blob: b21d037bf7a986ae409f4046aba4360203ce1ec0 [file] [log] [blame]
Philip Reamesd16a9b12015-02-20 01:06:44 +00001//===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Rewrite an existing set of gc.statepoints such that they make potential
11// relocations performed by the garbage collector explicit in the IR.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Pass.h"
16#include "llvm/Analysis/CFG.h"
Philip Reamesabcdc5e2015-08-27 01:02:28 +000017#include "llvm/Analysis/InstructionSimplify.h"
Igor Laevskye0317182015-05-19 15:59:05 +000018#include "llvm/Analysis/TargetTransformInfo.h"
Philip Reamesd16a9b12015-02-20 01:06:44 +000019#include "llvm/ADT/SetOperations.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/ADT/DenseSet.h"
Philip Reames4d80ede2015-04-10 23:11:26 +000022#include "llvm/ADT/SetVector.h"
Swaroop Sridhar665bc9c2015-05-20 01:07:23 +000023#include "llvm/ADT/StringRef.h"
Philip Reames15d55632015-09-09 23:26:08 +000024#include "llvm/ADT/MapVector.h"
Philip Reamesd16a9b12015-02-20 01:06:44 +000025#include "llvm/IR/BasicBlock.h"
26#include "llvm/IR/CallSite.h"
27#include "llvm/IR/Dominators.h"
28#include "llvm/IR/Function.h"
29#include "llvm/IR/IRBuilder.h"
30#include "llvm/IR/InstIterator.h"
31#include "llvm/IR/Instructions.h"
32#include "llvm/IR/Intrinsics.h"
33#include "llvm/IR/IntrinsicInst.h"
34#include "llvm/IR/Module.h"
Sanjoy Das353a19e2015-06-02 22:33:37 +000035#include "llvm/IR/MDBuilder.h"
Philip Reamesd16a9b12015-02-20 01:06:44 +000036#include "llvm/IR/Statepoint.h"
37#include "llvm/IR/Value.h"
38#include "llvm/IR/Verifier.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Transforms/Scalar.h"
42#include "llvm/Transforms/Utils/BasicBlockUtils.h"
43#include "llvm/Transforms/Utils/Cloning.h"
44#include "llvm/Transforms/Utils/Local.h"
45#include "llvm/Transforms/Utils/PromoteMemToReg.h"
46
47#define DEBUG_TYPE "rewrite-statepoints-for-gc"
48
49using namespace llvm;
50
Philip Reamesd16a9b12015-02-20 01:06:44 +000051// Print the liveset found at the insert location
52static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
53 cl::init(false));
Philip Reames704e78b2015-04-10 22:34:56 +000054static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
55 cl::init(false));
Philip Reamesd16a9b12015-02-20 01:06:44 +000056// Print out the base pointers for debugging
Philip Reames704e78b2015-04-10 22:34:56 +000057static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
58 cl::init(false));
Philip Reamesd16a9b12015-02-20 01:06:44 +000059
Igor Laevskye0317182015-05-19 15:59:05 +000060// Cost threshold measuring when it is profitable to rematerialize value instead
61// of relocating it
62static cl::opt<unsigned>
63RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
64 cl::init(6));
65
Philip Reamese73300b2015-04-13 16:41:32 +000066#ifdef XDEBUG
67static bool ClobberNonLive = true;
68#else
69static bool ClobberNonLive = false;
70#endif
71static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
72 cl::location(ClobberNonLive),
73 cl::Hidden);
74
Sanjoy Das25ec1a32015-10-16 02:41:00 +000075static cl::opt<bool> UseDeoptBundles("rs4gc-use-deopt-bundles", cl::Hidden,
76 cl::init(false));
77static cl::opt<bool>
78 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
79 cl::Hidden, cl::init(true));
80
Philip Reames103d2382016-01-07 02:20:11 +000081/// Should we split vectors of pointers into their individual elements? This
82/// is known to be buggy, but the alternate implementation isn't yet ready.
83/// This is purely to provide a debugging and dianostic hook until the vector
84/// split is replaced with vector relocations.
85static cl::opt<bool> UseVectorSplit("rs4gc-split-vector-values", cl::Hidden,
86 cl::init(true));
87
Benjamin Kramer6f665452015-02-20 14:00:58 +000088namespace {
Sanjoy Dasea45f0e2015-06-02 22:33:34 +000089struct RewriteStatepointsForGC : public ModulePass {
Philip Reamesd16a9b12015-02-20 01:06:44 +000090 static char ID; // Pass identification, replacement for typeid
91
Sanjoy Dasea45f0e2015-06-02 22:33:34 +000092 RewriteStatepointsForGC() : ModulePass(ID) {
Philip Reamesd16a9b12015-02-20 01:06:44 +000093 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry());
94 }
Sanjoy Dasea45f0e2015-06-02 22:33:34 +000095 bool runOnFunction(Function &F);
96 bool runOnModule(Module &M) override {
97 bool Changed = false;
98 for (Function &F : M)
99 Changed |= runOnFunction(F);
Sanjoy Das353a19e2015-06-02 22:33:37 +0000100
101 if (Changed) {
Igor Laevskydde00292015-10-23 22:42:44 +0000102 // stripNonValidAttributes asserts that shouldRewriteStatepointsIn
Sanjoy Das353a19e2015-06-02 22:33:37 +0000103 // returns true for at least one function in the module. Since at least
104 // one function changed, we know that the precondition is satisfied.
Igor Laevskydde00292015-10-23 22:42:44 +0000105 stripNonValidAttributes(M);
Sanjoy Das353a19e2015-06-02 22:33:37 +0000106 }
107
Sanjoy Dasea45f0e2015-06-02 22:33:34 +0000108 return Changed;
109 }
Philip Reamesd16a9b12015-02-20 01:06:44 +0000110
111 void getAnalysisUsage(AnalysisUsage &AU) const override {
112 // We add and rewrite a bunch of instructions, but don't really do much
113 // else. We could in theory preserve a lot more analyses here.
114 AU.addRequired<DominatorTreeWrapperPass>();
Igor Laevskye0317182015-05-19 15:59:05 +0000115 AU.addRequired<TargetTransformInfoWrapperPass>();
Philip Reamesd16a9b12015-02-20 01:06:44 +0000116 }
Sanjoy Das353a19e2015-06-02 22:33:37 +0000117
118 /// The IR fed into RewriteStatepointsForGC may have had attributes implying
119 /// dereferenceability that are no longer valid/correct after
120 /// RewriteStatepointsForGC has run. This is because semantically, after
121 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
Igor Laevskydde00292015-10-23 22:42:44 +0000122 /// heap. stripNonValidAttributes (conservatively) restores correctness
Sanjoy Das353a19e2015-06-02 22:33:37 +0000123 /// by erasing all attributes in the module that externally imply
124 /// dereferenceability.
Igor Laevsky1ef06552015-10-26 19:06:01 +0000125 /// Similar reasoning also applies to the noalias attributes. gc.statepoint
126 /// can touch the entire heap including noalias objects.
Igor Laevskydde00292015-10-23 22:42:44 +0000127 void stripNonValidAttributes(Module &M);
Sanjoy Das353a19e2015-06-02 22:33:37 +0000128
Igor Laevskydde00292015-10-23 22:42:44 +0000129 // Helpers for stripNonValidAttributes
130 void stripNonValidAttributesFromBody(Function &F);
131 void stripNonValidAttributesFromPrototype(Function &F);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000132};
Benjamin Kramer6f665452015-02-20 14:00:58 +0000133} // namespace
Philip Reamesd16a9b12015-02-20 01:06:44 +0000134
135char RewriteStatepointsForGC::ID = 0;
136
Sanjoy Dasea45f0e2015-06-02 22:33:34 +0000137ModulePass *llvm::createRewriteStatepointsForGCPass() {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000138 return new RewriteStatepointsForGC();
139}
140
141INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
142 "Make relocations explicit at statepoints", false, false)
143INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
144INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
145 "Make relocations explicit at statepoints", false, false)
146
147namespace {
Philip Reamesdf1ef082015-04-10 22:53:14 +0000148struct GCPtrLivenessData {
149 /// Values defined in this block.
150 DenseMap<BasicBlock *, DenseSet<Value *>> KillSet;
151 /// Values used in this block (and thus live); does not included values
152 /// killed within this block.
153 DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet;
154
155 /// Values live into this basic block (i.e. used by any
156 /// instruction in this basic block or ones reachable from here)
157 DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn;
158
159 /// Values live out of this basic block (i.e. live into
160 /// any successor block)
161 DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut;
162};
163
Philip Reamesd16a9b12015-02-20 01:06:44 +0000164// The type of the internal cache used inside the findBasePointers family
165// of functions. From the callers perspective, this is an opaque type and
166// should not be inspected.
167//
168// In the actual implementation this caches two relations:
169// - The base relation itself (i.e. this pointer is based on that one)
170// - The base defining value relation (i.e. before base_phi insertion)
171// Generally, after the execution of a full findBasePointer call, only the
172// base relation will remain. Internally, we add a mixture of the two
173// types, then update all the second type to the first type
Philip Reamese9c3b9b2015-02-20 22:48:20 +0000174typedef DenseMap<Value *, Value *> DefiningValueMapTy;
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +0000175typedef DenseSet<Value *> StatepointLiveSetTy;
Sanjoy Das40bdd042015-10-07 21:32:35 +0000176typedef DenseMap<AssertingVH<Instruction>, AssertingVH<Value>>
177 RematerializedValueMapTy;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000178
Philip Reamesd16a9b12015-02-20 01:06:44 +0000179struct PartiallyConstructedSafepointRecord {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +0000180 /// The set of values known to be live across this safepoint
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +0000181 StatepointLiveSetTy LiveSet;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000182
183 /// Mapping from live pointers to a base-defining-value
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +0000184 DenseMap<Value *, Value *> PointerToBase;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000185
Philip Reames0a3240f2015-02-20 21:34:11 +0000186 /// The *new* gc.statepoint instruction itself. This produces the token
187 /// that normal path gc.relocates and the gc.result are tied to.
188 Instruction *StatepointToken;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000189
Philip Reamesf2041322015-02-20 19:26:04 +0000190 /// Instruction to which exceptional gc relocates are attached
191 /// Makes it easier to iterate through them during relocationViaAlloca.
192 Instruction *UnwindToken;
Igor Laevskye0317182015-05-19 15:59:05 +0000193
194 /// Record live values we are rematerialized instead of relocating.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +0000195 /// They are not included into 'LiveSet' field.
Igor Laevskye0317182015-05-19 15:59:05 +0000196 /// Maps rematerialized copy to it's original value.
197 RematerializedValueMapTy RematerializedValues;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000198};
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000199}
Philip Reamesd16a9b12015-02-20 01:06:44 +0000200
Sanjoy Das25ec1a32015-10-16 02:41:00 +0000201static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) {
202 assert(UseDeoptBundles && "Should not be called otherwise!");
203
204 Optional<OperandBundleUse> DeoptBundle = CS.getOperandBundle("deopt");
205
206 if (!DeoptBundle.hasValue()) {
207 assert(AllowStatepointWithNoDeoptInfo &&
208 "Found non-leaf call without deopt info!");
209 return None;
210 }
211
212 return DeoptBundle.getValue().Inputs;
213}
214
Philip Reamesdf1ef082015-04-10 22:53:14 +0000215/// Compute the live-in set for every basic block in the function
216static void computeLiveInValues(DominatorTree &DT, Function &F,
217 GCPtrLivenessData &Data);
218
219/// Given results from the dataflow liveness computation, find the set of live
220/// Values at a particular instruction.
221static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
222 StatepointLiveSetTy &out);
223
Philip Reamesd16a9b12015-02-20 01:06:44 +0000224// TODO: Once we can get to the GCStrategy, this becomes
Philip Reamesee8f0552015-12-23 01:42:15 +0000225// Optional<bool> isGCManagedPointer(const Type *Ty) const override {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000226
Craig Toppere3dcce92015-08-01 22:20:21 +0000227static bool isGCPointerType(Type *T) {
228 if (auto *PT = dyn_cast<PointerType>(T))
Philip Reamesd16a9b12015-02-20 01:06:44 +0000229 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
230 // GC managed heap. We know that a pointer into this heap needs to be
231 // updated and that no other pointer does.
232 return (1 == PT->getAddressSpace());
233 return false;
234}
235
Philip Reames8531d8c2015-04-10 21:48:25 +0000236// Return true if this type is one which a) is a gc pointer or contains a GC
237// pointer and b) is of a type this code expects to encounter as a live value.
238// (The insertion code will assert that a type which matches (a) and not (b)
Philip Reames704e78b2015-04-10 22:34:56 +0000239// is not encountered.)
Philip Reames8531d8c2015-04-10 21:48:25 +0000240static bool isHandledGCPointerType(Type *T) {
241 // We fully support gc pointers
242 if (isGCPointerType(T))
243 return true;
244 // We partially support vectors of gc pointers. The code will assert if it
245 // can't handle something.
246 if (auto VT = dyn_cast<VectorType>(T))
247 if (isGCPointerType(VT->getElementType()))
248 return true;
249 return false;
250}
251
252#ifndef NDEBUG
253/// Returns true if this type contains a gc pointer whether we know how to
254/// handle that type or not.
255static bool containsGCPtrType(Type *Ty) {
Philip Reames704e78b2015-04-10 22:34:56 +0000256 if (isGCPointerType(Ty))
Philip Reames8531d8c2015-04-10 21:48:25 +0000257 return true;
258 if (VectorType *VT = dyn_cast<VectorType>(Ty))
259 return isGCPointerType(VT->getScalarType());
260 if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
261 return containsGCPtrType(AT->getElementType());
262 if (StructType *ST = dyn_cast<StructType>(Ty))
Craig Topperd896b032015-11-29 05:38:08 +0000263 return std::any_of(ST->subtypes().begin(), ST->subtypes().end(),
264 containsGCPtrType);
Philip Reames8531d8c2015-04-10 21:48:25 +0000265 return false;
266}
267
268// Returns true if this is a type which a) is a gc pointer or contains a GC
269// pointer and b) is of a type which the code doesn't expect (i.e. first class
270// aggregates). Used to trip assertions.
271static bool isUnhandledGCPointerType(Type *Ty) {
272 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
273}
274#endif
275
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +0000276static bool order_by_name(Value *a, Value *b) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000277 if (a->hasName() && b->hasName()) {
278 return -1 == a->getName().compare(b->getName());
279 } else if (a->hasName() && !b->hasName()) {
280 return true;
281 } else if (!a->hasName() && b->hasName()) {
282 return false;
283 } else {
284 // Better than nothing, but not stable
285 return a < b;
286 }
287}
288
Philip Reamesece70b82015-09-09 23:57:18 +0000289// Return the name of the value suffixed with the provided value, or if the
290// value didn't have a name, the default value specified.
291static std::string suffixed_name_or(Value *V, StringRef Suffix,
292 StringRef DefaultName) {
293 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
294}
295
Philip Reamesdf1ef082015-04-10 22:53:14 +0000296// Conservatively identifies any definitions which might be live at the
297// given instruction. The analysis is performed immediately before the
298// given instruction. Values defined by that instruction are not considered
299// live. Values used by that instruction are considered live.
300static void analyzeParsePointLiveness(
301 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData,
302 const CallSite &CS, PartiallyConstructedSafepointRecord &result) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000303 Instruction *inst = CS.getInstruction();
304
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +0000305 StatepointLiveSetTy LiveSet;
306 findLiveSetAtInst(inst, OriginalLivenessData, LiveSet);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000307
308 if (PrintLiveSet) {
309 // Note: This output is used by several of the test cases
Benjamin Kramerdf005cb2015-08-08 18:27:36 +0000310 // The order of elements in a set is not stable, put them in a vec and sort
Philip Reamesd16a9b12015-02-20 01:06:44 +0000311 // by name
Philip Reamesdab35f32015-09-02 21:11:44 +0000312 SmallVector<Value *, 64> Temp;
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +0000313 Temp.insert(Temp.end(), LiveSet.begin(), LiveSet.end());
Philip Reamesdab35f32015-09-02 21:11:44 +0000314 std::sort(Temp.begin(), Temp.end(), order_by_name);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000315 errs() << "Live Variables:\n";
Philip Reamesdab35f32015-09-02 21:11:44 +0000316 for (Value *V : Temp)
317 dbgs() << " " << V->getName() << " " << *V << "\n";
Philip Reamesd16a9b12015-02-20 01:06:44 +0000318 }
319 if (PrintLiveSetSize) {
320 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +0000321 errs() << "Number live values: " << LiveSet.size() << "\n";
Philip Reamesd16a9b12015-02-20 01:06:44 +0000322 }
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +0000323 result.LiveSet = LiveSet;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000324}
325
Philip Reamesf5b8e472015-09-03 21:34:30 +0000326static bool isKnownBaseResult(Value *V);
327namespace {
328/// A single base defining value - An immediate base defining value for an
329/// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
330/// For instructions which have multiple pointer [vector] inputs or that
331/// transition between vector and scalar types, there is no immediate base
332/// defining value. The 'base defining value' for 'Def' is the transitive
333/// closure of this relation stopping at the first instruction which has no
334/// immediate base defining value. The b.d.v. might itself be a base pointer,
335/// but it can also be an arbitrary derived pointer.
336struct BaseDefiningValueResult {
337 /// Contains the value which is the base defining value.
338 Value * const BDV;
339 /// True if the base defining value is also known to be an actual base
340 /// pointer.
341 const bool IsKnownBase;
342 BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
343 : BDV(BDV), IsKnownBase(IsKnownBase) {
344#ifndef NDEBUG
345 // Check consistency between new and old means of checking whether a BDV is
346 // a base.
347 bool MustBeBase = isKnownBaseResult(BDV);
348 assert(!MustBeBase || MustBeBase == IsKnownBase);
349#endif
350 }
351};
352}
353
354static BaseDefiningValueResult findBaseDefiningValue(Value *I);
Philip Reames311f7102015-05-12 22:19:52 +0000355
Philip Reames8fe7f132015-06-26 22:47:37 +0000356/// Return a base defining value for the 'Index' element of the given vector
357/// instruction 'I'. If Index is null, returns a BDV for the entire vector
358/// 'I'. As an optimization, this method will try to determine when the
359/// element is known to already be a base pointer. If this can be established,
360/// the second value in the returned pair will be true. Note that either a
361/// vector or a pointer typed value can be returned. For the former, the
362/// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
363/// If the later, the return pointer is a BDV (or possibly a base) for the
364/// particular element in 'I'.
Philip Reamesf5b8e472015-09-03 21:34:30 +0000365static BaseDefiningValueResult
Philip Reames66287132015-09-09 23:40:12 +0000366findBaseDefiningValueOfVector(Value *I) {
Philip Reames8531d8c2015-04-10 21:48:25 +0000367 assert(I->getType()->isVectorTy() &&
368 cast<VectorType>(I->getType())->getElementType()->isPointerTy() &&
369 "Illegal to ask for the base pointer of a non-pointer type");
370
371 // Each case parallels findBaseDefiningValue below, see that code for
372 // detailed motivation.
373
374 if (isa<Argument>(I))
375 // An incoming argument to the function is a base pointer
Philip Reamesf5b8e472015-09-03 21:34:30 +0000376 return BaseDefiningValueResult(I, true);
Philip Reames8531d8c2015-04-10 21:48:25 +0000377
378 // We shouldn't see the address of a global as a vector value?
379 assert(!isa<GlobalVariable>(I) &&
380 "unexpected global variable found in base of vector");
381
382 // inlining could possibly introduce phi node that contains
383 // undef if callee has multiple returns
384 if (isa<UndefValue>(I))
385 // utterly meaningless, but useful for dealing with partially optimized
386 // code.
Philip Reamesf5b8e472015-09-03 21:34:30 +0000387 return BaseDefiningValueResult(I, true);
Philip Reames8531d8c2015-04-10 21:48:25 +0000388
389 // Due to inheritance, this must be _after_ the global variable and undef
390 // checks
391 if (Constant *Con = dyn_cast<Constant>(I)) {
392 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) &&
393 "order of checks wrong!");
394 assert(Con->isNullValue() && "null is the only case which makes sense");
Philip Reamesf5b8e472015-09-03 21:34:30 +0000395 return BaseDefiningValueResult(Con, true);
Philip Reames8531d8c2015-04-10 21:48:25 +0000396 }
Philip Reames8fe7f132015-06-26 22:47:37 +0000397
Philip Reames8531d8c2015-04-10 21:48:25 +0000398 if (isa<LoadInst>(I))
Philip Reamesf5b8e472015-09-03 21:34:30 +0000399 return BaseDefiningValueResult(I, true);
Philip Reamesf5b8e472015-09-03 21:34:30 +0000400
Philip Reames66287132015-09-09 23:40:12 +0000401 if (isa<InsertElementInst>(I))
Philip Reames8fe7f132015-06-26 22:47:37 +0000402 // We don't know whether this vector contains entirely base pointers or
403 // not. To be conservatively correct, we treat it as a BDV and will
404 // duplicate code as needed to construct a parallel vector of bases.
