896 cast<Instruction>(SrcGEPOperands[0])->getNumOperands() == 2)
5897 return 0; // Wait until our source is folded to completion.
5898
Chris Lattnerae7a0d32002-08-02 19:29:35 +00005899 std::vector<Value *> Indices;
Chris Lattner5f667a62004-05-07 22:09:22 +00005900
5901 // Find out whether the last index in the source GEP is a sequential idx.
5902 bool EndsWithSequential = false;
5903 for (gep_type_iterator I = gep_type_begin(*cast<User>(PtrOp)),
5904 E = gep_type_end(*cast<User>(PtrOp)); I != E; ++I)
Chris Lattner8ec5f882004-05-08 22:41:42 +00005905 EndsWithSequential = !isa<StructType>(*I);
Misha Brukmanb1c93172005-04-21 23:48:37 +00005906
Chris Lattnerae7a0d32002-08-02 19:29:35 +00005907 // Can we combine the two pointer arithmetics offsets?
Chris Lattner5f667a62004-05-07 22:09:22 +00005908 if (EndsWithSequential) {
Chris Lattner235af562003-03-05 22:33:14 +00005909 // Replace: gep (gep %P, long B), long A, ...
5910 // With: T = long A+B; gep %P, T, ...
5911 //
Chris Lattner5f667a62004-05-07 22:09:22 +00005912 Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1);
Chris Lattner69193f92004-04-05 01:30:19 +00005913 if (SO1 == Constant::getNullValue(SO1->getType())) {
5914 Sum = GO1;
5915 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
5916 Sum = SO1;
5917 } else {
5918 // If they aren't the same type, convert both to an integer of the
5919 // target's pointer size.
5920 if (SO1->getType() != GO1->getType()) {
5921 if (Constant *SO1C = dyn_cast<Constant>(SO1)) {
5922 SO1 = ConstantExpr::getCast(SO1C, GO1->getType());
5923 } else if (Constant *GO1C = dyn_cast<Constant>(GO1)) {
5924 GO1 = ConstantExpr::getCast(GO1C, SO1->getType());
5925 } else {
5926 unsigned PS = TD->getPointerSize();
Chris Lattner69193f92004-04-05 01:30:19 +00005927 if (SO1->getType()->getPrimitiveSize() == PS) {
5928 // Convert GO1 to SO1's type.
5929 GO1 = InsertSignExtendToPtrTy(GO1, SO1->getType(), &GEP, this);
5930
5931 } else if (GO1->getType()->getPrimitiveSize() == PS) {
5932 // Convert SO1 to GO1's type.
5933 SO1 = InsertSignExtendToPtrTy(SO1, GO1->getType(), &GEP, this);
5934 } else {
5935 const Type *PT = TD->getIntPtrType();
5936 SO1 = InsertSignExtendToPtrTy(SO1, PT, &GEP, this);
5937 GO1 = InsertSignExtendToPtrTy(GO1, PT, &GEP, this);
5938 }
5939 }
5940 }
Chris Lattner5f667a62004-05-07 22:09:22 +00005941 if (isa<Constant>(SO1) && isa<Constant>(GO1))
5942 Sum = ConstantExpr::getAdd(cast<Constant>(SO1), cast<Constant>(GO1));
5943 else {
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00005944 Sum = BinaryOperator::createAdd(SO1, GO1, PtrOp->getName()+".sum");
5945 InsertNewInstBefore(cast<Instruction>(Sum), GEP);
Chris Lattner5f667a62004-05-07 22:09:22 +00005946 }
Chris Lattner69193f92004-04-05 01:30:19 +00005947 }
Chris Lattner5f667a62004-05-07 22:09:22 +00005948
5949 // Recycle the GEP we already have if possible.
5950 if (SrcGEPOperands.size() == 2) {
5951 GEP.setOperand(0, SrcGEPOperands[0]);
5952 GEP.setOperand(1, Sum);
5953 return &GEP;
5954 } else {
5955 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
5956 SrcGEPOperands.end()-1);
5957 Indices.push_back(Sum);
5958 Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end());
5959 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00005960 } else if (isa<Constant>(*GEP.idx_begin()) &&
Chris Lattner69193f92004-04-05 01:30:19 +00005961 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
Misha Brukmanb1c93172005-04-21 23:48:37 +00005962 SrcGEPOperands.size() != 1) {
Chris Lattnerae7a0d32002-08-02 19:29:35 +00005963 // Otherwise we can do the fold if the first index of the GEP is a zero
Chris Lattner57c67b02004-03-25 22:59:29 +00005964 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
5965 SrcGEPOperands.end());
Chris Lattnerae7a0d32002-08-02 19:29:35 +00005966 Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end());
5967 }
5968
5969 if (!Indices.empty())
Chris Lattner57c67b02004-03-25 22:59:29 +00005970 return new GetElementPtrInst(SrcGEPOperands[0], Indices, GEP.getName());
Chris Lattnerc59af1d2002-08-17 22:21:59 +00005971
Chris Lattner5f667a62004-05-07 22:09:22 +00005972 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(PtrOp)) {
Chris Lattnerc59af1d2002-08-17 22:21:59 +00005973 // GEP of global variable. If all of the indices for this GEP are
5974 // constants, we can promote this to a constexpr instead of an instruction.
5975
5976 // Scan for nonconstants...
5977 std::vector<Constant*> Indices;
5978 User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end();
5979 for (; I != E && isa<Constant>(*I); ++I)
5980 Indices.push_back(cast<Constant>(*I));
5981
5982 if (I == E) { // If they are all constants...
Chris Lattnerf3edc492004-07-18 18:59:44 +00005983 Constant *CE = ConstantExpr::getGetElementPtr(GV, Indices);
Chris Lattnerc59af1d2002-08-17 22:21:59 +00005984
5985 // Replace all uses of the GEP with the new constexpr...
5986 return ReplaceInstUsesWith(GEP, CE);
5987 }
Chris Lattner567b81f2005-09-13 00:40:14 +00005988 } else if (Value *X = isCast(PtrOp)) { // Is the operand a cast?
5989 if (!isa<PointerType>(X->getType())) {
5990 // Not interesting. Source pointer must be a cast from pointer.
5991 } else if (HasZeroPointerIndex) {
5992 // transform: GEP (cast [10 x ubyte]* X to [0 x ubyte]*), long 0, ...
5993 // into : GEP [10 x ubyte]* X, long 0, ...
5994 //
5995 // This occurs when the program declares an array extern like "int X[];"
5996 //
5997 const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
5998 const PointerType *XTy = cast<PointerType>(X->getType());
5999 if (const ArrayType *XATy =
6000 dyn_cast<ArrayType>(XTy->getElementType()))
6001 if (const ArrayType *CATy =
6002 dyn_cast<ArrayType>(CPTy->getElementType()))
6003 if (CATy->getElementType() == XATy->getElementType()) {
6004 // At this point, we know that the cast source type is a pointer
6005 // to an array of the same type as the destination pointer
6006 // array. Because the array type is never stepped over (there
6007 // is a leading zero) we can fold the cast into this GEP.
