blob: e38622a569f4c2924135c6260ac3d1757da71de4 [file] [log] [blame]
Chris Lattnere6794492002-08-12 21:17:25 +00001//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnerca081252001-12-14 16:52:21 +00009//
10// InstructionCombining - Combine instructions to form fewer, simple
Chris Lattner99f48c62002-09-02 04:59:56 +000011// instructions. This pass does not modify the CFG This pass is where algebraic
12// simplification happens.
Chris Lattnerca081252001-12-14 16:52:21 +000013//
14// This pass combines things like:
Chris Lattner07418422007-03-18 22:51:34 +000015// %Y = add i32 %X, 1
16// %Z = add i32 %Y, 1
Chris Lattnerca081252001-12-14 16:52:21 +000017// into:
Chris Lattner07418422007-03-18 22:51:34 +000018// %Z = add i32 %X, 2
Chris Lattnerca081252001-12-14 16:52:21 +000019//
20// This is a simple worklist driven algorithm.
21//
Chris Lattner216c7b82003-09-10 05:29:43 +000022// This pass guarantees that the following canonicalizations are performed on
Chris Lattnerbfb1d032003-07-23 21:41:57 +000023// the program:
24// 1. If a binary operator has a constant operand, it is moved to the RHS
Chris Lattnerdeaa0dd2003-08-12 21:53:41 +000025// 2. Bitwise operators with constant operands are always grouped so that
26// shifts are performed first, then or's, then and's, then xor's.
Reid Spencer266e42b2006-12-23 06:05:41 +000027// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28// 4. All cmp instructions on boolean values are replaced with logical ops
Chris Lattnerede3fe02003-08-13 04:18:28 +000029// 5. add X, X is represented as (X*2) => (X << 1)
30// 6. Multiplies with a power-of-two constant argument are transformed into
31// shifts.
Chris Lattner7515cab2004-11-14 19:13:23 +000032// ... etc.
Chris Lattnerbfb1d032003-07-23 21:41:57 +000033//
Chris Lattnerca081252001-12-14 16:52:21 +000034//===----------------------------------------------------------------------===//
35
Chris Lattner7d2a5392004-03-13 23:54:27 +000036#define DEBUG_TYPE "instcombine"
Chris Lattnerb4cfa7f2002-05-07 20:03:00 +000037#include "llvm/Transforms/Scalar.h"
Chris Lattner00648e12004-10-12 04:52:52 +000038#include "llvm/IntrinsicInst.h"
Chris Lattner04805fa2002-02-26 21:46:54 +000039#include "llvm/Pass.h"
Chris Lattner1085bdf2002-11-04 16:18:53 +000040#include "llvm/DerivedTypes.h"
Chris Lattner0f1d8a32003-06-26 05:06:25 +000041#include "llvm/GlobalVariable.h"
Chris Lattner024f4ab2007-01-30 23:46:24 +000042#include "llvm/Analysis/ConstantFolding.h"
Chris Lattnerf4ad1652003-11-02 05:57:39 +000043#include "llvm/Target/TargetData.h"
44#include "llvm/Transforms/Utils/BasicBlockUtils.h"
45#include "llvm/Transforms/Utils/Local.h"
Chris Lattner69193f92004-04-05 01:30:19 +000046#include "llvm/Support/CallSite.h"
Chris Lattner39c98bb2004-12-08 23:43:58 +000047#include "llvm/Support/Debug.h"
Chris Lattner69193f92004-04-05 01:30:19 +000048#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner260ab202002-04-18 17:39:14 +000049#include "llvm/Support/InstVisitor.h"
Chris Lattner22d00a82005-08-02 19:16:58 +000050#include "llvm/Support/MathExtras.h"
Chris Lattnerd4252a72004-07-30 07:50:03 +000051#include "llvm/Support/PatternMatch.h"
Chris Lattner3d27be12006-08-27 12:54:02 +000052#include "llvm/Support/Compiler.h"
Chris Lattnerb15e2b12007-03-02 21:28:56 +000053#include "llvm/ADT/DenseMap.h"
Chris Lattnerf96f4a82007-01-31 04:40:53 +000054#include "llvm/ADT/SmallVector.h"
Chris Lattner7907e5f2007-02-15 19:41:52 +000055#include "llvm/ADT/SmallPtrSet.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000056#include "llvm/ADT/Statistic.h"
Chris Lattner39c98bb2004-12-08 23:43:58 +000057#include "llvm/ADT/STLExtras.h"
Chris Lattner053c0932002-05-14 15:24:07 +000058#include <algorithm>
Reid Spencer3f4e6e82007-02-04 00:40:42 +000059#include <set>
Chris Lattner8427bff2003-12-07 01:24:23 +000060using namespace llvm;
Chris Lattnerd4252a72004-07-30 07:50:03 +000061using namespace llvm::PatternMatch;
Brian Gaeke960707c2003-11-11 22:41:34 +000062
Chris Lattner79a42ac2006-12-19 21:40:18 +000063STATISTIC(NumCombined , "Number of insts combined");
64STATISTIC(NumConstProp, "Number of constant folds");
65STATISTIC(NumDeadInst , "Number of dead inst eliminated");
66STATISTIC(NumDeadStore, "Number of dead stores eliminated");
67STATISTIC(NumSunkInst , "Number of instructions sunk");
Chris Lattnerbf3a0992002-10-01 22:38:41 +000068
Chris Lattner79a42ac2006-12-19 21:40:18 +000069namespace {
Chris Lattner4a4c7fe2006-06-28 22:08:15 +000070 class VISIBILITY_HIDDEN InstCombiner
71 : public FunctionPass,
72 public InstVisitor<InstCombiner, Instruction*> {
Chris Lattner260ab202002-04-18 17:39:14 +000073 // Worklist of all of the instructions that need to be simplified.
Chris Lattnerb15e2b12007-03-02 21:28:56 +000074 std::vector<Instruction*> Worklist;
75 DenseMap<Instruction*, unsigned> WorklistMap;
Chris Lattnerf4ad1652003-11-02 05:57:39 +000076 TargetData *TD;
Chris Lattner8258b442007-03-04 04:27:24 +000077 bool MustPreserveLCSSA;
Chris Lattnerb15e2b12007-03-02 21:28:56 +000078 public:
79 /// AddToWorkList - Add the specified instruction to the worklist if it
80 /// isn't already in it.
81 void AddToWorkList(Instruction *I) {
82 if (WorklistMap.insert(std::make_pair(I, Worklist.size())))
83 Worklist.push_back(I);
84 }
85
86 // RemoveFromWorkList - remove I from the worklist if it exists.
87 void RemoveFromWorkList(Instruction *I) {
88 DenseMap<Instruction*, unsigned>::iterator It = WorklistMap.find(I);
89 if (It == WorklistMap.end()) return; // Not in worklist.
90
91 // Don't bother moving everything down, just null out the slot.
92 Worklist[It->second] = 0;
93
94 WorklistMap.erase(It);
95 }
96
97 Instruction *RemoveOneFromWorkList() {
98 Instruction *I = Worklist.back();
99 Worklist.pop_back();
100 WorklistMap.erase(I);
101 return I;
102 }
Chris Lattner260ab202002-04-18 17:39:14 +0000103
Chris Lattnerb15e2b12007-03-02 21:28:56 +0000104
Chris Lattner51ea1272004-02-28 05:22:00 +0000105 /// AddUsersToWorkList - When an instruction is simplified, add all users of
106 /// the instruction to the work lists because they might get more simplified
107 /// now.
108 ///
Chris Lattner2590e512006-02-07 06:56:34 +0000109 void AddUsersToWorkList(Value &I) {
Chris Lattner113f4f42002-06-25 16:13:24 +0000110 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
Chris Lattner260ab202002-04-18 17:39:14 +0000111 UI != UE; ++UI)
Chris Lattnerb15e2b12007-03-02 21:28:56 +0000112 AddToWorkList(cast<Instruction>(*UI));
Chris Lattner260ab202002-04-18 17:39:14 +0000113 }
114
Chris Lattner51ea1272004-02-28 05:22:00 +0000115 /// AddUsesToWorkList - When an instruction is simplified, add operands to
116 /// the work lists because they might get more simplified now.
117 ///
118 void AddUsesToWorkList(Instruction &I) {
119 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
120 if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i)))
Chris Lattnerb15e2b12007-03-02 21:28:56 +0000121 AddToWorkList(Op);
Chris Lattner51ea1272004-02-28 05:22:00 +0000122 }
Chris Lattner2deeaea2006-10-05 06:55:50 +0000123
124 /// AddSoonDeadInstToWorklist - The specified instruction is about to become
125 /// dead. Add all of its operands to the worklist, turning them into
126 /// undef's to reduce the number of uses of those instructions.
127 ///
128 /// Return the specified operand before it is turned into an undef.
129 ///
130 Value *AddSoonDeadInstToWorklist(Instruction &I, unsigned op) {
131 Value *R = I.getOperand(op);
132
133 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
134 if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) {
Chris Lattnerb15e2b12007-03-02 21:28:56 +0000135 AddToWorkList(Op);
Chris Lattner2deeaea2006-10-05 06:55:50 +0000136 // Set the operand to undef to drop the use.
137 I.setOperand(i, UndefValue::get(Op->getType()));
138 }
139
140 return R;
141 }
Chris Lattner51ea1272004-02-28 05:22:00 +0000142
Chris Lattner260ab202002-04-18 17:39:14 +0000143 public:
Chris Lattner113f4f42002-06-25 16:13:24 +0000144 virtual bool runOnFunction(Function &F);
Chris Lattner960a5432007-03-03 02:04:50 +0000145
146 bool DoOneIteration(Function &F, unsigned ItNum);
Chris Lattner260ab202002-04-18 17:39:14 +0000147
Chris Lattnerf12cc842002-04-28 21:27:06 +0000148 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattnerf4ad1652003-11-02 05:57:39 +0000149 AU.addRequired<TargetData>();
Owen Andersona6968f82006-07-10 19:03:49 +0000150 AU.addPreservedID(LCSSAID);
Chris Lattner820d9712002-10-21 20:00:28 +0000151 AU.setPreservesCFG();
Chris Lattnerf12cc842002-04-28 21:27:06 +0000152 }
153
Chris Lattner69193f92004-04-05 01:30:19 +0000154 TargetData &getTargetData() const { return *TD; }
155
Chris Lattner260ab202002-04-18 17:39:14 +0000156 // Visitation implementation - Implement instruction combining for different
157 // instruction types. The semantics are as follows:
158 // Return Value:
159 // null - No change was made
Chris Lattnere6794492002-08-12 21:17:25 +0000160 // I - Change was made, I is still valid, I may be dead though
Chris Lattner260ab202002-04-18 17:39:14 +0000161 // otherwise - Change was made, replace I with returned instruction
Misha Brukmanb1c93172005-04-21 23:48:37 +0000162 //
Chris Lattner113f4f42002-06-25 16:13:24 +0000163 Instruction *visitAdd(BinaryOperator &I);
164 Instruction *visitSub(BinaryOperator &I);
165 Instruction *visitMul(BinaryOperator &I);
Reid Spencer7eb55b32006-11-02 01:53:59 +0000166 Instruction *visitURem(BinaryOperator &I);
167 Instruction *visitSRem(BinaryOperator &I);
168 Instruction *visitFRem(BinaryOperator &I);
169 Instruction *commonRemTransforms(BinaryOperator &I);
170 Instruction *commonIRemTransforms(BinaryOperator &I);
Reid Spencer7e80b0b2006-10-26 06:15:43 +0000171 Instruction *commonDivTransforms(BinaryOperator &I);
172 Instruction *commonIDivTransforms(BinaryOperator &I);
173 Instruction *visitUDiv(BinaryOperator &I);
174 Instruction *visitSDiv(BinaryOperator &I);
175 Instruction *visitFDiv(BinaryOperator &I);
Chris Lattner113f4f42002-06-25 16:13:24 +0000176 Instruction *visitAnd(BinaryOperator &I);
177 Instruction *visitOr (BinaryOperator &I);
178 Instruction *visitXor(BinaryOperator &I);
Reid Spencer2341c222007-02-02 02:16:23 +0000179 Instruction *visitShl(BinaryOperator &I);
180 Instruction *visitAShr(BinaryOperator &I);
181 Instruction *visitLShr(BinaryOperator &I);
182 Instruction *commonShiftTransforms(BinaryOperator &I);
Reid Spencer266e42b2006-12-23 06:05:41 +0000183 Instruction *visitFCmpInst(FCmpInst &I);
184 Instruction *visitICmpInst(ICmpInst &I);
185 Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
Chris Lattnerd1f46d32005-04-24 06:59:08 +0000186
Reid Spencer266e42b2006-12-23 06:05:41 +0000187 Instruction *FoldGEPICmp(User *GEPLHS, Value *RHS,
188 ICmpInst::Predicate Cond, Instruction &I);
Reid Spencere0fc4df2006-10-20 07:07:24 +0000189 Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
Reid Spencer2341c222007-02-02 02:16:23 +0000190 BinaryOperator &I);
Reid Spencer6c38f0b2006-11-27 01:05:10 +0000191 Instruction *commonCastTransforms(CastInst &CI);
192 Instruction *commonIntCastTransforms(CastInst &CI);
193 Instruction *visitTrunc(CastInst &CI);
194 Instruction *visitZExt(CastInst &CI);
195 Instruction *visitSExt(CastInst &CI);
196 Instruction *visitFPTrunc(CastInst &CI);
197 Instruction *visitFPExt(CastInst &CI);
198 Instruction *visitFPToUI(CastInst &CI);
199 Instruction *visitFPToSI(CastInst &CI);
200 Instruction *visitUIToFP(CastInst &CI);
201 Instruction *visitSIToFP(CastInst &CI);
202 Instruction *visitPtrToInt(CastInst &CI);
203 Instruction *visitIntToPtr(CastInst &CI);
204 Instruction *visitBitCast(CastInst &CI);
Chris Lattner411336f2005-01-19 21:50:18 +0000205 Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
206 Instruction *FI);
Chris Lattnerb909e8b2004-03-12 05:52:32 +0000207 Instruction *visitSelectInst(SelectInst &CI);
Chris Lattner970c33a2003-06-19 17:00:31 +0000208 Instruction *visitCallInst(CallInst &CI);
209 Instruction *visitInvokeInst(InvokeInst &II);
Chris Lattner113f4f42002-06-25 16:13:24 +0000210 Instruction *visitPHINode(PHINode &PN);
211 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
Chris Lattner1085bdf2002-11-04 16:18:53 +0000212 Instruction *visitAllocationInst(AllocationInst &AI);
Chris Lattner8427bff2003-12-07 01:24:23 +0000213 Instruction *visitFreeInst(FreeInst &FI);
Chris Lattner0f1d8a32003-06-26 05:06:25 +0000214 Instruction *visitLoadInst(LoadInst &LI);
Chris Lattner31f486c2005-01-31 05:36:43 +0000215 Instruction *visitStoreInst(StoreInst &SI);
Chris Lattner9eef8a72003-06-04 04:46:00 +0000216 Instruction *visitBranchInst(BranchInst &BI);
Chris Lattner4c9c20a2004-07-03 00:26:11 +0000217 Instruction *visitSwitchInst(SwitchInst &SI);
Chris Lattner39fac442006-04-15 01:39:45 +0000218 Instruction *visitInsertElementInst(InsertElementInst &IE);
Robert Bocchinoa8352962006-01-13 22:48:06 +0000219 Instruction *visitExtractElementInst(ExtractElementInst &EI);
Chris Lattnerfbb77a42006-04-10 22:45:52 +0000220 Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
Chris Lattner260ab202002-04-18 17:39:14 +0000221
222 // visitInstruction - Specify what to return for unhandled instructions...
Chris Lattner113f4f42002-06-25 16:13:24 +0000223 Instruction *visitInstruction(Instruction &I) { return 0; }
Chris Lattner6d14f2a2002-08-09 23:47:40 +0000224
Chris Lattner970c33a2003-06-19 17:00:31 +0000225 private:
Chris Lattneraec3d942003-10-07 22:32:43 +0000226 Instruction *visitCallSite(CallSite CS);
Chris Lattner970c33a2003-06-19 17:00:31 +0000227 bool transformConstExprCastCall(CallSite CS);
228
Chris Lattner69193f92004-04-05 01:30:19 +0000229 public:
Chris Lattner6d14f2a2002-08-09 23:47:40 +0000230 // InsertNewInstBefore - insert an instruction New before instruction Old
231 // in the program. Add the new instruction to the worklist.
232 //
Chris Lattner623826c2004-09-28 21:48:02 +0000233 Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
Chris Lattner65217ff2002-08-23 18:32:43 +0000234 assert(New && New->getParent() == 0 &&
235 "New instruction already inserted into a basic block!");
Chris Lattner6d14f2a2002-08-09 23:47:40 +0000236 BasicBlock *BB = Old.getParent();
237 BB->getInstList().insert(&Old, New); // Insert inst
Chris Lattnerb15e2b12007-03-02 21:28:56 +0000238 AddToWorkList(New);
Chris Lattnere79e8542004-02-23 06:38:22 +0000239 return New;
Chris Lattner6d14f2a2002-08-09 23:47:40 +0000240 }
241
Chris Lattner7e794272004-09-24 15:21:34 +0000242 /// InsertCastBefore - Insert a cast of V to TY before the instruction POS.
243 /// This also adds the cast to the worklist. Finally, this returns the
244 /// cast.
Reid Spencer13bc5d72006-12-12 09:18:51 +0000245 Value *InsertCastBefore(Instruction::CastOps opc, Value *V, const Type *Ty,
246 Instruction &Pos) {
Chris Lattner7e794272004-09-24 15:21:34 +0000247 if (V->getType() == Ty) return V;
Misha Brukmanb1c93172005-04-21 23:48:37 +0000248
Chris Lattnere79d2492006-04-06 19:19:17 +0000249 if (Constant *CV = dyn_cast<Constant>(V))
Reid Spencer13bc5d72006-12-12 09:18:51 +0000250 return ConstantExpr::getCast(opc, CV, Ty);
Chris Lattnere79d2492006-04-06 19:19:17 +0000251
Reid Spencer13bc5d72006-12-12 09:18:51 +0000252 Instruction *C = CastInst::create(opc, V, Ty, V->getName(), &Pos);
Chris Lattnerb15e2b12007-03-02 21:28:56 +0000253 AddToWorkList(C);
Chris Lattner7e794272004-09-24 15:21:34 +0000254 return C;
255 }
256
Chris Lattner6d14f2a2002-08-09 23:47:40 +0000257 // ReplaceInstUsesWith - This method is to be used when an instruction is
258 // found to be dead, replacable with another preexisting expression. Here
259 // we add all uses of I to the worklist, replace all uses of I with the new
260 // value, then return I, so that the inst combiner will know that I was
261 // modified.
262 //
263 Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
Chris Lattner51ea1272004-02-28 05:22:00 +0000264 AddUsersToWorkList(I); // Add all modified instrs to worklist
Chris Lattner8953b902004-04-05 02:10:19 +0000265 if (&I != V) {
266 I.replaceAllUsesWith(V);
267 return &I;
268 } else {
269 // If we are replacing the instruction with itself, this must be in a
270 // segment of unreachable code, so just clobber the instruction.
Chris Lattner8ba9ec92004-10-18 02:59:09 +0000271 I.replaceAllUsesWith(UndefValue::get(I.getType()));
Chris Lattner8953b902004-04-05 02:10:19 +0000272 return &I;
273 }
Chris Lattner6d14f2a2002-08-09 23:47:40 +0000274 }
Chris Lattner51ea1272004-02-28 05:22:00 +0000275
Chris Lattner2590e512006-02-07 06:56:34 +0000276 // UpdateValueUsesWith - This method is to be used when an value is
277 // found to be replacable with another preexisting expression or was
278 // updated. Here we add all uses of I to the worklist, replace all uses of
279 // I with the new value (unless the instruction was just updated), then
280 // return true, so that the inst combiner will know that I was modified.
281 //
282 bool UpdateValueUsesWith(Value *Old, Value *New) {
283 AddUsersToWorkList(*Old); // Add all modified instrs to worklist
284 if (Old != New)
285 Old->replaceAllUsesWith(New);
286 if (Instruction *I = dyn_cast<Instruction>(Old))
Chris Lattnerb15e2b12007-03-02 21:28:56 +0000287 AddToWorkList(I);
Chris Lattner5b2edb12006-02-12 08:02:11 +0000288 if (Instruction *I = dyn_cast<Instruction>(New))
Chris Lattnerb15e2b12007-03-02 21:28:56 +0000289 AddToWorkList(I);
Chris Lattner2590e512006-02-07 06:56:34 +0000290 return true;
291 }
292
Chris Lattner51ea1272004-02-28 05:22:00 +0000293 // EraseInstFromFunction - When dealing with an instruction that has side
294 // effects or produces a void value, we can't rely on DCE to delete the
295 // instruction. Instead, visit methods should return the value returned by
296 // this function.
297 Instruction *EraseInstFromFunction(Instruction &I) {
298 assert(I.use_empty() && "Cannot erase instruction that is used!");
299 AddUsesToWorkList(I);
Chris Lattnerb15e2b12007-03-02 21:28:56 +0000300 RemoveFromWorkList(&I);
Chris Lattner95307542004-11-18 21:41:39 +0000301 I.eraseFromParent();
Chris Lattner51ea1272004-02-28 05:22:00 +0000302 return 0; // Don't do anything with FI
303 }
304
Chris Lattner3ac7c262003-08-13 20:16:26 +0000305 private:
Chris Lattnerdfae8be2003-07-24 17:35:25 +0000306 /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
307 /// InsertBefore instruction. This is specialized a bit to avoid inserting
308 /// casts that are known to not do anything...
309 ///
Reid Spencer13bc5d72006-12-12 09:18:51 +0000310 Value *InsertOperandCastBefore(Instruction::CastOps opcode,
311 Value *V, const Type *DestTy,
Chris Lattnerdfae8be2003-07-24 17:35:25 +0000312 Instruction *InsertBefore);
313
Reid Spencer266e42b2006-12-23 06:05:41 +0000314 /// SimplifyCommutative - This performs a few simplifications for
315 /// commutative operators.
Chris Lattner7fb29e12003-03-11 00:12:48 +0000316 bool SimplifyCommutative(BinaryOperator &I);
Chris Lattnerba1cb382003-09-19 17:17:26 +0000317
Reid Spencer266e42b2006-12-23 06:05:41 +0000318 /// SimplifyCompare - This reorders the operands of a CmpInst to get them in
319 /// most-complex to least-complex order.
320 bool SimplifyCompare(CmpInst &I);
321
Reid Spencer1791f232007-03-12 17:25:59 +0000322 bool SimplifyDemandedBits(Value *V, uint64_t DemandedMask,
Chris Lattner0157e7f2006-02-11 09:31:47 +0000323 uint64_t &KnownZero, uint64_t &KnownOne,
324 unsigned Depth = 0);
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000325
Reid Spencer1791f232007-03-12 17:25:59 +0000326 bool SimplifyDemandedBits(Value *V, APInt DemandedMask,
327 APInt& KnownZero, APInt& KnownOne,
328 unsigned Depth = 0);
329
Chris Lattner2deeaea2006-10-05 06:55:50 +0000330 Value *SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
331 uint64_t &UndefElts, unsigned Depth = 0);
332
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000333 // FoldOpIntoPhi - Given a binary operator or cast instruction which has a
334 // PHI node as operand #0, see if we can fold the instruction into the PHI
335 // (which is only possible if all operands to the PHI are constants).
336 Instruction *FoldOpIntoPhi(Instruction &I);
337
Chris Lattner7515cab2004-11-14 19:13:23 +0000338 // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
339 // operator and they all are only used by the PHI, PHI together their
340 // inputs, and do the operation once, to the result of the PHI.
341 Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
Chris Lattnercadac0c2006-11-01 04:51:18 +0000342 Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
343
344
Zhou Sheng75b871f2007-01-11 12:24:14 +0000345 Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
346 ConstantInt *AndRHS, BinaryOperator &TheAnd);
Chris Lattneraf517572005-09-18 04:24:45 +0000347
Zhou Sheng75b871f2007-01-11 12:24:14 +0000348 Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
Chris Lattneraf517572005-09-18 04:24:45 +0000349 bool isSub, Instruction &I);
Chris Lattner6862fbd2004-09-29 17:40:11 +0000350 Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
Reid Spencer266e42b2006-12-23 06:05:41 +0000351 bool isSigned, bool Inside, Instruction &IB);
Chris Lattner216be912005-10-24 06:03:58 +0000352 Instruction *PromoteCastOfAllocation(CastInst &CI, AllocationInst &AI);
Chris Lattnerc482a9e2006-06-15 19:07:26 +0000353 Instruction *MatchBSwap(BinaryOperator &I);
354
Reid Spencer74a528b2006-12-13 18:21:21 +0000355 Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned);
Chris Lattner260ab202002-04-18 17:39:14 +0000356 };
Chris Lattnerb28b6802002-07-23 18:06:35 +0000357
Chris Lattnerc2d3d312006-08-27 22:42:52 +0000358 RegisterPass<InstCombiner> X("instcombine", "Combine redundant instructions");
Chris Lattner260ab202002-04-18 17:39:14 +0000359}
360
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000361// getComplexity: Assign a complexity or rank value to LLVM Values...
Chris Lattner81a7a232004-10-16 18:11:37 +0000362// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000363static unsigned getComplexity(Value *V) {
364 if (isa<Instruction>(V)) {
365 if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V))
Chris Lattner81a7a232004-10-16 18:11:37 +0000366 return 3;
367 return 4;
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000368 }
Chris Lattner81a7a232004-10-16 18:11:37 +0000369 if (isa<Argument>(V)) return 3;
370 return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000371}
Chris Lattner260ab202002-04-18 17:39:14 +0000372
Chris Lattner7fb29e12003-03-11 00:12:48 +0000373// isOnlyUse - Return true if this instruction will be deleted if we stop using
374// it.
375static bool isOnlyUse(Value *V) {
Chris Lattnerf95d9b92003-10-15 16:48:29 +0000376 return V->hasOneUse() || isa<Constant>(V);
Chris Lattner7fb29e12003-03-11 00:12:48 +0000377}
378
Chris Lattnere79e8542004-02-23 06:38:22 +0000379// getPromotedType - Return the specified type promoted as it would be to pass
380// though a va_arg area...
381static const Type *getPromotedType(const Type *Ty) {
Reid Spencer7a9c62b2007-01-12 07:05:14 +0000382 if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
383 if (ITy->getBitWidth() < 32)
384 return Type::Int32Ty;
385 } else if (Ty == Type::FloatTy)
386 return Type::DoubleTy;
387 return Ty;
Chris Lattnere79e8542004-02-23 06:38:22 +0000388}
389
Reid Spencer6c38f0b2006-11-27 01:05:10 +0000390/// getBitCastOperand - If the specified operand is a CastInst or a constant
391/// expression bitcast, return the operand value, otherwise return null.
392static Value *getBitCastOperand(Value *V) {
393 if (BitCastInst *I = dyn_cast<BitCastInst>(V))
Chris Lattner567b81f2005-09-13 00:40:14 +0000394 return I->getOperand(0);
395 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Reid Spencer6c38f0b2006-11-27 01:05:10 +0000396 if (CE->getOpcode() == Instruction::BitCast)
Chris Lattner567b81f2005-09-13 00:40:14 +0000397 return CE->getOperand(0);
398 return 0;
399}
400
Reid Spencer6c38f0b2006-11-27 01:05:10 +0000401/// This function is a wrapper around CastInst::isEliminableCastPair. It
402/// simply extracts arguments and returns what that function returns.
Reid Spencer6c38f0b2006-11-27 01:05:10 +0000403static Instruction::CastOps
404isEliminableCastPair(
405 const CastInst *CI, ///< The first cast instruction
406 unsigned opcode, ///< The opcode of the second cast instruction
407 const Type *DstTy, ///< The target type for the second cast instruction
408 TargetData *TD ///< The target data for pointer size
409) {
410
411 const Type *SrcTy = CI->getOperand(0)->getType(); // A from above
412 const Type *MidTy = CI->getType(); // B from above
Chris Lattner1d441ad2006-05-06 09:00:16 +0000413
Reid Spencer6c38f0b2006-11-27 01:05:10 +0000414 // Get the opcodes of the two Cast instructions
415 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
416 Instruction::CastOps secondOp = Instruction::CastOps(opcode);
Chris Lattner1d441ad2006-05-06 09:00:16 +0000417
Reid Spencer6c38f0b2006-11-27 01:05:10 +0000418 return Instruction::CastOps(
419 CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
420 DstTy, TD->getIntPtrType()));
Chris Lattner1d441ad2006-05-06 09:00:16 +0000421}
422
423/// ValueRequiresCast - Return true if the cast from "V to Ty" actually results
424/// in any code being generated. It does not require codegen if V is simple
425/// enough or if the cast can be folded into other casts.
Reid Spencer266e42b2006-12-23 06:05:41 +0000426static bool ValueRequiresCast(Instruction::CastOps opcode, const Value *V,
427 const Type *Ty, TargetData *TD) {
Chris Lattner1d441ad2006-05-06 09:00:16 +0000428 if (V->getType() == Ty || isa<Constant>(V)) return false;
429
Chris Lattner99155be2006-05-25 23:24:33 +0000430 // If this is another cast that can be eliminated, it isn't codegen either.
Chris Lattner1d441ad2006-05-06 09:00:16 +0000431 if (const CastInst *CI = dyn_cast<CastInst>(V))
Reid Spencer266e42b2006-12-23 06:05:41 +0000432 if (isEliminableCastPair(CI, opcode, Ty, TD))
Chris Lattner1d441ad2006-05-06 09:00:16 +0000433 return false;
434 return true;
435}
436
437/// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
438/// InsertBefore instruction. This is specialized a bit to avoid inserting
439/// casts that are known to not do anything...
440///
Reid Spencer13bc5d72006-12-12 09:18:51 +0000441Value *InstCombiner::InsertOperandCastBefore(Instruction::CastOps opcode,
442 Value *V, const Type *DestTy,
Chris Lattner1d441ad2006-05-06 09:00:16 +0000443 Instruction *InsertBefore) {
444 if (V->getType() == DestTy) return V;
445 if (Constant *C = dyn_cast<Constant>(V))
Reid Spencer13bc5d72006-12-12 09:18:51 +0000446 return ConstantExpr::getCast(opcode, C, DestTy);
Chris Lattner1d441ad2006-05-06 09:00:16 +0000447
Reid Spencer13bc5d72006-12-12 09:18:51 +0000448 return InsertCastBefore(opcode, V, DestTy, *InsertBefore);
Chris Lattner1d441ad2006-05-06 09:00:16 +0000449}
450
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000451// SimplifyCommutative - This performs a few simplifications for commutative
452// operators:
Chris Lattner260ab202002-04-18 17:39:14 +0000453//
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000454// 1. Order operands such that they are listed from right (least complex) to
455// left (most complex). This puts constants before unary operators before
456// binary operators.
457//
Chris Lattner7fb29e12003-03-11 00:12:48 +0000458// 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
459// 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000460//
Chris Lattner7fb29e12003-03-11 00:12:48 +0000461bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000462 bool Changed = false;
463 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
464 Changed = !I.swapOperands();
Misha Brukmanb1c93172005-04-21 23:48:37 +0000465
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000466 if (!I.isAssociative()) return Changed;
467 Instruction::BinaryOps Opcode = I.getOpcode();
Chris Lattner7fb29e12003-03-11 00:12:48 +0000468 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
469 if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
470 if (isa<Constant>(I.getOperand(1))) {
Chris Lattner34428442003-05-27 16:40:51 +0000471 Constant *Folded = ConstantExpr::get(I.getOpcode(),
472 cast<Constant>(I.getOperand(1)),
473 cast<Constant>(Op->getOperand(1)));
Chris Lattner7fb29e12003-03-11 00:12:48 +0000474 I.setOperand(0, Op->getOperand(0));
475 I.setOperand(1, Folded);
476 return true;
477 } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
478 if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
479 isOnlyUse(Op) && isOnlyUse(Op1)) {
480 Constant *C1 = cast<Constant>(Op->getOperand(1));
481 Constant *C2 = cast<Constant>(Op1->getOperand(1));
482
483 // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
Chris Lattner34428442003-05-27 16:40:51 +0000484 Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
Chris Lattner7fb29e12003-03-11 00:12:48 +0000485 Instruction *New = BinaryOperator::create(Opcode, Op->getOperand(0),
486 Op1->getOperand(0),
487 Op1->getName(), &I);
Chris Lattnerb15e2b12007-03-02 21:28:56 +0000488 AddToWorkList(New);
Chris Lattner7fb29e12003-03-11 00:12:48 +0000489 I.setOperand(0, New);
490 I.setOperand(1, Folded);
491 return true;
Misha Brukmanb1c93172005-04-21 23:48:37 +0000492 }
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000493 }
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000494 return Changed;
Chris Lattner260ab202002-04-18 17:39:14 +0000495}
Chris Lattnerca081252001-12-14 16:52:21 +0000496
Reid Spencer266e42b2006-12-23 06:05:41 +0000497/// SimplifyCompare - For a CmpInst this function just orders the operands
498/// so that theyare listed from right (least complex) to left (most complex).
499/// This puts constants before unary operators before binary operators.
500bool InstCombiner::SimplifyCompare(CmpInst &I) {
501 if (getComplexity(I.getOperand(0)) >= getComplexity(I.getOperand(1)))
502 return false;
503 I.swapOperands();
504 // Compare instructions are not associative so there's nothing else we can do.
505 return true;
506}
507
Chris Lattnerbb74e222003-03-10 23:06:50 +0000508// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
509// if the LHS is a constant zero (which is the 'negate' form).
Chris Lattner9fa53de2002-05-06 16:49:18 +0000510//
Chris Lattnerbb74e222003-03-10 23:06:50 +0000511static inline Value *dyn_castNegVal(Value *V) {
512 if (BinaryOperator::isNeg(V))
Chris Lattnerd6f636a2005-04-24 07:30:14 +0000513 return BinaryOperator::getNegArgument(V);
Chris Lattnerbb74e222003-03-10 23:06:50 +0000514
Chris Lattner9ad0d552004-12-14 20:08:06 +0000515 // Constants can be considered to be negated values if they can be folded.
516 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
517 return ConstantExpr::getNeg(C);
Chris Lattnerbb74e222003-03-10 23:06:50 +0000518 return 0;
Chris Lattner9fa53de2002-05-06 16:49:18 +0000519}
520
Chris Lattnerbb74e222003-03-10 23:06:50 +0000521static inline Value *dyn_castNotVal(Value *V) {
522 if (BinaryOperator::isNot(V))
Chris Lattnerd6f636a2005-04-24 07:30:14 +0000523 return BinaryOperator::getNotArgument(V);
Chris Lattnerbb74e222003-03-10 23:06:50 +0000524
525 // Constants can be considered to be not'ed values...
Zhou Sheng75b871f2007-01-11 12:24:14 +0000526 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
Chris Lattnerc8e7e292004-06-10 02:12:35 +0000527 return ConstantExpr::getNot(C);
Chris Lattnerbb74e222003-03-10 23:06:50 +0000528 return 0;
529}
530
Chris Lattner7fb29e12003-03-11 00:12:48 +0000531// dyn_castFoldableMul - If this value is a multiply that can be folded into
532// other computations (because it has a constant operand), return the
Chris Lattner8c3e7b92004-11-13 19:50:12 +0000533// non-constant operand of the multiply, and set CST to point to the multiplier.
534// Otherwise, return null.
Chris Lattner7fb29e12003-03-11 00:12:48 +0000535//
Chris Lattner8c3e7b92004-11-13 19:50:12 +0000536static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
Chris Lattner03c49532007-01-15 02:27:26 +0000537 if (V->hasOneUse() && V->getType()->isInteger())
Chris Lattner8c3e7b92004-11-13 19:50:12 +0000538 if (Instruction *I = dyn_cast<Instruction>(V)) {
Chris Lattner7fb29e12003-03-11 00:12:48 +0000539 if (I->getOpcode() == Instruction::Mul)
Chris Lattner970136362004-11-15 05:54:07 +0000540 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
Chris Lattner7fb29e12003-03-11 00:12:48 +0000541 return I->getOperand(0);
Chris Lattner8c3e7b92004-11-13 19:50:12 +0000542 if (I->getOpcode() == Instruction::Shl)
Chris Lattner970136362004-11-15 05:54:07 +0000543 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
Chris Lattner8c3e7b92004-11-13 19:50:12 +0000544 // The multiplier is really 1 << CST.
545 Constant *One = ConstantInt::get(V->getType(), 1);
546 CST = cast<ConstantInt>(ConstantExpr::getShl(One, CST));
547 return I->getOperand(0);
548 }
549 }
Chris Lattner7fb29e12003-03-11 00:12:48 +0000550 return 0;
Chris Lattner3082c5a2003-02-18 19:28:33 +0000551}
Chris Lattner31ae8632002-08-14 17:51:49 +0000552
Chris Lattner0798af32005-01-13 20:14:25 +0000553/// dyn_castGetElementPtr - If this is a getelementptr instruction or constant
554/// expression, return it.
555static User *dyn_castGetElementPtr(Value *V) {
556 if (isa<GetElementPtrInst>(V)) return cast<User>(V);
557 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
558 if (CE->getOpcode() == Instruction::GetElementPtr)
559 return cast<User>(V);
560 return false;
561}
562
Chris Lattner623826c2004-09-28 21:48:02 +0000563// AddOne, SubOne - Add or subtract a constant one from an integer constant...
Chris Lattner6862fbd2004-09-29 17:40:11 +0000564static ConstantInt *AddOne(ConstantInt *C) {
565 return cast<ConstantInt>(ConstantExpr::getAdd(C,
566 ConstantInt::get(C->getType(), 1)));
Chris Lattner623826c2004-09-28 21:48:02 +0000567}
Chris Lattner6862fbd2004-09-29 17:40:11 +0000568static ConstantInt *SubOne(ConstantInt *C) {
569 return cast<ConstantInt>(ConstantExpr::getSub(C,
570 ConstantInt::get(C->getType(), 1)));
Chris Lattner623826c2004-09-28 21:48:02 +0000571}
572
Chris Lattner4534dd592006-02-09 07:38:58 +0000573/// ComputeMaskedBits - Determine which of the bits specified in Mask are
574/// known to be either zero or one and return them in the KnownZero/KnownOne
Reid Spenceraa696402007-03-08 01:46:38 +0000575/// bit sets. This code only analyzes bits in Mask, in order to short-circuit
576/// processing.
577/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
578/// we cannot optimize based on the assumption that it is zero without changing
579/// it to be an explicit zero. If we don't change it to zero, other code could
580/// optimized based on the contradictory assumption that it is non-zero.
581/// Because instcombine aggressively folds operations with undef args anyway,
582/// this won't lose us code quality.
583static void ComputeMaskedBits(Value *V, APInt Mask, APInt& KnownZero,
584 APInt& KnownOne, unsigned Depth = 0) {
Zhou Shengaf4341d2007-03-13 02:23:10 +0000585 assert(V && "No Value?");
586 assert(Depth <= 6 && "Limit Search Depth");
Reid Spenceraa696402007-03-08 01:46:38 +0000587 uint32_t BitWidth = Mask.getBitWidth();
Zhou Shengaf4341d2007-03-13 02:23:10 +0000588 const IntegerType *VTy = cast<IntegerType>(V->getType());
589 assert(VTy->getBitWidth() == BitWidth &&
590 KnownZero.getBitWidth() == BitWidth &&
Reid Spenceraa696402007-03-08 01:46:38 +0000591 KnownOne.getBitWidth() == BitWidth &&
Zhou Shengaf4341d2007-03-13 02:23:10 +0000592 "VTy, Mask, KnownOne and KnownZero should have same BitWidth");
Reid Spenceraa696402007-03-08 01:46:38 +0000593 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
594 // We know all of the bits for a constant!