Philip Reames66287132015-09-09 23:40:12 +0000405 return BaseDefiningValueResult(I, false);
NAKAMURA Takumifb3bd712015-05-25 01:43:23 +0000406
Philip Reames8fe7f132015-06-26 22:47:37 +0000407 if (isa<ShuffleVectorInst>(I))
408 // We don't know whether this vector contains entirely base pointers or
409 // not. To be conservatively correct, we treat it as a BDV and will
410 // duplicate code as needed to construct a parallel vector of bases.
411 // TODO: There a number of local optimizations which could be applied here
412 // for particular sufflevector patterns.
Philip Reamesf5b8e472015-09-03 21:34:30 +0000413 return BaseDefiningValueResult(I, false);
Philip Reames8fe7f132015-06-26 22:47:37 +0000414
415 // A PHI or Select is a base defining value. The outer findBasePointer
416 // algorithm is responsible for constructing a base value for this BDV.
417 assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
418 "unknown vector instruction - no base found for vector element");
Philip Reamesf5b8e472015-09-03 21:34:30 +0000419 return BaseDefiningValueResult(I, false);
Philip Reames8531d8c2015-04-10 21:48:25 +0000420}
421
Philip Reamesd16a9b12015-02-20 01:06:44 +0000422/// Helper function for findBasePointer - Will return a value which either a)
Philip Reames9ac4e382015-08-12 21:00:20 +0000423/// defines the base pointer for the input, b) blocks the simple search
424/// (i.e. a PHI or Select of two derived pointers), or c) involves a change
425/// from pointer to vector type or back.
Philip Reamesf5b8e472015-09-03 21:34:30 +0000426static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
Philip Reames8fe7f132015-06-26 22:47:37 +0000427 if (I->getType()->isVectorTy())
Philip Reamesf5b8e472015-09-03 21:34:30 +0000428 return findBaseDefiningValueOfVector(I);
Philip Reames8fe7f132015-06-26 22:47:37 +0000429
Philip Reamesd16a9b12015-02-20 01:06:44 +0000430 assert(I->getType()->isPointerTy() &&
431 "Illegal to ask for the base pointer of a non-pointer type");
432
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000433 if (isa<Argument>(I))
Philip Reamesd16a9b12015-02-20 01:06:44 +0000434 // An incoming argument to the function is a base pointer
435 // We should have never reached here if this argument isn't an gc value
Philip Reamesf5b8e472015-09-03 21:34:30 +0000436 return BaseDefiningValueResult(I, true);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000437
Manuel Jacob75cbfdc2016-01-05 04:06:21 +0000438 if (isa<Constant>(I))
439 // We assume that objects with a constant base (e.g. a global) can't move
440 // and don't need to be reported to the collector because they are always
441 // live. All constants have constant bases. Besides global references, all
442 // kinds of constants (e.g. undef, constant expressions, null pointers) can
443 // be introduced by the inliner or the optimizer, especially on dynamically
444 // dead paths. See e.g. test4 in constants.ll.
Philip Reamesf5b8e472015-09-03 21:34:30 +0000445 return BaseDefiningValueResult(I, true);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000446
Philip Reamesd16a9b12015-02-20 01:06:44 +0000447 if (CastInst *CI = dyn_cast<CastInst>(I)) {
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000448 Value *Def = CI->stripPointerCasts();
Manuel Jacob8050a492015-12-21 01:26:46 +0000449 // If stripping pointer casts changes the address space there is an
450 // addrspacecast in between.
451 assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
452 cast<PointerType>(CI->getType())->getAddressSpace() &&
453 "unsupported addrspacecast");
David Blaikie82ad7872015-02-20 23:44:24 +0000454 // If we find a cast instruction here, it means we've found a cast which is
455 // not simply a pointer cast (i.e. an inttoptr). We don't know how to
456 // handle int->ptr conversion.
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000457 assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
458 return findBaseDefiningValue(Def);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000459 }
460
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000461 if (isa<LoadInst>(I))
Philip Reamesf5b8e472015-09-03 21:34:30 +0000462 // The value loaded is an gc base itself
463 return BaseDefiningValueResult(I, true);
464
Philip Reamesd16a9b12015-02-20 01:06:44 +0000465
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000466 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
467 // The base of this GEP is the base
468 return findBaseDefiningValue(GEP->getPointerOperand());
Philip Reamesd16a9b12015-02-20 01:06:44 +0000469
470 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
471 switch (II->getIntrinsicID()) {
472 default:
473 // fall through to general call handling
474 break;
475 case Intrinsic::experimental_gc_statepoint:
Manuel Jacob4e4f60d2015-12-22 18:44:45 +0000476 llvm_unreachable("statepoints don't produce pointers");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000477 case Intrinsic::experimental_gc_relocate: {
478 // Rerunning safepoint insertion after safepoints are already
479 // inserted is not supported. It could probably be made to work,
480 // but why are you doing this? There's no good reason.
481 llvm_unreachable("repeat safepoint insertion is not supported");
482 }
483 case Intrinsic::gcroot:
484 // Currently, this mechanism hasn't been extended to work with gcroot.
485 // There's no reason it couldn't be, but I haven't thought about the
486 // implications much.
487 llvm_unreachable(
488 "interaction with the gcroot mechanism is not supported");
489 }
490 }
491 // We assume that functions in the source language only return base
492 // pointers. This should probably be generalized via attributes to support
493 // both source language and internal functions.
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000494 if (isa<CallInst>(I) || isa<InvokeInst>(I))
Philip Reamesf5b8e472015-09-03 21:34:30 +0000495 return BaseDefiningValueResult(I, true);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000496
497 // I have absolutely no idea how to implement this part yet. It's not
Benjamin Kramerdf005cb2015-08-08 18:27:36 +0000498 // necessarily hard, I just haven't really looked at it yet.
Philip Reamesd16a9b12015-02-20 01:06:44 +0000499 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
500
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000501 if (isa<AtomicCmpXchgInst>(I))
Philip Reamesd16a9b12015-02-20 01:06:44 +0000502 // A CAS is effectively a atomic store and load combined under a
503 // predicate. From the perspective of base pointers, we just treat it
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000504 // like a load.
Philip Reamesf5b8e472015-09-03 21:34:30 +0000505 return BaseDefiningValueResult(I, true);
Philip Reames704e78b2015-04-10 22:34:56 +0000506
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000507 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
Philip Reames704e78b2015-04-10 22:34:56 +0000508 "binary ops which don't apply to pointers");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000509
510 // The aggregate ops. Aggregates can either be in the heap or on the
511 // stack, but in either case, this is simply a field load. As a result,
512 // this is a defining definition of the base just like a load is.
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000513 if (isa<ExtractValueInst>(I))
Philip Reamesf5b8e472015-09-03 21:34:30 +0000514 return BaseDefiningValueResult(I, true);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000515
516 // We should never see an insert vector since that would require we be
517 // tracing back a struct value not a pointer value.
518 assert(!isa<InsertValueInst>(I) &&
519 "Base pointer for a struct is meaningless");
520
Philip Reames9ac4e382015-08-12 21:00:20 +0000521 // An extractelement produces a base result exactly when it's input does.
522 // We may need to insert a parallel instruction to extract the appropriate
523 // element out of the base vector corresponding to the input. Given this,
524 // it's analogous to the phi and select case even though it's not a merge.
Philip Reames66287132015-09-09 23:40:12 +0000525 if (isa<ExtractElementInst>(I))
526 // Note: There a lot of obvious peephole cases here. This are deliberately
527 // handled after the main base pointer inference algorithm to make writing
528 // test cases to exercise that code easier.
529 return BaseDefiningValueResult(I, false);
Philip Reames9ac4e382015-08-12 21:00:20 +0000530
Philip Reamesd16a9b12015-02-20 01:06:44 +0000531 // The last two cases here don't return a base pointer. Instead, they
Benjamin Kramerdf005cb2015-08-08 18:27:36 +0000532 // return a value which dynamically selects from among several base
Philip Reamesd16a9b12015-02-20 01:06:44 +0000533 // derived pointers (each with it's own base potentially). It's the job of
534 // the caller to resolve these.
Philip Reames704e78b2015-04-10 22:34:56 +0000535 assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000536 "missing instruction case in findBaseDefiningValing");
Philip Reamesf5b8e472015-09-03 21:34:30 +0000537 return BaseDefiningValueResult(I, false);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000538}
539
540/// Returns the base defining value for this value.
Philip Reames18d0feb2015-03-27 05:39:32 +0000541static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
542 Value *&Cached = Cache[I];
Benjamin Kramer6f665452015-02-20 14:00:58 +0000543 if (!Cached) {
Philip Reamesf5b8e472015-09-03 21:34:30 +0000544 Cached = findBaseDefiningValue(I).BDV;
Philip Reames2a892a62015-07-23 22:25:26 +0000545 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
546 << Cached->getName() << "\n");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000547 }
Philip Reames18d0feb2015-03-27 05:39:32 +0000548 assert(Cache[I] != nullptr);
Benjamin Kramer6f665452015-02-20 14:00:58 +0000549 return Cached;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000550}
551
552/// Return a base pointer for this value if known. Otherwise, return it's
553/// base defining value.
Philip Reames18d0feb2015-03-27 05:39:32 +0000554static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
555 Value *Def = findBaseDefiningValueCached(I, Cache);
556 auto Found = Cache.find(Def);
557 if (Found != Cache.end()) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000558 // Either a base-of relation, or a self reference. Caller must check.
Benjamin Kramer6f665452015-02-20 14:00:58 +0000559 return Found->second;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000560 }
561 // Only a BDV available
Philip Reames18d0feb2015-03-27 05:39:32 +0000562 return Def;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000563}
564
565/// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
566/// is it known to be a base pointer? Or do we need to continue searching.
Philip Reames18d0feb2015-03-27 05:39:32 +0000567static bool isKnownBaseResult(Value *V) {
Philip Reames66287132015-09-09 23:40:12 +0000568 if (!isa<PHINode>(V) && !isa<SelectInst>(V) &&
569 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
570 !isa<ShuffleVectorInst>(V)) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000571 // no recursion possible
572 return true;
573 }
Philip Reames18d0feb2015-03-27 05:39:32 +0000574 if (isa<Instruction>(V) &&
575 cast<Instruction>(V)->getMetadata("is_base_value")) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000576 // This is a previously inserted base phi or select. We know
577 // that this is a base value.
578 return true;
579 }
580
581 // We need to keep searching
582 return false;
583}
584
Philip Reamesd16a9b12015-02-20 01:06:44 +0000585namespace {
Philip Reames9b141ed2015-07-23 22:49:14 +0000586/// Models the state of a single base defining value in the findBasePointer
587/// algorithm for determining where a new instruction is needed to propagate
588/// the base of this BDV.
589class BDVState {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000590public:
591 enum Status { Unknown, Base, Conflict };
592
Philip Reames9b141ed2015-07-23 22:49:14 +0000593 BDVState(Status s, Value *b = nullptr) : status(s), base(b) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000594 assert(status != Base || b);
595 }
Philip Reames9b141ed2015-07-23 22:49:14 +0000596 explicit BDVState(Value *b) : status(Base), base(b) {}
597 BDVState() : status(Unknown), base(nullptr) {}
Philip Reamesd16a9b12015-02-20 01:06:44 +0000598
599 Status getStatus() const { return status; }
600 Value *getBase() const { return base; }
601
602 bool isBase() const { return getStatus() == Base; }
603 bool isUnknown() const { return getStatus() == Unknown; }
604 bool isConflict() const { return getStatus() == Conflict; }
605
Philip Reames9b141ed2015-07-23 22:49:14 +0000606 bool operator==(const BDVState &other) const {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000607 return base == other.base && status == other.status;
608 }
609
Philip Reames9b141ed2015-07-23 22:49:14 +0000610 bool operator!=(const BDVState &other) const { return !(*this == other); }
Philip Reamesd16a9b12015-02-20 01:06:44 +0000611
Philip Reames2a892a62015-07-23 22:25:26 +0000612 LLVM_DUMP_METHOD
613 void dump() const { print(dbgs()); dbgs() << '\n'; }
614
615 void print(raw_ostream &OS) const {
Philip Reamesdab35f32015-09-02 21:11:44 +0000616 switch (status) {
617 case Unknown:
618 OS << "U";
619 break;
620 case Base:
621 OS << "B";
622 break;
623 case Conflict:
624 OS << "C";
625 break;
626 };
627 OS << " (" << base << " - "
Philip Reames2a892a62015-07-23 22:25:26 +0000628 << (base ? base->getName() : "nullptr") << "): ";
Philip Reamesd16a9b12015-02-20 01:06:44 +0000629 }
630
631private:
632 Status status;
Philip Reamesdd0948a2015-12-18 03:53:28 +0000633 AssertingVH<Value> base; // non null only if status == base
Philip Reamesd16a9b12015-02-20 01:06:44 +0000634};
Philip Reamesb3967cd2015-09-02 22:30:53 +0000635}
Philip Reamesd16a9b12015-02-20 01:06:44 +0000636
Philip Reames6906e922015-09-02 21:57:17 +0000637#ifndef NDEBUG
Philip Reamesb3967cd2015-09-02 22:30:53 +0000638static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
Philip Reames2a892a62015-07-23 22:25:26 +0000639 State.print(OS);
640 return OS;
641}
Philip Reames6906e922015-09-02 21:57:17 +0000642#endif
Philip Reames2a892a62015-07-23 22:25:26 +0000643
Philip Reamesb3967cd2015-09-02 22:30:53 +0000644namespace {
Philip Reames9b141ed2015-07-23 22:49:14 +0000645// Values of type BDVState form a lattice, and this is a helper
Philip Reamesd16a9b12015-02-20 01:06:44 +0000646// class that implementes the meet operation. The meat of the meet
Philip Reames9b141ed2015-07-23 22:49:14 +0000647// operation is implemented in MeetBDVStates::pureMeet
648class MeetBDVStates {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000649public:
Philip Reames273e6bb2015-07-23 21:41:27 +0000650 /// Initializes the currentResult to the TOP state so that if can be met with
651 /// any other state to produce that state.
Philip Reames9b141ed2015-07-23 22:49:14 +0000652 MeetBDVStates() {}
Philip Reamesd16a9b12015-02-20 01:06:44 +0000653
Philip Reames9b141ed2015-07-23 22:49:14 +0000654 // Destructively meet the current result with the given BDVState
655 void meetWith(BDVState otherState) {
Philip Reames273e6bb2015-07-23 21:41:27 +0000656 currentResult = meet(otherState, currentResult);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000657 }
658
Philip Reames9b141ed2015-07-23 22:49:14 +0000659 BDVState getResult() const { return currentResult; }
Philip Reamesd16a9b12015-02-20 01:06:44 +0000660
661private:
Philip Reames9b141ed2015-07-23 22:49:14 +0000662 BDVState currentResult;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000663
Philip Reames9b141ed2015-07-23 22:49:14 +0000664 /// Perform a meet operation on two elements of the BDVState lattice.
665 static BDVState meet(BDVState LHS, BDVState RHS) {
Philip Reames273e6bb2015-07-23 21:41:27 +0000666 assert((pureMeet(LHS, RHS) == pureMeet(RHS, LHS)) &&
667 "math is wrong: meet does not commute!");
Philip Reames9b141ed2015-07-23 22:49:14 +0000668 BDVState Result = pureMeet(LHS, RHS);
Philip Reames2a892a62015-07-23 22:25:26 +0000669 DEBUG(dbgs() << "meet of " << LHS << " with " << RHS
670 << " produced " << Result << "\n");
671 return Result;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000672 }
673
Philip Reames9b141ed2015-07-23 22:49:14 +0000674 static BDVState pureMeet(const BDVState &stateA, const BDVState &stateB) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000675 switch (stateA.getStatus()) {
Philip Reames9b141ed2015-07-23 22:49:14 +0000676 case BDVState::Unknown:
Philip Reamesd16a9b12015-02-20 01:06:44 +0000677 return stateB;
678
Philip Reames9b141ed2015-07-23 22:49:14 +0000679 case BDVState::Base:
Philip Reamesd16a9b12015-02-20 01:06:44 +0000680 assert(stateA.getBase() && "can't be null");
David Blaikie82ad7872015-02-20 23:44:24 +0000681 if (stateB.isUnknown())
Philip Reamesd16a9b12015-02-20 01:06:44 +0000682 return stateA;
David Blaikie82ad7872015-02-20 23:44:24 +0000683
684 if (stateB.isBase()) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000685 if (stateA.getBase() == stateB.getBase()) {
686 assert(stateA == stateB && "equality broken!");
687 return stateA;
688 }
Philip Reames9b141ed2015-07-23 22:49:14 +0000689 return BDVState(BDVState::Conflict);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000690 }
David Blaikie82ad7872015-02-20 23:44:24 +0000691 assert(stateB.isConflict() && "only three states!");
Philip Reames9b141ed2015-07-23 22:49:14 +0000692 return BDVState(BDVState::Conflict);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000693
Philip Reames9b141ed2015-07-23 22:49:14 +0000694 case BDVState::Conflict:
Philip Reamesd16a9b12015-02-20 01:06:44 +0000695 return stateA;
696 }
Reid Klecknera070ee52015-02-20 19:46:02 +0000697 llvm_unreachable("only three states!");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000698 }
699};
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000700}
Philip Reamesb3967cd2015-09-02 22:30:53 +0000701
702
Philip Reamesd16a9b12015-02-20 01:06:44 +0000703/// For a given value or instruction, figure out what base ptr it's derived
704/// from. For gc objects, this is simply itself. On success, returns a value
705/// which is the base pointer. (This is reliable and can be used for
706/// relocation.) On failure, returns nullptr.
Philip Reamesba198492015-04-14 00:41:34 +0000707static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000708 Value *def = findBaseOrBDV(I, cache);
709
710 if (isKnownBaseResult(def)) {
711 return def;
712 }
713
714 // Here's the rough algorithm:
715 // - For every SSA value, construct a mapping to either an actual base
716 // pointer or a PHI which obscures the base pointer.
717 // - Construct a mapping from PHI to unknown TOP state. Use an
718 // optimistic algorithm to propagate base pointer information. Lattice
719 // looks like:
720 // UNKNOWN
721 // b1 b2 b3 b4
722 // CONFLICT
723 // When algorithm terminates, all PHIs will either have a single concrete
724 // base or be in a conflict state.
725 // - For every conflict, insert a dummy PHI node without arguments. Add
726 // these to the base[Instruction] = BasePtr mapping. For every
727 // non-conflict, add the actual base.
728 // - For every conflict, add arguments for the base[a] of each input
729 // arguments.
730 //
731 // Note: A simpler form of this would be to add the conflict form of all
732 // PHIs without running the optimistic algorithm. This would be
Benjamin Kramerdf005cb2015-08-08 18:27:36 +0000733 // analogous to pessimistic data flow and would likely lead to an
Philip Reamesd16a9b12015-02-20 01:06:44 +0000734 // overall worse solution.
735
Philip Reames29e9ae72015-07-24 00:42:55 +0000736#ifndef NDEBUG
Philip Reames88958b22015-07-24 00:02:11 +0000737 auto isExpectedBDVType = [](Value *BDV) {
Philip Reames66287132015-09-09 23:40:12 +0000738 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
739 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV);
Philip Reames88958b22015-07-24 00:02:11 +0000740 };
Philip Reames29e9ae72015-07-24 00:42:55 +0000741#endif
Philip Reames88958b22015-07-24 00:02:11 +0000742
743 // Once populated, will contain a mapping from each potentially non-base BDV
744 // to a lattice value (described above) which corresponds to that BDV.
Philip Reames15d55632015-09-09 23:26:08 +0000745 // We use the order of insertion (DFS over the def/use graph) to provide a
746 // stable deterministic ordering for visiting DenseMaps (which are unordered)
747 // below. This is important for deterministic compilation.
