blob: 57687def2d9e4b6833ecf49390bfb9273c9dbbd1 [file] [log] [blame]
Philip Reamesd16a9b12015-02-20 01:06:44 +00001//===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Rewrite an existing set of gc.statepoints such that they make potential
11// relocations performed by the garbage collector explicit in the IR.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Pass.h"
16#include "llvm/Analysis/CFG.h"
Philip Reamesabcdc5e2015-08-27 01:02:28 +000017#include "llvm/Analysis/InstructionSimplify.h"
Igor Laevskye0317182015-05-19 15:59:05 +000018#include "llvm/Analysis/TargetTransformInfo.h"
Philip Reamesd16a9b12015-02-20 01:06:44 +000019#include "llvm/ADT/SetOperations.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/ADT/DenseSet.h"
Philip Reames4d80ede2015-04-10 23:11:26 +000022#include "llvm/ADT/SetVector.h"
Swaroop Sridhar665bc9c2015-05-20 01:07:23 +000023#include "llvm/ADT/StringRef.h"
Philip Reames15d55632015-09-09 23:26:08 +000024#include "llvm/ADT/MapVector.h"
Philip Reamesd16a9b12015-02-20 01:06:44 +000025#include "llvm/IR/BasicBlock.h"
26#include "llvm/IR/CallSite.h"
27#include "llvm/IR/Dominators.h"
28#include "llvm/IR/Function.h"
29#include "llvm/IR/IRBuilder.h"
30#include "llvm/IR/InstIterator.h"
31#include "llvm/IR/Instructions.h"
32#include "llvm/IR/Intrinsics.h"
33#include "llvm/IR/IntrinsicInst.h"
34#include "llvm/IR/Module.h"
Sanjoy Das353a19e2015-06-02 22:33:37 +000035#include "llvm/IR/MDBuilder.h"
Philip Reamesd16a9b12015-02-20 01:06:44 +000036#include "llvm/IR/Statepoint.h"
37#include "llvm/IR/Value.h"
38#include "llvm/IR/Verifier.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Transforms/Scalar.h"
42#include "llvm/Transforms/Utils/BasicBlockUtils.h"
43#include "llvm/Transforms/Utils/Cloning.h"
44#include "llvm/Transforms/Utils/Local.h"
45#include "llvm/Transforms/Utils/PromoteMemToReg.h"
46
47#define DEBUG_TYPE "rewrite-statepoints-for-gc"
48
49using namespace llvm;
50
Philip Reamesd16a9b12015-02-20 01:06:44 +000051// Print the liveset found at the insert location
52static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
53 cl::init(false));
Philip Reames704e78b2015-04-10 22:34:56 +000054static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
55 cl::init(false));
Philip Reamesd16a9b12015-02-20 01:06:44 +000056// Print out the base pointers for debugging
Philip Reames704e78b2015-04-10 22:34:56 +000057static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
58 cl::init(false));
Philip Reamesd16a9b12015-02-20 01:06:44 +000059
Igor Laevskye0317182015-05-19 15:59:05 +000060// Cost threshold measuring when it is profitable to rematerialize value instead
61// of relocating it
62static cl::opt<unsigned>
63RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
64 cl::init(6));
65
Philip Reamese73300b2015-04-13 16:41:32 +000066#ifdef XDEBUG
67static bool ClobberNonLive = true;
68#else
69static bool ClobberNonLive = false;
70#endif
71static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
72 cl::location(ClobberNonLive),
73 cl::Hidden);
74
Benjamin Kramer6f665452015-02-20 14:00:58 +000075namespace {
Sanjoy Dasea45f0e2015-06-02 22:33:34 +000076struct RewriteStatepointsForGC : public ModulePass {
Philip Reamesd16a9b12015-02-20 01:06:44 +000077 static char ID; // Pass identification, replacement for typeid
78
Sanjoy Dasea45f0e2015-06-02 22:33:34 +000079 RewriteStatepointsForGC() : ModulePass(ID) {
Philip Reamesd16a9b12015-02-20 01:06:44 +000080 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry());
81 }
Sanjoy Dasea45f0e2015-06-02 22:33:34 +000082 bool runOnFunction(Function &F);
83 bool runOnModule(Module &M) override {
84 bool Changed = false;
85 for (Function &F : M)
86 Changed |= runOnFunction(F);
Sanjoy Das353a19e2015-06-02 22:33:37 +000087
88 if (Changed) {
89 // stripDereferenceabilityInfo asserts that shouldRewriteStatepointsIn
90 // returns true for at least one function in the module. Since at least
91 // one function changed, we know that the precondition is satisfied.
92 stripDereferenceabilityInfo(M);
93 }
94
Sanjoy Dasea45f0e2015-06-02 22:33:34 +000095 return Changed;
96 }
Philip Reamesd16a9b12015-02-20 01:06:44 +000097
98 void getAnalysisUsage(AnalysisUsage &AU) const override {
99 // We add and rewrite a bunch of instructions, but don't really do much
100 // else. We could in theory preserve a lot more analyses here.
101 AU.addRequired<DominatorTreeWrapperPass>();
Igor Laevskye0317182015-05-19 15:59:05 +0000102 AU.addRequired<TargetTransformInfoWrapperPass>();
Philip Reamesd16a9b12015-02-20 01:06:44 +0000103 }
Sanjoy Das353a19e2015-06-02 22:33:37 +0000104
105 /// The IR fed into RewriteStatepointsForGC may have had attributes implying
106 /// dereferenceability that are no longer valid/correct after
107 /// RewriteStatepointsForGC has run. This is because semantically, after
108 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
109 /// heap. stripDereferenceabilityInfo (conservatively) restores correctness
110 /// by erasing all attributes in the module that externally imply
111 /// dereferenceability.
112 ///
113 void stripDereferenceabilityInfo(Module &M);
114
115 // Helpers for stripDereferenceabilityInfo
116 void stripDereferenceabilityInfoFromBody(Function &F);
117 void stripDereferenceabilityInfoFromPrototype(Function &F);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000118};
Benjamin Kramer6f665452015-02-20 14:00:58 +0000119} // namespace
Philip Reamesd16a9b12015-02-20 01:06:44 +0000120
121char RewriteStatepointsForGC::ID = 0;
122
Sanjoy Dasea45f0e2015-06-02 22:33:34 +0000123ModulePass *llvm::createRewriteStatepointsForGCPass() {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000124 return new RewriteStatepointsForGC();
125}
126
127INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
128 "Make relocations explicit at statepoints", false, false)
129INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
130INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
131 "Make relocations explicit at statepoints", false, false)
132
133namespace {
Philip Reamesdf1ef082015-04-10 22:53:14 +0000134struct GCPtrLivenessData {
135 /// Values defined in this block.
136 DenseMap<BasicBlock *, DenseSet<Value *>> KillSet;
137 /// Values used in this block (and thus live); does not included values
138 /// killed within this block.
139 DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet;
140
141 /// Values live into this basic block (i.e. used by any
142 /// instruction in this basic block or ones reachable from here)
143 DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn;
144
145 /// Values live out of this basic block (i.e. live into
146 /// any successor block)
147 DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut;
148};
149
Philip Reamesd16a9b12015-02-20 01:06:44 +0000150// The type of the internal cache used inside the findBasePointers family
151// of functions. From the callers perspective, this is an opaque type and
152// should not be inspected.
153//
154// In the actual implementation this caches two relations:
155// - The base relation itself (i.e. this pointer is based on that one)
156// - The base defining value relation (i.e. before base_phi insertion)
157// Generally, after the execution of a full findBasePointer call, only the
158// base relation will remain. Internally, we add a mixture of the two
159// types, then update all the second type to the first type
Philip Reamese9c3b9b2015-02-20 22:48:20 +0000160typedef DenseMap<Value *, Value *> DefiningValueMapTy;
Philip Reames1f017542015-02-20 23:16:52 +0000161typedef DenseSet<llvm::Value *> StatepointLiveSetTy;
Igor Laevskye0317182015-05-19 15:59:05 +0000162typedef DenseMap<Instruction *, Value *> RematerializedValueMapTy;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000163
Philip Reamesd16a9b12015-02-20 01:06:44 +0000164struct PartiallyConstructedSafepointRecord {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +0000165 /// The set of values known to be live across this safepoint
Philip Reames860660e2015-02-20 22:05:18 +0000166 StatepointLiveSetTy liveset;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000167
168 /// Mapping from live pointers to a base-defining-value
Philip Reamesf2041322015-02-20 19:26:04 +0000169 DenseMap<llvm::Value *, llvm::Value *> PointerToBase;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000170
Philip Reames0a3240f2015-02-20 21:34:11 +0000171 /// The *new* gc.statepoint instruction itself. This produces the token
172 /// that normal path gc.relocates and the gc.result are tied to.
173 Instruction *StatepointToken;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000174
Philip Reamesf2041322015-02-20 19:26:04 +0000175 /// Instruction to which exceptional gc relocates are attached
176 /// Makes it easier to iterate through them during relocationViaAlloca.
177 Instruction *UnwindToken;
Igor Laevskye0317182015-05-19 15:59:05 +0000178
179 /// Record live values we are rematerialized instead of relocating.
180 /// They are not included into 'liveset' field.
181 /// Maps rematerialized copy to it's original value.
182 RematerializedValueMapTy RematerializedValues;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000183};
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000184}
Philip Reamesd16a9b12015-02-20 01:06:44 +0000185
Philip Reamesdf1ef082015-04-10 22:53:14 +0000186/// Compute the live-in set for every basic block in the function
187static void computeLiveInValues(DominatorTree &DT, Function &F,
188 GCPtrLivenessData &Data);
189
190/// Given results from the dataflow liveness computation, find the set of live
191/// Values at a particular instruction.
192static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
193 StatepointLiveSetTy &out);
194
Philip Reamesd16a9b12015-02-20 01:06:44 +0000195// TODO: Once we can get to the GCStrategy, this becomes
196// Optional<bool> isGCManagedPointer(const Value *V) const override {
197
Craig Toppere3dcce92015-08-01 22:20:21 +0000198static bool isGCPointerType(Type *T) {
199 if (auto *PT = dyn_cast<PointerType>(T))
Philip Reamesd16a9b12015-02-20 01:06:44 +0000200 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
201 // GC managed heap. We know that a pointer into this heap needs to be
202 // updated and that no other pointer does.
203 return (1 == PT->getAddressSpace());
204 return false;
205}
206
Philip Reames8531d8c2015-04-10 21:48:25 +0000207// Return true if this type is one which a) is a gc pointer or contains a GC
208// pointer and b) is of a type this code expects to encounter as a live value.
209// (The insertion code will assert that a type which matches (a) and not (b)
Philip Reames704e78b2015-04-10 22:34:56 +0000210// is not encountered.)
Philip Reames8531d8c2015-04-10 21:48:25 +0000211static bool isHandledGCPointerType(Type *T) {
212 // We fully support gc pointers
213 if (isGCPointerType(T))
214 return true;
215 // We partially support vectors of gc pointers. The code will assert if it
216 // can't handle something.
217 if (auto VT = dyn_cast<VectorType>(T))
218 if (isGCPointerType(VT->getElementType()))
219 return true;
220 return false;
221}
222
223#ifndef NDEBUG
224/// Returns true if this type contains a gc pointer whether we know how to
225/// handle that type or not.
226static bool containsGCPtrType(Type *Ty) {
Philip Reames704e78b2015-04-10 22:34:56 +0000227 if (isGCPointerType(Ty))
Philip Reames8531d8c2015-04-10 21:48:25 +0000228 return true;
229 if (VectorType *VT = dyn_cast<VectorType>(Ty))
230 return isGCPointerType(VT->getScalarType());
231 if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
232 return containsGCPtrType(AT->getElementType());
233 if (StructType *ST = dyn_cast<StructType>(Ty))
Philip Reames704e78b2015-04-10 22:34:56 +0000234 return std::any_of(
235 ST->subtypes().begin(), ST->subtypes().end(),
236 [](Type *SubType) { return containsGCPtrType(SubType); });
Philip Reames8531d8c2015-04-10 21:48:25 +0000237 return false;
238}
239
240// Returns true if this is a type which a) is a gc pointer or contains a GC
241// pointer and b) is of a type which the code doesn't expect (i.e. first class
242// aggregates). Used to trip assertions.
243static bool isUnhandledGCPointerType(Type *Ty) {
244 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
245}
246#endif
247
Philip Reamesd16a9b12015-02-20 01:06:44 +0000248static bool order_by_name(llvm::Value *a, llvm::Value *b) {
249 if (a->hasName() && b->hasName()) {
250 return -1 == a->getName().compare(b->getName());
251 } else if (a->hasName() && !b->hasName()) {
252 return true;
253 } else if (!a->hasName() && b->hasName()) {
254 return false;
255 } else {
256 // Better than nothing, but not stable
257 return a < b;
258 }
259}
260
Philip Reamesece70b82015-09-09 23:57:18 +0000261// Return the name of the value suffixed with the provided value, or if the
262// value didn't have a name, the default value specified.
263static std::string suffixed_name_or(Value *V, StringRef Suffix,
264 StringRef DefaultName) {
265 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
266}
267
Philip Reamesdf1ef082015-04-10 22:53:14 +0000268// Conservatively identifies any definitions which might be live at the
269// given instruction. The analysis is performed immediately before the
270// given instruction. Values defined by that instruction are not considered
271// live. Values used by that instruction are considered live.
272static void analyzeParsePointLiveness(
273 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData,
274 const CallSite &CS, PartiallyConstructedSafepointRecord &result) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000275 Instruction *inst = CS.getInstruction();
276
Philip Reames1f017542015-02-20 23:16:52 +0000277 StatepointLiveSetTy liveset;
Philip Reamesdf1ef082015-04-10 22:53:14 +0000278 findLiveSetAtInst(inst, OriginalLivenessData, liveset);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000279
280 if (PrintLiveSet) {
281 // Note: This output is used by several of the test cases
Benjamin Kramerdf005cb2015-08-08 18:27:36 +0000282 // The order of elements in a set is not stable, put them in a vec and sort
Philip Reamesd16a9b12015-02-20 01:06:44 +0000283 // by name
Philip Reamesdab35f32015-09-02 21:11:44 +0000284 SmallVector<Value *, 64> Temp;
285 Temp.insert(Temp.end(), liveset.begin(), liveset.end());
286 std::sort(Temp.begin(), Temp.end(), order_by_name);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000287 errs() << "Live Variables:\n";
Philip Reamesdab35f32015-09-02 21:11:44 +0000288 for (Value *V : Temp)
289 dbgs() << " " << V->getName() << " " << *V << "\n";
Philip Reamesd16a9b12015-02-20 01:06:44 +0000290 }
291 if (PrintLiveSetSize) {
292 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
293 errs() << "Number live values: " << liveset.size() << "\n";
294 }
295 result.liveset = liveset;
296}
297
Philip Reamesf5b8e472015-09-03 21:34:30 +0000298static bool isKnownBaseResult(Value *V);
299namespace {
300/// A single base defining value - An immediate base defining value for an
301/// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
302/// For instructions which have multiple pointer [vector] inputs or that
303/// transition between vector and scalar types, there is no immediate base
304/// defining value. The 'base defining value' for 'Def' is the transitive
305/// closure of this relation stopping at the first instruction which has no
306/// immediate base defining value. The b.d.v. might itself be a base pointer,
307/// but it can also be an arbitrary derived pointer.
308struct BaseDefiningValueResult {
309 /// Contains the value which is the base defining value.
310 Value * const BDV;
311 /// True if the base defining value is also known to be an actual base
312 /// pointer.
313 const bool IsKnownBase;
314 BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
315 : BDV(BDV), IsKnownBase(IsKnownBase) {
316#ifndef NDEBUG
317 // Check consistency between new and old means of checking whether a BDV is
318 // a base.
319 bool MustBeBase = isKnownBaseResult(BDV);
320 assert(!MustBeBase || MustBeBase == IsKnownBase);
321#endif
322 }
323};
324}
325
326static BaseDefiningValueResult findBaseDefiningValue(Value *I);
Philip Reames311f7102015-05-12 22:19:52 +0000327
Philip Reames8fe7f132015-06-26 22:47:37 +0000328/// Return a base defining value for the 'Index' element of the given vector
329/// instruction 'I'. If Index is null, returns a BDV for the entire vector
330/// 'I'. As an optimization, this method will try to determine when the
331/// element is known to already be a base pointer. If this can be established,
332/// the second value in the returned pair will be true. Note that either a
333/// vector or a pointer typed value can be returned. For the former, the
334/// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
335/// If the later, the return pointer is a BDV (or possibly a base) for the
336/// particular element in 'I'.
Philip Reamesf5b8e472015-09-03 21:34:30 +0000337static BaseDefiningValueResult
Philip Reames66287132015-09-09 23:40:12 +0000338findBaseDefiningValueOfVector(Value *I) {
Philip Reames8531d8c2015-04-10 21:48:25 +0000339 assert(I->getType()->isVectorTy() &&
340 cast<VectorType>(I->getType())->getElementType()->isPointerTy() &&
341 "Illegal to ask for the base pointer of a non-pointer type");
342
343 // Each case parallels findBaseDefiningValue below, see that code for
344 // detailed motivation.
345
346 if (isa<Argument>(I))
347 // An incoming argument to the function is a base pointer
Philip Reamesf5b8e472015-09-03 21:34:30 +0000348 return BaseDefiningValueResult(I, true);
Philip Reames8531d8c2015-04-10 21:48:25 +0000349
350 // We shouldn't see the address of a global as a vector value?
351 assert(!isa<GlobalVariable>(I) &&
352 "unexpected global variable found in base of vector");
353
354 // inlining could possibly introduce phi node that contains
355 // undef if callee has multiple returns
356 if (isa<UndefValue>(I))
357 // utterly meaningless, but useful for dealing with partially optimized
358 // code.
Philip Reamesf5b8e472015-09-03 21:34:30 +0000359 return BaseDefiningValueResult(I, true);
Philip Reames8531d8c2015-04-10 21:48:25 +0000360
361 // Due to inheritance, this must be _after_ the global variable and undef
362 // checks
363 if (Constant *Con = dyn_cast<Constant>(I)) {
364 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) &&
365 "order of checks wrong!");
366 assert(Con->isNullValue() && "null is the only case which makes sense");
Philip Reamesf5b8e472015-09-03 21:34:30 +0000367 return BaseDefiningValueResult(Con, true);
Philip Reames8531d8c2015-04-10 21:48:25 +0000368 }
Philip Reames8fe7f132015-06-26 22:47:37 +0000369
Philip Reames8531d8c2015-04-10 21:48:25 +0000370 if (isa<LoadInst>(I))
Philip Reamesf5b8e472015-09-03 21:34:30 +0000371 return BaseDefiningValueResult(I, true);
Philip Reamesf5b8e472015-09-03 21:34:30 +0000372
Philip Reames66287132015-09-09 23:40:12 +0000373 if (isa<InsertElementInst>(I))
Philip Reames8fe7f132015-06-26 22:47:37 +0000374 // We don't know whether this vector contains entirely base pointers or
375 // not. To be conservatively correct, we treat it as a BDV and will
376 // duplicate code as needed to construct a parallel vector of bases.