6008 GEP.setOperand(0, X);
6009 return &GEP;
6010 }
6011 } else if (GEP.getNumOperands() == 2) {
6012 // Transform things like:
Chris Lattner2a893292005-09-13 18:36:04 +00006013 // %t = getelementptr ubyte* cast ([2 x int]* %str to uint*), uint %V
6014 // into: %t1 = getelementptr [2 x int*]* %str, int 0, uint %V; cast
Chris Lattner567b81f2005-09-13 00:40:14 +00006015 const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType();
6016 const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
6017 if (isa<ArrayType>(SrcElTy) &&
6018 TD->getTypeSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
6019 TD->getTypeSize(ResElTy)) {
6020 Value *V = InsertNewInstBefore(
6021 new GetElementPtrInst(X, Constant::getNullValue(Type::IntTy),
6022 GEP.getOperand(1), GEP.getName()), GEP);
6023 return new CastInst(V, GEP.getType());
Chris Lattner8d0bacb2004-02-22 05:25:17 +00006024 }
Chris Lattner2a893292005-09-13 18:36:04 +00006025
6026 // Transform things like:
6027 // getelementptr sbyte* cast ([100 x double]* X to sbyte*), int %tmp
6028 // (where tmp = 8*tmp2) into:
6029 // getelementptr [100 x double]* %arr, int 0, int %tmp.2
6030
6031 if (isa<ArrayType>(SrcElTy) &&
6032 (ResElTy == Type::SByteTy || ResElTy == Type::UByteTy)) {
6033 uint64_t ArrayEltSize =
6034 TD->getTypeSize(cast<ArrayType>(SrcElTy)->getElementType());
6035
6036 // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We
6037 // allow either a mul, shift, or constant here.
6038 Value *NewIdx = 0;
6039 ConstantInt *Scale = 0;
6040 if (ArrayEltSize == 1) {
6041 NewIdx = GEP.getOperand(1);
6042 Scale = ConstantInt::get(NewIdx->getType(), 1);
6043 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
Chris Lattnera393e4d2005-09-14 17:32:56 +00006044 NewIdx = ConstantInt::get(CI->getType(), 1);
Chris Lattner2a893292005-09-13 18:36:04 +00006045 Scale = CI;
6046 } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
6047 if (Inst->getOpcode() == Instruction::Shl &&
6048 isa<ConstantInt>(Inst->getOperand(1))) {
6049 unsigned ShAmt =cast<ConstantUInt>(Inst->getOperand(1))->getValue();
6050 if (Inst->getType()->isSigned())
6051 Scale = ConstantSInt::get(Inst->getType(), 1ULL << ShAmt);
6052 else
6053 Scale = ConstantUInt::get(Inst->getType(), 1ULL << ShAmt);
6054 NewIdx = Inst->getOperand(0);
6055 } else if (Inst->getOpcode() == Instruction::Mul &&
6056 isa<ConstantInt>(Inst->getOperand(1))) {
6057 Scale = cast<ConstantInt>(Inst->getOperand(1));
6058 NewIdx = Inst->getOperand(0);
6059 }
6060 }
6061
6062 // If the index will be to exactly the right offset with the scale taken
6063 // out, perform the transformation.
6064 if (Scale && Scale->getRawValue() % ArrayEltSize == 0) {
6065 if (ConstantSInt *C = dyn_cast<ConstantSInt>(Scale))
6066 Scale = ConstantSInt::get(C->getType(),
Chris Lattnera393e4d2005-09-14 17:32:56 +00006067 (int64_t)C->getRawValue() /
6068 (int64_t)ArrayEltSize);
Chris Lattner2a893292005-09-13 18:36:04 +00006069 else
6070 Scale = ConstantUInt::get(Scale->getType(),
6071 Scale->getRawValue() / ArrayEltSize);
6072 if (Scale->getRawValue() != 1) {
6073 Constant *C = ConstantExpr::getCast(Scale, NewIdx->getType());
6074 Instruction *Sc = BinaryOperator::createMul(NewIdx, C, "idxscale");
6075 NewIdx = InsertNewInstBefore(Sc, GEP);
6076 }
6077
6078 // Insert the new GEP instruction.
6079 Instruction *Idx =
6080 new GetElementPtrInst(X, Constant::getNullValue(Type::IntTy),
6081 NewIdx, GEP.getName());
6082 Idx = InsertNewInstBefore(Idx, GEP);
6083 return new CastInst(Idx, GEP.getType());
6084 }
6085 }
Chris Lattner8d0bacb2004-02-22 05:25:17 +00006086 }
Chris Lattnerca081252001-12-14 16:52:21 +00006087 }
6088
Chris Lattnerca081252001-12-14 16:52:21 +00006089 return 0;
6090}
6091
Chris Lattner1085bdf2002-11-04 16:18:53 +00006092Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
6093 // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
6094 if (AI.isArrayAllocation()) // Check C != 1
6095 if (const ConstantUInt *C = dyn_cast<ConstantUInt>(AI.getArraySize())) {
6096 const Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getValue());
Chris Lattnera2620ac2002-11-09 00:49:43 +00006097 AllocationInst *New = 0;
Chris Lattner1085bdf2002-11-04 16:18:53 +00006098
6099 // Create and insert the replacement instruction...
6100 if (isa<MallocInst>(AI))
Nate Begeman848622f2005-11-05 09:21:28 +00006101 New = new MallocInst(NewTy, 0, AI.getAlignment(), AI.getName());
Chris Lattnera2620ac2002-11-09 00:49:43 +00006102 else {
6103 assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
Nate Begeman848622f2005-11-05 09:21:28 +00006104 New = new AllocaInst(NewTy, 0, AI.getAlignment(), AI.getName());
Chris Lattnera2620ac2002-11-09 00:49:43 +00006105 }
Chris Lattnerabb77c92004-03-19 06:08:10 +00006106
6107 InsertNewInstBefore(New, AI);
Misha Brukmanb1c93172005-04-21 23:48:37 +00006108
Chris Lattner1085bdf2002-11-04 16:18:53 +00006109 // Scan to the end of the allocation instructions, to skip over a block of
6110 // allocas if possible...
6111 //
6112 BasicBlock::iterator It = New;
6113 while (isa<AllocationInst>(*It)) ++It;
6114
6115 // Now that I is pointing to the first non-allocation-inst in the block,
6116 // insert our getelementptr instruction...
6117 //
Chris Lattner809dfac2005-05-04 19:10:26 +00006118 Value *NullIdx = Constant::getNullValue(Type::IntTy);
6119 Value *V = new GetElementPtrInst(New, NullIdx, NullIdx,
6120 New->getName()+".sub", It);
Chris Lattner1085bdf2002-11-04 16:18:53 +00006121
6122 // Now make everything use the getelementptr instead of the original
6123 // allocation.
Chris Lattnerabb77c92004-03-19 06:08:10 +00006124 return ReplaceInstUsesWith(AI, V);
Chris Lattner81a7a232004-10-16 18:11:37 +00006125 } else if (isa<UndefValue>(AI.getArraySize())) {
6126 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
Chris Lattner1085bdf2002-11-04 16:18:53 +00006127 }
Chris Lattnerabb77c92004-03-19 06:08:10 +00006128
6129 // If alloca'ing a zero byte object, replace the alloca with a null pointer.
6130 // Note that we only do this for alloca's, because malloc should allocate and
6131 // return a unique pointer, even for a zero byte allocation.
Misha Brukmanb1c93172005-04-21 23:48:37 +00006132 if (isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized() &&
Chris Lattner49df6ce2004-07-02 22:55:47 +00006133 TD->getTypeSize(AI.getAllocatedType()) == 0)
Chris Lattnerabb77c92004-03-19 06:08:10 +00006134 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
6135
Chris Lattner1085bdf2002-11-04 16:18:53 +00006136 return 0;
6137}
6138
Chris Lattner8427bff2003-12-07 01:24:23 +00006139Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
6140 Value *Op = FI.getOperand(0);
6141
6142 // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X
6143 if (CastInst *CI = dyn_cast<CastInst>(Op))
6144 if (isa<PointerType>(CI->getOperand(0)->getType())) {
6145 FI.setOperand(0, CI->getOperand(0));
6146 return &FI;
6147 }
6148
Chris Lattner8ba9ec92004-10-18 02:59:09 +00006149 // free undef -> unreachable.