Philip Reames34d7a742015-09-10 00:22:49 +0000748 MapVector<Value *, BDVState> States;
Philip Reames15d55632015-09-09 23:26:08 +0000749
750 // Recursively fill in all base defining values reachable from the initial
751 // one for which we don't already know a definite base value for
Philip Reames88958b22015-07-24 00:02:11 +0000752 /* scope */ {
Philip Reames88958b22015-07-24 00:02:11 +0000753 SmallVector<Value*, 16> Worklist;
754 Worklist.push_back(def);
Philip Reames34d7a742015-09-10 00:22:49 +0000755 States.insert(std::make_pair(def, BDVState()));
Philip Reames88958b22015-07-24 00:02:11 +0000756 while (!Worklist.empty()) {
757 Value *Current = Worklist.pop_back_val();
758 assert(!isKnownBaseResult(Current) && "why did it get added?");
759
760 auto visitIncomingValue = [&](Value *InVal) {
761 Value *Base = findBaseOrBDV(InVal, cache);
762 if (isKnownBaseResult(Base))
763 // Known bases won't need new instructions introduced and can be
764 // ignored safely
765 return;
766 assert(isExpectedBDVType(Base) && "the only non-base values "
767 "we see should be base defining values");
Philip Reames34d7a742015-09-10 00:22:49 +0000768 if (States.insert(std::make_pair(Base, BDVState())).second)
Philip Reames88958b22015-07-24 00:02:11 +0000769 Worklist.push_back(Base);
770 };
771 if (PHINode *Phi = dyn_cast<PHINode>(Current)) {
772 for (Value *InVal : Phi->incoming_values())
773 visitIncomingValue(InVal);
Philip Reames9ac4e382015-08-12 21:00:20 +0000774 } else if (SelectInst *Sel = dyn_cast<SelectInst>(Current)) {
Philip Reames88958b22015-07-24 00:02:11 +0000775 visitIncomingValue(Sel->getTrueValue());
776 visitIncomingValue(Sel->getFalseValue());
Philip Reames9ac4e382015-08-12 21:00:20 +0000777 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
778 visitIncomingValue(EE->getVectorOperand());
Philip Reames66287132015-09-09 23:40:12 +0000779 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
780 visitIncomingValue(IE->getOperand(0)); // vector operand
781 visitIncomingValue(IE->getOperand(1)); // scalar operand
Philip Reames9ac4e382015-08-12 21:00:20 +0000782 } else {
Philip Reames66287132015-09-09 23:40:12 +0000783 // There is one known class of instructions we know we don't handle.
784 assert(isa<ShuffleVectorInst>(Current));
Philip Reames9ac4e382015-08-12 21:00:20 +0000785 llvm_unreachable("unimplemented instruction case");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000786 }
787 }
788 }
789
Philip Reamesdab35f32015-09-02 21:11:44 +0000790#ifndef NDEBUG
791 DEBUG(dbgs() << "States after initialization:\n");
Philip Reames34d7a742015-09-10 00:22:49 +0000792 for (auto Pair : States) {
Philip Reamesdab35f32015-09-02 21:11:44 +0000793 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000794 }
Philip Reamesdab35f32015-09-02 21:11:44 +0000795#endif
Philip Reamesd16a9b12015-02-20 01:06:44 +0000796
Philip Reames273e6bb2015-07-23 21:41:27 +0000797 // Return a phi state for a base defining value. We'll generate a new
798 // base state for known bases and expect to find a cached state otherwise.
799 auto getStateForBDV = [&](Value *baseValue) {
800 if (isKnownBaseResult(baseValue))
Philip Reames9b141ed2015-07-23 22:49:14 +0000801 return BDVState(baseValue);
Philip Reames34d7a742015-09-10 00:22:49 +0000802 auto I = States.find(baseValue);
803 assert(I != States.end() && "lookup failed!");
Philip Reames273e6bb2015-07-23 21:41:27 +0000804 return I->second;
805 };
806
Philip Reamesd16a9b12015-02-20 01:06:44 +0000807 bool progress = true;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000808 while (progress) {
Yaron Keren42a7adf2015-02-28 13:11:24 +0000809#ifndef NDEBUG
Philip Reamesb4e55f32015-09-10 00:32:56 +0000810 const size_t oldSize = States.size();
Yaron Keren42a7adf2015-02-28 13:11:24 +0000811#endif
Philip Reamesd16a9b12015-02-20 01:06:44 +0000812 progress = false;
Philip Reames15d55632015-09-09 23:26:08 +0000813 // We're only changing values in this loop, thus safe to keep iterators.
814 // Since this is computing a fixed point, the order of visit does not
815 // effect the result. TODO: We could use a worklist here and make this run
816 // much faster.
Philip Reames34d7a742015-09-10 00:22:49 +0000817 for (auto Pair : States) {
Philip Reamesece70b82015-09-09 23:57:18 +0000818 Value *BDV = Pair.first;
819 assert(!isKnownBaseResult(BDV) && "why did it get added?");
Philip Reames273e6bb2015-07-23 21:41:27 +0000820
Philip Reames9b141ed2015-07-23 22:49:14 +0000821 // Given an input value for the current instruction, return a BDVState
Philip Reames273e6bb2015-07-23 21:41:27 +0000822 // instance which represents the BDV of that value.
823 auto getStateForInput = [&](Value *V) mutable {
824 Value *BDV = findBaseOrBDV(V, cache);
825 return getStateForBDV(BDV);
826 };
827
Philip Reames9b141ed2015-07-23 22:49:14 +0000828 MeetBDVStates calculateMeet;
Philip Reamesece70b82015-09-09 23:57:18 +0000829 if (SelectInst *select = dyn_cast<SelectInst>(BDV)) {
Philip Reames273e6bb2015-07-23 21:41:27 +0000830 calculateMeet.meetWith(getStateForInput(select->getTrueValue()));
831 calculateMeet.meetWith(getStateForInput(select->getFalseValue()));
Philip Reamesece70b82015-09-09 23:57:18 +0000832 } else if (PHINode *Phi = dyn_cast<PHINode>(BDV)) {
Philip Reames9ac4e382015-08-12 21:00:20 +0000833 for (Value *Val : Phi->incoming_values())
Philip Reames273e6bb2015-07-23 21:41:27 +0000834 calculateMeet.meetWith(getStateForInput(Val));
Philip Reamesece70b82015-09-09 23:57:18 +0000835 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
Philip Reames9ac4e382015-08-12 21:00:20 +0000836 // The 'meet' for an extractelement is slightly trivial, but it's still
837 // useful in that it drives us to conflict if our input is.
Philip Reames9ac4e382015-08-12 21:00:20 +0000838 calculateMeet.meetWith(getStateForInput(EE->getVectorOperand()));
Philip Reames66287132015-09-09 23:40:12 +0000839 } else {
840 // Given there's a inherent type mismatch between the operands, will
841 // *always* produce Conflict.
Philip Reamesece70b82015-09-09 23:57:18 +0000842 auto *IE = cast<InsertElementInst>(BDV);
Philip Reames66287132015-09-09 23:40:12 +0000843 calculateMeet.meetWith(getStateForInput(IE->getOperand(0)));
844 calculateMeet.meetWith(getStateForInput(IE->getOperand(1)));
Philip Reames9ac4e382015-08-12 21:00:20 +0000845 }
846
Philip Reames34d7a742015-09-10 00:22:49 +0000847 BDVState oldState = States[BDV];
Philip Reames9b141ed2015-07-23 22:49:14 +0000848 BDVState newState = calculateMeet.getResult();
Philip Reamesd16a9b12015-02-20 01:06:44 +0000849 if (oldState != newState) {
850 progress = true;
Philip Reames34d7a742015-09-10 00:22:49 +0000851 States[BDV] = newState;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000852 }
853 }
854
Philip Reamesb4e55f32015-09-10 00:32:56 +0000855 assert(oldSize == States.size() &&
856 "fixed point shouldn't be adding any new nodes to state");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000857 }
858
Philip Reamesdab35f32015-09-02 21:11:44 +0000859#ifndef NDEBUG
860 DEBUG(dbgs() << "States after meet iteration:\n");
Philip Reames34d7a742015-09-10 00:22:49 +0000861 for (auto Pair : States) {
Philip Reamesdab35f32015-09-02 21:11:44 +0000862 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000863 }
Philip Reamesdab35f32015-09-02 21:11:44 +0000864#endif
865
Philip Reamesd16a9b12015-02-20 01:06:44 +0000866 // Insert Phis for all conflicts
Philip Reames2e5bcbe2015-02-28 01:52:09 +0000867 // TODO: adjust naming patterns to avoid this order of iteration dependency
Philip Reames34d7a742015-09-10 00:22:49 +0000868 for (auto Pair : States) {
Philip Reames15d55632015-09-09 23:26:08 +0000869 Instruction *I = cast<Instruction>(Pair.first);
870 BDVState State = Pair.second;
Philip Reames6ff1a1e32015-07-21 19:04:38 +0000871 assert(!isKnownBaseResult(I) && "why did it get added?");
872 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
Philip Reames9ac4e382015-08-12 21:00:20 +0000873
874 // extractelement instructions are a bit special in that we may need to
875 // insert an extract even when we know an exact base for the instruction.
876 // The problem is that we need to convert from a vector base to a scalar
877 // base for the particular indice we're interested in.
878 if (State.isBase() && isa<ExtractElementInst>(I) &&
879 isa<VectorType>(State.getBase()->getType())) {
880 auto *EE = cast<ExtractElementInst>(I);
881 // TODO: In many cases, the new instruction is just EE itself. We should
882 // exploit this, but can't do it here since it would break the invariant
883 // about the BDV not being known to be a base.
884 auto *BaseInst = ExtractElementInst::Create(State.getBase(),
885 EE->getIndexOperand(),
886 "base_ee", EE);
887 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
Philip Reames34d7a742015-09-10 00:22:49 +0000888 States[I] = BDVState(BDVState::Base, BaseInst);
Philip Reames9ac4e382015-08-12 21:00:20 +0000889 }
Philip Reames66287132015-09-09 23:40:12 +0000890
891 // Since we're joining a vector and scalar base, they can never be the
892 // same. As a result, we should always see insert element having reached
893 // the conflict state.
894 if (isa<InsertElementInst>(I)) {
895 assert(State.isConflict());
896 }
Philip Reames9ac4e382015-08-12 21:00:20 +0000897
Philip Reames6ff1a1e32015-07-21 19:04:38 +0000898 if (!State.isConflict())
Philip Reamesf986d682015-02-28 00:54:41 +0000899 continue;
Philip Reames704e78b2015-04-10 22:34:56 +0000900
Philip Reames6ff1a1e32015-07-21 19:04:38 +0000901 /// Create and insert a new instruction which will represent the base of
902 /// the given instruction 'I'.
903 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
904 if (isa<PHINode>(I)) {
905 BasicBlock *BB = I->getParent();
906 int NumPreds = std::distance(pred_begin(BB), pred_end(BB));
907 assert(NumPreds > 0 && "how did we reach here");
Philip Reamesece70b82015-09-09 23:57:18 +0000908 std::string Name = suffixed_name_or(I, ".base", "base_phi");
Philip Reamesfa2c6302015-07-24 19:01:39 +0000909 return PHINode::Create(I->getType(), NumPreds, Name, I);
Philip Reames9ac4e382015-08-12 21:00:20 +0000910 } else if (SelectInst *Sel = dyn_cast<SelectInst>(I)) {
911 // The undef will be replaced later
912 UndefValue *Undef = UndefValue::get(Sel->getType());
Philip Reamesece70b82015-09-09 23:57:18 +0000913 std::string Name = suffixed_name_or(I, ".base", "base_select");
Philip Reames9ac4e382015-08-12 21:00:20 +0000914 return SelectInst::Create(Sel->getCondition(), Undef,
915 Undef, Name, Sel);
Philip Reames66287132015-09-09 23:40:12 +0000916 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
Philip Reames9ac4e382015-08-12 21:00:20 +0000917 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
Philip Reamesece70b82015-09-09 23:57:18 +0000918 std::string Name = suffixed_name_or(I, ".base", "base_ee");
Philip Reames9ac4e382015-08-12 21:00:20 +0000919 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
920 EE);
Philip Reames66287132015-09-09 23:40:12 +0000921 } else {
922 auto *IE = cast<InsertElementInst>(I);
923 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
924 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
Philip Reamesece70b82015-09-09 23:57:18 +0000925 std::string Name = suffixed_name_or(I, ".base", "base_ie");
Philip Reames66287132015-09-09 23:40:12 +0000926 return InsertElementInst::Create(VecUndef, ScalarUndef,
927 IE->getOperand(2), Name, IE);
Philip Reames6ff1a1e32015-07-21 19:04:38 +0000928 }
Philip Reames66287132015-09-09 23:40:12 +0000929
Philip Reames6ff1a1e32015-07-21 19:04:38 +0000930 };
931 Instruction *BaseInst = MakeBaseInstPlaceholder(I);
932 // Add metadata marking this as a base value
933 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
Philip Reames34d7a742015-09-10 00:22:49 +0000934 States[I] = BDVState(BDVState::Conflict, BaseInst);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000935 }
936
Philip Reames3ea15892015-09-03 21:57:40 +0000937 // Returns a instruction which produces the base pointer for a given
938 // instruction. The instruction is assumed to be an input to one of the BDVs
939 // seen in the inference algorithm above. As such, we must either already
940 // know it's base defining value is a base, or have inserted a new
941 // instruction to propagate the base of it's BDV and have entered that newly
942 // introduced instruction into the state table. In either case, we are
943 // assured to be able to determine an instruction which produces it's base
944 // pointer.
945 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
946 Value *BDV = findBaseOrBDV(Input, cache);
947 Value *Base = nullptr;
948 if (isKnownBaseResult(BDV)) {
949 Base = BDV;
950 } else {
951 // Either conflict or base.
Philip Reames34d7a742015-09-10 00:22:49 +0000952 assert(States.count(BDV));
953 Base = States[BDV].getBase();
Philip Reames3ea15892015-09-03 21:57:40 +0000954 }
955 assert(Base && "can't be null");
956 // The cast is needed since base traversal may strip away bitcasts
957 if (Base->getType() != Input->getType() &&
958 InsertPt) {
959 Base = new BitCastInst(Base, Input->getType(), "cast",
960 InsertPt);
961 }
962 return Base;
963 };
964
Philip Reames15d55632015-09-09 23:26:08 +0000965 // Fixup all the inputs of the new PHIs. Visit order needs to be
966 // deterministic and predictable because we're naming newly created
967 // instructions.
Philip Reames34d7a742015-09-10 00:22:49 +0000968 for (auto Pair : States) {
Philip Reames7540e3a2015-09-10 00:01:53 +0000969 Instruction *BDV = cast<Instruction>(Pair.first);
Philip Reamesc8ded462015-09-10 00:27:50 +0000970 BDVState State = Pair.second;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000971
Philip Reames7540e3a2015-09-10 00:01:53 +0000972 assert(!isKnownBaseResult(BDV) && "why did it get added?");
Philip Reamesc8ded462015-09-10 00:27:50 +0000973 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
974 if (!State.isConflict())
Philip Reames28e61ce2015-02-28 01:57:44 +0000975 continue;
Philip Reames704e78b2015-04-10 22:34:56 +0000976
Philip Reamesc8ded462015-09-10 00:27:50 +0000977 if (PHINode *basephi = dyn_cast<PHINode>(State.getBase())) {
Philip Reames7540e3a2015-09-10 00:01:53 +0000978 PHINode *phi = cast<PHINode>(BDV);
Philip Reames28e61ce2015-02-28 01:57:44 +0000979 unsigned NumPHIValues = phi->getNumIncomingValues();
980 for (unsigned i = 0; i < NumPHIValues; i++) {
981 Value *InVal = phi->getIncomingValue(i);
982 BasicBlock *InBB = phi->getIncomingBlock(i);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000983
Philip Reames28e61ce2015-02-28 01:57:44 +0000984 // If we've already seen InBB, add the same incoming value
985 // we added for it earlier. The IR verifier requires phi
986 // nodes with multiple entries from the same basic block
987 // to have the same incoming value for each of those
988 // entries. If we don't do this check here and basephi
989 // has a different type than base, we'll end up adding two
990 // bitcasts (and hence two distinct values) as incoming
991 // values for the same basic block.
Philip Reamesd16a9b12015-02-20 01:06:44 +0000992
Philip Reames28e61ce2015-02-28 01:57:44 +0000993 int blockIndex = basephi->getBasicBlockIndex(InBB);
994 if (blockIndex != -1) {
995 Value *oldBase = basephi->getIncomingValue(blockIndex);
996 basephi->addIncoming(oldBase, InBB);
Philip Reames3ea15892015-09-03 21:57:40 +0000997
Philip Reamesd16a9b12015-02-20 01:06:44 +0000998#ifndef NDEBUG
Philip Reames3ea15892015-09-03 21:57:40 +0000999 Value *Base = getBaseForInput(InVal, nullptr);
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00001000 // In essence this assert states: the only way two
Philip Reames28e61ce2015-02-28 01:57:44 +00001001 // values incoming from the same basic block may be
1002 // different is by being different bitcasts of the same
1003 // value. A cleanup that remains TODO is changing
1004 // findBaseOrBDV to return an llvm::Value of the correct
1005 // type (and still remain pure). This will remove the
1006 // need to add bitcasts.
Philip Reames3ea15892015-09-03 21:57:40 +00001007 assert(Base->stripPointerCasts() == oldBase->stripPointerCasts() &&
Philip Reames28e61ce2015-02-28 01:57:44 +00001008 "sanity -- findBaseOrBDV should be pure!");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001009#endif
Philip Reames28e61ce2015-02-28 01:57:44 +00001010 continue;
1011 }
Philip Reamesd16a9b12015-02-20 01:06:44 +00001012
Philip Reames3ea15892015-09-03 21:57:40 +00001013 // Find the instruction which produces the base for each input. We may
1014 // need to insert a bitcast in the incoming block.
1015 // TODO: Need to split critical edges if insertion is needed
1016 Value *Base = getBaseForInput(InVal, InBB->getTerminator());
1017 basephi->addIncoming(Base, InBB);
Philip Reames28e61ce2015-02-28 01:57:44 +00001018 }
1019 assert(basephi->getNumIncomingValues() == NumPHIValues);
Philip Reamesc8ded462015-09-10 00:27:50 +00001020 } else if (SelectInst *BaseSel = dyn_cast<SelectInst>(State.getBase())) {
Philip Reames7540e3a2015-09-10 00:01:53 +00001021 SelectInst *Sel = cast<SelectInst>(BDV);
Philip Reames28e61ce2015-02-28 01:57:44 +00001022 // Operand 1 & 2 are true, false path respectively. TODO: refactor to
1023 // something more safe and less hacky.
1024 for (int i = 1; i <= 2; i++) {
Philip Reames3ea15892015-09-03 21:57:40 +00001025 Value *InVal = Sel->getOperand(i);
1026 // Find the instruction which produces the base for each input. We may
1027 // need to insert a bitcast.
1028 Value *Base = getBaseForInput(InVal, BaseSel);
1029 BaseSel->setOperand(i, Base);
Philip Reames28e61ce2015-02-28 01:57:44 +00001030 }
Philip Reamesc8ded462015-09-10 00:27:50 +00001031 } else if (auto *BaseEE = dyn_cast<ExtractElementInst>(State.getBase())) {
Philip Reames7540e3a2015-09-10 00:01:53 +00001032 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
Philip Reames3ea15892015-09-03 21:57:40 +00001033 // Find the instruction which produces the base for each input. We may
1034 // need to insert a bitcast.
1035 Value *Base = getBaseForInput(InVal, BaseEE);
Philip Reames9ac4e382015-08-12 21:00:20 +00001036 BaseEE->setOperand(0, Base);
Philip Reames66287132015-09-09 23:40:12 +00001037 } else {
Philip Reamesc8ded462015-09-10 00:27:50 +00001038 auto *BaseIE = cast<InsertElementInst>(State.getBase());
Philip Reames7540e3a2015-09-10 00:01:53 +00001039 auto *BdvIE = cast<InsertElementInst>(BDV);
Philip Reames66287132015-09-09 23:40:12 +00001040 auto UpdateOperand = [&](int OperandIdx) {
1041 Value *InVal = BdvIE->getOperand(OperandIdx);
Philip Reames953817b2015-09-10 00:44:10 +00001042 Value *Base = getBaseForInput(InVal, BaseIE);
Philip Reames66287132015-09-09 23:40:12 +00001043 BaseIE->setOperand(OperandIdx, Base);
1044 };
1045 UpdateOperand(0); // vector operand
1046 UpdateOperand(1); // scalar operand
Philip Reamesd16a9b12015-02-20 01:06:44 +00001047 }
Philip Reames66287132015-09-09 23:40:12 +00001048
Philip Reamesd16a9b12015-02-20 01:06:44 +00001049 }
1050
Philip Reamesabcdc5e2015-08-27 01:02:28 +00001051 // Now that we're done with the algorithm, see if we can optimize the
1052 // results slightly by reducing the number of new instructions needed.