Philip Reames66287132015-09-09 23:40:12 +0000377 return BaseDefiningValueResult(I, false);
NAKAMURA Takumifb3bd712015-05-25 01:43:23 +0000378
Philip Reames8fe7f132015-06-26 22:47:37 +0000379 if (isa<ShuffleVectorInst>(I))
380 // We don't know whether this vector contains entirely base pointers or
381 // not. To be conservatively correct, we treat it as a BDV and will
382 // duplicate code as needed to construct a parallel vector of bases.
383 // TODO: There a number of local optimizations which could be applied here
384 // for particular sufflevector patterns.
Philip Reamesf5b8e472015-09-03 21:34:30 +0000385 return BaseDefiningValueResult(I, false);
Philip Reames8fe7f132015-06-26 22:47:37 +0000386
387 // A PHI or Select is a base defining value. The outer findBasePointer
388 // algorithm is responsible for constructing a base value for this BDV.
389 assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
390 "unknown vector instruction - no base found for vector element");
Philip Reamesf5b8e472015-09-03 21:34:30 +0000391 return BaseDefiningValueResult(I, false);
Philip Reames8531d8c2015-04-10 21:48:25 +0000392}
393
Philip Reamesd16a9b12015-02-20 01:06:44 +0000394/// Helper function for findBasePointer - Will return a value which either a)
Philip Reames9ac4e382015-08-12 21:00:20 +0000395/// defines the base pointer for the input, b) blocks the simple search
396/// (i.e. a PHI or Select of two derived pointers), or c) involves a change
397/// from pointer to vector type or back.
Philip Reamesf5b8e472015-09-03 21:34:30 +0000398static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
Philip Reames8fe7f132015-06-26 22:47:37 +0000399 if (I->getType()->isVectorTy())
Philip Reamesf5b8e472015-09-03 21:34:30 +0000400 return findBaseDefiningValueOfVector(I);
Philip Reames8fe7f132015-06-26 22:47:37 +0000401
Philip Reamesd16a9b12015-02-20 01:06:44 +0000402 assert(I->getType()->isPointerTy() &&
403 "Illegal to ask for the base pointer of a non-pointer type");
404
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000405 if (isa<Argument>(I))
Philip Reamesd16a9b12015-02-20 01:06:44 +0000406 // An incoming argument to the function is a base pointer
407 // We should have never reached here if this argument isn't an gc value
Philip Reamesf5b8e472015-09-03 21:34:30 +0000408 return BaseDefiningValueResult(I, true);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000409
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000410 if (isa<GlobalVariable>(I))
Philip Reamesd16a9b12015-02-20 01:06:44 +0000411 // base case
Philip Reamesf5b8e472015-09-03 21:34:30 +0000412 return BaseDefiningValueResult(I, true);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000413
414 // inlining could possibly introduce phi node that contains
415 // undef if callee has multiple returns
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000416 if (isa<UndefValue>(I))
417 // utterly meaningless, but useful for dealing with
418 // partially optimized code.
Philip Reamesf5b8e472015-09-03 21:34:30 +0000419 return BaseDefiningValueResult(I, true);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000420
421 // Due to inheritance, this must be _after_ the global variable and undef
422 // checks
Philip Reames3ea15892015-09-03 21:57:40 +0000423 if (isa<Constant>(I)) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000424 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) &&
425 "order of checks wrong!");
426 // Note: Finding a constant base for something marked for relocation
427 // doesn't really make sense. The most likely case is either a) some
428 // screwed up the address space usage or b) your validating against
429 // compiled C++ code w/o the proper separation. The only real exception
430 // is a null pointer. You could have generic code written to index of
431 // off a potentially null value and have proven it null. We also use
432 // null pointers in dead paths of relocation phis (which we might later
433 // want to find a base pointer for).
Philip Reames3ea15892015-09-03 21:57:40 +0000434 assert(isa<ConstantPointerNull>(I) &&
Philip Reames24c6cd52015-03-27 05:47:00 +0000435 "null is the only case which makes sense");
Philip Reamesf5b8e472015-09-03 21:34:30 +0000436 return BaseDefiningValueResult(I, true);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000437 }
438
439 if (CastInst *CI = dyn_cast<CastInst>(I)) {
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000440 Value *Def = CI->stripPointerCasts();
David Blaikie82ad7872015-02-20 23:44:24 +0000441 // If we find a cast instruction here, it means we've found a cast which is
442 // not simply a pointer cast (i.e. an inttoptr). We don't know how to
443 // handle int->ptr conversion.
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000444 assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
445 return findBaseDefiningValue(Def);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000446 }
447
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000448 if (isa<LoadInst>(I))
Philip Reamesf5b8e472015-09-03 21:34:30 +0000449 // The value loaded is an gc base itself
450 return BaseDefiningValueResult(I, true);
451
Philip Reamesd16a9b12015-02-20 01:06:44 +0000452
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000453 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
454 // The base of this GEP is the base
455 return findBaseDefiningValue(GEP->getPointerOperand());
Philip Reamesd16a9b12015-02-20 01:06:44 +0000456
457 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
458 switch (II->getIntrinsicID()) {
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000459 case Intrinsic::experimental_gc_result_ptr:
Philip Reamesd16a9b12015-02-20 01:06:44 +0000460 default:
461 // fall through to general call handling
462 break;
463 case Intrinsic::experimental_gc_statepoint:
464 case Intrinsic::experimental_gc_result_float:
465 case Intrinsic::experimental_gc_result_int:
466 llvm_unreachable("these don't produce pointers");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000467 case Intrinsic::experimental_gc_relocate: {
468 // Rerunning safepoint insertion after safepoints are already
469 // inserted is not supported. It could probably be made to work,
470 // but why are you doing this? There's no good reason.
471 llvm_unreachable("repeat safepoint insertion is not supported");
472 }
473 case Intrinsic::gcroot:
474 // Currently, this mechanism hasn't been extended to work with gcroot.
475 // There's no reason it couldn't be, but I haven't thought about the
476 // implications much.
477 llvm_unreachable(
478 "interaction with the gcroot mechanism is not supported");
479 }
480 }
481 // We assume that functions in the source language only return base
482 // pointers. This should probably be generalized via attributes to support
483 // both source language and internal functions.
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000484 if (isa<CallInst>(I) || isa<InvokeInst>(I))
Philip Reamesf5b8e472015-09-03 21:34:30 +0000485 return BaseDefiningValueResult(I, true);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000486
487 // I have absolutely no idea how to implement this part yet. It's not
Benjamin Kramerdf005cb2015-08-08 18:27:36 +0000488 // necessarily hard, I just haven't really looked at it yet.
Philip Reamesd16a9b12015-02-20 01:06:44 +0000489 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
490
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000491 if (isa<AtomicCmpXchgInst>(I))
Philip Reamesd16a9b12015-02-20 01:06:44 +0000492 // A CAS is effectively a atomic store and load combined under a
493 // predicate. From the perspective of base pointers, we just treat it
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000494 // like a load.
Philip Reamesf5b8e472015-09-03 21:34:30 +0000495 return BaseDefiningValueResult(I, true);
Philip Reames704e78b2015-04-10 22:34:56 +0000496
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000497 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
Philip Reames704e78b2015-04-10 22:34:56 +0000498 "binary ops which don't apply to pointers");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000499
500 // The aggregate ops. Aggregates can either be in the heap or on the
501 // stack, but in either case, this is simply a field load. As a result,
502 // this is a defining definition of the base just like a load is.
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000503 if (isa<ExtractValueInst>(I))
Philip Reamesf5b8e472015-09-03 21:34:30 +0000504 return BaseDefiningValueResult(I, true);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000505
506 // We should never see an insert vector since that would require we be
507 // tracing back a struct value not a pointer value.
508 assert(!isa<InsertValueInst>(I) &&
509 "Base pointer for a struct is meaningless");
510
Philip Reames9ac4e382015-08-12 21:00:20 +0000511 // An extractelement produces a base result exactly when it's input does.
512 // We may need to insert a parallel instruction to extract the appropriate
513 // element out of the base vector corresponding to the input. Given this,
514 // it's analogous to the phi and select case even though it's not a merge.
Philip Reames66287132015-09-09 23:40:12 +0000515 if (isa<ExtractElementInst>(I))
516 // Note: There a lot of obvious peephole cases here. This are deliberately
517 // handled after the main base pointer inference algorithm to make writing
518 // test cases to exercise that code easier.
519 return BaseDefiningValueResult(I, false);
Philip Reames9ac4e382015-08-12 21:00:20 +0000520
Philip Reamesd16a9b12015-02-20 01:06:44 +0000521 // The last two cases here don't return a base pointer. Instead, they
Benjamin Kramerdf005cb2015-08-08 18:27:36 +0000522 // return a value which dynamically selects from among several base
Philip Reamesd16a9b12015-02-20 01:06:44 +0000523 // derived pointers (each with it's own base potentially). It's the job of
524 // the caller to resolve these.
Philip Reames704e78b2015-04-10 22:34:56 +0000525 assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
Philip Reamesaa66dfa2015-03-27 05:34:44 +0000526 "missing instruction case in findBaseDefiningValing");
Philip Reamesf5b8e472015-09-03 21:34:30 +0000527 return BaseDefiningValueResult(I, false);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000528}
529
530/// Returns the base defining value for this value.
Philip Reames18d0feb2015-03-27 05:39:32 +0000531static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
532 Value *&Cached = Cache[I];
Benjamin Kramer6f665452015-02-20 14:00:58 +0000533 if (!Cached) {
Philip Reamesf5b8e472015-09-03 21:34:30 +0000534 Cached = findBaseDefiningValue(I).BDV;
Philip Reames2a892a62015-07-23 22:25:26 +0000535 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
536 << Cached->getName() << "\n");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000537 }
Philip Reames18d0feb2015-03-27 05:39:32 +0000538 assert(Cache[I] != nullptr);
Benjamin Kramer6f665452015-02-20 14:00:58 +0000539 return Cached;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000540}
541
542/// Return a base pointer for this value if known. Otherwise, return it's
543/// base defining value.
Philip Reames18d0feb2015-03-27 05:39:32 +0000544static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
545 Value *Def = findBaseDefiningValueCached(I, Cache);
546 auto Found = Cache.find(Def);
547 if (Found != Cache.end()) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000548 // Either a base-of relation, or a self reference. Caller must check.
Benjamin Kramer6f665452015-02-20 14:00:58 +0000549 return Found->second;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000550 }
551 // Only a BDV available
Philip Reames18d0feb2015-03-27 05:39:32 +0000552 return Def;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000553}
554
555/// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
556/// is it known to be a base pointer? Or do we need to continue searching.
Philip Reames18d0feb2015-03-27 05:39:32 +0000557static bool isKnownBaseResult(Value *V) {
Philip Reames66287132015-09-09 23:40:12 +0000558 if (!isa<PHINode>(V) && !isa<SelectInst>(V) &&
559 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
560 !isa<ShuffleVectorInst>(V)) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000561 // no recursion possible
562 return true;
563 }
Philip Reames18d0feb2015-03-27 05:39:32 +0000564 if (isa<Instruction>(V) &&
565 cast<Instruction>(V)->getMetadata("is_base_value")) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000566 // This is a previously inserted base phi or select. We know
567 // that this is a base value.
568 return true;
569 }
570
571 // We need to keep searching
572 return false;
573}
574
Philip Reamesd16a9b12015-02-20 01:06:44 +0000575namespace {
Philip Reames9b141ed2015-07-23 22:49:14 +0000576/// Models the state of a single base defining value in the findBasePointer
577/// algorithm for determining where a new instruction is needed to propagate
578/// the base of this BDV.
579class BDVState {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000580public:
581 enum Status { Unknown, Base, Conflict };
582
Philip Reames9b141ed2015-07-23 22:49:14 +0000583 BDVState(Status s, Value *b = nullptr) : status(s), base(b) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000584 assert(status != Base || b);
585 }
Philip Reames9b141ed2015-07-23 22:49:14 +0000586 explicit BDVState(Value *b) : status(Base), base(b) {}
587 BDVState() : status(Unknown), base(nullptr) {}
Philip Reamesd16a9b12015-02-20 01:06:44 +0000588
589 Status getStatus() const { return status; }
590 Value *getBase() const { return base; }
591
592 bool isBase() const { return getStatus() == Base; }
593 bool isUnknown() const { return getStatus() == Unknown; }
594 bool isConflict() const { return getStatus() == Conflict; }
595
Philip Reames9b141ed2015-07-23 22:49:14 +0000596 bool operator==(const BDVState &other) const {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000597 return base == other.base && status == other.status;
598 }
599
Philip Reames9b141ed2015-07-23 22:49:14 +0000600 bool operator!=(const BDVState &other) const { return !(*this == other); }
Philip Reamesd16a9b12015-02-20 01:06:44 +0000601
Philip Reames2a892a62015-07-23 22:25:26 +0000602 LLVM_DUMP_METHOD
603 void dump() const { print(dbgs()); dbgs() << '\n'; }
604
605 void print(raw_ostream &OS) const {
Philip Reamesdab35f32015-09-02 21:11:44 +0000606 switch (status) {
607 case Unknown:
608 OS << "U";
609 break;
610 case Base:
611 OS << "B";
612 break;
613 case Conflict:
614 OS << "C";
615 break;
616 };
617 OS << " (" << base << " - "
Philip Reames2a892a62015-07-23 22:25:26 +0000618 << (base ? base->getName() : "nullptr") << "): ";
Philip Reamesd16a9b12015-02-20 01:06:44 +0000619 }
620
621private:
622 Status status;
623 Value *base; // non null only if status == base
624};
Philip Reamesb3967cd2015-09-02 22:30:53 +0000625}
Philip Reamesd16a9b12015-02-20 01:06:44 +0000626
Philip Reames6906e922015-09-02 21:57:17 +0000627#ifndef NDEBUG
Philip Reamesb3967cd2015-09-02 22:30:53 +0000628static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
Philip Reames2a892a62015-07-23 22:25:26 +0000629 State.print(OS);
630 return OS;
631}
Philip Reames6906e922015-09-02 21:57:17 +0000632#endif
Philip Reames2a892a62015-07-23 22:25:26 +0000633
Philip Reamesb3967cd2015-09-02 22:30:53 +0000634namespace {
Philip Reames9b141ed2015-07-23 22:49:14 +0000635// Values of type BDVState form a lattice, and this is a helper
Philip Reamesd16a9b12015-02-20 01:06:44 +0000636// class that implementes the meet operation. The meat of the meet
Philip Reames9b141ed2015-07-23 22:49:14 +0000637// operation is implemented in MeetBDVStates::pureMeet
638class MeetBDVStates {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000639public:
Philip Reames273e6bb2015-07-23 21:41:27 +0000640 /// Initializes the currentResult to the TOP state so that if can be met with
641 /// any other state to produce that state.
Philip Reames9b141ed2015-07-23 22:49:14 +0000642 MeetBDVStates() {}
Philip Reamesd16a9b12015-02-20 01:06:44 +0000643
Philip Reames9b141ed2015-07-23 22:49:14 +0000644 // Destructively meet the current result with the given BDVState
645 void meetWith(BDVState otherState) {
Philip Reames273e6bb2015-07-23 21:41:27 +0000646 currentResult = meet(otherState, currentResult);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000647 }
648
Philip Reames9b141ed2015-07-23 22:49:14 +0000649 BDVState getResult() const { return currentResult; }
Philip Reamesd16a9b12015-02-20 01:06:44 +0000650
651private:
Philip Reames9b141ed2015-07-23 22:49:14 +0000652 BDVState currentResult;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000653
Philip Reames9b141ed2015-07-23 22:49:14 +0000654 /// Perform a meet operation on two elements of the BDVState lattice.
655 static BDVState meet(BDVState LHS, BDVState RHS) {
Philip Reames273e6bb2015-07-23 21:41:27 +0000656 assert((pureMeet(LHS, RHS) == pureMeet(RHS, LHS)) &&
657 "math is wrong: meet does not commute!");
Philip Reames9b141ed2015-07-23 22:49:14 +0000658 BDVState Result = pureMeet(LHS, RHS);
Philip Reames2a892a62015-07-23 22:25:26 +0000659 DEBUG(dbgs() << "meet of " << LHS << " with " << RHS
660 << " produced " << Result << "\n");
661 return Result;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000662 }
663
Philip Reames9b141ed2015-07-23 22:49:14 +0000664 static BDVState pureMeet(const BDVState &stateA, const BDVState &stateB) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000665 switch (stateA.getStatus()) {
Philip Reames9b141ed2015-07-23 22:49:14 +0000666 case BDVState::Unknown:
Philip Reamesd16a9b12015-02-20 01:06:44 +0000667 return stateB;
668
Philip Reames9b141ed2015-07-23 22:49:14 +0000669 case BDVState::Base:
Philip Reamesd16a9b12015-02-20 01:06:44 +0000670 assert(stateA.getBase() && "can't be null");
David Blaikie82ad7872015-02-20 23:44:24 +0000671 if (stateB.isUnknown())
Philip Reamesd16a9b12015-02-20 01:06:44 +0000672 return stateA;
David Blaikie82ad7872015-02-20 23:44:24 +0000673
674 if (stateB.isBase()) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000675 if (stateA.getBase() == stateB.getBase()) {
676 assert(stateA == stateB && "equality broken!");
677 return stateA;
678 }
Philip Reames9b141ed2015-07-23 22:49:14 +0000679 return BDVState(BDVState::Conflict);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000680 }
David Blaikie82ad7872015-02-20 23:44:24 +0000681 assert(stateB.isConflict() && "only three states!");
Philip Reames9b141ed2015-07-23 22:49:14 +0000682 return BDVState(BDVState::Conflict);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000683
Philip Reames9b141ed2015-07-23 22:49:14 +0000684 case BDVState::Conflict:
Philip Reamesd16a9b12015-02-20 01:06:44 +0000685 return stateA;
686 }
Reid Klecknera070ee52015-02-20 19:46:02 +0000687 llvm_unreachable("only three states!");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000688 }
689};
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000690}
Philip Reamesb3967cd2015-09-02 22:30:53 +0000691
692
Philip Reamesd16a9b12015-02-20 01:06:44 +0000693/// For a given value or instruction, figure out what base ptr it's derived
694/// from. For gc objects, this is simply itself. On success, returns a value
695/// which is the base pointer. (This is reliable and can be used for
696/// relocation.) On failure, returns nullptr.
Philip Reamesba198492015-04-14 00:41:34 +0000697static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000698 Value *def = findBaseOrBDV(I, cache);
699
700 if (isKnownBaseResult(def)) {
701 return def;
702 }
703
704 // Here's the rough algorithm:
705 // - For every SSA value, construct a mapping to either an actual base
706 // pointer or a PHI which obscures the base pointer.
707 // - Construct a mapping from PHI to unknown TOP state. Use an
708 // optimistic algorithm to propagate base pointer information. Lattice
709 // looks like:
710 // UNKNOWN
711 // b1 b2 b3 b4
712 // CONFLICT
713 // When algorithm terminates, all PHIs will either have a single concrete
714 // base or be in a conflict state.
715 // - For every conflict, insert a dummy PHI node without arguments. Add
716 // these to the base[Instruction] = BasePtr mapping. For every
717 // non-conflict, add the actual base.
718 // - For every conflict, add arguments for the base[a] of each input
719 // arguments.
720 //
721 // Note: A simpler form of this would be to add the conflict form of all
722 // PHIs without running the optimistic algorithm. This would be
Benjamin Kramerdf005cb2015-08-08 18:27:36 +0000723 // analogous to pessimistic data flow and would likely lead to an
Philip Reamesd16a9b12015-02-20 01:06:44 +0000724 // overall worse solution.