6150 if (isa<UndefValue>(Op)) {
6151 // Insert a new store to null because we cannot modify the CFG here.
6152 new StoreInst(ConstantBool::True,
6153 UndefValue::get(PointerType::get(Type::BoolTy)), &FI);
6154 return EraseInstFromFunction(FI);
6155 }
6156
Chris Lattnerf3a36602004-02-28 04:57:37 +00006157 // If we have 'free null' delete the instruction. This can happen in stl code
6158 // when lots of inlining happens.
Chris Lattner8ba9ec92004-10-18 02:59:09 +00006159 if (isa<ConstantPointerNull>(Op))
Chris Lattner51ea1272004-02-28 05:22:00 +00006160 return EraseInstFromFunction(FI);
Chris Lattnerf3a36602004-02-28 04:57:37 +00006161
Chris Lattner8427bff2003-12-07 01:24:23 +00006162 return 0;
6163}
6164
6165
Chris Lattner72684fe2005-01-31 05:51:45 +00006166/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
Chris Lattner35e24772004-07-13 01:49:43 +00006167static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI) {
6168 User *CI = cast<User>(LI.getOperand(0));
Chris Lattnerfe1b0b82005-01-31 04:50:46 +00006169 Value *CastOp = CI->getOperand(0);
Chris Lattner35e24772004-07-13 01:49:43 +00006170
6171 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
Chris Lattnerfe1b0b82005-01-31 04:50:46 +00006172 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
Chris Lattner35e24772004-07-13 01:49:43 +00006173 const Type *SrcPTy = SrcTy->getElementType();
Chris Lattnerfe1b0b82005-01-31 04:50:46 +00006174
6175 if (DestPTy->isInteger() || isa<PointerType>(DestPTy)) {
6176 // If the source is an array, the code below will not succeed. Check to
6177 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
6178 // constants.
6179 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
6180 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
6181 if (ASrcTy->getNumElements() != 0) {
6182 std::vector<Value*> Idxs(2, Constant::getNullValue(Type::IntTy));
6183 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs);
6184 SrcTy = cast<PointerType>(CastOp->getType());
6185 SrcPTy = SrcTy->getElementType();
6186 }
6187
6188 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy)) &&
Chris Lattnerecfa9b52005-03-29 06:37:47 +00006189 // Do not allow turning this into a load of an integer, which is then
6190 // casted to a pointer, this pessimizes pointer analysis a lot.
6191 (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) &&
Misha Brukmanb1c93172005-04-21 23:48:37 +00006192 IC.getTargetData().getTypeSize(SrcPTy) ==
Chris Lattnerfe1b0b82005-01-31 04:50:46 +00006193 IC.getTargetData().getTypeSize(DestPTy)) {
Misha Brukmanb1c93172005-04-21 23:48:37 +00006194
Chris Lattnerfe1b0b82005-01-31 04:50:46 +00006195 // Okay, we are casting from one integer or pointer type to another of
6196 // the same size. Instead of casting the pointer before the load, cast
6197 // the result of the loaded value.
6198 Value *NewLoad = IC.InsertNewInstBefore(new LoadInst(CastOp,
6199 CI->getName(),
6200 LI.isVolatile()),LI);
6201 // Now cast the result of the load.
6202 return new CastInst(NewLoad, LI.getType());
6203 }
Chris Lattner35e24772004-07-13 01:49:43 +00006204 }
6205 }
6206 return 0;
6207}
6208
Chris Lattnerf62ea8e2004-09-19 18:43:46 +00006209/// isSafeToLoadUnconditionally - Return true if we know that executing a load
Chris Lattnere6f13092004-09-19 19:18:10 +00006210/// from this value cannot trap. If it is not obviously safe to load from the
6211/// specified pointer, we do a quick local scan of the basic block containing
6212/// ScanFrom, to determine if the address is already accessed.
6213static bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
6214 // If it is an alloca or global variable, it is always safe to load from.
6215 if (isa<AllocaInst>(V) || isa<GlobalVariable>(V)) return true;
6216
6217 // Otherwise, be a little bit agressive by scanning the local block where we
6218 // want to check to see if the pointer is already being loaded or stored
Alkis Evlogimenosd59cebf2004-09-20 06:42:58 +00006219 // from/to. If so, the previous load or store would have already trapped,
6220 // so there is no harm doing an extra load (also, CSE will later eliminate
6221 // the load entirely).
Chris Lattnere6f13092004-09-19 19:18:10 +00006222 BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
6223
Alkis Evlogimenosd59cebf2004-09-20 06:42:58 +00006224 while (BBI != E) {
Chris Lattnere6f13092004-09-19 19:18:10 +00006225 --BBI;
6226
6227 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
6228 if (LI->getOperand(0) == V) return true;
6229 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
6230 if (SI->getOperand(1) == V) return true;
Misha Brukmanb1c93172005-04-21 23:48:37 +00006231
Alkis Evlogimenosd59cebf2004-09-20 06:42:58 +00006232 }
Chris Lattnere6f13092004-09-19 19:18:10 +00006233 return false;
Chris Lattnerf62ea8e2004-09-19 18:43:46 +00006234}
6235
Chris Lattner0f1d8a32003-06-26 05:06:25 +00006236Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
6237 Value *Op = LI.getOperand(0);
Chris Lattner7e8af382004-01-12 04:13:56 +00006238
Chris Lattnera9d84e32005-05-01 04:24:53 +00006239 // load (cast X) --> cast (load X) iff safe
6240 if (CastInst *CI = dyn_cast<CastInst>(Op))
6241 if (Instruction *Res = InstCombineLoadCast(*this, LI))
6242 return Res;
6243
6244 // None of the following transforms are legal for volatile loads.
6245 if (LI.isVolatile()) return 0;
Chris Lattnerb990f7d2005-09-12 22:00:15 +00006246
Chris Lattnerb990f7d2005-09-12 22:00:15 +00006247 if (&LI.getParent()->front() != &LI) {
6248 BasicBlock::iterator BBI = &LI; --BBI;
Chris Lattnere0bfdf12005-09-12 22:21:03 +00006249 // If the instruction immediately before this is a store to the same
6250 // address, do a simple form of store->load forwarding.
Chris Lattnerb990f7d2005-09-12 22:00:15 +00006251 if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
6252 if (SI->getOperand(1) == LI.getOperand(0))
6253 return ReplaceInstUsesWith(LI, SI->getOperand(0));
Chris Lattnere0bfdf12005-09-12 22:21:03 +00006254 if (LoadInst *LIB = dyn_cast<LoadInst>(BBI))
6255 if (LIB->getOperand(0) == LI.getOperand(0))
6256 return ReplaceInstUsesWith(LI, LIB);
Chris Lattnerb990f7d2005-09-12 22:00:15 +00006257 }
Chris Lattnera9d84e32005-05-01 04:24:53 +00006258
6259 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op))
6260 if (isa<ConstantPointerNull>(GEPI->getOperand(0)) ||
6261 isa<UndefValue>(GEPI->getOperand(0))) {
6262 // Insert a new store to null instruction before the load to indicate
6263 // that this code is not reachable. We do this instead of inserting
6264 // an unreachable instruction directly because we cannot modify the
6265 // CFG.
6266 new StoreInst(UndefValue::get(LI.getType()),
6267 Constant::getNullValue(Op->getType()), &LI);
6268 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
6269 }
6270
Chris Lattner81a7a232004-10-16 18:11:37 +00006271 if (Constant *C = dyn_cast<Constant>(Op)) {
Chris Lattnera9d84e32005-05-01 04:24:53 +00006272 // load null/undef -> undef
6273 if ((C->isNullValue() || isa<UndefValue>(C))) {
Chris Lattner8ba9ec92004-10-18 02:59:09 +00006274 // Insert a new store to null instruction before the load to indicate that
6275 // this code is not reachable. We do this instead of inserting an
6276 // unreachable instruction directly because we cannot modify the CFG.