1053 // Arguably, this should be integrated into the algorithm above, but
1054 // doing as a post process step is easier to reason about for the moment.
1055 DenseMap<Value *, Value *> ReverseMap;
1056 SmallPtrSet<Instruction *, 16> NewInsts;
Philip Reames9546f362015-09-02 22:25:07 +00001057 SmallSetVector<AssertingVH<Instruction>, 16> Worklist;
Philip Reames246e6182015-09-03 20:24:29 +00001058 // Note: We need to visit the states in a deterministic order. We uses the
1059 // Keys we sorted above for this purpose. Note that we are papering over a
1060 // bigger problem with the algorithm above - it's visit order is not
1061 // deterministic. A larger change is needed to fix this.
Philip Reames34d7a742015-09-10 00:22:49 +00001062 for (auto Pair : States) {
Philip Reames15d55632015-09-09 23:26:08 +00001063 auto *BDV = Pair.first;
1064 auto State = Pair.second;
Philip Reames246e6182015-09-03 20:24:29 +00001065 Value *Base = State.getBase();
Philip Reames15d55632015-09-09 23:26:08 +00001066 assert(BDV && Base);
1067 assert(!isKnownBaseResult(BDV) && "why did it get added?");
Philip Reamesabcdc5e2015-08-27 01:02:28 +00001068 assert(isKnownBaseResult(Base) &&
1069 "must be something we 'know' is a base pointer");
Philip Reames246e6182015-09-03 20:24:29 +00001070 if (!State.isConflict())
Philip Reamesabcdc5e2015-08-27 01:02:28 +00001071 continue;
1072
Philip Reames15d55632015-09-09 23:26:08 +00001073 ReverseMap[Base] = BDV;
Philip Reamesabcdc5e2015-08-27 01:02:28 +00001074 if (auto *BaseI = dyn_cast<Instruction>(Base)) {
1075 NewInsts.insert(BaseI);
1076 Worklist.insert(BaseI);
1077 }
1078 }
Philip Reames9546f362015-09-02 22:25:07 +00001079 auto ReplaceBaseInstWith = [&](Value *BDV, Instruction *BaseI,
1080 Value *Replacement) {
1081 // Add users which are new instructions (excluding self references)
1082 for (User *U : BaseI->users())
Philip Reamesabcdc5e2015-08-27 01:02:28 +00001083 if (auto *UI = dyn_cast<Instruction>(U))
Philip Reames9546f362015-09-02 22:25:07 +00001084 if (NewInsts.count(UI) && UI != BaseI)
Philip Reamesabcdc5e2015-08-27 01:02:28 +00001085 Worklist.insert(UI);
Philip Reames9546f362015-09-02 22:25:07 +00001086 // Then do the actual replacement
1087 NewInsts.erase(BaseI);
1088 ReverseMap.erase(BaseI);
1089 BaseI->replaceAllUsesWith(Replacement);
Philip Reames34d7a742015-09-10 00:22:49 +00001090 assert(States.count(BDV));
1091 assert(States[BDV].isConflict() && States[BDV].getBase() == BaseI);
1092 States[BDV] = BDVState(BDVState::Conflict, Replacement);
Philip Reamesdd0948a2015-12-18 03:53:28 +00001093 BaseI->eraseFromParent();
Philip Reamesabcdc5e2015-08-27 01:02:28 +00001094 };
1095 const DataLayout &DL = cast<Instruction>(def)->getModule()->getDataLayout();
1096 while (!Worklist.empty()) {
1097 Instruction *BaseI = Worklist.pop_back_val();
Philip Reamesdab35f32015-09-02 21:11:44 +00001098 assert(NewInsts.count(BaseI));
Philip Reamesabcdc5e2015-08-27 01:02:28 +00001099 Value *Bdv = ReverseMap[BaseI];
1100 if (auto *BdvI = dyn_cast<Instruction>(Bdv))
1101 if (BaseI->isIdenticalTo(BdvI)) {
1102 DEBUG(dbgs() << "Identical Base: " << *BaseI << "\n");
Philip Reames9546f362015-09-02 22:25:07 +00001103 ReplaceBaseInstWith(Bdv, BaseI, Bdv);
Philip Reamesabcdc5e2015-08-27 01:02:28 +00001104 continue;
1105 }
1106 if (Value *V = SimplifyInstruction(BaseI, DL)) {
1107 DEBUG(dbgs() << "Base " << *BaseI << " simplified to " << *V << "\n");
Philip Reames9546f362015-09-02 22:25:07 +00001108 ReplaceBaseInstWith(Bdv, BaseI, V);
Philip Reamesabcdc5e2015-08-27 01:02:28 +00001109 continue;
1110 }
1111 }
1112
Philip Reamesd16a9b12015-02-20 01:06:44 +00001113 // Cache all of our results so we can cheaply reuse them
1114 // NOTE: This is actually two caches: one of the base defining value
1115 // relation and one of the base pointer relation! FIXME
Philip Reames34d7a742015-09-10 00:22:49 +00001116 for (auto Pair : States) {
Philip Reames15d55632015-09-09 23:26:08 +00001117 auto *BDV = Pair.first;
1118 Value *base = Pair.second.getBase();
1119 assert(BDV && base);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001120
Philip Reamesece70b82015-09-09 23:57:18 +00001121 std::string fromstr = cache.count(BDV) ? cache[BDV]->getName() : "none";
Philip Reamesdab35f32015-09-02 21:11:44 +00001122 DEBUG(dbgs() << "Updating base value cache"
Philip Reamesece70b82015-09-09 23:57:18 +00001123 << " for: " << BDV->getName()
Philip Reamesdab35f32015-09-02 21:11:44 +00001124 << " from: " << fromstr
Philip Reamesece70b82015-09-09 23:57:18 +00001125 << " to: " << base->getName() << "\n");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001126
Philip Reames15d55632015-09-09 23:26:08 +00001127 if (cache.count(BDV)) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001128 // Once we transition from the BDV relation being store in the cache to
1129 // the base relation being stored, it must be stable
Philip Reames15d55632015-09-09 23:26:08 +00001130 assert((!isKnownBaseResult(cache[BDV]) || cache[BDV] == base) &&
Philip Reamesd16a9b12015-02-20 01:06:44 +00001131 "base relation should be stable");
1132 }
Philip Reames15d55632015-09-09 23:26:08 +00001133 cache[BDV] = base;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001134 }
Manuel Jacob67f1d3a2015-12-29 22:16:41 +00001135 assert(cache.count(def));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001136 return cache[def];
1137}
1138
1139// For a set of live pointers (base and/or derived), identify the base
1140// pointer of the object which they are derived from. This routine will
1141// mutate the IR graph as needed to make the 'base' pointer live at the
1142// definition site of 'derived'. This ensures that any use of 'derived' can
1143// also use 'base'. This may involve the insertion of a number of
1144// additional PHI nodes.
1145//
1146// preconditions: live is a set of pointer type Values
1147//
1148// side effects: may insert PHI nodes into the existing CFG, will preserve
1149// CFG, will not remove or mutate any existing nodes
1150//
Philip Reamesf2041322015-02-20 19:26:04 +00001151// post condition: PointerToBase contains one (derived, base) pair for every
Philip Reamesd16a9b12015-02-20 01:06:44 +00001152// pointer in live. Note that derived can be equal to base if the original
1153// pointer was a base pointer.
Philip Reames704e78b2015-04-10 22:34:56 +00001154static void
1155findBasePointers(const StatepointLiveSetTy &live,
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001156 DenseMap<Value *, Value *> &PointerToBase,
Philip Reamesba198492015-04-14 00:41:34 +00001157 DominatorTree *DT, DefiningValueMapTy &DVCache) {
Philip Reames2e5bcbe2015-02-28 01:52:09 +00001158 // For the naming of values inserted to be deterministic - which makes for
1159 // much cleaner and more stable tests - we need to assign an order to the
1160 // live values. DenseSets do not provide a deterministic order across runs.
Philip Reames704e78b2015-04-10 22:34:56 +00001161 SmallVector<Value *, 64> Temp;
Philip Reames2e5bcbe2015-02-28 01:52:09 +00001162 Temp.insert(Temp.end(), live.begin(), live.end());
1163 std::sort(Temp.begin(), Temp.end(), order_by_name);
1164 for (Value *ptr : Temp) {
Philip Reamesba198492015-04-14 00:41:34 +00001165 Value *base = findBasePointer(ptr, DVCache);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001166 assert(base && "failed to find base pointer");
Philip Reamesf2041322015-02-20 19:26:04 +00001167 PointerToBase[ptr] = base;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001168 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1169 DT->dominates(cast<Instruction>(base)->getParent(),
1170 cast<Instruction>(ptr)->getParent())) &&
1171 "The base we found better dominate the derived pointer");
1172
David Blaikie82ad7872015-02-20 23:44:24 +00001173 // If you see this trip and like to live really dangerously, the code should
1174 // be correct, just with idioms the verifier can't handle. You can try
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00001175 // disabling the verifier at your own substantial risk.
Philip Reames704e78b2015-04-10 22:34:56 +00001176 assert(!isa<ConstantPointerNull>(base) &&
Philip Reames24c6cd52015-03-27 05:47:00 +00001177 "the relocation code needs adjustment to handle the relocation of "
1178 "a null pointer constant without causing false positives in the "
1179 "safepoint ir verifier.");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001180 }
1181}
1182
1183/// Find the required based pointers (and adjust the live set) for the given
1184/// parse point.
1185static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1186 const CallSite &CS,
1187 PartiallyConstructedSafepointRecord &result) {
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001188 DenseMap<Value *, Value *> PointerToBase;
1189 findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001190
1191 if (PrintBasePointers) {
Philip Reamesa5aeaf42015-02-28 00:20:48 +00001192 // Note: Need to print these in a stable order since this is checked in
1193 // some tests.
Philip Reamesd16a9b12015-02-20 01:06:44 +00001194 errs() << "Base Pairs (w/o Relocation):\n";
Philip Reames704e78b2015-04-10 22:34:56 +00001195 SmallVector<Value *, 64> Temp;
Philip Reamesa5aeaf42015-02-28 00:20:48 +00001196 Temp.reserve(PointerToBase.size());
Philip Reamesf2041322015-02-20 19:26:04 +00001197 for (auto Pair : PointerToBase) {
Philip Reamesa5aeaf42015-02-28 00:20:48 +00001198 Temp.push_back(Pair.first);
1199 }
1200 std::sort(Temp.begin(), Temp.end(), order_by_name);
1201 for (Value *Ptr : Temp) {
1202 Value *Base = PointerToBase[Ptr];
Manuel Jacoba4efd8a2015-12-23 00:19:45 +00001203 errs() << " derived ";
1204 Ptr->printAsOperand(errs(), false);
1205 errs() << " base ";
1206 Base->printAsOperand(errs(), false);
1207 errs() << "\n";;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001208 }
1209 }
1210
Philip Reamesf2041322015-02-20 19:26:04 +00001211 result.PointerToBase = PointerToBase;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001212}
1213
Philip Reamesdf1ef082015-04-10 22:53:14 +00001214/// Given an updated version of the dataflow liveness results, update the
1215/// liveset and base pointer maps for the call site CS.
1216static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1217 const CallSite &CS,
1218 PartiallyConstructedSafepointRecord &result);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001219
Philip Reamesdf1ef082015-04-10 22:53:14 +00001220static void recomputeLiveInValues(
Justin Bogner843fb202015-12-15 19:40:57 +00001221 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
Philip Reamesd2b66462015-02-20 22:39:41 +00001222 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
Philip Reamesdf1ef082015-04-10 22:53:14 +00001223 // TODO-PERF: reuse the original liveness, then simply run the dataflow
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00001224 // again. The old values are still live and will help it stabilize quickly.
Philip Reamesdf1ef082015-04-10 22:53:14 +00001225 GCPtrLivenessData RevisedLivenessData;
1226 computeLiveInValues(DT, F, RevisedLivenessData);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001227 for (size_t i = 0; i < records.size(); i++) {
1228 struct PartiallyConstructedSafepointRecord &info = records[i];
Philip Reamesd2b66462015-02-20 22:39:41 +00001229 const CallSite &CS = toUpdate[i];
Philip Reamesdf1ef082015-04-10 22:53:14 +00001230 recomputeLiveInValues(RevisedLivenessData, CS, info);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001231 }
1232}
1233
Sanjoy Das7ad67642015-10-20 01:06:24 +00001234// When inserting gc.relocate and gc.result calls, we need to ensure there are
1235// no uses of the original value / return value between the gc.statepoint and
1236// the gc.relocate / gc.result call. One case which can arise is a phi node
1237// starting one of the successor blocks. We also need to be able to insert the
1238// gc.relocates only on the path which goes through the statepoint. We might
1239// need to split an edge to make this possible.
Philip Reamesf209a152015-04-13 20:00:30 +00001240static BasicBlock *
Sanjoy Dasea45f0e2015-06-02 22:33:34 +00001241normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1242 DominatorTree &DT) {
Philip Reames69e51ca2015-04-13 18:07:21 +00001243 BasicBlock *Ret = BB;
Sanjoy Dasff3dba72015-10-20 01:06:17 +00001244 if (!BB->getUniquePredecessor())
Chandler Carruth96ada252015-07-22 09:52:54 +00001245 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001246
Sanjoy Das7ad67642015-10-20 01:06:24 +00001247 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
Philip Reames69e51ca2015-04-13 18:07:21 +00001248 // from it
1249 FoldSingleEntryPHINodes(Ret);
Sanjoy Dasff3dba72015-10-20 01:06:17 +00001250 assert(!isa<PHINode>(Ret->begin()) &&
1251 "All PHI nodes should have been removed!");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001252
Sanjoy Das7ad67642015-10-20 01:06:24 +00001253 // At this point, we can safely insert a gc.relocate or gc.result as the first
1254 // instruction in Ret if needed.
Philip Reames69e51ca2015-04-13 18:07:21 +00001255 return Ret;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001256}
1257
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00001258// Create new attribute set containing only attributes which can be transferred
Philip Reamesd16a9b12015-02-20 01:06:44 +00001259// from original call to the safepoint.
1260static AttributeSet legalizeCallAttributes(AttributeSet AS) {
Sanjoy Das810a59d2015-10-16 02:41:11 +00001261 AttributeSet Ret;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001262
1263 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) {
Sanjoy Das810a59d2015-10-16 02:41:11 +00001264 unsigned Index = AS.getSlotIndex(Slot);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001265
Sanjoy Das810a59d2015-10-16 02:41:11 +00001266 if (Index == AttributeSet::ReturnIndex ||
1267 Index == AttributeSet::FunctionIndex) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001268
Sanjoy Das810a59d2015-10-16 02:41:11 +00001269 for (Attribute Attr : make_range(AS.begin(Slot), AS.end(Slot))) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001270
1271 // Do not allow certain attributes - just skip them
1272 // Safepoint can not be read only or read none.
Sanjoy Das810a59d2015-10-16 02:41:11 +00001273 if (Attr.hasAttribute(Attribute::ReadNone) ||
1274 Attr.hasAttribute(Attribute::ReadOnly))
Philip Reamesd16a9b12015-02-20 01:06:44 +00001275 continue;
1276
Sanjoy Das58fae7c2015-10-16 02:41:23 +00001277 // These attributes control the generation of the gc.statepoint call /
1278 // invoke itself; and once the gc.statepoint is in place, they're of no
1279 // use.
1280 if (Attr.hasAttribute("statepoint-num-patch-bytes") ||
1281 Attr.hasAttribute("statepoint-id"))
1282 continue;
1283
Sanjoy Das810a59d2015-10-16 02:41:11 +00001284 Ret = Ret.addAttributes(
1285 AS.getContext(), Index,
1286 AttributeSet::get(AS.getContext(), Index, AttrBuilder(Attr)));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001287 }
1288 }
1289
1290 // Just skip parameter attributes for now
1291 }
1292
Sanjoy Das810a59d2015-10-16 02:41:11 +00001293 return Ret;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001294}
1295
1296/// Helper function to place all gc relocates necessary for the given
1297/// statepoint.
1298/// Inputs:
1299/// liveVariables - list of variables to be relocated.
1300/// liveStart - index of the first live variable.
1301/// basePtrs - base pointers.
1302/// statepointToken - statepoint instruction to which relocates should be
1303/// bound.
1304/// Builder - Llvm IR builder to be used to construct new calls.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001305static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
Sanjoy Das5665c992015-05-11 23:47:27 +00001306 const int LiveStart,
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001307 ArrayRef<Value *> BasePtrs,
Sanjoy Das5665c992015-05-11 23:47:27 +00001308 Instruction *StatepointToken,
Benjamin Kramerf044d3f2015-03-09 16:23:46 +00001309 IRBuilder<> Builder) {
Philip Reames94babb72015-07-21 17:18:03 +00001310 if (LiveVariables.empty())
1311 return;
Sanjoy Dasb1942f12015-10-20 01:06:28 +00001312
1313 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
1314 auto ValIt = std::find(LiveVec.begin(), LiveVec.end(), Val);
1315 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
1316 size_t Index = std::distance(LiveVec.begin(), ValIt);
1317 assert(Index < LiveVec.size() && "Bug in std::find?");
1318 return Index;
1319 };
1320
Philip Reames94babb72015-07-21 17:18:03 +00001321 // All gc_relocate are set to i8 addrspace(1)* type. We originally generated
1322 // unique declarations for each pointer type, but this proved problematic
1323 // because the intrinsic mangling code is incomplete and fragile. Since
1324 // we're moving towards a single unified pointer type anyways, we can just
1325 // cast everything to an i8* of the right address space. A bitcast is added
1326 // later to convert gc_relocate to the actual value's type.
Philip Reames74ce2e72015-07-21 16:51:17 +00001327 Module *M = StatepointToken->getModule();
Philip Reames94babb72015-07-21 17:18:03 +00001328 auto AS = cast<PointerType>(LiveVariables[0]->getType())->getAddressSpace();
1329 Type *Types[] = {Type::getInt8PtrTy(M->getContext(), AS)};
1330 Value *GCRelocateDecl =
1331 Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, Types);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001332
Sanjoy Das5665c992015-05-11 23:47:27 +00001333 for (unsigned i = 0; i < LiveVariables.size(); i++) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001334 // Generate the gc.relocate call and save the result
Sanjoy Das5665c992015-05-11 23:47:27 +00001335 Value *BaseIdx =
Sanjoy Dasb1942f12015-10-20 01:06:28 +00001336 Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i]));
Sanjoy Das3020b1b2015-10-20 01:06:31 +00001337 Value *LiveIdx = Builder.getInt32(LiveStart + i);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001338
1339 // only specify a debug name if we can give a useful one
Philip Reames74ce2e72015-07-21 16:51:17 +00001340 CallInst *Reloc = Builder.CreateCall(
David Blaikieff6409d2015-05-18 22:13:54 +00001341 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
Philip Reamesece70b82015-09-09 23:57:18 +00001342 suffixed_name_or(LiveVariables[i], ".relocated", ""));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001343 // Trick CodeGen into thinking there are lots of free registers at this
1344 // fake call.
Philip Reames74ce2e72015-07-21 16:51:17 +00001345 Reloc->setCallingConv(CallingConv::Cold);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001346 }
Philip Reamesd16a9b12015-02-20 01:06:44 +00001347}
1348
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001349namespace {
1350
1351/// This struct is used to defer RAUWs and `eraseFromParent` s. Using this
1352/// avoids having to worry about keeping around dangling pointers to Values.
1353class DeferredReplacement {
1354 AssertingVH<Instruction> Old;
1355 AssertingVH<Instruction> New;
1356
1357public:
1358 explicit DeferredReplacement(Instruction *Old, Instruction *New) :
1359 Old(Old), New(New) {
1360 assert(Old != New && "Not allowed!");
1361 }
1362
1363 /// Does the task represented by this instance.