725
Philip Reames29e9ae72015-07-24 00:42:55 +0000726#ifndef NDEBUG
Philip Reames88958b22015-07-24 00:02:11 +0000727 auto isExpectedBDVType = [](Value *BDV) {
Philip Reames66287132015-09-09 23:40:12 +0000728 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
729 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV);
Philip Reames88958b22015-07-24 00:02:11 +0000730 };
Philip Reames29e9ae72015-07-24 00:42:55 +0000731#endif
Philip Reames88958b22015-07-24 00:02:11 +0000732
733 // Once populated, will contain a mapping from each potentially non-base BDV
734 // to a lattice value (described above) which corresponds to that BDV.
Philip Reames15d55632015-09-09 23:26:08 +0000735 // We use the order of insertion (DFS over the def/use graph) to provide a
736 // stable deterministic ordering for visiting DenseMaps (which are unordered)
737 // below. This is important for deterministic compilation.
Philip Reames34d7a742015-09-10 00:22:49 +0000738 MapVector<Value *, BDVState> States;
Philip Reames15d55632015-09-09 23:26:08 +0000739
740 // Recursively fill in all base defining values reachable from the initial
741 // one for which we don't already know a definite base value for
Philip Reames88958b22015-07-24 00:02:11 +0000742 /* scope */ {
Philip Reames88958b22015-07-24 00:02:11 +0000743 SmallVector<Value*, 16> Worklist;
744 Worklist.push_back(def);
Philip Reames34d7a742015-09-10 00:22:49 +0000745 States.insert(std::make_pair(def, BDVState()));
Philip Reames88958b22015-07-24 00:02:11 +0000746 while (!Worklist.empty()) {
747 Value *Current = Worklist.pop_back_val();
748 assert(!isKnownBaseResult(Current) && "why did it get added?");
749
750 auto visitIncomingValue = [&](Value *InVal) {
751 Value *Base = findBaseOrBDV(InVal, cache);
752 if (isKnownBaseResult(Base))
753 // Known bases won't need new instructions introduced and can be
754 // ignored safely
755 return;
756 assert(isExpectedBDVType(Base) && "the only non-base values "
757 "we see should be base defining values");
Philip Reames34d7a742015-09-10 00:22:49 +0000758 if (States.insert(std::make_pair(Base, BDVState())).second)
Philip Reames88958b22015-07-24 00:02:11 +0000759 Worklist.push_back(Base);
760 };
761 if (PHINode *Phi = dyn_cast<PHINode>(Current)) {
762 for (Value *InVal : Phi->incoming_values())
763 visitIncomingValue(InVal);
Philip Reames9ac4e382015-08-12 21:00:20 +0000764 } else if (SelectInst *Sel = dyn_cast<SelectInst>(Current)) {
Philip Reames88958b22015-07-24 00:02:11 +0000765 visitIncomingValue(Sel->getTrueValue());
766 visitIncomingValue(Sel->getFalseValue());
Philip Reames9ac4e382015-08-12 21:00:20 +0000767 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
768 visitIncomingValue(EE->getVectorOperand());
Philip Reames66287132015-09-09 23:40:12 +0000769 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
770 visitIncomingValue(IE->getOperand(0)); // vector operand
771 visitIncomingValue(IE->getOperand(1)); // scalar operand
Philip Reames9ac4e382015-08-12 21:00:20 +0000772 } else {
Philip Reames66287132015-09-09 23:40:12 +0000773 // There is one known class of instructions we know we don't handle.
774 assert(isa<ShuffleVectorInst>(Current));
Philip Reames9ac4e382015-08-12 21:00:20 +0000775 llvm_unreachable("unimplemented instruction case");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000776 }
777 }
778 }
779
Philip Reamesdab35f32015-09-02 21:11:44 +0000780#ifndef NDEBUG
781 DEBUG(dbgs() << "States after initialization:\n");
Philip Reames34d7a742015-09-10 00:22:49 +0000782 for (auto Pair : States) {
Philip Reamesdab35f32015-09-02 21:11:44 +0000783 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000784 }
Philip Reamesdab35f32015-09-02 21:11:44 +0000785#endif
Philip Reamesd16a9b12015-02-20 01:06:44 +0000786
Philip Reames273e6bb2015-07-23 21:41:27 +0000787 // Return a phi state for a base defining value. We'll generate a new
788 // base state for known bases and expect to find a cached state otherwise.
789 auto getStateForBDV = [&](Value *baseValue) {
790 if (isKnownBaseResult(baseValue))
Philip Reames9b141ed2015-07-23 22:49:14 +0000791 return BDVState(baseValue);
Philip Reames34d7a742015-09-10 00:22:49 +0000792 auto I = States.find(baseValue);
793 assert(I != States.end() && "lookup failed!");
Philip Reames273e6bb2015-07-23 21:41:27 +0000794 return I->second;
795 };
796
Philip Reamesd16a9b12015-02-20 01:06:44 +0000797 bool progress = true;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000798 while (progress) {
Yaron Keren42a7adf2015-02-28 13:11:24 +0000799#ifndef NDEBUG
Philip Reamesb4e55f32015-09-10 00:32:56 +0000800 const size_t oldSize = States.size();
Yaron Keren42a7adf2015-02-28 13:11:24 +0000801#endif
Philip Reamesd16a9b12015-02-20 01:06:44 +0000802 progress = false;
Philip Reames15d55632015-09-09 23:26:08 +0000803 // We're only changing values in this loop, thus safe to keep iterators.
804 // Since this is computing a fixed point, the order of visit does not
805 // effect the result. TODO: We could use a worklist here and make this run
806 // much faster.
Philip Reames34d7a742015-09-10 00:22:49 +0000807 for (auto Pair : States) {
Philip Reamesece70b82015-09-09 23:57:18 +0000808 Value *BDV = Pair.first;
809 assert(!isKnownBaseResult(BDV) && "why did it get added?");
Philip Reames273e6bb2015-07-23 21:41:27 +0000810
Philip Reames9b141ed2015-07-23 22:49:14 +0000811 // Given an input value for the current instruction, return a BDVState
Philip Reames273e6bb2015-07-23 21:41:27 +0000812 // instance which represents the BDV of that value.
813 auto getStateForInput = [&](Value *V) mutable {
814 Value *BDV = findBaseOrBDV(V, cache);
815 return getStateForBDV(BDV);
816 };
817
Philip Reames9b141ed2015-07-23 22:49:14 +0000818 MeetBDVStates calculateMeet;
Philip Reamesece70b82015-09-09 23:57:18 +0000819 if (SelectInst *select = dyn_cast<SelectInst>(BDV)) {
Philip Reames273e6bb2015-07-23 21:41:27 +0000820 calculateMeet.meetWith(getStateForInput(select->getTrueValue()));
821 calculateMeet.meetWith(getStateForInput(select->getFalseValue()));
Philip Reamesece70b82015-09-09 23:57:18 +0000822 } else if (PHINode *Phi = dyn_cast<PHINode>(BDV)) {
Philip Reames9ac4e382015-08-12 21:00:20 +0000823 for (Value *Val : Phi->incoming_values())
Philip Reames273e6bb2015-07-23 21:41:27 +0000824 calculateMeet.meetWith(getStateForInput(Val));
Philip Reamesece70b82015-09-09 23:57:18 +0000825 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
Philip Reames9ac4e382015-08-12 21:00:20 +0000826 // The 'meet' for an extractelement is slightly trivial, but it's still
827 // useful in that it drives us to conflict if our input is.
Philip Reames9ac4e382015-08-12 21:00:20 +0000828 calculateMeet.meetWith(getStateForInput(EE->getVectorOperand()));
Philip Reames66287132015-09-09 23:40:12 +0000829 } else {
830 // Given there's a inherent type mismatch between the operands, will
831 // *always* produce Conflict.
Philip Reamesece70b82015-09-09 23:57:18 +0000832 auto *IE = cast<InsertElementInst>(BDV);
Philip Reames66287132015-09-09 23:40:12 +0000833 calculateMeet.meetWith(getStateForInput(IE->getOperand(0)));
834 calculateMeet.meetWith(getStateForInput(IE->getOperand(1)));
Philip Reames9ac4e382015-08-12 21:00:20 +0000835 }
836
Philip Reames34d7a742015-09-10 00:22:49 +0000837 BDVState oldState = States[BDV];
Philip Reames9b141ed2015-07-23 22:49:14 +0000838 BDVState newState = calculateMeet.getResult();
Philip Reamesd16a9b12015-02-20 01:06:44 +0000839 if (oldState != newState) {
840 progress = true;
Philip Reames34d7a742015-09-10 00:22:49 +0000841 States[BDV] = newState;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000842 }
843 }
844
Philip Reamesb4e55f32015-09-10 00:32:56 +0000845 assert(oldSize == States.size() &&
846 "fixed point shouldn't be adding any new nodes to state");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000847 }
848
Philip Reamesdab35f32015-09-02 21:11:44 +0000849#ifndef NDEBUG
850 DEBUG(dbgs() << "States after meet iteration:\n");
Philip Reames34d7a742015-09-10 00:22:49 +0000851 for (auto Pair : States) {
Philip Reamesdab35f32015-09-02 21:11:44 +0000852 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000853 }
Philip Reamesdab35f32015-09-02 21:11:44 +0000854#endif
855
Philip Reamesd16a9b12015-02-20 01:06:44 +0000856 // Insert Phis for all conflicts
Philip Reames2e5bcbe2015-02-28 01:52:09 +0000857 // TODO: adjust naming patterns to avoid this order of iteration dependency
Philip Reames34d7a742015-09-10 00:22:49 +0000858 for (auto Pair : States) {
Philip Reames15d55632015-09-09 23:26:08 +0000859 Instruction *I = cast<Instruction>(Pair.first);
860 BDVState State = Pair.second;
Philip Reames6ff1a1e32015-07-21 19:04:38 +0000861 assert(!isKnownBaseResult(I) && "why did it get added?");
862 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
Philip Reames9ac4e382015-08-12 21:00:20 +0000863
864 // extractelement instructions are a bit special in that we may need to
865 // insert an extract even when we know an exact base for the instruction.
866 // The problem is that we need to convert from a vector base to a scalar
867 // base for the particular indice we're interested in.
868 if (State.isBase() && isa<ExtractElementInst>(I) &&
869 isa<VectorType>(State.getBase()->getType())) {
870 auto *EE = cast<ExtractElementInst>(I);
871 // TODO: In many cases, the new instruction is just EE itself. We should
872 // exploit this, but can't do it here since it would break the invariant
873 // about the BDV not being known to be a base.
874 auto *BaseInst = ExtractElementInst::Create(State.getBase(),
875 EE->getIndexOperand(),
876 "base_ee", EE);
877 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
Philip Reames34d7a742015-09-10 00:22:49 +0000878 States[I] = BDVState(BDVState::Base, BaseInst);
Philip Reames9ac4e382015-08-12 21:00:20 +0000879 }
Philip Reames66287132015-09-09 23:40:12 +0000880
881 // Since we're joining a vector and scalar base, they can never be the
882 // same. As a result, we should always see insert element having reached
883 // the conflict state.
884 if (isa<InsertElementInst>(I)) {
885 assert(State.isConflict());
886 }
Philip Reames9ac4e382015-08-12 21:00:20 +0000887
Philip Reames6ff1a1e32015-07-21 19:04:38 +0000888 if (!State.isConflict())
Philip Reamesf986d682015-02-28 00:54:41 +0000889 continue;
Philip Reames704e78b2015-04-10 22:34:56 +0000890
Philip Reames6ff1a1e32015-07-21 19:04:38 +0000891 /// Create and insert a new instruction which will represent the base of
892 /// the given instruction 'I'.
893 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
894 if (isa<PHINode>(I)) {
895 BasicBlock *BB = I->getParent();
896 int NumPreds = std::distance(pred_begin(BB), pred_end(BB));
897 assert(NumPreds > 0 && "how did we reach here");
Philip Reamesece70b82015-09-09 23:57:18 +0000898 std::string Name = suffixed_name_or(I, ".base", "base_phi");
Philip Reamesfa2c6302015-07-24 19:01:39 +0000899 return PHINode::Create(I->getType(), NumPreds, Name, I);
Philip Reames9ac4e382015-08-12 21:00:20 +0000900 } else if (SelectInst *Sel = dyn_cast<SelectInst>(I)) {
901 // The undef will be replaced later
902 UndefValue *Undef = UndefValue::get(Sel->getType());
Philip Reamesece70b82015-09-09 23:57:18 +0000903 std::string Name = suffixed_name_or(I, ".base", "base_select");
Philip Reames9ac4e382015-08-12 21:00:20 +0000904 return SelectInst::Create(Sel->getCondition(), Undef,
905 Undef, Name, Sel);
Philip Reames66287132015-09-09 23:40:12 +0000906 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
Philip Reames9ac4e382015-08-12 21:00:20 +0000907 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
Philip Reamesece70b82015-09-09 23:57:18 +0000908 std::string Name = suffixed_name_or(I, ".base", "base_ee");
Philip Reames9ac4e382015-08-12 21:00:20 +0000909 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
910 EE);
Philip Reames66287132015-09-09 23:40:12 +0000911 } else {
912 auto *IE = cast<InsertElementInst>(I);
913 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
914 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
Philip Reamesece70b82015-09-09 23:57:18 +0000915 std::string Name = suffixed_name_or(I, ".base", "base_ie");
Philip Reames66287132015-09-09 23:40:12 +0000916 return InsertElementInst::Create(VecUndef, ScalarUndef,
917 IE->getOperand(2), Name, IE);
Philip Reames6ff1a1e32015-07-21 19:04:38 +0000918 }
Philip Reames66287132015-09-09 23:40:12 +0000919
Philip Reames6ff1a1e32015-07-21 19:04:38 +0000920 };
921 Instruction *BaseInst = MakeBaseInstPlaceholder(I);
922 // Add metadata marking this as a base value
923 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
Philip Reames34d7a742015-09-10 00:22:49 +0000924 States[I] = BDVState(BDVState::Conflict, BaseInst);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000925 }
926
Philip Reames3ea15892015-09-03 21:57:40 +0000927 // Returns a instruction which produces the base pointer for a given
928 // instruction. The instruction is assumed to be an input to one of the BDVs
929 // seen in the inference algorithm above. As such, we must either already
930 // know it's base defining value is a base, or have inserted a new
931 // instruction to propagate the base of it's BDV and have entered that newly
932 // introduced instruction into the state table. In either case, we are
933 // assured to be able to determine an instruction which produces it's base
934 // pointer.
935 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
936 Value *BDV = findBaseOrBDV(Input, cache);
937 Value *Base = nullptr;
938 if (isKnownBaseResult(BDV)) {
939 Base = BDV;
940 } else {
941 // Either conflict or base.
Philip Reames34d7a742015-09-10 00:22:49 +0000942 assert(States.count(BDV));
943 Base = States[BDV].getBase();
Philip Reames3ea15892015-09-03 21:57:40 +0000944 }
945 assert(Base && "can't be null");
946 // The cast is needed since base traversal may strip away bitcasts
947 if (Base->getType() != Input->getType() &&
948 InsertPt) {
949 Base = new BitCastInst(Base, Input->getType(), "cast",
950 InsertPt);
951 }
952 return Base;
953 };
954
Philip Reames15d55632015-09-09 23:26:08 +0000955 // Fixup all the inputs of the new PHIs. Visit order needs to be
956 // deterministic and predictable because we're naming newly created
957 // instructions.
Philip Reames34d7a742015-09-10 00:22:49 +0000958 for (auto Pair : States) {
Philip Reames7540e3a2015-09-10 00:01:53 +0000959 Instruction *BDV = cast<Instruction>(Pair.first);
Philip Reamesc8ded462015-09-10 00:27:50 +0000960 BDVState State = Pair.second;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000961
Philip Reames7540e3a2015-09-10 00:01:53 +0000962 assert(!isKnownBaseResult(BDV) && "why did it get added?");
Philip Reamesc8ded462015-09-10 00:27:50 +0000963 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
964 if (!State.isConflict())
Philip Reames28e61ce2015-02-28 01:57:44 +0000965 continue;
Philip Reames704e78b2015-04-10 22:34:56 +0000966
Philip Reamesc8ded462015-09-10 00:27:50 +0000967 if (PHINode *basephi = dyn_cast<PHINode>(State.getBase())) {
Philip Reames7540e3a2015-09-10 00:01:53 +0000968 PHINode *phi = cast<PHINode>(BDV);
Philip Reames28e61ce2015-02-28 01:57:44 +0000969 unsigned NumPHIValues = phi->getNumIncomingValues();
970 for (unsigned i = 0; i < NumPHIValues; i++) {
971 Value *InVal = phi->getIncomingValue(i);
972 BasicBlock *InBB = phi->getIncomingBlock(i);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000973
Philip Reames28e61ce2015-02-28 01:57:44 +0000974 // If we've already seen InBB, add the same incoming value
975 // we added for it earlier. The IR verifier requires phi
976 // nodes with multiple entries from the same basic block
977 // to have the same incoming value for each of those
978 // entries. If we don't do this check here and basephi
979 // has a different type than base, we'll end up adding two
980 // bitcasts (and hence two distinct values) as incoming
981 // values for the same basic block.
Philip Reamesd16a9b12015-02-20 01:06:44 +0000982
Philip Reames28e61ce2015-02-28 01:57:44 +0000983 int blockIndex = basephi->getBasicBlockIndex(InBB);
984 if (blockIndex != -1) {
985 Value *oldBase = basephi->getIncomingValue(blockIndex);
986 basephi->addIncoming(oldBase, InBB);
Philip Reames3ea15892015-09-03 21:57:40 +0000987
Philip Reamesd16a9b12015-02-20 01:06:44 +0000988#ifndef NDEBUG
Philip Reames3ea15892015-09-03 21:57:40 +0000989 Value *Base = getBaseForInput(InVal, nullptr);
Benjamin Kramerdf005cb2015-08-08 18:27:36 +0000990 // In essence this assert states: the only way two
Philip Reames28e61ce2015-02-28 01:57:44 +0000991 // values incoming from the same basic block may be
992 // different is by being different bitcasts of the same
993 // value. A cleanup that remains TODO is changing
994 // findBaseOrBDV to return an llvm::Value of the correct
995 // type (and still remain pure). This will remove the
996 // need to add bitcasts.
Philip Reames3ea15892015-09-03 21:57:40 +0000997 assert(Base->stripPointerCasts() == oldBase->stripPointerCasts() &&
Philip Reames28e61ce2015-02-28 01:57:44 +0000998 "sanity -- findBaseOrBDV should be pure!");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000999#endif
Philip Reames28e61ce2015-02-28 01:57:44 +00001000 continue;
1001 }
Philip Reamesd16a9b12015-02-20 01:06:44 +00001002
Philip Reames3ea15892015-09-03 21:57:40 +00001003 // Find the instruction which produces the base for each input. We may
1004 // need to insert a bitcast in the incoming block.