Zhou Shengaf4341d2007-03-13 02:23:10 +0000595 KnownOne = CI->getValue() & Mask;
Reid Spenceraa696402007-03-08 01:46:38 +0000596 KnownZero = ~KnownOne & Mask;
597 return;
598 }
599
Reid Spenceraa696402007-03-08 01:46:38 +0000600 if (Depth == 6 || Mask == 0)
601 return; // Limit search depth.
602
603 Instruction *I = dyn_cast<Instruction>(V);
604 if (!I) return;
605
Zhou Shengaf4341d2007-03-13 02:23:10 +0000606 KnownZero.clear(); KnownOne.clear(); // Don't know anything.
Reid Spenceraa696402007-03-08 01:46:38 +0000607 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Zhou Shengaf4341d2007-03-13 02:23:10 +0000608 Mask &= APInt::getAllOnesValue(BitWidth);
Reid Spenceraa696402007-03-08 01:46:38 +0000609
610 switch (I->getOpcode()) {
611 case Instruction::And:
612 // If either the LHS or the RHS are Zero, the result is zero.
613 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
614 Mask &= ~KnownZero;
615 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
616 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
617 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
618
619 // Output known-1 bits are only known if set in both the LHS & RHS.
620 KnownOne &= KnownOne2;
621 // Output known-0 are known to be clear if zero in either the LHS | RHS.
622 KnownZero |= KnownZero2;
623 return;
624 case Instruction::Or:
625 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
626 Mask &= ~KnownOne;
627 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
628 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
629 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
630
631 // Output known-0 bits are only known if clear in both the LHS & RHS.
632 KnownZero &= KnownZero2;
633 // Output known-1 are known to be set if set in either the LHS | RHS.
634 KnownOne |= KnownOne2;
635 return;
636 case Instruction::Xor: {
637 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
638 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
639 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
640 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
641
642 // Output known-0 bits are known if clear or set in both the LHS & RHS.
643 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
644 // Output known-1 are known to be set if set in only one of the LHS, RHS.
645 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
646 KnownZero = KnownZeroOut;
647 return;
648 }
649 case Instruction::Select:
650 ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
651 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
652 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
653 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
654
655 // Only known if known in both the LHS and RHS.
656 KnownOne &= KnownOne2;
657 KnownZero &= KnownZero2;
658 return;
659 case Instruction::FPTrunc:
660 case Instruction::FPExt:
661 case Instruction::FPToUI:
662 case Instruction::FPToSI:
663 case Instruction::SIToFP:
664 case Instruction::PtrToInt:
665 case Instruction::UIToFP:
666 case Instruction::IntToPtr:
667 return; // Can't work with floating point or pointers
Zhou Shengaf4341d2007-03-13 02:23:10 +0000668 case Instruction::Trunc: {
Reid Spenceraa696402007-03-08 01:46:38 +0000669 // All these have integer operands
Zhou Shengaf4341d2007-03-13 02:23:10 +0000670 uint32_t SrcBitWidth =
671 cast<IntegerType>(I->getOperand(0)->getType())->getBitWidth();
672 ComputeMaskedBits(I->getOperand(0), Mask.zext(SrcBitWidth),
673 KnownZero.zext(SrcBitWidth), KnownOne.zext(SrcBitWidth), Depth+1);
674 KnownZero.trunc(BitWidth);
675 KnownOne.trunc(BitWidth);
Reid Spenceraa696402007-03-08 01:46:38 +0000676 return;
Zhou Shengaf4341d2007-03-13 02:23:10 +0000677 }
Reid Spenceraa696402007-03-08 01:46:38 +0000678 case Instruction::BitCast: {
679 const Type *SrcTy = I->getOperand(0)->getType();
680 if (SrcTy->isInteger()) {
681 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
682 return;
683 }
684 break;
685 }
686 case Instruction::ZExt: {
687 // Compute the bits in the result that are not present in the input.
688 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
Zhou Sheng387d7b12007-03-08 05:42:00 +0000689 APInt NewBits(APInt::getAllOnesValue(BitWidth).shl(SrcTy->getBitWidth()));
Reid Spenceraa696402007-03-08 01:46:38 +0000690
Zhou Shengaf4341d2007-03-13 02:23:10 +0000691 uint32_t SrcBitWidth = SrcTy->getBitWidth();
692 ComputeMaskedBits(I->getOperand(0), Mask.trunc(SrcBitWidth),
693 KnownZero.trunc(SrcBitWidth), KnownOne.trunc(SrcBitWidth), Depth+1);
Reid Spenceraa696402007-03-08 01:46:38 +0000694 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
695 // The top bits are known to be zero.
Zhou Shengaf4341d2007-03-13 02:23:10 +0000696 KnownZero.zext(BitWidth);
697 KnownOne.zext(BitWidth);
Reid Spenceraa696402007-03-08 01:46:38 +0000698 KnownZero |= NewBits;
699 return;
700 }
701 case Instruction::SExt: {
702 // Compute the bits in the result that are not present in the input.
703 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
Zhou Sheng387d7b12007-03-08 05:42:00 +0000704 APInt NewBits(APInt::getAllOnesValue(BitWidth).shl(SrcTy->getBitWidth()));
Reid Spenceraa696402007-03-08 01:46:38 +0000705
Zhou Shengaf4341d2007-03-13 02:23:10 +0000706 uint32_t SrcBitWidth = SrcTy->getBitWidth();
707 ComputeMaskedBits(I->getOperand(0), Mask.trunc(SrcBitWidth),
708 KnownZero.trunc(SrcBitWidth), KnownOne.trunc(SrcBitWidth), Depth+1);
Reid Spenceraa696402007-03-08 01:46:38 +0000709 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Zhou Shengaf4341d2007-03-13 02:23:10 +0000710 KnownZero.zext(BitWidth);
711 KnownOne.zext(BitWidth);
Reid Spenceraa696402007-03-08 01:46:38 +0000712
713 // If the sign bit of the input is known set or clear, then we know the
714 // top bits of the result.
Zhou Shengb3e00c42007-03-12 05:44:52 +0000715 APInt InSignBit(APInt::getSignBit(SrcTy->getBitWidth()));
Zhou Shengaf4341d2007-03-13 02:23:10 +0000716 InSignBit.zext(BitWidth);
Reid Spenceraa696402007-03-08 01:46:38 +0000717 if ((KnownZero & InSignBit) != 0) { // Input sign bit known zero
718 KnownZero |= NewBits;
719 KnownOne &= ~NewBits;
720 } else if ((KnownOne & InSignBit) != 0) { // Input sign bit known set
721 KnownOne |= NewBits;
722 KnownZero &= ~NewBits;
723 } else { // Input sign bit unknown
724 KnownZero &= ~NewBits;
725 KnownOne &= ~NewBits;
726 }
727 return;
728 }
729 case Instruction::Shl:
730 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
731 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
732 uint64_t ShiftAmt = SA->getZExtValue();
733 Mask = APIntOps::lshr(Mask, ShiftAmt);
734 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
735 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Zhou Shengb3e00c42007-03-12 05:44:52 +0000736 KnownZero <<= ShiftAmt;
737 KnownOne <<= ShiftAmt;
Reid Spenceraa696402007-03-08 01:46:38 +0000738 KnownZero |= APInt(BitWidth, 1ULL).shl(ShiftAmt)-1; // low bits known zero.
739 return;
740 }
741 break;
742 case Instruction::LShr:
743 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
744 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
745 // Compute the new bits that are at the top now.
746 uint64_t ShiftAmt = SA->getZExtValue();
747 APInt HighBits(APInt::getAllOnesValue(BitWidth).shl(BitWidth-ShiftAmt));
748
749 // Unsigned shift right.
Zhou Shengb3e00c42007-03-12 05:44:52 +0000750 Mask <<= ShiftAmt;
Reid Spenceraa696402007-03-08 01:46:38 +0000751 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero,KnownOne,Depth+1);
752 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
753 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
754 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
755 KnownZero |= HighBits; // high bits known zero.
756 return;
757 }
758 break;
759 case Instruction::AShr:
760 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
761 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
762 // Compute the new bits that are at the top now.
763 uint64_t ShiftAmt = SA->getZExtValue();
764 APInt HighBits(APInt::getAllOnesValue(BitWidth).shl(BitWidth-ShiftAmt));
765
766 // Signed shift right.
Zhou Shengb3e00c42007-03-12 05:44:52 +0000767 Mask <<= ShiftAmt;
Reid Spenceraa696402007-03-08 01:46:38 +0000768 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero,KnownOne,Depth+1);
769 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
770 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
771 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
772
773 // Handle the sign bits and adjust to where it is now in the mask.
Zhou Shengb3e00c42007-03-12 05:44:52 +0000774 APInt SignBit(APInt::getSignBit(BitWidth).lshr(ShiftAmt));
Reid Spenceraa696402007-03-08 01:46:38 +0000775
776 if ((KnownZero & SignBit) != 0) { // New bits are known zero.
777 KnownZero |= HighBits;
778 } else if ((KnownOne & SignBit) != 0) { // New bits are known one.
779 KnownOne |= HighBits;
780 }
781 return;
782 }
783 break;
784 }
785}
786
787/// ComputeMaskedBits - Determine which of the bits specified in Mask are
788/// known to be either zero or one and return them in the KnownZero/KnownOne
Chris Lattner4534dd592006-02-09 07:38:58 +0000789/// bitsets. This code only analyzes bits in Mask, in order to short-circuit
790/// processing.
Reid Spenceraa696402007-03-08 01:46:38 +0000791static void ComputeMaskedBits(Value *V, uint64_t Mask, uint64_t &KnownZero,
Chris Lattner4534dd592006-02-09 07:38:58 +0000792 uint64_t &KnownOne, unsigned Depth = 0) {
Chris Lattner0b3557f2005-09-24 23:43:33 +0000793 // Note, we cannot consider 'undef' to be "IsZero" here. The problem is that
794 // we cannot optimize based on the assumption that it is zero without changing
Chris Lattnerc3ebf402006-02-07 07:27:52 +0000795 // it to be an explicit zero. If we don't change it to zero, other code could
Chris Lattner0b3557f2005-09-24 23:43:33 +0000796 // optimized based on the contradictory assumption that it is non-zero.
797 // Because instcombine aggressively folds operations with undef args anyway,
798 // this won't lose us code quality.
Zhou Sheng75b871f2007-01-11 12:24:14 +0000799 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Chris Lattner4534dd592006-02-09 07:38:58 +0000800 // We know all of the bits for a constant!
Chris Lattner0157e7f2006-02-11 09:31:47 +0000801 KnownOne = CI->getZExtValue() & Mask;
Chris Lattner4534dd592006-02-09 07:38:58 +0000802 KnownZero = ~KnownOne & Mask;
803 return;
804 }
805
806 KnownZero = KnownOne = 0; // Don't know anything.
Chris Lattner92a68652006-02-07 08:05:22 +0000807 if (Depth == 6 || Mask == 0)
Chris Lattner4534dd592006-02-09 07:38:58 +0000808 return; // Limit search depth.
809
810 uint64_t KnownZero2, KnownOne2;
Chris Lattner0157e7f2006-02-11 09:31:47 +0000811 Instruction *I = dyn_cast<Instruction>(V);
812 if (!I) return;
813
Reid Spencera94d3942007-01-19 21:13:56 +0000814 Mask &= cast<IntegerType>(V->getType())->getBitMask();
Chris Lattnerfb296922006-05-04 17:33:35 +0000815
Chris Lattner0157e7f2006-02-11 09:31:47 +0000816 switch (I->getOpcode()) {
817 case Instruction::And:
818 // If either the LHS or the RHS are Zero, the result is zero.
819 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
820 Mask &= ~KnownZero;
821 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
822 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
823 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
824
825 // Output known-1 bits are only known if set in both the LHS & RHS.
826 KnownOne &= KnownOne2;
827 // Output known-0 are known to be clear if zero in either the LHS | RHS.
828 KnownZero |= KnownZero2;
829 return;
830 case Instruction::Or:
831 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
832 Mask &= ~KnownOne;
833 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
834 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
835 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
836
837 // Output known-0 bits are only known if clear in both the LHS & RHS.
838 KnownZero &= KnownZero2;
839 // Output known-1 are known to be set if set in either the LHS | RHS.
840 KnownOne |= KnownOne2;
841 return;
842 case Instruction::Xor: {
843 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
844 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
845 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
846 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
847
848 // Output known-0 bits are known if clear or set in both the LHS & RHS.
849 uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
850 // Output known-1 are known to be set if set in only one of the LHS, RHS.
851 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
852 KnownZero = KnownZeroOut;
853 return;
854 }
855 case Instruction::Select:
856 ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
857 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
858 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
859 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
860
861 // Only known if known in both the LHS and RHS.
862 KnownOne &= KnownOne2;
863 KnownZero &= KnownZero2;
864 return;
Reid Spencer6c38f0b2006-11-27 01:05:10 +0000865 case Instruction::FPTrunc:
866 case Instruction::FPExt:
867 case Instruction::FPToUI:
868 case Instruction::FPToSI:
869 case Instruction::SIToFP:
870 case Instruction::PtrToInt:
871 case Instruction::UIToFP:
872 case Instruction::IntToPtr:
873 return; // Can't work with floating point or pointers
874 case Instruction::Trunc:
875 // All these have integer operands
876 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
877 return;
878 case Instruction::BitCast: {
Chris Lattner0157e7f2006-02-11 09:31:47 +0000879 const Type *SrcTy = I->getOperand(0)->getType();
Chris Lattner03c49532007-01-15 02:27:26 +0000880 if (SrcTy->isInteger()) {
Chris Lattner0157e7f2006-02-11 09:31:47 +0000881 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
Chris Lattner4534dd592006-02-09 07:38:58 +0000882 return;
883 }
Reid Spencer6c38f0b2006-11-27 01:05:10 +0000884 break;
885 }
886 case Instruction::ZExt: {
887 // Compute the bits in the result that are not present in the input.
Reid Spencera94d3942007-01-19 21:13:56 +0000888 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
889 uint64_t NotIn = ~SrcTy->getBitMask();
890 uint64_t NewBits = cast<IntegerType>(I->getType())->getBitMask() & NotIn;
Chris Lattner62010c42005-10-09 06:36:35 +0000891
Reid Spencera94d3942007-01-19 21:13:56 +0000892 Mask &= SrcTy->getBitMask();
Reid Spencer6c38f0b2006-11-27 01:05:10 +0000893 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
894 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
895 // The top bits are known to be zero.
896 KnownZero |= NewBits;
897 return;
898 }
899 case Instruction::SExt: {
900 // Compute the bits in the result that are not present in the input.
Reid Spencera94d3942007-01-19 21:13:56 +0000901 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
902 uint64_t NotIn = ~SrcTy->getBitMask();
903 uint64_t NewBits = cast<IntegerType>(I->getType())->getBitMask() & NotIn;
Reid Spencer6c38f0b2006-11-27 01:05:10 +0000904
Reid Spencera94d3942007-01-19 21:13:56 +0000905 Mask &= SrcTy->getBitMask();
Reid Spencer6c38f0b2006-11-27 01:05:10 +0000906 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
907 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner92a68652006-02-07 08:05:22 +0000908
Reid Spencer6c38f0b2006-11-27 01:05:10 +0000909 // If the sign bit of the input is known set or clear, then we know the
910 // top bits of the result.
911 uint64_t InSignBit = 1ULL << (SrcTy->getPrimitiveSizeInBits()-1);
912 if (KnownZero & InSignBit) { // Input sign bit known zero
913 KnownZero |= NewBits;
914 KnownOne &= ~NewBits;
915 } else if (KnownOne & InSignBit) { // Input sign bit known set
916 KnownOne |= NewBits;
917 KnownZero &= ~NewBits;
918 } else { // Input sign bit unknown
919 KnownZero &= ~NewBits;
920 KnownOne &= ~NewBits;
Chris Lattner0157e7f2006-02-11 09:31:47 +0000921 }
922 return;
923 }
924 case Instruction::Shl:
925 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Reid Spencere0fc4df2006-10-20 07:07:24 +0000926 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
927 uint64_t ShiftAmt = SA->getZExtValue();
928 Mask >>= ShiftAmt;
Chris Lattner0157e7f2006-02-11 09:31:47 +0000929 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
930 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Reid Spencere0fc4df2006-10-20 07:07:24 +0000931 KnownZero <<= ShiftAmt;
932 KnownOne <<= ShiftAmt;
933 KnownZero |= (1ULL << ShiftAmt)-1; // low bits known zero.
Chris Lattner0157e7f2006-02-11 09:31:47 +0000934 return;
935 }
936 break;
Reid Spencerfdff9382006-11-08 06:47:33 +0000937 case Instruction::LShr:
Chris Lattner0157e7f2006-02-11 09:31:47 +0000938 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Reid Spencere0fc4df2006-10-20 07:07:24 +0000939 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
Chris Lattner0157e7f2006-02-11 09:31:47 +0000940 // Compute the new bits that are at the top now.
Reid Spencere0fc4df2006-10-20 07:07:24 +0000941 uint64_t ShiftAmt = SA->getZExtValue();
942 uint64_t HighBits = (1ULL << ShiftAmt)-1;
943 HighBits <<= I->getType()->getPrimitiveSizeInBits()-ShiftAmt;
Chris Lattner0157e7f2006-02-11 09:31:47 +0000944
Reid Spencerfdff9382006-11-08 06:47:33 +0000945 // Unsigned shift right.
946 Mask <<= ShiftAmt;
947 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero,KnownOne,Depth+1);
948 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
949 KnownZero >>= ShiftAmt;
950 KnownOne >>= ShiftAmt;
951 KnownZero |= HighBits; // high bits known zero.
952 return;
953 }
954 break;
955 case Instruction::AShr:
956 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
957 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
958 // Compute the new bits that are at the top now.
959 uint64_t ShiftAmt = SA->getZExtValue();
960 uint64_t HighBits = (1ULL << ShiftAmt)-1;
961 HighBits <<= I->getType()->getPrimitiveSizeInBits()-ShiftAmt;
962
963 // Signed shift right.
964 Mask <<= ShiftAmt;
965 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero,KnownOne,Depth+1);
966 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
967 KnownZero >>= ShiftAmt;
968 KnownOne >>= ShiftAmt;
Chris Lattner0157e7f2006-02-11 09:31:47 +0000969
Reid Spencerfdff9382006-11-08 06:47:33 +0000970 // Handle the sign bits.
971 uint64_t SignBit = 1ULL << (I->getType()->getPrimitiveSizeInBits()-1);
972 SignBit >>= ShiftAmt; // Adjust to where it is now in the mask.
Chris Lattner0157e7f2006-02-11 09:31:47 +0000973
Reid Spencerfdff9382006-11-08 06:47:33 +0000974 if (KnownZero & SignBit) { // New bits are known zero.
975 KnownZero |= HighBits;
976 } else if (KnownOne & SignBit) { // New bits are known one.
977 KnownOne |= HighBits;
Chris Lattner4534dd592006-02-09 07:38:58 +0000978 }
979 return;
Chris Lattner62010c42005-10-09 06:36:35 +0000980 }
Chris Lattner0157e7f2006-02-11 09:31:47 +0000981 break;
Chris Lattner0b3557f2005-09-24 23:43:33 +0000982 }
Chris Lattner92a68652006-02-07 08:05:22 +0000983}
984
985/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
986/// this predicate to simplify operations downstream. Mask is known to be zero
987/// for bits that V cannot have.
988static bool MaskedValueIsZero(Value *V, uint64_t Mask, unsigned Depth = 0) {
Chris Lattner4534dd592006-02-09 07:38:58 +0000989 uint64_t KnownZero, KnownOne;
990 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, Depth);
991 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
992 return (KnownZero & Mask) == Mask;
Chris Lattner0b3557f2005-09-24 23:43:33 +0000993}
994
Chris Lattnerd1bce952007-03-13 14:27:42 +0000995#if 0
Reid Spencerbb5741f2007-03-08 01:52:58 +0000996/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
997/// this predicate to simplify operations downstream. Mask is known to be zero
998/// for bits that V cannot have.
999static bool MaskedValueIsZero(Value *V, const APInt& Mask, unsigned Depth = 0) {
Zhou Shengbe171ee2007-03-12 16:54:56 +00001000 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Reid Spencerbb5741f2007-03-08 01:52:58 +00001001 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, Depth);
1002 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1003 return (KnownZero & Mask) == Mask;
1004}
Chris Lattnerd1bce952007-03-13 14:27:42 +00001005#endif
Reid Spencerbb5741f2007-03-08 01:52:58 +00001006
Chris Lattner0157e7f2006-02-11 09:31:47 +00001007/// ShrinkDemandedConstant - Check to see if the specified operand of the
1008/// specified instruction is a constant integer. If so, check to see if there
1009/// are any bits set in the constant that are not demanded. If so, shrink the
1010/// constant and return true.
1011static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
1012 uint64_t Demanded) {
1013 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
1014 if (!OpC) return false;
1015
1016 // If there are no bits set that aren't demanded, nothing to do.
1017 if ((~Demanded & OpC->getZExtValue()) == 0)
1018 return false;
1019
1020 // This is producing any bits that are not needed, shrink the RHS.
1021 uint64_t Val = Demanded & OpC->getZExtValue();
Zhou Sheng75b871f2007-01-11 12:24:14 +00001022 I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Val));
Chris Lattner0157e7f2006-02-11 09:31:47 +00001023 return true;
1024}
1025
Reid Spencerd9281782007-03-12 17:15:10 +00001026/// ShrinkDemandedConstant - Check to see if the specified operand of the
1027/// specified instruction is a constant integer. If so, check to see if there
1028/// are any bits set in the constant that are not demanded. If so, shrink the
1029/// constant and return true.
1030static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
1031 APInt Demanded) {
1032 assert(I && "No instruction?");
1033 assert(OpNo < I->getNumOperands() && "Operand index too large");
1034
1035 // If the operand is not a constant integer, nothing to do.
1036 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
1037 if (!OpC) return false;
1038
1039 // If there are no bits set that aren't demanded, nothing to do.
1040 Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
1041 if ((~Demanded & OpC->getValue()) == 0)
1042 return false;
1043
1044 // This instruction is producing bits that are not demanded. Shrink the RHS.
1045 Demanded &= OpC->getValue();
1046 I->setOperand(OpNo, ConstantInt::get(Demanded));
1047 return true;
1048}
1049
Chris Lattneree0f2802006-02-12 02:07:56 +00001050// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
1051// set of known zero and one bits, compute the maximum and minimum values that
1052// could have the specified known zero and known one bits, returning them in
1053// min/max.
1054static void ComputeSignedMinMaxValuesFromKnownBits(const Type *Ty,
1055 uint64_t KnownZero,
1056 uint64_t KnownOne,
1057 int64_t &Min, int64_t &Max) {
Reid Spencera94d3942007-01-19 21:13:56 +00001058 uint64_t TypeBits = cast<IntegerType>(Ty)->getBitMask();
Chris Lattneree0f2802006-02-12 02:07:56 +00001059 uint64_t UnknownBits = ~(KnownZero|KnownOne) & TypeBits;
1060
1061 uint64_t SignBit = 1ULL << (Ty->getPrimitiveSizeInBits()-1);
1062
1063 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
1064 // bit if it is unknown.
1065 Min = KnownOne;
1066 Max = KnownOne|UnknownBits;
1067
1068 if (SignBit & UnknownBits) { // Sign bit is unknown
1069 Min |= SignBit;
1070 Max &= ~SignBit;
1071 }
1072
1073 // Sign extend the min/max values.
1074 int ShAmt = 64-Ty->getPrimitiveSizeInBits();
1075 Min = (Min << ShAmt) >> ShAmt;
1076 Max = (Max << ShAmt) >> ShAmt;
1077}
1078
1079// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
1080// a set of known zero and one bits, compute the maximum and minimum values that
1081// could have the specified known zero and known one bits, returning them in
1082// min/max.
1083static void ComputeUnsignedMinMaxValuesFromKnownBits(const Type *Ty,
1084 uint64_t KnownZero,
1085 uint64_t KnownOne,
1086 uint64_t &Min,
1087 uint64_t &Max) {
Reid Spencera94d3942007-01-19 21:13:56 +00001088 uint64_t TypeBits = cast<IntegerType>(Ty)->getBitMask();
Chris Lattneree0f2802006-02-12 02:07:56 +00001089 uint64_t UnknownBits = ~(KnownZero|KnownOne) & TypeBits;
1090
1091 // The minimum value is when the unknown bits are all zeros.
1092 Min = KnownOne;
1093 // The maximum value is when the unknown bits are all ones.
1094 Max = KnownOne|UnknownBits;
1095}
Chris Lattner0157e7f2006-02-11 09:31:47 +00001096
1097
1098/// SimplifyDemandedBits - Look at V. At this point, we know that only the
1099/// DemandedMask bits of the result of V are ever used downstream. If we can
1100/// use this information to simplify V, do so and return true. Otherwise,
1101/// analyze the expression and return a mask of KnownOne and KnownZero bits for
1102/// the expression (used to simplify the caller). The KnownZero/One bits may
1103/// only be accurate for those bits in the DemandedMask.
1104bool InstCombiner::SimplifyDemandedBits(Value *V, uint64_t DemandedMask,
1105 uint64_t &KnownZero, uint64_t &KnownOne,
Chris Lattner2590e512006-02-07 06:56:34 +00001106 unsigned Depth) {
Chris Lattnerab2f9132007-03-04 23:16:36 +00001107 const IntegerType *VTy = cast<IntegerType>(V->getType());
Zhou Sheng75b871f2007-01-11 12:24:14 +00001108 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Chris Lattner0157e7f2006-02-11 09:31:47 +00001109 // We know all of the bits for a constant!
1110 KnownOne = CI->getZExtValue() & DemandedMask;
1111 KnownZero = ~KnownOne & DemandedMask;
1112 return false;
1113 }
1114
1115 KnownZero = KnownOne = 0;
Chris Lattner2590e512006-02-07 06:56:34 +00001116 if (!V->hasOneUse()) { // Other users may use these bits.
Chris Lattner0157e7f2006-02-11 09:31:47 +00001117 if (Depth != 0) { // Not at the root.
1118 // Just compute the KnownZero/KnownOne bits to simplify things downstream.
1119 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
Chris Lattner2590e512006-02-07 06:56:34 +00001120 return false;
Chris Lattner0157e7f2006-02-11 09:31:47 +00001121 }
Chris Lattner2590e512006-02-07 06:56:34 +00001122 // If this is the root being simplified, allow it to have multiple uses,
Chris Lattner0157e7f2006-02-11 09:31:47 +00001123 // just set the DemandedMask to all bits.
Chris Lattnerab2f9132007-03-04 23:16:36 +00001124 DemandedMask = VTy->getBitMask();
Chris Lattner0157e7f2006-02-11 09:31:47 +00001125 } else if (DemandedMask == 0) { // Not demanding any bits from V.
Chris Lattnerab2f9132007-03-04 23:16:36 +00001126 if (V != UndefValue::get(VTy))
1127 return UpdateValueUsesWith(V, UndefValue::get(VTy));
Chris Lattner92a68652006-02-07 08:05:22 +00001128 return false;
Chris Lattner2590e512006-02-07 06:56:34 +00001129 } else if (Depth == 6) { // Limit search depth.
1130 return false;
1131 }
1132
1133 Instruction *I = dyn_cast<Instruction>(V);
1134 if (!I) return false; // Only analyze instructions.
1135
Chris Lattnerab2f9132007-03-04 23:16:36 +00001136 DemandedMask &= VTy->getBitMask();
Chris Lattnerfb296922006-05-04 17:33:35 +00001137
Reid Spencer6c38f0b2006-11-27 01:05:10 +00001138 uint64_t KnownZero2 = 0, KnownOne2 = 0;
Chris Lattner2590e512006-02-07 06:56:34 +00001139 switch (I->getOpcode()) {
1140 default: break;
1141 case Instruction::And:
Chris Lattner0157e7f2006-02-11 09:31:47 +00001142 // If either the LHS or the RHS are Zero, the result is zero.
1143 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
1144 KnownZero, KnownOne, Depth+1))
1145 return true;
1146 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1147
1148 // If something is known zero on the RHS, the bits aren't demanded on the
1149 // LHS.
1150 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~KnownZero,
1151 KnownZero2, KnownOne2, Depth+1))
1152 return true;
1153 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1154
Reid Spencer6c38f0b2006-11-27 01:05:10 +00001155 // If all of the demanded bits are known 1 on one side, return the other.
Chris Lattner0157e7f2006-02-11 09:31:47 +00001156 // These bits cannot contribute to the result of the 'and'.
1157 if ((DemandedMask & ~KnownZero2 & KnownOne) == (DemandedMask & ~KnownZero2))
1158 return UpdateValueUsesWith(I, I->getOperand(0));
1159 if ((DemandedMask & ~KnownZero & KnownOne2) == (DemandedMask & ~KnownZero))
1160 return UpdateValueUsesWith(I, I->getOperand(1));
Chris Lattner5b2edb12006-02-12 08:02:11 +00001161
1162 // If all of the demanded bits in the inputs are known zeros, return zero.
1163 if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask)
Chris Lattnerab2f9132007-03-04 23:16:36 +00001164 return UpdateValueUsesWith(I, Constant::getNullValue(VTy));
Chris Lattner5b2edb12006-02-12 08:02:11 +00001165
Chris Lattner0157e7f2006-02-11 09:31:47 +00001166 // If the RHS is a constant, see if we can simplify it.
Chris Lattner5b2edb12006-02-12 08:02:11 +00001167 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~KnownZero2))
Chris Lattner0157e7f2006-02-11 09:31:47 +00001168 return UpdateValueUsesWith(I, I);
1169
1170 // Output known-1 bits are only known if set in both the LHS & RHS.
1171 KnownOne &= KnownOne2;
1172 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1173 KnownZero |= KnownZero2;
1174 break;
1175 case Instruction::Or:
1176 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
1177 KnownZero, KnownOne, Depth+1))
1178 return true;
1179 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1180 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~KnownOne,
1181 KnownZero2, KnownOne2, Depth+1))
1182 return true;
1183 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1184
1185 // If all of the demanded bits are known zero on one side, return the other.
1186 // These bits cannot contribute to the result of the 'or'.
Jeff Cohen0add83e2006-02-18 03:20:33 +00001187 if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2))
Chris Lattner0157e7f2006-02-11 09:31:47 +00001188 return UpdateValueUsesWith(I, I->getOperand(0));
Jeff Cohen0add83e2006-02-18 03:20:33 +00001189 if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne))
Chris Lattner0157e7f2006-02-11 09:31:47 +00001190 return UpdateValueUsesWith(I, I->getOperand(1));
Chris Lattner5b2edb12006-02-12 08:02:11 +00001191
1192 // If all of the potentially set bits on one side are known to be set on
1193 // the other side, just use the 'other' side.
1194 if ((DemandedMask & (~KnownZero) & KnownOne2) ==
1195 (DemandedMask & (~KnownZero)))
1196 return UpdateValueUsesWith(I, I->getOperand(0));
Nate Begeman8a77efe2006-02-16 21:11:51 +00001197 if ((DemandedMask & (~KnownZero2) & KnownOne) ==
1198 (DemandedMask & (~KnownZero2)))
1199 return UpdateValueUsesWith(I, I->getOperand(1));
Chris Lattner0157e7f2006-02-11 09:31:47 +00001200
1201 // If the RHS is a constant, see if we can simplify it.
1202 if (ShrinkDemandedConstant(I, 1, DemandedMask))
1203 return UpdateValueUsesWith(I, I);
1204
1205 // Output known-0 bits are only known if clear in both the LHS & RHS.
1206 KnownZero &= KnownZero2;
1207 // Output known-1 are known to be set if set in either the LHS | RHS.
1208 KnownOne |= KnownOne2;
1209 break;
1210 case Instruction::Xor: {
1211 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
1212 KnownZero, KnownOne, Depth+1))
1213 return true;
1214 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1215 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1216 KnownZero2, KnownOne2, Depth+1))
1217 return true;
1218 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1219
1220 // If all of the demanded bits are known zero on one side, return the other.
1221 // These bits cannot contribute to the result of the 'xor'.
1222 if ((DemandedMask & KnownZero) == DemandedMask)
1223 return UpdateValueUsesWith(I, I->getOperand(0));
1224 if ((DemandedMask & KnownZero2) == DemandedMask)
1225 return UpdateValueUsesWith(I, I->getOperand(1));
1226
1227 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1228 uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1229 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1230 uint64_t KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1231
Chris Lattner8e9a7b72006-11-27 19:55:07 +00001232 // If all of the demanded bits are known to be zero on one side or the
1233 // other, turn this into an *inclusive* or.
Chris Lattner5b2edb12006-02-12 08:02:11 +00001234 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
Chris Lattner8e9a7b72006-11-27 19:55:07 +00001235 if ((DemandedMask & ~KnownZero & ~KnownZero2) == 0) {
1236 Instruction *Or =
1237 BinaryOperator::createOr(I->getOperand(0), I->getOperand(1),
1238 I->getName());
1239 InsertNewInstBefore(Or, *I);
1240 return UpdateValueUsesWith(I, Or);
Chris Lattner2590e512006-02-07 06:56:34 +00001241 }
Chris Lattner0157e7f2006-02-11 09:31:47 +00001242
Chris Lattner5b2edb12006-02-12 08:02:11 +00001243 // If all of the demanded bits on one side are known, and all of the set
1244 // bits on that side are also known to be set on the other side, turn this
1245 // into an AND, as we know the bits will be cleared.
1246 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1247 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known
1248 if ((KnownOne & KnownOne2) == KnownOne) {
Chris Lattnerab2f9132007-03-04 23:16:36 +00001249 Constant *AndC = ConstantInt::get(VTy, ~KnownOne & DemandedMask);
Chris Lattner5b2edb12006-02-12 08:02:11 +00001250 Instruction *And =
1251 BinaryOperator::createAnd(I->getOperand(0), AndC, "tmp");
1252 InsertNewInstBefore(And, *I);
1253 return UpdateValueUsesWith(I, And);
1254 }
1255 }
1256
Chris Lattner0157e7f2006-02-11 09:31:47 +00001257 // If the RHS is a constant, see if we can simplify it.
1258 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
1259 if (ShrinkDemandedConstant(I, 1, DemandedMask))
1260 return UpdateValueUsesWith(I, I);
1261
1262 KnownZero = KnownZeroOut;
1263 KnownOne = KnownOneOut;
1264 break;
1265 }
1266 case Instruction::Select:
1267 if (SimplifyDemandedBits(I->getOperand(2), DemandedMask,
1268 KnownZero, KnownOne, Depth+1))
1269 return true;
1270 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
1271 KnownZero2, KnownOne2, Depth+1))
1272 return true;
1273 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1274 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1275
1276 // If the operands are constants, see if we can simplify them.
1277 if (ShrinkDemandedConstant(I, 1, DemandedMask))
1278 return UpdateValueUsesWith(I, I);
1279 if (ShrinkDemandedConstant(I, 2, DemandedMask))
1280 return UpdateValueUsesWith(I, I);
1281
1282 // Only known if known in both the LHS and RHS.
1283 KnownOne &= KnownOne2;
1284 KnownZero &= KnownZero2;
1285 break;
Reid Spencer6c38f0b2006-11-27 01:05:10 +00001286 case Instruction::Trunc:
1287 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1288 KnownZero, KnownOne, Depth+1))
1289 return true;
1290 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1291 break;
1292 case Instruction::BitCast:
Chris Lattner03c49532007-01-15 02:27:26 +00001293 if (!I->getOperand(0)->getType()->isInteger())
Reid Spencer6c38f0b2006-11-27 01:05:10 +00001294 return false;
Chris Lattner850465d2006-09-16 03:14:10 +00001295
Reid Spencer6c38f0b2006-11-27 01:05:10 +00001296 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1297 KnownZero, KnownOne, Depth+1))
1298 return true;
1299 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1300 break;
1301 case Instruction::ZExt: {
1302 // Compute the bits in the result that are not present in the input.
Reid Spencera94d3942007-01-19 21:13:56 +00001303 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1304 uint64_t NotIn = ~SrcTy->getBitMask();
Chris Lattnerab2f9132007-03-04 23:16:36 +00001305 uint64_t NewBits = VTy->getBitMask() & NotIn;
Chris Lattner0157e7f2006-02-11 09:31:47 +00001306
Reid Spencera94d3942007-01-19 21:13:56 +00001307 DemandedMask &= SrcTy->getBitMask();
Reid Spencer6c38f0b2006-11-27 01:05:10 +00001308 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1309 KnownZero, KnownOne, Depth+1))
1310 return true;
1311 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1312 // The top bits are known to be zero.
1313 KnownZero |= NewBits;
1314 break;
1315 }
1316 case Instruction::SExt: {
1317 // Compute the bits in the result that are not present in the input.
Reid Spencera94d3942007-01-19 21:13:56 +00001318 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1319 uint64_t NotIn = ~SrcTy->getBitMask();
Chris Lattnerab2f9132007-03-04 23:16:36 +00001320 uint64_t NewBits = VTy->getBitMask() & NotIn;
Reid Spencer6c38f0b2006-11-27 01:05:10 +00001321
1322 // Get the sign bit for the source type
1323 uint64_t InSignBit = 1ULL << (SrcTy->getPrimitiveSizeInBits()-1);
Reid Spencera94d3942007-01-19 21:13:56 +00001324 int64_t InputDemandedBits = DemandedMask & SrcTy->getBitMask();
Chris Lattner7d852282006-02-13 22:41:07 +00001325
Reid Spencer6c38f0b2006-11-27 01:05:10 +00001326 // If any of the sign extended bits are demanded, we know that the sign
1327 // bit is demanded.
1328 if (NewBits & DemandedMask)
1329 InputDemandedBits |= InSignBit;
Chris Lattner7d852282006-02-13 22:41:07 +00001330
Reid Spencer6c38f0b2006-11-27 01:05:10 +00001331 if (SimplifyDemandedBits(I->getOperand(0), InputDemandedBits,
1332 KnownZero, KnownOne, Depth+1))
1333 return true;
1334 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner0157e7f2006-02-11 09:31:47 +00001335
Reid Spencer6c38f0b2006-11-27 01:05:10 +00001336 // If the sign bit of the input is known set or clear, then we know the
1337 // top bits of the result.
Chris Lattner2590e512006-02-07 06:56:34 +00001338
Reid Spencer6c38f0b2006-11-27 01:05:10 +00001339 // If the input sign bit is known zero, or if the NewBits are not demanded
1340 // convert this into a zero extension.