1364 void doReplacement() {
1365 Instruction *OldI = Old;
1366 Instruction *NewI = New;
1367
1368 assert(OldI != NewI && "Disallowed at construction?!");
1369
1370 Old = nullptr;
1371 New = nullptr;
1372
1373 if (NewI)
1374 OldI->replaceAllUsesWith(NewI);
1375 OldI->eraseFromParent();
1376 }
1377};
1378}
1379
Philip Reamesd16a9b12015-02-20 01:06:44 +00001380static void
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001381makeStatepointExplicitImpl(const CallSite CS, /* to replace */
1382 const SmallVectorImpl<Value *> &BasePtrs,
1383 const SmallVectorImpl<Value *> &LiveVariables,
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001384 PartiallyConstructedSafepointRecord &Result,
1385 std::vector<DeferredReplacement> &Replacements) {
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001386 assert(BasePtrs.size() == LiveVariables.size());
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001387 assert((UseDeoptBundles || isStatepoint(CS)) &&
Philip Reamesd16a9b12015-02-20 01:06:44 +00001388 "This method expects to be rewriting a statepoint");
1389
Philip Reamesd16a9b12015-02-20 01:06:44 +00001390 // Then go ahead and use the builder do actually do the inserts. We insert
1391 // immediately before the previous instruction under the assumption that all
1392 // arguments will be available here. We can't insert afterwards since we may
1393 // be replacing a terminator.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001394 Instruction *InsertBefore = CS.getInstruction();
1395 IRBuilder<> Builder(InsertBefore);
1396
Sanjoy Das3c520a12015-10-08 23:18:38 +00001397 ArrayRef<Value *> GCArgs(LiveVariables);
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001398 uint64_t StatepointID = 0xABCDEF00;
1399 uint32_t NumPatchBytes = 0;
1400 uint32_t Flags = uint32_t(StatepointFlags::None);
Sanjoy Das3c520a12015-10-08 23:18:38 +00001401
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001402 ArrayRef<Use> CallArgs;
1403 ArrayRef<Use> DeoptArgs;
1404 ArrayRef<Use> TransitionArgs;
1405
1406 Value *CallTarget = nullptr;
1407
1408 if (UseDeoptBundles) {
1409 CallArgs = {CS.arg_begin(), CS.arg_end()};
1410 DeoptArgs = GetDeoptBundleOperands(CS);
1411 // TODO: we don't fill in TransitionArgs or Flags in this branch, but we
1412 // could have an operand bundle for that too.
1413 AttributeSet OriginalAttrs = CS.getAttributes();
1414
1415 Attribute AttrID = OriginalAttrs.getAttribute(AttributeSet::FunctionIndex,
1416 "statepoint-id");
1417 if (AttrID.isStringAttribute())
1418 AttrID.getValueAsString().getAsInteger(10, StatepointID);
1419
1420 Attribute AttrNumPatchBytes = OriginalAttrs.getAttribute(
1421 AttributeSet::FunctionIndex, "statepoint-num-patch-bytes");
1422 if (AttrNumPatchBytes.isStringAttribute())
1423 AttrNumPatchBytes.getValueAsString().getAsInteger(10, NumPatchBytes);
1424
1425 CallTarget = CS.getCalledValue();
1426 } else {
1427 // This branch will be gone soon, and we will soon only support the
1428 // UseDeoptBundles == true configuration.
1429 Statepoint OldSP(CS);
1430 StatepointID = OldSP.getID();
1431 NumPatchBytes = OldSP.getNumPatchBytes();
1432 Flags = OldSP.getFlags();
1433
1434 CallArgs = {OldSP.arg_begin(), OldSP.arg_end()};
1435 DeoptArgs = {OldSP.vm_state_begin(), OldSP.vm_state_end()};
1436 TransitionArgs = {OldSP.gc_transition_args_begin(),
1437 OldSP.gc_transition_args_end()};
1438 CallTarget = OldSP.getCalledValue();
1439 }
Philip Reamesd16a9b12015-02-20 01:06:44 +00001440
1441 // Create the statepoint given all the arguments
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001442 Instruction *Token = nullptr;
1443 AttributeSet ReturnAttrs;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001444 if (CS.isCall()) {
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001445 CallInst *ToReplace = cast<CallInst>(CS.getInstruction());
Sanjoy Das3c520a12015-10-08 23:18:38 +00001446 CallInst *Call = Builder.CreateGCStatepointCall(
1447 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1448 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1449
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001450 Call->setTailCall(ToReplace->isTailCall());
1451 Call->setCallingConv(ToReplace->getCallingConv());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001452
1453 // Currently we will fail on parameter attributes and on certain
1454 // function attributes.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001455 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00001456 // In case if we can handle this set of attributes - set up function attrs
Philip Reamesd16a9b12015-02-20 01:06:44 +00001457 // directly on statepoint and return attrs later for gc_result intrinsic.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001458 Call->setAttributes(NewAttrs.getFnAttributes());
1459 ReturnAttrs = NewAttrs.getRetAttributes();
Philip Reamesd16a9b12015-02-20 01:06:44 +00001460
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001461 Token = Call;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001462
1463 // Put the following gc_result and gc_relocate calls immediately after the
1464 // the old call (which we're about to delete)
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001465 assert(ToReplace->getNextNode() && "Not a terminator, must have next!");
1466 Builder.SetInsertPoint(ToReplace->getNextNode());
1467 Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc());
David Blaikie82ad7872015-02-20 23:44:24 +00001468 } else {
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001469 InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001470
1471 // Insert the new invoke into the old block. We'll remove the old one in a
1472 // moment at which point this will become the new terminator for the
1473 // original block.
Sanjoy Das3c520a12015-10-08 23:18:38 +00001474 InvokeInst *Invoke = Builder.CreateGCStatepointInvoke(
1475 StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(),
1476 ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs,
1477 GCArgs, "statepoint_token");
1478
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001479 Invoke->setCallingConv(ToReplace->getCallingConv());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001480
1481 // Currently we will fail on parameter attributes and on certain
1482 // function attributes.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001483 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00001484 // In case if we can handle this set of attributes - set up function attrs
Philip Reamesd16a9b12015-02-20 01:06:44 +00001485 // directly on statepoint and return attrs later for gc_result intrinsic.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001486 Invoke->setAttributes(NewAttrs.getFnAttributes());
1487 ReturnAttrs = NewAttrs.getRetAttributes();
Philip Reamesd16a9b12015-02-20 01:06:44 +00001488
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001489 Token = Invoke;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001490
1491 // Generate gc relocates in exceptional path
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001492 BasicBlock *UnwindBlock = ToReplace->getUnwindDest();
1493 assert(!isa<PHINode>(UnwindBlock->begin()) &&
1494 UnwindBlock->getUniquePredecessor() &&
Philip Reames69e51ca2015-04-13 18:07:21 +00001495 "can't safely insert in this block!");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001496
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001497 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001498 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001499
Chen Lid71999e2015-12-26 07:54:32 +00001500 // Attach exceptional gc relocates to the landingpad.
1501 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001502 Result.UnwindToken = ExceptionalToken;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001503
Sanjoy Das3c520a12015-10-08 23:18:38 +00001504 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001505 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken,
1506 Builder);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001507
1508 // Generate gc relocates and returns for normal block
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001509 BasicBlock *NormalDest = ToReplace->getNormalDest();
1510 assert(!isa<PHINode>(NormalDest->begin()) &&
1511 NormalDest->getUniquePredecessor() &&
Philip Reames69e51ca2015-04-13 18:07:21 +00001512 "can't safely insert in this block!");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001513
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001514 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001515
1516 // gc relocates will be generated later as if it were regular call
1517 // statepoint
Philip Reamesd16a9b12015-02-20 01:06:44 +00001518 }
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001519 assert(Token && "Should be set in one of the above branches!");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001520
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001521 if (UseDeoptBundles) {
1522 Token->setName("statepoint_token");
1523 if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) {
1524 StringRef Name =
1525 CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : "";
1526 CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name);
1527 GCResult->setAttributes(CS.getAttributes().getRetAttributes());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001528
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001529 // We cannot RAUW or delete CS.getInstruction() because it could be in the
1530 // live set of some other safepoint, in which case that safepoint's
1531 // PartiallyConstructedSafepointRecord will hold a raw pointer to this
1532 // llvm::Instruction. Instead, we defer the replacement and deletion to
1533 // after the live sets have been made explicit in the IR, and we no longer
1534 // have raw pointers to worry about.
1535 Replacements.emplace_back(CS.getInstruction(), GCResult);
1536 } else {
1537 Replacements.emplace_back(CS.getInstruction(), nullptr);
1538 }
1539 } else {
1540 assert(!CS.getInstruction()->hasNUsesOrMore(2) &&
1541 "only valid use before rewrite is gc.result");
1542 assert(!CS.getInstruction()->hasOneUse() ||
1543 isGCResult(cast<Instruction>(*CS.getInstruction()->user_begin())));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001544
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001545 // Take the name of the original statepoint token if there was one.
1546 Token->takeName(CS.getInstruction());
1547
1548 // Update the gc.result of the original statepoint (if any) to use the newly
1549 // inserted statepoint. This is safe to do here since the token can't be
1550 // considered a live reference.
1551 CS.getInstruction()->replaceAllUsesWith(Token);
1552 CS.getInstruction()->eraseFromParent();
1553 }
Philip Reamesd16a9b12015-02-20 01:06:44 +00001554
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001555 Result.StatepointToken = Token;
Philip Reames0a3240f2015-02-20 21:34:11 +00001556
Philip Reamesd16a9b12015-02-20 01:06:44 +00001557 // Second, create a gc.relocate for every live variable
Sanjoy Das3c520a12015-10-08 23:18:38 +00001558 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001559 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001560}
1561
1562namespace {
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001563struct NameOrdering {
1564 Value *Base;
1565 Value *Derived;
1566
1567 bool operator()(NameOrdering const &a, NameOrdering const &b) {
1568 return -1 == a.Derived->getName().compare(b.Derived->getName());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001569 }
1570};
1571}
Philip Reamesd16a9b12015-02-20 01:06:44 +00001572
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001573static void StabilizeOrder(SmallVectorImpl<Value *> &BaseVec,
1574 SmallVectorImpl<Value *> &LiveVec) {
1575 assert(BaseVec.size() == LiveVec.size());
1576
1577 SmallVector<NameOrdering, 64> Temp;
1578 for (size_t i = 0; i < BaseVec.size(); i++) {
1579 NameOrdering v;
1580 v.Base = BaseVec[i];
1581 v.Derived = LiveVec[i];
1582 Temp.push_back(v);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001583 }
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001584
1585 std::sort(Temp.begin(), Temp.end(), NameOrdering());
1586 for (size_t i = 0; i < BaseVec.size(); i++) {
1587 BaseVec[i] = Temp[i].Base;
1588 LiveVec[i] = Temp[i].Derived;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001589 }
1590}
1591
1592// Replace an existing gc.statepoint with a new one and a set of gc.relocates
1593// which make the relocations happening at this safepoint explicit.
Philip Reames704e78b2015-04-10 22:34:56 +00001594//
Philip Reamesd16a9b12015-02-20 01:06:44 +00001595// WARNING: Does not do any fixup to adjust users of the original live
1596// values. That's the callers responsibility.
1597static void
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001598makeStatepointExplicit(DominatorTree &DT, const CallSite &CS,
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001599 PartiallyConstructedSafepointRecord &Result,
1600 std::vector<DeferredReplacement> &Replacements) {
Sanjoy Das1ede5362015-10-08 23:18:22 +00001601 const auto &LiveSet = Result.LiveSet;
1602 const auto &PointerToBase = Result.PointerToBase;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001603
1604 // Convert to vector for efficient cross referencing.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001605 SmallVector<Value *, 64> BaseVec, LiveVec;
1606 LiveVec.reserve(LiveSet.size());
1607 BaseVec.reserve(LiveSet.size());
1608 for (Value *L : LiveSet) {
1609 LiveVec.push_back(L);
Philip Reames74ce2e72015-07-21 16:51:17 +00001610 assert(PointerToBase.count(L));
Sanjoy Das1ede5362015-10-08 23:18:22 +00001611 Value *Base = PointerToBase.find(L)->second;
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001612 BaseVec.push_back(Base);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001613 }
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001614 assert(LiveVec.size() == BaseVec.size());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001615
1616 // To make the output IR slightly more stable (for use in diffs), ensure a
1617 // fixed order of the values in the safepoint (by sorting the value name).
1618 // The order is otherwise meaningless.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001619 StabilizeOrder(BaseVec, LiveVec);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001620
1621 // Do the actual rewriting and delete the old statepoint
Sanjoy Das25ec1a32015-10-16 02:41:00 +00001622 makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001623}
1624
1625// Helper function for the relocationViaAlloca.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001626//
1627// It receives iterator to the statepoint gc relocates and emits a store to the
1628// assigned location (via allocaMap) for the each one of them. It adds the
1629// visited values into the visitedLiveValues set, which we will later use them
1630// for sanity checking.
Philip Reamesd16a9b12015-02-20 01:06:44 +00001631static void
Sanjoy Das5665c992015-05-11 23:47:27 +00001632insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1633 DenseMap<Value *, Value *> &AllocaMap,
1634 DenseSet<Value *> &VisitedLiveValues) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001635
Sanjoy Das5665c992015-05-11 23:47:27 +00001636 for (User *U : GCRelocs) {
Manuel Jacob83eefa62016-01-05 04:03:00 +00001637 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
1638 if (!Relocate)
Philip Reamesd16a9b12015-02-20 01:06:44 +00001639 continue;
1640
Manuel Jacob83eefa62016-01-05 04:03:00 +00001641 Value *OriginalValue = const_cast<Value *>(Relocate->getDerivedPtr());
Sanjoy Das5665c992015-05-11 23:47:27 +00001642 assert(AllocaMap.count(OriginalValue));
1643 Value *Alloca = AllocaMap[OriginalValue];
Philip Reamesd16a9b12015-02-20 01:06:44 +00001644
1645 // Emit store into the related alloca
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001646 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
Sanjoy Das89c54912015-05-11 18:49:34 +00001647 // the correct type according to alloca.
Manuel Jacob83eefa62016-01-05 04:03:00 +00001648 assert(Relocate->getNextNode() &&
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001649 "Should always have one since it's not a terminator");
Manuel Jacob83eefa62016-01-05 04:03:00 +00001650 IRBuilder<> Builder(Relocate->getNextNode());
Sanjoy Das89c54912015-05-11 18:49:34 +00001651 Value *CastedRelocatedValue =
Manuel Jacob83eefa62016-01-05 04:03:00 +00001652 Builder.CreateBitCast(Relocate,
Philip Reamesece70b82015-09-09 23:57:18 +00001653 cast<AllocaInst>(Alloca)->getAllocatedType(),
Manuel Jacob83eefa62016-01-05 04:03:00 +00001654 suffixed_name_or(Relocate, ".casted", ""));
Sanjoy Das89c54912015-05-11 18:49:34 +00001655
Sanjoy Das5665c992015-05-11 23:47:27 +00001656 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
1657 Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001658
1659#ifndef NDEBUG
Sanjoy Das5665c992015-05-11 23:47:27 +00001660 VisitedLiveValues.insert(OriginalValue);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001661#endif
1662 }
1663}
1664
Igor Laevskye0317182015-05-19 15:59:05 +00001665// Helper function for the "relocationViaAlloca". Similar to the
1666// "insertRelocationStores" but works for rematerialized values.
1667static void
1668insertRematerializationStores(
1669 RematerializedValueMapTy RematerializedValues,
1670 DenseMap<Value *, Value *> &AllocaMap,
1671 DenseSet<Value *> &VisitedLiveValues) {
1672
1673 for (auto RematerializedValuePair: RematerializedValues) {
1674 Instruction *RematerializedValue = RematerializedValuePair.first;
1675 Value *OriginalValue = RematerializedValuePair.second;
1676
1677 assert(AllocaMap.count(OriginalValue) &&
1678 "Can not find alloca for rematerialized value");
1679 Value *Alloca = AllocaMap[OriginalValue];
1680
1681 StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
1682 Store->insertAfter(RematerializedValue);
1683
1684#ifndef NDEBUG
1685 VisitedLiveValues.insert(OriginalValue);
1686#endif
1687 }
1688}
1689
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001690/// Do all the relocation update via allocas and mem2reg
Philip Reamesd16a9b12015-02-20 01:06:44 +00001691static void relocationViaAlloca(
Igor Laevsky285fe842015-05-19 16:29:43 +00001692 Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001693 ArrayRef<PartiallyConstructedSafepointRecord> Records) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001694#ifndef NDEBUG
Philip Reamesa6ebf072015-03-27 05:53:16 +00001695 // record initial number of (static) allocas; we'll check we have the same
1696 // number when we get done.
1697 int InitialAllocaNum = 0;
Philip Reames704e78b2015-04-10 22:34:56 +00001698 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E;
1699 I++)
Philip Reamesa6ebf072015-03-27 05:53:16 +00001700 if (isa<AllocaInst>(*I))
1701 InitialAllocaNum++;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001702#endif
1703
1704 // TODO-PERF: change data structures, reserve
Igor Laevsky285fe842015-05-19 16:29:43 +00001705 DenseMap<Value *, Value *> AllocaMap;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001706 SmallVector<AllocaInst *, 200> PromotableAllocas;
Igor Laevskye0317182015-05-19 15:59:05 +00001707 // Used later to chack that we have enough allocas to store all values
1708 std::size_t NumRematerializedValues = 0;
Igor Laevsky285fe842015-05-19 16:29:43 +00001709 PromotableAllocas.reserve(Live.size());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001710
Igor Laevskye0317182015-05-19 15:59:05 +00001711 // Emit alloca for "LiveValue" and record it in "allocaMap" and
1712 // "PromotableAllocas"
1713 auto emitAllocaFor = [&](Value *LiveValue) {
1714 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "",
1715 F.getEntryBlock().getFirstNonPHI());
Igor Laevsky285fe842015-05-19 16:29:43 +00001716 AllocaMap[LiveValue] = Alloca;
Igor Laevskye0317182015-05-19 15:59:05 +00001717 PromotableAllocas.push_back(Alloca);
1718 };
1719
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001720 // Emit alloca for each live gc pointer
1721 for (Value *V : Live)
1722 emitAllocaFor(V);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001723
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001724 // Emit allocas for rematerialized values
1725 for (const auto &Info : Records)
Igor Laevsky285fe842015-05-19 16:29:43 +00001726 for (auto RematerializedValuePair : Info.RematerializedValues) {
Igor Laevskye0317182015-05-19 15:59:05 +00001727 Value *OriginalValue = RematerializedValuePair.second;
Igor Laevsky285fe842015-05-19 16:29:43 +00001728 if (AllocaMap.count(OriginalValue) != 0)
Igor Laevskye0317182015-05-19 15:59:05 +00001729 continue;
1730
1731 emitAllocaFor(OriginalValue);
1732 ++NumRematerializedValues;
1733 }
Igor Laevsky285fe842015-05-19 16:29:43 +00001734
Philip Reamesd16a9b12015-02-20 01:06:44 +00001735 // The next two loops are part of the same conceptual operation. We need to
1736 // insert a store to the alloca after the original def and at each
1737 // redefinition. We need to insert a load before each use. These are split
1738 // into distinct loops for performance reasons.
1739
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001740 // Update gc pointer after each statepoint: either store a relocated value or
1741 // null (if no relocated value was found for this gc pointer and it is not a
1742 // gc_result). This must happen before we update the statepoint with load of
1743 // alloca otherwise we lose the link between statepoint and old def.
1744 for (const auto &Info : Records) {
Igor Laevsky285fe842015-05-19 16:29:43 +00001745 Value *Statepoint = Info.StatepointToken;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001746
1747 // This will be used for consistency check
Igor Laevsky285fe842015-05-19 16:29:43 +00001748 DenseSet<Value *> VisitedLiveValues;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001749
1750 // Insert stores for normal statepoint gc relocates
Igor Laevsky285fe842015-05-19 16:29:43 +00001751 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001752
1753 // In case if it was invoke statepoint
1754 // we will insert stores for exceptional path gc relocates.