Chris Lattnera9d84e32005-05-01 04:24:53 +00006277 new StoreInst(UndefValue::get(LI.getType()),
6278 Constant::getNullValue(Op->getType()), &LI);
Chris Lattner81a7a232004-10-16 18:11:37 +00006279 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
Chris Lattner8ba9ec92004-10-18 02:59:09 +00006280 }
Chris Lattner0f1d8a32003-06-26 05:06:25 +00006281
Chris Lattner81a7a232004-10-16 18:11:37 +00006282 // Instcombine load (constant global) into the value loaded.
6283 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op))
6284 if (GV->isConstant() && !GV->isExternal())
6285 return ReplaceInstUsesWith(LI, GV->getInitializer());
Misha Brukmanb1c93172005-04-21 23:48:37 +00006286
Chris Lattner81a7a232004-10-16 18:11:37 +00006287 // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded.
6288 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op))
6289 if (CE->getOpcode() == Instruction::GetElementPtr) {
6290 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
6291 if (GV->isConstant() && !GV->isExternal())
Chris Lattner0b011ec2005-09-26 05:28:06 +00006292 if (Constant *V =
6293 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
Chris Lattner81a7a232004-10-16 18:11:37 +00006294 return ReplaceInstUsesWith(LI, V);
Chris Lattnera9d84e32005-05-01 04:24:53 +00006295 if (CE->getOperand(0)->isNullValue()) {
6296 // Insert a new store to null instruction before the load to indicate
6297 // that this code is not reachable. We do this instead of inserting
6298 // an unreachable instruction directly because we cannot modify the
6299 // CFG.
6300 new StoreInst(UndefValue::get(LI.getType()),
6301 Constant::getNullValue(Op->getType()), &LI);
6302 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
6303 }
6304
Chris Lattner81a7a232004-10-16 18:11:37 +00006305 } else if (CE->getOpcode() == Instruction::Cast) {
6306 if (Instruction *Res = InstCombineLoadCast(*this, LI))
6307 return Res;
6308 }
6309 }
Chris Lattnere228ee52004-04-08 20:39:49 +00006310
Chris Lattnera9d84e32005-05-01 04:24:53 +00006311 if (Op->hasOneUse()) {
Chris Lattnerf62ea8e2004-09-19 18:43:46 +00006312 // Change select and PHI nodes to select values instead of addresses: this
6313 // helps alias analysis out a lot, allows many others simplifications, and
6314 // exposes redundancy in the code.
6315 //
6316 // Note that we cannot do the transformation unless we know that the
6317 // introduced loads cannot trap! Something like this is valid as long as
6318 // the condition is always false: load (select bool %C, int* null, int* %G),
6319 // but it would not be valid if we transformed it to load from null
6320 // unconditionally.
6321 //
6322 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
6323 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
Chris Lattnere6f13092004-09-19 19:18:10 +00006324 if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
6325 isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
Chris Lattnerf62ea8e2004-09-19 18:43:46 +00006326 Value *V1 = InsertNewInstBefore(new LoadInst(SI->getOperand(1),
Chris Lattner42618552004-09-20 10:15:10 +00006327 SI->getOperand(1)->getName()+".val"), LI);
Chris Lattnerf62ea8e2004-09-19 18:43:46 +00006328 Value *V2 = InsertNewInstBefore(new LoadInst(SI->getOperand(2),
Chris Lattner42618552004-09-20 10:15:10 +00006329 SI->getOperand(2)->getName()+".val"), LI);
Chris Lattnerf62ea8e2004-09-19 18:43:46 +00006330 return new SelectInst(SI->getCondition(), V1, V2);
6331 }
6332
Chris Lattnerbdcf41a2004-09-23 15:46:00 +00006333 // load (select (cond, null, P)) -> load P
6334 if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
6335 if (C->isNullValue()) {
6336 LI.setOperand(0, SI->getOperand(2));
6337 return &LI;
6338 }
6339
6340 // load (select (cond, P, null)) -> load P
6341 if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
6342 if (C->isNullValue()) {
6343 LI.setOperand(0, SI->getOperand(1));
6344 return &LI;
6345 }
6346
Chris Lattnerf62ea8e2004-09-19 18:43:46 +00006347 } else if (PHINode *PN = dyn_cast<PHINode>(Op)) {
6348 // load (phi (&V1, &V2, &V3)) --> phi(load &V1, load &V2, load &V3)
Chris Lattner42618552004-09-20 10:15:10 +00006349 bool Safe = PN->getParent() == LI.getParent();
6350
6351 // Scan all of the instructions between the PHI and the load to make
6352 // sure there are no instructions that might possibly alter the value
6353 // loaded from the PHI.
6354 if (Safe) {
6355 BasicBlock::iterator I = &LI;
6356 for (--I; !isa<PHINode>(I); --I)
6357 if (isa<StoreInst>(I) || isa<CallInst>(I)) {
6358 Safe = false;
6359 break;
6360 }
6361 }
6362
6363 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e && Safe; ++i)
Chris Lattnere6f13092004-09-19 19:18:10 +00006364 if (!isSafeToLoadUnconditionally(PN->getIncomingValue(i),
Chris Lattner42618552004-09-20 10:15:10 +00006365 PN->getIncomingBlock(i)->getTerminator()))
Chris Lattnerf62ea8e2004-09-19 18:43:46 +00006366 Safe = false;
Chris Lattner42618552004-09-20 10:15:10 +00006367
Chris Lattnerf62ea8e2004-09-19 18:43:46 +00006368 if (Safe) {
6369 // Create the PHI.
6370 PHINode *NewPN = new PHINode(LI.getType(), PN->getName());
6371 InsertNewInstBefore(NewPN, *PN);
6372 std::map<BasicBlock*,Value*> LoadMap; // Don't insert duplicate loads
6373
6374 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
6375 BasicBlock *BB = PN->getIncomingBlock(i);
6376 Value *&TheLoad = LoadMap[BB];
6377 if (TheLoad == 0) {
6378 Value *InVal = PN->getIncomingValue(i);
6379 TheLoad = InsertNewInstBefore(new LoadInst(InVal,
6380 InVal->getName()+".val"),
6381 *BB->getTerminator());
6382 }
6383 NewPN->addIncoming(TheLoad, BB);
6384 }
6385 return ReplaceInstUsesWith(LI, NewPN);
6386 }
6387 }
6388 }
Chris Lattner0f1d8a32003-06-26 05:06:25 +00006389 return 0;
6390}
6391
Chris Lattner72684fe2005-01-31 05:51:45 +00006392/// InstCombineStoreToCast - Fold 'store V, (cast P)' -> store (cast V), P'
6393/// when possible.
6394static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
6395 User *CI = cast<User>(SI.getOperand(1));
6396 Value *CastOp = CI->getOperand(0);
6397
6398 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
6399 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
6400 const Type *SrcPTy = SrcTy->getElementType();
6401
6402 if (DestPTy->isInteger() || isa<PointerType>(DestPTy)) {
6403 // If the source is an array, the code below will not succeed. Check to
6404 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
6405 // constants.