1341 if ((KnownZero & InSignBit) || (NewBits & ~DemandedMask) == NewBits) {
1342 // Convert to ZExt cast
Chris Lattnerab2f9132007-03-04 23:16:36 +00001343 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName(), I);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00001344 return UpdateValueUsesWith(I, NewCast);
1345 } else if (KnownOne & InSignBit) { // Input sign bit known set
1346 KnownOne |= NewBits;
1347 KnownZero &= ~NewBits;
1348 } else { // Input sign bit unknown
1349 KnownZero &= ~NewBits;
1350 KnownOne &= ~NewBits;
Chris Lattner2590e512006-02-07 06:56:34 +00001351 }
Chris Lattner0157e7f2006-02-11 09:31:47 +00001352 break;
Chris Lattner2590e512006-02-07 06:56:34 +00001353 }
Chris Lattner6e2c15c2006-11-09 05:12:27 +00001354 case Instruction::Add:
1355 // If there is a constant on the RHS, there are a variety of xformations
1356 // we can do.
1357 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1358 // If null, this should be simplified elsewhere. Some of the xforms here
1359 // won't work if the RHS is zero.
1360 if (RHS->isNullValue())
1361 break;
1362
1363 // Figure out what the input bits are. If the top bits of the and result
1364 // are not demanded, then the add doesn't demand them from its input
1365 // either.
1366
1367 // Shift the demanded mask up so that it's at the top of the uint64_t.
Chris Lattnerab2f9132007-03-04 23:16:36 +00001368 unsigned BitWidth = VTy->getPrimitiveSizeInBits();
Chris Lattner6e2c15c2006-11-09 05:12:27 +00001369 unsigned NLZ = CountLeadingZeros_64(DemandedMask << (64-BitWidth));
1370
1371 // If the top bit of the output is demanded, demand everything from the
1372 // input. Otherwise, we demand all the input bits except NLZ top bits.
Jeff Cohen223004c2007-01-08 20:17:17 +00001373 uint64_t InDemandedBits = ~0ULL >> (64-BitWidth+NLZ);
Chris Lattner6e2c15c2006-11-09 05:12:27 +00001374
1375 // Find information about known zero/one bits in the input.
1376 if (SimplifyDemandedBits(I->getOperand(0), InDemandedBits,
1377 KnownZero2, KnownOne2, Depth+1))
1378 return true;
1379
1380 // If the RHS of the add has bits set that can't affect the input, reduce
1381 // the constant.
1382 if (ShrinkDemandedConstant(I, 1, InDemandedBits))
1383 return UpdateValueUsesWith(I, I);
1384
1385 // Avoid excess work.
1386 if (KnownZero2 == 0 && KnownOne2 == 0)
1387 break;
1388
1389 // Turn it into OR if input bits are zero.
1390 if ((KnownZero2 & RHS->getZExtValue()) == RHS->getZExtValue()) {
1391 Instruction *Or =
1392 BinaryOperator::createOr(I->getOperand(0), I->getOperand(1),
1393 I->getName());
1394 InsertNewInstBefore(Or, *I);
1395 return UpdateValueUsesWith(I, Or);
1396 }
1397
1398 // We can say something about the output known-zero and known-one bits,
1399 // depending on potential carries from the input constant and the
1400 // unknowns. For example if the LHS is known to have at most the 0x0F0F0
1401 // bits set and the RHS constant is 0x01001, then we know we have a known
1402 // one mask of 0x00001 and a known zero mask of 0xE0F0E.
1403
1404 // To compute this, we first compute the potential carry bits. These are
1405 // the bits which may be modified. I'm not aware of a better way to do
1406 // this scan.
1407 uint64_t RHSVal = RHS->getZExtValue();
1408
1409 bool CarryIn = false;
1410 uint64_t CarryBits = 0;
1411 uint64_t CurBit = 1;
1412 for (unsigned i = 0; i != BitWidth; ++i, CurBit <<= 1) {
1413 // Record the current carry in.
1414 if (CarryIn) CarryBits |= CurBit;
1415
1416 bool CarryOut;
1417
1418 // This bit has a carry out unless it is "zero + zero" or
1419 // "zero + anything" with no carry in.
1420 if ((KnownZero2 & CurBit) && ((RHSVal & CurBit) == 0)) {
1421 CarryOut = false; // 0 + 0 has no carry out, even with carry in.
1422 } else if (!CarryIn &&
1423 ((KnownZero2 & CurBit) || ((RHSVal & CurBit) == 0))) {
1424 CarryOut = false; // 0 + anything has no carry out if no carry in.
1425 } else {
1426 // Otherwise, we have to assume we have a carry out.
1427 CarryOut = true;
1428 }
1429
1430 // This stage's carry out becomes the next stage's carry-in.
1431 CarryIn = CarryOut;
1432 }
1433
1434 // Now that we know which bits have carries, compute the known-1/0 sets.
1435
1436 // Bits are known one if they are known zero in one operand and one in the
1437 // other, and there is no input carry.
1438 KnownOne = ((KnownZero2 & RHSVal) | (KnownOne2 & ~RHSVal)) & ~CarryBits;
1439
1440 // Bits are known zero if they are known zero in both operands and there
1441 // is no input carry.
1442 KnownZero = KnownZero2 & ~RHSVal & ~CarryBits;
Chris Lattner5fdded12007-03-05 00:02:29 +00001443 } else {
1444 // If the high-bits of this ADD are not demanded, then it does not demand
1445 // the high bits of its LHS or RHS.
1446 if ((DemandedMask & VTy->getSignBit()) == 0) {
1447 // Right fill the mask of bits for this ADD to demand the most
1448 // significant bit and all those below it.
1449 unsigned NLZ = CountLeadingZeros_64(DemandedMask);
1450 uint64_t DemandedFromOps = ~0ULL >> NLZ;
1451 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1452 KnownZero2, KnownOne2, Depth+1))
1453 return true;
1454 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1455 KnownZero2, KnownOne2, Depth+1))
1456 return true;
1457 }
1458 }
1459 break;
1460 case Instruction::Sub:
1461 // If the high-bits of this SUB are not demanded, then it does not demand
1462 // the high bits of its LHS or RHS.
1463 if ((DemandedMask & VTy->getSignBit()) == 0) {
1464 // Right fill the mask of bits for this SUB to demand the most
1465 // significant bit and all those below it.
1466 unsigned NLZ = CountLeadingZeros_64(DemandedMask);
1467 uint64_t DemandedFromOps = ~0ULL >> NLZ;
1468 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1469 KnownZero2, KnownOne2, Depth+1))
1470 return true;
1471 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1472 KnownZero2, KnownOne2, Depth+1))
1473 return true;
Chris Lattner6e2c15c2006-11-09 05:12:27 +00001474 }
1475 break;
Chris Lattner2590e512006-02-07 06:56:34 +00001476 case Instruction::Shl:
Reid Spencere0fc4df2006-10-20 07:07:24 +00001477 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1478 uint64_t ShiftAmt = SA->getZExtValue();
1479 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask >> ShiftAmt,
Chris Lattner0157e7f2006-02-11 09:31:47 +00001480 KnownZero, KnownOne, Depth+1))
1481 return true;
1482 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Reid Spencere0fc4df2006-10-20 07:07:24 +00001483 KnownZero <<= ShiftAmt;
1484 KnownOne <<= ShiftAmt;
1485 KnownZero |= (1ULL << ShiftAmt) - 1; // low bits known zero.
Chris Lattner0157e7f2006-02-11 09:31:47 +00001486 }
Chris Lattner2590e512006-02-07 06:56:34 +00001487 break;
Reid Spencerfdff9382006-11-08 06:47:33 +00001488 case Instruction::LShr:
1489 // For a logical shift right
1490 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1491 unsigned ShiftAmt = SA->getZExtValue();
1492
1493 // Compute the new bits that are at the top now.
1494 uint64_t HighBits = (1ULL << ShiftAmt)-1;
Chris Lattnerab2f9132007-03-04 23:16:36 +00001495 HighBits <<= VTy->getBitWidth() - ShiftAmt;
1496 uint64_t TypeMask = VTy->getBitMask();
Reid Spencerfdff9382006-11-08 06:47:33 +00001497 // Unsigned shift right.
1498 if (SimplifyDemandedBits(I->getOperand(0),
1499 (DemandedMask << ShiftAmt) & TypeMask,
1500 KnownZero, KnownOne, Depth+1))
1501 return true;
1502 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1503 KnownZero &= TypeMask;
1504 KnownOne &= TypeMask;
1505 KnownZero >>= ShiftAmt;
1506 KnownOne >>= ShiftAmt;
1507 KnownZero |= HighBits; // high bits known zero.
1508 }
1509 break;
1510 case Instruction::AShr:
Chris Lattner420c4bc2006-09-18 04:31:40 +00001511 // If this is an arithmetic shift right and only the low-bit is set, we can
1512 // always convert this into a logical shr, even if the shift amount is
1513 // variable. The low bit of the shift cannot be an input sign bit unless
1514 // the shift amount is >= the size of the datatype, which is undefined.
Reid Spencerfdff9382006-11-08 06:47:33 +00001515 if (DemandedMask == 1) {
1516 // Perform the logical shift right.
Reid Spencer0d5f9232007-02-02 14:08:20 +00001517 Value *NewVal = BinaryOperator::createLShr(
Reid Spencer2341c222007-02-02 02:16:23 +00001518 I->getOperand(0), I->getOperand(1), I->getName());
Reid Spencer00c482b2006-10-26 19:19:06 +00001519 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
Chris Lattner420c4bc2006-09-18 04:31:40 +00001520 return UpdateValueUsesWith(I, NewVal);
1521 }
1522
Reid Spencere0fc4df2006-10-20 07:07:24 +00001523 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1524 unsigned ShiftAmt = SA->getZExtValue();
Chris Lattner0157e7f2006-02-11 09:31:47 +00001525
1526 // Compute the new bits that are at the top now.
Reid Spencere0fc4df2006-10-20 07:07:24 +00001527 uint64_t HighBits = (1ULL << ShiftAmt)-1;
Chris Lattnerab2f9132007-03-04 23:16:36 +00001528 HighBits <<= VTy->getBitWidth() - ShiftAmt;
1529 uint64_t TypeMask = VTy->getBitMask();
Reid Spencerfdff9382006-11-08 06:47:33 +00001530 // Signed shift right.
1531 if (SimplifyDemandedBits(I->getOperand(0),
1532 (DemandedMask << ShiftAmt) & TypeMask,
1533 KnownZero, KnownOne, Depth+1))
1534 return true;
1535 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1536 KnownZero &= TypeMask;
1537 KnownOne &= TypeMask;
1538 KnownZero >>= ShiftAmt;
1539 KnownOne >>= ShiftAmt;
Chris Lattner0157e7f2006-02-11 09:31:47 +00001540
Reid Spencerfdff9382006-11-08 06:47:33 +00001541 // Handle the sign bits.
Chris Lattnerab2f9132007-03-04 23:16:36 +00001542 uint64_t SignBit = 1ULL << (VTy->getBitWidth()-1);
Reid Spencerfdff9382006-11-08 06:47:33 +00001543 SignBit >>= ShiftAmt; // Adjust to where it is now in the mask.
Chris Lattner0157e7f2006-02-11 09:31:47 +00001544
Reid Spencerfdff9382006-11-08 06:47:33 +00001545 // If the input sign bit is known to be zero, or if none of the top bits
1546 // are demanded, turn this into an unsigned shift right.
1547 if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) {
1548 // Perform the logical shift right.
Reid Spencer0d5f9232007-02-02 14:08:20 +00001549 Value *NewVal = BinaryOperator::createLShr(
Reid Spencer2341c222007-02-02 02:16:23 +00001550 I->getOperand(0), SA, I->getName());
Reid Spencerfdff9382006-11-08 06:47:33 +00001551 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1552 return UpdateValueUsesWith(I, NewVal);
1553 } else if (KnownOne & SignBit) { // New bits are known one.
1554 KnownOne |= HighBits;
Chris Lattner2590e512006-02-07 06:56:34 +00001555 }
Chris Lattner0157e7f2006-02-11 09:31:47 +00001556 }
Chris Lattner2590e512006-02-07 06:56:34 +00001557 break;
1558 }
Chris Lattner0157e7f2006-02-11 09:31:47 +00001559
1560 // If the client is only demanding bits that we know, return the known
1561 // constant.
1562 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
Chris Lattnerab2f9132007-03-04 23:16:36 +00001563 return UpdateValueUsesWith(I, ConstantInt::get(VTy, KnownOne));
Chris Lattner2590e512006-02-07 06:56:34 +00001564 return false;
1565}
1566
Reid Spencer1791f232007-03-12 17:25:59 +00001567/// SimplifyDemandedBits - This function attempts to replace V with a simpler
1568/// value based on the demanded bits. When this function is called, it is known
1569/// that only the bits set in DemandedMask of the result of V are ever used
1570/// downstream. Consequently, depending on the mask and V, it may be possible
1571/// to replace V with a constant or one of its operands. In such cases, this
1572/// function does the replacement and returns true. In all other cases, it
1573/// returns false after analyzing the expression and setting KnownOne and known
1574/// to be one in the expression. KnownZero contains all the bits that are known
1575/// to be zero in the expression. These are provided to potentially allow the
1576/// caller (which might recursively be SimplifyDemandedBits itself) to simplify
1577/// the expression. KnownOne and KnownZero always follow the invariant that
1578/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
1579/// the bits in KnownOne and KnownZero may only be accurate for those bits set
1580/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
1581/// and KnownOne must all be the same.
1582bool InstCombiner::SimplifyDemandedBits(Value *V, APInt DemandedMask,
1583 APInt& KnownZero, APInt& KnownOne,
1584 unsigned Depth) {
1585 assert(V != 0 && "Null pointer of Value???");
1586 assert(Depth <= 6 && "Limit Search Depth");
1587 uint32_t BitWidth = DemandedMask.getBitWidth();
1588 const IntegerType *VTy = cast<IntegerType>(V->getType());
1589 assert(VTy->getBitWidth() == BitWidth &&
1590 KnownZero.getBitWidth() == BitWidth &&
1591 KnownOne.getBitWidth() == BitWidth &&
1592 "Value *V, DemandedMask, KnownZero and KnownOne \
1593 must have same BitWidth");
1594 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1595 // We know all of the bits for a constant!
1596 KnownOne = CI->getValue() & DemandedMask;
1597 KnownZero = ~KnownOne & DemandedMask;
1598 return false;
1599 }
1600
Zhou Shengb9128442007-03-14 03:21:24 +00001601 KnownZero.clear();
1602 KnownOne.clear();
Reid Spencer1791f232007-03-12 17:25:59 +00001603 if (!V->hasOneUse()) { // Other users may use these bits.
1604 if (Depth != 0) { // Not at the root.
1605 // Just compute the KnownZero/KnownOne bits to simplify things downstream.
1606 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
1607 return false;
1608 }
1609 // If this is the root being simplified, allow it to have multiple uses,
1610 // just set the DemandedMask to all bits.
1611 DemandedMask = APInt::getAllOnesValue(BitWidth);
1612 } else if (DemandedMask == 0) { // Not demanding any bits from V.
1613 if (V != UndefValue::get(VTy))
1614 return UpdateValueUsesWith(V, UndefValue::get(VTy));
1615 return false;
1616 } else if (Depth == 6) { // Limit search depth.
1617 return false;
1618 }
1619
1620 Instruction *I = dyn_cast<Instruction>(V);
1621 if (!I) return false; // Only analyze instructions.
1622
1623 DemandedMask &= APInt::getAllOnesValue(BitWidth);
1624
1625 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
1626 APInt &RHSKnownZero = KnownZero, &RHSKnownOne = KnownOne;
1627 switch (I->getOpcode()) {
1628 default: break;
1629 case Instruction::And:
1630 // If either the LHS or the RHS are Zero, the result is zero.
1631 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
1632 RHSKnownZero, RHSKnownOne, Depth+1))
1633 return true;
1634 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1635 "Bits known to be one AND zero?");
1636
1637 // If something is known zero on the RHS, the bits aren't demanded on the
1638 // LHS.
1639 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero,
1640 LHSKnownZero, LHSKnownOne, Depth+1))
1641 return true;
1642 assert((LHSKnownZero & LHSKnownOne) == 0 &&
1643 "Bits known to be one AND zero?");
1644
1645 // If all of the demanded bits are known 1 on one side, return the other.
1646 // These bits cannot contribute to the result of the 'and'.
1647 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
1648 (DemandedMask & ~LHSKnownZero))
1649 return UpdateValueUsesWith(I, I->getOperand(0));
1650 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
1651 (DemandedMask & ~RHSKnownZero))
1652 return UpdateValueUsesWith(I, I->getOperand(1));
1653
1654 // If all of the demanded bits in the inputs are known zeros, return zero.
1655 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
1656 return UpdateValueUsesWith(I, Constant::getNullValue(VTy));
1657
1658 // If the RHS is a constant, see if we can simplify it.
1659 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
1660 return UpdateValueUsesWith(I, I);
1661
1662 // Output known-1 bits are only known if set in both the LHS & RHS.
1663 RHSKnownOne &= LHSKnownOne;
1664 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1665 RHSKnownZero |= LHSKnownZero;
1666 break;
1667 case Instruction::Or:
1668 // If either the LHS or the RHS are One, the result is One.
1669 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
1670 RHSKnownZero, RHSKnownOne, Depth+1))
1671 return true;
1672 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1673 "Bits known to be one AND zero?");
1674 // If something is known one on the RHS, the bits aren't demanded on the
1675 // LHS.
1676 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne,
1677 LHSKnownZero, LHSKnownOne, Depth+1))
1678 return true;
1679 assert((LHSKnownZero & LHSKnownOne) == 0 &&
1680 "Bits known to be one AND zero?");
1681
1682 // If all of the demanded bits are known zero on one side, return the other.
1683 // These bits cannot contribute to the result of the 'or'.
1684 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
1685 (DemandedMask & ~LHSKnownOne))
1686 return UpdateValueUsesWith(I, I->getOperand(0));
1687 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
1688 (DemandedMask & ~RHSKnownOne))
1689 return UpdateValueUsesWith(I, I->getOperand(1));
1690
1691 // If all of the potentially set bits on one side are known to be set on
1692 // the other side, just use the 'other' side.
1693 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
1694 (DemandedMask & (~RHSKnownZero)))
1695 return UpdateValueUsesWith(I, I->getOperand(0));
1696 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
1697 (DemandedMask & (~LHSKnownZero)))
1698 return UpdateValueUsesWith(I, I->getOperand(1));
1699
1700 // If the RHS is a constant, see if we can simplify it.
1701 if (ShrinkDemandedConstant(I, 1, DemandedMask))
1702 return UpdateValueUsesWith(I, I);
1703
1704 // Output known-0 bits are only known if clear in both the LHS & RHS.
1705 RHSKnownZero &= LHSKnownZero;
1706 // Output known-1 are known to be set if set in either the LHS | RHS.
1707 RHSKnownOne |= LHSKnownOne;
1708 break;
1709 case Instruction::Xor: {
1710 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
1711 RHSKnownZero, RHSKnownOne, Depth+1))
1712 return true;
1713 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1714 "Bits known to be one AND zero?");
1715 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1716 LHSKnownZero, LHSKnownOne, Depth+1))
1717 return true;
1718 assert((LHSKnownZero & LHSKnownOne) == 0 &&
1719 "Bits known to be one AND zero?");
1720
1721 // If all of the demanded bits are known zero on one side, return the other.
1722 // These bits cannot contribute to the result of the 'xor'.
1723 if ((DemandedMask & RHSKnownZero) == DemandedMask)
1724 return UpdateValueUsesWith(I, I->getOperand(0));
1725 if ((DemandedMask & LHSKnownZero) == DemandedMask)
1726 return UpdateValueUsesWith(I, I->getOperand(1));
1727
1728 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1729 APInt KnownZeroOut = (RHSKnownZero & LHSKnownZero) |
1730 (RHSKnownOne & LHSKnownOne);
1731 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1732 APInt KnownOneOut = (RHSKnownZero & LHSKnownOne) |
1733 (RHSKnownOne & LHSKnownZero);
1734
1735 // If all of the demanded bits are known to be zero on one side or the
1736 // other, turn this into an *inclusive* or.
1737 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1738 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
1739 Instruction *Or =
1740 BinaryOperator::createOr(I->getOperand(0), I->getOperand(1),
1741 I->getName());
1742 InsertNewInstBefore(Or, *I);
1743 return UpdateValueUsesWith(I, Or);
1744 }
1745
1746 // If all of the demanded bits on one side are known, and all of the set
1747 // bits on that side are also known to be set on the other side, turn this
1748 // into an AND, as we know the bits will be cleared.
1749 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1750 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
1751 // all known
1752 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
1753 Constant *AndC = ConstantInt::get(~RHSKnownOne & DemandedMask);
1754 Instruction *And =
1755 BinaryOperator::createAnd(I->getOperand(0), AndC, "tmp");
1756 InsertNewInstBefore(And, *I);
1757 return UpdateValueUsesWith(I, And);
1758 }
1759 }
1760
1761 // If the RHS is a constant, see if we can simplify it.
1762 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
1763 if (ShrinkDemandedConstant(I, 1, DemandedMask))
1764 return UpdateValueUsesWith(I, I);
1765
1766 RHSKnownZero = KnownZeroOut;
1767 RHSKnownOne = KnownOneOut;
1768 break;
1769 }
1770 case Instruction::Select:
1771 if (SimplifyDemandedBits(I->getOperand(2), DemandedMask,
1772 RHSKnownZero, RHSKnownOne, Depth+1))
1773 return true;
1774 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
1775 LHSKnownZero, LHSKnownOne, Depth+1))
1776 return true;
1777 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1778 "Bits known to be one AND zero?");
1779 assert((LHSKnownZero & LHSKnownOne) == 0 &&
1780 "Bits known to be one AND zero?");
1781
1782 // If the operands are constants, see if we can simplify them.
1783 if (ShrinkDemandedConstant(I, 1, DemandedMask))
1784 return UpdateValueUsesWith(I, I);
1785 if (ShrinkDemandedConstant(I, 2, DemandedMask))
1786 return UpdateValueUsesWith(I, I);
1787
1788 // Only known if known in both the LHS and RHS.
1789 RHSKnownOne &= LHSKnownOne;
1790 RHSKnownZero &= LHSKnownZero;
1791 break;
1792 case Instruction::Trunc: {
1793 uint32_t truncBf =
1794 cast<IntegerType>(I->getOperand(0)->getType())->getBitWidth();
1795 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask.zext(truncBf),
1796 RHSKnownZero.zext(truncBf), RHSKnownOne.zext(truncBf), Depth+1))
1797 return true;
1798 DemandedMask.trunc(BitWidth);
1799 RHSKnownZero.trunc(BitWidth);
1800 RHSKnownOne.trunc(BitWidth);
1801 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1802 "Bits known to be one AND zero?");
1803 break;
1804 }
1805 case Instruction::BitCast:
1806 if (!I->getOperand(0)->getType()->isInteger())
1807 return false;
1808
1809 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1810 RHSKnownZero, RHSKnownOne, Depth+1))
1811 return true;
1812 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1813 "Bits known to be one AND zero?");
1814 break;
1815 case Instruction::ZExt: {
1816 // Compute the bits in the result that are not present in the input.
1817 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1818 APInt NewBits(APInt::getAllOnesValue(BitWidth).shl(SrcTy->getBitWidth()));
1819
1820 DemandedMask &= SrcTy->getMask().zext(BitWidth);
1821 uint32_t zextBf = SrcTy->getBitWidth();
1822 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask.trunc(zextBf),
1823 RHSKnownZero.trunc(zextBf), RHSKnownOne.trunc(zextBf), Depth+1))
1824 return true;
1825 DemandedMask.zext(BitWidth);
1826 RHSKnownZero.zext(BitWidth);
1827 RHSKnownOne.zext(BitWidth);
1828 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1829 "Bits known to be one AND zero?");
1830 // The top bits are known to be zero.
1831 RHSKnownZero |= NewBits;
1832 break;
1833 }
1834 case Instruction::SExt: {
1835 // Compute the bits in the result that are not present in the input.
1836 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1837 APInt NewBits(APInt::getAllOnesValue(BitWidth).shl(SrcTy->getBitWidth()));
1838
1839 // Get the sign bit for the source type
1840 APInt InSignBit(APInt::getSignBit(SrcTy->getPrimitiveSizeInBits()));
1841 InSignBit.zext(BitWidth);
1842 APInt InputDemandedBits = DemandedMask &
1843 SrcTy->getMask().zext(BitWidth);
1844
1845 // If any of the sign extended bits are demanded, we know that the sign
1846 // bit is demanded.
1847 if ((NewBits & DemandedMask) != 0)
1848 InputDemandedBits |= InSignBit;
1849
1850 uint32_t sextBf = SrcTy->getBitWidth();
1851 if (SimplifyDemandedBits(I->getOperand(0), InputDemandedBits.trunc(sextBf),
1852 RHSKnownZero.trunc(sextBf), RHSKnownOne.trunc(sextBf), Depth+1))
1853 return true;
1854 InputDemandedBits.zext(BitWidth);
1855 RHSKnownZero.zext(BitWidth);
1856 RHSKnownOne.zext(BitWidth);
1857 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1858 "Bits known to be one AND zero?");
1859
1860 // If the sign bit of the input is known set or clear, then we know the
1861 // top bits of the result.
1862
1863 // If the input sign bit is known zero, or if the NewBits are not demanded
1864 // convert this into a zero extension.
1865 if ((RHSKnownZero & InSignBit) != 0 || (NewBits & ~DemandedMask) == NewBits)
1866 {
1867 // Convert to ZExt cast
1868 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName(), I);
1869 return UpdateValueUsesWith(I, NewCast);
1870 } else if ((RHSKnownOne & InSignBit) != 0) { // Input sign bit known set
1871 RHSKnownOne |= NewBits;
1872 RHSKnownZero &= ~NewBits;
1873 } else { // Input sign bit unknown
1874 RHSKnownZero &= ~NewBits;
1875 RHSKnownOne &= ~NewBits;
1876 }
1877 break;
1878 }
1879 case Instruction::Add: {
1880 // Figure out what the input bits are. If the top bits of the and result
1881 // are not demanded, then the add doesn't demand them from its input
1882 // either.
1883 unsigned NLZ = DemandedMask.countLeadingZeros();
1884
1885 // If there is a constant on the RHS, there are a variety of xformations
1886 // we can do.
1887 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1888 // If null, this should be simplified elsewhere. Some of the xforms here
1889 // won't work if the RHS is zero.
1890 if (RHS->isZero())
1891 break;
1892
1893 // If the top bit of the output is demanded, demand everything from the
1894 // input. Otherwise, we demand all the input bits except NLZ top bits.
1895 APInt InDemandedBits(APInt::getAllOnesValue(BitWidth).lshr(NLZ));
1896
1897 // Find information about known zero/one bits in the input.
1898 if (SimplifyDemandedBits(I->getOperand(0), InDemandedBits,
1899 LHSKnownZero, LHSKnownOne, Depth+1))
1900 return true;
1901
1902 // If the RHS of the add has bits set that can't affect the input, reduce
1903 // the constant.
1904 if (ShrinkDemandedConstant(I, 1, InDemandedBits))
1905 return UpdateValueUsesWith(I, I);
1906
1907 // Avoid excess work.
1908 if (LHSKnownZero == 0 && LHSKnownOne == 0)
1909 break;
1910
1911 // Turn it into OR if input bits are zero.
1912 if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
1913 Instruction *Or =
1914 BinaryOperator::createOr(I->getOperand(0), I->getOperand(1),
1915 I->getName());
1916 InsertNewInstBefore(Or, *I);
1917 return UpdateValueUsesWith(I, Or);
1918 }
1919
1920 // We can say something about the output known-zero and known-one bits,
1921 // depending on potential carries from the input constant and the
1922 // unknowns. For example if the LHS is known to have at most the 0x0F0F0
1923 // bits set and the RHS constant is 0x01001, then we know we have a known
1924 // one mask of 0x00001 and a known zero mask of 0xE0F0E.
1925
1926 // To compute this, we first compute the potential carry bits. These are
1927 // the bits which may be modified. I'm not aware of a better way to do
1928 // this scan.
1929 APInt RHSVal(RHS->getValue());
1930
1931 bool CarryIn = false;
1932 APInt CarryBits(BitWidth, 0);
1933 const uint64_t *LHSKnownZeroRawVal = LHSKnownZero.getRawData(),
1934 *RHSRawVal = RHSVal.getRawData();
1935 for (uint32_t i = 0; i != RHSVal.getNumWords(); ++i) {
1936 uint64_t AddVal = ~LHSKnownZeroRawVal[i] + RHSRawVal[i],
1937 XorVal = ~LHSKnownZeroRawVal[i] ^ RHSRawVal[i];
1938 uint64_t WordCarryBits = AddVal ^ XorVal + CarryIn;
1939 if (AddVal < RHSRawVal[i])
1940 CarryIn = true;
1941 else
1942 CarryIn = false;
1943 CarryBits.setWordToValue(i, WordCarryBits);
1944 }
1945
1946 // Now that we know which bits have carries, compute the known-1/0 sets.
1947
1948 // Bits are known one if they are known zero in one operand and one in the
1949 // other, and there is no input carry.
1950 RHSKnownOne = ((LHSKnownZero & RHSVal) |
1951 (LHSKnownOne & ~RHSVal)) & ~CarryBits;
1952
1953 // Bits are known zero if they are known zero in both operands and there
1954 // is no input carry.
1955 RHSKnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
1956 } else {
1957 // If the high-bits of this ADD are not demanded, then it does not demand
1958 // the high bits of its LHS or RHS.
1959 if ((DemandedMask & APInt::getSignBit(BitWidth)) == 0) {
1960 // Right fill the mask of bits for this ADD to demand the most
1961 // significant bit and all those below it.
1962 APInt DemandedFromOps = APInt::getAllOnesValue(BitWidth).lshr(NLZ);
1963 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1964 LHSKnownZero, LHSKnownOne, Depth+1))
1965 return true;
1966 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1967 LHSKnownZero, LHSKnownOne, Depth+1))
1968 return true;
1969 }
1970 }
1971 break;
1972 }
1973 case Instruction::Sub:
1974 // If the high-bits of this SUB are not demanded, then it does not demand
1975 // the high bits of its LHS or RHS.
1976 if ((DemandedMask & APInt::getSignBit(BitWidth)) == 0) {
1977 // Right fill the mask of bits for this SUB to demand the most
1978 // significant bit and all those below it.
1979 unsigned NLZ = DemandedMask.countLeadingZeros();
1980 APInt DemandedFromOps(APInt::getAllOnesValue(BitWidth).lshr(NLZ));
1981 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1982 LHSKnownZero, LHSKnownOne, Depth+1))
1983 return true;
1984 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1985 LHSKnownZero, LHSKnownOne, Depth+1))
1986 return true;
1987 }
1988 break;
1989 case Instruction::Shl:
1990 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1991 uint64_t ShiftAmt = SA->getZExtValue();
1992 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask.lshr(ShiftAmt),
1993 RHSKnownZero, RHSKnownOne, Depth+1))
1994 return true;
1995 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1996 "Bits known to be one AND zero?");
1997 RHSKnownZero <<= ShiftAmt;
1998 RHSKnownOne <<= ShiftAmt;
1999 // low bits known zero.
Zhou Shengd8c645b2007-03-14 09:07:33 +00002000 if (ShiftAmt)
2001 RHSKnownZero |= APInt::getAllOnesValue(ShiftAmt).zextOrCopy(BitWidth);
Reid Spencer1791f232007-03-12 17:25:59 +00002002 }
2003 break;
2004 case Instruction::LShr:
2005 // For a logical shift right
2006 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
2007 unsigned ShiftAmt = SA->getZExtValue();
2008
2009 APInt TypeMask(APInt::getAllOnesValue(BitWidth));
2010 // Unsigned shift right.
2011 if (SimplifyDemandedBits(I->getOperand(0),
2012 (DemandedMask.shl(ShiftAmt)) & TypeMask,
2013 RHSKnownZero, RHSKnownOne, Depth+1))
2014 return true;
2015 assert((RHSKnownZero & RHSKnownOne) == 0 &&
2016 "Bits known to be one AND zero?");
Reid Spencer1791f232007-03-12 17:25:59 +00002017 RHSKnownZero &= TypeMask;
2018 RHSKnownOne &= TypeMask;
2019 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
2020 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
Zhou Shengd8c645b2007-03-14 09:07:33 +00002021 if (ShiftAmt) {
2022 // Compute the new bits that are at the top now.
2023 APInt HighBits(APInt::getAllOnesValue(BitWidth).shl(
2024 BitWidth - ShiftAmt));
2025 RHSKnownZero |= HighBits; // high bits known zero.
2026 }
Reid Spencer1791f232007-03-12 17:25:59 +00002027 }
2028 break;
2029 case Instruction::AShr:
2030 // If this is an arithmetic shift right and only the low-bit is set, we can
2031 // always convert this into a logical shr, even if the shift amount is
2032 // variable. The low bit of the shift cannot be an input sign bit unless
2033 // the shift amount is >= the size of the datatype, which is undefined.
2034 if (DemandedMask == 1) {
2035 // Perform the logical shift right.
2036 Value *NewVal = BinaryOperator::createLShr(
2037 I->getOperand(0), I->getOperand(1), I->getName());
2038 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
2039 return UpdateValueUsesWith(I, NewVal);
2040 }
2041
2042 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
2043 unsigned ShiftAmt = SA->getZExtValue();
2044
2045 APInt TypeMask(APInt::getAllOnesValue(BitWidth));
2046 // Signed shift right.
2047 if (SimplifyDemandedBits(I->getOperand(0),
2048 (DemandedMask.shl(ShiftAmt)) & TypeMask,
2049 RHSKnownZero, RHSKnownOne, Depth+1))
2050 return true;
2051 assert((RHSKnownZero & RHSKnownOne) == 0 &&
2052 "Bits known to be one AND zero?");
2053 // Compute the new bits that are at the top now.
Zhou Shengd8c645b2007-03-14 09:07:33 +00002054 APInt HighBits(APInt::getAllOnesValue(BitWidth).shl(BitWidth - ShiftAmt));
Reid Spencer1791f232007-03-12 17:25:59 +00002055 RHSKnownZero &= TypeMask;
2056 RHSKnownOne &= TypeMask;
2057 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
2058 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
2059
2060 // Handle the sign bits.
2061 APInt SignBit(APInt::getSignBit(BitWidth));
2062 // Adjust to where it is now in the mask.
2063 SignBit = APIntOps::lshr(SignBit, ShiftAmt);
2064
2065 // If the input sign bit is known to be zero, or if none of the top bits
2066 // are demanded, turn this into an unsigned shift right.
2067 if ((RHSKnownZero & SignBit) != 0 ||
2068 (HighBits & ~DemandedMask) == HighBits) {
2069 // Perform the logical shift right.
2070 Value *NewVal = BinaryOperator::createLShr(
2071 I->getOperand(0), SA, I->getName());
2072 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
2073 return UpdateValueUsesWith(I, NewVal);
2074 } else if ((RHSKnownOne & SignBit) != 0) { // New bits are known one.
2075 RHSKnownOne |= HighBits;
2076 }
2077 }
2078 break;
2079 }
2080
2081 // If the client is only demanding bits that we know, return the known
2082 // constant.
2083 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask)
2084 return UpdateValueUsesWith(I, ConstantInt::get(RHSKnownOne));
2085 return false;
2086}
2087
Chris Lattner2deeaea2006-10-05 06:55:50 +00002088
2089/// SimplifyDemandedVectorElts - The specified value producecs a vector with
2090/// 64 or fewer elements. DemandedElts contains the set of elements that are
2091/// actually used by the caller. This method analyzes which elements of the
2092/// operand are undef and returns that information in UndefElts.
2093///
2094/// If the information about demanded elements can be used to simplify the
2095/// operation, the operation is simplified, then the resultant value is
2096/// returned. This returns null if no change was made.
2097Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
2098 uint64_t &UndefElts,
2099 unsigned Depth) {
Reid Spencerd84d35b2007-02-15 02:26:10 +00002100 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
Chris Lattner2deeaea2006-10-05 06:55:50 +00002101 assert(VWidth <= 64 && "Vector too wide to analyze!");
2102 uint64_t EltMask = ~0ULL >> (64-VWidth);
2103 assert(DemandedElts != EltMask && (DemandedElts & ~EltMask) == 0 &&
2104 "Invalid DemandedElts!");
2105
2106 if (isa<UndefValue>(V)) {
2107 // If the entire vector is undefined, just return this info.
2108 UndefElts = EltMask;
2109 return 0;
2110 } else if (DemandedElts == 0) { // If nothing is demanded, provide undef.
2111 UndefElts = EltMask;
2112 return UndefValue::get(V->getType());
2113 }
2114
2115 UndefElts = 0;
Reid Spencerd84d35b2007-02-15 02:26:10 +00002116 if (ConstantVector *CP = dyn_cast<ConstantVector>(V)) {
2117 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
Chris Lattner2deeaea2006-10-05 06:55:50 +00002118 Constant *Undef = UndefValue::get(EltTy);
2119
2120 std::vector<Constant*> Elts;
2121 for (unsigned i = 0; i != VWidth; ++i)
2122 if (!(DemandedElts & (1ULL << i))) { // If not demanded, set to undef.
2123 Elts.push_back(Undef);
2124 UndefElts |= (1ULL << i);
2125 } else if (isa<UndefValue>(CP->getOperand(i))) { // Already undef.
2126 Elts.push_back(Undef);
2127 UndefElts |= (1ULL << i);
2128 } else { // Otherwise, defined.
2129 Elts.push_back(CP->getOperand(i));
2130 }
2131
2132 // If we changed the constant, return it.
Reid Spencerd84d35b2007-02-15 02:26:10 +00002133 Constant *NewCP = ConstantVector::get(Elts);
Chris Lattner2deeaea2006-10-05 06:55:50 +00002134 return NewCP != CP ? NewCP : 0;
2135 } else if (isa<ConstantAggregateZero>(V)) {
Reid Spencerd84d35b2007-02-15 02:26:10 +00002136 // Simplify the CAZ to a ConstantVector where the non-demanded elements are
Chris Lattner2deeaea2006-10-05 06:55:50 +00002137 // set to undef.
Reid Spencerd84d35b2007-02-15 02:26:10 +00002138 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
Chris Lattner2deeaea2006-10-05 06:55:50 +00002139 Constant *Zero = Constant::getNullValue(EltTy);
2140 Constant *Undef = UndefValue::get(EltTy);
2141 std::vector<Constant*> Elts;
2142 for (unsigned i = 0; i != VWidth; ++i)
2143 Elts.push_back((DemandedElts & (1ULL << i)) ? Zero : Undef);
2144 UndefElts = DemandedElts ^ EltMask;
Reid Spencerd84d35b2007-02-15 02:26:10 +00002145 return ConstantVector::get(Elts);
Chris Lattner2deeaea2006-10-05 06:55:50 +00002146 }
2147
2148 if (!V->hasOneUse()) { // Other users may use these bits.
2149 if (Depth != 0) { // Not at the root.
2150 // TODO: Just compute the UndefElts information recursively.
2151 return false;
2152 }
2153 return false;
2154 } else if (Depth == 10) { // Limit search depth.
2155 return false;
2156 }
2157
2158 Instruction *I = dyn_cast<Instruction>(V);
2159 if (!I) return false; // Only analyze instructions.
2160
2161 bool MadeChange = false;
2162 uint64_t UndefElts2;
2163 Value *TmpV;
2164 switch (I->getOpcode()) {
2165 default: break;
2166
2167 case Instruction::InsertElement: {
2168 // If this is a variable index, we don't know which element it overwrites.
2169 // demand exactly the same input as we produce.