Philip Reames0a3240f2015-02-20 21:34:11 +00001755 if (isa<InvokeInst>(Statepoint)) {
Igor Laevsky285fe842015-05-19 16:29:43 +00001756 insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
1757 VisitedLiveValues);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001758 }
1759
Igor Laevskye0317182015-05-19 15:59:05 +00001760 // Do similar thing with rematerialized values
Igor Laevsky285fe842015-05-19 16:29:43 +00001761 insertRematerializationStores(Info.RematerializedValues, AllocaMap,
1762 VisitedLiveValues);
Igor Laevskye0317182015-05-19 15:59:05 +00001763
Philip Reamese73300b2015-04-13 16:41:32 +00001764 if (ClobberNonLive) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00001765 // As a debugging aid, pretend that an unrelocated pointer becomes null at
Philip Reamese73300b2015-04-13 16:41:32 +00001766 // the gc.statepoint. This will turn some subtle GC problems into
1767 // slightly easier to debug SEGVs. Note that on large IR files with
1768 // lots of gc.statepoints this is extremely costly both memory and time
1769 // wise.
1770 SmallVector<AllocaInst *, 64> ToClobber;
Igor Laevsky285fe842015-05-19 16:29:43 +00001771 for (auto Pair : AllocaMap) {
Philip Reamese73300b2015-04-13 16:41:32 +00001772 Value *Def = Pair.first;
1773 AllocaInst *Alloca = cast<AllocaInst>(Pair.second);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001774
Philip Reamese73300b2015-04-13 16:41:32 +00001775 // This value was relocated
Igor Laevsky285fe842015-05-19 16:29:43 +00001776 if (VisitedLiveValues.count(Def)) {
Philip Reamese73300b2015-04-13 16:41:32 +00001777 continue;
1778 }
1779 ToClobber.push_back(Alloca);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001780 }
Philip Reamesfa2fcf172015-02-20 19:51:56 +00001781
Philip Reamese73300b2015-04-13 16:41:32 +00001782 auto InsertClobbersAt = [&](Instruction *IP) {
1783 for (auto *AI : ToClobber) {
1784 auto AIType = cast<PointerType>(AI->getType());
1785 auto PT = cast<PointerType>(AIType->getElementType());
1786 Constant *CPN = ConstantPointerNull::get(PT);
Igor Laevsky285fe842015-05-19 16:29:43 +00001787 StoreInst *Store = new StoreInst(CPN, AI);
1788 Store->insertBefore(IP);
Philip Reamese73300b2015-04-13 16:41:32 +00001789 }
1790 };
1791
1792 // Insert the clobbering stores. These may get intermixed with the
1793 // gc.results and gc.relocates, but that's fine.
1794 if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001795 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
1796 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
Philip Reamese73300b2015-04-13 16:41:32 +00001797 } else {
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001798 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
Philip Reamesfa2fcf172015-02-20 19:51:56 +00001799 }
David Blaikie82ad7872015-02-20 23:44:24 +00001800 }
Philip Reamesd16a9b12015-02-20 01:06:44 +00001801 }
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001802
1803 // Update use with load allocas and add store for gc_relocated.
Igor Laevsky285fe842015-05-19 16:29:43 +00001804 for (auto Pair : AllocaMap) {
1805 Value *Def = Pair.first;
1806 Value *Alloca = Pair.second;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001807
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001808 // We pre-record the uses of allocas so that we dont have to worry about
1809 // later update that changes the user information..
1810
Igor Laevsky285fe842015-05-19 16:29:43 +00001811 SmallVector<Instruction *, 20> Uses;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001812 // PERF: trade a linear scan for repeated reallocation
Igor Laevsky285fe842015-05-19 16:29:43 +00001813 Uses.reserve(std::distance(Def->user_begin(), Def->user_end()));
1814 for (User *U : Def->users()) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001815 if (!isa<ConstantExpr>(U)) {
1816 // If the def has a ConstantExpr use, then the def is either a
1817 // ConstantExpr use itself or null. In either case
1818 // (recursively in the first, directly in the second), the oop
1819 // it is ultimately dependent on is null and this particular
1820 // use does not need to be fixed up.
Igor Laevsky285fe842015-05-19 16:29:43 +00001821 Uses.push_back(cast<Instruction>(U));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001822 }
1823 }
1824
Igor Laevsky285fe842015-05-19 16:29:43 +00001825 std::sort(Uses.begin(), Uses.end());
1826 auto Last = std::unique(Uses.begin(), Uses.end());
1827 Uses.erase(Last, Uses.end());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001828
Igor Laevsky285fe842015-05-19 16:29:43 +00001829 for (Instruction *Use : Uses) {
1830 if (isa<PHINode>(Use)) {
1831 PHINode *Phi = cast<PHINode>(Use);
1832 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
1833 if (Def == Phi->getIncomingValue(i)) {
1834 LoadInst *Load = new LoadInst(
1835 Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
1836 Phi->setIncomingValue(i, Load);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001837 }
1838 }
1839 } else {
Igor Laevsky285fe842015-05-19 16:29:43 +00001840 LoadInst *Load = new LoadInst(Alloca, "", Use);
1841 Use->replaceUsesOfWith(Def, Load);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001842 }
1843 }
1844
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001845 // Emit store for the initial gc value. Store must be inserted after load,
1846 // otherwise store will be in alloca's use list and an extra load will be
1847 // inserted before it.
Igor Laevsky285fe842015-05-19 16:29:43 +00001848 StoreInst *Store = new StoreInst(Def, Alloca);
1849 if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
1850 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
Philip Reames6da37852015-03-04 00:13:52 +00001851 // InvokeInst is a TerminatorInst so the store need to be inserted
1852 // into its normal destination block.
Igor Laevsky285fe842015-05-19 16:29:43 +00001853 BasicBlock *NormalDest = Invoke->getNormalDest();
1854 Store->insertBefore(NormalDest->getFirstNonPHI());
Philip Reames6da37852015-03-04 00:13:52 +00001855 } else {
Igor Laevsky285fe842015-05-19 16:29:43 +00001856 assert(!Inst->isTerminator() &&
Philip Reames6da37852015-03-04 00:13:52 +00001857 "The only TerminatorInst that can produce a value is "
1858 "InvokeInst which is handled above.");
Igor Laevsky285fe842015-05-19 16:29:43 +00001859 Store->insertAfter(Inst);
Philip Reames6da37852015-03-04 00:13:52 +00001860 }
Philip Reamesd16a9b12015-02-20 01:06:44 +00001861 } else {
Igor Laevsky285fe842015-05-19 16:29:43 +00001862 assert(isa<Argument>(Def));
1863 Store->insertAfter(cast<Instruction>(Alloca));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001864 }
1865 }
1866
Igor Laevsky285fe842015-05-19 16:29:43 +00001867 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
Philip Reamesd16a9b12015-02-20 01:06:44 +00001868 "we must have the same allocas with lives");
1869 if (!PromotableAllocas.empty()) {
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001870 // Apply mem2reg to promote alloca to SSA
Philip Reamesd16a9b12015-02-20 01:06:44 +00001871 PromoteMemToReg(PromotableAllocas, DT);
1872 }
1873
1874#ifndef NDEBUG
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001875 for (auto &I : F.getEntryBlock())
1876 if (isa<AllocaInst>(I))
Philip Reamesa6ebf072015-03-27 05:53:16 +00001877 InitialAllocaNum--;
1878 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001879#endif
1880}
1881
1882/// Implement a unique function which doesn't require we sort the input
1883/// vector. Doing so has the effect of changing the output of a couple of
1884/// tests in ways which make them less useful in testing fused safepoints.
Philip Reamesd2b66462015-02-20 22:39:41 +00001885template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
Benjamin Kramer258ea0d2015-06-13 19:50:38 +00001886 SmallSet<T, 8> Seen;
1887 Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) {
1888 return !Seen.insert(V).second;
1889 }), Vec.end());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001890}
1891
Philip Reamesd16a9b12015-02-20 01:06:44 +00001892/// Insert holders so that each Value is obviously live through the entire
Philip Reamesf209a152015-04-13 20:00:30 +00001893/// lifetime of the call.
Philip Reamesd16a9b12015-02-20 01:06:44 +00001894static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
Philip Reamesf209a152015-04-13 20:00:30 +00001895 SmallVectorImpl<CallInst *> &Holders) {
Philip Reames21142752015-04-13 19:07:47 +00001896 if (Values.empty())
1897 // No values to hold live, might as well not insert the empty holder
1898 return;
1899
Sanjay Patelaf674fb2015-12-14 17:24:23 +00001900 Module *M = CS.getInstruction()->getModule();
Philip Reamesf209a152015-04-13 20:00:30 +00001901 // Use a dummy vararg function to actually hold the values live
1902 Function *Func = cast<Function>(M->getOrInsertFunction(
1903 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001904 if (CS.isCall()) {
1905 // For call safepoints insert dummy calls right after safepoint
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001906 Holders.push_back(CallInst::Create(Func, Values, "",
1907 &*++CS.getInstruction()->getIterator()));
Philip Reamesf209a152015-04-13 20:00:30 +00001908 return;
1909 }
1910 // For invoke safepooints insert dummy calls both in normal and
1911 // exceptional destination blocks
1912 auto *II = cast<InvokeInst>(CS.getInstruction());
1913 Holders.push_back(CallInst::Create(
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001914 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
Philip Reamesf209a152015-04-13 20:00:30 +00001915 Holders.push_back(CallInst::Create(
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001916 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001917}
1918
1919static void findLiveReferences(
Justin Bogner843fb202015-12-15 19:40:57 +00001920 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
Philip Reamesd2b66462015-02-20 22:39:41 +00001921 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
Philip Reamesdf1ef082015-04-10 22:53:14 +00001922 GCPtrLivenessData OriginalLivenessData;
1923 computeLiveInValues(DT, F, OriginalLivenessData);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001924 for (size_t i = 0; i < records.size(); i++) {
1925 struct PartiallyConstructedSafepointRecord &info = records[i];
Philip Reamesd2b66462015-02-20 22:39:41 +00001926 const CallSite &CS = toUpdate[i];
Philip Reamesdf1ef082015-04-10 22:53:14 +00001927 analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001928 }
1929}
1930
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00001931/// Remove any vector of pointers from the live set by scalarizing them over the
1932/// statepoint instruction. Adds the scalarized pieces to the live set. It
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00001933/// would be preferable to include the vector in the statepoint itself, but
Philip Reames8531d8c2015-04-10 21:48:25 +00001934/// the lowering code currently does not handle that. Extending it would be
1935/// slightly non-trivial since it requires a format change. Given how rare
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00001936/// such cases are (for the moment?) scalarizing is an acceptable compromise.
Philip Reames8531d8c2015-04-10 21:48:25 +00001937static void splitVectorValues(Instruction *StatepointInst,
Philip Reames8fe7f132015-06-26 22:47:37 +00001938 StatepointLiveSetTy &LiveSet,
1939 DenseMap<Value *, Value *>& PointerToBase,
1940 DominatorTree &DT) {
Philip Reames8531d8c2015-04-10 21:48:25 +00001941 SmallVector<Value *, 16> ToSplit;
1942 for (Value *V : LiveSet)
1943 if (isa<VectorType>(V->getType()))
1944 ToSplit.push_back(V);
1945
1946 if (ToSplit.empty())
1947 return;
1948
Philip Reames8fe7f132015-06-26 22:47:37 +00001949 DenseMap<Value *, SmallVector<Value *, 16>> ElementMapping;
1950
Philip Reames8531d8c2015-04-10 21:48:25 +00001951 Function &F = *(StatepointInst->getParent()->getParent());
1952
Philip Reames704e78b2015-04-10 22:34:56 +00001953 DenseMap<Value *, AllocaInst *> AllocaMap;
Philip Reames8531d8c2015-04-10 21:48:25 +00001954 // First is normal return, second is exceptional return (invoke only)
Philip Reames704e78b2015-04-10 22:34:56 +00001955 DenseMap<Value *, std::pair<Value *, Value *>> Replacements;
Philip Reames8531d8c2015-04-10 21:48:25 +00001956 for (Value *V : ToSplit) {
Philip Reames704e78b2015-04-10 22:34:56 +00001957 AllocaInst *Alloca =
1958 new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI());
Philip Reames8531d8c2015-04-10 21:48:25 +00001959 AllocaMap[V] = Alloca;
1960
1961 VectorType *VT = cast<VectorType>(V->getType());
1962 IRBuilder<> Builder(StatepointInst);
Philip Reames704e78b2015-04-10 22:34:56 +00001963 SmallVector<Value *, 16> Elements;
Philip Reames8531d8c2015-04-10 21:48:25 +00001964 for (unsigned i = 0; i < VT->getNumElements(); i++)
1965 Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i)));
Philip Reames8fe7f132015-06-26 22:47:37 +00001966 ElementMapping[V] = Elements;
Philip Reames8531d8c2015-04-10 21:48:25 +00001967
1968 auto InsertVectorReform = [&](Instruction *IP) {
1969 Builder.SetInsertPoint(IP);
1970 Builder.SetCurrentDebugLocation(IP->getDebugLoc());
1971 Value *ResultVec = UndefValue::get(VT);
1972 for (unsigned i = 0; i < VT->getNumElements(); i++)
1973 ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i],
1974 Builder.getInt32(i));
1975 return ResultVec;
1976 };
1977
1978 if (isa<CallInst>(StatepointInst)) {
1979 BasicBlock::iterator Next(StatepointInst);
1980 Next++;
1981 Instruction *IP = &*(Next);
1982 Replacements[V].first = InsertVectorReform(IP);
1983 Replacements[V].second = nullptr;
1984 } else {
1985 InvokeInst *Invoke = cast<InvokeInst>(StatepointInst);
1986 // We've already normalized - check that we don't have shared destination
Philip Reames704e78b2015-04-10 22:34:56 +00001987 // blocks
Philip Reames8531d8c2015-04-10 21:48:25 +00001988 BasicBlock *NormalDest = Invoke->getNormalDest();
1989 assert(!isa<PHINode>(NormalDest->begin()));
1990 BasicBlock *UnwindDest = Invoke->getUnwindDest();
1991 assert(!isa<PHINode>(UnwindDest->begin()));
1992 // Insert insert element sequences in both successors
1993 Instruction *IP = &*(NormalDest->getFirstInsertionPt());
1994 Replacements[V].first = InsertVectorReform(IP);
1995 IP = &*(UnwindDest->getFirstInsertionPt());
1996 Replacements[V].second = InsertVectorReform(IP);
1997 }
1998 }
Philip Reames8fe7f132015-06-26 22:47:37 +00001999
Philip Reames8531d8c2015-04-10 21:48:25 +00002000 for (Value *V : ToSplit) {
2001 AllocaInst *Alloca = AllocaMap[V];
2002
2003 // Capture all users before we start mutating use lists
Philip Reames704e78b2015-04-10 22:34:56 +00002004 SmallVector<Instruction *, 16> Users;
Philip Reames8531d8c2015-04-10 21:48:25 +00002005 for (User *U : V->users())
2006 Users.push_back(cast<Instruction>(U));
2007
2008 for (Instruction *I : Users) {
2009 if (auto Phi = dyn_cast<PHINode>(I)) {
2010 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++)
2011 if (V == Phi->getIncomingValue(i)) {
Philip Reames704e78b2015-04-10 22:34:56 +00002012 LoadInst *Load = new LoadInst(
2013 Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
Philip Reames8531d8c2015-04-10 21:48:25 +00002014 Phi->setIncomingValue(i, Load);
2015 }
2016 } else {
2017 LoadInst *Load = new LoadInst(Alloca, "", I);
2018 I->replaceUsesOfWith(V, Load);
2019 }
2020 }
2021
2022 // Store the original value and the replacement value into the alloca
2023 StoreInst *Store = new StoreInst(V, Alloca);
2024 if (auto I = dyn_cast<Instruction>(V))
2025 Store->insertAfter(I);
2026 else
2027 Store->insertAfter(Alloca);
Philip Reames704e78b2015-04-10 22:34:56 +00002028
Philip Reames8531d8c2015-04-10 21:48:25 +00002029 // Normal return for invoke, or call return
2030 Instruction *Replacement = cast<Instruction>(Replacements[V].first);
2031 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement);
2032 // Unwind return for invoke only
2033 Replacement = cast_or_null<Instruction>(Replacements[V].second);
2034 if (Replacement)
2035 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement);
2036 }
2037
2038 // apply mem2reg to promote alloca to SSA
Philip Reames704e78b2015-04-10 22:34:56 +00002039 SmallVector<AllocaInst *, 16> Allocas;
Philip Reames8531d8c2015-04-10 21:48:25 +00002040 for (Value *V : ToSplit)
2041 Allocas.push_back(AllocaMap[V]);
2042 PromoteMemToReg(Allocas, DT);
Philip Reames8fe7f132015-06-26 22:47:37 +00002043
2044 // Update our tracking of live pointers and base mappings to account for the
2045 // changes we just made.
2046 for (Value *V : ToSplit) {
2047 auto &Elements = ElementMapping[V];
2048
2049 LiveSet.erase(V);
2050 LiveSet.insert(Elements.begin(), Elements.end());
2051 // We need to update the base mapping as well.
2052 assert(PointerToBase.count(V));
2053 Value *OldBase = PointerToBase[V];
2054 auto &BaseElements = ElementMapping[OldBase];
2055 PointerToBase.erase(V);
2056 assert(Elements.size() == BaseElements.size());
2057 for (unsigned i = 0; i < Elements.size(); i++) {
2058 Value *Elem = Elements[i];
2059 PointerToBase[Elem] = BaseElements[i];
2060 }
2061 }
Philip Reames8531d8c2015-04-10 21:48:25 +00002062}
2063
Igor Laevskye0317182015-05-19 15:59:05 +00002064// Helper function for the "rematerializeLiveValues". It walks use chain
2065// starting from the "CurrentValue" until it meets "BaseValue". Only "simple"
2066// values are visited (currently it is GEP's and casts). Returns true if it
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002067// successfully reached "BaseValue" and false otherwise.
Igor Laevskye0317182015-05-19 15:59:05 +00002068// Fills "ChainToBase" array with all visited values. "BaseValue" is not
2069// recorded.
2070static bool findRematerializableChainToBasePointer(
2071 SmallVectorImpl<Instruction*> &ChainToBase,
2072 Value *CurrentValue, Value *BaseValue) {
2073
2074 // We have found a base value
2075 if (CurrentValue == BaseValue) {
2076 return true;
2077 }
2078
2079 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
2080 ChainToBase.push_back(GEP);
2081 return findRematerializableChainToBasePointer(ChainToBase,
2082 GEP->getPointerOperand(),
2083 BaseValue);
2084 }
2085
2086 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
Igor Laevskye0317182015-05-19 15:59:05 +00002087 if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
2088 return false;
2089
2090 ChainToBase.push_back(CI);
Manuel Jacob9db5b932015-12-28 20:14:05 +00002091 return findRematerializableChainToBasePointer(ChainToBase,
2092 CI->getOperand(0), BaseValue);
Igor Laevskye0317182015-05-19 15:59:05 +00002093 }
2094
2095 // Not supported instruction in the chain
2096 return false;
2097}
2098
2099// Helper function for the "rematerializeLiveValues". Compute cost of the use
2100// chain we are going to rematerialize.
2101static unsigned
2102chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
2103 TargetTransformInfo &TTI) {
2104 unsigned Cost = 0;
2105
2106 for (Instruction *Instr : Chain) {
2107 if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
2108 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
2109 "non noop cast is found during rematerialization");
2110
2111 Type *SrcTy = CI->getOperand(0)->getType();
2112 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy);
2113
2114 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
2115 // Cost of the address calculation
2116 Type *ValTy = GEP->getPointerOperandType()->getPointerElementType();
2117 Cost += TTI.getAddressComputationCost(ValTy);
2118
2119 // And cost of the GEP itself
2120 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
2121 // allowed for the external usage)
2122 if (!GEP->hasAllConstantIndices())
2123 Cost += 2;
2124
2125 } else {
2126 llvm_unreachable("unsupported instruciton type during rematerialization");
2127 }
2128 }
2129
2130 return Cost;
2131}
2132
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002133// From the statepoint live set pick values that are cheaper to recompute then
2134// to relocate. Remove this values from the live set, rematerialize them after
Igor Laevskye0317182015-05-19 15:59:05 +00002135// statepoint and record them in "Info" structure. Note that similar to
2136// relocated values we don't do any user adjustments here.