1005 // TODO: Need to split critical edges if insertion is needed
1006 Value *Base = getBaseForInput(InVal, InBB->getTerminator());
1007 basephi->addIncoming(Base, InBB);
Philip Reames28e61ce2015-02-28 01:57:44 +00001008 }
1009 assert(basephi->getNumIncomingValues() == NumPHIValues);
Philip Reamesc8ded462015-09-10 00:27:50 +00001010 } else if (SelectInst *BaseSel = dyn_cast<SelectInst>(State.getBase())) {
Philip Reames7540e3a2015-09-10 00:01:53 +00001011 SelectInst *Sel = cast<SelectInst>(BDV);
Philip Reames28e61ce2015-02-28 01:57:44 +00001012 // Operand 1 & 2 are true, false path respectively. TODO: refactor to
1013 // something more safe and less hacky.
1014 for (int i = 1; i <= 2; i++) {
Philip Reames3ea15892015-09-03 21:57:40 +00001015 Value *InVal = Sel->getOperand(i);
1016 // Find the instruction which produces the base for each input. We may
1017 // need to insert a bitcast.
1018 Value *Base = getBaseForInput(InVal, BaseSel);
1019 BaseSel->setOperand(i, Base);
Philip Reames28e61ce2015-02-28 01:57:44 +00001020 }
Philip Reamesc8ded462015-09-10 00:27:50 +00001021 } else if (auto *BaseEE = dyn_cast<ExtractElementInst>(State.getBase())) {
Philip Reames7540e3a2015-09-10 00:01:53 +00001022 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
Philip Reames3ea15892015-09-03 21:57:40 +00001023 // Find the instruction which produces the base for each input. We may
1024 // need to insert a bitcast.
1025 Value *Base = getBaseForInput(InVal, BaseEE);
Philip Reames9ac4e382015-08-12 21:00:20 +00001026 BaseEE->setOperand(0, Base);
Philip Reames66287132015-09-09 23:40:12 +00001027 } else {
Philip Reamesc8ded462015-09-10 00:27:50 +00001028 auto *BaseIE = cast<InsertElementInst>(State.getBase());
Philip Reames7540e3a2015-09-10 00:01:53 +00001029 auto *BdvIE = cast<InsertElementInst>(BDV);
Philip Reames66287132015-09-09 23:40:12 +00001030 auto UpdateOperand = [&](int OperandIdx) {
1031 Value *InVal = BdvIE->getOperand(OperandIdx);
1032 Value *Base = findBaseOrBDV(InVal, cache);
1033 if (!isKnownBaseResult(Base)) {
1034 // Either conflict or base.
Philip Reames34d7a742015-09-10 00:22:49 +00001035 assert(States.count(Base));
1036 Base = States[Base].getBase();
Philip Reames66287132015-09-09 23:40:12 +00001037 assert(Base != nullptr && "unknown BDVState!");
1038 }
1039 assert(Base && "can't be null");
1040 BaseIE->setOperand(OperandIdx, Base);
1041 };
1042 UpdateOperand(0); // vector operand
1043 UpdateOperand(1); // scalar operand
Philip Reamesd16a9b12015-02-20 01:06:44 +00001044 }
Philip Reames66287132015-09-09 23:40:12 +00001045
Philip Reamesd16a9b12015-02-20 01:06:44 +00001046 }
1047
Philip Reamesabcdc5e2015-08-27 01:02:28 +00001048 // Now that we're done with the algorithm, see if we can optimize the
1049 // results slightly by reducing the number of new instructions needed.
1050 // Arguably, this should be integrated into the algorithm above, but
1051 // doing as a post process step is easier to reason about for the moment.
1052 DenseMap<Value *, Value *> ReverseMap;
1053 SmallPtrSet<Instruction *, 16> NewInsts;
Philip Reames9546f362015-09-02 22:25:07 +00001054 SmallSetVector<AssertingVH<Instruction>, 16> Worklist;
Philip Reames246e6182015-09-03 20:24:29 +00001055 // Note: We need to visit the states in a deterministic order. We uses the
1056 // Keys we sorted above for this purpose. Note that we are papering over a
1057 // bigger problem with the algorithm above - it's visit order is not
1058 // deterministic. A larger change is needed to fix this.
Philip Reames34d7a742015-09-10 00:22:49 +00001059 for (auto Pair : States) {
Philip Reames15d55632015-09-09 23:26:08 +00001060 auto *BDV = Pair.first;
1061 auto State = Pair.second;
Philip Reames246e6182015-09-03 20:24:29 +00001062 Value *Base = State.getBase();
Philip Reames15d55632015-09-09 23:26:08 +00001063 assert(BDV && Base);
1064 assert(!isKnownBaseResult(BDV) && "why did it get added?");
Philip Reamesabcdc5e2015-08-27 01:02:28 +00001065 assert(isKnownBaseResult(Base) &&
1066 "must be something we 'know' is a base pointer");
Philip Reames246e6182015-09-03 20:24:29 +00001067 if (!State.isConflict())
Philip Reamesabcdc5e2015-08-27 01:02:28 +00001068 continue;
1069
Philip Reames15d55632015-09-09 23:26:08 +00001070 ReverseMap[Base] = BDV;
Philip Reamesabcdc5e2015-08-27 01:02:28 +00001071 if (auto *BaseI = dyn_cast<Instruction>(Base)) {
1072 NewInsts.insert(BaseI);
1073 Worklist.insert(BaseI);
1074 }
1075 }
Philip Reames9546f362015-09-02 22:25:07 +00001076 auto ReplaceBaseInstWith = [&](Value *BDV, Instruction *BaseI,
1077 Value *Replacement) {
1078 // Add users which are new instructions (excluding self references)
1079 for (User *U : BaseI->users())
Philip Reamesabcdc5e2015-08-27 01:02:28 +00001080 if (auto *UI = dyn_cast<Instruction>(U))
Philip Reames9546f362015-09-02 22:25:07 +00001081 if (NewInsts.count(UI) && UI != BaseI)
Philip Reamesabcdc5e2015-08-27 01:02:28 +00001082 Worklist.insert(UI);
Philip Reames9546f362015-09-02 22:25:07 +00001083 // Then do the actual replacement
1084 NewInsts.erase(BaseI);
1085 ReverseMap.erase(BaseI);
1086 BaseI->replaceAllUsesWith(Replacement);
1087 BaseI->eraseFromParent();
Philip Reames34d7a742015-09-10 00:22:49 +00001088 assert(States.count(BDV));
1089 assert(States[BDV].isConflict() && States[BDV].getBase() == BaseI);
1090 States[BDV] = BDVState(BDVState::Conflict, Replacement);
Philip Reamesabcdc5e2015-08-27 01:02:28 +00001091 };
1092 const DataLayout &DL = cast<Instruction>(def)->getModule()->getDataLayout();
1093 while (!Worklist.empty()) {
1094 Instruction *BaseI = Worklist.pop_back_val();
Philip Reamesdab35f32015-09-02 21:11:44 +00001095 assert(NewInsts.count(BaseI));
Philip Reamesabcdc5e2015-08-27 01:02:28 +00001096 Value *Bdv = ReverseMap[BaseI];
1097 if (auto *BdvI = dyn_cast<Instruction>(Bdv))
1098 if (BaseI->isIdenticalTo(BdvI)) {
1099 DEBUG(dbgs() << "Identical Base: " << *BaseI << "\n");
Philip Reames9546f362015-09-02 22:25:07 +00001100 ReplaceBaseInstWith(Bdv, BaseI, Bdv);
Philip Reamesabcdc5e2015-08-27 01:02:28 +00001101 continue;
1102 }
1103 if (Value *V = SimplifyInstruction(BaseI, DL)) {
1104 DEBUG(dbgs() << "Base " << *BaseI << " simplified to " << *V << "\n");
Philip Reames9546f362015-09-02 22:25:07 +00001105 ReplaceBaseInstWith(Bdv, BaseI, V);
Philip Reamesabcdc5e2015-08-27 01:02:28 +00001106 continue;
1107 }
1108 }
1109
Philip Reamesd16a9b12015-02-20 01:06:44 +00001110 // Cache all of our results so we can cheaply reuse them
1111 // NOTE: This is actually two caches: one of the base defining value
1112 // relation and one of the base pointer relation! FIXME
Philip Reames34d7a742015-09-10 00:22:49 +00001113 for (auto Pair : States) {
Philip Reames15d55632015-09-09 23:26:08 +00001114 auto *BDV = Pair.first;
1115 Value *base = Pair.second.getBase();
1116 assert(BDV && base);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001117
Philip Reamesece70b82015-09-09 23:57:18 +00001118 std::string fromstr = cache.count(BDV) ? cache[BDV]->getName() : "none";
Philip Reamesdab35f32015-09-02 21:11:44 +00001119 DEBUG(dbgs() << "Updating base value cache"
Philip Reamesece70b82015-09-09 23:57:18 +00001120 << " for: " << BDV->getName()
Philip Reamesdab35f32015-09-02 21:11:44 +00001121 << " from: " << fromstr
Philip Reamesece70b82015-09-09 23:57:18 +00001122 << " to: " << base->getName() << "\n");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001123
Philip Reames15d55632015-09-09 23:26:08 +00001124 if (cache.count(BDV)) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001125 // Once we transition from the BDV relation being store in the cache to
1126 // the base relation being stored, it must be stable
Philip Reames15d55632015-09-09 23:26:08 +00001127 assert((!isKnownBaseResult(cache[BDV]) || cache[BDV] == base) &&
Philip Reamesd16a9b12015-02-20 01:06:44 +00001128 "base relation should be stable");
1129 }
Philip Reames15d55632015-09-09 23:26:08 +00001130 cache[BDV] = base;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001131 }
1132 assert(cache.find(def) != cache.end());
1133 return cache[def];
1134}
1135
1136// For a set of live pointers (base and/or derived), identify the base
1137// pointer of the object which they are derived from. This routine will
1138// mutate the IR graph as needed to make the 'base' pointer live at the
1139// definition site of 'derived'. This ensures that any use of 'derived' can
1140// also use 'base'. This may involve the insertion of a number of
1141// additional PHI nodes.
1142//
1143// preconditions: live is a set of pointer type Values
1144//
1145// side effects: may insert PHI nodes into the existing CFG, will preserve
1146// CFG, will not remove or mutate any existing nodes
1147//
Philip Reamesf2041322015-02-20 19:26:04 +00001148// post condition: PointerToBase contains one (derived, base) pair for every
Philip Reamesd16a9b12015-02-20 01:06:44 +00001149// pointer in live. Note that derived can be equal to base if the original
1150// pointer was a base pointer.
Philip Reames704e78b2015-04-10 22:34:56 +00001151static void
1152findBasePointers(const StatepointLiveSetTy &live,
1153 DenseMap<llvm::Value *, llvm::Value *> &PointerToBase,
Philip Reamesba198492015-04-14 00:41:34 +00001154 DominatorTree *DT, DefiningValueMapTy &DVCache) {
Philip Reames2e5bcbe2015-02-28 01:52:09 +00001155 // For the naming of values inserted to be deterministic - which makes for
1156 // much cleaner and more stable tests - we need to assign an order to the
1157 // live values. DenseSets do not provide a deterministic order across runs.
Philip Reames704e78b2015-04-10 22:34:56 +00001158 SmallVector<Value *, 64> Temp;
Philip Reames2e5bcbe2015-02-28 01:52:09 +00001159 Temp.insert(Temp.end(), live.begin(), live.end());
1160 std::sort(Temp.begin(), Temp.end(), order_by_name);
1161 for (Value *ptr : Temp) {
Philip Reamesba198492015-04-14 00:41:34 +00001162 Value *base = findBasePointer(ptr, DVCache);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001163 assert(base && "failed to find base pointer");
Philip Reamesf2041322015-02-20 19:26:04 +00001164 PointerToBase[ptr] = base;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001165 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1166 DT->dominates(cast<Instruction>(base)->getParent(),
1167 cast<Instruction>(ptr)->getParent())) &&
1168 "The base we found better dominate the derived pointer");
1169
David Blaikie82ad7872015-02-20 23:44:24 +00001170 // If you see this trip and like to live really dangerously, the code should
1171 // be correct, just with idioms the verifier can't handle. You can try
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00001172 // disabling the verifier at your own substantial risk.
Philip Reames704e78b2015-04-10 22:34:56 +00001173 assert(!isa<ConstantPointerNull>(base) &&
Philip Reames24c6cd52015-03-27 05:47:00 +00001174 "the relocation code needs adjustment to handle the relocation of "
1175 "a null pointer constant without causing false positives in the "
1176 "safepoint ir verifier.");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001177 }
1178}
1179
1180/// Find the required based pointers (and adjust the live set) for the given
1181/// parse point.
1182static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1183 const CallSite &CS,
1184 PartiallyConstructedSafepointRecord &result) {
Philip Reamesf2041322015-02-20 19:26:04 +00001185 DenseMap<llvm::Value *, llvm::Value *> PointerToBase;
Philip Reamesba198492015-04-14 00:41:34 +00001186 findBasePointers(result.liveset, PointerToBase, &DT, DVCache);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001187
1188 if (PrintBasePointers) {
Philip Reamesa5aeaf42015-02-28 00:20:48 +00001189 // Note: Need to print these in a stable order since this is checked in
1190 // some tests.
Philip Reamesd16a9b12015-02-20 01:06:44 +00001191 errs() << "Base Pairs (w/o Relocation):\n";
Philip Reames704e78b2015-04-10 22:34:56 +00001192 SmallVector<Value *, 64> Temp;
Philip Reamesa5aeaf42015-02-28 00:20:48 +00001193 Temp.reserve(PointerToBase.size());
Philip Reamesf2041322015-02-20 19:26:04 +00001194 for (auto Pair : PointerToBase) {
Philip Reamesa5aeaf42015-02-28 00:20:48 +00001195 Temp.push_back(Pair.first);
1196 }
1197 std::sort(Temp.begin(), Temp.end(), order_by_name);
1198 for (Value *Ptr : Temp) {
1199 Value *Base = PointerToBase[Ptr];
Philip Reames704e78b2015-04-10 22:34:56 +00001200 errs() << " derived %" << Ptr->getName() << " base %" << Base->getName()
1201 << "\n";
Philip Reamesd16a9b12015-02-20 01:06:44 +00001202 }
1203 }
1204
Philip Reamesf2041322015-02-20 19:26:04 +00001205 result.PointerToBase = PointerToBase;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001206}
1207
Philip Reamesdf1ef082015-04-10 22:53:14 +00001208/// Given an updated version of the dataflow liveness results, update the
1209/// liveset and base pointer maps for the call site CS.
1210static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1211 const CallSite &CS,
1212 PartiallyConstructedSafepointRecord &result);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001213
Philip Reamesdf1ef082015-04-10 22:53:14 +00001214static void recomputeLiveInValues(
1215 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate,
Philip Reamesd2b66462015-02-20 22:39:41 +00001216 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
Philip Reamesdf1ef082015-04-10 22:53:14 +00001217 // TODO-PERF: reuse the original liveness, then simply run the dataflow
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00001218 // again. The old values are still live and will help it stabilize quickly.
Philip Reamesdf1ef082015-04-10 22:53:14 +00001219 GCPtrLivenessData RevisedLivenessData;
1220 computeLiveInValues(DT, F, RevisedLivenessData);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001221 for (size_t i = 0; i < records.size(); i++) {
1222 struct PartiallyConstructedSafepointRecord &info = records[i];
Philip Reamesd2b66462015-02-20 22:39:41 +00001223 const CallSite &CS = toUpdate[i];
Philip Reamesdf1ef082015-04-10 22:53:14 +00001224 recomputeLiveInValues(RevisedLivenessData, CS, info);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001225 }
1226}
1227
Philip Reames69e51ca2015-04-13 18:07:21 +00001228// When inserting gc.relocate calls, we need to ensure there are no uses
1229// of the original value between the gc.statepoint and the gc.relocate call.
1230// One case which can arise is a phi node starting one of the successor blocks.
1231// We also need to be able to insert the gc.relocates only on the path which
1232// goes through the statepoint. We might need to split an edge to make this
Philip Reamesf209a152015-04-13 20:00:30 +00001233// possible.
1234static BasicBlock *
Sanjoy Dasea45f0e2015-06-02 22:33:34 +00001235normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1236 DominatorTree &DT) {
Philip Reames69e51ca2015-04-13 18:07:21 +00001237 BasicBlock *Ret = BB;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001238 if (!BB->getUniquePredecessor()) {
Chandler Carruth96ada252015-07-22 09:52:54 +00001239 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001240 }
1241
Philip Reames69e51ca2015-04-13 18:07:21 +00001242 // Now that 'ret' has unique predecessor we can safely remove all phi nodes
1243 // from it
1244 FoldSingleEntryPHINodes(Ret);
1245 assert(!isa<PHINode>(Ret->begin()));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001246
Philip Reames69e51ca2015-04-13 18:07:21 +00001247 // At this point, we can safely insert a gc.relocate as the first instruction
1248 // in Ret if needed.
1249 return Ret;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001250}
1251
Philip Reamesd2b66462015-02-20 22:39:41 +00001252static int find_index(ArrayRef<Value *> livevec, Value *val) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001253 auto itr = std::find(livevec.begin(), livevec.end(), val);
1254 assert(livevec.end() != itr);
1255 size_t index = std::distance(livevec.begin(), itr);
1256 assert(index < livevec.size());
1257 return index;
1258}
1259
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00001260// Create new attribute set containing only attributes which can be transferred
Philip Reamesd16a9b12015-02-20 01:06:44 +00001261// from original call to the safepoint.
1262static AttributeSet legalizeCallAttributes(AttributeSet AS) {
1263 AttributeSet ret;
1264
1265 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) {
1266 unsigned index = AS.getSlotIndex(Slot);
1267
1268 if (index == AttributeSet::ReturnIndex ||
1269 index == AttributeSet::FunctionIndex) {
1270
1271 for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end;
1272 ++it) {
1273 Attribute attr = *it;
1274
1275 // Do not allow certain attributes - just skip them
1276 // Safepoint can not be read only or read none.
1277 if (attr.hasAttribute(Attribute::ReadNone) ||
1278 attr.hasAttribute(Attribute::ReadOnly))
1279 continue;
1280
1281 ret = ret.addAttributes(
1282 AS.getContext(), index,
1283 AttributeSet::get(AS.getContext(), index, AttrBuilder(attr)));
1284 }
1285 }
1286
1287 // Just skip parameter attributes for now
1288 }
1289
1290 return ret;
1291}
1292
1293/// Helper function to place all gc relocates necessary for the given
1294/// statepoint.
1295/// Inputs:
1296/// liveVariables - list of variables to be relocated.
1297/// liveStart - index of the first live variable.
1298/// basePtrs - base pointers.
1299/// statepointToken - statepoint instruction to which relocates should be
1300/// bound.
1301/// Builder - Llvm IR builder to be used to construct new calls.
Sanjoy Das5665c992015-05-11 23:47:27 +00001302static void CreateGCRelocates(ArrayRef<llvm::Value *> LiveVariables,
1303 const int LiveStart,
1304 ArrayRef<llvm::Value *> BasePtrs,
1305 Instruction *StatepointToken,
Benjamin Kramerf044d3f2015-03-09 16:23:46 +00001306 IRBuilder<> Builder) {
Philip Reames94babb72015-07-21 17:18:03 +00001307 if (LiveVariables.empty())
1308 return;
1309
1310 // All gc_relocate are set to i8 addrspace(1)* type. We originally generated
1311 // unique declarations for each pointer type, but this proved problematic
1312 // because the intrinsic mangling code is incomplete and fragile. Since
1313 // we're moving towards a single unified pointer type anyways, we can just
1314 // cast everything to an i8* of the right address space. A bitcast is added
1315 // later to convert gc_relocate to the actual value's type.