Reid Spencere0fc4df2006-10-20 07:07:24 +00002170 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
Chris Lattner2deeaea2006-10-05 06:55:50 +00002171 if (Idx == 0) {
2172 // Note that we can't propagate undef elt info, because we don't know
2173 // which elt is getting updated.
2174 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
2175 UndefElts2, Depth+1);
2176 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
2177 break;
2178 }
2179
2180 // If this is inserting an element that isn't demanded, remove this
2181 // insertelement.
Reid Spencere0fc4df2006-10-20 07:07:24 +00002182 unsigned IdxNo = Idx->getZExtValue();
Chris Lattner2deeaea2006-10-05 06:55:50 +00002183 if (IdxNo >= VWidth || (DemandedElts & (1ULL << IdxNo)) == 0)
2184 return AddSoonDeadInstToWorklist(*I, 0);
2185
2186 // Otherwise, the element inserted overwrites whatever was there, so the
2187 // input demanded set is simpler than the output set.
2188 TmpV = SimplifyDemandedVectorElts(I->getOperand(0),
2189 DemandedElts & ~(1ULL << IdxNo),
2190 UndefElts, Depth+1);
2191 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
2192
2193 // The inserted element is defined.
2194 UndefElts |= 1ULL << IdxNo;
2195 break;
2196 }
2197
2198 case Instruction::And:
2199 case Instruction::Or:
2200 case Instruction::Xor:
2201 case Instruction::Add:
2202 case Instruction::Sub:
2203 case Instruction::Mul:
2204 // div/rem demand all inputs, because they don't want divide by zero.
2205 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
2206 UndefElts, Depth+1);
2207 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
2208 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
2209 UndefElts2, Depth+1);
2210 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
2211
2212 // Output elements are undefined if both are undefined. Consider things
2213 // like undef&0. The result is known zero, not undef.
2214 UndefElts &= UndefElts2;
2215 break;
2216
2217 case Instruction::Call: {
2218 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
2219 if (!II) break;
2220 switch (II->getIntrinsicID()) {
2221 default: break;
2222
2223 // Binary vector operations that work column-wise. A dest element is a
2224 // function of the corresponding input elements from the two inputs.
2225 case Intrinsic::x86_sse_sub_ss:
2226 case Intrinsic::x86_sse_mul_ss:
2227 case Intrinsic::x86_sse_min_ss:
2228 case Intrinsic::x86_sse_max_ss:
2229 case Intrinsic::x86_sse2_sub_sd:
2230 case Intrinsic::x86_sse2_mul_sd:
2231 case Intrinsic::x86_sse2_min_sd:
2232 case Intrinsic::x86_sse2_max_sd:
2233 TmpV = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
2234 UndefElts, Depth+1);
2235 if (TmpV) { II->setOperand(1, TmpV); MadeChange = true; }
2236 TmpV = SimplifyDemandedVectorElts(II->getOperand(2), DemandedElts,
2237 UndefElts2, Depth+1);
2238 if (TmpV) { II->setOperand(2, TmpV); MadeChange = true; }
2239
2240 // If only the low elt is demanded and this is a scalarizable intrinsic,
2241 // scalarize it now.
2242 if (DemandedElts == 1) {
2243 switch (II->getIntrinsicID()) {
2244 default: break;
2245 case Intrinsic::x86_sse_sub_ss:
2246 case Intrinsic::x86_sse_mul_ss:
2247 case Intrinsic::x86_sse2_sub_sd:
2248 case Intrinsic::x86_sse2_mul_sd:
2249 // TODO: Lower MIN/MAX/ABS/etc
2250 Value *LHS = II->getOperand(1);
2251 Value *RHS = II->getOperand(2);
2252 // Extract the element as scalars.
2253 LHS = InsertNewInstBefore(new ExtractElementInst(LHS, 0U,"tmp"), *II);
2254 RHS = InsertNewInstBefore(new ExtractElementInst(RHS, 0U,"tmp"), *II);
2255
2256 switch (II->getIntrinsicID()) {
2257 default: assert(0 && "Case stmts out of sync!");
2258 case Intrinsic::x86_sse_sub_ss:
2259 case Intrinsic::x86_sse2_sub_sd:
2260 TmpV = InsertNewInstBefore(BinaryOperator::createSub(LHS, RHS,
2261 II->getName()), *II);
2262 break;
2263 case Intrinsic::x86_sse_mul_ss:
2264 case Intrinsic::x86_sse2_mul_sd:
2265 TmpV = InsertNewInstBefore(BinaryOperator::createMul(LHS, RHS,
2266 II->getName()), *II);
2267 break;
2268 }
2269
2270 Instruction *New =
2271 new InsertElementInst(UndefValue::get(II->getType()), TmpV, 0U,
2272 II->getName());
2273 InsertNewInstBefore(New, *II);
2274 AddSoonDeadInstToWorklist(*II, 0);
2275 return New;
2276 }
2277 }
2278
2279 // Output elements are undefined if both are undefined. Consider things
2280 // like undef&0. The result is known zero, not undef.
2281 UndefElts &= UndefElts2;
2282 break;
2283 }
2284 break;
2285 }
2286 }
2287 return MadeChange ? I : 0;
2288}
2289
Reid Spencer266e42b2006-12-23 06:05:41 +00002290/// @returns true if the specified compare instruction is
2291/// true when both operands are equal...
2292/// @brief Determine if the ICmpInst returns true if both operands are equal
2293static bool isTrueWhenEqual(ICmpInst &ICI) {
2294 ICmpInst::Predicate pred = ICI.getPredicate();
2295 return pred == ICmpInst::ICMP_EQ || pred == ICmpInst::ICMP_UGE ||
2296 pred == ICmpInst::ICMP_SGE || pred == ICmpInst::ICMP_ULE ||
2297 pred == ICmpInst::ICMP_SLE;
2298}
2299
Chris Lattnerb8b97502003-08-13 19:01:45 +00002300/// AssociativeOpt - Perform an optimization on an associative operator. This
2301/// function is designed to check a chain of associative operators for a
2302/// potential to apply a certain optimization. Since the optimization may be
2303/// applicable if the expression was reassociated, this checks the chain, then
2304/// reassociates the expression as necessary to expose the optimization
2305/// opportunity. This makes use of a special Functor, which must define
2306/// 'shouldApply' and 'apply' methods.
2307///
2308template<typename Functor>
2309Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
2310 unsigned Opcode = Root.getOpcode();
2311 Value *LHS = Root.getOperand(0);
2312
2313 // Quick check, see if the immediate LHS matches...
2314 if (F.shouldApply(LHS))
2315 return F.apply(Root);
2316
2317 // Otherwise, if the LHS is not of the same opcode as the root, return.
2318 Instruction *LHSI = dyn_cast<Instruction>(LHS);
Chris Lattnerf95d9b92003-10-15 16:48:29 +00002319 while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
Chris Lattnerb8b97502003-08-13 19:01:45 +00002320 // Should we apply this transform to the RHS?
2321 bool ShouldApply = F.shouldApply(LHSI->getOperand(1));
2322
2323 // If not to the RHS, check to see if we should apply to the LHS...
2324 if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) {
2325 cast<BinaryOperator>(LHSI)->swapOperands(); // Make the LHS the RHS
2326 ShouldApply = true;
2327 }
2328
2329 // If the functor wants to apply the optimization to the RHS of LHSI,
2330 // reassociate the expression from ((? op A) op B) to (? op (A op B))
2331 if (ShouldApply) {
2332 BasicBlock *BB = Root.getParent();
Misha Brukmanb1c93172005-04-21 23:48:37 +00002333
Chris Lattnerb8b97502003-08-13 19:01:45 +00002334 // Now all of the instructions are in the current basic block, go ahead
2335 // and perform the reassociation.
2336 Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
2337
2338 // First move the selected RHS to the LHS of the root...
2339 Root.setOperand(0, LHSI->getOperand(1));
2340
2341 // Make what used to be the LHS of the root be the user of the root...
2342 Value *ExtraOperand = TmpLHSI->getOperand(1);
Chris Lattner284d3b02004-04-16 18:08:07 +00002343 if (&Root == TmpLHSI) {
Chris Lattner8953b902004-04-05 02:10:19 +00002344 Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType()));
2345 return 0;
2346 }
Chris Lattner284d3b02004-04-16 18:08:07 +00002347 Root.replaceAllUsesWith(TmpLHSI); // Users now use TmpLHSI
Chris Lattnerb8b97502003-08-13 19:01:45 +00002348 TmpLHSI->setOperand(1, &Root); // TmpLHSI now uses the root
Chris Lattner284d3b02004-04-16 18:08:07 +00002349 TmpLHSI->getParent()->getInstList().remove(TmpLHSI);
2350 BasicBlock::iterator ARI = &Root; ++ARI;
2351 BB->getInstList().insert(ARI, TmpLHSI); // Move TmpLHSI to after Root
2352 ARI = Root;
Chris Lattnerb8b97502003-08-13 19:01:45 +00002353
2354 // Now propagate the ExtraOperand down the chain of instructions until we
2355 // get to LHSI.
2356 while (TmpLHSI != LHSI) {
2357 Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
Chris Lattner284d3b02004-04-16 18:08:07 +00002358 // Move the instruction to immediately before the chain we are
2359 // constructing to avoid breaking dominance properties.
2360 NextLHSI->getParent()->getInstList().remove(NextLHSI);
2361 BB->getInstList().insert(ARI, NextLHSI);
2362 ARI = NextLHSI;
2363
Chris Lattnerb8b97502003-08-13 19:01:45 +00002364 Value *NextOp = NextLHSI->getOperand(1);
2365 NextLHSI->setOperand(1, ExtraOperand);
2366 TmpLHSI = NextLHSI;
2367 ExtraOperand = NextOp;
2368 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00002369
Chris Lattnerb8b97502003-08-13 19:01:45 +00002370 // Now that the instructions are reassociated, have the functor perform
2371 // the transformation...
2372 return F.apply(Root);
2373 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00002374
Chris Lattnerb8b97502003-08-13 19:01:45 +00002375 LHSI = dyn_cast<Instruction>(LHSI->getOperand(0));
2376 }
2377 return 0;
2378}
2379
2380
2381// AddRHS - Implements: X + X --> X << 1
2382struct AddRHS {
2383 Value *RHS;
2384 AddRHS(Value *rhs) : RHS(rhs) {}
2385 bool shouldApply(Value *LHS) const { return LHS == RHS; }
2386 Instruction *apply(BinaryOperator &Add) const {
Reid Spencer0d5f9232007-02-02 14:08:20 +00002387 return BinaryOperator::createShl(Add.getOperand(0),
Reid Spencer2341c222007-02-02 02:16:23 +00002388 ConstantInt::get(Add.getType(), 1));
Chris Lattnerb8b97502003-08-13 19:01:45 +00002389 }
2390};
2391
2392// AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
2393// iff C1&C2 == 0
2394struct AddMaskingAnd {
2395 Constant *C2;
2396 AddMaskingAnd(Constant *c) : C2(c) {}
2397 bool shouldApply(Value *LHS) const {
Chris Lattnerd4252a72004-07-30 07:50:03 +00002398 ConstantInt *C1;
Misha Brukmanb1c93172005-04-21 23:48:37 +00002399 return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) &&
Chris Lattnerd4252a72004-07-30 07:50:03 +00002400 ConstantExpr::getAnd(C1, C2)->isNullValue();
Chris Lattnerb8b97502003-08-13 19:01:45 +00002401 }
2402 Instruction *apply(BinaryOperator &Add) const {
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00002403 return BinaryOperator::createOr(Add.getOperand(0), Add.getOperand(1));
Chris Lattnerb8b97502003-08-13 19:01:45 +00002404 }
2405};
2406
Chris Lattner86102b82005-01-01 16:22:27 +00002407static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
Chris Lattner183b3362004-04-09 19:05:30 +00002408 InstCombiner *IC) {
Reid Spencer6c38f0b2006-11-27 01:05:10 +00002409 if (CastInst *CI = dyn_cast<CastInst>(&I)) {
Chris Lattner86102b82005-01-01 16:22:27 +00002410 if (Constant *SOC = dyn_cast<Constant>(SO))
Reid Spencer6c38f0b2006-11-27 01:05:10 +00002411 return ConstantExpr::getCast(CI->getOpcode(), SOC, I.getType());
Misha Brukmanb1c93172005-04-21 23:48:37 +00002412
Reid Spencer6c38f0b2006-11-27 01:05:10 +00002413 return IC->InsertNewInstBefore(CastInst::create(
2414 CI->getOpcode(), SO, I.getType(), SO->getName() + ".cast"), I);
Chris Lattner86102b82005-01-01 16:22:27 +00002415 }
2416
Chris Lattner183b3362004-04-09 19:05:30 +00002417 // Figure out if the constant is the left or the right argument.
Chris Lattner86102b82005-01-01 16:22:27 +00002418 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
2419 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
Chris Lattnerb8b97502003-08-13 19:01:45 +00002420
Chris Lattner183b3362004-04-09 19:05:30 +00002421 if (Constant *SOC = dyn_cast<Constant>(SO)) {
2422 if (ConstIsRHS)
Chris Lattner86102b82005-01-01 16:22:27 +00002423 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
2424 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
Chris Lattner183b3362004-04-09 19:05:30 +00002425 }
2426
2427 Value *Op0 = SO, *Op1 = ConstOperand;
2428 if (!ConstIsRHS)
2429 std::swap(Op0, Op1);
2430 Instruction *New;
Chris Lattner86102b82005-01-01 16:22:27 +00002431 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
2432 New = BinaryOperator::create(BO->getOpcode(), Op0, Op1,SO->getName()+".op");
Reid Spencer266e42b2006-12-23 06:05:41 +00002433 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
2434 New = CmpInst::create(CI->getOpcode(), CI->getPredicate(), Op0, Op1,
2435 SO->getName()+".cmp");
Chris Lattnerf9d96652004-04-10 19:15:56 +00002436 else {
Chris Lattner183b3362004-04-09 19:05:30 +00002437 assert(0 && "Unknown binary instruction type!");
Chris Lattnerf9d96652004-04-10 19:15:56 +00002438 abort();
2439 }
Chris Lattner86102b82005-01-01 16:22:27 +00002440 return IC->InsertNewInstBefore(New, I);
2441}
2442
2443// FoldOpIntoSelect - Given an instruction with a select as one operand and a
2444// constant as the other operand, try to fold the binary operator into the
2445// select arguments. This also works for Cast instructions, which obviously do
2446// not have a second operand.
2447static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
2448 InstCombiner *IC) {
2449 // Don't modify shared select instructions
2450 if (!SI->hasOneUse()) return 0;
2451 Value *TV = SI->getOperand(1);
2452 Value *FV = SI->getOperand(2);
2453
2454 if (isa<Constant>(TV) || isa<Constant>(FV)) {
Chris Lattner374e6592005-04-21 05:43:13 +00002455 // Bool selects with constant operands can be folded to logical ops.
Reid Spencer542964f2007-01-11 18:21:29 +00002456 if (SI->getType() == Type::Int1Ty) return 0;
Chris Lattner374e6592005-04-21 05:43:13 +00002457
Chris Lattner86102b82005-01-01 16:22:27 +00002458 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC);
2459 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC);
2460
2461 return new SelectInst(SI->getCondition(), SelectTrueVal,
2462 SelectFalseVal);
2463 }
2464 return 0;
Chris Lattner183b3362004-04-09 19:05:30 +00002465}
2466
Chris Lattner6a4adcd2004-09-29 05:07:12 +00002467
2468/// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI
2469/// node as operand #0, see if we can fold the instruction into the PHI (which
2470/// is only possible if all operands to the PHI are constants).
2471Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
2472 PHINode *PN = cast<PHINode>(I.getOperand(0));
Chris Lattner7515cab2004-11-14 19:13:23 +00002473 unsigned NumPHIValues = PN->getNumIncomingValues();
Chris Lattner04689872006-09-09 22:02:56 +00002474 if (!PN->hasOneUse() || NumPHIValues == 0) return 0;
Chris Lattner6a4adcd2004-09-29 05:07:12 +00002475
Chris Lattner04689872006-09-09 22:02:56 +00002476 // Check to see if all of the operands of the PHI are constants. If there is
2477 // one non-constant value, remember the BB it is. If there is more than one
Chris Lattnerc4d8e7e2007-02-24 01:03:45 +00002478 // or if *it* is a PHI, bail out.
Chris Lattner04689872006-09-09 22:02:56 +00002479 BasicBlock *NonConstBB = 0;
2480 for (unsigned i = 0; i != NumPHIValues; ++i)
2481 if (!isa<Constant>(PN->getIncomingValue(i))) {
2482 if (NonConstBB) return 0; // More than one non-const value.
Chris Lattnerc4d8e7e2007-02-24 01:03:45 +00002483 if (isa<PHINode>(PN->getIncomingValue(i))) return 0; // Itself a phi.
Chris Lattner04689872006-09-09 22:02:56 +00002484 NonConstBB = PN->getIncomingBlock(i);
2485
2486 // If the incoming non-constant value is in I's block, we have an infinite
2487 // loop.
2488 if (NonConstBB == I.getParent())
2489 return 0;
2490 }
2491
2492 // If there is exactly one non-constant value, we can insert a copy of the
2493 // operation in that block. However, if this is a critical edge, we would be
2494 // inserting the computation one some other paths (e.g. inside a loop). Only
2495 // do this if the pred block is unconditionally branching into the phi block.
2496 if (NonConstBB) {
2497 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
2498 if (!BI || !BI->isUnconditional()) return 0;
2499 }
Chris Lattner6a4adcd2004-09-29 05:07:12 +00002500
2501 // Okay, we can do the transformation: create the new PHI node.
Chris Lattner6e0123b2007-02-11 01:23:03 +00002502 PHINode *NewPN = new PHINode(I.getType(), "");
Chris Lattnerd8e20182005-01-29 00:39:08 +00002503 NewPN->reserveOperandSpace(PN->getNumOperands()/2);
Chris Lattner6a4adcd2004-09-29 05:07:12 +00002504 InsertNewInstBefore(NewPN, *PN);
Chris Lattner6e0123b2007-02-11 01:23:03 +00002505 NewPN->takeName(PN);
Chris Lattner6a4adcd2004-09-29 05:07:12 +00002506
2507 // Next, add all of the operands to the PHI.
2508 if (I.getNumOperands() == 2) {
2509 Constant *C = cast<Constant>(I.getOperand(1));
Chris Lattner7515cab2004-11-14 19:13:23 +00002510 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattner04689872006-09-09 22:02:56 +00002511 Value *InV;
2512 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
Reid Spencer266e42b2006-12-23 06:05:41 +00002513 if (CmpInst *CI = dyn_cast<CmpInst>(&I))
2514 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
2515 else
2516 InV = ConstantExpr::get(I.getOpcode(), InC, C);
Chris Lattner04689872006-09-09 22:02:56 +00002517 } else {
2518 assert(PN->getIncomingBlock(i) == NonConstBB);
2519 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
2520 InV = BinaryOperator::create(BO->getOpcode(),
2521 PN->getIncomingValue(i), C, "phitmp",
2522 NonConstBB->getTerminator());
Reid Spencer266e42b2006-12-23 06:05:41 +00002523 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
2524 InV = CmpInst::create(CI->getOpcode(),
2525 CI->getPredicate(),
2526 PN->getIncomingValue(i), C, "phitmp",
2527 NonConstBB->getTerminator());
Chris Lattner04689872006-09-09 22:02:56 +00002528 else
2529 assert(0 && "Unknown binop!");
2530
Chris Lattnerb15e2b12007-03-02 21:28:56 +00002531 AddToWorkList(cast<Instruction>(InV));
Chris Lattner04689872006-09-09 22:02:56 +00002532 }
2533 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
Chris Lattner6a4adcd2004-09-29 05:07:12 +00002534 }
Reid Spencer6c38f0b2006-11-27 01:05:10 +00002535 } else {
2536 CastInst *CI = cast<CastInst>(&I);
2537 const Type *RetTy = CI->getType();
Chris Lattner7515cab2004-11-14 19:13:23 +00002538 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattner04689872006-09-09 22:02:56 +00002539 Value *InV;
2540 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
Reid Spencer6c38f0b2006-11-27 01:05:10 +00002541 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
Chris Lattner04689872006-09-09 22:02:56 +00002542 } else {
2543 assert(PN->getIncomingBlock(i) == NonConstBB);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00002544 InV = CastInst::create(CI->getOpcode(), PN->getIncomingValue(i),
2545 I.getType(), "phitmp",
2546 NonConstBB->getTerminator());
Chris Lattnerb15e2b12007-03-02 21:28:56 +00002547 AddToWorkList(cast<Instruction>(InV));
Chris Lattner04689872006-09-09 22:02:56 +00002548 }
2549 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
Chris Lattner6a4adcd2004-09-29 05:07:12 +00002550 }
2551 }
2552 return ReplaceInstUsesWith(I, NewPN);
2553}
2554
Chris Lattner113f4f42002-06-25 16:13:24 +00002555Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
Chris Lattnerdcf240a2003-03-10 21:43:22 +00002556 bool Changed = SimplifyCommutative(I);
Chris Lattner113f4f42002-06-25 16:13:24 +00002557 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
Chris Lattner9fa53de2002-05-06 16:49:18 +00002558
Chris Lattnercf4a9962004-04-10 22:01:55 +00002559 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
Chris Lattner81a7a232004-10-16 18:11:37 +00002560 // X + undef -> undef
2561 if (isa<UndefValue>(RHS))
2562 return ReplaceInstUsesWith(I, RHS);
2563
Chris Lattnercf4a9962004-04-10 22:01:55 +00002564 // X + 0 --> X
Chris Lattner7a002fe2006-12-02 00:13:08 +00002565 if (!I.getType()->isFPOrFPVector()) { // NOTE: -0 + +0 = +0.
Chris Lattner7fde91e2005-10-17 17:56:38 +00002566 if (RHSC->isNullValue())
2567 return ReplaceInstUsesWith(I, LHS);
Chris Lattnerda1b1522005-10-17 20:18:38 +00002568 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
2569 if (CFP->isExactlyValue(-0.0))
2570 return ReplaceInstUsesWith(I, LHS);
Chris Lattner7fde91e2005-10-17 17:56:38 +00002571 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00002572
Chris Lattnercf4a9962004-04-10 22:01:55 +00002573 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
Chris Lattner6e2c15c2006-11-09 05:12:27 +00002574 // X + (signbit) --> X ^ signbit
Chris Lattner92a68652006-02-07 08:05:22 +00002575 uint64_t Val = CI->getZExtValue();
Chris Lattner77defba2006-02-07 07:00:41 +00002576 if (Val == (1ULL << (CI->getType()->getPrimitiveSizeInBits()-1)))
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00002577 return BinaryOperator::createXor(LHS, RHS);
Chris Lattner6e2c15c2006-11-09 05:12:27 +00002578
2579 // See if SimplifyDemandedBits can simplify this. This handles stuff like
2580 // (X & 254)+1 -> (X&254)|1
2581 uint64_t KnownZero, KnownOne;
Reid Spencerd84d35b2007-02-15 02:26:10 +00002582 if (!isa<VectorType>(I.getType()) &&
Reid Spencera94d3942007-01-19 21:13:56 +00002583 SimplifyDemandedBits(&I, cast<IntegerType>(I.getType())->getBitMask(),
Chris Lattner6e2c15c2006-11-09 05:12:27 +00002584 KnownZero, KnownOne))
2585 return &I;
Chris Lattnercf4a9962004-04-10 22:01:55 +00002586 }
Chris Lattner6a4adcd2004-09-29 05:07:12 +00002587
2588 if (isa<PHINode>(LHS))
2589 if (Instruction *NV = FoldOpIntoPhi(I))
2590 return NV;
Chris Lattner0b3557f2005-09-24 23:43:33 +00002591
Chris Lattner330628a2006-01-06 17:59:59 +00002592 ConstantInt *XorRHS = 0;
2593 Value *XorLHS = 0;
Chris Lattner4284f642007-01-30 22:32:46 +00002594 if (isa<ConstantInt>(RHSC) &&
2595 match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
Chris Lattner0b3557f2005-09-24 23:43:33 +00002596 unsigned TySizeBits = I.getType()->getPrimitiveSizeInBits();
2597 int64_t RHSSExt = cast<ConstantInt>(RHSC)->getSExtValue();
2598 uint64_t RHSZExt = cast<ConstantInt>(RHSC)->getZExtValue();
2599
2600 uint64_t C0080Val = 1ULL << 31;
2601 int64_t CFF80Val = -C0080Val;
2602 unsigned Size = 32;
2603 do {
2604 if (TySizeBits > Size) {
2605 bool Found = false;
2606 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
2607 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
2608 if (RHSSExt == CFF80Val) {
2609 if (XorRHS->getZExtValue() == C0080Val)
2610 Found = true;
2611 } else if (RHSZExt == C0080Val) {
2612 if (XorRHS->getSExtValue() == CFF80Val)
2613 Found = true;
2614 }
2615 if (Found) {
2616 // This is a sign extend if the top bits are known zero.
Chris Lattner4534dd592006-02-09 07:38:58 +00002617 uint64_t Mask = ~0ULL;
Chris Lattnerc3ebf402006-02-07 07:27:52 +00002618 Mask <<= 64-(TySizeBits-Size);
Reid Spencera94d3942007-01-19 21:13:56 +00002619 Mask &= cast<IntegerType>(XorLHS->getType())->getBitMask();
Chris Lattnerc3ebf402006-02-07 07:27:52 +00002620 if (!MaskedValueIsZero(XorLHS, Mask))
Chris Lattner0b3557f2005-09-24 23:43:33 +00002621 Size = 0; // Not a sign ext, but can't be any others either.
2622 goto FoundSExt;
2623 }
2624 }
2625 Size >>= 1;
2626 C0080Val >>= Size;
2627 CFF80Val >>= Size;
2628 } while (Size >= 8);
2629
2630FoundSExt:
2631 const Type *MiddleType = 0;
2632 switch (Size) {
2633 default: break;
Reid Spencerc635f472006-12-31 05:48:39 +00002634 case 32: MiddleType = Type::Int32Ty; break;
2635 case 16: MiddleType = Type::Int16Ty; break;
2636 case 8: MiddleType = Type::Int8Ty; break;
Chris Lattner0b3557f2005-09-24 23:43:33 +00002637 }
2638 if (MiddleType) {
Reid Spencerbb65ebf2006-12-12 23:36:14 +00002639 Instruction *NewTrunc = new TruncInst(XorLHS, MiddleType, "sext");
Chris Lattner0b3557f2005-09-24 23:43:33 +00002640 InsertNewInstBefore(NewTrunc, I);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00002641 return new SExtInst(NewTrunc, I.getType());
Chris Lattner0b3557f2005-09-24 23:43:33 +00002642 }
2643 }
Chris Lattnercf4a9962004-04-10 22:01:55 +00002644 }
Chris Lattner9fa53de2002-05-06 16:49:18 +00002645
Chris Lattnerb8b97502003-08-13 19:01:45 +00002646 // X + X --> X << 1
Chris Lattner03c49532007-01-15 02:27:26 +00002647 if (I.getType()->isInteger() && I.getType() != Type::Int1Ty) {
Chris Lattnerb8b97502003-08-13 19:01:45 +00002648 if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result;
Chris Lattner47060462005-04-07 17:14:51 +00002649
2650 if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
2651 if (RHSI->getOpcode() == Instruction::Sub)
2652 if (LHS == RHSI->getOperand(1)) // A + (B - A) --> B
2653 return ReplaceInstUsesWith(I, RHSI->getOperand(0));
2654 }
2655 if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
2656 if (LHSI->getOpcode() == Instruction::Sub)
2657 if (RHS == LHSI->getOperand(1)) // (B - A) + A --> B
2658 return ReplaceInstUsesWith(I, LHSI->getOperand(0));
2659 }
Robert Bocchino7b5b86c2004-07-27 21:02:21 +00002660 }
Chris Lattnerede3fe02003-08-13 04:18:28 +00002661
Chris Lattner147e9752002-05-08 22:46:53 +00002662 // -A + B --> B - A
Chris Lattnerbb74e222003-03-10 23:06:50 +00002663 if (Value *V = dyn_castNegVal(LHS))
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00002664 return BinaryOperator::createSub(RHS, V);
Chris Lattner9fa53de2002-05-06 16:49:18 +00002665
2666 // A + -B --> A - B
Chris Lattnerbb74e222003-03-10 23:06:50 +00002667 if (!isa<Constant>(RHS))
2668 if (Value *V = dyn_castNegVal(RHS))
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00002669 return BinaryOperator::createSub(LHS, V);
Chris Lattner260ab202002-04-18 17:39:14 +00002670
Misha Brukmanb1c93172005-04-21 23:48:37 +00002671
Chris Lattner8c3e7b92004-11-13 19:50:12 +00002672 ConstantInt *C2;
2673 if (Value *X = dyn_castFoldableMul(LHS, C2)) {
2674 if (X == RHS) // X*C + X --> X * (C+1)
2675 return BinaryOperator::createMul(RHS, AddOne(C2));
2676
2677 // X*C1 + X*C2 --> X * (C1+C2)
2678 ConstantInt *C1;
2679 if (X == dyn_castFoldableMul(RHS, C1))
2680 return BinaryOperator::createMul(X, ConstantExpr::getAdd(C1, C2));
Chris Lattner57c8d992003-02-18 19:57:07 +00002681 }
2682
2683 // X + X*C --> X * (C+1)
Chris Lattner8c3e7b92004-11-13 19:50:12 +00002684 if (dyn_castFoldableMul(RHS, C2) == LHS)
2685 return BinaryOperator::createMul(LHS, AddOne(C2));
2686
Chris Lattner23eb8ec2007-01-05 02:17:46 +00002687 // X + ~X --> -1 since ~X = -X-1
2688 if (dyn_castNotVal(LHS) == RHS ||
2689 dyn_castNotVal(RHS) == LHS)
2690 return ReplaceInstUsesWith(I, ConstantInt::getAllOnesValue(I.getType()));
2691
Chris Lattner57c8d992003-02-18 19:57:07 +00002692
Chris Lattnerb8b97502003-08-13 19:01:45 +00002693 // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
Chris Lattnerd4252a72004-07-30 07:50:03 +00002694 if (match(RHS, m_And(m_Value(), m_ConstantInt(C2))))
Chris Lattner23eb8ec2007-01-05 02:17:46 +00002695 if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2)))
2696 return R;
Chris Lattner7fb29e12003-03-11 00:12:48 +00002697
Chris Lattnerb9cde762003-10-02 15:11:26 +00002698 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
Chris Lattner330628a2006-01-06 17:59:59 +00002699 Value *X = 0;
Chris Lattnerd4252a72004-07-30 07:50:03 +00002700 if (match(LHS, m_Not(m_Value(X)))) { // ~X + C --> (C-1) - X
2701 Constant *C= ConstantExpr::getSub(CRHS, ConstantInt::get(I.getType(), 1));
2702 return BinaryOperator::createSub(C, X);
Chris Lattnerb9cde762003-10-02 15:11:26 +00002703 }
Chris Lattnerd4252a72004-07-30 07:50:03 +00002704
Chris Lattnerbff91d92004-10-08 05:07:56 +00002705 // (X & FF00) + xx00 -> (X+xx00) & FF00
2706 if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
2707 Constant *Anded = ConstantExpr::getAnd(CRHS, C2);
2708 if (Anded == CRHS) {
2709 // See if all bits from the first bit set in the Add RHS up are included
2710 // in the mask. First, get the rightmost bit.
Reid Spencere0fc4df2006-10-20 07:07:24 +00002711 uint64_t AddRHSV = CRHS->getZExtValue();
Chris Lattnerbff91d92004-10-08 05:07:56 +00002712
2713 // Form a mask of all bits from the lowest bit added through the top.
2714 uint64_t AddRHSHighBits = ~((AddRHSV & -AddRHSV)-1);
Reid Spencera94d3942007-01-19 21:13:56 +00002715 AddRHSHighBits &= C2->getType()->getBitMask();
Chris Lattnerbff91d92004-10-08 05:07:56 +00002716
2717 // See if the and mask includes all of these bits.
Reid Spencere0fc4df2006-10-20 07:07:24 +00002718 uint64_t AddRHSHighBitsAnd = AddRHSHighBits & C2->getZExtValue();
Misha Brukmanb1c93172005-04-21 23:48:37 +00002719
Chris Lattnerbff91d92004-10-08 05:07:56 +00002720 if (AddRHSHighBits == AddRHSHighBitsAnd) {
2721 // Okay, the xform is safe. Insert the new add pronto.
2722 Value *NewAdd = InsertNewInstBefore(BinaryOperator::createAdd(X, CRHS,
2723 LHS->getName()), I);
2724 return BinaryOperator::createAnd(NewAdd, C2);
2725 }
2726 }
2727 }
2728
Chris Lattnerd4252a72004-07-30 07:50:03 +00002729 // Try to fold constant add into select arguments.
2730 if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
Chris Lattner86102b82005-01-01 16:22:27 +00002731 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattnerd4252a72004-07-30 07:50:03 +00002732 return R;
Chris Lattnerb9cde762003-10-02 15:11:26 +00002733 }
2734
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002735 // add (cast *A to intptrtype) B ->
2736 // cast (GEP (cast *A to sbyte*) B) ->
2737 // intptrtype
Andrew Lenharth4f339be2006-09-19 18:24:51 +00002738 {
Reid Spencer6c38f0b2006-11-27 01:05:10 +00002739 CastInst *CI = dyn_cast<CastInst>(LHS);
2740 Value *Other = RHS;
Andrew Lenharth4f339be2006-09-19 18:24:51 +00002741 if (!CI) {
2742 CI = dyn_cast<CastInst>(RHS);
2743 Other = LHS;
2744 }
Andrew Lenharth44cb67a2006-09-20 15:37:57 +00002745 if (CI && CI->getType()->isSized() &&
Reid Spencer8f166b02007-01-08 16:32:00 +00002746 (CI->getType()->getPrimitiveSizeInBits() ==
2747 TD->getIntPtrType()->getPrimitiveSizeInBits())
Andrew Lenharth44cb67a2006-09-20 15:37:57 +00002748 && isa<PointerType>(CI->getOperand(0)->getType())) {
Reid Spencer13bc5d72006-12-12 09:18:51 +00002749 Value *I2 = InsertCastBefore(Instruction::BitCast, CI->getOperand(0),
Reid Spencerc635f472006-12-31 05:48:39 +00002750 PointerType::get(Type::Int8Ty), I);
Andrew Lenharth44cb67a2006-09-20 15:37:57 +00002751 I2 = InsertNewInstBefore(new GetElementPtrInst(I2, Other, "ctg2"), I);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00002752 return new PtrToIntInst(I2, CI->getType());
Andrew Lenharth4f339be2006-09-19 18:24:51 +00002753 }
2754 }
2755
Chris Lattner113f4f42002-06-25 16:13:24 +00002756 return Changed ? &I : 0;
Chris Lattner260ab202002-04-18 17:39:14 +00002757}
2758
Chris Lattnerbdb0ce02003-07-22 21:46:59 +00002759// isSignBit - Return true if the value represented by the constant only has the
2760// highest order bit set.
2761static bool isSignBit(ConstantInt *CI) {
Chris Lattnerd1f46d32005-04-24 06:59:08 +00002762 unsigned NumBits = CI->getType()->getPrimitiveSizeInBits();
Reid Spencer450434e2007-03-19 20:58:18 +00002763 return CI->getValue() == APInt::getSignBit(NumBits);
Chris Lattnerbdb0ce02003-07-22 21:46:59 +00002764}
2765
Chris Lattner113f4f42002-06-25 16:13:24 +00002766Instruction *InstCombiner::visitSub(BinaryOperator &I) {
Chris Lattner113f4f42002-06-25 16:13:24 +00002767 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00002768
Chris Lattnere6794492002-08-12 21:17:25 +00002769 if (Op0 == Op1) // sub X, X -> 0
2770 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner260ab202002-04-18 17:39:14 +00002771
Chris Lattnere6794492002-08-12 21:17:25 +00002772 // If this is a 'B = x-(-A)', change to B = x+A...
Chris Lattnerbb74e222003-03-10 23:06:50 +00002773 if (Value *V = dyn_castNegVal(Op1))
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00002774 return BinaryOperator::createAdd(Op0, V);
Chris Lattner9fa53de2002-05-06 16:49:18 +00002775
Chris Lattner81a7a232004-10-16 18:11:37 +00002776 if (isa<UndefValue>(Op0))
2777 return ReplaceInstUsesWith(I, Op0); // undef - X -> undef
2778 if (isa<UndefValue>(Op1))
2779 return ReplaceInstUsesWith(I, Op1); // X - undef -> undef
2780
Chris Lattner8f2f5982003-11-05 01:06:05 +00002781 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
2782 // Replace (-1 - A) with (~A)...
Chris Lattner3082c5a2003-02-18 19:28:33 +00002783 if (C->isAllOnesValue())
2784 return BinaryOperator::createNot(Op1);
Chris Lattnerad3c4952002-05-09 01:29:19 +00002785
Chris Lattner8f2f5982003-11-05 01:06:05 +00002786 // C - ~X == X + (1+C)
Reid Spencer4fdd96c2005-06-18 17:37:34 +00002787 Value *X = 0;
Chris Lattnerd4252a72004-07-30 07:50:03 +00002788 if (match(Op1, m_Not(m_Value(X))))
2789 return BinaryOperator::createAdd(X,
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00002790 ConstantExpr::getAdd(C, ConstantInt::get(I.getType(), 1)));
Chris Lattner27df1db2007-01-15 07:02:54 +00002791 // -(X >>u 31) -> (X >>s 31)
2792 // -(X >>s 31) -> (X >>u 31)
Chris Lattner022167f2004-03-13 00:11:49 +00002793 if (C->isNullValue()) {
Reid Spencer2341c222007-02-02 02:16:23 +00002794 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op1))
Reid Spencerfdff9382006-11-08 06:47:33 +00002795 if (SI->getOpcode() == Instruction::LShr) {
Reid Spencere0fc4df2006-10-20 07:07:24 +00002796 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
Chris Lattner92295c52004-03-12 23:53:13 +00002797 // Check to see if we are shifting out everything but the sign bit.
Reid Spencere0fc4df2006-10-20 07:07:24 +00002798 if (CU->getZExtValue() ==
2799 SI->getType()->getPrimitiveSizeInBits()-1) {
Reid Spencerfdff9382006-11-08 06:47:33 +00002800 // Ok, the transformation is safe. Insert AShr.
Reid Spencer2341c222007-02-02 02:16:23 +00002801 return BinaryOperator::create(Instruction::AShr,
2802 SI->getOperand(0), CU, SI->getName());
Chris Lattner92295c52004-03-12 23:53:13 +00002803 }
2804 }
Reid Spencerfdff9382006-11-08 06:47:33 +00002805 }
2806 else if (SI->getOpcode() == Instruction::AShr) {
2807 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2808 // Check to see if we are shifting out everything but the sign bit.
2809 if (CU->getZExtValue() ==
2810 SI->getType()->getPrimitiveSizeInBits()-1) {
Reid Spencerc635f472006-12-31 05:48:39 +00002811 // Ok, the transformation is safe. Insert LShr.
Reid Spencer0d5f9232007-02-02 14:08:20 +00002812 return BinaryOperator::createLShr(
Reid Spencer2341c222007-02-02 02:16:23 +00002813 SI->getOperand(0), CU, SI->getName());
Reid Spencerfdff9382006-11-08 06:47:33 +00002814 }
2815 }
2816 }
Chris Lattner022167f2004-03-13 00:11:49 +00002817 }
Chris Lattner183b3362004-04-09 19:05:30 +00002818
2819 // Try to fold constant sub into select arguments.