6406 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
6407 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
6408 if (ASrcTy->getNumElements() != 0) {
6409 std::vector<Value*> Idxs(2, Constant::getNullValue(Type::IntTy));
6410 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs);
6411 SrcTy = cast<PointerType>(CastOp->getType());
6412 SrcPTy = SrcTy->getElementType();
6413 }
6414
6415 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy)) &&
Misha Brukmanb1c93172005-04-21 23:48:37 +00006416 IC.getTargetData().getTypeSize(SrcPTy) ==
Chris Lattner72684fe2005-01-31 05:51:45 +00006417 IC.getTargetData().getTypeSize(DestPTy)) {
6418
6419 // Okay, we are casting from one integer or pointer type to another of
6420 // the same size. Instead of casting the pointer before the store, cast
6421 // the value to be stored.
6422 Value *NewCast;
6423 if (Constant *C = dyn_cast<Constant>(SI.getOperand(0)))
6424 NewCast = ConstantExpr::getCast(C, SrcPTy);
6425 else
6426 NewCast = IC.InsertNewInstBefore(new CastInst(SI.getOperand(0),
6427 SrcPTy,
6428 SI.getOperand(0)->getName()+".c"), SI);
6429
6430 return new StoreInst(NewCast, CastOp);
6431 }
6432 }
6433 }
6434 return 0;
6435}
6436
Chris Lattner31f486c2005-01-31 05:36:43 +00006437Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
6438 Value *Val = SI.getOperand(0);
6439 Value *Ptr = SI.getOperand(1);
6440
6441 if (isa<UndefValue>(Ptr)) { // store X, undef -> noop (even if volatile)
Chris Lattner5997cf92006-02-08 03:25:32 +00006442 EraseInstFromFunction(SI);
Chris Lattner31f486c2005-01-31 05:36:43 +00006443 ++NumCombined;
6444 return 0;
6445 }
6446
Chris Lattner5997cf92006-02-08 03:25:32 +00006447 // Do really simple DSE, to catch cases where there are several consequtive
6448 // stores to the same location, separated by a few arithmetic operations. This
6449 // situation often occurs with bitfield accesses.
6450 BasicBlock::iterator BBI = &SI;
6451 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
6452 --ScanInsts) {
6453 --BBI;
6454
6455 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
6456 // Prev store isn't volatile, and stores to the same location?
6457 if (!PrevSI->isVolatile() && PrevSI->getOperand(1) == SI.getOperand(1)) {
6458 ++NumDeadStore;
6459 ++BBI;
6460 EraseInstFromFunction(*PrevSI);
6461 continue;
6462 }
6463 break;
6464 }
6465
6466 // Don't skip over loads or things that can modify memory.
6467 if (BBI->mayWriteToMemory() || isa<LoadInst>(BBI))
6468 break;
6469 }
6470
6471
6472 if (SI.isVolatile()) return 0; // Don't hack volatile stores.
Chris Lattner31f486c2005-01-31 05:36:43 +00006473
6474 // store X, null -> turns into 'unreachable' in SimplifyCFG
6475 if (isa<ConstantPointerNull>(Ptr)) {
6476 if (!isa<UndefValue>(Val)) {
6477 SI.setOperand(0, UndefValue::get(Val->getType()));
6478 if (Instruction *U = dyn_cast<Instruction>(Val))
6479 WorkList.push_back(U); // Dropped a use.
6480 ++NumCombined;
6481 }
6482 return 0; // Do not modify these!
6483 }
6484
6485 // store undef, Ptr -> noop
6486 if (isa<UndefValue>(Val)) {
Chris Lattner5997cf92006-02-08 03:25:32 +00006487 EraseInstFromFunction(SI);
Chris Lattner31f486c2005-01-31 05:36:43 +00006488 ++NumCombined;
6489 return 0;
6490 }
6491
Chris Lattner72684fe2005-01-31 05:51:45 +00006492 // If the pointer destination is a cast, see if we can fold the cast into the
6493 // source instead.
6494 if (CastInst *CI = dyn_cast<CastInst>(Ptr))
6495 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
6496 return Res;
6497 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
6498 if (CE->getOpcode() == Instruction::Cast)
6499 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
6500 return Res;
6501
Chris Lattner219175c2005-09-12 23:23:25 +00006502
6503 // If this store is the last instruction in the basic block, and if the block
6504 // ends with an unconditional branch, try to move it to the successor block.
Chris Lattner5997cf92006-02-08 03:25:32 +00006505 BBI = &SI; ++BBI;
Chris Lattner219175c2005-09-12 23:23:25 +00006506 if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
6507 if (BI->isUnconditional()) {
6508 // Check to see if the successor block has exactly two incoming edges. If
6509 // so, see if the other predecessor contains a store to the same location.
6510 // if so, insert a PHI node (if needed) and move the stores down.
6511 BasicBlock *Dest = BI->getSuccessor(0);
6512
6513 pred_iterator PI = pred_begin(Dest);
6514 BasicBlock *Other = 0;
6515 if (*PI != BI->getParent())
6516 Other = *PI;
6517 ++PI;
6518 if (PI != pred_end(Dest)) {
6519 if (*PI != BI->getParent())
6520 if (Other)
6521 Other = 0;
6522 else
6523 Other = *PI;
6524 if (++PI != pred_end(Dest))
6525 Other = 0;
6526 }
6527 if (Other) { // If only one other pred...
6528 BBI = Other->getTerminator();
6529 // Make sure this other block ends in an unconditional branch and that
6530 // there is an instruction before the branch.
6531 if (isa<BranchInst>(BBI) && cast<BranchInst>(BBI)->isUnconditional() &&
6532 BBI != Other->begin()) {
6533 --BBI;
6534 StoreInst *OtherStore = dyn_cast<StoreInst>(BBI);
6535
6536 // If this instruction is a store to the same location.
6537 if (OtherStore && OtherStore->getOperand(1) == SI.getOperand(1)) {
6538 // Okay, we know we can perform this transformation. Insert a PHI
6539 // node now if we need it.
6540 Value *MergedVal = OtherStore->getOperand(0);
6541 if (MergedVal != SI.getOperand(0)) {
6542 PHINode *PN = new PHINode(MergedVal->getType(), "storemerge");
6543 PN->reserveOperandSpace(2);
6544 PN->addIncoming(SI.getOperand(0), SI.getParent());
6545 PN->addIncoming(OtherStore->getOperand(0), Other);
6546 MergedVal = InsertNewInstBefore(PN, Dest->front());
6547 }
6548
6549 // Advance to a place where it is safe to insert the new store and
6550 // insert it.
6551 BBI = Dest->begin();
6552 while (isa<PHINode>(BBI)) ++BBI;
6553 InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1),
6554 OtherStore->isVolatile()), *BBI);
6555
6556 // Nuke the old stores.
Chris Lattner5997cf92006-02-08 03:25:32 +00006557 EraseInstFromFunction(SI);
6558 EraseInstFromFunction(*OtherStore);
Chris Lattner219175c2005-09-12 23:23:25 +00006559 ++NumCombined;
6560 return 0;
6561 }
6562 }
6563 }
6564 }
6565
Chris Lattner31f486c2005-01-31 05:36:43 +00006566 return 0;
6567}
6568
6569
Chris Lattner9eef8a72003-06-04 04:46:00 +00006570Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
6571 // Change br (not X), label True, label False to: br X, label False, True
Reid Spencer4fdd96c2005-06-18 17:37:34 +00006572 Value *X = 0;
Chris Lattnerd4252a72004-07-30 07:50:03 +00006573 BasicBlock *TrueDest;
6574 BasicBlock *FalseDest;
6575 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
6576 !isa<Constant>(X)) {
6577 // Swap Destinations and condition...