Philip Reames74ce2e72015-07-21 16:51:17 +00001316 Module *M = StatepointToken->getModule();
Philip Reames94babb72015-07-21 17:18:03 +00001317 auto AS = cast<PointerType>(LiveVariables[0]->getType())->getAddressSpace();
1318 Type *Types[] = {Type::getInt8PtrTy(M->getContext(), AS)};
1319 Value *GCRelocateDecl =
1320 Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, Types);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001321
Sanjoy Das5665c992015-05-11 23:47:27 +00001322 for (unsigned i = 0; i < LiveVariables.size(); i++) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001323 // Generate the gc.relocate call and save the result
Sanjoy Das5665c992015-05-11 23:47:27 +00001324 Value *BaseIdx =
Philip Reamesf3880502015-07-21 00:49:55 +00001325 Builder.getInt32(LiveStart + find_index(LiveVariables, BasePtrs[i]));
1326 Value *LiveIdx =
1327 Builder.getInt32(LiveStart + find_index(LiveVariables, LiveVariables[i]));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001328
1329 // only specify a debug name if we can give a useful one
Philip Reames74ce2e72015-07-21 16:51:17 +00001330 CallInst *Reloc = Builder.CreateCall(
David Blaikieff6409d2015-05-18 22:13:54 +00001331 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
Philip Reamesece70b82015-09-09 23:57:18 +00001332 suffixed_name_or(LiveVariables[i], ".relocated", ""));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001333 // Trick CodeGen into thinking there are lots of free registers at this
1334 // fake call.
Philip Reames74ce2e72015-07-21 16:51:17 +00001335 Reloc->setCallingConv(CallingConv::Cold);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001336 }
Philip Reamesd16a9b12015-02-20 01:06:44 +00001337}
1338
1339static void
1340makeStatepointExplicitImpl(const CallSite &CS, /* to replace */
1341 const SmallVectorImpl<llvm::Value *> &basePtrs,
1342 const SmallVectorImpl<llvm::Value *> &liveVariables,
1343 Pass *P,
1344 PartiallyConstructedSafepointRecord &result) {
1345 assert(basePtrs.size() == liveVariables.size());
1346 assert(isStatepoint(CS) &&
1347 "This method expects to be rewriting a statepoint");
1348
1349 BasicBlock *BB = CS.getInstruction()->getParent();
1350 assert(BB);
1351 Function *F = BB->getParent();
1352 assert(F && "must be set");
1353 Module *M = F->getParent();
Nick Lewyckyeb3231e2015-02-20 07:14:02 +00001354 (void)M;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001355 assert(M && "must be set");
1356
1357 // We're not changing the function signature of the statepoint since the gc
1358 // arguments go into the var args section.
1359 Function *gc_statepoint_decl = CS.getCalledFunction();
1360
1361 // Then go ahead and use the builder do actually do the inserts. We insert
1362 // immediately before the previous instruction under the assumption that all
1363 // arguments will be available here. We can't insert afterwards since we may
1364 // be replacing a terminator.
1365 Instruction *insertBefore = CS.getInstruction();
1366 IRBuilder<> Builder(insertBefore);
1367 // Copy all of the arguments from the original statepoint - this includes the
1368 // target, call args, and deopt args
Philip Reamesd2b66462015-02-20 22:39:41 +00001369 SmallVector<llvm::Value *, 64> args;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001370 args.insert(args.end(), CS.arg_begin(), CS.arg_end());
1371 // TODO: Clear the 'needs rewrite' flag
1372
1373 // add all the pointers to be relocated (gc arguments)
1374 // Capture the start of the live variable list for use in the gc_relocates
1375 const int live_start = args.size();
1376 args.insert(args.end(), liveVariables.begin(), liveVariables.end());
1377
1378 // Create the statepoint given all the arguments
1379 Instruction *token = nullptr;
1380 AttributeSet return_attributes;
1381 if (CS.isCall()) {
1382 CallInst *toReplace = cast<CallInst>(CS.getInstruction());
1383 CallInst *call =
1384 Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token");
1385 call->setTailCall(toReplace->isTailCall());
1386 call->setCallingConv(toReplace->getCallingConv());
1387
1388 // Currently we will fail on parameter attributes and on certain
1389 // function attributes.
1390 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes());
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00001391 // In case if we can handle this set of attributes - set up function attrs
Philip Reamesd16a9b12015-02-20 01:06:44 +00001392 // directly on statepoint and return attrs later for gc_result intrinsic.
1393 call->setAttributes(new_attrs.getFnAttributes());
1394 return_attributes = new_attrs.getRetAttributes();
1395
1396 token = call;
1397
1398 // Put the following gc_result and gc_relocate calls immediately after the
1399 // the old call (which we're about to delete)
1400 BasicBlock::iterator next(toReplace);
1401 assert(BB->end() != next && "not a terminator, must have next");
1402 next++;
1403 Instruction *IP = &*(next);
1404 Builder.SetInsertPoint(IP);
1405 Builder.SetCurrentDebugLocation(IP->getDebugLoc());
1406
David Blaikie82ad7872015-02-20 23:44:24 +00001407 } else {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001408 InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction());
1409
1410 // Insert the new invoke into the old block. We'll remove the old one in a
1411 // moment at which point this will become the new terminator for the
1412 // original block.
1413 InvokeInst *invoke = InvokeInst::Create(
1414 gc_statepoint_decl, toReplace->getNormalDest(),
Philip Reamesfa2c6302015-07-24 19:01:39 +00001415 toReplace->getUnwindDest(), args, "statepoint_token", toReplace->getParent());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001416 invoke->setCallingConv(toReplace->getCallingConv());
1417
1418 // Currently we will fail on parameter attributes and on certain
1419 // function attributes.
1420 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes());
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00001421 // In case if we can handle this set of attributes - set up function attrs
Philip Reamesd16a9b12015-02-20 01:06:44 +00001422 // directly on statepoint and return attrs later for gc_result intrinsic.
1423 invoke->setAttributes(new_attrs.getFnAttributes());
1424 return_attributes = new_attrs.getRetAttributes();
1425
1426 token = invoke;
1427
1428 // Generate gc relocates in exceptional path
Philip Reames69e51ca2015-04-13 18:07:21 +00001429 BasicBlock *unwindBlock = toReplace->getUnwindDest();
1430 assert(!isa<PHINode>(unwindBlock->begin()) &&
1431 unwindBlock->getUniquePredecessor() &&
1432 "can't safely insert in this block!");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001433
1434 Instruction *IP = &*(unwindBlock->getFirstInsertionPt());
1435 Builder.SetInsertPoint(IP);
1436 Builder.SetCurrentDebugLocation(toReplace->getDebugLoc());
1437
1438 // Extract second element from landingpad return value. We will attach
1439 // exceptional gc relocates to it.
1440 const unsigned idx = 1;
1441 Instruction *exceptional_token =
1442 cast<Instruction>(Builder.CreateExtractValue(
1443 unwindBlock->getLandingPadInst(), idx, "relocate_token"));
Philip Reamesf2041322015-02-20 19:26:04 +00001444 result.UnwindToken = exceptional_token;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001445
Philip Reames6ff1a1e32015-07-21 19:04:38 +00001446 CreateGCRelocates(liveVariables, live_start, basePtrs,
1447 exceptional_token, Builder);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001448
1449 // Generate gc relocates and returns for normal block
Philip Reames69e51ca2015-04-13 18:07:21 +00001450 BasicBlock *normalDest = toReplace->getNormalDest();
1451 assert(!isa<PHINode>(normalDest->begin()) &&
1452 normalDest->getUniquePredecessor() &&
1453 "can't safely insert in this block!");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001454
1455 IP = &*(normalDest->getFirstInsertionPt());
1456 Builder.SetInsertPoint(IP);
1457
1458 // gc relocates will be generated later as if it were regular call
1459 // statepoint
Philip Reamesd16a9b12015-02-20 01:06:44 +00001460 }
1461 assert(token);
1462
1463 // Take the name of the original value call if it had one.
1464 token->takeName(CS.getInstruction());
1465
Philip Reames704e78b2015-04-10 22:34:56 +00001466// The GCResult is already inserted, we just need to find it
David Blaikie5e5d7842015-02-22 20:58:38 +00001467#ifndef NDEBUG
1468 Instruction *toReplace = CS.getInstruction();
1469 assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) &&
1470 "only valid use before rewrite is gc.result");
1471 assert(!toReplace->hasOneUse() ||
1472 isGCResult(cast<Instruction>(*toReplace->user_begin())));
1473#endif
Philip Reamesd16a9b12015-02-20 01:06:44 +00001474
1475 // Update the gc.result of the original statepoint (if any) to use the newly
1476 // inserted statepoint. This is safe to do here since the token can't be
1477 // considered a live reference.
1478 CS.getInstruction()->replaceAllUsesWith(token);
1479
Philip Reames0a3240f2015-02-20 21:34:11 +00001480 result.StatepointToken = token;
1481
Philip Reamesd16a9b12015-02-20 01:06:44 +00001482 // Second, create a gc.relocate for every live variable
Philip Reames0a3240f2015-02-20 21:34:11 +00001483 CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001484}
1485
1486namespace {
1487struct name_ordering {
1488 Value *base;
1489 Value *derived;
1490 bool operator()(name_ordering const &a, name_ordering const &b) {
1491 return -1 == a.derived->getName().compare(b.derived->getName());
1492 }
1493};
1494}
1495static void stablize_order(SmallVectorImpl<Value *> &basevec,
1496 SmallVectorImpl<Value *> &livevec) {
1497 assert(basevec.size() == livevec.size());
1498
Philip Reames860660e2015-02-20 22:05:18 +00001499 SmallVector<name_ordering, 64> temp;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001500 for (size_t i = 0; i < basevec.size(); i++) {
1501 name_ordering v;
1502 v.base = basevec[i];
1503 v.derived = livevec[i];
1504 temp.push_back(v);
1505 }
1506 std::sort(temp.begin(), temp.end(), name_ordering());
1507 for (size_t i = 0; i < basevec.size(); i++) {
1508 basevec[i] = temp[i].base;
1509 livevec[i] = temp[i].derived;
1510 }
1511}
1512
1513// Replace an existing gc.statepoint with a new one and a set of gc.relocates
1514// which make the relocations happening at this safepoint explicit.
Philip Reames704e78b2015-04-10 22:34:56 +00001515//
Philip Reamesd16a9b12015-02-20 01:06:44 +00001516// WARNING: Does not do any fixup to adjust users of the original live
1517// values. That's the callers responsibility.
1518static void
1519makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P,
1520 PartiallyConstructedSafepointRecord &result) {
Philip Reamesf2041322015-02-20 19:26:04 +00001521 auto liveset = result.liveset;
1522 auto PointerToBase = result.PointerToBase;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001523
1524 // Convert to vector for efficient cross referencing.
1525 SmallVector<Value *, 64> basevec, livevec;
1526 livevec.reserve(liveset.size());
1527 basevec.reserve(liveset.size());
1528 for (Value *L : liveset) {
1529 livevec.push_back(L);
Philip Reames74ce2e72015-07-21 16:51:17 +00001530 assert(PointerToBase.count(L));
Philip Reamesf2041322015-02-20 19:26:04 +00001531 Value *base = PointerToBase[L];
Philip Reamesd16a9b12015-02-20 01:06:44 +00001532 basevec.push_back(base);
1533 }
1534 assert(livevec.size() == basevec.size());
1535
1536 // To make the output IR slightly more stable (for use in diffs), ensure a
1537 // fixed order of the values in the safepoint (by sorting the value name).
1538 // The order is otherwise meaningless.
1539 stablize_order(basevec, livevec);
1540
1541 // Do the actual rewriting and delete the old statepoint
1542 makeStatepointExplicitImpl(CS, basevec, livevec, P, result);
1543 CS.getInstruction()->eraseFromParent();
1544}
1545
1546// Helper function for the relocationViaAlloca.
1547// It receives iterator to the statepoint gc relocates and emits store to the
1548// assigned
1549// location (via allocaMap) for the each one of them.
1550// Add visited values into the visitedLiveValues set we will later use them
1551// for sanity check.
1552static void
Sanjoy Das5665c992015-05-11 23:47:27 +00001553insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1554 DenseMap<Value *, Value *> &AllocaMap,
1555 DenseSet<Value *> &VisitedLiveValues) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001556
Sanjoy Das5665c992015-05-11 23:47:27 +00001557 for (User *U : GCRelocs) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001558 if (!isa<IntrinsicInst>(U))
1559 continue;
1560
Sanjoy Das5665c992015-05-11 23:47:27 +00001561 IntrinsicInst *RelocatedValue = cast<IntrinsicInst>(U);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001562
1563 // We only care about relocates
Sanjoy Das5665c992015-05-11 23:47:27 +00001564 if (RelocatedValue->getIntrinsicID() !=
Philip Reamesd16a9b12015-02-20 01:06:44 +00001565 Intrinsic::experimental_gc_relocate) {
1566 continue;
1567 }
1568
Sanjoy Das5665c992015-05-11 23:47:27 +00001569 GCRelocateOperands RelocateOperands(RelocatedValue);
1570 Value *OriginalValue =
1571 const_cast<Value *>(RelocateOperands.getDerivedPtr());
1572 assert(AllocaMap.count(OriginalValue));
1573 Value *Alloca = AllocaMap[OriginalValue];
Philip Reamesd16a9b12015-02-20 01:06:44 +00001574
1575 // Emit store into the related alloca
Sanjoy Das89c54912015-05-11 18:49:34 +00001576 // All gc_relocate are i8 addrspace(1)* typed, and it must be bitcasted to
1577 // the correct type according to alloca.
Sanjoy Das5665c992015-05-11 23:47:27 +00001578 assert(RelocatedValue->getNextNode() && "Should always have one since it's not a terminator");
1579 IRBuilder<> Builder(RelocatedValue->getNextNode());
Sanjoy Das89c54912015-05-11 18:49:34 +00001580 Value *CastedRelocatedValue =
Philip Reamesece70b82015-09-09 23:57:18 +00001581 Builder.CreateBitCast(RelocatedValue,
1582 cast<AllocaInst>(Alloca)->getAllocatedType(),
1583 suffixed_name_or(RelocatedValue, ".casted", ""));
Sanjoy Das89c54912015-05-11 18:49:34 +00001584
Sanjoy Das5665c992015-05-11 23:47:27 +00001585 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
1586 Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001587
1588#ifndef NDEBUG
Sanjoy Das5665c992015-05-11 23:47:27 +00001589 VisitedLiveValues.insert(OriginalValue);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001590#endif
1591 }
1592}
1593
Igor Laevskye0317182015-05-19 15:59:05 +00001594// Helper function for the "relocationViaAlloca". Similar to the
1595// "insertRelocationStores" but works for rematerialized values.
1596static void
1597insertRematerializationStores(
1598 RematerializedValueMapTy RematerializedValues,
1599 DenseMap<Value *, Value *> &AllocaMap,
1600 DenseSet<Value *> &VisitedLiveValues) {
1601
1602 for (auto RematerializedValuePair: RematerializedValues) {
1603 Instruction *RematerializedValue = RematerializedValuePair.first;
1604 Value *OriginalValue = RematerializedValuePair.second;
1605
1606 assert(AllocaMap.count(OriginalValue) &&
1607 "Can not find alloca for rematerialized value");
1608 Value *Alloca = AllocaMap[OriginalValue];
1609
1610 StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
1611 Store->insertAfter(RematerializedValue);
1612
1613#ifndef NDEBUG
1614 VisitedLiveValues.insert(OriginalValue);
1615#endif
1616 }
1617}
1618
Philip Reamesd16a9b12015-02-20 01:06:44 +00001619/// do all the relocation update via allocas and mem2reg
1620static void relocationViaAlloca(
Igor Laevsky285fe842015-05-19 16:29:43 +00001621 Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
1622 ArrayRef<struct PartiallyConstructedSafepointRecord> Records) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001623#ifndef NDEBUG
Philip Reamesa6ebf072015-03-27 05:53:16 +00001624 // record initial number of (static) allocas; we'll check we have the same
1625 // number when we get done.
1626 int InitialAllocaNum = 0;
Philip Reames704e78b2015-04-10 22:34:56 +00001627 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E;
1628 I++)
Philip Reamesa6ebf072015-03-27 05:53:16 +00001629 if (isa<AllocaInst>(*I))
1630 InitialAllocaNum++;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001631#endif
1632
1633 // TODO-PERF: change data structures, reserve
Igor Laevsky285fe842015-05-19 16:29:43 +00001634 DenseMap<Value *, Value *> AllocaMap;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001635 SmallVector<AllocaInst *, 200> PromotableAllocas;
Igor Laevskye0317182015-05-19 15:59:05 +00001636 // Used later to chack that we have enough allocas to store all values
1637 std::size_t NumRematerializedValues = 0;
Igor Laevsky285fe842015-05-19 16:29:43 +00001638 PromotableAllocas.reserve(Live.size());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001639
Igor Laevskye0317182015-05-19 15:59:05 +00001640 // Emit alloca for "LiveValue" and record it in "allocaMap" and
1641 // "PromotableAllocas"
1642 auto emitAllocaFor = [&](Value *LiveValue) {
1643 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "",
1644 F.getEntryBlock().getFirstNonPHI());
Igor Laevsky285fe842015-05-19 16:29:43 +00001645 AllocaMap[LiveValue] = Alloca;
Igor Laevskye0317182015-05-19 15:59:05 +00001646 PromotableAllocas.push_back(Alloca);
1647 };
1648
Philip Reamesd16a9b12015-02-20 01:06:44 +00001649 // emit alloca for each live gc pointer
Igor Laevsky285fe842015-05-19 16:29:43 +00001650 for (unsigned i = 0; i < Live.size(); i++) {
1651 emitAllocaFor(Live[i]);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001652 }
1653
Igor Laevskye0317182015-05-19 15:59:05 +00001654 // emit allocas for rematerialized values
Igor Laevsky285fe842015-05-19 16:29:43 +00001655 for (size_t i = 0; i < Records.size(); i++) {
1656 const struct PartiallyConstructedSafepointRecord &Info = Records[i];
Igor Laevskye0317182015-05-19 15:59:05 +00001657
Igor Laevsky285fe842015-05-19 16:29:43 +00001658 for (auto RematerializedValuePair : Info.RematerializedValues) {
Igor Laevskye0317182015-05-19 15:59:05 +00001659 Value *OriginalValue = RematerializedValuePair.second;
Igor Laevsky285fe842015-05-19 16:29:43 +00001660 if (AllocaMap.count(OriginalValue) != 0)
Igor Laevskye0317182015-05-19 15:59:05 +00001661 continue;
1662
1663 emitAllocaFor(OriginalValue);
1664 ++NumRematerializedValues;
1665 }
1666 }
Igor Laevsky285fe842015-05-19 16:29:43 +00001667
Philip Reamesd16a9b12015-02-20 01:06:44 +00001668 // The next two loops are part of the same conceptual operation. We need to
1669 // insert a store to the alloca after the original def and at each
1670 // redefinition. We need to insert a load before each use. These are split
1671 // into distinct loops for performance reasons.