2820 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
Chris Lattner86102b82005-01-01 16:22:27 +00002821 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner183b3362004-04-09 19:05:30 +00002822 return R;
Chris Lattner6a4adcd2004-09-29 05:07:12 +00002823
2824 if (isa<PHINode>(Op0))
2825 if (Instruction *NV = FoldOpIntoPhi(I))
2826 return NV;
Chris Lattner8f2f5982003-11-05 01:06:05 +00002827 }
2828
Chris Lattnera9be4492005-04-07 16:15:25 +00002829 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
2830 if (Op1I->getOpcode() == Instruction::Add &&
Chris Lattner7a002fe2006-12-02 00:13:08 +00002831 !Op0->getType()->isFPOrFPVector()) {
Chris Lattnerc7f3c1a2005-04-07 16:28:01 +00002832 if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
Chris Lattnera9be4492005-04-07 16:15:25 +00002833 return BinaryOperator::createNeg(Op1I->getOperand(1), I.getName());
Chris Lattnerc7f3c1a2005-04-07 16:28:01 +00002834 else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
Chris Lattnera9be4492005-04-07 16:15:25 +00002835 return BinaryOperator::createNeg(Op1I->getOperand(0), I.getName());
Chris Lattnerc7f3c1a2005-04-07 16:28:01 +00002836 else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
2837 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
2838 // C1-(X+C2) --> (C1-C2)-X
2839 return BinaryOperator::createSub(ConstantExpr::getSub(CI1, CI2),
2840 Op1I->getOperand(0));
2841 }
Chris Lattnera9be4492005-04-07 16:15:25 +00002842 }
2843
Chris Lattnerf95d9b92003-10-15 16:48:29 +00002844 if (Op1I->hasOneUse()) {
Chris Lattner3082c5a2003-02-18 19:28:33 +00002845 // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
2846 // is not used by anyone else...
2847 //
Chris Lattnerc2f0aa52004-02-02 20:09:56 +00002848 if (Op1I->getOpcode() == Instruction::Sub &&
Chris Lattner7a002fe2006-12-02 00:13:08 +00002849 !Op1I->getType()->isFPOrFPVector()) {
Chris Lattner3082c5a2003-02-18 19:28:33 +00002850 // Swap the two operands of the subexpr...
2851 Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
2852 Op1I->setOperand(0, IIOp1);
2853 Op1I->setOperand(1, IIOp0);
Misha Brukmanb1c93172005-04-21 23:48:37 +00002854
Chris Lattner3082c5a2003-02-18 19:28:33 +00002855 // Create the new top level add instruction...
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00002856 return BinaryOperator::createAdd(Op0, Op1);
Chris Lattner3082c5a2003-02-18 19:28:33 +00002857 }
2858
2859 // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
2860 //
2861 if (Op1I->getOpcode() == Instruction::And &&
2862 (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
2863 Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
2864
Chris Lattner396dbfe2004-06-09 05:08:07 +00002865 Value *NewNot =
2866 InsertNewInstBefore(BinaryOperator::createNot(OtherOp, "B.not"), I);
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00002867 return BinaryOperator::createAnd(Op0, NewNot);
Chris Lattner3082c5a2003-02-18 19:28:33 +00002868 }
Chris Lattner57c8d992003-02-18 19:57:07 +00002869
Reid Spencer3c514952006-10-16 23:08:08 +00002870 // 0 - (X sdiv C) -> (X sdiv -C)
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002871 if (Op1I->getOpcode() == Instruction::SDiv)
Reid Spencere0fc4df2006-10-20 07:07:24 +00002872 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002873 if (CSI->isNullValue())
Chris Lattner0aee4b72004-10-06 15:08:25 +00002874 if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002875 return BinaryOperator::createSDiv(Op1I->getOperand(0),
Chris Lattner0aee4b72004-10-06 15:08:25 +00002876 ConstantExpr::getNeg(DivRHS));
2877
Chris Lattner57c8d992003-02-18 19:57:07 +00002878 // X - X*C --> X * (1-C)
Reid Spencer4fdd96c2005-06-18 17:37:34 +00002879 ConstantInt *C2 = 0;
Chris Lattner8c3e7b92004-11-13 19:50:12 +00002880 if (dyn_castFoldableMul(Op1I, C2) == Op0) {
Misha Brukmanb1c93172005-04-21 23:48:37 +00002881 Constant *CP1 =
Chris Lattner8c3e7b92004-11-13 19:50:12 +00002882 ConstantExpr::getSub(ConstantInt::get(I.getType(), 1), C2);
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00002883 return BinaryOperator::createMul(Op0, CP1);
Chris Lattner57c8d992003-02-18 19:57:07 +00002884 }
Chris Lattnerad3c4952002-05-09 01:29:19 +00002885 }
Chris Lattnera9be4492005-04-07 16:15:25 +00002886 }
Chris Lattner3082c5a2003-02-18 19:28:33 +00002887
Chris Lattner7a002fe2006-12-02 00:13:08 +00002888 if (!Op0->getType()->isFPOrFPVector())
Chris Lattner47060462005-04-07 17:14:51 +00002889 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
2890 if (Op0I->getOpcode() == Instruction::Add) {
Chris Lattner411336f2005-01-19 21:50:18 +00002891 if (Op0I->getOperand(0) == Op1) // (Y+X)-Y == X
2892 return ReplaceInstUsesWith(I, Op0I->getOperand(1));
2893 else if (Op0I->getOperand(1) == Op1) // (X+Y)-Y == X
2894 return ReplaceInstUsesWith(I, Op0I->getOperand(0));
Chris Lattner47060462005-04-07 17:14:51 +00002895 } else if (Op0I->getOpcode() == Instruction::Sub) {
2896 if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y
2897 return BinaryOperator::createNeg(Op0I->getOperand(1), I.getName());
Chris Lattner411336f2005-01-19 21:50:18 +00002898 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00002899
Chris Lattner8c3e7b92004-11-13 19:50:12 +00002900 ConstantInt *C1;
2901 if (Value *X = dyn_castFoldableMul(Op0, C1)) {
2902 if (X == Op1) { // X*C - X --> X * (C-1)
2903 Constant *CP1 = ConstantExpr::getSub(C1, ConstantInt::get(I.getType(),1));
2904 return BinaryOperator::createMul(Op1, CP1);
2905 }
Chris Lattner57c8d992003-02-18 19:57:07 +00002906
Chris Lattner8c3e7b92004-11-13 19:50:12 +00002907 ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2)
2908 if (X == dyn_castFoldableMul(Op1, C2))
2909 return BinaryOperator::createMul(Op1, ConstantExpr::getSub(C1, C2));
2910 }
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00002911 return 0;
Chris Lattner260ab202002-04-18 17:39:14 +00002912}
2913
Reid Spencer266e42b2006-12-23 06:05:41 +00002914/// isSignBitCheck - Given an exploded icmp instruction, return true if it
Chris Lattnere79e8542004-02-23 06:38:22 +00002915/// really just returns true if the most significant (sign) bit is set.
Reid Spencer266e42b2006-12-23 06:05:41 +00002916static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS) {
2917 switch (pred) {
2918 case ICmpInst::ICMP_SLT:
2919 // True if LHS s< RHS and RHS == 0
2920 return RHS->isNullValue();
2921 case ICmpInst::ICMP_SLE:
2922 // True if LHS s<= RHS and RHS == -1
2923 return RHS->isAllOnesValue();
2924 case ICmpInst::ICMP_UGE:
2925 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
2926 return RHS->getZExtValue() == (1ULL <<
2927 (RHS->getType()->getPrimitiveSizeInBits()-1));
2928 case ICmpInst::ICMP_UGT:
2929 // True if LHS u> RHS and RHS == high-bit-mask - 1
2930 return RHS->getZExtValue() ==
Chris Lattnerd1f46d32005-04-24 06:59:08 +00002931 (1ULL << (RHS->getType()->getPrimitiveSizeInBits()-1))-1;
Reid Spencer266e42b2006-12-23 06:05:41 +00002932 default:
2933 return false;
Chris Lattnere79e8542004-02-23 06:38:22 +00002934 }
Chris Lattnere79e8542004-02-23 06:38:22 +00002935}
2936
Chris Lattner113f4f42002-06-25 16:13:24 +00002937Instruction *InstCombiner::visitMul(BinaryOperator &I) {
Chris Lattnerdcf240a2003-03-10 21:43:22 +00002938 bool Changed = SimplifyCommutative(I);
Chris Lattner3082c5a2003-02-18 19:28:33 +00002939 Value *Op0 = I.getOperand(0);
Chris Lattner260ab202002-04-18 17:39:14 +00002940
Chris Lattner81a7a232004-10-16 18:11:37 +00002941 if (isa<UndefValue>(I.getOperand(1))) // undef * X -> 0
2942 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2943
Chris Lattnere6794492002-08-12 21:17:25 +00002944 // Simplify mul instructions with a constant RHS...
Chris Lattner3082c5a2003-02-18 19:28:33 +00002945 if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
2946 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnerede3fe02003-08-13 04:18:28 +00002947
2948 // ((X << C1)*C2) == (X * (C2 << C1))
Reid Spencer2341c222007-02-02 02:16:23 +00002949 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
Chris Lattnerede3fe02003-08-13 04:18:28 +00002950 if (SI->getOpcode() == Instruction::Shl)
2951 if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00002952 return BinaryOperator::createMul(SI->getOperand(0),
2953 ConstantExpr::getShl(CI, ShOp));
Misha Brukmanb1c93172005-04-21 23:48:37 +00002954
Chris Lattnercce81be2003-09-11 22:24:54 +00002955 if (CI->isNullValue())
2956 return ReplaceInstUsesWith(I, Op1); // X * 0 == 0
2957 if (CI->equalsInt(1)) // X * 1 == X
2958 return ReplaceInstUsesWith(I, Op0);
2959 if (CI->isAllOnesValue()) // X * -1 == 0 - X
Chris Lattner35236d82003-06-25 17:09:20 +00002960 return BinaryOperator::createNeg(Op0, I.getName());
Chris Lattner31ba1292002-04-29 22:24:47 +00002961
Reid Spencere0fc4df2006-10-20 07:07:24 +00002962 int64_t Val = (int64_t)cast<ConstantInt>(CI)->getZExtValue();
Chris Lattner22d00a82005-08-02 19:16:58 +00002963 if (isPowerOf2_64(Val)) { // Replace X*(2^C) with X << C
2964 uint64_t C = Log2_64(Val);
Reid Spencer0d5f9232007-02-02 14:08:20 +00002965 return BinaryOperator::createShl(Op0,
Reid Spencer2341c222007-02-02 02:16:23 +00002966 ConstantInt::get(Op0->getType(), C));
Chris Lattner22d00a82005-08-02 19:16:58 +00002967 }
Robert Bocchino7b5b86c2004-07-27 21:02:21 +00002968 } else if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1)) {
Chris Lattner3082c5a2003-02-18 19:28:33 +00002969 if (Op1F->isNullValue())
2970 return ReplaceInstUsesWith(I, Op1);
Chris Lattner31ba1292002-04-29 22:24:47 +00002971
Chris Lattner3082c5a2003-02-18 19:28:33 +00002972 // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
2973 // ANSI says we can drop signals, so we can do this anyway." (from GCC)
2974 if (Op1F->getValue() == 1.0)
2975 return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0'
2976 }
Chris Lattner32c01df2006-03-04 06:04:02 +00002977
2978 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
2979 if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() &&
2980 isa<ConstantInt>(Op0I->getOperand(1))) {
2981 // Canonicalize (X+C1)*C2 -> X*C2+C1*C2.
2982 Instruction *Add = BinaryOperator::createMul(Op0I->getOperand(0),
2983 Op1, "tmp");
2984 InsertNewInstBefore(Add, I);
2985 Value *C1C2 = ConstantExpr::getMul(Op1,
2986 cast<Constant>(Op0I->getOperand(1)));
2987 return BinaryOperator::createAdd(Add, C1C2);
2988
2989 }
Chris Lattner183b3362004-04-09 19:05:30 +00002990
2991 // Try to fold constant mul into select arguments.
2992 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
Chris Lattner86102b82005-01-01 16:22:27 +00002993 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner183b3362004-04-09 19:05:30 +00002994 return R;
Chris Lattner6a4adcd2004-09-29 05:07:12 +00002995
2996 if (isa<PHINode>(Op0))
2997 if (Instruction *NV = FoldOpIntoPhi(I))
2998 return NV;
Chris Lattner260ab202002-04-18 17:39:14 +00002999 }
3000
Chris Lattner934a64cf2003-03-10 23:23:04 +00003001 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
3002 if (Value *Op1v = dyn_castNegVal(I.getOperand(1)))
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00003003 return BinaryOperator::createMul(Op0v, Op1v);
Chris Lattner934a64cf2003-03-10 23:23:04 +00003004
Chris Lattner2635b522004-02-23 05:39:21 +00003005 // If one of the operands of the multiply is a cast from a boolean value, then
3006 // we know the bool is either zero or one, so this is a 'masking' multiply.
3007 // See if we can simplify things based on how the boolean was originally
3008 // formed.
3009 CastInst *BoolCast = 0;
Reid Spencer74a528b2006-12-13 18:21:21 +00003010 if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(0)))
Reid Spencer542964f2007-01-11 18:21:29 +00003011 if (CI->getOperand(0)->getType() == Type::Int1Ty)
Chris Lattner2635b522004-02-23 05:39:21 +00003012 BoolCast = CI;
3013 if (!BoolCast)
Reid Spencer74a528b2006-12-13 18:21:21 +00003014 if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(1)))
Reid Spencer542964f2007-01-11 18:21:29 +00003015 if (CI->getOperand(0)->getType() == Type::Int1Ty)
Chris Lattner2635b522004-02-23 05:39:21 +00003016 BoolCast = CI;
3017 if (BoolCast) {
Reid Spencer266e42b2006-12-23 06:05:41 +00003018 if (ICmpInst *SCI = dyn_cast<ICmpInst>(BoolCast->getOperand(0))) {
Chris Lattner2635b522004-02-23 05:39:21 +00003019 Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1);
3020 const Type *SCOpTy = SCIOp0->getType();
3021
Reid Spencer266e42b2006-12-23 06:05:41 +00003022 // If the icmp is true iff the sign bit of X is set, then convert this
Chris Lattnere79e8542004-02-23 06:38:22 +00003023 // multiply into a shift/and combination.
3024 if (isa<ConstantInt>(SCIOp1) &&
Reid Spencer266e42b2006-12-23 06:05:41 +00003025 isSignBitCheck(SCI->getPredicate(), cast<ConstantInt>(SCIOp1))) {
Chris Lattner2635b522004-02-23 05:39:21 +00003026 // Shift the X value right to turn it into "all signbits".
Reid Spencer2341c222007-02-02 02:16:23 +00003027 Constant *Amt = ConstantInt::get(SCIOp0->getType(),
Chris Lattnerd1f46d32005-04-24 06:59:08 +00003028 SCOpTy->getPrimitiveSizeInBits()-1);
Chris Lattnere79e8542004-02-23 06:38:22 +00003029 Value *V =
Reid Spencer2341c222007-02-02 02:16:23 +00003030 InsertNewInstBefore(
3031 BinaryOperator::create(Instruction::AShr, SCIOp0, Amt,
Chris Lattnere79e8542004-02-23 06:38:22 +00003032 BoolCast->getOperand(0)->getName()+
3033 ".mask"), I);
Chris Lattner2635b522004-02-23 05:39:21 +00003034
3035 // If the multiply type is not the same as the source type, sign extend
3036 // or truncate to the multiply type.
Reid Spencer13bc5d72006-12-12 09:18:51 +00003037 if (I.getType() != V->getType()) {
3038 unsigned SrcBits = V->getType()->getPrimitiveSizeInBits();
3039 unsigned DstBits = I.getType()->getPrimitiveSizeInBits();
3040 Instruction::CastOps opcode =
3041 (SrcBits == DstBits ? Instruction::BitCast :
3042 (SrcBits < DstBits ? Instruction::SExt : Instruction::Trunc));
3043 V = InsertCastBefore(opcode, V, I.getType(), I);
3044 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00003045
Chris Lattner2635b522004-02-23 05:39:21 +00003046 Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0;
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00003047 return BinaryOperator::createAnd(V, OtherOp);
Chris Lattner2635b522004-02-23 05:39:21 +00003048 }
3049 }
3050 }
3051
Chris Lattner113f4f42002-06-25 16:13:24 +00003052 return Changed ? &I : 0;
Chris Lattner260ab202002-04-18 17:39:14 +00003053}
3054
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003055/// This function implements the transforms on div instructions that work
3056/// regardless of the kind of div instruction it is (udiv, sdiv, or fdiv). It is
3057/// used by the visitors to those instructions.
3058/// @brief Transforms common to all three div instructions
Reid Spencer6c38f0b2006-11-27 01:05:10 +00003059Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) {
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00003060 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattner81a7a232004-10-16 18:11:37 +00003061
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003062 // undef / X -> 0
3063 if (isa<UndefValue>(Op0))
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00003064 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003065
3066 // X / undef -> undef
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00003067 if (isa<UndefValue>(Op1))
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003068 return ReplaceInstUsesWith(I, Op1);
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00003069
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003070 // Handle cases involving: div X, (select Cond, Y, Z)
Chris Lattnerd79dc792006-09-09 20:26:32 +00003071 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
3072 // div X, (Cond ? 0 : Y) -> div X, Y. If the div and the select are in the
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003073 // same basic block, then we replace the select with Y, and the condition
3074 // of the select with false (if the cond value is in the same BB). If the
Chris Lattnerd79dc792006-09-09 20:26:32 +00003075 // select has uses other than the div, this allows them to be simplified
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003076 // also. Note that div X, Y is just as good as div X, 0 (undef)
Chris Lattnerd79dc792006-09-09 20:26:32 +00003077 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
3078 if (ST->isNullValue()) {
3079 Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
3080 if (CondI && CondI->getParent() == I.getParent())
Zhou Sheng75b871f2007-01-11 12:24:14 +00003081 UpdateValueUsesWith(CondI, ConstantInt::getFalse());
Chris Lattnerd79dc792006-09-09 20:26:32 +00003082 else if (I.getParent() != SI->getParent() || SI->hasOneUse())
3083 I.setOperand(1, SI->getOperand(2));
3084 else
3085 UpdateValueUsesWith(SI, SI->getOperand(2));
3086 return &I;
3087 }
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003088
Chris Lattnerd79dc792006-09-09 20:26:32 +00003089 // Likewise for: div X, (Cond ? Y : 0) -> div X, Y
3090 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
3091 if (ST->isNullValue()) {
3092 Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
3093 if (CondI && CondI->getParent() == I.getParent())
Zhou Sheng75b871f2007-01-11 12:24:14 +00003094 UpdateValueUsesWith(CondI, ConstantInt::getTrue());
Chris Lattnerd79dc792006-09-09 20:26:32 +00003095 else if (I.getParent() != SI->getParent() || SI->hasOneUse())
3096 I.setOperand(1, SI->getOperand(1));
3097 else
3098 UpdateValueUsesWith(SI, SI->getOperand(1));
3099 return &I;
3100 }
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003101 }
Chris Lattnerd79dc792006-09-09 20:26:32 +00003102
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003103 return 0;
3104}
Misha Brukmanb1c93172005-04-21 23:48:37 +00003105
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003106/// This function implements the transforms common to both integer division
3107/// instructions (udiv and sdiv). It is called by the visitors to those integer
3108/// division instructions.
3109/// @brief Common integer divide transforms
Reid Spencer6c38f0b2006-11-27 01:05:10 +00003110Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003111 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3112
3113 if (Instruction *Common = commonDivTransforms(I))
3114 return Common;
3115
3116 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
3117 // div X, 1 == X
3118 if (RHS->equalsInt(1))
3119 return ReplaceInstUsesWith(I, Op0);
3120
3121 // (X / C1) / C2 -> X / (C1*C2)
3122 if (Instruction *LHS = dyn_cast<Instruction>(Op0))
3123 if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
3124 if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
3125 return BinaryOperator::create(I.getOpcode(), LHS->getOperand(0),
3126 ConstantExpr::getMul(RHS, LHSRHS));
Chris Lattner42362612005-04-08 04:03:26 +00003127 }
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003128
3129 if (!RHS->isNullValue()) { // avoid X udiv 0
3130 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
3131 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
3132 return R;
3133 if (isa<PHINode>(Op0))
3134 if (Instruction *NV = FoldOpIntoPhi(I))
3135 return NV;
3136 }
Chris Lattnerd79dc792006-09-09 20:26:32 +00003137 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00003138
Chris Lattner3082c5a2003-02-18 19:28:33 +00003139 // 0 / X == 0, we don't need to preserve faults!
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00003140 if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
Chris Lattner3082c5a2003-02-18 19:28:33 +00003141 if (LHS->equalsInt(0))
3142 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3143
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003144 return 0;
3145}
3146
3147Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
3148 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3149
3150 // Handle the integer div common cases
3151 if (Instruction *Common = commonIDivTransforms(I))
3152 return Common;
3153
3154 // X udiv C^2 -> X >> C
3155 // Check to see if this is an unsigned division with an exact power of 2,
3156 // if so, convert to a right shift.
3157 if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
3158 if (uint64_t Val = C->getZExtValue()) // Don't break X / 0
3159 if (isPowerOf2_64(Val)) {
3160 uint64_t ShiftAmt = Log2_64(Val);
Reid Spencer0d5f9232007-02-02 14:08:20 +00003161 return BinaryOperator::createLShr(Op0,
Reid Spencer2341c222007-02-02 02:16:23 +00003162 ConstantInt::get(Op0->getType(), ShiftAmt));
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003163 }
3164 }
3165
3166 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
Reid Spencer2341c222007-02-02 02:16:23 +00003167 if (BinaryOperator *RHSI = dyn_cast<BinaryOperator>(I.getOperand(1))) {
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003168 if (RHSI->getOpcode() == Instruction::Shl &&
3169 isa<ConstantInt>(RHSI->getOperand(0))) {
3170 uint64_t C1 = cast<ConstantInt>(RHSI->getOperand(0))->getZExtValue();
3171 if (isPowerOf2_64(C1)) {
3172 Value *N = RHSI->getOperand(1);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00003173 const Type *NTy = N->getType();
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003174 if (uint64_t C2 = Log2_64(C1)) {
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003175 Constant *C2V = ConstantInt::get(NTy, C2);
3176 N = InsertNewInstBefore(BinaryOperator::createAdd(N, C2V, "tmp"), I);
Chris Lattner2e90b732006-02-05 07:54:04 +00003177 }
Reid Spencer0d5f9232007-02-02 14:08:20 +00003178 return BinaryOperator::createLShr(Op0, N);
Chris Lattner2e90b732006-02-05 07:54:04 +00003179 }
3180 }
Chris Lattnerdd0c1742005-11-05 07:40:31 +00003181 }
3182
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003183 // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
3184 // where C1&C2 are powers of two.
Reid Spencer3939b1a2007-03-05 23:36:13 +00003185 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003186 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
Reid Spencer3939b1a2007-03-05 23:36:13 +00003187 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
3188 uint64_t TVA = STO->getZExtValue(), FVA = SFO->getZExtValue();
3189 if (isPowerOf2_64(TVA) && isPowerOf2_64(FVA)) {
3190 // Compute the shift amounts
3191 unsigned TSA = Log2_64(TVA), FSA = Log2_64(FVA);
3192 // Construct the "on true" case of the select
3193 Constant *TC = ConstantInt::get(Op0->getType(), TSA);
3194 Instruction *TSI = BinaryOperator::createLShr(
3195 Op0, TC, SI->getName()+".t");
3196 TSI = InsertNewInstBefore(TSI, I);
3197
3198 // Construct the "on false" case of the select
3199 Constant *FC = ConstantInt::get(Op0->getType(), FSA);
3200 Instruction *FSI = BinaryOperator::createLShr(
3201 Op0, FC, SI->getName()+".f");
3202 FSI = InsertNewInstBefore(FSI, I);
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003203
Reid Spencer3939b1a2007-03-05 23:36:13 +00003204 // construct the select instruction and return it.
3205 return new SelectInst(SI->getOperand(0), TSI, FSI, SI->getName());
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003206 }
Reid Spencer3939b1a2007-03-05 23:36:13 +00003207 }
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00003208 return 0;
3209}
3210
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003211Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
3212 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3213
3214 // Handle the integer div common cases
3215 if (Instruction *Common = commonIDivTransforms(I))
3216 return Common;
3217
3218 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
3219 // sdiv X, -1 == -X
3220 if (RHS->isAllOnesValue())
3221 return BinaryOperator::createNeg(Op0);
3222
3223 // -X/C -> X/-C
3224 if (Value *LHSNeg = dyn_castNegVal(Op0))
3225 return BinaryOperator::createSDiv(LHSNeg, ConstantExpr::getNeg(RHS));
3226 }
3227
3228 // If the sign bits of both operands are zero (i.e. we can prove they are
3229 // unsigned inputs), turn this into a udiv.
Chris Lattner03c49532007-01-15 02:27:26 +00003230 if (I.getType()->isInteger()) {
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003231 uint64_t Mask = 1ULL << (I.getType()->getPrimitiveSizeInBits()-1);
3232 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
3233 return BinaryOperator::createUDiv(Op0, Op1, I.getName());
3234 }
3235 }
3236
3237 return 0;
3238}
3239
3240Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
3241 return commonDivTransforms(I);
3242}
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00003243
Chris Lattner85dda9a2006-03-02 06:50:58 +00003244/// GetFactor - If we can prove that the specified value is at least a multiple
3245/// of some factor, return that factor.
3246static Constant *GetFactor(Value *V) {
3247 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3248 return CI;
3249
3250 // Unless we can be tricky, we know this is a multiple of 1.
3251 Constant *Result = ConstantInt::get(V->getType(), 1);
3252
3253 Instruction *I = dyn_cast<Instruction>(V);
3254 if (!I) return Result;
3255
3256 if (I->getOpcode() == Instruction::Mul) {
3257 // Handle multiplies by a constant, etc.
3258 return ConstantExpr::getMul(GetFactor(I->getOperand(0)),
3259 GetFactor(I->getOperand(1)));
3260 } else if (I->getOpcode() == Instruction::Shl) {
3261 // (X<<C) -> X * (1 << C)
3262 if (Constant *ShRHS = dyn_cast<Constant>(I->getOperand(1))) {
3263 ShRHS = ConstantExpr::getShl(Result, ShRHS);
3264 return ConstantExpr::getMul(GetFactor(I->getOperand(0)), ShRHS);
3265 }
3266 } else if (I->getOpcode() == Instruction::And) {
3267 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
3268 // X & 0xFFF0 is known to be a multiple of 16.
3269 unsigned Zeros = CountTrailingZeros_64(RHS->getZExtValue());
3270 if (Zeros != V->getType()->getPrimitiveSizeInBits())
3271 return ConstantExpr::getShl(Result,
Reid Spencer2341c222007-02-02 02:16:23 +00003272 ConstantInt::get(Result->getType(), Zeros));
Chris Lattner85dda9a2006-03-02 06:50:58 +00003273 }
Reid Spencer6c38f0b2006-11-27 01:05:10 +00003274 } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
Chris Lattner85dda9a2006-03-02 06:50:58 +00003275 // Only handle int->int casts.
Reid Spencer6c38f0b2006-11-27 01:05:10 +00003276 if (!CI->isIntegerCast())
3277 return Result;
3278 Value *Op = CI->getOperand(0);
3279 return ConstantExpr::getCast(CI->getOpcode(), GetFactor(Op), V->getType());
Chris Lattner85dda9a2006-03-02 06:50:58 +00003280 }
3281 return Result;
3282}
3283
Reid Spencer7eb55b32006-11-02 01:53:59 +00003284/// This function implements the transforms on rem instructions that work
3285/// regardless of the kind of rem instruction it is (urem, srem, or frem). It
3286/// is used by the visitors to those instructions.
3287/// @brief Transforms common to all three rem instructions
3288Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) {
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00003289 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Reid Spencer7eb55b32006-11-02 01:53:59 +00003290
Chris Lattner0de4a8d2006-02-28 05:30:45 +00003291 // 0 % X == 0, we don't need to preserve faults!
3292 if (Constant *LHS = dyn_cast<Constant>(Op0))
3293 if (LHS->isNullValue())
3294 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3295
3296 if (isa<UndefValue>(Op0)) // undef % X -> 0
3297 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3298 if (isa<UndefValue>(Op1))
3299 return ReplaceInstUsesWith(I, Op1); // X % undef -> undef
Reid Spencer7eb55b32006-11-02 01:53:59 +00003300
3301 // Handle cases involving: rem X, (select Cond, Y, Z)
3302 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
3303 // rem X, (Cond ? 0 : Y) -> rem X, Y. If the rem and the select are in
3304 // the same basic block, then we replace the select with Y, and the
3305 // condition of the select with false (if the cond value is in the same
3306 // BB). If the select has uses other than the div, this allows them to be
3307 // simplified also.
3308 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
3309 if (ST->isNullValue()) {
3310 Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
3311 if (CondI && CondI->getParent() == I.getParent())
Zhou Sheng75b871f2007-01-11 12:24:14 +00003312 UpdateValueUsesWith(CondI, ConstantInt::getFalse());
Reid Spencer7eb55b32006-11-02 01:53:59 +00003313 else if (I.getParent() != SI->getParent() || SI->hasOneUse())
3314 I.setOperand(1, SI->getOperand(2));
3315 else
3316 UpdateValueUsesWith(SI, SI->getOperand(2));
Chris Lattner7fd5f072004-07-06 07:01:22 +00003317 return &I;
3318 }
Reid Spencer7eb55b32006-11-02 01:53:59 +00003319 // Likewise for: rem X, (Cond ? Y : 0) -> rem X, Y
3320 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
3321 if (ST->isNullValue()) {
3322 Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
3323 if (CondI && CondI->getParent() == I.getParent())
Zhou Sheng75b871f2007-01-11 12:24:14 +00003324 UpdateValueUsesWith(CondI, ConstantInt::getTrue());
Reid Spencer7eb55b32006-11-02 01:53:59 +00003325 else if (I.getParent() != SI->getParent() || SI->hasOneUse())
3326 I.setOperand(1, SI->getOperand(1));
3327 else
3328 UpdateValueUsesWith(SI, SI->getOperand(1));
3329 return &I;
3330 }
Chris Lattnere9ff0ea2005-11-05 07:28:37 +00003331 }
Chris Lattner7fd5f072004-07-06 07:01:22 +00003332
Reid Spencer7eb55b32006-11-02 01:53:59 +00003333 return 0;
3334}
3335
3336/// This function implements the transforms common to both integer remainder
3337/// instructions (urem and srem). It is called by the visitors to those integer
3338/// remainder instructions.
3339/// @brief Common integer remainder transforms
3340Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
3341 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3342
3343 if (Instruction *common = commonRemTransforms(I))
3344 return common;
3345
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00003346 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner0de4a8d2006-02-28 05:30:45 +00003347 // X % 0 == undef, we don't need to preserve faults!
3348 if (RHS->equalsInt(0))
3349 return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
3350
Chris Lattner3082c5a2003-02-18 19:28:33 +00003351 if (RHS->equalsInt(1)) // X % 1 == 0
3352 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3353
Chris Lattnerb70f1412006-02-28 05:49:21 +00003354 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
3355 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
3356 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
3357 return R;
3358 } else if (isa<PHINode>(Op0I)) {
3359 if (Instruction *NV = FoldOpIntoPhi(I))
3360 return NV;
Chris Lattnerb70f1412006-02-28 05:49:21 +00003361 }
Reid Spencer7eb55b32006-11-02 01:53:59 +00003362 // (X * C1) % C2 --> 0 iff C1 % C2 == 0
3363 if (ConstantExpr::getSRem(GetFactor(Op0I), RHS)->isNullValue())
Chris Lattner85dda9a2006-03-02 06:50:58 +00003364 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattnerb70f1412006-02-28 05:49:21 +00003365 }
Chris Lattner3082c5a2003-02-18 19:28:33 +00003366 }
3367
Reid Spencer7eb55b32006-11-02 01:53:59 +00003368 return 0;
3369}
3370
3371Instruction *InstCombiner::visitURem(BinaryOperator &I) {
3372 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3373
3374 if (Instruction *common = commonIRemTransforms(I))
3375 return common;
3376
3377 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
3378 // X urem C^2 -> X and C
3379 // Check to see if this is an unsigned remainder with an exact power of 2,
3380 // if so, convert to a bitwise and.
3381 if (ConstantInt *C = dyn_cast<ConstantInt>(RHS))
3382 if (isPowerOf2_64(C->getZExtValue()))
3383 return BinaryOperator::createAnd(Op0, SubOne(C));
3384 }
3385
Chris Lattner2e90b732006-02-05 07:54:04 +00003386 if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
Reid Spencer7eb55b32006-11-02 01:53:59 +00003387 // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
3388 if (RHSI->getOpcode() == Instruction::Shl &&
3389 isa<ConstantInt>(RHSI->getOperand(0))) {
Reid Spencere0fc4df2006-10-20 07:07:24 +00003390 unsigned C1 = cast<ConstantInt>(RHSI->getOperand(0))->getZExtValue();
Chris Lattner2e90b732006-02-05 07:54:04 +00003391 if (isPowerOf2_64(C1)) {
3392 Constant *N1 = ConstantInt::getAllOnesValue(I.getType());
3393 Value *Add = InsertNewInstBefore(BinaryOperator::createAdd(RHSI, N1,
3394 "tmp"), I);
3395 return BinaryOperator::createAnd(Op0, Add);
3396 }
3397 }
Reid Spencer7eb55b32006-11-02 01:53:59 +00003398 }
Chris Lattnerd79dc792006-09-09 20:26:32 +00003399
Reid Spencer7eb55b32006-11-02 01:53:59 +00003400 // urem X, (select Cond, 2^C1, 2^C2) --> select Cond, (and X, C1), (and X, C2)
3401 // where C1&C2 are powers of two.
3402 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
3403 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
3404 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
3405 // STO == 0 and SFO == 0 handled above.
3406 if (isPowerOf2_64(STO->getZExtValue()) &&
3407 isPowerOf2_64(SFO->getZExtValue())) {
3408 Value *TrueAnd = InsertNewInstBefore(
3409 BinaryOperator::createAnd(Op0, SubOne(STO), SI->getName()+".t"), I);
3410 Value *FalseAnd = InsertNewInstBefore(
3411 BinaryOperator::createAnd(Op0, SubOne(SFO), SI->getName()+".f"), I);
3412 return new SelectInst(SI->getOperand(0), TrueAnd, FalseAnd);
3413 }
3414 }
Chris Lattner2e90b732006-02-05 07:54:04 +00003415 }
3416
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00003417 return 0;
3418}
3419
Reid Spencer7eb55b32006-11-02 01:53:59 +00003420Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
3421 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3422
3423 if (Instruction *common = commonIRemTransforms(I))
3424 return common;
3425
3426 if (Value *RHSNeg = dyn_castNegVal(Op1))
3427 if (!isa<ConstantInt>(RHSNeg) ||
3428 cast<ConstantInt>(RHSNeg)->getSExtValue() > 0) {
3429 // X % -Y -> X % Y
3430 AddUsesToWorkList(I);
3431 I.setOperand(1, RHSNeg);
3432 return &I;
3433 }
3434
3435 // If the top bits of both operands are zero (i.e. we can prove they are
3436 // unsigned inputs), turn this into a urem.
3437 uint64_t Mask = 1ULL << (I.getType()->getPrimitiveSizeInBits()-1);
3438 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
3439 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
3440 return BinaryOperator::createURem(Op0, Op1, I.getName());
3441 }
3442
3443 return 0;
3444}
3445
3446Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
Reid Spencer7eb55b32006-11-02 01:53:59 +00003447 return commonRemTransforms(I);
3448}
3449
Chris Lattner6d14f2a2002-08-09 23:47:40 +00003450// isMaxValueMinusOne - return true if this is Max-1
Reid Spencer266e42b2006-12-23 06:05:41 +00003451static bool isMaxValueMinusOne(const ConstantInt *C, bool isSigned) {
3452 if (isSigned) {
3453 // Calculate 0111111111..11111
3454 unsigned TypeBits = C->getType()->getPrimitiveSizeInBits();
3455 int64_t Val = INT64_MAX; // All ones
3456 Val >>= 64-TypeBits; // Shift out unwanted 1 bits...
3457 return C->getSExtValue() == Val-1;
3458 }
Reid Spencera94d3942007-01-19 21:13:56 +00003459 return C->getZExtValue() == C->getType()->getBitMask()-1;
Chris Lattner6d14f2a2002-08-09 23:47:40 +00003460}
3461
3462// isMinValuePlusOne - return true if this is Min+1
Reid Spencer266e42b2006-12-23 06:05:41 +00003463static bool isMinValuePlusOne(const ConstantInt *C, bool isSigned) {
3464 if (isSigned) {
3465 // Calculate 1111111111000000000000
3466 unsigned TypeBits = C->getType()->getPrimitiveSizeInBits();
3467 int64_t Val = -1; // All ones
3468 Val <<= TypeBits-1; // Shift over to the right spot
3469 return C->getSExtValue() == Val+1;
3470 }
3471 return C->getZExtValue() == 1; // unsigned
Chris Lattner6d14f2a2002-08-09 23:47:40 +00003472}
3473
Chris Lattner35167c32004-06-09 07:59:58 +00003474// isOneBitSet - Return true if there is exactly one bit set in the specified
3475// constant.
3476static bool isOneBitSet(const ConstantInt *CI) {
Reid Spencere0fc4df2006-10-20 07:07:24 +00003477 uint64_t V = CI->getZExtValue();
Chris Lattner35167c32004-06-09 07:59:58 +00003478 return V && (V & (V-1)) == 0;
3479}
3480
Chris Lattner8fc5af42004-09-23 21:46:38 +00003481#if 0 // Currently unused
3482// isLowOnes - Return true if the constant is of the form 0+1+.
3483static bool isLowOnes(const ConstantInt *CI) {
Reid Spencere0fc4df2006-10-20 07:07:24 +00003484 uint64_t V = CI->getZExtValue();
Chris Lattner8fc5af42004-09-23 21:46:38 +00003485
3486 // There won't be bits set in parts that the type doesn't contain.
Reid Spencere0fc4df2006-10-20 07:07:24 +00003487 V &= ConstantInt::getAllOnesValue(CI->getType())->getZExtValue();
Chris Lattner8fc5af42004-09-23 21:46:38 +00003488
3489 uint64_t U = V+1; // If it is low ones, this should be a power of two.
3490 return U && V && (U & V) == 0;
3491}
3492#endif
3493
3494// isHighOnes - Return true if the constant is of the form 1+0+.
3495// This is the same as lowones(~X).
3496static bool isHighOnes(const ConstantInt *CI) {
Reid Spencere0fc4df2006-10-20 07:07:24 +00003497 uint64_t V = ~CI->getZExtValue();
Chris Lattner2c14cf72005-08-07 07:03:10 +00003498 if (~V == 0) return false; // 0's does not match "1+"
Chris Lattner8fc5af42004-09-23 21:46:38 +00003499
3500 // There won't be bits set in parts that the type doesn't contain.