2137static void rematerializeLiveValues(CallSite CS,
2138 PartiallyConstructedSafepointRecord &Info,
2139 TargetTransformInfo &TTI) {
Aaron Ballmanff7d4fa2015-05-20 14:53:50 +00002140 const unsigned int ChainLengthThreshold = 10;
NAKAMURA Takumifb3bd712015-05-25 01:43:23 +00002141
Igor Laevskye0317182015-05-19 15:59:05 +00002142 // Record values we are going to delete from this statepoint live set.
2143 // We can not di this in following loop due to iterator invalidation.
2144 SmallVector<Value *, 32> LiveValuesToBeDeleted;
2145
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002146 for (Value *LiveValue: Info.LiveSet) {
Igor Laevskye0317182015-05-19 15:59:05 +00002147 // For each live pointer find it's defining chain
2148 SmallVector<Instruction *, 3> ChainToBase;
Philip Reames74ce2e72015-07-21 16:51:17 +00002149 assert(Info.PointerToBase.count(LiveValue));
Igor Laevskye0317182015-05-19 15:59:05 +00002150 bool FoundChain =
2151 findRematerializableChainToBasePointer(ChainToBase,
2152 LiveValue,
2153 Info.PointerToBase[LiveValue]);
2154 // Nothing to do, or chain is too long
2155 if (!FoundChain ||
2156 ChainToBase.size() == 0 ||
2157 ChainToBase.size() > ChainLengthThreshold)
2158 continue;
2159
2160 // Compute cost of this chain
2161 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
2162 // TODO: We can also account for cases when we will be able to remove some
2163 // of the rematerialized values by later optimization passes. I.e if
2164 // we rematerialized several intersecting chains. Or if original values
2165 // don't have any uses besides this statepoint.
2166
2167 // For invokes we need to rematerialize each chain twice - for normal and
2168 // for unwind basic blocks. Model this by multiplying cost by two.
2169 if (CS.isInvoke()) {
2170 Cost *= 2;
2171 }
2172 // If it's too expensive - skip it
2173 if (Cost >= RematerializationThreshold)
2174 continue;
2175
2176 // Remove value from the live set
2177 LiveValuesToBeDeleted.push_back(LiveValue);
2178
2179 // Clone instructions and record them inside "Info" structure
2180
2181 // Walk backwards to visit top-most instructions first
2182 std::reverse(ChainToBase.begin(), ChainToBase.end());
2183
2184 // Utility function which clones all instructions from "ChainToBase"
2185 // and inserts them before "InsertBefore". Returns rematerialized value
2186 // which should be used after statepoint.
2187 auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) {
2188 Instruction *LastClonedValue = nullptr;
2189 Instruction *LastValue = nullptr;
2190 for (Instruction *Instr: ChainToBase) {
2191 // Only GEP's and casts are suported as we need to be careful to not
2192 // introduce any new uses of pointers not in the liveset.
2193 // Note that it's fine to introduce new uses of pointers which were
2194 // otherwise not used after this statepoint.
2195 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
2196
2197 Instruction *ClonedValue = Instr->clone();
2198 ClonedValue->insertBefore(InsertBefore);
2199 ClonedValue->setName(Instr->getName() + ".remat");
2200
2201 // If it is not first instruction in the chain then it uses previously
2202 // cloned value. We should update it to use cloned value.
2203 if (LastClonedValue) {
2204 assert(LastValue);
2205 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
2206#ifndef NDEBUG
Igor Laevskyd83f6972015-05-21 13:02:14 +00002207 // Assert that cloned instruction does not use any instructions from
2208 // this chain other than LastClonedValue
2209 for (auto OpValue : ClonedValue->operand_values()) {
2210 assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) ==
2211 ChainToBase.end() &&
2212 "incorrect use in rematerialization chain");
Igor Laevskye0317182015-05-19 15:59:05 +00002213 }
2214#endif
2215 }
2216
2217 LastClonedValue = ClonedValue;
2218 LastValue = Instr;
2219 }
2220 assert(LastClonedValue);
2221 return LastClonedValue;
2222 };
2223
2224 // Different cases for calls and invokes. For invokes we need to clone
2225 // instructions both on normal and unwind path.
2226 if (CS.isCall()) {
2227 Instruction *InsertBefore = CS.getInstruction()->getNextNode();
2228 assert(InsertBefore);
2229 Instruction *RematerializedValue = rematerializeChain(InsertBefore);
2230 Info.RematerializedValues[RematerializedValue] = LiveValue;
2231 } else {
2232 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction());
2233
2234 Instruction *NormalInsertBefore =
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00002235 &*Invoke->getNormalDest()->getFirstInsertionPt();
Igor Laevskye0317182015-05-19 15:59:05 +00002236 Instruction *UnwindInsertBefore =
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00002237 &*Invoke->getUnwindDest()->getFirstInsertionPt();
Igor Laevskye0317182015-05-19 15:59:05 +00002238
2239 Instruction *NormalRematerializedValue =
2240 rematerializeChain(NormalInsertBefore);
2241 Instruction *UnwindRematerializedValue =
2242 rematerializeChain(UnwindInsertBefore);
2243
2244 Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
2245 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
2246 }
2247 }
2248
2249 // Remove rematerializaed values from the live set
2250 for (auto LiveValue: LiveValuesToBeDeleted) {
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002251 Info.LiveSet.erase(LiveValue);
Igor Laevskye0317182015-05-19 15:59:05 +00002252 }
2253}
2254
Justin Bogner843fb202015-12-15 19:40:57 +00002255static bool insertParsePoints(Function &F, DominatorTree &DT,
2256 TargetTransformInfo &TTI,
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002257 SmallVectorImpl<CallSite> &ToUpdate) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00002258#ifndef NDEBUG
2259 // sanity check the input
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002260 std::set<CallSite> Uniqued;
2261 Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
2262 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
Philip Reamesd16a9b12015-02-20 01:06:44 +00002263
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002264 for (CallSite CS : ToUpdate) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00002265 assert(CS.getInstruction()->getParent()->getParent() == &F);
Sanjoy Das25ec1a32015-10-16 02:41:00 +00002266 assert((UseDeoptBundles || isStatepoint(CS)) &&
2267 "expected to already be a deopt statepoint");
Philip Reamesd16a9b12015-02-20 01:06:44 +00002268 }
2269#endif
2270
Philip Reames69e51ca2015-04-13 18:07:21 +00002271 // When inserting gc.relocates for invokes, we need to be able to insert at
2272 // the top of the successor blocks. See the comment on
2273 // normalForInvokeSafepoint on exactly what is needed. Note that this step
Philip Reamesf209a152015-04-13 20:00:30 +00002274 // may restructure the CFG.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002275 for (CallSite CS : ToUpdate) {
Philip Reamesf209a152015-04-13 20:00:30 +00002276 if (!CS.isInvoke())
2277 continue;
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002278 auto *II = cast<InvokeInst>(CS.getInstruction());
2279 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
2280 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
Philip Reamesf209a152015-04-13 20:00:30 +00002281 }
Philip Reames69e51ca2015-04-13 18:07:21 +00002282
Philip Reamesd16a9b12015-02-20 01:06:44 +00002283 // A list of dummy calls added to the IR to keep various values obviously
2284 // live in the IR. We'll remove all of these when done.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002285 SmallVector<CallInst *, 64> Holders;
Philip Reamesd16a9b12015-02-20 01:06:44 +00002286
2287 // Insert a dummy call with all of the arguments to the vm_state we'll need
2288 // for the actual safepoint insertion. This ensures reference arguments in
2289 // the deopt argument list are considered live through the safepoint (and
2290 // thus makes sure they get relocated.)
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002291 for (CallSite CS : ToUpdate) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00002292 SmallVector<Value *, 64> DeoptValues;
Sanjoy Das25ec1a32015-10-16 02:41:00 +00002293
2294 iterator_range<const Use *> DeoptStateRange =
2295 UseDeoptBundles
2296 ? iterator_range<const Use *>(GetDeoptBundleOperands(CS))
2297 : iterator_range<const Use *>(Statepoint(CS).vm_state_args());
2298
2299 for (Value *Arg : DeoptStateRange) {
Philip Reames8531d8c2015-04-10 21:48:25 +00002300 assert(!isUnhandledGCPointerType(Arg->getType()) &&
2301 "support for FCA unimplemented");
2302 if (isHandledGCPointerType(Arg->getType()))
Philip Reamesd16a9b12015-02-20 01:06:44 +00002303 DeoptValues.push_back(Arg);
2304 }
Sanjoy Das25ec1a32015-10-16 02:41:00 +00002305
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002306 insertUseHolderAfter(CS, DeoptValues, Holders);
Philip Reamesd16a9b12015-02-20 01:06:44 +00002307 }
2308
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002309 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
Philip Reamesd16a9b12015-02-20 01:06:44 +00002310
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002311 // A) Identify all gc pointers which are statically live at the given call
Philip Reamesd16a9b12015-02-20 01:06:44 +00002312 // site.
Justin Bogner843fb202015-12-15 19:40:57 +00002313 findLiveReferences(F, DT, ToUpdate, Records);
Philip Reamesd16a9b12015-02-20 01:06:44 +00002314
2315 // B) Find the base pointers for each live pointer
2316 /* scope for caching */ {
2317 // Cache the 'defining value' relation used in the computation and
2318 // insertion of base phis and selects. This ensures that we don't insert
2319 // large numbers of duplicate base_phis.
2320 DefiningValueMapTy DVCache;
2321
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002322 for (size_t i = 0; i < Records.size(); i++) {
2323 PartiallyConstructedSafepointRecord &info = Records[i];
2324 findBasePointers(DT, DVCache, ToUpdate[i], info);
Philip Reamesd16a9b12015-02-20 01:06:44 +00002325 }
2326 } // end of cache scope
2327
2328 // The base phi insertion logic (for any safepoint) may have inserted new
2329 // instructions which are now live at some safepoint. The simplest such
2330 // example is:
2331 // loop:
2332 // phi a <-- will be a new base_phi here
2333 // safepoint 1 <-- that needs to be live here
2334 // gep a + 1
2335 // safepoint 2
2336 // br loop
Philip Reamesd16a9b12015-02-20 01:06:44 +00002337 // We insert some dummy calls after each safepoint to definitely hold live
2338 // the base pointers which were identified for that safepoint. We'll then
2339 // ask liveness for _every_ base inserted to see what is now live. Then we
2340 // remove the dummy calls.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002341 Holders.reserve(Holders.size() + Records.size());
2342 for (size_t i = 0; i < Records.size(); i++) {
2343 PartiallyConstructedSafepointRecord &Info = Records[i];
Philip Reamesd16a9b12015-02-20 01:06:44 +00002344
2345 SmallVector<Value *, 128> Bases;
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002346 for (auto Pair : Info.PointerToBase)
Philip Reamesd16a9b12015-02-20 01:06:44 +00002347 Bases.push_back(Pair.second);
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002348
2349 insertUseHolderAfter(ToUpdate[i], Bases, Holders);
Philip Reamesd16a9b12015-02-20 01:06:44 +00002350 }
2351
Philip Reamesdf1ef082015-04-10 22:53:14 +00002352 // By selecting base pointers, we've effectively inserted new uses. Thus, we
2353 // need to rerun liveness. We may *also* have inserted new defs, but that's
2354 // not the key issue.
Justin Bogner843fb202015-12-15 19:40:57 +00002355 recomputeLiveInValues(F, DT, ToUpdate, Records);
Philip Reamesd16a9b12015-02-20 01:06:44 +00002356
Philip Reamesd16a9b12015-02-20 01:06:44 +00002357 if (PrintBasePointers) {
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002358 for (auto &Info : Records) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00002359 errs() << "Base Pairs: (w/Relocation)\n";
Manuel Jacoba4efd8a2015-12-23 00:19:45 +00002360 for (auto Pair : Info.PointerToBase) {
2361 errs() << " derived ";
2362 Pair.first->printAsOperand(errs(), false);
2363 errs() << " base ";
2364 Pair.second->printAsOperand(errs(), false);
2365 errs() << "\n";
2366 }
Philip Reamesd16a9b12015-02-20 01:06:44 +00002367 }
2368 }
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002369
Manuel Jacob990dfa62015-12-22 16:50:44 +00002370 // It is possible that non-constant live variables have a constant base. For
2371 // example, a GEP with a variable offset from a global. In this case we can
2372 // remove it from the liveset. We already don't add constants to the liveset
2373 // because we assume they won't move at runtime and the GC doesn't need to be
2374 // informed about them. The same reasoning applies if the base is constant.
2375 // Note that the relocation placement code relies on this filtering for
2376 // correctness as it expects the base to be in the liveset, which isn't true
2377 // if the base is constant.
2378 for (auto &Info : Records)
2379 for (auto &BasePair : Info.PointerToBase)
2380 if (isa<Constant>(BasePair.second))
2381 Info.LiveSet.erase(BasePair.first);
2382
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002383 for (CallInst *CI : Holders)
2384 CI->eraseFromParent();
2385
2386 Holders.clear();
Philip Reamesd16a9b12015-02-20 01:06:44 +00002387
Philip Reames8fe7f132015-06-26 22:47:37 +00002388 // Do a limited scalarization of any live at safepoint vector values which
2389 // contain pointers. This enables this pass to run after vectorization at
Philip Reames103d2382016-01-07 02:20:11 +00002390 // the cost of some possible performance loss. Note: This is known to not
2391 // handle updating of the side tables correctly which can lead to relocation
2392 // bugs when the same vector is live at multiple statepoints. We're in the
2393 // process of implementing the alternate lowering - relocating the
2394 // vector-of-pointers as first class item and updating the backend to
2395 // understand that - but that's not yet complete.
2396 if (UseVectorSplit)
2397 for (size_t i = 0; i < Records.size(); i++) {
2398 PartiallyConstructedSafepointRecord &Info = Records[i];
2399 Instruction *Statepoint = ToUpdate[i].getInstruction();
2400 splitVectorValues(cast<Instruction>(Statepoint), Info.LiveSet,
2401 Info.PointerToBase, DT);
2402 }
Philip Reames8fe7f132015-06-26 22:47:37 +00002403
Igor Laevskye0317182015-05-19 15:59:05 +00002404 // In order to reduce live set of statepoint we might choose to rematerialize
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002405 // some values instead of relocating them. This is purely an optimization and
Igor Laevskye0317182015-05-19 15:59:05 +00002406 // does not influence correctness.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002407 for (size_t i = 0; i < Records.size(); i++)
2408 rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
Igor Laevskye0317182015-05-19 15:59:05 +00002409
Sanjoy Das25ec1a32015-10-16 02:41:00 +00002410 // We need this to safely RAUW and delete call or invoke return values that
2411 // may themselves be live over a statepoint. For details, please see usage in
2412 // makeStatepointExplicitImpl.
2413 std::vector<DeferredReplacement> Replacements;
2414
Philip Reamesd16a9b12015-02-20 01:06:44 +00002415 // Now run through and replace the existing statepoints with new ones with
2416 // the live variables listed. We do not yet update uses of the values being
2417 // relocated. We have references to live variables that need to
2418 // survive to the last iteration of this loop. (By construction, the
2419 // previous statepoint can not be a live variable, thus we can and remove
2420 // the old statepoint calls as we go.)
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002421 for (size_t i = 0; i < Records.size(); i++)
Sanjoy Das25ec1a32015-10-16 02:41:00 +00002422 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002423
2424 ToUpdate.clear(); // prevent accident use of invalid CallSites
Philip Reamesd16a9b12015-02-20 01:06:44 +00002425
Sanjoy Das25ec1a32015-10-16 02:41:00 +00002426 for (auto &PR : Replacements)
2427 PR.doReplacement();
2428
2429 Replacements.clear();
2430
2431 for (auto &Info : Records) {
2432 // These live sets may contain state Value pointers, since we replaced calls
2433 // with operand bundles with calls wrapped in gc.statepoint, and some of
2434 // those calls may have been def'ing live gc pointers. Clear these out to
2435 // avoid accidentally using them.
2436 //
2437 // TODO: We should create a separate data structure that does not contain
2438 // these live sets, and migrate to using that data structure from this point
2439 // onward.
2440 Info.LiveSet.clear();
2441 Info.PointerToBase.clear();
2442 }
2443
Philip Reamesd16a9b12015-02-20 01:06:44 +00002444 // Do all the fixups of the original live variables to their relocated selves
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002445 SmallVector<Value *, 128> Live;
2446 for (size_t i = 0; i < Records.size(); i++) {
2447 PartiallyConstructedSafepointRecord &Info = Records[i];
Sanjoy Das25ec1a32015-10-16 02:41:00 +00002448
Philip Reamesd16a9b12015-02-20 01:06:44 +00002449 // We can't simply save the live set from the original insertion. One of
2450 // the live values might be the result of a call which needs a safepoint.
2451 // That Value* no longer exists and we need to use the new gc_result.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002452 // Thankfully, the live set is embedded in the statepoint (and updated), so
Philip Reamesd16a9b12015-02-20 01:06:44 +00002453 // we just grab that.
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002454 Statepoint Statepoint(Info.StatepointToken);
2455 Live.insert(Live.end(), Statepoint.gc_args_begin(),
2456 Statepoint.gc_args_end());
Philip Reames9a2e01d2015-04-13 17:35:55 +00002457#ifndef NDEBUG
2458 // Do some basic sanity checks on our liveness results before performing
2459 // relocation. Relocation can and will turn mistakes in liveness results
2460 // into non-sensical code which is must harder to debug.
2461 // TODO: It would be nice to test consistency as well
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002462 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
Philip Reames9a2e01d2015-04-13 17:35:55 +00002463 "statepoint must be reachable or liveness is meaningless");
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002464 for (Value *V : Statepoint.gc_args()) {
Philip Reames9a2e01d2015-04-13 17:35:55 +00002465 if (!isa<Instruction>(V))
2466 // Non-instruction values trivial dominate all possible uses
2467 continue;
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002468 auto *LiveInst = cast<Instruction>(V);
Philip Reames9a2e01d2015-04-13 17:35:55 +00002469 assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2470 "unreachable values should never be live");
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002471 assert(DT.dominates(LiveInst, Info.StatepointToken) &&
Philip Reames9a2e01d2015-04-13 17:35:55 +00002472 "basic SSA liveness expectation violated by liveness analysis");
2473 }
2474#endif
Philip Reamesd16a9b12015-02-20 01:06:44 +00002475 }
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002476 unique_unsorted(Live);
Philip Reamesd16a9b12015-02-20 01:06:44 +00002477
Nick Lewyckyeb3231e2015-02-20 07:14:02 +00002478#ifndef NDEBUG
Philip Reamesd16a9b12015-02-20 01:06:44 +00002479 // sanity check
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002480 for (auto *Ptr : Live)
2481 assert(isGCPointerType(Ptr->getType()) && "must be a gc pointer type");
Nick Lewyckyeb3231e2015-02-20 07:14:02 +00002482#endif
Philip Reamesd16a9b12015-02-20 01:06:44 +00002483
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002484 relocationViaAlloca(F, DT, Live, Records);
2485 return !Records.empty();
Philip Reamesd16a9b12015-02-20 01:06:44 +00002486}
2487
Sanjoy Das353a19e2015-06-02 22:33:37 +00002488// Handles both return values and arguments for Functions and CallSites.