1672
1673 // update gc pointer after each statepoint
1674 // either store a relocated value or null (if no relocated value found for
1675 // this gc pointer and it is not a gc_result)
1676 // this must happen before we update the statepoint with load of alloca
1677 // otherwise we lose the link between statepoint and old def
Igor Laevsky285fe842015-05-19 16:29:43 +00001678 for (size_t i = 0; i < Records.size(); i++) {
1679 const struct PartiallyConstructedSafepointRecord &Info = Records[i];
1680 Value *Statepoint = Info.StatepointToken;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001681
1682 // This will be used for consistency check
Igor Laevsky285fe842015-05-19 16:29:43 +00001683 DenseSet<Value *> VisitedLiveValues;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001684
1685 // Insert stores for normal statepoint gc relocates
Igor Laevsky285fe842015-05-19 16:29:43 +00001686 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001687
1688 // In case if it was invoke statepoint
1689 // we will insert stores for exceptional path gc relocates.
Philip Reames0a3240f2015-02-20 21:34:11 +00001690 if (isa<InvokeInst>(Statepoint)) {
Igor Laevsky285fe842015-05-19 16:29:43 +00001691 insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
1692 VisitedLiveValues);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001693 }
1694
Igor Laevskye0317182015-05-19 15:59:05 +00001695 // Do similar thing with rematerialized values
Igor Laevsky285fe842015-05-19 16:29:43 +00001696 insertRematerializationStores(Info.RematerializedValues, AllocaMap,
1697 VisitedLiveValues);
Igor Laevskye0317182015-05-19 15:59:05 +00001698
Philip Reamese73300b2015-04-13 16:41:32 +00001699 if (ClobberNonLive) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00001700 // As a debugging aid, pretend that an unrelocated pointer becomes null at
Philip Reamese73300b2015-04-13 16:41:32 +00001701 // the gc.statepoint. This will turn some subtle GC problems into
1702 // slightly easier to debug SEGVs. Note that on large IR files with
1703 // lots of gc.statepoints this is extremely costly both memory and time
1704 // wise.
1705 SmallVector<AllocaInst *, 64> ToClobber;
Igor Laevsky285fe842015-05-19 16:29:43 +00001706 for (auto Pair : AllocaMap) {
Philip Reamese73300b2015-04-13 16:41:32 +00001707 Value *Def = Pair.first;
1708 AllocaInst *Alloca = cast<AllocaInst>(Pair.second);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001709
Philip Reamese73300b2015-04-13 16:41:32 +00001710 // This value was relocated
Igor Laevsky285fe842015-05-19 16:29:43 +00001711 if (VisitedLiveValues.count(Def)) {
Philip Reamese73300b2015-04-13 16:41:32 +00001712 continue;
1713 }
1714 ToClobber.push_back(Alloca);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001715 }
Philip Reamesfa2fcf172015-02-20 19:51:56 +00001716
Philip Reamese73300b2015-04-13 16:41:32 +00001717 auto InsertClobbersAt = [&](Instruction *IP) {
1718 for (auto *AI : ToClobber) {
1719 auto AIType = cast<PointerType>(AI->getType());
1720 auto PT = cast<PointerType>(AIType->getElementType());
1721 Constant *CPN = ConstantPointerNull::get(PT);
Igor Laevsky285fe842015-05-19 16:29:43 +00001722 StoreInst *Store = new StoreInst(CPN, AI);
1723 Store->insertBefore(IP);
Philip Reamese73300b2015-04-13 16:41:32 +00001724 }
1725 };
1726
1727 // Insert the clobbering stores. These may get intermixed with the
1728 // gc.results and gc.relocates, but that's fine.
1729 if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
1730 InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt());
1731 InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt());
1732 } else {
1733 BasicBlock::iterator Next(cast<CallInst>(Statepoint));
1734 Next++;
1735 InsertClobbersAt(Next);
Philip Reamesfa2fcf172015-02-20 19:51:56 +00001736 }
David Blaikie82ad7872015-02-20 23:44:24 +00001737 }
Philip Reamesd16a9b12015-02-20 01:06:44 +00001738 }
1739 // update use with load allocas and add store for gc_relocated
Igor Laevsky285fe842015-05-19 16:29:43 +00001740 for (auto Pair : AllocaMap) {
1741 Value *Def = Pair.first;
1742 Value *Alloca = Pair.second;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001743
1744 // we pre-record the uses of allocas so that we dont have to worry about
1745 // later update
1746 // that change the user information.
Igor Laevsky285fe842015-05-19 16:29:43 +00001747 SmallVector<Instruction *, 20> Uses;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001748 // PERF: trade a linear scan for repeated reallocation
Igor Laevsky285fe842015-05-19 16:29:43 +00001749 Uses.reserve(std::distance(Def->user_begin(), Def->user_end()));
1750 for (User *U : Def->users()) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001751 if (!isa<ConstantExpr>(U)) {
1752 // If the def has a ConstantExpr use, then the def is either a
1753 // ConstantExpr use itself or null. In either case
1754 // (recursively in the first, directly in the second), the oop
1755 // it is ultimately dependent on is null and this particular
1756 // use does not need to be fixed up.
Igor Laevsky285fe842015-05-19 16:29:43 +00001757 Uses.push_back(cast<Instruction>(U));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001758 }
1759 }
1760
Igor Laevsky285fe842015-05-19 16:29:43 +00001761 std::sort(Uses.begin(), Uses.end());
1762 auto Last = std::unique(Uses.begin(), Uses.end());
1763 Uses.erase(Last, Uses.end());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001764
Igor Laevsky285fe842015-05-19 16:29:43 +00001765 for (Instruction *Use : Uses) {
1766 if (isa<PHINode>(Use)) {
1767 PHINode *Phi = cast<PHINode>(Use);
1768 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
1769 if (Def == Phi->getIncomingValue(i)) {
1770 LoadInst *Load = new LoadInst(
1771 Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
1772 Phi->setIncomingValue(i, Load);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001773 }
1774 }
1775 } else {
Igor Laevsky285fe842015-05-19 16:29:43 +00001776 LoadInst *Load = new LoadInst(Alloca, "", Use);
1777 Use->replaceUsesOfWith(Def, Load);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001778 }
1779 }
1780
1781 // emit store for the initial gc value
1782 // store must be inserted after load, otherwise store will be in alloca's
1783 // use list and an extra load will be inserted before it
Igor Laevsky285fe842015-05-19 16:29:43 +00001784 StoreInst *Store = new StoreInst(Def, Alloca);
1785 if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
1786 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
Philip Reames6da37852015-03-04 00:13:52 +00001787 // InvokeInst is a TerminatorInst so the store need to be inserted
1788 // into its normal destination block.
Igor Laevsky285fe842015-05-19 16:29:43 +00001789 BasicBlock *NormalDest = Invoke->getNormalDest();
1790 Store->insertBefore(NormalDest->getFirstNonPHI());
Philip Reames6da37852015-03-04 00:13:52 +00001791 } else {
Igor Laevsky285fe842015-05-19 16:29:43 +00001792 assert(!Inst->isTerminator() &&
Philip Reames6da37852015-03-04 00:13:52 +00001793 "The only TerminatorInst that can produce a value is "
1794 "InvokeInst which is handled above.");
Igor Laevsky285fe842015-05-19 16:29:43 +00001795 Store->insertAfter(Inst);
Philip Reames6da37852015-03-04 00:13:52 +00001796 }
Philip Reamesd16a9b12015-02-20 01:06:44 +00001797 } else {
Igor Laevsky285fe842015-05-19 16:29:43 +00001798 assert(isa<Argument>(Def));
1799 Store->insertAfter(cast<Instruction>(Alloca));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001800 }
1801 }
1802
Igor Laevsky285fe842015-05-19 16:29:43 +00001803 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
Philip Reamesd16a9b12015-02-20 01:06:44 +00001804 "we must have the same allocas with lives");
1805 if (!PromotableAllocas.empty()) {
1806 // apply mem2reg to promote alloca to SSA
1807 PromoteMemToReg(PromotableAllocas, DT);
1808 }
1809
1810#ifndef NDEBUG
Philip Reames704e78b2015-04-10 22:34:56 +00001811 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E;
1812 I++)
Philip Reamesa6ebf072015-03-27 05:53:16 +00001813 if (isa<AllocaInst>(*I))
1814 InitialAllocaNum--;
1815 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001816#endif
1817}
1818
1819/// Implement a unique function which doesn't require we sort the input
1820/// vector. Doing so has the effect of changing the output of a couple of
1821/// tests in ways which make them less useful in testing fused safepoints.
Philip Reamesd2b66462015-02-20 22:39:41 +00001822template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
Benjamin Kramer258ea0d2015-06-13 19:50:38 +00001823 SmallSet<T, 8> Seen;
1824 Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) {
1825 return !Seen.insert(V).second;
1826 }), Vec.end());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001827}
1828
Philip Reamesd16a9b12015-02-20 01:06:44 +00001829/// Insert holders so that each Value is obviously live through the entire
Philip Reamesf209a152015-04-13 20:00:30 +00001830/// lifetime of the call.
Philip Reamesd16a9b12015-02-20 01:06:44 +00001831static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
Philip Reamesf209a152015-04-13 20:00:30 +00001832 SmallVectorImpl<CallInst *> &Holders) {
Philip Reames21142752015-04-13 19:07:47 +00001833 if (Values.empty())
1834 // No values to hold live, might as well not insert the empty holder
1835 return;
1836
Philip Reamesd16a9b12015-02-20 01:06:44 +00001837 Module *M = CS.getInstruction()->getParent()->getParent()->getParent();
Philip Reamesf209a152015-04-13 20:00:30 +00001838 // Use a dummy vararg function to actually hold the values live
1839 Function *Func = cast<Function>(M->getOrInsertFunction(
1840 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001841 if (CS.isCall()) {
1842 // For call safepoints insert dummy calls right after safepoint
Philip Reamesf209a152015-04-13 20:00:30 +00001843 BasicBlock::iterator Next(CS.getInstruction());
1844 Next++;
1845 Holders.push_back(CallInst::Create(Func, Values, "", Next));
1846 return;
1847 }
1848 // For invoke safepooints insert dummy calls both in normal and
1849 // exceptional destination blocks
1850 auto *II = cast<InvokeInst>(CS.getInstruction());
1851 Holders.push_back(CallInst::Create(
1852 Func, Values, "", II->getNormalDest()->getFirstInsertionPt()));
1853 Holders.push_back(CallInst::Create(
1854 Func, Values, "", II->getUnwindDest()->getFirstInsertionPt()));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001855}
1856
1857static void findLiveReferences(
Philip Reamesd2b66462015-02-20 22:39:41 +00001858 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate,
1859 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
Philip Reamesdf1ef082015-04-10 22:53:14 +00001860 GCPtrLivenessData OriginalLivenessData;
1861 computeLiveInValues(DT, F, OriginalLivenessData);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001862 for (size_t i = 0; i < records.size(); i++) {
1863 struct PartiallyConstructedSafepointRecord &info = records[i];
Philip Reamesd2b66462015-02-20 22:39:41 +00001864 const CallSite &CS = toUpdate[i];
Philip Reamesdf1ef082015-04-10 22:53:14 +00001865 analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001866 }
1867}
1868
Philip Reames8531d8c2015-04-10 21:48:25 +00001869/// Remove any vector of pointers from the liveset by scalarizing them over the
1870/// statepoint instruction. Adds the scalarized pieces to the liveset. It
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00001871/// would be preferable to include the vector in the statepoint itself, but
Philip Reames8531d8c2015-04-10 21:48:25 +00001872/// the lowering code currently does not handle that. Extending it would be
1873/// slightly non-trivial since it requires a format change. Given how rare
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00001874/// such cases are (for the moment?) scalarizing is an acceptable compromise.
Philip Reames8531d8c2015-04-10 21:48:25 +00001875static void splitVectorValues(Instruction *StatepointInst,
Philip Reames8fe7f132015-06-26 22:47:37 +00001876 StatepointLiveSetTy &LiveSet,
1877 DenseMap<Value *, Value *>& PointerToBase,
1878 DominatorTree &DT) {
Philip Reames8531d8c2015-04-10 21:48:25 +00001879 SmallVector<Value *, 16> ToSplit;
1880 for (Value *V : LiveSet)
1881 if (isa<VectorType>(V->getType()))
1882 ToSplit.push_back(V);
1883
1884 if (ToSplit.empty())
1885 return;
1886
Philip Reames8fe7f132015-06-26 22:47:37 +00001887 DenseMap<Value *, SmallVector<Value *, 16>> ElementMapping;
1888
Philip Reames8531d8c2015-04-10 21:48:25 +00001889 Function &F = *(StatepointInst->getParent()->getParent());
1890
Philip Reames704e78b2015-04-10 22:34:56 +00001891 DenseMap<Value *, AllocaInst *> AllocaMap;
Philip Reames8531d8c2015-04-10 21:48:25 +00001892 // First is normal return, second is exceptional return (invoke only)
Philip Reames704e78b2015-04-10 22:34:56 +00001893 DenseMap<Value *, std::pair<Value *, Value *>> Replacements;
Philip Reames8531d8c2015-04-10 21:48:25 +00001894 for (Value *V : ToSplit) {
Philip Reames704e78b2015-04-10 22:34:56 +00001895 AllocaInst *Alloca =
1896 new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI());
Philip Reames8531d8c2015-04-10 21:48:25 +00001897 AllocaMap[V] = Alloca;
1898
1899 VectorType *VT = cast<VectorType>(V->getType());
1900 IRBuilder<> Builder(StatepointInst);
Philip Reames704e78b2015-04-10 22:34:56 +00001901 SmallVector<Value *, 16> Elements;
Philip Reames8531d8c2015-04-10 21:48:25 +00001902 for (unsigned i = 0; i < VT->getNumElements(); i++)
1903 Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i)));
Philip Reames8fe7f132015-06-26 22:47:37 +00001904 ElementMapping[V] = Elements;
Philip Reames8531d8c2015-04-10 21:48:25 +00001905
1906 auto InsertVectorReform = [&](Instruction *IP) {
1907 Builder.SetInsertPoint(IP);
1908 Builder.SetCurrentDebugLocation(IP->getDebugLoc());
1909 Value *ResultVec = UndefValue::get(VT);
1910 for (unsigned i = 0; i < VT->getNumElements(); i++)
1911 ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i],
1912 Builder.getInt32(i));
1913 return ResultVec;
1914 };
1915
1916 if (isa<CallInst>(StatepointInst)) {
1917 BasicBlock::iterator Next(StatepointInst);
1918 Next++;
1919 Instruction *IP = &*(Next);
1920 Replacements[V].first = InsertVectorReform(IP);
1921 Replacements[V].second = nullptr;
1922 } else {
1923 InvokeInst *Invoke = cast<InvokeInst>(StatepointInst);
1924 // We've already normalized - check that we don't have shared destination
Philip Reames704e78b2015-04-10 22:34:56 +00001925 // blocks
Philip Reames8531d8c2015-04-10 21:48:25 +00001926 BasicBlock *NormalDest = Invoke->getNormalDest();
1927 assert(!isa<PHINode>(NormalDest->begin()));
1928 BasicBlock *UnwindDest = Invoke->getUnwindDest();
1929 assert(!isa<PHINode>(UnwindDest->begin()));
1930 // Insert insert element sequences in both successors
1931 Instruction *IP = &*(NormalDest->getFirstInsertionPt());
1932 Replacements[V].first = InsertVectorReform(IP);
1933 IP = &*(UnwindDest->getFirstInsertionPt());
1934 Replacements[V].second = InsertVectorReform(IP);
1935 }
1936 }
Philip Reames8fe7f132015-06-26 22:47:37 +00001937
Philip Reames8531d8c2015-04-10 21:48:25 +00001938 for (Value *V : ToSplit) {
1939 AllocaInst *Alloca = AllocaMap[V];
1940
1941 // Capture all users before we start mutating use lists
Philip Reames704e78b2015-04-10 22:34:56 +00001942 SmallVector<Instruction *, 16> Users;
Philip Reames8531d8c2015-04-10 21:48:25 +00001943 for (User *U : V->users())
1944 Users.push_back(cast<Instruction>(U));
1945
1946 for (Instruction *I : Users) {
1947 if (auto Phi = dyn_cast<PHINode>(I)) {
1948 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++)
1949 if (V == Phi->getIncomingValue(i)) {
Philip Reames704e78b2015-04-10 22:34:56 +00001950 LoadInst *Load = new LoadInst(
1951 Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
Philip Reames8531d8c2015-04-10 21:48:25 +00001952 Phi->setIncomingValue(i, Load);
1953 }
1954 } else {
1955 LoadInst *Load = new LoadInst(Alloca, "", I);
1956 I->replaceUsesOfWith(V, Load);
1957 }
1958 }
1959
1960 // Store the original value and the replacement value into the alloca
1961 StoreInst *Store = new StoreInst(V, Alloca);
1962 if (auto I = dyn_cast<Instruction>(V))
1963 Store->insertAfter(I);
1964 else
1965 Store->insertAfter(Alloca);
Philip Reames704e78b2015-04-10 22:34:56 +00001966
Philip Reames8531d8c2015-04-10 21:48:25 +00001967 // Normal return for invoke, or call return
1968 Instruction *Replacement = cast<Instruction>(Replacements[V].first);
1969 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement);
1970 // Unwind return for invoke only
1971 Replacement = cast_or_null<Instruction>(Replacements[V].second);
1972 if (Replacement)
1973 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement);
1974 }
1975
1976 // apply mem2reg to promote alloca to SSA
Philip Reames704e78b2015-04-10 22:34:56 +00001977 SmallVector<AllocaInst *, 16> Allocas;
Philip Reames8531d8c2015-04-10 21:48:25 +00001978 for (Value *V : ToSplit)
1979 Allocas.push_back(AllocaMap[V]);
1980 PromoteMemToReg(Allocas, DT);
Philip Reames8fe7f132015-06-26 22:47:37 +00001981
1982 // Update our tracking of live pointers and base mappings to account for the
1983 // changes we just made.
1984 for (Value *V : ToSplit) {
1985 auto &Elements = ElementMapping[V];
1986
1987 LiveSet.erase(V);
1988 LiveSet.insert(Elements.begin(), Elements.end());
1989 // We need to update the base mapping as well.
1990 assert(PointerToBase.count(V));
1991 Value *OldBase = PointerToBase[V];
1992 auto &BaseElements = ElementMapping[OldBase];
1993 PointerToBase.erase(V);
1994 assert(Elements.size() == BaseElements.size());
1995 for (unsigned i = 0; i < Elements.size(); i++) {
1996 Value *Elem = Elements[i];
1997 PointerToBase[Elem] = BaseElements[i];
1998 }
1999 }
Philip Reames8531d8c2015-04-10 21:48:25 +00002000}
2001
Igor Laevskye0317182015-05-19 15:59:05 +00002002// Helper function for the "rematerializeLiveValues". It walks use chain
2003// starting from the "CurrentValue" until it meets "BaseValue". Only "simple"
2004// values are visited (currently it is GEP's and casts). Returns true if it
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002005// successfully reached "BaseValue" and false otherwise.
Igor Laevskye0317182015-05-19 15:59:05 +00002006// Fills "ChainToBase" array with all visited values. "BaseValue" is not
2007// recorded.