Reid Spencere0fc4df2006-10-20 07:07:24 +00003501 V &= ConstantInt::getAllOnesValue(CI->getType())->getZExtValue();
Chris Lattner8fc5af42004-09-23 21:46:38 +00003502
3503 uint64_t U = V+1; // If it is low ones, this should be a power of two.
3504 return U && V && (U & V) == 0;
3505}
3506
Reid Spencer266e42b2006-12-23 06:05:41 +00003507/// getICmpCode - Encode a icmp predicate into a three bit mask. These bits
Chris Lattner3ac7c262003-08-13 20:16:26 +00003508/// are carefully arranged to allow folding of expressions such as:
3509///
3510/// (A < B) | (A > B) --> (A != B)
3511///
Reid Spencer266e42b2006-12-23 06:05:41 +00003512/// Note that this is only valid if the first and second predicates have the
3513/// same sign. Is illegal to do: (A u< B) | (A s> B)
Chris Lattner3ac7c262003-08-13 20:16:26 +00003514///
Reid Spencer266e42b2006-12-23 06:05:41 +00003515/// Three bits are used to represent the condition, as follows:
3516/// 0 A > B
3517/// 1 A == B
3518/// 2 A < B
3519///
3520/// <=> Value Definition
3521/// 000 0 Always false
3522/// 001 1 A > B
3523/// 010 2 A == B
3524/// 011 3 A >= B
3525/// 100 4 A < B
3526/// 101 5 A != B
3527/// 110 6 A <= B
3528/// 111 7 Always true
3529///
3530static unsigned getICmpCode(const ICmpInst *ICI) {
3531 switch (ICI->getPredicate()) {
Chris Lattner3ac7c262003-08-13 20:16:26 +00003532 // False -> 0
Reid Spencer266e42b2006-12-23 06:05:41 +00003533 case ICmpInst::ICMP_UGT: return 1; // 001
3534 case ICmpInst::ICMP_SGT: return 1; // 001
3535 case ICmpInst::ICMP_EQ: return 2; // 010
3536 case ICmpInst::ICMP_UGE: return 3; // 011
3537 case ICmpInst::ICMP_SGE: return 3; // 011
3538 case ICmpInst::ICMP_ULT: return 4; // 100
3539 case ICmpInst::ICMP_SLT: return 4; // 100
3540 case ICmpInst::ICMP_NE: return 5; // 101
3541 case ICmpInst::ICMP_ULE: return 6; // 110
3542 case ICmpInst::ICMP_SLE: return 6; // 110
Chris Lattner3ac7c262003-08-13 20:16:26 +00003543 // True -> 7
3544 default:
Reid Spencer266e42b2006-12-23 06:05:41 +00003545 assert(0 && "Invalid ICmp predicate!");
Chris Lattner3ac7c262003-08-13 20:16:26 +00003546 return 0;
3547 }
3548}
3549
Reid Spencer266e42b2006-12-23 06:05:41 +00003550/// getICmpValue - This is the complement of getICmpCode, which turns an
3551/// opcode and two operands into either a constant true or false, or a brand
3552/// new /// ICmp instruction. The sign is passed in to determine which kind
3553/// of predicate to use in new icmp instructions.
3554static Value *getICmpValue(bool sign, unsigned code, Value *LHS, Value *RHS) {
3555 switch (code) {
3556 default: assert(0 && "Illegal ICmp code!");
Zhou Sheng75b871f2007-01-11 12:24:14 +00003557 case 0: return ConstantInt::getFalse();
Reid Spencer266e42b2006-12-23 06:05:41 +00003558 case 1:
3559 if (sign)
3560 return new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS);
3561 else
3562 return new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS);
3563 case 2: return new ICmpInst(ICmpInst::ICMP_EQ, LHS, RHS);
3564 case 3:
3565 if (sign)
3566 return new ICmpInst(ICmpInst::ICMP_SGE, LHS, RHS);
3567 else
3568 return new ICmpInst(ICmpInst::ICMP_UGE, LHS, RHS);
3569 case 4:
3570 if (sign)
3571 return new ICmpInst(ICmpInst::ICMP_SLT, LHS, RHS);
3572 else
3573 return new ICmpInst(ICmpInst::ICMP_ULT, LHS, RHS);
3574 case 5: return new ICmpInst(ICmpInst::ICMP_NE, LHS, RHS);
3575 case 6:
3576 if (sign)
3577 return new ICmpInst(ICmpInst::ICMP_SLE, LHS, RHS);
3578 else
3579 return new ICmpInst(ICmpInst::ICMP_ULE, LHS, RHS);
Zhou Sheng75b871f2007-01-11 12:24:14 +00003580 case 7: return ConstantInt::getTrue();
Chris Lattner3ac7c262003-08-13 20:16:26 +00003581 }
3582}
3583
Reid Spencer266e42b2006-12-23 06:05:41 +00003584static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) {
3585 return (ICmpInst::isSignedPredicate(p1) == ICmpInst::isSignedPredicate(p2)) ||
3586 (ICmpInst::isSignedPredicate(p1) &&
3587 (p2 == ICmpInst::ICMP_EQ || p2 == ICmpInst::ICMP_NE)) ||
3588 (ICmpInst::isSignedPredicate(p2) &&
3589 (p1 == ICmpInst::ICMP_EQ || p1 == ICmpInst::ICMP_NE));
3590}
3591
3592namespace {
3593// FoldICmpLogical - Implements (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3594struct FoldICmpLogical {
Chris Lattner3ac7c262003-08-13 20:16:26 +00003595 InstCombiner &IC;
3596 Value *LHS, *RHS;
Reid Spencer266e42b2006-12-23 06:05:41 +00003597 ICmpInst::Predicate pred;
3598 FoldICmpLogical(InstCombiner &ic, ICmpInst *ICI)
3599 : IC(ic), LHS(ICI->getOperand(0)), RHS(ICI->getOperand(1)),
3600 pred(ICI->getPredicate()) {}
Chris Lattner3ac7c262003-08-13 20:16:26 +00003601 bool shouldApply(Value *V) const {
Reid Spencer266e42b2006-12-23 06:05:41 +00003602 if (ICmpInst *ICI = dyn_cast<ICmpInst>(V))
3603 if (PredicatesFoldable(pred, ICI->getPredicate()))
3604 return (ICI->getOperand(0) == LHS && ICI->getOperand(1) == RHS ||
3605 ICI->getOperand(0) == RHS && ICI->getOperand(1) == LHS);
Chris Lattner3ac7c262003-08-13 20:16:26 +00003606 return false;
3607 }
Reid Spencer266e42b2006-12-23 06:05:41 +00003608 Instruction *apply(Instruction &Log) const {
3609 ICmpInst *ICI = cast<ICmpInst>(Log.getOperand(0));
3610 if (ICI->getOperand(0) != LHS) {
3611 assert(ICI->getOperand(1) == LHS);
3612 ICI->swapOperands(); // Swap the LHS and RHS of the ICmp
Chris Lattner3ac7c262003-08-13 20:16:26 +00003613 }
3614
Chris Lattnerd1bce952007-03-13 14:27:42 +00003615 ICmpInst *RHSICI = cast<ICmpInst>(Log.getOperand(1));
Reid Spencer266e42b2006-12-23 06:05:41 +00003616 unsigned LHSCode = getICmpCode(ICI);
Chris Lattnerd1bce952007-03-13 14:27:42 +00003617 unsigned RHSCode = getICmpCode(RHSICI);
Chris Lattner3ac7c262003-08-13 20:16:26 +00003618 unsigned Code;
3619 switch (Log.getOpcode()) {
3620 case Instruction::And: Code = LHSCode & RHSCode; break;
3621 case Instruction::Or: Code = LHSCode | RHSCode; break;
3622 case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
Chris Lattner2caaaba2003-09-22 20:33:34 +00003623 default: assert(0 && "Illegal logical opcode!"); return 0;
Chris Lattner3ac7c262003-08-13 20:16:26 +00003624 }
3625
Chris Lattnerd1bce952007-03-13 14:27:42 +00003626 bool isSigned = ICmpInst::isSignedPredicate(RHSICI->getPredicate()) ||
3627 ICmpInst::isSignedPredicate(ICI->getPredicate());
3628
3629 Value *RV = getICmpValue(isSigned, Code, LHS, RHS);
Chris Lattner3ac7c262003-08-13 20:16:26 +00003630 if (Instruction *I = dyn_cast<Instruction>(RV))
3631 return I;
3632 // Otherwise, it's a constant boolean value...
3633 return IC.ReplaceInstUsesWith(Log, RV);
3634 }
3635};
Chris Lattnere3a63d12006-11-15 04:53:24 +00003636} // end anonymous namespace
Chris Lattner3ac7c262003-08-13 20:16:26 +00003637
Chris Lattnerba1cb382003-09-19 17:17:26 +00003638// OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
3639// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
Reid Spencer2341c222007-02-02 02:16:23 +00003640// guaranteed to be a binary operator.
Chris Lattnerba1cb382003-09-19 17:17:26 +00003641Instruction *InstCombiner::OptAndOp(Instruction *Op,
Zhou Sheng75b871f2007-01-11 12:24:14 +00003642 ConstantInt *OpRHS,
3643 ConstantInt *AndRHS,
Chris Lattnerba1cb382003-09-19 17:17:26 +00003644 BinaryOperator &TheAnd) {
3645 Value *X = Op->getOperand(0);
Chris Lattnerfcf21a72004-01-12 19:47:05 +00003646 Constant *Together = 0;
Reid Spencer2341c222007-02-02 02:16:23 +00003647 if (!Op->isShift())
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00003648 Together = ConstantExpr::getAnd(AndRHS, OpRHS);
Chris Lattnerc1e7cc02004-01-12 19:35:11 +00003649
Chris Lattnerba1cb382003-09-19 17:17:26 +00003650 switch (Op->getOpcode()) {
3651 case Instruction::Xor:
Chris Lattner86102b82005-01-01 16:22:27 +00003652 if (Op->hasOneUse()) {
Chris Lattnerba1cb382003-09-19 17:17:26 +00003653 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
Chris Lattner6e0123b2007-02-11 01:23:03 +00003654 Instruction *And = BinaryOperator::createAnd(X, AndRHS);
Chris Lattnerba1cb382003-09-19 17:17:26 +00003655 InsertNewInstBefore(And, TheAnd);
Chris Lattner6e0123b2007-02-11 01:23:03 +00003656 And->takeName(Op);
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00003657 return BinaryOperator::createXor(And, Together);
Chris Lattnerba1cb382003-09-19 17:17:26 +00003658 }
3659 break;
3660 case Instruction::Or:
Chris Lattner86102b82005-01-01 16:22:27 +00003661 if (Together == AndRHS) // (X | C) & C --> C
3662 return ReplaceInstUsesWith(TheAnd, AndRHS);
Misha Brukmanb1c93172005-04-21 23:48:37 +00003663
Chris Lattner86102b82005-01-01 16:22:27 +00003664 if (Op->hasOneUse() && Together != OpRHS) {
3665 // (X | C1) & C2 --> (X | (C1&C2)) & C2
Chris Lattner6e0123b2007-02-11 01:23:03 +00003666 Instruction *Or = BinaryOperator::createOr(X, Together);
Chris Lattner86102b82005-01-01 16:22:27 +00003667 InsertNewInstBefore(Or, TheAnd);
Chris Lattner6e0123b2007-02-11 01:23:03 +00003668 Or->takeName(Op);
Chris Lattner86102b82005-01-01 16:22:27 +00003669 return BinaryOperator::createAnd(Or, AndRHS);
Chris Lattnerba1cb382003-09-19 17:17:26 +00003670 }
3671 break;
3672 case Instruction::Add:
Chris Lattnerf95d9b92003-10-15 16:48:29 +00003673 if (Op->hasOneUse()) {
Chris Lattnerba1cb382003-09-19 17:17:26 +00003674 // Adding a one to a single bit bit-field should be turned into an XOR
3675 // of the bit. First thing to check is to see if this AND is with a
3676 // single bit constant.
Reid Spencere0fc4df2006-10-20 07:07:24 +00003677 uint64_t AndRHSV = cast<ConstantInt>(AndRHS)->getZExtValue();
Chris Lattnerba1cb382003-09-19 17:17:26 +00003678
3679 // Clear bits that are not part of the constant.
Reid Spencera94d3942007-01-19 21:13:56 +00003680 AndRHSV &= AndRHS->getType()->getBitMask();
Chris Lattnerba1cb382003-09-19 17:17:26 +00003681
3682 // If there is only one bit set...
Chris Lattner35167c32004-06-09 07:59:58 +00003683 if (isOneBitSet(cast<ConstantInt>(AndRHS))) {
Chris Lattnerba1cb382003-09-19 17:17:26 +00003684 // Ok, at this point, we know that we are masking the result of the
3685 // ADD down to exactly one bit. If the constant we are adding has
3686 // no bits set below this bit, then we can eliminate the ADD.
Reid Spencere0fc4df2006-10-20 07:07:24 +00003687 uint64_t AddRHS = cast<ConstantInt>(OpRHS)->getZExtValue();
Misha Brukmanb1c93172005-04-21 23:48:37 +00003688
Chris Lattnerba1cb382003-09-19 17:17:26 +00003689 // Check to see if any bits below the one bit set in AndRHSV are set.
3690 if ((AddRHS & (AndRHSV-1)) == 0) {
3691 // If not, the only thing that can effect the output of the AND is
3692 // the bit specified by AndRHSV. If that bit is set, the effect of
3693 // the XOR is to toggle the bit. If it is clear, then the ADD has
3694 // no effect.
3695 if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
3696 TheAnd.setOperand(0, X);
3697 return &TheAnd;
3698 } else {
Chris Lattnerba1cb382003-09-19 17:17:26 +00003699 // Pull the XOR out of the AND.
Chris Lattner6e0123b2007-02-11 01:23:03 +00003700 Instruction *NewAnd = BinaryOperator::createAnd(X, AndRHS);
Chris Lattnerba1cb382003-09-19 17:17:26 +00003701 InsertNewInstBefore(NewAnd, TheAnd);
Chris Lattner6e0123b2007-02-11 01:23:03 +00003702 NewAnd->takeName(Op);
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00003703 return BinaryOperator::createXor(NewAnd, AndRHS);
Chris Lattnerba1cb382003-09-19 17:17:26 +00003704 }
3705 }
3706 }
3707 }
3708 break;
Chris Lattner2da29172003-09-19 19:05:02 +00003709
3710 case Instruction::Shl: {
3711 // We know that the AND will not produce any of the bits shifted in, so if
3712 // the anded constant includes them, clear them now!
3713 //
Zhou Sheng75b871f2007-01-11 12:24:14 +00003714 Constant *AllOne = ConstantInt::getAllOnesValue(AndRHS->getType());
Chris Lattner7e794272004-09-24 15:21:34 +00003715 Constant *ShlMask = ConstantExpr::getShl(AllOne, OpRHS);
3716 Constant *CI = ConstantExpr::getAnd(AndRHS, ShlMask);
Misha Brukmanb1c93172005-04-21 23:48:37 +00003717
Chris Lattner7e794272004-09-24 15:21:34 +00003718 if (CI == ShlMask) { // Masking out bits that the shift already masks
3719 return ReplaceInstUsesWith(TheAnd, Op); // No need for the and.
3720 } else if (CI != AndRHS) { // Reducing bits set in and.
Chris Lattner2da29172003-09-19 19:05:02 +00003721 TheAnd.setOperand(1, CI);
3722 return &TheAnd;
3723 }
3724 break;
Misha Brukmanb1c93172005-04-21 23:48:37 +00003725 }
Reid Spencerfdff9382006-11-08 06:47:33 +00003726 case Instruction::LShr:
3727 {
Chris Lattner2da29172003-09-19 19:05:02 +00003728 // We know that the AND will not produce any of the bits shifted in, so if
3729 // the anded constant includes them, clear them now! This only applies to
3730 // unsigned shifts, because a signed shr may bring in set bits!
3731 //
Zhou Sheng75b871f2007-01-11 12:24:14 +00003732 Constant *AllOne = ConstantInt::getAllOnesValue(AndRHS->getType());
Reid Spencerfdff9382006-11-08 06:47:33 +00003733 Constant *ShrMask = ConstantExpr::getLShr(AllOne, OpRHS);
3734 Constant *CI = ConstantExpr::getAnd(AndRHS, ShrMask);
Chris Lattner7e794272004-09-24 15:21:34 +00003735
Reid Spencerfdff9382006-11-08 06:47:33 +00003736 if (CI == ShrMask) { // Masking out bits that the shift already masks.
3737 return ReplaceInstUsesWith(TheAnd, Op);
3738 } else if (CI != AndRHS) {
3739 TheAnd.setOperand(1, CI); // Reduce bits set in and cst.
3740 return &TheAnd;
3741 }
3742 break;
3743 }
3744 case Instruction::AShr:
3745 // Signed shr.
3746 // See if this is shifting in some sign extension, then masking it out
3747 // with an and.
3748 if (Op->hasOneUse()) {
Zhou Sheng75b871f2007-01-11 12:24:14 +00003749 Constant *AllOne = ConstantInt::getAllOnesValue(AndRHS->getType());
Reid Spencerfdff9382006-11-08 06:47:33 +00003750 Constant *ShrMask = ConstantExpr::getLShr(AllOne, OpRHS);
Reid Spencer2a499b02006-12-13 17:19:09 +00003751 Constant *C = ConstantExpr::getAnd(AndRHS, ShrMask);
3752 if (C == AndRHS) { // Masking out bits shifted in.
Reid Spencer13bc5d72006-12-12 09:18:51 +00003753 // (Val ashr C1) & C2 -> (Val lshr C1) & C2
Reid Spencerfdff9382006-11-08 06:47:33 +00003754 // Make the argument unsigned.
3755 Value *ShVal = Op->getOperand(0);
Reid Spencer2341c222007-02-02 02:16:23 +00003756 ShVal = InsertNewInstBefore(
Reid Spencer0d5f9232007-02-02 14:08:20 +00003757 BinaryOperator::createLShr(ShVal, OpRHS,
Reid Spencer2341c222007-02-02 02:16:23 +00003758 Op->getName()), TheAnd);
Reid Spencer2a499b02006-12-13 17:19:09 +00003759 return BinaryOperator::createAnd(ShVal, AndRHS, TheAnd.getName());
Chris Lattner7e794272004-09-24 15:21:34 +00003760 }
Chris Lattner2da29172003-09-19 19:05:02 +00003761 }
3762 break;
Chris Lattnerba1cb382003-09-19 17:17:26 +00003763 }
3764 return 0;
3765}
3766
Chris Lattner6d14f2a2002-08-09 23:47:40 +00003767
Chris Lattner6862fbd2004-09-29 17:40:11 +00003768/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
3769/// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient
Reid Spencer266e42b2006-12-23 06:05:41 +00003770/// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates
3771/// whether to treat the V, Lo and HI as signed or not. IB is the location to
Chris Lattner6862fbd2004-09-29 17:40:11 +00003772/// insert new instructions.
3773Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
Reid Spencer266e42b2006-12-23 06:05:41 +00003774 bool isSigned, bool Inside,
3775 Instruction &IB) {
Zhou Sheng75b871f2007-01-11 12:24:14 +00003776 assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
Reid Spencercddc9df2007-01-12 04:24:46 +00003777 ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
Chris Lattner6862fbd2004-09-29 17:40:11 +00003778 "Lo is not <= Hi in range emission code!");
Reid Spencer266e42b2006-12-23 06:05:41 +00003779
Chris Lattner6862fbd2004-09-29 17:40:11 +00003780 if (Inside) {
3781 if (Lo == Hi) // Trivially false.
Reid Spencer266e42b2006-12-23 06:05:41 +00003782 return new ICmpInst(ICmpInst::ICMP_NE, V, V);
Misha Brukmanb1c93172005-04-21 23:48:37 +00003783
Reid Spencer266e42b2006-12-23 06:05:41 +00003784 // V >= Min && V < Hi --> V < Hi
Zhou Sheng75b871f2007-01-11 12:24:14 +00003785 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
Reid Spencer266e42b2006-12-23 06:05:41 +00003786 ICmpInst::Predicate pred = (isSigned ?
3787 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
3788 return new ICmpInst(pred, V, Hi);
3789 }
3790
3791 // Emit V-Lo <u Hi-Lo
3792 Constant *NegLo = ConstantExpr::getNeg(Lo);
3793 Instruction *Add = BinaryOperator::createAdd(V, NegLo, V->getName()+".off");
Chris Lattner6862fbd2004-09-29 17:40:11 +00003794 InsertNewInstBefore(Add, IB);
Reid Spencer266e42b2006-12-23 06:05:41 +00003795 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
3796 return new ICmpInst(ICmpInst::ICMP_ULT, Add, UpperBound);
Chris Lattner6862fbd2004-09-29 17:40:11 +00003797 }
3798
3799 if (Lo == Hi) // Trivially true.
Reid Spencer266e42b2006-12-23 06:05:41 +00003800 return new ICmpInst(ICmpInst::ICMP_EQ, V, V);
Chris Lattner6862fbd2004-09-29 17:40:11 +00003801
Reid Spencer266e42b2006-12-23 06:05:41 +00003802 // V < Min || V >= Hi ->'V > Hi-1'
Chris Lattner6862fbd2004-09-29 17:40:11 +00003803 Hi = SubOne(cast<ConstantInt>(Hi));
Zhou Sheng75b871f2007-01-11 12:24:14 +00003804 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
Reid Spencer266e42b2006-12-23 06:05:41 +00003805 ICmpInst::Predicate pred = (isSigned ?
3806 ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
3807 return new ICmpInst(pred, V, Hi);
3808 }
Reid Spencere0fc4df2006-10-20 07:07:24 +00003809
Reid Spencer266e42b2006-12-23 06:05:41 +00003810 // Emit V-Lo > Hi-1-Lo
3811 Constant *NegLo = ConstantExpr::getNeg(Lo);
3812 Instruction *Add = BinaryOperator::createAdd(V, NegLo, V->getName()+".off");
Chris Lattner6862fbd2004-09-29 17:40:11 +00003813 InsertNewInstBefore(Add, IB);
Reid Spencer266e42b2006-12-23 06:05:41 +00003814 Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
3815 return new ICmpInst(ICmpInst::ICMP_UGT, Add, LowerBound);
Chris Lattner6862fbd2004-09-29 17:40:11 +00003816}
3817
Chris Lattnerb4b25302005-09-18 07:22:02 +00003818// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
3819// any number of 0s on either side. The 1s are allowed to wrap from LSB to
3820// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
3821// not, since all 1s are not contiguous.
Zhou Sheng75b871f2007-01-11 12:24:14 +00003822static bool isRunOfOnes(ConstantInt *Val, unsigned &MB, unsigned &ME) {
Reid Spencere0fc4df2006-10-20 07:07:24 +00003823 uint64_t V = Val->getZExtValue();
Chris Lattnerb4b25302005-09-18 07:22:02 +00003824 if (!isShiftedMask_64(V)) return false;
3825
3826 // look for the first zero bit after the run of ones
3827 MB = 64-CountLeadingZeros_64((V - 1) ^ V);
3828 // look for the first non-zero bit
3829 ME = 64-CountLeadingZeros_64(V);
3830 return true;
3831}
3832
3833
3834
3835/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
3836/// where isSub determines whether the operator is a sub. If we can fold one of
3837/// the following xforms:
Chris Lattneraf517572005-09-18 04:24:45 +00003838///
3839/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
3840/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3841/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3842///
3843/// return (A +/- B).
3844///
3845Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
Zhou Sheng75b871f2007-01-11 12:24:14 +00003846 ConstantInt *Mask, bool isSub,
Chris Lattneraf517572005-09-18 04:24:45 +00003847 Instruction &I) {
3848 Instruction *LHSI = dyn_cast<Instruction>(LHS);
3849 if (!LHSI || LHSI->getNumOperands() != 2 ||
3850 !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
3851
3852 ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
3853
3854 switch (LHSI->getOpcode()) {
3855 default: return 0;
3856 case Instruction::And:
Chris Lattnerb4b25302005-09-18 07:22:02 +00003857 if (ConstantExpr::getAnd(N, Mask) == Mask) {
3858 // If the AndRHS is a power of two minus one (0+1+), this is simple.
Reid Spencere0fc4df2006-10-20 07:07:24 +00003859 if ((Mask->getZExtValue() & Mask->getZExtValue()+1) == 0)
Chris Lattnerb4b25302005-09-18 07:22:02 +00003860 break;
3861
3862 // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
3863 // part, we don't need any explicit masks to take them out of A. If that
3864 // is all N is, ignore it.
3865 unsigned MB, ME;
3866 if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive
Reid Spencera94d3942007-01-19 21:13:56 +00003867 uint64_t Mask = cast<IntegerType>(RHS->getType())->getBitMask();
Chris Lattnerc3ebf402006-02-07 07:27:52 +00003868 Mask >>= 64-MB+1;
3869 if (MaskedValueIsZero(RHS, Mask))
Chris Lattnerb4b25302005-09-18 07:22:02 +00003870 break;
3871 }
3872 }
Chris Lattneraf517572005-09-18 04:24:45 +00003873 return 0;
3874 case Instruction::Or:
3875 case Instruction::Xor:
Chris Lattnerb4b25302005-09-18 07:22:02 +00003876 // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
Reid Spencere0fc4df2006-10-20 07:07:24 +00003877 if ((Mask->getZExtValue() & Mask->getZExtValue()+1) == 0 &&
Chris Lattnerb4b25302005-09-18 07:22:02 +00003878 ConstantExpr::getAnd(N, Mask)->isNullValue())
Chris Lattneraf517572005-09-18 04:24:45 +00003879 break;
3880 return 0;
3881 }
3882
3883 Instruction *New;
3884 if (isSub)
3885 New = BinaryOperator::createSub(LHSI->getOperand(0), RHS, "fold");
3886 else
3887 New = BinaryOperator::createAdd(LHSI->getOperand(0), RHS, "fold");
3888 return InsertNewInstBefore(New, I);
3889}
3890
Chris Lattner113f4f42002-06-25 16:13:24 +00003891Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
Chris Lattnerdcf240a2003-03-10 21:43:22 +00003892 bool Changed = SimplifyCommutative(I);
Chris Lattner113f4f42002-06-25 16:13:24 +00003893 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00003894
Chris Lattner81a7a232004-10-16 18:11:37 +00003895 if (isa<UndefValue>(Op1)) // X & undef -> 0
3896 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3897
Chris Lattner86102b82005-01-01 16:22:27 +00003898 // and X, X = X
3899 if (Op0 == Op1)
Chris Lattnere6794492002-08-12 21:17:25 +00003900 return ReplaceInstUsesWith(I, Op1);
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00003901
Chris Lattner5b2edb12006-02-12 08:02:11 +00003902 // See if we can simplify any instructions used by the instruction whose sole
Chris Lattner5997cf92006-02-08 03:25:32 +00003903 // purpose is to compute bits we don't care about.
Chris Lattner0157e7f2006-02-11 09:31:47 +00003904 uint64_t KnownZero, KnownOne;
Reid Spencerd84d35b2007-02-15 02:26:10 +00003905 if (!isa<VectorType>(I.getType())) {
Reid Spencera94d3942007-01-19 21:13:56 +00003906 if (SimplifyDemandedBits(&I, cast<IntegerType>(I.getType())->getBitMask(),
Chris Lattner120ab032007-01-18 22:16:33 +00003907 KnownZero, KnownOne))
Chris Lattner5997cf92006-02-08 03:25:32 +00003908 return &I;
Chris Lattner120ab032007-01-18 22:16:33 +00003909 } else {
Reid Spencerd84d35b2007-02-15 02:26:10 +00003910 if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
Chris Lattner120ab032007-01-18 22:16:33 +00003911 if (CP->isAllOnesValue())
3912 return ReplaceInstUsesWith(I, I.getOperand(0));
3913 }
3914 }
Chris Lattner5997cf92006-02-08 03:25:32 +00003915
Zhou Sheng75b871f2007-01-11 12:24:14 +00003916 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnerab2dc4d2006-02-08 07:34:50 +00003917 uint64_t AndRHSMask = AndRHS->getZExtValue();
Reid Spencera94d3942007-01-19 21:13:56 +00003918 uint64_t TypeMask = cast<IntegerType>(Op0->getType())->getBitMask();
Chris Lattnerab2dc4d2006-02-08 07:34:50 +00003919 uint64_t NotAndRHS = AndRHSMask^TypeMask;
Chris Lattner86102b82005-01-01 16:22:27 +00003920
Chris Lattnerba1cb382003-09-19 17:17:26 +00003921 // Optimize a variety of ((val OP C1) & C2) combinations...
Reid Spencer2341c222007-02-02 02:16:23 +00003922 if (isa<BinaryOperator>(Op0)) {
Chris Lattnerba1cb382003-09-19 17:17:26 +00003923 Instruction *Op0I = cast<Instruction>(Op0);
Chris Lattner86102b82005-01-01 16:22:27 +00003924 Value *Op0LHS = Op0I->getOperand(0);
3925 Value *Op0RHS = Op0I->getOperand(1);
3926 switch (Op0I->getOpcode()) {
3927 case Instruction::Xor:
3928 case Instruction::Or:
Chris Lattner9e2c7fa2005-01-23 20:26:55 +00003929 // If the mask is only needed on one incoming arm, push it up.
3930 if (Op0I->hasOneUse()) {
3931 if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
3932 // Not masking anything out for the LHS, move to RHS.
3933 Instruction *NewRHS = BinaryOperator::createAnd(Op0RHS, AndRHS,
3934 Op0RHS->getName()+".masked");
3935 InsertNewInstBefore(NewRHS, I);
3936 return BinaryOperator::create(
3937 cast<BinaryOperator>(Op0I)->getOpcode(), Op0LHS, NewRHS);
Misha Brukmanb1c93172005-04-21 23:48:37 +00003938 }
Chris Lattnerc3ebf402006-02-07 07:27:52 +00003939 if (!isa<Constant>(Op0RHS) &&
Chris Lattner9e2c7fa2005-01-23 20:26:55 +00003940 MaskedValueIsZero(Op0RHS, NotAndRHS)) {
3941 // Not masking anything out for the RHS, move to LHS.
3942 Instruction *NewLHS = BinaryOperator::createAnd(Op0LHS, AndRHS,
3943 Op0LHS->getName()+".masked");
3944 InsertNewInstBefore(NewLHS, I);
3945 return BinaryOperator::create(
3946 cast<BinaryOperator>(Op0I)->getOpcode(), NewLHS, Op0RHS);
3947 }
3948 }
3949
Chris Lattner86102b82005-01-01 16:22:27 +00003950 break;
Chris Lattneraf517572005-09-18 04:24:45 +00003951 case Instruction::Add:
Chris Lattnerb4b25302005-09-18 07:22:02 +00003952 // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
3953 // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3954 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3955 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
3956 return BinaryOperator::createAnd(V, AndRHS);
3957 if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
3958 return BinaryOperator::createAnd(V, AndRHS); // Add commutes
Chris Lattneraf517572005-09-18 04:24:45 +00003959 break;
3960
3961 case Instruction::Sub:
Chris Lattnerb4b25302005-09-18 07:22:02 +00003962 // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
3963 // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3964 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3965 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
3966 return BinaryOperator::createAnd(V, AndRHS);
Chris Lattneraf517572005-09-18 04:24:45 +00003967 break;
Chris Lattner86102b82005-01-01 16:22:27 +00003968 }
3969
Chris Lattner16464b32003-07-23 19:25:52 +00003970 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
Chris Lattner86102b82005-01-01 16:22:27 +00003971 if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
Chris Lattnerba1cb382003-09-19 17:17:26 +00003972 return Res;
Chris Lattner86102b82005-01-01 16:22:27 +00003973 } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
Chris Lattner2c14cf72005-08-07 07:03:10 +00003974 // If this is an integer truncation or change from signed-to-unsigned, and
3975 // if the source is an and/or with immediate, transform it. This
3976 // frequently occurs for bitfield accesses.
3977 if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) {
Reid Spencer6c38f0b2006-11-27 01:05:10 +00003978 if ((isa<TruncInst>(CI) || isa<BitCastInst>(CI)) &&
Chris Lattner2c14cf72005-08-07 07:03:10 +00003979 CastOp->getNumOperands() == 2)
Chris Lattnerab2dc4d2006-02-08 07:34:50 +00003980 if (ConstantInt *AndCI = dyn_cast<ConstantInt>(CastOp->getOperand(1)))
Chris Lattner2c14cf72005-08-07 07:03:10 +00003981 if (CastOp->getOpcode() == Instruction::And) {
3982 // Change: and (cast (and X, C1) to T), C2
Reid Spencer6c38f0b2006-11-27 01:05:10 +00003983 // into : and (cast X to T), trunc_or_bitcast(C1)&C2
3984 // This will fold the two constants together, which may allow
3985 // other simplifications.
Reid Spencerbb65ebf2006-12-12 23:36:14 +00003986 Instruction *NewCast = CastInst::createTruncOrBitCast(
3987 CastOp->getOperand(0), I.getType(),
3988 CastOp->getName()+".shrunk");
Chris Lattner2c14cf72005-08-07 07:03:10 +00003989 NewCast = InsertNewInstBefore(NewCast, I);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00003990 // trunc_or_bitcast(C1)&C2
Reid Spencerbb65ebf2006-12-12 23:36:14 +00003991 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
Reid Spencer6c38f0b2006-11-27 01:05:10 +00003992 C3 = ConstantExpr::getAnd(C3, AndRHS);
Chris Lattner2c14cf72005-08-07 07:03:10 +00003993 return BinaryOperator::createAnd(NewCast, C3);
3994 } else if (CastOp->getOpcode() == Instruction::Or) {
3995 // Change: and (cast (or X, C1) to T), C2
3996 // into : trunc(C1)&C2 iff trunc(C1)&C2 == C2
Chris Lattner2dc148e2006-12-12 19:11:20 +00003997 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
Chris Lattner2c14cf72005-08-07 07:03:10 +00003998 if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS) // trunc(C1)&C2
3999 return ReplaceInstUsesWith(I, AndRHS);
4000 }
4001 }
Chris Lattner33217db2003-07-23 19:36:21 +00004002 }
Chris Lattner183b3362004-04-09 19:05:30 +00004003
4004 // Try to fold constant and into select arguments.
4005 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
Chris Lattner86102b82005-01-01 16:22:27 +00004006 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner183b3362004-04-09 19:05:30 +00004007 return R;
Chris Lattner6a4adcd2004-09-29 05:07:12 +00004008 if (isa<PHINode>(Op0))
4009 if (Instruction *NV = FoldOpIntoPhi(I))
4010 return NV;
Chris Lattner49b47ae2003-07-23 17:57:01 +00004011 }
4012
Chris Lattnerbb74e222003-03-10 23:06:50 +00004013 Value *Op0NotVal = dyn_castNotVal(Op0);
4014 Value *Op1NotVal = dyn_castNotVal(Op1);
Chris Lattner3082c5a2003-02-18 19:28:33 +00004015
Chris Lattner023a4832004-06-18 06:07:51 +00004016 if (Op0NotVal == Op1 || Op1NotVal == Op0) // A & ~A == ~A & A == 0
4017 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
4018
Misha Brukman9c003d82004-07-30 12:50:08 +00004019 // (~A & ~B) == (~(A | B)) - De Morgan's Law
Chris Lattnerbb74e222003-03-10 23:06:50 +00004020 if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00004021 Instruction *Or = BinaryOperator::createOr(Op0NotVal, Op1NotVal,
4022 I.getName()+".demorgan");
Chris Lattner49b47ae2003-07-23 17:57:01 +00004023 InsertNewInstBefore(Or, I);
Chris Lattner3082c5a2003-02-18 19:28:33 +00004024 return BinaryOperator::createNot(Or);
4025 }
Chris Lattner8b10ab32006-02-13 23:07:23 +00004026
4027 {
4028 Value *A = 0, *B = 0;
Chris Lattner8b10ab32006-02-13 23:07:23 +00004029 if (match(Op0, m_Or(m_Value(A), m_Value(B))))
4030 if (A == Op1 || B == Op1) // (A | ?) & A --> A
4031 return ReplaceInstUsesWith(I, Op1);
4032 if (match(Op1, m_Or(m_Value(A), m_Value(B))))
4033 if (A == Op0 || B == Op0) // A & (A | ?) --> A
4034 return ReplaceInstUsesWith(I, Op0);
Chris Lattnerdcd07922006-04-01 08:03:55 +00004035
4036 if (Op0->hasOneUse() &&
4037 match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
4038 if (A == Op1) { // (A^B)&A -> A&(A^B)
4039 I.swapOperands(); // Simplify below
4040 std::swap(Op0, Op1);
4041 } else if (B == Op1) { // (A^B)&B -> B&(B^A)
4042 cast<BinaryOperator>(Op0)->swapOperands();
4043 I.swapOperands(); // Simplify below
4044 std::swap(Op0, Op1);
4045 }
4046 }
4047 if (Op1->hasOneUse() &&
4048 match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
4049 if (B == Op0) { // B&(A^B) -> B&(B^A)
4050 cast<BinaryOperator>(Op1)->swapOperands();
4051 std::swap(A, B);
4052 }
4053 if (A == Op0) { // A&(A^B) -> A & ~B
4054 Instruction *NotB = BinaryOperator::createNot(B, "tmp");
4055 InsertNewInstBefore(NotB, I);
4056 return BinaryOperator::createAnd(A, NotB);
4057 }
4058 }
Chris Lattner8b10ab32006-02-13 23:07:23 +00004059 }
4060
Reid Spencer266e42b2006-12-23 06:05:41 +00004061 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1)) {
4062 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
4063 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
Chris Lattner3ac7c262003-08-13 20:16:26 +00004064 return R;
4065
Chris Lattner623826c2004-09-28 21:48:02 +00004066 Value *LHSVal, *RHSVal;
4067 ConstantInt *LHSCst, *RHSCst;
Reid Spencer266e42b2006-12-23 06:05:41 +00004068 ICmpInst::Predicate LHSCC, RHSCC;
4069 if (match(Op0, m_ICmp(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
4070 if (match(RHS, m_ICmp(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
4071 if (LHSVal == RHSVal && // Found (X icmp C1) & (X icmp C2)
4072 // ICMP_[GL]E X, CST is folded to ICMP_[GL]T elsewhere.
4073 LHSCC != ICmpInst::ICMP_UGE && LHSCC != ICmpInst::ICMP_ULE &&
4074 RHSCC != ICmpInst::ICMP_UGE && RHSCC != ICmpInst::ICMP_ULE &&
4075 LHSCC != ICmpInst::ICMP_SGE && LHSCC != ICmpInst::ICMP_SLE &&
4076 RHSCC != ICmpInst::ICMP_SGE && RHSCC != ICmpInst::ICMP_SLE) {
Chris Lattner623826c2004-09-28 21:48:02 +00004077 // Ensure that the larger constant is on the RHS.
Reid Spencer266e42b2006-12-23 06:05:41 +00004078 ICmpInst::Predicate GT = ICmpInst::isSignedPredicate(LHSCC) ?