6578 BI.setCondition(X);
6579 BI.setSuccessor(0, FalseDest);
6580 BI.setSuccessor(1, TrueDest);
6581 return &BI;
6582 }
6583
6584 // Cannonicalize setne -> seteq
6585 Instruction::BinaryOps Op; Value *Y;
6586 if (match(&BI, m_Br(m_SetCond(Op, m_Value(X), m_Value(Y)),
6587 TrueDest, FalseDest)))
6588 if ((Op == Instruction::SetNE || Op == Instruction::SetLE ||
6589 Op == Instruction::SetGE) && BI.getCondition()->hasOneUse()) {
6590 SetCondInst *I = cast<SetCondInst>(BI.getCondition());
6591 std::string Name = I->getName(); I->setName("");
6592 Instruction::BinaryOps NewOpcode = SetCondInst::getInverseCondition(Op);
6593 Value *NewSCC = BinaryOperator::create(NewOpcode, X, Y, Name, I);
Chris Lattnere967b342003-06-04 05:10:11 +00006594 // Swap Destinations and condition...
Chris Lattnerd4252a72004-07-30 07:50:03 +00006595 BI.setCondition(NewSCC);
Chris Lattnere967b342003-06-04 05:10:11 +00006596 BI.setSuccessor(0, FalseDest);
6597 BI.setSuccessor(1, TrueDest);
Chris Lattnerd4252a72004-07-30 07:50:03 +00006598 removeFromWorkList(I);
6599 I->getParent()->getInstList().erase(I);
6600 WorkList.push_back(cast<Instruction>(NewSCC));
Chris Lattnere967b342003-06-04 05:10:11 +00006601 return &BI;
6602 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00006603
Chris Lattner9eef8a72003-06-04 04:46:00 +00006604 return 0;
6605}
Chris Lattner1085bdf2002-11-04 16:18:53 +00006606
Chris Lattner4c9c20a2004-07-03 00:26:11 +00006607Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
6608 Value *Cond = SI.getCondition();
6609 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
6610 if (I->getOpcode() == Instruction::Add)
6611 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
6612 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
6613 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
Chris Lattner81a7a232004-10-16 18:11:37 +00006614 SI.setOperand(i,ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
Chris Lattner4c9c20a2004-07-03 00:26:11 +00006615 AddRHS));
6616 SI.setOperand(0, I->getOperand(0));
6617 WorkList.push_back(I);
6618 return &SI;
6619 }
6620 }
6621 return 0;
6622}
6623
Chris Lattner6bc98652006-03-05 00:22:33 +00006624/// CheapToScalarize - Return true if the value is cheaper to scalarize than it
6625/// is to leave as a vector operation.
6626static bool CheapToScalarize(Value *V, bool isConstant) {
6627 if (isa<ConstantAggregateZero>(V))
6628 return true;
6629 if (ConstantPacked *C = dyn_cast<ConstantPacked>(V)) {
6630 if (isConstant) return true;
6631 // If all elts are the same, we can extract.
6632 Constant *Op0 = C->getOperand(0);
6633 for (unsigned i = 1; i < C->getNumOperands(); ++i)
6634 if (C->getOperand(i) != Op0)
6635 return false;
6636 return true;
6637 }
6638 Instruction *I = dyn_cast<Instruction>(V);
6639 if (!I) return false;
6640
6641 // Insert element gets simplified to the inserted element or is deleted if
6642 // this is constant idx extract element and its a constant idx insertelt.
6643 if (I->getOpcode() == Instruction::InsertElement && isConstant &&
6644 isa<ConstantInt>(I->getOperand(2)))
6645 return true;
6646 if (I->getOpcode() == Instruction::Load && I->hasOneUse())
6647 return true;
6648 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
6649 if (BO->hasOneUse() &&
6650 (CheapToScalarize(BO->getOperand(0), isConstant) ||
6651 CheapToScalarize(BO->getOperand(1), isConstant)))
6652 return true;
6653
6654 return false;
6655}
6656
Chris Lattner8d1d8d32006-03-31 23:01:56 +00006657/// FindScalarElement - Given a vector and an element number, see if the scalar
6658/// value is already around as a register, for example if it were inserted then
6659/// extracted from the vector.
6660static Value *FindScalarElement(Value *V, unsigned EltNo) {
6661 assert(isa<PackedType>(V->getType()) && "Not looking at a vector?");
6662 const PackedType *PTy = cast<PackedType>(V->getType());
6663 if (EltNo >= PTy->getNumElements()) // Out of range access.
6664 return UndefValue::get(PTy->getElementType());
6665
6666 if (isa<UndefValue>(V))
6667 return UndefValue::get(PTy->getElementType());
6668 else if (isa<ConstantAggregateZero>(V))
6669 return Constant::getNullValue(PTy->getElementType());
6670 else if (ConstantPacked *CP = dyn_cast<ConstantPacked>(V))
6671 return CP->getOperand(EltNo);
6672 else if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
6673 // If this is an insert to a variable element, we don't know what it is.
6674 if (!isa<ConstantUInt>(III->getOperand(2))) return 0;
6675 unsigned IIElt = cast<ConstantUInt>(III->getOperand(2))->getValue();
6676
6677 // If this is an insert to the element we are looking for, return the
6678 // inserted value.
6679 if (EltNo == IIElt) return III->getOperand(1);
6680
6681 // Otherwise, the insertelement doesn't modify the value, recurse on its
6682 // vector input.
6683 return FindScalarElement(III->getOperand(0), EltNo);
6684 }
6685
6686 // Otherwise, we don't know.
6687 return 0;
6688}
6689
Robert Bocchinoa8352962006-01-13 22:48:06 +00006690Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
Chris Lattner8d1d8d32006-03-31 23:01:56 +00006691
Chris Lattner92346c32006-03-31 18:25:14 +00006692 // If packed val is undef, replace extract with scalar undef.
6693 if (isa<UndefValue>(EI.getOperand(0)))
6694 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
6695
6696 // If packed val is constant 0, replace extract with scalar 0.
6697 if (isa<ConstantAggregateZero>(EI.getOperand(0)))
6698 return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType()));
6699
Robert Bocchinoa8352962006-01-13 22:48:06 +00006700 if (ConstantPacked *C = dyn_cast<ConstantPacked>(EI.getOperand(0))) {
6701 // If packed val is constant with uniform operands, replace EI
6702 // with that operand
Chris Lattner6bc98652006-03-05 00:22:33 +00006703 Constant *op0 = C->getOperand(0);
Robert Bocchinoa8352962006-01-13 22:48:06 +00006704 for (unsigned i = 1; i < C->getNumOperands(); ++i)
Chris Lattner6bc98652006-03-05 00:22:33 +00006705 if (C->getOperand(i) != op0) {
6706 op0 = 0;
6707 break;
6708 }
6709 if (op0)
6710 return ReplaceInstUsesWith(EI, op0);
Robert Bocchinoa8352962006-01-13 22:48:06 +00006711 }
Chris Lattner6bc98652006-03-05 00:22:33 +00006712
Chris Lattner8d1d8d32006-03-31 23:01:56 +00006713 // If extracting a specified index from the vector, see if we can recursively
6714 // find a previously computed scalar that was inserted into the vector.