2008static bool findRematerializableChainToBasePointer(
2009 SmallVectorImpl<Instruction*> &ChainToBase,
2010 Value *CurrentValue, Value *BaseValue) {
2011
2012 // We have found a base value
2013 if (CurrentValue == BaseValue) {
2014 return true;
2015 }
2016
2017 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
2018 ChainToBase.push_back(GEP);
2019 return findRematerializableChainToBasePointer(ChainToBase,
2020 GEP->getPointerOperand(),
2021 BaseValue);
2022 }
2023
2024 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
2025 Value *Def = CI->stripPointerCasts();
2026
2027 // This two checks are basically similar. First one is here for the
2028 // consistency with findBasePointers logic.
2029 assert(!isa<CastInst>(Def) && "not a pointer cast found");
2030 if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
2031 return false;
2032
2033 ChainToBase.push_back(CI);
2034 return findRematerializableChainToBasePointer(ChainToBase, Def, BaseValue);
2035 }
2036
2037 // Not supported instruction in the chain
2038 return false;
2039}
2040
2041// Helper function for the "rematerializeLiveValues". Compute cost of the use
2042// chain we are going to rematerialize.
2043static unsigned
2044chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
2045 TargetTransformInfo &TTI) {
2046 unsigned Cost = 0;
2047
2048 for (Instruction *Instr : Chain) {
2049 if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
2050 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
2051 "non noop cast is found during rematerialization");
2052
2053 Type *SrcTy = CI->getOperand(0)->getType();
2054 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy);
2055
2056 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
2057 // Cost of the address calculation
2058 Type *ValTy = GEP->getPointerOperandType()->getPointerElementType();
2059 Cost += TTI.getAddressComputationCost(ValTy);
2060
2061 // And cost of the GEP itself
2062 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
2063 // allowed for the external usage)
2064 if (!GEP->hasAllConstantIndices())
2065 Cost += 2;
2066
2067 } else {
2068 llvm_unreachable("unsupported instruciton type during rematerialization");
2069 }
2070 }
2071
2072 return Cost;
2073}
2074
2075// From the statepoint liveset pick values that are cheaper to recompute then to
2076// relocate. Remove this values from the liveset, rematerialize them after
2077// statepoint and record them in "Info" structure. Note that similar to
2078// relocated values we don't do any user adjustments here.
2079static void rematerializeLiveValues(CallSite CS,
2080 PartiallyConstructedSafepointRecord &Info,
2081 TargetTransformInfo &TTI) {
Aaron Ballmanff7d4fa2015-05-20 14:53:50 +00002082 const unsigned int ChainLengthThreshold = 10;
NAKAMURA Takumifb3bd712015-05-25 01:43:23 +00002083
Igor Laevskye0317182015-05-19 15:59:05 +00002084 // Record values we are going to delete from this statepoint live set.
2085 // We can not di this in following loop due to iterator invalidation.
2086 SmallVector<Value *, 32> LiveValuesToBeDeleted;
2087
2088 for (Value *LiveValue: Info.liveset) {
2089 // For each live pointer find it's defining chain
2090 SmallVector<Instruction *, 3> ChainToBase;
Philip Reames74ce2e72015-07-21 16:51:17 +00002091 assert(Info.PointerToBase.count(LiveValue));
Igor Laevskye0317182015-05-19 15:59:05 +00002092 bool FoundChain =
2093 findRematerializableChainToBasePointer(ChainToBase,
2094 LiveValue,
2095 Info.PointerToBase[LiveValue]);
2096 // Nothing to do, or chain is too long
2097 if (!FoundChain ||
2098 ChainToBase.size() == 0 ||
2099 ChainToBase.size() > ChainLengthThreshold)
2100 continue;
2101
2102 // Compute cost of this chain
2103 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
2104 // TODO: We can also account for cases when we will be able to remove some
2105 // of the rematerialized values by later optimization passes. I.e if
2106 // we rematerialized several intersecting chains. Or if original values
2107 // don't have any uses besides this statepoint.
2108
2109 // For invokes we need to rematerialize each chain twice - for normal and
2110 // for unwind basic blocks. Model this by multiplying cost by two.
2111 if (CS.isInvoke()) {
2112 Cost *= 2;
2113 }
2114 // If it's too expensive - skip it
2115 if (Cost >= RematerializationThreshold)
2116 continue;
2117
2118 // Remove value from the live set
2119 LiveValuesToBeDeleted.push_back(LiveValue);
2120
2121 // Clone instructions and record them inside "Info" structure
2122
2123 // Walk backwards to visit top-most instructions first
2124 std::reverse(ChainToBase.begin(), ChainToBase.end());
2125
2126 // Utility function which clones all instructions from "ChainToBase"
2127 // and inserts them before "InsertBefore". Returns rematerialized value
2128 // which should be used after statepoint.
2129 auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) {
2130 Instruction *LastClonedValue = nullptr;
2131 Instruction *LastValue = nullptr;
2132 for (Instruction *Instr: ChainToBase) {
2133 // Only GEP's and casts are suported as we need to be careful to not
2134 // introduce any new uses of pointers not in the liveset.
2135 // Note that it's fine to introduce new uses of pointers which were
2136 // otherwise not used after this statepoint.
2137 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
2138
2139 Instruction *ClonedValue = Instr->clone();
2140 ClonedValue->insertBefore(InsertBefore);
2141 ClonedValue->setName(Instr->getName() + ".remat");
2142
2143 // If it is not first instruction in the chain then it uses previously
2144 // cloned value. We should update it to use cloned value.
2145 if (LastClonedValue) {
2146 assert(LastValue);
2147 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
2148#ifndef NDEBUG
Igor Laevskyd83f6972015-05-21 13:02:14 +00002149 // Assert that cloned instruction does not use any instructions from
2150 // this chain other than LastClonedValue
2151 for (auto OpValue : ClonedValue->operand_values()) {
2152 assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) ==
2153 ChainToBase.end() &&
2154 "incorrect use in rematerialization chain");
Igor Laevskye0317182015-05-19 15:59:05 +00002155 }
2156#endif
2157 }
2158
2159 LastClonedValue = ClonedValue;
2160 LastValue = Instr;
2161 }
2162 assert(LastClonedValue);
2163 return LastClonedValue;
2164 };
2165
2166 // Different cases for calls and invokes. For invokes we need to clone
2167 // instructions both on normal and unwind path.
2168 if (CS.isCall()) {
2169 Instruction *InsertBefore = CS.getInstruction()->getNextNode();
2170 assert(InsertBefore);
2171 Instruction *RematerializedValue = rematerializeChain(InsertBefore);
2172 Info.RematerializedValues[RematerializedValue] = LiveValue;
2173 } else {
2174 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction());
2175
2176 Instruction *NormalInsertBefore =
2177 Invoke->getNormalDest()->getFirstInsertionPt();
2178 Instruction *UnwindInsertBefore =
2179 Invoke->getUnwindDest()->getFirstInsertionPt();
2180
2181 Instruction *NormalRematerializedValue =
2182 rematerializeChain(NormalInsertBefore);
2183 Instruction *UnwindRematerializedValue =
2184 rematerializeChain(UnwindInsertBefore);
2185
2186 Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
2187 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
2188 }
2189 }
2190
2191 // Remove rematerializaed values from the live set
2192 for (auto LiveValue: LiveValuesToBeDeleted) {
2193 Info.liveset.erase(LiveValue);
2194 }
2195}
2196
Philip Reamesd16a9b12015-02-20 01:06:44 +00002197static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P,
Philip Reamesd2b66462015-02-20 22:39:41 +00002198 SmallVectorImpl<CallSite> &toUpdate) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00002199#ifndef NDEBUG
2200 // sanity check the input
2201 std::set<CallSite> uniqued;
2202 uniqued.insert(toUpdate.begin(), toUpdate.end());
2203 assert(uniqued.size() == toUpdate.size() && "no duplicates please!");
2204
2205 for (size_t i = 0; i < toUpdate.size(); i++) {
2206 CallSite &CS = toUpdate[i];
2207 assert(CS.getInstruction()->getParent()->getParent() == &F);
2208 assert(isStatepoint(CS) && "expected to already be a deopt statepoint");
2209 }
2210#endif
2211
Philip Reames69e51ca2015-04-13 18:07:21 +00002212 // When inserting gc.relocates for invokes, we need to be able to insert at
2213 // the top of the successor blocks. See the comment on
2214 // normalForInvokeSafepoint on exactly what is needed. Note that this step
Philip Reamesf209a152015-04-13 20:00:30 +00002215 // may restructure the CFG.
2216 for (CallSite CS : toUpdate) {
2217 if (!CS.isInvoke())
2218 continue;
2219 InvokeInst *invoke = cast<InvokeInst>(CS.getInstruction());
2220 normalizeForInvokeSafepoint(invoke->getNormalDest(), invoke->getParent(),
Sanjoy Dasea45f0e2015-06-02 22:33:34 +00002221 DT);
Philip Reamesf209a152015-04-13 20:00:30 +00002222 normalizeForInvokeSafepoint(invoke->getUnwindDest(), invoke->getParent(),
Sanjoy Dasea45f0e2015-06-02 22:33:34 +00002223 DT);
Philip Reamesf209a152015-04-13 20:00:30 +00002224 }
Philip Reames69e51ca2015-04-13 18:07:21 +00002225
Philip Reamesd16a9b12015-02-20 01:06:44 +00002226 // A list of dummy calls added to the IR to keep various values obviously
2227 // live in the IR. We'll remove all of these when done.
Philip Reamesd2b66462015-02-20 22:39:41 +00002228 SmallVector<CallInst *, 64> holders;
Philip Reamesd16a9b12015-02-20 01:06:44 +00002229
2230 // Insert a dummy call with all of the arguments to the vm_state we'll need
2231 // for the actual safepoint insertion. This ensures reference arguments in
2232 // the deopt argument list are considered live through the safepoint (and
2233 // thus makes sure they get relocated.)
2234 for (size_t i = 0; i < toUpdate.size(); i++) {
2235 CallSite &CS = toUpdate[i];
2236 Statepoint StatepointCS(CS);
2237
2238 SmallVector<Value *, 64> DeoptValues;
2239 for (Use &U : StatepointCS.vm_state_args()) {
2240 Value *Arg = cast<Value>(&U);
Philip Reames8531d8c2015-04-10 21:48:25 +00002241 assert(!isUnhandledGCPointerType(Arg->getType()) &&
2242 "support for FCA unimplemented");
2243 if (isHandledGCPointerType(Arg->getType()))
Philip Reamesd16a9b12015-02-20 01:06:44 +00002244 DeoptValues.push_back(Arg);
2245 }
2246 insertUseHolderAfter(CS, DeoptValues, holders);
2247 }
2248
Philip Reamesd2b66462015-02-20 22:39:41 +00002249 SmallVector<struct PartiallyConstructedSafepointRecord, 64> records;
Philip Reamesd16a9b12015-02-20 01:06:44 +00002250 records.reserve(toUpdate.size());
2251 for (size_t i = 0; i < toUpdate.size(); i++) {
2252 struct PartiallyConstructedSafepointRecord info;
2253 records.push_back(info);
2254 }
2255 assert(records.size() == toUpdate.size());
2256
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002257 // A) Identify all gc pointers which are statically live at the given call
Philip Reamesd16a9b12015-02-20 01:06:44 +00002258 // site.
2259 findLiveReferences(F, DT, P, toUpdate, records);
2260
2261 // B) Find the base pointers for each live pointer
2262 /* scope for caching */ {
2263 // Cache the 'defining value' relation used in the computation and
2264 // insertion of base phis and selects. This ensures that we don't insert
2265 // large numbers of duplicate base_phis.
2266 DefiningValueMapTy DVCache;
2267
2268 for (size_t i = 0; i < records.size(); i++) {
2269 struct PartiallyConstructedSafepointRecord &info = records[i];
2270 CallSite &CS = toUpdate[i];
2271 findBasePointers(DT, DVCache, CS, info);
2272 }
2273 } // end of cache scope
2274
2275 // The base phi insertion logic (for any safepoint) may have inserted new
2276 // instructions which are now live at some safepoint. The simplest such
2277 // example is:
2278 // loop:
2279 // phi a <-- will be a new base_phi here
2280 // safepoint 1 <-- that needs to be live here
2281 // gep a + 1
2282 // safepoint 2
2283 // br loop
Philip Reamesd16a9b12015-02-20 01:06:44 +00002284 // We insert some dummy calls after each safepoint to definitely hold live
2285 // the base pointers which were identified for that safepoint. We'll then
2286 // ask liveness for _every_ base inserted to see what is now live. Then we
2287 // remove the dummy calls.
2288 holders.reserve(holders.size() + records.size());
2289 for (size_t i = 0; i < records.size(); i++) {
2290 struct PartiallyConstructedSafepointRecord &info = records[i];
2291 CallSite &CS = toUpdate[i];
2292
2293 SmallVector<Value *, 128> Bases;
Philip Reamesf2041322015-02-20 19:26:04 +00002294 for (auto Pair : info.PointerToBase) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00002295 Bases.push_back(Pair.second);
2296 }
2297 insertUseHolderAfter(CS, Bases, holders);
2298 }
2299
Philip Reamesdf1ef082015-04-10 22:53:14 +00002300 // By selecting base pointers, we've effectively inserted new uses. Thus, we
2301 // need to rerun liveness. We may *also* have inserted new defs, but that's
2302 // not the key issue.
2303 recomputeLiveInValues(F, DT, P, toUpdate, records);
Philip Reamesd16a9b12015-02-20 01:06:44 +00002304
Philip Reamesd16a9b12015-02-20 01:06:44 +00002305 if (PrintBasePointers) {
2306 for (size_t i = 0; i < records.size(); i++) {
2307 struct PartiallyConstructedSafepointRecord &info = records[i];
2308 errs() << "Base Pairs: (w/Relocation)\n";
Philip Reamesf2041322015-02-20 19:26:04 +00002309 for (auto Pair : info.PointerToBase) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00002310 errs() << " derived %" << Pair.first->getName() << " base %"
2311 << Pair.second->getName() << "\n";
2312 }
2313 }
2314 }
2315 for (size_t i = 0; i < holders.size(); i++) {
2316 holders[i]->eraseFromParent();
2317 holders[i] = nullptr;
2318 }
2319 holders.clear();
2320
Philip Reames8fe7f132015-06-26 22:47:37 +00002321 // Do a limited scalarization of any live at safepoint vector values which
2322 // contain pointers. This enables this pass to run after vectorization at
2323 // the cost of some possible performance loss. TODO: it would be nice to
2324 // natively support vectors all the way through the backend so we don't need
2325 // to scalarize here.
2326 for (size_t i = 0; i < records.size(); i++) {
2327 struct PartiallyConstructedSafepointRecord &info = records[i];
2328 Instruction *statepoint = toUpdate[i].getInstruction();
2329 splitVectorValues(cast<Instruction>(statepoint), info.liveset,
2330 info.PointerToBase, DT);
2331 }
2332
Igor Laevskye0317182015-05-19 15:59:05 +00002333 // In order to reduce live set of statepoint we might choose to rematerialize
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002334 // some values instead of relocating them. This is purely an optimization and
Igor Laevskye0317182015-05-19 15:59:05 +00002335 // does not influence correctness.
2336 TargetTransformInfo &TTI =
2337 P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2338
NAKAMURA Takumifb3bd712015-05-25 01:43:23 +00002339 for (size_t i = 0; i < records.size(); i++) {
Igor Laevskye0317182015-05-19 15:59:05 +00002340 struct PartiallyConstructedSafepointRecord &info = records[i];
2341 CallSite &CS = toUpdate[i];
2342
2343 rematerializeLiveValues(CS, info, TTI);
2344 }
2345
Philip Reamesd16a9b12015-02-20 01:06:44 +00002346 // Now run through and replace the existing statepoints with new ones with
2347 // the live variables listed. We do not yet update uses of the values being
2348 // relocated. We have references to live variables that need to
2349 // survive to the last iteration of this loop. (By construction, the
2350 // previous statepoint can not be a live variable, thus we can and remove
2351 // the old statepoint calls as we go.)
2352 for (size_t i = 0; i < records.size(); i++) {
2353 struct PartiallyConstructedSafepointRecord &info = records[i];
2354 CallSite &CS = toUpdate[i];
2355 makeStatepointExplicit(DT, CS, P, info);
2356 }
2357 toUpdate.clear(); // prevent accident use of invalid CallSites
2358
Philip Reamesd16a9b12015-02-20 01:06:44 +00002359 // Do all the fixups of the original live variables to their relocated selves
Philip Reamesd2b66462015-02-20 22:39:41 +00002360 SmallVector<Value *, 128> live;
Philip Reamesd16a9b12015-02-20 01:06:44 +00002361 for (size_t i = 0; i < records.size(); i++) {
2362 struct PartiallyConstructedSafepointRecord &info = records[i];
2363 // We can't simply save the live set from the original insertion. One of
2364 // the live values might be the result of a call which needs a safepoint.
2365 // That Value* no longer exists and we need to use the new gc_result.
2366 // Thankfully, the liveset is embedded in the statepoint (and updated), so
2367 // we just grab that.
Philip Reames0a3240f2015-02-20 21:34:11 +00002368 Statepoint statepoint(info.StatepointToken);
Philip Reamesd16a9b12015-02-20 01:06:44 +00002369 live.insert(live.end(), statepoint.gc_args_begin(),
2370 statepoint.gc_args_end());
Philip Reames9a2e01d2015-04-13 17:35:55 +00002371#ifndef NDEBUG
2372 // Do some basic sanity checks on our liveness results before performing
2373 // relocation. Relocation can and will turn mistakes in liveness results
2374 // into non-sensical code which is must harder to debug.
2375 // TODO: It would be nice to test consistency as well
2376 assert(DT.isReachableFromEntry(info.StatepointToken->getParent()) &&
2377 "statepoint must be reachable or liveness is meaningless");
2378 for (Value *V : statepoint.gc_args()) {
2379 if (!isa<Instruction>(V))
2380 // Non-instruction values trivial dominate all possible uses
2381 continue;
2382 auto LiveInst = cast<Instruction>(V);
2383 assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2384 "unreachable values should never be live");
2385 assert(DT.dominates(LiveInst, info.StatepointToken) &&
2386 "basic SSA liveness expectation violated by liveness analysis");
2387 }
2388#endif
Philip Reamesd16a9b12015-02-20 01:06:44 +00002389 }
2390 unique_unsorted(live);
2391
Nick Lewyckyeb3231e2015-02-20 07:14:02 +00002392#ifndef NDEBUG
Philip Reamesd16a9b12015-02-20 01:06:44 +00002393 // sanity check
2394 for (auto ptr : live) {
2395 assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type");
2396 }
Nick Lewyckyeb3231e2015-02-20 07:14:02 +00002397#endif
Philip Reamesd16a9b12015-02-20 01:06:44 +00002398
2399 relocationViaAlloca(F, DT, live, records);
2400 return !records.empty();
2401}
2402
Sanjoy Das353a19e2015-06-02 22:33:37 +00002403// Handles both return values and arguments for Functions and CallSites.