4079 ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
4080 Constant *Cmp = ConstantExpr::getICmp(GT, LHSCst, RHSCst);
4081 ICmpInst *LHS = cast<ICmpInst>(Op0);
Reid Spencercddc9df2007-01-12 04:24:46 +00004082 if (cast<ConstantInt>(Cmp)->getZExtValue()) {
Chris Lattner623826c2004-09-28 21:48:02 +00004083 std::swap(LHS, RHS);
4084 std::swap(LHSCst, RHSCst);
4085 std::swap(LHSCC, RHSCC);
4086 }
4087
Reid Spencer266e42b2006-12-23 06:05:41 +00004088 // At this point, we know we have have two icmp instructions
Chris Lattner623826c2004-09-28 21:48:02 +00004089 // comparing a value against two constants and and'ing the result
4090 // together. Because of the above check, we know that we only have
Reid Spencer266e42b2006-12-23 06:05:41 +00004091 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
4092 // (from the FoldICmpLogical check above), that the two constants
4093 // are not equal and that the larger constant is on the RHS
Chris Lattner623826c2004-09-28 21:48:02 +00004094 assert(LHSCst != RHSCst && "Compares not folded above?");
4095
4096 switch (LHSCC) {
4097 default: assert(0 && "Unknown integer condition code!");
Reid Spencer266e42b2006-12-23 06:05:41 +00004098 case ICmpInst::ICMP_EQ:
Chris Lattner623826c2004-09-28 21:48:02 +00004099 switch (RHSCC) {
4100 default: assert(0 && "Unknown integer condition code!");
Reid Spencer266e42b2006-12-23 06:05:41 +00004101 case ICmpInst::ICMP_EQ: // (X == 13 & X == 15) -> false
4102 case ICmpInst::ICMP_UGT: // (X == 13 & X > 15) -> false
4103 case ICmpInst::ICMP_SGT: // (X == 13 & X > 15) -> false
Zhou Sheng75b871f2007-01-11 12:24:14 +00004104 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Reid Spencer266e42b2006-12-23 06:05:41 +00004105 case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13
4106 case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13
4107 case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13
Chris Lattner623826c2004-09-28 21:48:02 +00004108 return ReplaceInstUsesWith(I, LHS);
4109 }
Reid Spencer266e42b2006-12-23 06:05:41 +00004110 case ICmpInst::ICMP_NE:
Chris Lattner623826c2004-09-28 21:48:02 +00004111 switch (RHSCC) {
4112 default: assert(0 && "Unknown integer condition code!");
Reid Spencer266e42b2006-12-23 06:05:41 +00004113 case ICmpInst::ICMP_ULT:
4114 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
4115 return new ICmpInst(ICmpInst::ICMP_ULT, LHSVal, LHSCst);
4116 break; // (X != 13 & X u< 15) -> no change
4117 case ICmpInst::ICMP_SLT:
4118 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
4119 return new ICmpInst(ICmpInst::ICMP_SLT, LHSVal, LHSCst);
4120 break; // (X != 13 & X s< 15) -> no change
4121 case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15
4122 case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15
4123 case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15
Chris Lattner623826c2004-09-28 21:48:02 +00004124 return ReplaceInstUsesWith(I, RHS);
Reid Spencer266e42b2006-12-23 06:05:41 +00004125 case ICmpInst::ICMP_NE:
4126 if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
Chris Lattner623826c2004-09-28 21:48:02 +00004127 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
4128 Instruction *Add = BinaryOperator::createAdd(LHSVal, AddCST,
4129 LHSVal->getName()+".off");
4130 InsertNewInstBefore(Add, I);
Chris Lattnerc8fb6de2007-01-27 23:08:34 +00004131 return new ICmpInst(ICmpInst::ICMP_UGT, Add,
4132 ConstantInt::get(Add->getType(), 1));
Chris Lattner623826c2004-09-28 21:48:02 +00004133 }
4134 break; // (X != 13 & X != 15) -> no change
4135 }
4136 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00004137 case ICmpInst::ICMP_ULT:
Chris Lattner623826c2004-09-28 21:48:02 +00004138 switch (RHSCC) {
4139 default: assert(0 && "Unknown integer condition code!");
Reid Spencer266e42b2006-12-23 06:05:41 +00004140 case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false
4141 case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false
Zhou Sheng75b871f2007-01-11 12:24:14 +00004142 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Reid Spencer266e42b2006-12-23 06:05:41 +00004143 case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change
4144 break;
4145 case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13
4146 case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13
Chris Lattner623826c2004-09-28 21:48:02 +00004147 return ReplaceInstUsesWith(I, LHS);
Reid Spencer266e42b2006-12-23 06:05:41 +00004148 case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change
4149 break;
Chris Lattner623826c2004-09-28 21:48:02 +00004150 }
Reid Spencer266e42b2006-12-23 06:05:41 +00004151 break;
4152 case ICmpInst::ICMP_SLT:
Chris Lattner623826c2004-09-28 21:48:02 +00004153 switch (RHSCC) {
4154 default: assert(0 && "Unknown integer condition code!");
Reid Spencer266e42b2006-12-23 06:05:41 +00004155 case ICmpInst::ICMP_EQ: // (X s< 13 & X == 15) -> false
4156 case ICmpInst::ICMP_SGT: // (X s< 13 & X s> 15) -> false
Zhou Sheng75b871f2007-01-11 12:24:14 +00004157 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Reid Spencer266e42b2006-12-23 06:05:41 +00004158 case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change
4159 break;
4160 case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13
4161 case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13
Chris Lattner623826c2004-09-28 21:48:02 +00004162 return ReplaceInstUsesWith(I, LHS);
Reid Spencer266e42b2006-12-23 06:05:41 +00004163 case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change
4164 break;
Chris Lattner623826c2004-09-28 21:48:02 +00004165 }
Reid Spencer266e42b2006-12-23 06:05:41 +00004166 break;
4167 case ICmpInst::ICMP_UGT:
4168 switch (RHSCC) {
4169 default: assert(0 && "Unknown integer condition code!");
4170 case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X > 13
4171 return ReplaceInstUsesWith(I, LHS);
4172 case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15
4173 return ReplaceInstUsesWith(I, RHS);
4174 case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change
4175 break;
4176 case ICmpInst::ICMP_NE:
4177 if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
4178 return new ICmpInst(LHSCC, LHSVal, RHSCst);
4179 break; // (X u> 13 & X != 15) -> no change
4180 case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) ->(X-14) <u 1
4181 return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, false,
4182 true, I);
4183 case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change
4184 break;
4185 }
4186 break;
4187 case ICmpInst::ICMP_SGT:
4188 switch (RHSCC) {
4189 default: assert(0 && "Unknown integer condition code!");
4190 case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X s> 13
4191 return ReplaceInstUsesWith(I, LHS);
4192 case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15
4193 return ReplaceInstUsesWith(I, RHS);
4194 case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change
4195 break;
4196 case ICmpInst::ICMP_NE:
4197 if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
4198 return new ICmpInst(LHSCC, LHSVal, RHSCst);
4199 break; // (X s> 13 & X != 15) -> no change
4200 case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) ->(X-14) s< 1
4201 return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, true,
4202 true, I);
4203 case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change
4204 break;
4205 }
4206 break;
Chris Lattner623826c2004-09-28 21:48:02 +00004207 }
4208 }
4209 }
4210
Chris Lattner3af10532006-05-05 06:39:07 +00004211 // fold (and (cast A), (cast B)) -> (cast (and A, B))
Reid Spencer799b5bf2006-12-13 08:27:15 +00004212 if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
4213 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4214 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind ?
4215 const Type *SrcTy = Op0C->getOperand(0)->getType();
Chris Lattner03c49532007-01-15 02:27:26 +00004216 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
Reid Spencer799b5bf2006-12-13 08:27:15 +00004217 // Only do this if the casts both really cause code to be generated.
Reid Spencer266e42b2006-12-23 06:05:41 +00004218 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4219 I.getType(), TD) &&
4220 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4221 I.getType(), TD)) {
Reid Spencer799b5bf2006-12-13 08:27:15 +00004222 Instruction *NewOp = BinaryOperator::createAnd(Op0C->getOperand(0),
4223 Op1C->getOperand(0),
4224 I.getName());
4225 InsertNewInstBefore(NewOp, I);
4226 return CastInst::create(Op0C->getOpcode(), NewOp, I.getType());
4227 }
Chris Lattner3af10532006-05-05 06:39:07 +00004228 }
Chris Lattnerf05d69a2006-11-14 07:46:50 +00004229
4230 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
Reid Spencer2341c222007-02-02 02:16:23 +00004231 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
4232 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
4233 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
Chris Lattnerf05d69a2006-11-14 07:46:50 +00004234 SI0->getOperand(1) == SI1->getOperand(1) &&
4235 (SI0->hasOneUse() || SI1->hasOneUse())) {
4236 Instruction *NewOp =
4237 InsertNewInstBefore(BinaryOperator::createAnd(SI0->getOperand(0),
4238 SI1->getOperand(0),
4239 SI0->getName()), I);
Reid Spencer2341c222007-02-02 02:16:23 +00004240 return BinaryOperator::create(SI1->getOpcode(), NewOp,
4241 SI1->getOperand(1));
Chris Lattnerf05d69a2006-11-14 07:46:50 +00004242 }
Chris Lattner3af10532006-05-05 06:39:07 +00004243 }
4244
Chris Lattner113f4f42002-06-25 16:13:24 +00004245 return Changed ? &I : 0;
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00004246}
4247
Chris Lattnerc482a9e2006-06-15 19:07:26 +00004248/// CollectBSwapParts - Look to see if the specified value defines a single byte
4249/// in the result. If it does, and if the specified byte hasn't been filled in
4250/// yet, fill it in and return false.
Chris Lattner99c6cf62007-02-15 22:52:10 +00004251static bool CollectBSwapParts(Value *V, SmallVector<Value*, 8> &ByteValues) {
Chris Lattnerc482a9e2006-06-15 19:07:26 +00004252 Instruction *I = dyn_cast<Instruction>(V);
4253 if (I == 0) return true;
4254
4255 // If this is an or instruction, it is an inner node of the bswap.
4256 if (I->getOpcode() == Instruction::Or)
4257 return CollectBSwapParts(I->getOperand(0), ByteValues) ||
4258 CollectBSwapParts(I->getOperand(1), ByteValues);
4259
4260 // If this is a shift by a constant int, and it is "24", then its operand
4261 // defines a byte. We only handle unsigned types here.
Reid Spencer2341c222007-02-02 02:16:23 +00004262 if (I->isShift() && isa<ConstantInt>(I->getOperand(1))) {
Chris Lattnerc482a9e2006-06-15 19:07:26 +00004263 // Not shifting the entire input by N-1 bytes?
Reid Spencere0fc4df2006-10-20 07:07:24 +00004264 if (cast<ConstantInt>(I->getOperand(1))->getZExtValue() !=
Chris Lattnerc482a9e2006-06-15 19:07:26 +00004265 8*(ByteValues.size()-1))
4266 return true;
4267
4268 unsigned DestNo;
4269 if (I->getOpcode() == Instruction::Shl) {
4270 // X << 24 defines the top byte with the lowest of the input bytes.
4271 DestNo = ByteValues.size()-1;
4272 } else {
4273 // X >>u 24 defines the low byte with the highest of the input bytes.
4274 DestNo = 0;
4275 }
4276
4277 // If the destination byte value is already defined, the values are or'd
4278 // together, which isn't a bswap (unless it's an or of the same bits).
4279 if (ByteValues[DestNo] && ByteValues[DestNo] != I->getOperand(0))
4280 return true;
4281 ByteValues[DestNo] = I->getOperand(0);
4282 return false;
4283 }
4284
4285 // Otherwise, we can only handle and(shift X, imm), imm). Bail out of if we
4286 // don't have this.
4287 Value *Shift = 0, *ShiftLHS = 0;
4288 ConstantInt *AndAmt = 0, *ShiftAmt = 0;
4289 if (!match(I, m_And(m_Value(Shift), m_ConstantInt(AndAmt))) ||
4290 !match(Shift, m_Shift(m_Value(ShiftLHS), m_ConstantInt(ShiftAmt))))
4291 return true;
4292 Instruction *SI = cast<Instruction>(Shift);
4293
4294 // Make sure that the shift amount is by a multiple of 8 and isn't too big.
Reid Spencere0fc4df2006-10-20 07:07:24 +00004295 if (ShiftAmt->getZExtValue() & 7 ||
4296 ShiftAmt->getZExtValue() > 8*ByteValues.size())
Chris Lattnerc482a9e2006-06-15 19:07:26 +00004297 return true;
4298
4299 // Turn 0xFF -> 0, 0xFF00 -> 1, 0xFF0000 -> 2, etc.
4300 unsigned DestByte;
4301 for (DestByte = 0; DestByte != ByteValues.size(); ++DestByte)
Reid Spencere0fc4df2006-10-20 07:07:24 +00004302 if (AndAmt->getZExtValue() == uint64_t(0xFF) << 8*DestByte)
Chris Lattnerc482a9e2006-06-15 19:07:26 +00004303 break;
4304 // Unknown mask for bswap.
4305 if (DestByte == ByteValues.size()) return true;
4306
Reid Spencere0fc4df2006-10-20 07:07:24 +00004307 unsigned ShiftBytes = ShiftAmt->getZExtValue()/8;
Chris Lattnerc482a9e2006-06-15 19:07:26 +00004308 unsigned SrcByte;
4309 if (SI->getOpcode() == Instruction::Shl)
4310 SrcByte = DestByte - ShiftBytes;
4311 else
4312 SrcByte = DestByte + ShiftBytes;
4313
4314 // If the SrcByte isn't a bswapped value from the DestByte, reject it.
4315 if (SrcByte != ByteValues.size()-DestByte-1)
4316 return true;
4317
4318 // If the destination byte value is already defined, the values are or'd
4319 // together, which isn't a bswap (unless it's an or of the same bits).
4320 if (ByteValues[DestByte] && ByteValues[DestByte] != SI->getOperand(0))
4321 return true;
4322 ByteValues[DestByte] = SI->getOperand(0);
4323 return false;
4324}
4325
4326/// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
4327/// If so, insert the new bswap intrinsic and return it.
4328Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
Reid Spencer2341c222007-02-02 02:16:23 +00004329 // We cannot bswap one byte.
Reid Spencerc635f472006-12-31 05:48:39 +00004330 if (I.getType() == Type::Int8Ty)
Chris Lattnerc482a9e2006-06-15 19:07:26 +00004331 return 0;
4332
4333 /// ByteValues - For each byte of the result, we keep track of which value
4334 /// defines each byte.
Chris Lattner99c6cf62007-02-15 22:52:10 +00004335 SmallVector<Value*, 8> ByteValues;
Reid Spencer7a9c62b2007-01-12 07:05:14 +00004336 ByteValues.resize(TD->getTypeSize(I.getType()));
Chris Lattnerc482a9e2006-06-15 19:07:26 +00004337
4338 // Try to find all the pieces corresponding to the bswap.
4339 if (CollectBSwapParts(I.getOperand(0), ByteValues) ||
4340 CollectBSwapParts(I.getOperand(1), ByteValues))
4341 return 0;
4342
4343 // Check to see if all of the bytes come from the same value.
4344 Value *V = ByteValues[0];
4345 if (V == 0) return 0; // Didn't find a byte? Must be zero.
4346
4347 // Check to make sure that all of the bytes come from the same value.
4348 for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
4349 if (ByteValues[i] != V)
4350 return 0;
4351
4352 // If they do then *success* we can turn this into a bswap. Figure out what
4353 // bswap to make it into.
4354 Module *M = I.getParent()->getParent()->getParent();
Chris Lattner091b6ea2006-07-11 18:31:26 +00004355 const char *FnName = 0;
Reid Spencerc635f472006-12-31 05:48:39 +00004356 if (I.getType() == Type::Int16Ty)
Chris Lattnerc482a9e2006-06-15 19:07:26 +00004357 FnName = "llvm.bswap.i16";
Reid Spencerc635f472006-12-31 05:48:39 +00004358 else if (I.getType() == Type::Int32Ty)
Chris Lattnerc482a9e2006-06-15 19:07:26 +00004359 FnName = "llvm.bswap.i32";
Reid Spencerc635f472006-12-31 05:48:39 +00004360 else if (I.getType() == Type::Int64Ty)
Chris Lattnerc482a9e2006-06-15 19:07:26 +00004361 FnName = "llvm.bswap.i64";
4362 else
4363 assert(0 && "Unknown integer type!");
Chris Lattnerfbc524f2007-01-07 06:58:05 +00004364 Constant *F = M->getOrInsertFunction(FnName, I.getType(), I.getType(), NULL);
Chris Lattnerc482a9e2006-06-15 19:07:26 +00004365 return new CallInst(F, V);
4366}
4367
4368
Chris Lattner113f4f42002-06-25 16:13:24 +00004369Instruction *InstCombiner::visitOr(BinaryOperator &I) {
Chris Lattnerdcf240a2003-03-10 21:43:22 +00004370 bool Changed = SimplifyCommutative(I);
Chris Lattner113f4f42002-06-25 16:13:24 +00004371 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00004372
Chris Lattner81a7a232004-10-16 18:11:37 +00004373 if (isa<UndefValue>(Op1))
4374 return ReplaceInstUsesWith(I, // X | undef -> -1
Zhou Sheng75b871f2007-01-11 12:24:14 +00004375 ConstantInt::getAllOnesValue(I.getType()));
Chris Lattner81a7a232004-10-16 18:11:37 +00004376
Chris Lattner5b2edb12006-02-12 08:02:11 +00004377 // or X, X = X
4378 if (Op0 == Op1)
Chris Lattnere6794492002-08-12 21:17:25 +00004379 return ReplaceInstUsesWith(I, Op0);
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00004380
Chris Lattner5b2edb12006-02-12 08:02:11 +00004381 // See if we can simplify any instructions used by the instruction whose sole
4382 // purpose is to compute bits we don't care about.
4383 uint64_t KnownZero, KnownOne;
Reid Spencerd84d35b2007-02-15 02:26:10 +00004384 if (!isa<VectorType>(I.getType()) &&
Reid Spencera94d3942007-01-19 21:13:56 +00004385 SimplifyDemandedBits(&I, cast<IntegerType>(I.getType())->getBitMask(),
Chris Lattner5b2edb12006-02-12 08:02:11 +00004386 KnownZero, KnownOne))
4387 return &I;
4388
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00004389 // or X, -1 == -1
Zhou Sheng75b871f2007-01-11 12:24:14 +00004390 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner330628a2006-01-06 17:59:59 +00004391 ConstantInt *C1 = 0; Value *X = 0;
Chris Lattnerd4252a72004-07-30 07:50:03 +00004392 // (X & C1) | C2 --> (X | C2) & (C1|C2)
4393 if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Chris Lattner6e0123b2007-02-11 01:23:03 +00004394 Instruction *Or = BinaryOperator::createOr(X, RHS);
Chris Lattnerd4252a72004-07-30 07:50:03 +00004395 InsertNewInstBefore(Or, I);
Chris Lattner6e0123b2007-02-11 01:23:03 +00004396 Or->takeName(Op0);
Chris Lattnerd4252a72004-07-30 07:50:03 +00004397 return BinaryOperator::createAnd(Or, ConstantExpr::getOr(RHS, C1));
4398 }
Chris Lattner8f0d1562003-07-23 18:29:44 +00004399
Chris Lattnerd4252a72004-07-30 07:50:03 +00004400 // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
4401 if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Chris Lattner6e0123b2007-02-11 01:23:03 +00004402 Instruction *Or = BinaryOperator::createOr(X, RHS);
Chris Lattnerd4252a72004-07-30 07:50:03 +00004403 InsertNewInstBefore(Or, I);
Chris Lattner6e0123b2007-02-11 01:23:03 +00004404 Or->takeName(Op0);
Chris Lattnerd4252a72004-07-30 07:50:03 +00004405 return BinaryOperator::createXor(Or,
4406 ConstantExpr::getAnd(C1, ConstantExpr::getNot(RHS)));
Chris Lattner8f0d1562003-07-23 18:29:44 +00004407 }
Chris Lattner183b3362004-04-09 19:05:30 +00004408
4409 // Try to fold constant and into select arguments.
4410 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
Chris Lattner86102b82005-01-01 16:22:27 +00004411 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner183b3362004-04-09 19:05:30 +00004412 return R;
Chris Lattner6a4adcd2004-09-29 05:07:12 +00004413 if (isa<PHINode>(Op0))
4414 if (Instruction *NV = FoldOpIntoPhi(I))
4415 return NV;
Chris Lattner8f0d1562003-07-23 18:29:44 +00004416 }
4417
Chris Lattner330628a2006-01-06 17:59:59 +00004418 Value *A = 0, *B = 0;
4419 ConstantInt *C1 = 0, *C2 = 0;
Chris Lattner4294cec2005-05-07 23:49:08 +00004420
4421 if (match(Op0, m_And(m_Value(A), m_Value(B))))
4422 if (A == Op1 || B == Op1) // (A & ?) | A --> A
4423 return ReplaceInstUsesWith(I, Op1);
4424 if (match(Op1, m_And(m_Value(A), m_Value(B))))
4425 if (A == Op0 || B == Op0) // A | (A & ?) --> A
4426 return ReplaceInstUsesWith(I, Op0);
4427
Chris Lattnerb7845d62006-07-10 20:25:24 +00004428 // (A | B) | C and A | (B | C) -> bswap if possible.
4429 // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible.
Chris Lattnerc482a9e2006-06-15 19:07:26 +00004430 if (match(Op0, m_Or(m_Value(), m_Value())) ||
Chris Lattnerb7845d62006-07-10 20:25:24 +00004431 match(Op1, m_Or(m_Value(), m_Value())) ||
4432 (match(Op0, m_Shift(m_Value(), m_Value())) &&
4433 match(Op1, m_Shift(m_Value(), m_Value())))) {
Chris Lattnerc482a9e2006-06-15 19:07:26 +00004434 if (Instruction *BSwap = MatchBSwap(I))
4435 return BSwap;
4436 }
4437
Chris Lattnerb62f5082005-05-09 04:58:36 +00004438 // (X^C)|Y -> (X|Y)^C iff Y&C == 0
4439 if (Op0->hasOneUse() && match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
Chris Lattnerc3ebf402006-02-07 07:27:52 +00004440 MaskedValueIsZero(Op1, C1->getZExtValue())) {
Chris Lattner6e0123b2007-02-11 01:23:03 +00004441 Instruction *NOr = BinaryOperator::createOr(A, Op1);
4442 InsertNewInstBefore(NOr, I);
4443 NOr->takeName(Op0);
4444 return BinaryOperator::createXor(NOr, C1);
Chris Lattnerb62f5082005-05-09 04:58:36 +00004445 }
4446
4447 // Y|(X^C) -> (X|Y)^C iff Y&C == 0
4448 if (Op1->hasOneUse() && match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
Chris Lattnerc3ebf402006-02-07 07:27:52 +00004449 MaskedValueIsZero(Op0, C1->getZExtValue())) {
Chris Lattner6e0123b2007-02-11 01:23:03 +00004450 Instruction *NOr = BinaryOperator::createOr(A, Op0);
4451 InsertNewInstBefore(NOr, I);
4452 NOr->takeName(Op0);
4453 return BinaryOperator::createXor(NOr, C1);
Chris Lattnerb62f5082005-05-09 04:58:36 +00004454 }
4455
Chris Lattner15212982005-09-18 03:42:07 +00004456 // (A & C1)|(B & C2)
Chris Lattnerd4252a72004-07-30 07:50:03 +00004457 if (match(Op0, m_And(m_Value(A), m_ConstantInt(C1))) &&
Chris Lattner15212982005-09-18 03:42:07 +00004458 match(Op1, m_And(m_Value(B), m_ConstantInt(C2)))) {
4459
4460 if (A == B) // (A & C1)|(A & C2) == A & (C1|C2)
4461 return BinaryOperator::createAnd(A, ConstantExpr::getOr(C1, C2));
4462
4463
Chris Lattner01f56c62005-09-18 06:02:59 +00004464 // If we have: ((V + N) & C1) | (V & C2)
4465 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
4466 // replace with V+N.
4467 if (C1 == ConstantExpr::getNot(C2)) {
Chris Lattner330628a2006-01-06 17:59:59 +00004468 Value *V1 = 0, *V2 = 0;
Reid Spencere0fc4df2006-10-20 07:07:24 +00004469 if ((C2->getZExtValue() & (C2->getZExtValue()+1)) == 0 && // C2 == 0+1+
Chris Lattner01f56c62005-09-18 06:02:59 +00004470 match(A, m_Add(m_Value(V1), m_Value(V2)))) {
4471 // Add commutes, try both ways.
Chris Lattnerc3ebf402006-02-07 07:27:52 +00004472 if (V1 == B && MaskedValueIsZero(V2, C2->getZExtValue()))
Chris Lattner01f56c62005-09-18 06:02:59 +00004473 return ReplaceInstUsesWith(I, A);
Chris Lattnerc3ebf402006-02-07 07:27:52 +00004474 if (V2 == B && MaskedValueIsZero(V1, C2->getZExtValue()))
Chris Lattner01f56c62005-09-18 06:02:59 +00004475 return ReplaceInstUsesWith(I, A);
4476 }
4477 // Or commutes, try both ways.
Reid Spencere0fc4df2006-10-20 07:07:24 +00004478 if ((C1->getZExtValue() & (C1->getZExtValue()+1)) == 0 &&
Chris Lattner01f56c62005-09-18 06:02:59 +00004479 match(B, m_Add(m_Value(V1), m_Value(V2)))) {
4480 // Add commutes, try both ways.
Chris Lattnerc3ebf402006-02-07 07:27:52 +00004481 if (V1 == A && MaskedValueIsZero(V2, C1->getZExtValue()))
Chris Lattner01f56c62005-09-18 06:02:59 +00004482 return ReplaceInstUsesWith(I, B);
Chris Lattnerc3ebf402006-02-07 07:27:52 +00004483 if (V2 == A && MaskedValueIsZero(V1, C1->getZExtValue()))
Chris Lattner01f56c62005-09-18 06:02:59 +00004484 return ReplaceInstUsesWith(I, B);
Chris Lattner15212982005-09-18 03:42:07 +00004485 }
4486 }
4487 }
Chris Lattnerf05d69a2006-11-14 07:46:50 +00004488
4489 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
Reid Spencer2341c222007-02-02 02:16:23 +00004490 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
4491 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
4492 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
Chris Lattnerf05d69a2006-11-14 07:46:50 +00004493 SI0->getOperand(1) == SI1->getOperand(1) &&
4494 (SI0->hasOneUse() || SI1->hasOneUse())) {
4495 Instruction *NewOp =
4496 InsertNewInstBefore(BinaryOperator::createOr(SI0->getOperand(0),
4497 SI1->getOperand(0),
4498 SI0->getName()), I);
Reid Spencer2341c222007-02-02 02:16:23 +00004499 return BinaryOperator::create(SI1->getOpcode(), NewOp,
4500 SI1->getOperand(1));
Chris Lattnerf05d69a2006-11-14 07:46:50 +00004501 }
4502 }
Chris Lattner812aab72003-08-12 19:11:07 +00004503
Chris Lattnerd4252a72004-07-30 07:50:03 +00004504 if (match(Op0, m_Not(m_Value(A)))) { // ~A | Op1
4505 if (A == Op1) // ~A | A == -1
Misha Brukmanb1c93172005-04-21 23:48:37 +00004506 return ReplaceInstUsesWith(I,
Zhou Sheng75b871f2007-01-11 12:24:14 +00004507 ConstantInt::getAllOnesValue(I.getType()));
Chris Lattnerd4252a72004-07-30 07:50:03 +00004508 } else {
4509 A = 0;
4510 }
Chris Lattner4294cec2005-05-07 23:49:08 +00004511 // Note, A is still live here!
Chris Lattnerd4252a72004-07-30 07:50:03 +00004512 if (match(Op1, m_Not(m_Value(B)))) { // Op0 | ~B
4513 if (Op0 == B)
Misha Brukmanb1c93172005-04-21 23:48:37 +00004514 return ReplaceInstUsesWith(I,
Zhou Sheng75b871f2007-01-11 12:24:14 +00004515 ConstantInt::getAllOnesValue(I.getType()));
Chris Lattner3e327a42003-03-10 23:13:59 +00004516
Misha Brukman9c003d82004-07-30 12:50:08 +00004517 // (~A | ~B) == (~(A & B)) - De Morgan's Law
Chris Lattnerd4252a72004-07-30 07:50:03 +00004518 if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) {
4519 Value *And = InsertNewInstBefore(BinaryOperator::createAnd(A, B,
4520 I.getName()+".demorgan"), I);
4521 return BinaryOperator::createNot(And);
4522 }
Chris Lattner3e327a42003-03-10 23:13:59 +00004523 }
Chris Lattner3082c5a2003-02-18 19:28:33 +00004524
Reid Spencer266e42b2006-12-23 06:05:41 +00004525 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
4526 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) {
4527 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
Chris Lattner3ac7c262003-08-13 20:16:26 +00004528 return R;
4529
Chris Lattnerdcf756e2004-09-28 22:33:08 +00004530 Value *LHSVal, *RHSVal;
4531 ConstantInt *LHSCst, *RHSCst;
Reid Spencer266e42b2006-12-23 06:05:41 +00004532 ICmpInst::Predicate LHSCC, RHSCC;
4533 if (match(Op0, m_ICmp(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
4534 if (match(RHS, m_ICmp(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
4535 if (LHSVal == RHSVal && // Found (X icmp C1) | (X icmp C2)
4536 // icmp [us][gl]e x, cst is folded to icmp [us][gl]t elsewhere.
4537 LHSCC != ICmpInst::ICMP_UGE && LHSCC != ICmpInst::ICMP_ULE &&
4538 RHSCC != ICmpInst::ICMP_UGE && RHSCC != ICmpInst::ICMP_ULE &&
4539 LHSCC != ICmpInst::ICMP_SGE && LHSCC != ICmpInst::ICMP_SLE &&
4540 RHSCC != ICmpInst::ICMP_SGE && RHSCC != ICmpInst::ICMP_SLE) {
Chris Lattnerdcf756e2004-09-28 22:33:08 +00004541 // Ensure that the larger constant is on the RHS.
Reid Spencer266e42b2006-12-23 06:05:41 +00004542 ICmpInst::Predicate GT = ICmpInst::isSignedPredicate(LHSCC) ?
4543 ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
4544 Constant *Cmp = ConstantExpr::getICmp(GT, LHSCst, RHSCst);
4545 ICmpInst *LHS = cast<ICmpInst>(Op0);
Reid Spencercddc9df2007-01-12 04:24:46 +00004546 if (cast<ConstantInt>(Cmp)->getZExtValue()) {
Chris Lattnerdcf756e2004-09-28 22:33:08 +00004547 std::swap(LHS, RHS);
4548 std::swap(LHSCst, RHSCst);
4549 std::swap(LHSCC, RHSCC);
4550 }
4551
Reid Spencer266e42b2006-12-23 06:05:41 +00004552 // At this point, we know we have have two icmp instructions
Chris Lattnerdcf756e2004-09-28 22:33:08 +00004553 // comparing a value against two constants and or'ing the result
4554 // together. Because of the above check, we know that we only have
Reid Spencer266e42b2006-12-23 06:05:41 +00004555 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
4556 // FoldICmpLogical check above), that the two constants are not
Chris Lattnerdcf756e2004-09-28 22:33:08 +00004557 // equal.
4558 assert(LHSCst != RHSCst && "Compares not folded above?");
4559
4560 switch (LHSCC) {
4561 default: assert(0 && "Unknown integer condition code!");
Reid Spencer266e42b2006-12-23 06:05:41 +00004562 case ICmpInst::ICMP_EQ:
Chris Lattnerdcf756e2004-09-28 22:33:08 +00004563 switch (RHSCC) {
4564 default: assert(0 && "Unknown integer condition code!");
Reid Spencer266e42b2006-12-23 06:05:41 +00004565 case ICmpInst::ICMP_EQ:
Chris Lattnerdcf756e2004-09-28 22:33:08 +00004566 if (LHSCst == SubOne(RHSCst)) {// (X == 13 | X == 14) -> X-13 <u 2
4567 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
4568 Instruction *Add = BinaryOperator::createAdd(LHSVal, AddCST,
4569 LHSVal->getName()+".off");
4570 InsertNewInstBefore(Add, I);
Chris Lattnerdcf756e2004-09-28 22:33:08 +00004571 AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
Reid Spencer266e42b2006-12-23 06:05:41 +00004572 return new ICmpInst(ICmpInst::ICMP_ULT, Add, AddCST);
Chris Lattnerdcf756e2004-09-28 22:33:08 +00004573 }
Reid Spencer266e42b2006-12-23 06:05:41 +00004574 break; // (X == 13 | X == 15) -> no change
4575 case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
4576 case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change
Chris Lattner5c219462005-04-19 06:04:18 +00004577 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00004578 case ICmpInst::ICMP_NE: // (X == 13 | X != 15) -> X != 15
4579 case ICmpInst::ICMP_ULT: // (X == 13 | X u< 15) -> X u< 15
4580 case ICmpInst::ICMP_SLT: // (X == 13 | X s< 15) -> X s< 15
Chris Lattnerdcf756e2004-09-28 22:33:08 +00004581 return ReplaceInstUsesWith(I, RHS);
4582 }
4583 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00004584 case ICmpInst::ICMP_NE:
Chris Lattnerdcf756e2004-09-28 22:33:08 +00004585 switch (RHSCC) {
4586 default: assert(0 && "Unknown integer condition code!");
Reid Spencer266e42b2006-12-23 06:05:41 +00004587 case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13
4588 case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13
4589 case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13
Chris Lattnerdcf756e2004-09-28 22:33:08 +00004590 return ReplaceInstUsesWith(I, LHS);
Reid Spencer266e42b2006-12-23 06:05:41 +00004591 case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true
4592 case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true
4593 case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true
Zhou Sheng75b871f2007-01-11 12:24:14 +00004594 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnerdcf756e2004-09-28 22:33:08 +00004595 }
4596 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00004597 case ICmpInst::ICMP_ULT:
Chris Lattnerdcf756e2004-09-28 22:33:08 +00004598 switch (RHSCC) {
4599 default: assert(0 && "Unknown integer condition code!");
Reid Spencer266e42b2006-12-23 06:05:41 +00004600 case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
Chris Lattnerdcf756e2004-09-28 22:33:08 +00004601 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00004602 case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) ->(X-13) u> 2
4603 return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), false,
4604 false, I);
4605 case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change
4606 break;
4607 case ICmpInst::ICMP_NE: // (X u< 13 | X != 15) -> X != 15
4608 case ICmpInst::ICMP_ULT: // (X u< 13 | X u< 15) -> X u< 15
Chris Lattnerdcf756e2004-09-28 22:33:08 +00004609 return ReplaceInstUsesWith(I, RHS);
Reid Spencer266e42b2006-12-23 06:05:41 +00004610 case ICmpInst::ICMP_SLT: // (X u< 13 | X s< 15) -> no change
4611 break;
Chris Lattnerdcf756e2004-09-28 22:33:08 +00004612 }
4613 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00004614 case ICmpInst::ICMP_SLT:
Chris Lattnerdcf756e2004-09-28 22:33:08 +00004615 switch (RHSCC) {
4616 default: assert(0 && "Unknown integer condition code!");
Reid Spencer266e42b2006-12-23 06:05:41 +00004617 case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change
4618 break;
4619 case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) ->(X-13) s> 2
4620 return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), true,
4621 false, I);
4622 case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change
4623 break;
4624 case ICmpInst::ICMP_NE: // (X s< 13 | X != 15) -> X != 15
4625 case ICmpInst::ICMP_SLT: // (X s< 13 | X s< 15) -> X s< 15
4626 return ReplaceInstUsesWith(I, RHS);
4627 case ICmpInst::ICMP_ULT: // (X s< 13 | X u< 15) -> no change
4628 break;
Chris Lattnerdcf756e2004-09-28 22:33:08 +00004629 }
Reid Spencer266e42b2006-12-23 06:05:41 +00004630 break;
4631 case ICmpInst::ICMP_UGT:
4632 switch (RHSCC) {
4633 default: assert(0 && "Unknown integer condition code!");
4634 case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13
4635 case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13
4636 return ReplaceInstUsesWith(I, LHS);
4637 case ICmpInst::ICMP_SGT: // (X u> 13 | X s> 15) -> no change
4638 break;
4639 case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true
4640 case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true
Zhou Sheng75b871f2007-01-11 12:24:14 +00004641 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Reid Spencer266e42b2006-12-23 06:05:41 +00004642 case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change
4643 break;
4644 }
4645 break;
4646 case ICmpInst::ICMP_SGT:
4647 switch (RHSCC) {
4648 default: assert(0 && "Unknown integer condition code!");
4649 case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13
4650 case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13
4651 return ReplaceInstUsesWith(I, LHS);
4652 case ICmpInst::ICMP_UGT: // (X s> 13 | X u> 15) -> no change
4653 break;
4654 case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true
4655 case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true
Zhou Sheng75b871f2007-01-11 12:24:14 +00004656 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Reid Spencer266e42b2006-12-23 06:05:41 +00004657 case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change
4658 break;
4659 }
4660 break;
Chris Lattnerdcf756e2004-09-28 22:33:08 +00004661 }
4662 }
4663 }
Chris Lattner3af10532006-05-05 06:39:07 +00004664
4665 // fold (or (cast A), (cast B)) -> (cast (or A, B))
Reid Spencer799b5bf2006-12-13 08:27:15 +00004666 if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
Chris Lattner3af10532006-05-05 06:39:07 +00004667 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
Reid Spencer799b5bf2006-12-13 08:27:15 +00004668 if (Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
4669 const Type *SrcTy = Op0C->getOperand(0)->getType();
Chris Lattner03c49532007-01-15 02:27:26 +00004670 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
Reid Spencer799b5bf2006-12-13 08:27:15 +00004671 // Only do this if the casts both really cause code to be generated.
Reid Spencer266e42b2006-12-23 06:05:41 +00004672 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4673 I.getType(), TD) &&
4674 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4675 I.getType(), TD)) {
Reid Spencer799b5bf2006-12-13 08:27:15 +00004676 Instruction *NewOp = BinaryOperator::createOr(Op0C->getOperand(0),
4677 Op1C->getOperand(0),
4678 I.getName());
4679 InsertNewInstBefore(NewOp, I);
4680 return CastInst::create(Op0C->getOpcode(), NewOp, I.getType());
4681 }
Chris Lattner3af10532006-05-05 06:39:07 +00004682 }
Chris Lattner3af10532006-05-05 06:39:07 +00004683
Chris Lattner15212982005-09-18 03:42:07 +00004684
Chris Lattner113f4f42002-06-25 16:13:24 +00004685 return Changed ? &I : 0;
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00004686}
4687
Chris Lattnerc2076352004-02-16 01:20:27 +00004688// XorSelf - Implements: X ^ X --> 0
4689struct XorSelf {
4690 Value *RHS;
4691 XorSelf(Value *rhs) : RHS(rhs) {}
4692 bool shouldApply(Value *LHS) const { return LHS == RHS; }
4693 Instruction *apply(BinaryOperator &Xor) const {
4694 return &Xor;
4695 }
4696};
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00004697
4698
Chris Lattner113f4f42002-06-25 16:13:24 +00004699Instruction *InstCombiner::visitXor(BinaryOperator &I) {
Chris Lattnerdcf240a2003-03-10 21:43:22 +00004700 bool Changed = SimplifyCommutative(I);
Chris Lattner113f4f42002-06-25 16:13:24 +00004701 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00004702
Chris Lattner81a7a232004-10-16 18:11:37 +00004703 if (isa<UndefValue>(Op1))
4704 return ReplaceInstUsesWith(I, Op1); // X ^ undef -> undef
4705
Chris Lattnerc2076352004-02-16 01:20:27 +00004706 // xor X, X = 0, even if X is nested in a sequence of Xor's.