6715 if (ConstantUInt *IdxC = dyn_cast<ConstantUInt>(EI.getOperand(1)))
6716 if (Value *Elt = FindScalarElement(EI.getOperand(0), IdxC->getValue()))
6717 return ReplaceInstUsesWith(EI, Elt);
6718
Robert Bocchinoa8352962006-01-13 22:48:06 +00006719 if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0)))
6720 if (I->hasOneUse()) {
6721 // Push extractelement into predecessor operation if legal and
6722 // profitable to do so
6723 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
Chris Lattner6bc98652006-03-05 00:22:33 +00006724 bool isConstantElt = isa<ConstantInt>(EI.getOperand(1));
6725 if (CheapToScalarize(BO, isConstantElt)) {
6726 ExtractElementInst *newEI0 =
6727 new ExtractElementInst(BO->getOperand(0), EI.getOperand(1),
6728 EI.getName()+".lhs");
6729 ExtractElementInst *newEI1 =
6730 new ExtractElementInst(BO->getOperand(1), EI.getOperand(1),
6731 EI.getName()+".rhs");
6732 InsertNewInstBefore(newEI0, EI);
6733 InsertNewInstBefore(newEI1, EI);
6734 return BinaryOperator::create(BO->getOpcode(), newEI0, newEI1);
6735 }
6736 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
Robert Bocchinoa8352962006-01-13 22:48:06 +00006737 Value *Ptr = InsertCastBefore(I->getOperand(0),
6738 PointerType::get(EI.getType()), EI);
6739 GetElementPtrInst *GEP =
6740 new GetElementPtrInst(Ptr, EI.getOperand(1),
6741 I->getName() + ".gep");
6742 InsertNewInstBefore(GEP, EI);
6743 return new LoadInst(GEP);
Chris Lattner6bc98652006-03-05 00:22:33 +00006744 } else if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
6745 // Extracting the inserted element?
6746 if (IE->getOperand(2) == EI.getOperand(1))
6747 return ReplaceInstUsesWith(EI, IE->getOperand(1));
6748 // If the inserted and extracted elements are constants, they must not
Chris Lattner612fa8e2006-03-30 22:02:40 +00006749 // be the same value, extract from the pre-inserted value instead.
6750 if (isa<Constant>(IE->getOperand(2)) &&
6751 isa<Constant>(EI.getOperand(1))) {
6752 AddUsesToWorkList(EI);
6753 EI.setOperand(0, IE->getOperand(0));
6754 return &EI;
6755 }
Robert Bocchinoa8352962006-01-13 22:48:06 +00006756 }
6757 }
6758 return 0;
6759}
6760
6761
Chris Lattner99f48c62002-09-02 04:59:56 +00006762void InstCombiner::removeFromWorkList(Instruction *I) {
6763 WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), I),
6764 WorkList.end());
6765}
6766
Chris Lattner39c98bb2004-12-08 23:43:58 +00006767
6768/// TryToSinkInstruction - Try to move the specified instruction from its
6769/// current block into the beginning of DestBlock, which can only happen if it's
6770/// safe to move the instruction past all of the instructions between it and the
6771/// end of its block.
6772static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
6773 assert(I->hasOneUse() && "Invariants didn't hold!");
6774
Chris Lattnerc4f67e62005-10-27 17:13:11 +00006775 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
6776 if (isa<PHINode>(I) || I->mayWriteToMemory()) return false;
Misha Brukmanb1c93172005-04-21 23:48:37 +00006777
Chris Lattner39c98bb2004-12-08 23:43:58 +00006778 // Do not sink alloca instructions out of the entry block.
6779 if (isa<AllocaInst>(I) && I->getParent() == &DestBlock->getParent()->front())
6780 return false;
6781
Chris Lattnerf17a2fb2004-12-09 07:14:34 +00006782 // We can only sink load instructions if there is nothing between the load and
6783 // the end of block that could change the value.
6784 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
Chris Lattnerf17a2fb2004-12-09 07:14:34 +00006785 for (BasicBlock::iterator Scan = LI, E = LI->getParent()->end();
6786 Scan != E; ++Scan)
6787 if (Scan->mayWriteToMemory())
6788 return false;
Chris Lattnerf17a2fb2004-12-09 07:14:34 +00006789 }
Chris Lattner39c98bb2004-12-08 23:43:58 +00006790
6791 BasicBlock::iterator InsertPos = DestBlock->begin();
6792 while (isa<PHINode>(InsertPos)) ++InsertPos;
6793
Chris Lattner9f269e42005-08-08 19:11:57 +00006794 I->moveBefore(InsertPos);
Chris Lattner39c98bb2004-12-08 23:43:58 +00006795 ++NumSunkInst;
6796 return true;
6797}
6798
Chris Lattner113f4f42002-06-25 16:13:24 +00006799bool InstCombiner::runOnFunction(Function &F) {
Chris Lattner260ab202002-04-18 17:39:14 +00006800 bool Changed = false;
Chris Lattnerf4ad1652003-11-02 05:57:39 +00006801 TD = &getAnalysis<TargetData>();
Chris Lattnerca081252001-12-14 16:52:21 +00006802
Chris Lattner4ed40f72005-07-07 20:40:38 +00006803 {
6804 // Populate the worklist with the reachable instructions.
6805 std::set<BasicBlock*> Visited;
6806 for (df_ext_iterator<BasicBlock*> BB = df_ext_begin(&F.front(), Visited),
6807 E = df_ext_end(&F.front(), Visited); BB != E; ++BB)
6808 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
6809 WorkList.push_back(I);
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +00006810
Chris Lattner4ed40f72005-07-07 20:40:38 +00006811 // Do a quick scan over the function. If we find any blocks that are
6812 // unreachable, remove any instructions inside of them. This prevents
6813 // the instcombine code from having to deal with some bad special cases.
6814 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
6815 if (!Visited.count(BB)) {
6816 Instruction *Term = BB->getTerminator();
6817 while (Term != BB->begin()) { // Remove instrs bottom-up
6818 BasicBlock::iterator I = Term; --I;
Chris Lattner2d3a7a62004-04-27 15:13:33 +00006819
Chris Lattner4ed40f72005-07-07 20:40:38 +00006820 DEBUG(std::cerr << "IC: DCE: " << *I);
6821 ++NumDeadInst;
6822
6823 if (!I->use_empty())
6824 I->replaceAllUsesWith(UndefValue::get(I->getType()));
6825 I->eraseFromParent();
6826 }
6827 }
6828 }
Chris Lattnerca081252001-12-14 16:52:21 +00006829
6830 while (!WorkList.empty()) {
6831 Instruction *I = WorkList.back(); // Get an instruction from the worklist
6832 WorkList.pop_back();
6833
Misha Brukman632df282002-10-29 23:06:16 +00006834 // Check to see if we can DCE or ConstantPropagate the instruction...
Chris Lattner99f48c62002-09-02 04:59:56 +00006835 // Check to see if we can DIE the instruction...
6836 if (isInstructionTriviallyDead(I)) {
6837 // Add operands to the worklist...
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00006838 if (I->getNumOperands() < 4)
Chris Lattner51ea1272004-02-28 05:22:00 +00006839 AddUsesToWorkList(*I);
Chris Lattner99f48c62002-09-02 04:59:56 +00006840 ++NumDeadInst;
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00006841
Chris Lattnercd517ff2005-01-28 19:32:01 +00006842 DEBUG(std::cerr << "IC: DCE: " << *I);
6843
6844 I->eraseFromParent();
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00006845 removeFromWorkList(I);
6846 continue;
6847 }
Chris Lattner99f48c62002-09-02 04:59:56 +00006848
Misha Brukman632df282002-10-29 23:06:16 +00006849 // Instruction isn't dead, see if we can constant propagate it...