2404template <typename AttrHolder>
2405static void RemoveDerefAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
2406 unsigned Index) {
2407 AttrBuilder R;
2408 if (AH.getDereferenceableBytes(Index))
2409 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
2410 AH.getDereferenceableBytes(Index)));
2411 if (AH.getDereferenceableOrNullBytes(Index))
2412 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
2413 AH.getDereferenceableOrNullBytes(Index)));
2414
2415 if (!R.empty())
2416 AH.setAttributes(AH.getAttributes().removeAttributes(
2417 Ctx, Index, AttributeSet::get(Ctx, Index, R)));
Vasileios Kalintiris9f77f612015-06-03 08:51:30 +00002418}
Sanjoy Das353a19e2015-06-02 22:33:37 +00002419
2420void
2421RewriteStatepointsForGC::stripDereferenceabilityInfoFromPrototype(Function &F) {
2422 LLVMContext &Ctx = F.getContext();
2423
2424 for (Argument &A : F.args())
2425 if (isa<PointerType>(A.getType()))
2426 RemoveDerefAttrAtIndex(Ctx, F, A.getArgNo() + 1);
2427
2428 if (isa<PointerType>(F.getReturnType()))
2429 RemoveDerefAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex);
2430}
2431
2432void RewriteStatepointsForGC::stripDereferenceabilityInfoFromBody(Function &F) {
2433 if (F.empty())
2434 return;
2435
2436 LLVMContext &Ctx = F.getContext();
2437 MDBuilder Builder(Ctx);
2438
Nico Rieck78199512015-08-06 19:10:45 +00002439 for (Instruction &I : instructions(F)) {
Sanjoy Das353a19e2015-06-02 22:33:37 +00002440 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) {
2441 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!");
2442 bool IsImmutableTBAA =
2443 MD->getNumOperands() == 4 &&
2444 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1;
2445
2446 if (!IsImmutableTBAA)
2447 continue; // no work to do, MD_tbaa is already marked mutable
2448
2449 MDNode *Base = cast<MDNode>(MD->getOperand(0));
2450 MDNode *Access = cast<MDNode>(MD->getOperand(1));
2451 uint64_t Offset =
2452 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue();
2453
2454 MDNode *MutableTBAA =
2455 Builder.createTBAAStructTagNode(Base, Access, Offset);
2456 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2457 }
2458
2459 if (CallSite CS = CallSite(&I)) {
2460 for (int i = 0, e = CS.arg_size(); i != e; i++)
2461 if (isa<PointerType>(CS.getArgument(i)->getType()))
2462 RemoveDerefAttrAtIndex(Ctx, CS, i + 1);
2463 if (isa<PointerType>(CS.getType()))
2464 RemoveDerefAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex);
2465 }
2466 }
2467}
2468
Philip Reamesd16a9b12015-02-20 01:06:44 +00002469/// Returns true if this function should be rewritten by this pass. The main
2470/// point of this function is as an extension point for custom logic.
2471static bool shouldRewriteStatepointsIn(Function &F) {
2472 // TODO: This should check the GCStrategy
Philip Reames2ef029c2015-02-20 18:56:14 +00002473 if (F.hasGC()) {
NAKAMURA Takumifb3bd712015-05-25 01:43:23 +00002474 const char *FunctionGCName = F.getGC();
2475 const StringRef StatepointExampleName("statepoint-example");
2476 const StringRef CoreCLRName("coreclr");
2477 return (StatepointExampleName == FunctionGCName) ||
NAKAMURA Takumi5582a6a2015-05-25 01:43:34 +00002478 (CoreCLRName == FunctionGCName);
2479 } else
Philip Reames2ef029c2015-02-20 18:56:14 +00002480 return false;
Philip Reamesd16a9b12015-02-20 01:06:44 +00002481}
2482
Sanjoy Das353a19e2015-06-02 22:33:37 +00002483void RewriteStatepointsForGC::stripDereferenceabilityInfo(Module &M) {
2484#ifndef NDEBUG
2485 assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) &&
2486 "precondition!");
2487#endif
2488
2489 for (Function &F : M)
2490 stripDereferenceabilityInfoFromPrototype(F);
2491
2492 for (Function &F : M)
2493 stripDereferenceabilityInfoFromBody(F);
2494}
2495
Philip Reamesd16a9b12015-02-20 01:06:44 +00002496bool RewriteStatepointsForGC::runOnFunction(Function &F) {
2497 // Nothing to do for declarations.
2498 if (F.isDeclaration() || F.empty())
2499 return false;
2500
2501 // Policy choice says not to rewrite - the most common reason is that we're
2502 // compiling code without a GCStrategy.
2503 if (!shouldRewriteStatepointsIn(F))
2504 return false;
2505
Sanjoy Dasea45f0e2015-06-02 22:33:34 +00002506 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
Philip Reames704e78b2015-04-10 22:34:56 +00002507
Philip Reames85b36a82015-04-10 22:07:04 +00002508 // Gather all the statepoints which need rewritten. Be careful to only
2509 // consider those in reachable code since we need to ask dominance queries
2510 // when rewriting. We'll delete the unreachable ones in a moment.
Philip Reamesd2b66462015-02-20 22:39:41 +00002511 SmallVector<CallSite, 64> ParsePointNeeded;
Philip Reamesf66d7372015-04-10 22:16:58 +00002512 bool HasUnreachableStatepoint = false;
Nico Rieck78199512015-08-06 19:10:45 +00002513 for (Instruction &I : instructions(F)) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00002514 // TODO: only the ones with the flag set!
Philip Reames85b36a82015-04-10 22:07:04 +00002515 if (isStatepoint(I)) {
2516 if (DT.isReachableFromEntry(I.getParent()))
2517 ParsePointNeeded.push_back(CallSite(&I));
2518 else
Philip Reamesf66d7372015-04-10 22:16:58 +00002519 HasUnreachableStatepoint = true;
Philip Reames85b36a82015-04-10 22:07:04 +00002520 }
Philip Reamesd16a9b12015-02-20 01:06:44 +00002521 }
2522
Philip Reames85b36a82015-04-10 22:07:04 +00002523 bool MadeChange = false;
Philip Reames704e78b2015-04-10 22:34:56 +00002524
Philip Reames85b36a82015-04-10 22:07:04 +00002525 // Delete any unreachable statepoints so that we don't have unrewritten
2526 // statepoints surviving this pass. This makes testing easier and the
2527 // resulting IR less confusing to human readers. Rather than be fancy, we
2528 // just reuse a utility function which removes the unreachable blocks.
Philip Reamesf66d7372015-04-10 22:16:58 +00002529 if (HasUnreachableStatepoint)
Philip Reames85b36a82015-04-10 22:07:04 +00002530 MadeChange |= removeUnreachableBlocks(F);
2531
Philip Reamesd16a9b12015-02-20 01:06:44 +00002532 // Return early if no work to do.
2533 if (ParsePointNeeded.empty())
Philip Reames85b36a82015-04-10 22:07:04 +00002534 return MadeChange;
Philip Reamesd16a9b12015-02-20 01:06:44 +00002535
Philip Reames85b36a82015-04-10 22:07:04 +00002536 // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2537 // These are created by LCSSA. They have the effect of increasing the size
2538 // of liveness sets for no good reason. It may be harder to do this post
2539 // insertion since relocations and base phis can confuse things.
2540 for (BasicBlock &BB : F)
2541 if (BB.getUniquePredecessor()) {
2542 MadeChange = true;
2543 FoldSingleEntryPHINodes(&BB);
2544 }
2545
Philip Reames971dc3a2015-08-12 22:11:45 +00002546 // Before we start introducing relocations, we want to tweak the IR a bit to
2547 // avoid unfortunate code generation effects. The main example is that we
2548 // want to try to make sure the comparison feeding a branch is after any
2549 // safepoints. Otherwise, we end up with a comparison of pre-relocation
2550 // values feeding a branch after relocation. This is semantically correct,
2551 // but results in extra register pressure since both the pre-relocation and
2552 // post-relocation copies must be available in registers. For code without
2553 // relocations this is handled elsewhere, but teaching the scheduler to
2554 // reverse the transform we're about to do would be slightly complex.
2555 // Note: This may extend the live range of the inputs to the icmp and thus
2556 // increase the liveset of any statepoint we move over. This is profitable
2557 // as long as all statepoints are in rare blocks. If we had in-register
2558 // lowering for live values this would be a much safer transform.
2559 auto getConditionInst = [](TerminatorInst *TI) -> Instruction* {
2560 if (auto *BI = dyn_cast<BranchInst>(TI))
2561 if (BI->isConditional())
2562 return dyn_cast<Instruction>(BI->getCondition());
2563 // TODO: Extend this to handle switches
2564 return nullptr;
2565 };
2566 for (BasicBlock &BB : F) {
2567 TerminatorInst *TI = BB.getTerminator();
2568 if (auto *Cond = getConditionInst(TI))
2569 // TODO: Handle more than just ICmps here. We should be able to move
2570 // most instructions without side effects or memory access.
2571 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
2572 MadeChange = true;
2573 Cond->moveBefore(TI);
2574 }
2575 }
2576
Philip Reames85b36a82015-04-10 22:07:04 +00002577 MadeChange |= insertParsePoints(F, DT, this, ParsePointNeeded);
2578 return MadeChange;
Philip Reamesd16a9b12015-02-20 01:06:44 +00002579}
Philip Reamesdf1ef082015-04-10 22:53:14 +00002580
2581// liveness computation via standard dataflow
2582// -------------------------------------------------------------------
2583
2584// TODO: Consider using bitvectors for liveness, the set of potentially
2585// interesting values should be small and easy to pre-compute.
2586
Philip Reamesdf1ef082015-04-10 22:53:14 +00002587/// Compute the live-in set for the location rbegin starting from
2588/// the live-out set of the basic block
2589static void computeLiveInValues(BasicBlock::reverse_iterator rbegin,
2590 BasicBlock::reverse_iterator rend,
2591 DenseSet<Value *> &LiveTmp) {
2592
2593 for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) {
2594 Instruction *I = &*ritr;
2595
2596 // KILL/Def - Remove this definition from LiveIn
2597 LiveTmp.erase(I);
2598
2599 // Don't consider *uses* in PHI nodes, we handle their contribution to
2600 // predecessor blocks when we seed the LiveOut sets
2601 if (isa<PHINode>(I))
2602 continue;
2603
2604 // USE - Add to the LiveIn set for this instruction
2605 for (Value *V : I->operands()) {
2606 assert(!isUnhandledGCPointerType(V->getType()) &&
2607 "support for FCA unimplemented");
Philip Reames63294cb2015-04-26 19:48:03 +00002608 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2609 // The choice to exclude all things constant here is slightly subtle.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002610 // There are two independent reasons:
Philip Reames63294cb2015-04-26 19:48:03 +00002611 // - We assume that things which are constant (from LLVM's definition)
2612 // do not move at runtime. For example, the address of a global
2613 // variable is fixed, even though it's contents may not be.
2614 // - Second, we can't disallow arbitrary inttoptr constants even
2615 // if the language frontend does. Optimization passes are free to
2616 // locally exploit facts without respect to global reachability. This
2617 // can create sections of code which are dynamically unreachable and
2618 // contain just about anything. (see constants.ll in tests)
Philip Reamesdf1ef082015-04-10 22:53:14 +00002619 LiveTmp.insert(V);
2620 }
2621 }
2622 }
2623}
2624
2625static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) {
2626
2627 for (BasicBlock *Succ : successors(BB)) {
2628 const BasicBlock::iterator E(Succ->getFirstNonPHI());
2629 for (BasicBlock::iterator I = Succ->begin(); I != E; I++) {
2630 PHINode *Phi = cast<PHINode>(&*I);
2631 Value *V = Phi->getIncomingValueForBlock(BB);
2632 assert(!isUnhandledGCPointerType(V->getType()) &&
2633 "support for FCA unimplemented");
Philip Reames63294cb2015-04-26 19:48:03 +00002634 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
Philip Reamesdf1ef082015-04-10 22:53:14 +00002635 LiveTmp.insert(V);
2636 }
2637 }
2638 }
2639}
2640
2641static DenseSet<Value *> computeKillSet(BasicBlock *BB) {
2642 DenseSet<Value *> KillSet;
2643 for (Instruction &I : *BB)
2644 if (isHandledGCPointerType(I.getType()))
2645 KillSet.insert(&I);
2646 return KillSet;
2647}
2648
Philip Reames9638ff92015-04-11 00:06:47 +00002649#ifndef NDEBUG
Philip Reamesdf1ef082015-04-10 22:53:14 +00002650/// Check that the items in 'Live' dominate 'TI'. This is used as a basic
2651/// sanity check for the liveness computation.
2652static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live,
2653 TerminatorInst *TI, bool TermOkay = false) {
Philip Reamesdf1ef082015-04-10 22:53:14 +00002654 for (Value *V : Live) {
2655 if (auto *I = dyn_cast<Instruction>(V)) {
2656 // The terminator can be a member of the LiveOut set. LLVM's definition
2657 // of instruction dominance states that V does not dominate itself. As
2658 // such, we need to special case this to allow it.
2659 if (TermOkay && TI == I)
2660 continue;
2661 assert(DT.dominates(I, TI) &&
2662 "basic SSA liveness expectation violated by liveness analysis");
2663 }
2664 }
Philip Reamesdf1ef082015-04-10 22:53:14 +00002665}
2666
2667/// Check that all the liveness sets used during the computation of liveness
2668/// obey basic SSA properties. This is useful for finding cases where we miss
2669/// a def.
2670static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
2671 BasicBlock &BB) {
2672 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
2673 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
2674 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
2675}
Philip Reames9638ff92015-04-11 00:06:47 +00002676#endif
Philip Reamesdf1ef082015-04-10 22:53:14 +00002677
2678static void computeLiveInValues(DominatorTree &DT, Function &F,
2679 GCPtrLivenessData &Data) {
2680
Philip Reames4d80ede2015-04-10 23:11:26 +00002681 SmallSetVector<BasicBlock *, 200> Worklist;
Philip Reamesdf1ef082015-04-10 22:53:14 +00002682 auto AddPredsToWorklist = [&](BasicBlock *BB) {
Philip Reames4d80ede2015-04-10 23:11:26 +00002683 // We use a SetVector so that we don't have duplicates in the worklist.
2684 Worklist.insert(pred_begin(BB), pred_end(BB));
Philip Reamesdf1ef082015-04-10 22:53:14 +00002685 };
2686 auto NextItem = [&]() {
2687 BasicBlock *BB = Worklist.back();
2688 Worklist.pop_back();
Philip Reamesdf1ef082015-04-10 22:53:14 +00002689 return BB;
2690 };
2691
2692 // Seed the liveness for each individual block
2693 for (BasicBlock &BB : F) {
2694 Data.KillSet[&BB] = computeKillSet(&BB);
2695 Data.LiveSet[&BB].clear();
2696 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
2697
2698#ifndef NDEBUG
2699 for (Value *Kill : Data.KillSet[&BB])
2700 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
2701#endif
2702
2703 Data.LiveOut[&BB] = DenseSet<Value *>();
2704 computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
2705 Data.LiveIn[&BB] = Data.LiveSet[&BB];
2706 set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]);
2707 set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]);
2708 if (!Data.LiveIn[&BB].empty())
2709 AddPredsToWorklist(&BB);
2710 }
2711
2712 // Propagate that liveness until stable
2713 while (!Worklist.empty()) {
2714 BasicBlock *BB = NextItem();
2715
2716 // Compute our new liveout set, then exit early if it hasn't changed
2717 // despite the contribution of our successor.
2718 DenseSet<Value *> LiveOut = Data.LiveOut[BB];
2719 const auto OldLiveOutSize = LiveOut.size();
2720 for (BasicBlock *Succ : successors(BB)) {
2721 assert(Data.LiveIn.count(Succ));
2722 set_union(LiveOut, Data.LiveIn[Succ]);
2723 }
2724 // assert OutLiveOut is a subset of LiveOut
2725 if (OldLiveOutSize == LiveOut.size()) {
2726 // If the sets are the same size, then we didn't actually add anything
2727 // when unioning our successors LiveIn Thus, the LiveIn of this block
2728 // hasn't changed.
2729 continue;
2730 }
2731 Data.LiveOut[BB] = LiveOut;
2732
2733 // Apply the effects of this basic block
2734 DenseSet<Value *> LiveTmp = LiveOut;
2735 set_union(LiveTmp, Data.LiveSet[BB]);
2736 set_subtract(LiveTmp, Data.KillSet[BB]);
2737
2738 assert(Data.LiveIn.count(BB));
2739 const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB];
2740 // assert: OldLiveIn is a subset of LiveTmp
2741 if (OldLiveIn.size() != LiveTmp.size()) {
2742 Data.LiveIn[BB] = LiveTmp;
2743 AddPredsToWorklist(BB);
2744 }
2745 } // while( !worklist.empty() )
2746
2747#ifndef NDEBUG
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002748 // Sanity check our output against SSA properties. This helps catch any
Philip Reamesdf1ef082015-04-10 22:53:14 +00002749 // missing kills during the above iteration.
2750 for (BasicBlock &BB : F) {
2751 checkBasicSSA(DT, Data, BB);
2752 }
2753#endif
2754}
2755
2756static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
2757 StatepointLiveSetTy &Out) {
2758
2759 BasicBlock *BB = Inst->getParent();
2760
2761 // Note: The copy is intentional and required
2762 assert(Data.LiveOut.count(BB));
2763 DenseSet<Value *> LiveOut = Data.LiveOut[BB];
2764
2765 // We want to handle the statepoint itself oddly. It's
2766 // call result is not live (normal), nor are it's arguments
2767 // (unless they're used again later). This adjustment is
2768 // specifically what we need to relocate
2769 BasicBlock::reverse_iterator rend(Inst);
2770 computeLiveInValues(BB->rbegin(), rend, LiveOut);
2771 LiveOut.erase(Inst);
2772 Out.insert(LiveOut.begin(), LiveOut.end());
2773}
2774
2775static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
2776 const CallSite &CS,
2777 PartiallyConstructedSafepointRecord &Info) {
2778 Instruction *Inst = CS.getInstruction();
2779 StatepointLiveSetTy Updated;
2780 findLiveSetAtInst(Inst, RevisedLivenessData, Updated);
2781
2782#ifndef NDEBUG
2783 DenseSet<Value *> Bases;
2784 for (auto KVPair : Info.PointerToBase) {
2785 Bases.insert(KVPair.second);
2786 }
2787#endif
2788 // We may have base pointers which are now live that weren't before. We need
2789 // to update the PointerToBase structure to reflect this.
2790 for (auto V : Updated)
2791 if (!Info.PointerToBase.count(V)) {
2792 assert(Bases.count(V) && "can't find base for unexpected live value");
2793 Info.PointerToBase[V] = V;
2794 continue;
2795 }
2796
2797#ifndef NDEBUG
2798 for (auto V : Updated) {
2799 assert(Info.PointerToBase.count(V) &&
2800 "must be able to find base for live value");
2801 }
2802#endif
2803
2804 // Remove any stale base mappings - this can happen since our liveness is
2805 // more precise then the one inherent in the base pointer analysis
2806 DenseSet<Value *> ToErase;
2807 for (auto KVPair : Info.PointerToBase)
2808 if (!Updated.count(KVPair.first))
2809 ToErase.insert(KVPair.first);
2810 for (auto V : ToErase)
2811 Info.PointerToBase.erase(V);
2812
2813#ifndef NDEBUG
2814 for (auto KVPair : Info.PointerToBase)
2815 assert(Updated.count(KVPair.first) && "record for non-live value");
2816#endif
2817
2818 Info.liveset = Updated;
2819}