2489template <typename AttrHolder>
Igor Laevskydde00292015-10-23 22:42:44 +00002490static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
2491 unsigned Index) {
Sanjoy Das353a19e2015-06-02 22:33:37 +00002492 AttrBuilder R;
2493 if (AH.getDereferenceableBytes(Index))
2494 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
2495 AH.getDereferenceableBytes(Index)));
2496 if (AH.getDereferenceableOrNullBytes(Index))
2497 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
2498 AH.getDereferenceableOrNullBytes(Index)));
Igor Laevsky1ef06552015-10-26 19:06:01 +00002499 if (AH.doesNotAlias(Index))
2500 R.addAttribute(Attribute::NoAlias);
Sanjoy Das353a19e2015-06-02 22:33:37 +00002501
2502 if (!R.empty())
2503 AH.setAttributes(AH.getAttributes().removeAttributes(
2504 Ctx, Index, AttributeSet::get(Ctx, Index, R)));
Vasileios Kalintiris9f77f612015-06-03 08:51:30 +00002505}
Sanjoy Das353a19e2015-06-02 22:33:37 +00002506
2507void
Igor Laevskydde00292015-10-23 22:42:44 +00002508RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) {
Sanjoy Das353a19e2015-06-02 22:33:37 +00002509 LLVMContext &Ctx = F.getContext();
2510
2511 for (Argument &A : F.args())
2512 if (isa<PointerType>(A.getType()))
Igor Laevskydde00292015-10-23 22:42:44 +00002513 RemoveNonValidAttrAtIndex(Ctx, F, A.getArgNo() + 1);
Sanjoy Das353a19e2015-06-02 22:33:37 +00002514
2515 if (isa<PointerType>(F.getReturnType()))
Igor Laevskydde00292015-10-23 22:42:44 +00002516 RemoveNonValidAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex);
Sanjoy Das353a19e2015-06-02 22:33:37 +00002517}
2518
Igor Laevskydde00292015-10-23 22:42:44 +00002519void RewriteStatepointsForGC::stripNonValidAttributesFromBody(Function &F) {
Sanjoy Das353a19e2015-06-02 22:33:37 +00002520 if (F.empty())
2521 return;
2522
2523 LLVMContext &Ctx = F.getContext();
2524 MDBuilder Builder(Ctx);
2525
Nico Rieck78199512015-08-06 19:10:45 +00002526 for (Instruction &I : instructions(F)) {
Sanjoy Das353a19e2015-06-02 22:33:37 +00002527 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) {
2528 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!");
2529 bool IsImmutableTBAA =
2530 MD->getNumOperands() == 4 &&
2531 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1;
2532
2533 if (!IsImmutableTBAA)
2534 continue; // no work to do, MD_tbaa is already marked mutable
2535
2536 MDNode *Base = cast<MDNode>(MD->getOperand(0));
2537 MDNode *Access = cast<MDNode>(MD->getOperand(1));
2538 uint64_t Offset =
2539 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue();
2540
2541 MDNode *MutableTBAA =
2542 Builder.createTBAAStructTagNode(Base, Access, Offset);
2543 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2544 }
2545
2546 if (CallSite CS = CallSite(&I)) {
2547 for (int i = 0, e = CS.arg_size(); i != e; i++)
2548 if (isa<PointerType>(CS.getArgument(i)->getType()))
Igor Laevskydde00292015-10-23 22:42:44 +00002549 RemoveNonValidAttrAtIndex(Ctx, CS, i + 1);
Sanjoy Das353a19e2015-06-02 22:33:37 +00002550 if (isa<PointerType>(CS.getType()))
Igor Laevskydde00292015-10-23 22:42:44 +00002551 RemoveNonValidAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex);
Sanjoy Das353a19e2015-06-02 22:33:37 +00002552 }
2553 }
2554}
2555
Philip Reamesd16a9b12015-02-20 01:06:44 +00002556/// Returns true if this function should be rewritten by this pass. The main
2557/// point of this function is as an extension point for custom logic.
2558static bool shouldRewriteStatepointsIn(Function &F) {
2559 // TODO: This should check the GCStrategy
Philip Reames2ef029c2015-02-20 18:56:14 +00002560 if (F.hasGC()) {
NAKAMURA Takumifb3bd712015-05-25 01:43:23 +00002561 const char *FunctionGCName = F.getGC();
2562 const StringRef StatepointExampleName("statepoint-example");
2563 const StringRef CoreCLRName("coreclr");
2564 return (StatepointExampleName == FunctionGCName) ||
NAKAMURA Takumi5582a6a2015-05-25 01:43:34 +00002565 (CoreCLRName == FunctionGCName);
2566 } else
Philip Reames2ef029c2015-02-20 18:56:14 +00002567 return false;
Philip Reamesd16a9b12015-02-20 01:06:44 +00002568}
2569
Igor Laevskydde00292015-10-23 22:42:44 +00002570void RewriteStatepointsForGC::stripNonValidAttributes(Module &M) {
Sanjoy Das353a19e2015-06-02 22:33:37 +00002571#ifndef NDEBUG
2572 assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) &&
2573 "precondition!");
2574#endif
2575
2576 for (Function &F : M)
Igor Laevskydde00292015-10-23 22:42:44 +00002577 stripNonValidAttributesFromPrototype(F);
Sanjoy Das353a19e2015-06-02 22:33:37 +00002578
2579 for (Function &F : M)
Igor Laevskydde00292015-10-23 22:42:44 +00002580 stripNonValidAttributesFromBody(F);
Sanjoy Das353a19e2015-06-02 22:33:37 +00002581}
2582
Philip Reamesd16a9b12015-02-20 01:06:44 +00002583bool RewriteStatepointsForGC::runOnFunction(Function &F) {
2584 // Nothing to do for declarations.
2585 if (F.isDeclaration() || F.empty())
2586 return false;
2587
2588 // Policy choice says not to rewrite - the most common reason is that we're
2589 // compiling code without a GCStrategy.
2590 if (!shouldRewriteStatepointsIn(F))
2591 return false;
2592
Sanjoy Dasea45f0e2015-06-02 22:33:34 +00002593 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
Justin Bogner843fb202015-12-15 19:40:57 +00002594 TargetTransformInfo &TTI =
2595 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
Philip Reames704e78b2015-04-10 22:34:56 +00002596
Sanjoy Das25ec1a32015-10-16 02:41:00 +00002597 auto NeedsRewrite = [](Instruction &I) {
2598 if (UseDeoptBundles) {
2599 if (ImmutableCallSite CS = ImmutableCallSite(&I))
2600 return !callsGCLeafFunction(CS);
2601 return false;
2602 }
2603
2604 return isStatepoint(I);
2605 };
2606
Philip Reames85b36a82015-04-10 22:07:04 +00002607 // Gather all the statepoints which need rewritten. Be careful to only
2608 // consider those in reachable code since we need to ask dominance queries
2609 // when rewriting. We'll delete the unreachable ones in a moment.
Philip Reamesd2b66462015-02-20 22:39:41 +00002610 SmallVector<CallSite, 64> ParsePointNeeded;
Philip Reamesf66d7372015-04-10 22:16:58 +00002611 bool HasUnreachableStatepoint = false;
Nico Rieck78199512015-08-06 19:10:45 +00002612 for (Instruction &I : instructions(F)) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00002613 // TODO: only the ones with the flag set!
Sanjoy Das25ec1a32015-10-16 02:41:00 +00002614 if (NeedsRewrite(I)) {
Philip Reames85b36a82015-04-10 22:07:04 +00002615 if (DT.isReachableFromEntry(I.getParent()))
2616 ParsePointNeeded.push_back(CallSite(&I));
2617 else
Philip Reamesf66d7372015-04-10 22:16:58 +00002618 HasUnreachableStatepoint = true;
Philip Reames85b36a82015-04-10 22:07:04 +00002619 }
Philip Reamesd16a9b12015-02-20 01:06:44 +00002620 }
2621
Philip Reames85b36a82015-04-10 22:07:04 +00002622 bool MadeChange = false;
Philip Reames704e78b2015-04-10 22:34:56 +00002623
Philip Reames85b36a82015-04-10 22:07:04 +00002624 // Delete any unreachable statepoints so that we don't have unrewritten
2625 // statepoints surviving this pass. This makes testing easier and the
2626 // resulting IR less confusing to human readers. Rather than be fancy, we
2627 // just reuse a utility function which removes the unreachable blocks.
Philip Reamesf66d7372015-04-10 22:16:58 +00002628 if (HasUnreachableStatepoint)
Philip Reames85b36a82015-04-10 22:07:04 +00002629 MadeChange |= removeUnreachableBlocks(F);
2630
Philip Reamesd16a9b12015-02-20 01:06:44 +00002631 // Return early if no work to do.
2632 if (ParsePointNeeded.empty())
Philip Reames85b36a82015-04-10 22:07:04 +00002633 return MadeChange;
Philip Reamesd16a9b12015-02-20 01:06:44 +00002634
Philip Reames85b36a82015-04-10 22:07:04 +00002635 // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2636 // These are created by LCSSA. They have the effect of increasing the size
2637 // of liveness sets for no good reason. It may be harder to do this post
2638 // insertion since relocations and base phis can confuse things.
2639 for (BasicBlock &BB : F)
2640 if (BB.getUniquePredecessor()) {
2641 MadeChange = true;
2642 FoldSingleEntryPHINodes(&BB);
2643 }
2644
Philip Reames971dc3a2015-08-12 22:11:45 +00002645 // Before we start introducing relocations, we want to tweak the IR a bit to
2646 // avoid unfortunate code generation effects. The main example is that we
2647 // want to try to make sure the comparison feeding a branch is after any
2648 // safepoints. Otherwise, we end up with a comparison of pre-relocation
2649 // values feeding a branch after relocation. This is semantically correct,
2650 // but results in extra register pressure since both the pre-relocation and
2651 // post-relocation copies must be available in registers. For code without
2652 // relocations this is handled elsewhere, but teaching the scheduler to
2653 // reverse the transform we're about to do would be slightly complex.
2654 // Note: This may extend the live range of the inputs to the icmp and thus
2655 // increase the liveset of any statepoint we move over. This is profitable
2656 // as long as all statepoints are in rare blocks. If we had in-register
2657 // lowering for live values this would be a much safer transform.
2658 auto getConditionInst = [](TerminatorInst *TI) -> Instruction* {
2659 if (auto *BI = dyn_cast<BranchInst>(TI))
2660 if (BI->isConditional())
2661 return dyn_cast<Instruction>(BI->getCondition());
2662 // TODO: Extend this to handle switches
2663 return nullptr;
2664 };
2665 for (BasicBlock &BB : F) {
2666 TerminatorInst *TI = BB.getTerminator();
2667 if (auto *Cond = getConditionInst(TI))
2668 // TODO: Handle more than just ICmps here. We should be able to move
2669 // most instructions without side effects or memory access.
2670 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
2671 MadeChange = true;
2672 Cond->moveBefore(TI);
2673 }
2674 }
2675
Justin Bogner843fb202015-12-15 19:40:57 +00002676 MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
Philip Reames85b36a82015-04-10 22:07:04 +00002677 return MadeChange;
Philip Reamesd16a9b12015-02-20 01:06:44 +00002678}
Philip Reamesdf1ef082015-04-10 22:53:14 +00002679
2680// liveness computation via standard dataflow
2681// -------------------------------------------------------------------
2682
2683// TODO: Consider using bitvectors for liveness, the set of potentially
2684// interesting values should be small and easy to pre-compute.
2685
Philip Reamesdf1ef082015-04-10 22:53:14 +00002686/// Compute the live-in set for the location rbegin starting from
2687/// the live-out set of the basic block
2688static void computeLiveInValues(BasicBlock::reverse_iterator rbegin,
2689 BasicBlock::reverse_iterator rend,
2690 DenseSet<Value *> &LiveTmp) {
2691
2692 for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) {
2693 Instruction *I = &*ritr;
2694
2695 // KILL/Def - Remove this definition from LiveIn
2696 LiveTmp.erase(I);
2697
2698 // Don't consider *uses* in PHI nodes, we handle their contribution to
2699 // predecessor blocks when we seed the LiveOut sets
2700 if (isa<PHINode>(I))
2701 continue;
2702
2703 // USE - Add to the LiveIn set for this instruction
2704 for (Value *V : I->operands()) {
2705 assert(!isUnhandledGCPointerType(V->getType()) &&
2706 "support for FCA unimplemented");
Philip Reames63294cb2015-04-26 19:48:03 +00002707 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2708 // The choice to exclude all things constant here is slightly subtle.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002709 // There are two independent reasons:
Philip Reames63294cb2015-04-26 19:48:03 +00002710 // - We assume that things which are constant (from LLVM's definition)
2711 // do not move at runtime. For example, the address of a global
2712 // variable is fixed, even though it's contents may not be.
2713 // - Second, we can't disallow arbitrary inttoptr constants even
2714 // if the language frontend does. Optimization passes are free to
2715 // locally exploit facts without respect to global reachability. This
2716 // can create sections of code which are dynamically unreachable and
2717 // contain just about anything. (see constants.ll in tests)
Philip Reamesdf1ef082015-04-10 22:53:14 +00002718 LiveTmp.insert(V);
2719 }
2720 }
2721 }
2722}
2723
2724static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) {
2725
2726 for (BasicBlock *Succ : successors(BB)) {
2727 const BasicBlock::iterator E(Succ->getFirstNonPHI());
2728 for (BasicBlock::iterator I = Succ->begin(); I != E; I++) {
2729 PHINode *Phi = cast<PHINode>(&*I);
2730 Value *V = Phi->getIncomingValueForBlock(BB);
2731 assert(!isUnhandledGCPointerType(V->getType()) &&
2732 "support for FCA unimplemented");
Philip Reames63294cb2015-04-26 19:48:03 +00002733 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
Philip Reamesdf1ef082015-04-10 22:53:14 +00002734 LiveTmp.insert(V);
2735 }
2736 }
2737 }
2738}
2739
2740static DenseSet<Value *> computeKillSet(BasicBlock *BB) {
2741 DenseSet<Value *> KillSet;
2742 for (Instruction &I : *BB)
2743 if (isHandledGCPointerType(I.getType()))
2744 KillSet.insert(&I);
2745 return KillSet;
2746}
2747
Philip Reames9638ff92015-04-11 00:06:47 +00002748#ifndef NDEBUG
Philip Reamesdf1ef082015-04-10 22:53:14 +00002749/// Check that the items in 'Live' dominate 'TI'. This is used as a basic
2750/// sanity check for the liveness computation.
2751static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live,
2752 TerminatorInst *TI, bool TermOkay = false) {
Philip Reamesdf1ef082015-04-10 22:53:14 +00002753 for (Value *V : Live) {
2754 if (auto *I = dyn_cast<Instruction>(V)) {
2755 // The terminator can be a member of the LiveOut set. LLVM's definition
2756 // of instruction dominance states that V does not dominate itself. As
2757 // such, we need to special case this to allow it.
2758 if (TermOkay && TI == I)
2759 continue;
2760 assert(DT.dominates(I, TI) &&
2761 "basic SSA liveness expectation violated by liveness analysis");
2762 }
2763 }
Philip Reamesdf1ef082015-04-10 22:53:14 +00002764}
2765
2766/// Check that all the liveness sets used during the computation of liveness
2767/// obey basic SSA properties. This is useful for finding cases where we miss
2768/// a def.
2769static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
2770 BasicBlock &BB) {
2771 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
2772 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
2773 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
2774}
Philip Reames9638ff92015-04-11 00:06:47 +00002775#endif
Philip Reamesdf1ef082015-04-10 22:53:14 +00002776
2777static void computeLiveInValues(DominatorTree &DT, Function &F,
2778 GCPtrLivenessData &Data) {
2779
Philip Reames4d80ede2015-04-10 23:11:26 +00002780 SmallSetVector<BasicBlock *, 200> Worklist;
Philip Reamesdf1ef082015-04-10 22:53:14 +00002781 auto AddPredsToWorklist = [&](BasicBlock *BB) {
Philip Reames4d80ede2015-04-10 23:11:26 +00002782 // We use a SetVector so that we don't have duplicates in the worklist.
2783 Worklist.insert(pred_begin(BB), pred_end(BB));
Philip Reamesdf1ef082015-04-10 22:53:14 +00002784 };
2785 auto NextItem = [&]() {
2786 BasicBlock *BB = Worklist.back();
2787 Worklist.pop_back();
Philip Reamesdf1ef082015-04-10 22:53:14 +00002788 return BB;
2789 };
2790
2791 // Seed the liveness for each individual block
2792 for (BasicBlock &BB : F) {
2793 Data.KillSet[&BB] = computeKillSet(&BB);
2794 Data.LiveSet[&BB].clear();
2795 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
2796
2797#ifndef NDEBUG
2798 for (Value *Kill : Data.KillSet[&BB])
2799 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
2800#endif
2801
2802 Data.LiveOut[&BB] = DenseSet<Value *>();
2803 computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
2804 Data.LiveIn[&BB] = Data.LiveSet[&BB];
2805 set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]);
2806 set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]);
2807 if (!Data.LiveIn[&BB].empty())
2808 AddPredsToWorklist(&BB);
2809 }
2810
2811 // Propagate that liveness until stable
2812 while (!Worklist.empty()) {
2813 BasicBlock *BB = NextItem();
2814
2815 // Compute our new liveout set, then exit early if it hasn't changed
2816 // despite the contribution of our successor.
2817 DenseSet<Value *> LiveOut = Data.LiveOut[BB];
2818 const auto OldLiveOutSize = LiveOut.size();
2819 for (BasicBlock *Succ : successors(BB)) {
2820 assert(Data.LiveIn.count(Succ));
2821 set_union(LiveOut, Data.LiveIn[Succ]);
2822 }
2823 // assert OutLiveOut is a subset of LiveOut
2824 if (OldLiveOutSize == LiveOut.size()) {
2825 // If the sets are the same size, then we didn't actually add anything
2826 // when unioning our successors LiveIn Thus, the LiveIn of this block
2827 // hasn't changed.
2828 continue;
2829 }
2830 Data.LiveOut[BB] = LiveOut;
2831
2832 // Apply the effects of this basic block
2833 DenseSet<Value *> LiveTmp = LiveOut;
2834 set_union(LiveTmp, Data.LiveSet[BB]);
2835 set_subtract(LiveTmp, Data.KillSet[BB]);
2836
2837 assert(Data.LiveIn.count(BB));
2838 const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB];
2839 // assert: OldLiveIn is a subset of LiveTmp
2840 if (OldLiveIn.size() != LiveTmp.size()) {
2841 Data.LiveIn[BB] = LiveTmp;
2842 AddPredsToWorklist(BB);
2843 }
2844 } // while( !worklist.empty() )
2845
2846#ifndef NDEBUG
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002847 // Sanity check our output against SSA properties. This helps catch any
Philip Reamesdf1ef082015-04-10 22:53:14 +00002848 // missing kills during the above iteration.
2849 for (BasicBlock &BB : F) {
2850 checkBasicSSA(DT, Data, BB);
2851 }
2852#endif
2853}
2854
2855static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
2856 StatepointLiveSetTy &Out) {
2857
2858 BasicBlock *BB = Inst->getParent();
2859
2860 // Note: The copy is intentional and required
2861 assert(Data.LiveOut.count(BB));
2862 DenseSet<Value *> LiveOut = Data.LiveOut[BB];
2863
2864 // We want to handle the statepoint itself oddly. It's
2865 // call result is not live (normal), nor are it's arguments
2866 // (unless they're used again later). This adjustment is
2867 // specifically what we need to relocate
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00002868 BasicBlock::reverse_iterator rend(Inst->getIterator());
Philip Reamesdf1ef082015-04-10 22:53:14 +00002869 computeLiveInValues(BB->rbegin(), rend, LiveOut);
2870 LiveOut.erase(Inst);
2871 Out.insert(LiveOut.begin(), LiveOut.end());
2872}
2873
2874static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
2875 const CallSite &CS,
2876 PartiallyConstructedSafepointRecord &Info) {
2877 Instruction *Inst = CS.getInstruction();
2878 StatepointLiveSetTy Updated;
2879 findLiveSetAtInst(Inst, RevisedLivenessData, Updated);
2880
2881#ifndef NDEBUG
2882 DenseSet<Value *> Bases;
2883 for (auto KVPair : Info.PointerToBase) {
2884 Bases.insert(KVPair.second);
2885 }
2886#endif
2887 // We may have base pointers which are now live that weren't before. We need
2888 // to update the PointerToBase structure to reflect this.
2889 for (auto V : Updated)
2890 if (!Info.PointerToBase.count(V)) {
2891 assert(Bases.count(V) && "can't find base for unexpected live value");
2892 Info.PointerToBase[V] = V;
2893 continue;
2894 }
2895
2896#ifndef NDEBUG
2897 for (auto V : Updated) {
2898 assert(Info.PointerToBase.count(V) &&
2899 "must be able to find base for live value");
2900 }
2901#endif
2902
2903 // Remove any stale base mappings - this can happen since our liveness is
2904 // more precise then the one inherent in the base pointer analysis
2905 DenseSet<Value *> ToErase;
2906 for (auto KVPair : Info.PointerToBase)
2907 if (!Updated.count(KVPair.first))
2908 ToErase.insert(KVPair.first);
2909 for (auto V : ToErase)
2910 Info.PointerToBase.erase(V);
2911
2912#ifndef NDEBUG
2913 for (auto KVPair : Info.PointerToBase)
2914 assert(Updated.count(KVPair.first) && "record for non-live value");
2915#endif
2916
Sanjoy Dasb40bd1a2015-10-07 02:39:18 +00002917 Info.LiveSet = Updated;
Philip Reamesdf1ef082015-04-10 22:53:14 +00002918}