Chris Lattner99f48c62002-09-02 04:59:56 +00006850 if (Constant *C = ConstantFoldInstruction(I)) {
Alkis Evlogimenosa1291a02004-12-08 23:10:30 +00006851 Value* Ptr = I->getOperand(0);
Chris Lattner6580e092004-10-16 19:44:59 +00006852 if (isa<GetElementPtrInst>(I) &&
Alkis Evlogimenosa1291a02004-12-08 23:10:30 +00006853 cast<Constant>(Ptr)->isNullValue() &&
6854 !isa<ConstantPointerNull>(C) &&
6855 cast<PointerType>(Ptr->getType())->getElementType()->isSized()) {
Chris Lattner6580e092004-10-16 19:44:59 +00006856 // If this is a constant expr gep that is effectively computing an
6857 // "offsetof", fold it into 'cast int X to T*' instead of 'gep 0, 0, 12'
6858 bool isFoldableGEP = true;
6859 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i)
6860 if (!isa<ConstantInt>(I->getOperand(i)))
6861 isFoldableGEP = false;
6862 if (isFoldableGEP) {
Alkis Evlogimenosa1291a02004-12-08 23:10:30 +00006863 uint64_t Offset = TD->getIndexedOffset(Ptr->getType(),
Chris Lattner6580e092004-10-16 19:44:59 +00006864 std::vector<Value*>(I->op_begin()+1, I->op_end()));
6865 C = ConstantUInt::get(Type::ULongTy, Offset);
Chris Lattner684c5c62004-10-16 19:46:33 +00006866 C = ConstantExpr::getCast(C, TD->getIntPtrType());
Chris Lattner6580e092004-10-16 19:44:59 +00006867 C = ConstantExpr::getCast(C, I->getType());
6868 }
6869 }
6870
Chris Lattnercd517ff2005-01-28 19:32:01 +00006871 DEBUG(std::cerr << "IC: ConstFold to: " << *C << " from: " << *I);
6872
Chris Lattner99f48c62002-09-02 04:59:56 +00006873 // Add operands to the worklist...
Chris Lattner51ea1272004-02-28 05:22:00 +00006874 AddUsesToWorkList(*I);
Chris Lattnerc6509f42002-12-05 22:41:53 +00006875 ReplaceInstUsesWith(*I, C);
6876
Chris Lattner99f48c62002-09-02 04:59:56 +00006877 ++NumConstProp;
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00006878 I->getParent()->getInstList().erase(I);
Chris Lattner800aaaf2003-10-07 15:17:02 +00006879 removeFromWorkList(I);
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00006880 continue;
Chris Lattner99f48c62002-09-02 04:59:56 +00006881 }
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00006882
Chris Lattner39c98bb2004-12-08 23:43:58 +00006883 // See if we can trivially sink this instruction to a successor basic block.
6884 if (I->hasOneUse()) {
6885 BasicBlock *BB = I->getParent();
6886 BasicBlock *UserParent = cast<Instruction>(I->use_back())->getParent();
6887 if (UserParent != BB) {
6888 bool UserIsSuccessor = false;
6889 // See if the user is one of our successors.
6890 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
6891 if (*SI == UserParent) {
6892 UserIsSuccessor = true;
6893 break;
6894 }
6895
6896 // If the user is one of our immediate successors, and if that successor
6897 // only has us as a predecessors (we'd have to split the critical edge
6898 // otherwise), we can keep going.
6899 if (UserIsSuccessor && !isa<PHINode>(I->use_back()) &&
6900 next(pred_begin(UserParent)) == pred_end(UserParent))
6901 // Okay, the CFG is simple enough, try to sink this instruction.
6902 Changed |= TryToSinkInstruction(I, UserParent);
6903 }
6904 }
6905
Chris Lattnerca081252001-12-14 16:52:21 +00006906 // Now that we have an instruction, try combining it to simplify it...
Chris Lattnerae7a0d32002-08-02 19:29:35 +00006907 if (Instruction *Result = visit(*I)) {
Chris Lattner0b18c1d2002-05-10 15:38:35 +00006908 ++NumCombined;
Chris Lattner260ab202002-04-18 17:39:14 +00006909 // Should we replace the old instruction with a new one?
Chris Lattner053c0932002-05-14 15:24:07 +00006910 if (Result != I) {
Chris Lattner7d2a5392004-03-13 23:54:27 +00006911 DEBUG(std::cerr << "IC: Old = " << *I
6912 << " New = " << *Result);
6913
Chris Lattner396dbfe2004-06-09 05:08:07 +00006914 // Everything uses the new instruction now.
6915 I->replaceAllUsesWith(Result);
6916
6917 // Push the new instruction and any users onto the worklist.
6918 WorkList.push_back(Result);
6919 AddUsersToWorkList(*Result);
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00006920
6921 // Move the name to the new instruction first...
6922 std::string OldName = I->getName(); I->setName("");
Chris Lattner950fc782003-10-07 22:58:41 +00006923 Result->setName(OldName);
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00006924
6925 // Insert the new instruction into the basic block...
6926 BasicBlock *InstParent = I->getParent();
Chris Lattner7515cab2004-11-14 19:13:23 +00006927 BasicBlock::iterator InsertPos = I;
6928
6929 if (!isa<PHINode>(Result)) // If combining a PHI, don't insert
6930 while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
6931 ++InsertPos;
6932
6933 InstParent->getInstList().insert(InsertPos, Result);
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00006934
Chris Lattner63d75af2004-05-01 23:27:23 +00006935 // Make sure that we reprocess all operands now that we reduced their
6936 // use counts.
Chris Lattnerb643a9e2004-05-01 23:19:52 +00006937 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
6938 if (Instruction *OpI = dyn_cast<Instruction>(I->getOperand(i)))
6939 WorkList.push_back(OpI);
6940
Chris Lattner396dbfe2004-06-09 05:08:07 +00006941 // Instructions can end up on the worklist more than once. Make sure
6942 // we do not process an instruction that has been deleted.
6943 removeFromWorkList(I);
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00006944
6945 // Erase the old instruction.
6946 InstParent->getInstList().erase(I);
Chris Lattner113f4f42002-06-25 16:13:24 +00006947 } else {
Chris Lattner7d2a5392004-03-13 23:54:27 +00006948 DEBUG(std::cerr << "IC: MOD = " << *I);
6949
Chris Lattnerae7a0d32002-08-02 19:29:35 +00006950 // If the instruction was modified, it's possible that it is now dead.
6951 // if so, remove it.
Chris Lattner63d75af2004-05-01 23:27:23 +00006952 if (isInstructionTriviallyDead(I)) {
6953 // Make sure we process all operands now that we are reducing their
6954 // use counts.
6955 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
6956 if (Instruction *OpI = dyn_cast<Instruction>(I->getOperand(i)))
6957 WorkList.push_back(OpI);
Misha Brukmanb1c93172005-04-21 23:48:37 +00006958
Chris Lattner63d75af2004-05-01 23:27:23 +00006959 // Instructions may end up in the worklist more than once. Erase all
Robert Bocchinoa8352962006-01-13 22:48:06 +00006960 // occurrences of this instruction.
Chris Lattner99f48c62002-09-02 04:59:56 +00006961 removeFromWorkList(I);
Chris Lattner31f486c2005-01-31 05:36:43 +00006962 I->eraseFromParent();
Chris Lattner396dbfe2004-06-09 05:08:07 +00006963 } else {
6964 WorkList.push_back(Result);
6965 AddUsersToWorkList(*Result);
Chris Lattnerae7a0d32002-08-02 19:29:35 +00006966 }
Chris Lattner053c0932002-05-14 15:24:07 +00006967 }
Chris Lattner260ab202002-04-18 17:39:14 +00006968 Changed = true;
Chris Lattnerca081252001-12-14 16:52:21 +00006969 }
6970 }
6971
Chris Lattner260ab202002-04-18 17:39:14 +00006972 return Changed;
Chris Lattner04805fa2002-02-26 21:46:54 +00006973}
6974
Brian Gaeke38b79e82004-07-27 17:43:21 +00006975FunctionPass *llvm::createInstructionCombiningPass() {
Chris Lattner260ab202002-04-18 17:39:14 +00006976 return new InstCombiner();
Chris Lattner04805fa2002-02-26 21:46:54 +00006977}
Brian Gaeke960707c2003-11-11 22:41:34 +00006978