4707 if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) {
4708 assert(Result == &I && "AssociativeOpt didn't work?");
Chris Lattnere6794492002-08-12 21:17:25 +00004709 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattnerc2076352004-02-16 01:20:27 +00004710 }
Chris Lattner5b2edb12006-02-12 08:02:11 +00004711
4712 // See if we can simplify any instructions used by the instruction whose sole
4713 // purpose is to compute bits we don't care about.
4714 uint64_t KnownZero, KnownOne;
Reid Spencerd84d35b2007-02-15 02:26:10 +00004715 if (!isa<VectorType>(I.getType()) &&
Reid Spencera94d3942007-01-19 21:13:56 +00004716 SimplifyDemandedBits(&I, cast<IntegerType>(I.getType())->getBitMask(),
Chris Lattner5b2edb12006-02-12 08:02:11 +00004717 KnownZero, KnownOne))
4718 return &I;
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00004719
Zhou Sheng75b871f2007-01-11 12:24:14 +00004720 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Reid Spencer266e42b2006-12-23 06:05:41 +00004721 // xor (icmp A, B), true = not (icmp A, B) = !icmp A, B
4722 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Op0))
Zhou Sheng75b871f2007-01-11 12:24:14 +00004723 if (RHS == ConstantInt::getTrue() && ICI->hasOneUse())
Reid Spencer266e42b2006-12-23 06:05:41 +00004724 return new ICmpInst(ICI->getInversePredicate(),
4725 ICI->getOperand(0), ICI->getOperand(1));
Chris Lattnere5806662003-11-04 23:50:51 +00004726
Reid Spencer266e42b2006-12-23 06:05:41 +00004727 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
Chris Lattner8f2f5982003-11-05 01:06:05 +00004728 // ~(c-X) == X-c-1 == X+(-c-1)
Chris Lattnerc1e7cc02004-01-12 19:35:11 +00004729 if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
4730 if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00004731 Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
4732 Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
Chris Lattnerc1e7cc02004-01-12 19:35:11 +00004733 ConstantInt::get(I.getType(), 1));
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00004734 return BinaryOperator::createAdd(Op0I->getOperand(1), ConstantRHS);
Chris Lattnerc1e7cc02004-01-12 19:35:11 +00004735 }
Chris Lattner023a4832004-06-18 06:07:51 +00004736
4737 // ~(~X & Y) --> (X | ~Y)
4738 if (Op0I->getOpcode() == Instruction::And && RHS->isAllOnesValue()) {
4739 if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands();
4740 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
4741 Instruction *NotY =
Misha Brukmanb1c93172005-04-21 23:48:37 +00004742 BinaryOperator::createNot(Op0I->getOperand(1),
Chris Lattner023a4832004-06-18 06:07:51 +00004743 Op0I->getOperand(1)->getName()+".not");
4744 InsertNewInstBefore(NotY, I);
4745 return BinaryOperator::createOr(Op0NotVal, NotY);
4746 }
4747 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00004748
Chris Lattner97638592003-07-23 21:37:07 +00004749 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
Chris Lattner5b2edb12006-02-12 08:02:11 +00004750 if (Op0I->getOpcode() == Instruction::Add) {
Chris Lattner0f68fa62003-11-04 23:37:10 +00004751 // ~(X-c) --> (-c-1)-X
Chris Lattnerc1e7cc02004-01-12 19:35:11 +00004752 if (RHS->isAllOnesValue()) {
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00004753 Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
4754 return BinaryOperator::createSub(
4755 ConstantExpr::getSub(NegOp0CI,
Chris Lattnerc1e7cc02004-01-12 19:35:11 +00004756 ConstantInt::get(I.getType(), 1)),
Chris Lattner0f68fa62003-11-04 23:37:10 +00004757 Op0I->getOperand(0));
Chris Lattnerc1e7cc02004-01-12 19:35:11 +00004758 }
Chris Lattnerf78df7c2006-02-26 19:57:54 +00004759 } else if (Op0I->getOpcode() == Instruction::Or) {
4760 // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
4761 if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getZExtValue())) {
4762 Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
4763 // Anything in both C1 and C2 is known to be zero, remove it from
4764 // NewRHS.
4765 Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS);
4766 NewRHS = ConstantExpr::getAnd(NewRHS,
4767 ConstantExpr::getNot(CommonBits));
Chris Lattnerb15e2b12007-03-02 21:28:56 +00004768 AddToWorkList(Op0I);
Chris Lattnerf78df7c2006-02-26 19:57:54 +00004769 I.setOperand(0, Op0I->getOperand(0));
4770 I.setOperand(1, NewRHS);
4771 return &I;
4772 }
Chris Lattner97638592003-07-23 21:37:07 +00004773 }
Chris Lattnerb8d6e402002-08-20 18:24:26 +00004774 }
Chris Lattner183b3362004-04-09 19:05:30 +00004775
4776 // Try to fold constant and into select arguments.
4777 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
Chris Lattner86102b82005-01-01 16:22:27 +00004778 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner183b3362004-04-09 19:05:30 +00004779 return R;
Chris Lattner6a4adcd2004-09-29 05:07:12 +00004780 if (isa<PHINode>(Op0))
4781 if (Instruction *NV = FoldOpIntoPhi(I))
4782 return NV;
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00004783 }
4784
Chris Lattnerbb74e222003-03-10 23:06:50 +00004785 if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1
Chris Lattner3082c5a2003-02-18 19:28:33 +00004786 if (X == Op1)
4787 return ReplaceInstUsesWith(I,
Zhou Sheng75b871f2007-01-11 12:24:14 +00004788 ConstantInt::getAllOnesValue(I.getType()));
Chris Lattner3082c5a2003-02-18 19:28:33 +00004789
Chris Lattnerbb74e222003-03-10 23:06:50 +00004790 if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1
Chris Lattner3082c5a2003-02-18 19:28:33 +00004791 if (X == Op0)
Chris Lattner07418422007-03-18 22:51:34 +00004792 return ReplaceInstUsesWith(I, ConstantInt::getAllOnesValue(I.getType()));
Chris Lattner3082c5a2003-02-18 19:28:33 +00004793
Chris Lattner07418422007-03-18 22:51:34 +00004794
4795 BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
4796 if (Op1I) {
4797 Value *A, *B;
4798 if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
4799 if (A == Op0) { // B^(B|A) == (A|B)^B
Chris Lattnerdcd07922006-04-01 08:03:55 +00004800 Op1I->swapOperands();
Chris Lattner1bbb7b62003-03-10 18:24:17 +00004801 I.swapOperands();
4802 std::swap(Op0, Op1);
Chris Lattner07418422007-03-18 22:51:34 +00004803 } else if (B == Op0) { // B^(A|B) == (A|B)^B
Chris Lattnerdcd07922006-04-01 08:03:55 +00004804 I.swapOperands(); // Simplified below.
Chris Lattner1bbb7b62003-03-10 18:24:17 +00004805 std::swap(Op0, Op1);
Misha Brukmanb1c93172005-04-21 23:48:37 +00004806 }
Chris Lattner07418422007-03-18 22:51:34 +00004807 } else if (match(Op1I, m_Xor(m_Value(A), m_Value(B)))) {
4808 if (Op0 == A) // A^(A^B) == B
4809 return ReplaceInstUsesWith(I, B);
4810 else if (Op0 == B) // A^(B^A) == B
4811 return ReplaceInstUsesWith(I, A);
4812 } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) && Op1I->hasOneUse()){
4813 if (A == Op0) // A^(A&B) -> A^(B&A)
Chris Lattnerdcd07922006-04-01 08:03:55 +00004814 Op1I->swapOperands();
Chris Lattner07418422007-03-18 22:51:34 +00004815 if (B == Op0) { // A^(B&A) -> (B&A)^A
Chris Lattnerdcd07922006-04-01 08:03:55 +00004816 I.swapOperands(); // Simplified below.
4817 std::swap(Op0, Op1);
4818 }
Chris Lattnerb36d9082004-02-16 03:54:20 +00004819 }
Chris Lattner07418422007-03-18 22:51:34 +00004820 }
4821
4822 BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
4823 if (Op0I) {
4824 Value *A, *B;
4825 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && Op0I->hasOneUse()) {
4826 if (A == Op1) // (B|A)^B == (A|B)^B
4827 std::swap(A, B);
4828 if (B == Op1) { // (A|B)^B == A & ~B
4829 Instruction *NotB =
4830 InsertNewInstBefore(BinaryOperator::createNot(Op1, "tmp"), I);
4831 return BinaryOperator::createAnd(A, NotB);
Chris Lattner1bbb7b62003-03-10 18:24:17 +00004832 }
Chris Lattner07418422007-03-18 22:51:34 +00004833 } else if (match(Op0I, m_Xor(m_Value(A), m_Value(B)))) {
4834 if (Op1 == A) // (A^B)^A == B
4835 return ReplaceInstUsesWith(I, B);
4836 else if (Op1 == B) // (B^A)^A == B
4837 return ReplaceInstUsesWith(I, A);
4838 } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) && Op0I->hasOneUse()){
4839 if (A == Op1) // (A&B)^A -> (B&A)^A
4840 std::swap(A, B);
4841 if (B == Op1 && // (B&A)^A == ~B & A
Chris Lattner6cf49142006-04-01 22:05:01 +00004842 !isa<ConstantInt>(Op1)) { // Canonical form is (B&C)^C
Chris Lattner07418422007-03-18 22:51:34 +00004843 Instruction *N =
4844 InsertNewInstBefore(BinaryOperator::createNot(A, "tmp"), I);
Chris Lattnerdcd07922006-04-01 08:03:55 +00004845 return BinaryOperator::createAnd(N, Op1);
4846 }
Chris Lattner1bbb7b62003-03-10 18:24:17 +00004847 }
Chris Lattner07418422007-03-18 22:51:34 +00004848 }
4849
4850 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
4851 if (Op0I && Op1I && Op0I->isShift() &&
4852 Op0I->getOpcode() == Op1I->getOpcode() &&
4853 Op0I->getOperand(1) == Op1I->getOperand(1) &&
4854 (Op1I->hasOneUse() || Op1I->hasOneUse())) {
4855 Instruction *NewOp =
4856 InsertNewInstBefore(BinaryOperator::createXor(Op0I->getOperand(0),
4857 Op1I->getOperand(0),
4858 Op0I->getName()), I);
4859 return BinaryOperator::create(Op1I->getOpcode(), NewOp,
4860 Op1I->getOperand(1));
4861 }
4862
4863 if (Op0I && Op1I) {
4864 Value *A, *B, *C, *D;
4865 // (A & B)^(A | B) -> A ^ B
4866 if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
4867 match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
4868 if ((A == C && B == D) || (A == D && B == C))
4869 return BinaryOperator::createXor(A, B);
4870 }
4871 // (A | B)^(A & B) -> A ^ B
4872 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
4873 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
4874 if ((A == C && B == D) || (A == D && B == C))
4875 return BinaryOperator::createXor(A, B);
4876 }
4877
4878 // (A & B)^(C & D)
4879 if ((Op0I->hasOneUse() || Op1I->hasOneUse()) &&
4880 match(Op0I, m_And(m_Value(A), m_Value(B))) &&
4881 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
4882 // (X & Y)^(X & Y) -> (Y^Z) & X
4883 Value *X = 0, *Y = 0, *Z = 0;
4884 if (A == C)
4885 X = A, Y = B, Z = D;
4886 else if (A == D)
4887 X = A, Y = B, Z = C;
4888 else if (B == C)
4889 X = B, Y = A, Z = D;
4890 else if (B == D)
4891 X = B, Y = A, Z = C;
4892
4893 if (X) {
4894 Instruction *NewOp =
4895 InsertNewInstBefore(BinaryOperator::createXor(Y, Z, Op0->getName()), I);
4896 return BinaryOperator::createAnd(NewOp, X);
4897 }
4898 }
4899 }
4900
Reid Spencer266e42b2006-12-23 06:05:41 +00004901 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
4902 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
4903 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
Chris Lattner3ac7c262003-08-13 20:16:26 +00004904 return R;
4905
Chris Lattner3af10532006-05-05 06:39:07 +00004906 // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
Reid Spencer799b5bf2006-12-13 08:27:15 +00004907 if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
Chris Lattner3af10532006-05-05 06:39:07 +00004908 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
Reid Spencer799b5bf2006-12-13 08:27:15 +00004909 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
4910 const Type *SrcTy = Op0C->getOperand(0)->getType();
Chris Lattner03c49532007-01-15 02:27:26 +00004911 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
Reid Spencer799b5bf2006-12-13 08:27:15 +00004912 // Only do this if the casts both really cause code to be generated.
Reid Spencer266e42b2006-12-23 06:05:41 +00004913 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4914 I.getType(), TD) &&
4915 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4916 I.getType(), TD)) {
Reid Spencer799b5bf2006-12-13 08:27:15 +00004917 Instruction *NewOp = BinaryOperator::createXor(Op0C->getOperand(0),
4918 Op1C->getOperand(0),
4919 I.getName());
4920 InsertNewInstBefore(NewOp, I);
4921 return CastInst::create(Op0C->getOpcode(), NewOp, I.getType());
4922 }
Chris Lattner3af10532006-05-05 06:39:07 +00004923 }
Chris Lattnerf05d69a2006-11-14 07:46:50 +00004924
Chris Lattner113f4f42002-06-25 16:13:24 +00004925 return Changed ? &I : 0;
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00004926}
4927
Chris Lattner6862fbd2004-09-29 17:40:11 +00004928/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
4929/// overflowed for this type.
4930static bool AddWithOverflow(ConstantInt *&Result, ConstantInt *In1,
4931 ConstantInt *In2) {
4932 Result = cast<ConstantInt>(ConstantExpr::getAdd(In1, In2));
4933
Reid Spencerc635f472006-12-31 05:48:39 +00004934 return cast<ConstantInt>(Result)->getZExtValue() <
4935 cast<ConstantInt>(In1)->getZExtValue();
Chris Lattner6862fbd2004-09-29 17:40:11 +00004936}
4937
Chris Lattner0798af32005-01-13 20:14:25 +00004938/// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
4939/// code necessary to compute the offset from the base pointer (without adding
4940/// in the base pointer). Return the result as a signed integer of intptr size.
4941static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) {
4942 TargetData &TD = IC.getTargetData();
4943 gep_type_iterator GTI = gep_type_begin(GEP);
Reid Spencer266e42b2006-12-23 06:05:41 +00004944 const Type *IntPtrTy = TD.getIntPtrType();
4945 Value *Result = Constant::getNullValue(IntPtrTy);
Chris Lattner0798af32005-01-13 20:14:25 +00004946
4947 // Build a mask for high order bits.
Chris Lattner77defba2006-02-07 07:00:41 +00004948 uint64_t PtrSizeMask = ~0ULL >> (64-TD.getPointerSize()*8);
Chris Lattner0798af32005-01-13 20:14:25 +00004949
Chris Lattner0798af32005-01-13 20:14:25 +00004950 for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
4951 Value *Op = GEP->getOperand(i);
Chris Lattnerd35d2102005-01-13 23:26:48 +00004952 uint64_t Size = TD.getTypeSize(GTI.getIndexedType()) & PtrSizeMask;
Reid Spencer266e42b2006-12-23 06:05:41 +00004953 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
Chris Lattner0798af32005-01-13 20:14:25 +00004954 if (Constant *OpC = dyn_cast<Constant>(Op)) {
4955 if (!OpC->isNullValue()) {
Reid Spencer266e42b2006-12-23 06:05:41 +00004956 OpC = ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
Chris Lattner0798af32005-01-13 20:14:25 +00004957 Scale = ConstantExpr::getMul(OpC, Scale);
4958 if (Constant *RC = dyn_cast<Constant>(Result))
4959 Result = ConstantExpr::getAdd(RC, Scale);
4960 else {
4961 // Emit an add instruction.
4962 Result = IC.InsertNewInstBefore(
4963 BinaryOperator::createAdd(Result, Scale,
4964 GEP->getName()+".offs"), I);
4965 }
4966 }
4967 } else {
Chris Lattner7aa41cf2005-01-14 17:17:59 +00004968 // Convert to correct type.
Reid Spencer266e42b2006-12-23 06:05:41 +00004969 Op = IC.InsertNewInstBefore(CastInst::createSExtOrBitCast(Op, IntPtrTy,
Chris Lattner7aa41cf2005-01-14 17:17:59 +00004970 Op->getName()+".c"), I);
4971 if (Size != 1)
Chris Lattner4cb9fa32005-01-13 20:40:58 +00004972 // We'll let instcombine(mul) convert this to a shl if possible.
4973 Op = IC.InsertNewInstBefore(BinaryOperator::createMul(Op, Scale,
4974 GEP->getName()+".idx"), I);
Chris Lattner0798af32005-01-13 20:14:25 +00004975
4976 // Emit an add instruction.
Chris Lattner4cb9fa32005-01-13 20:40:58 +00004977 Result = IC.InsertNewInstBefore(BinaryOperator::createAdd(Op, Result,
Chris Lattner0798af32005-01-13 20:14:25 +00004978 GEP->getName()+".offs"), I);
4979 }
4980 }
4981 return Result;
4982}
4983
Reid Spencer266e42b2006-12-23 06:05:41 +00004984/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
Chris Lattner0798af32005-01-13 20:14:25 +00004985/// else. At this point we know that the GEP is on the LHS of the comparison.
Reid Spencer266e42b2006-12-23 06:05:41 +00004986Instruction *InstCombiner::FoldGEPICmp(User *GEPLHS, Value *RHS,
4987 ICmpInst::Predicate Cond,
4988 Instruction &I) {
Chris Lattner0798af32005-01-13 20:14:25 +00004989 assert(dyn_castGetElementPtr(GEPLHS) && "LHS is not a getelementptr!");
Chris Lattner81e84172005-01-13 22:25:21 +00004990
4991 if (CastInst *CI = dyn_cast<CastInst>(RHS))
4992 if (isa<PointerType>(CI->getOperand(0)->getType()))
4993 RHS = CI->getOperand(0);
4994
Chris Lattner0798af32005-01-13 20:14:25 +00004995 Value *PtrBase = GEPLHS->getOperand(0);
4996 if (PtrBase == RHS) {
4997 // As an optimization, we don't actually have to compute the actual value of
Reid Spencer266e42b2006-12-23 06:05:41 +00004998 // OFFSET if this is a icmp_eq or icmp_ne comparison, just return whether
4999 // each index is zero or not.
5000 if (Cond == ICmpInst::ICMP_EQ || Cond == ICmpInst::ICMP_NE) {
Chris Lattner81e84172005-01-13 22:25:21 +00005001 Instruction *InVal = 0;
Chris Lattnercd517ff2005-01-28 19:32:01 +00005002 gep_type_iterator GTI = gep_type_begin(GEPLHS);
5003 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i, ++GTI) {
Chris Lattner81e84172005-01-13 22:25:21 +00005004 bool EmitIt = true;
5005 if (Constant *C = dyn_cast<Constant>(GEPLHS->getOperand(i))) {
5006 if (isa<UndefValue>(C)) // undef index -> undef.
5007 return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
5008 if (C->isNullValue())
5009 EmitIt = false;
Chris Lattnercd517ff2005-01-28 19:32:01 +00005010 else if (TD->getTypeSize(GTI.getIndexedType()) == 0) {
5011 EmitIt = false; // This is indexing into a zero sized array?
Misha Brukmanb1c93172005-04-21 23:48:37 +00005012 } else if (isa<ConstantInt>(C))
Chris Lattner81e84172005-01-13 22:25:21 +00005013 return ReplaceInstUsesWith(I, // No comparison is needed here.
Reid Spencercddc9df2007-01-12 04:24:46 +00005014 ConstantInt::get(Type::Int1Ty,
5015 Cond == ICmpInst::ICMP_NE));
Chris Lattner81e84172005-01-13 22:25:21 +00005016 }
5017
5018 if (EmitIt) {
Misha Brukmanb1c93172005-04-21 23:48:37 +00005019 Instruction *Comp =
Reid Spencer266e42b2006-12-23 06:05:41 +00005020 new ICmpInst(Cond, GEPLHS->getOperand(i),
Chris Lattner81e84172005-01-13 22:25:21 +00005021 Constant::getNullValue(GEPLHS->getOperand(i)->getType()));
5022 if (InVal == 0)
5023 InVal = Comp;
5024 else {
5025 InVal = InsertNewInstBefore(InVal, I);
5026 InsertNewInstBefore(Comp, I);
Reid Spencer266e42b2006-12-23 06:05:41 +00005027 if (Cond == ICmpInst::ICMP_NE) // True if any are unequal
Chris Lattner81e84172005-01-13 22:25:21 +00005028 InVal = BinaryOperator::createOr(InVal, Comp);
5029 else // True if all are equal
5030 InVal = BinaryOperator::createAnd(InVal, Comp);
5031 }
5032 }
5033 }
5034
5035 if (InVal)
5036 return InVal;
5037 else
Reid Spencer266e42b2006-12-23 06:05:41 +00005038 // No comparison is needed here, all indexes = 0
Reid Spencercddc9df2007-01-12 04:24:46 +00005039 ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
5040 Cond == ICmpInst::ICMP_EQ));
Chris Lattner81e84172005-01-13 22:25:21 +00005041 }
Chris Lattner0798af32005-01-13 20:14:25 +00005042
Reid Spencer266e42b2006-12-23 06:05:41 +00005043 // Only lower this if the icmp is the only user of the GEP or if we expect
Chris Lattner0798af32005-01-13 20:14:25 +00005044 // the result to fold to a constant!
5045 if (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) {
5046 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
5047 Value *Offset = EmitGEPOffset(GEPLHS, I, *this);
Reid Spencer266e42b2006-12-23 06:05:41 +00005048 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
5049 Constant::getNullValue(Offset->getType()));
Chris Lattner0798af32005-01-13 20:14:25 +00005050 }
5051 } else if (User *GEPRHS = dyn_castGetElementPtr(RHS)) {
Chris Lattnera21bf8d2005-04-25 20:17:30 +00005052 // If the base pointers are different, but the indices are the same, just
5053 // compare the base pointer.
5054 if (PtrBase != GEPRHS->getOperand(0)) {
5055 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +00005056 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
Chris Lattnerbd43b9d2005-04-26 14:40:41 +00005057 GEPRHS->getOperand(0)->getType();
Chris Lattnera21bf8d2005-04-25 20:17:30 +00005058 if (IndicesTheSame)
5059 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
5060 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
5061 IndicesTheSame = false;
5062 break;
5063 }
5064
5065 // If all indices are the same, just compare the base pointers.
5066 if (IndicesTheSame)
Reid Spencer266e42b2006-12-23 06:05:41 +00005067 return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
5068 GEPLHS->getOperand(0), GEPRHS->getOperand(0));
Chris Lattnera21bf8d2005-04-25 20:17:30 +00005069
5070 // Otherwise, the base pointers are different and the indices are
5071 // different, bail out.
Chris Lattner0798af32005-01-13 20:14:25 +00005072 return 0;
Chris Lattnera21bf8d2005-04-25 20:17:30 +00005073 }
Chris Lattner0798af32005-01-13 20:14:25 +00005074
Chris Lattner81e84172005-01-13 22:25:21 +00005075 // If one of the GEPs has all zero indices, recurse.
5076 bool AllZeros = true;
5077 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
5078 if (!isa<Constant>(GEPLHS->getOperand(i)) ||
5079 !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
5080 AllZeros = false;
5081 break;
5082 }
5083 if (AllZeros)
Reid Spencer266e42b2006-12-23 06:05:41 +00005084 return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
5085 ICmpInst::getSwappedPredicate(Cond), I);
Chris Lattner4fa89822005-01-14 00:20:05 +00005086
5087 // If the other GEP has all zero indices, recurse.
Chris Lattner81e84172005-01-13 22:25:21 +00005088 AllZeros = true;
5089 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
5090 if (!isa<Constant>(GEPRHS->getOperand(i)) ||
5091 !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
5092 AllZeros = false;
5093 break;
5094 }
5095 if (AllZeros)
Reid Spencer266e42b2006-12-23 06:05:41 +00005096 return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
Chris Lattner81e84172005-01-13 22:25:21 +00005097
Chris Lattner4fa89822005-01-14 00:20:05 +00005098 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
5099 // If the GEPs only differ by one index, compare it.
5100 unsigned NumDifferences = 0; // Keep track of # differences.
5101 unsigned DiffOperand = 0; // The operand that differs.
5102 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
5103 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
Chris Lattnerd1f46d32005-04-24 06:59:08 +00005104 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
5105 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
Chris Lattnerfc4429e2005-01-21 23:06:49 +00005106 // Irreconcilable differences.
Chris Lattner4fa89822005-01-14 00:20:05 +00005107 NumDifferences = 2;
5108 break;
5109 } else {
5110 if (NumDifferences++) break;
5111 DiffOperand = i;
5112 }
5113 }
5114
5115 if (NumDifferences == 0) // SAME GEP?
5116 return ReplaceInstUsesWith(I, // No comparison is needed here.
Reid Spencercddc9df2007-01-12 04:24:46 +00005117 ConstantInt::get(Type::Int1Ty,
5118 Cond == ICmpInst::ICMP_EQ));
Chris Lattner4fa89822005-01-14 00:20:05 +00005119 else if (NumDifferences == 1) {
Chris Lattnerfc4429e2005-01-21 23:06:49 +00005120 Value *LHSV = GEPLHS->getOperand(DiffOperand);
5121 Value *RHSV = GEPRHS->getOperand(DiffOperand);
Reid Spencer266e42b2006-12-23 06:05:41 +00005122 // Make sure we do a signed comparison here.
5123 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
Chris Lattner4fa89822005-01-14 00:20:05 +00005124 }
5125 }
5126
Reid Spencer266e42b2006-12-23 06:05:41 +00005127 // Only lower this if the icmp is the only user of the GEP or if we expect
Chris Lattner0798af32005-01-13 20:14:25 +00005128 // the result to fold to a constant!
5129 if ((isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
5130 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
5131 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
5132 Value *L = EmitGEPOffset(GEPLHS, I, *this);
5133 Value *R = EmitGEPOffset(GEPRHS, I, *this);
Reid Spencer266e42b2006-12-23 06:05:41 +00005134 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
Chris Lattner0798af32005-01-13 20:14:25 +00005135 }
5136 }
5137 return 0;
5138}
5139
Reid Spencer266e42b2006-12-23 06:05:41 +00005140Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
5141 bool Changed = SimplifyCompare(I);
Chris Lattner6d14f2a2002-08-09 23:47:40 +00005142 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00005143
Chris Lattner6ee923f2007-01-14 19:42:17 +00005144 // Fold trivial predicates.
5145 if (I.getPredicate() == FCmpInst::FCMP_FALSE)
5146 return ReplaceInstUsesWith(I, Constant::getNullValue(Type::Int1Ty));
5147 if (I.getPredicate() == FCmpInst::FCMP_TRUE)
5148 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5149
5150 // Simplify 'fcmp pred X, X'
5151 if (Op0 == Op1) {
5152 switch (I.getPredicate()) {
5153 default: assert(0 && "Unknown predicate!");
5154 case FCmpInst::FCMP_UEQ: // True if unordered or equal
5155 case FCmpInst::FCMP_UGE: // True if unordered, greater than, or equal
5156 case FCmpInst::FCMP_ULE: // True if unordered, less than, or equal
5157 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5158 case FCmpInst::FCMP_OGT: // True if ordered and greater than
5159 case FCmpInst::FCMP_OLT: // True if ordered and less than
5160 case FCmpInst::FCMP_ONE: // True if ordered and operands are unequal
5161 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5162
5163 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
5164 case FCmpInst::FCMP_ULT: // True if unordered or less than
5165 case FCmpInst::FCMP_UGT: // True if unordered or greater than
5166 case FCmpInst::FCMP_UNE: // True if unordered or not equal
5167 // Canonicalize these to be 'fcmp uno %X, 0.0'.
5168 I.setPredicate(FCmpInst::FCMP_UNO);
5169 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5170 return &I;
5171
5172 case FCmpInst::FCMP_ORD: // True if ordered (no nans)
5173 case FCmpInst::FCMP_OEQ: // True if ordered and equal
5174 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
5175 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
5176 // Canonicalize these to be 'fcmp ord %X, 0.0'.
5177 I.setPredicate(FCmpInst::FCMP_ORD);
5178 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5179 return &I;
5180 }
5181 }
5182
Reid Spencer266e42b2006-12-23 06:05:41 +00005183 if (isa<UndefValue>(Op1)) // fcmp pred X, undef -> undef
Reid Spencer542964f2007-01-11 18:21:29 +00005184 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
Chris Lattner81a7a232004-10-16 18:11:37 +00005185
Reid Spencer266e42b2006-12-23 06:05:41 +00005186 // Handle fcmp with constant RHS
5187 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
5188 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5189 switch (LHSI->getOpcode()) {
5190 case Instruction::PHI:
5191 if (Instruction *NV = FoldOpIntoPhi(I))
5192 return NV;
5193 break;
5194 case Instruction::Select:
5195 // If either operand of the select is a constant, we can fold the
5196 // comparison into the select arms, which will cause one to be
5197 // constant folded and the select turned into a bitwise or.
5198 Value *Op1 = 0, *Op2 = 0;
5199 if (LHSI->hasOneUse()) {
5200 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5201 // Fold the known value into the constant operand.
5202 Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5203 // Insert a new FCmp of the other select operand.
5204 Op2 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5205 LHSI->getOperand(2), RHSC,
5206 I.getName()), I);
5207 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5208 // Fold the known value into the constant operand.
5209 Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5210 // Insert a new FCmp of the other select operand.
5211 Op1 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5212 LHSI->getOperand(1), RHSC,
5213 I.getName()), I);
5214 }
5215 }
5216
5217 if (Op1)
5218 return new SelectInst(LHSI->getOperand(0), Op1, Op2);
5219 break;
5220 }
5221 }
5222
5223 return Changed ? &I : 0;
5224}
5225
5226Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
5227 bool Changed = SimplifyCompare(I);
5228 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5229 const Type *Ty = Op0->getType();
5230
5231 // icmp X, X
5232 if (Op0 == Op1)
Reid Spencercddc9df2007-01-12 04:24:46 +00005233 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
5234 isTrueWhenEqual(I)));
Reid Spencer266e42b2006-12-23 06:05:41 +00005235
5236 if (isa<UndefValue>(Op1)) // X icmp undef -> undef
Reid Spencer542964f2007-01-11 18:21:29 +00005237 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
Reid Spencer266e42b2006-12-23 06:05:41 +00005238
5239 // icmp of GlobalValues can never equal each other as long as they aren't
5240 // external weak linkage type.
5241 if (GlobalValue *GV0 = dyn_cast<GlobalValue>(Op0))
5242 if (GlobalValue *GV1 = dyn_cast<GlobalValue>(Op1))
5243 if (!GV0->hasExternalWeakLinkage() || !GV1->hasExternalWeakLinkage())
Reid Spencercddc9df2007-01-12 04:24:46 +00005244 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
5245 !isTrueWhenEqual(I)));
Reid Spencer266e42b2006-12-23 06:05:41 +00005246
5247 // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
Chris Lattner15ff1e12004-11-14 07:33:16 +00005248 // addresses never equal each other! We already know that Op0 != Op1.
Misha Brukmanb1c93172005-04-21 23:48:37 +00005249 if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) ||
5250 isa<ConstantPointerNull>(Op0)) &&
5251 (isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) ||
Chris Lattner15ff1e12004-11-14 07:33:16 +00005252 isa<ConstantPointerNull>(Op1)))
Reid Spencercddc9df2007-01-12 04:24:46 +00005253 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
5254 !isTrueWhenEqual(I)));
Chris Lattner6d14f2a2002-08-09 23:47:40 +00005255
Reid Spencer266e42b2006-12-23 06:05:41 +00005256 // icmp's with boolean values can always be turned into bitwise operations
Reid Spencer542964f2007-01-11 18:21:29 +00005257 if (Ty == Type::Int1Ty) {
Reid Spencer266e42b2006-12-23 06:05:41 +00005258 switch (I.getPredicate()) {
5259 default: assert(0 && "Invalid icmp instruction!");
5260 case ICmpInst::ICMP_EQ: { // icmp eq bool %A, %B -> ~(A^B)
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00005261 Instruction *Xor = BinaryOperator::createXor(Op0, Op1, I.getName()+"tmp");
Chris Lattner6d14f2a2002-08-09 23:47:40 +00005262 InsertNewInstBefore(Xor, I);
Chris Lattner16930792003-11-03 04:25:02 +00005263 return BinaryOperator::createNot(Xor);
Chris Lattner6d14f2a2002-08-09 23:47:40 +00005264 }
Reid Spencer266e42b2006-12-23 06:05:41 +00005265 case ICmpInst::ICMP_NE: // icmp eq bool %A, %B -> A^B
Chris Lattner4456da62004-08-11 00:50:51 +00005266 return BinaryOperator::createXor(Op0, Op1);
Chris Lattner6d14f2a2002-08-09 23:47:40 +00005267
Reid Spencer266e42b2006-12-23 06:05:41 +00005268 case ICmpInst::ICMP_UGT:
5269 case ICmpInst::ICMP_SGT:
5270 std::swap(Op0, Op1); // Change icmp gt -> icmp lt
Chris Lattner4456da62004-08-11 00:50:51 +00005271 // FALL THROUGH
Reid Spencer266e42b2006-12-23 06:05:41 +00005272 case ICmpInst::ICMP_ULT:
5273 case ICmpInst::ICMP_SLT: { // icmp lt bool A, B -> ~X & Y
Chris Lattner4456da62004-08-11 00:50:51 +00005274 Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp");
5275 InsertNewInstBefore(Not, I);
5276 return BinaryOperator::createAnd(Not, Op1);
5277 }
Reid Spencer266e42b2006-12-23 06:05:41 +00005278 case ICmpInst::ICMP_UGE:
5279 case ICmpInst::ICMP_SGE:
5280 std::swap(Op0, Op1); // Change icmp ge -> icmp le
Chris Lattner4456da62004-08-11 00:50:51 +00005281 // FALL THROUGH
Reid Spencer266e42b2006-12-23 06:05:41 +00005282 case ICmpInst::ICMP_ULE:
5283 case ICmpInst::ICMP_SLE: { // icmp le bool %A, %B -> ~A | B
Chris Lattner4456da62004-08-11 00:50:51 +00005284 Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp");
5285 InsertNewInstBefore(Not, I);
5286 return BinaryOperator::createOr(Not, Op1);
5287 }
5288 }
Chris Lattner6d14f2a2002-08-09 23:47:40 +00005289 }
5290
Chris Lattner2dd01742004-06-09 04:24:29 +00005291 // See if we are doing a comparison between a constant and an instruction that
5292 // can be folded into the comparison.
Chris Lattner6d14f2a2002-08-09 23:47:40 +00005293 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Reid Spencer266e42b2006-12-23 06:05:41 +00005294 switch (I.getPredicate()) {
5295 default: break;
5296 case ICmpInst::ICMP_ULT: // A <u MIN -> FALSE
5297 if (CI->isMinValue(false))
Zhou Sheng75b871f2007-01-11 12:24:14 +00005298 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Reid Spencer266e42b2006-12-23 06:05:41 +00005299 if (CI->isMaxValue(false)) // A <u MAX -> A != MAX
5300 return new ICmpInst(ICmpInst::ICMP_NE, Op0,Op1);
5301 if (isMinValuePlusOne(CI,false)) // A <u MIN+1 -> A == MIN
5302 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
5303 break;
Chris Lattner6862fbd2004-09-29 17:40:11 +00005304
Reid Spencer266e42b2006-12-23 06:05:41 +00005305 case ICmpInst::ICMP_SLT:
5306 if (CI->isMinValue(true)) // A <s MIN -> FALSE
Zhou Sheng75b871f2007-01-11 12:24:14 +00005307 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Reid Spencer266e42b2006-12-23 06:05:41 +00005308 if (CI->isMaxValue(true)) // A <s MAX -> A != MAX
5309 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5310 if (isMinValuePlusOne(CI,true)) // A <s MIN+1 -> A == MIN
5311 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
5312 break;
5313
5314 case ICmpInst::ICMP_UGT:
5315 if (CI->isMaxValue(false)) // A >u MAX -> FALSE
Zhou Sheng75b871f2007-01-11 12:24:14 +00005316 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Reid Spencer266e42b2006-12-23 06:05:41 +00005317 if (CI->isMinValue(false)) // A >u MIN -> A != MIN
5318 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5319 if (isMaxValueMinusOne(CI, false)) // A >u MAX-1 -> A == MAX
5320 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
5321 break;
5322
5323 case ICmpInst::ICMP_SGT:
5324 if (CI->isMaxValue(true)) // A >s MAX -> FALSE
Zhou Sheng75b871f2007-01-11 12:24:14 +00005325 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Reid Spencer266e42b2006-12-23 06:05:41 +00005326 if (CI->isMinValue(true)) // A >s MIN -> A != MIN
5327 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5328 if (isMaxValueMinusOne(CI, true)) // A >s MAX-1 -> A == MAX
5329 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
5330 break;
5331
5332 case ICmpInst::ICMP_ULE:
5333 if (CI->isMaxValue(false)) // A <=u MAX -> TRUE
Zhou Sheng75b871f2007-01-11 12:24:14 +00005334 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Reid Spencer266e42b2006-12-23 06:05:41 +00005335 if (CI->isMinValue(false)) // A <=u MIN -> A == MIN
5336 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5337 if (isMaxValueMinusOne(CI,false)) // A <=u MAX-1 -> A != MAX
5338 return new ICmpInst(ICmpInst::ICMP_NE, Op0, AddOne(CI));
5339 break;
Chris Lattner6862fbd2004-09-29 17:40:11 +00005340
Reid Spencer266e42b2006-12-23 06:05:41 +00005341 case ICmpInst::ICMP_SLE:
5342 if (CI->isMaxValue(true)) // A <=s MAX -> TRUE
Zhou Sheng75b871f2007-01-11 12:24:14 +00005343 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Reid Spencer266e42b2006-12-23 06:05:41 +00005344 if (CI->isMinValue(true)) // A <=s MIN -> A == MIN
5345 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5346 if (isMaxValueMinusOne(CI,true)) // A <=s MAX-1 -> A != MAX
5347 return new ICmpInst(ICmpInst::ICMP_NE, Op0, AddOne(CI));
5348 break;
Chris Lattner6862fbd2004-09-29 17:40:11 +00005349
Reid Spencer266e42b2006-12-23 06:05:41 +00005350 case ICmpInst::ICMP_UGE:
5351 if (CI->isMinValue(false)) // A >=u MIN -> TRUE
Zhou Sheng75b871f2007-01-11 12:24:14 +00005352 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Reid Spencer266e42b2006-12-23 06:05:41 +00005353 if (CI->isMaxValue(false)) // A >=u MAX -> A == MAX
5354 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5355 if (isMinValuePlusOne(CI,false)) // A >=u MIN-1 -> A != MIN
5356 return new ICmpInst(ICmpInst::ICMP_NE, Op0, SubOne(CI));
5357 break;
5358
5359 case ICmpInst::ICMP_SGE:
5360 if (CI->isMinValue(true)) // A >=s MIN -> TRUE
Zhou Sheng75b871f2007-01-11 12:24:14 +00005361 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Reid Spencer266e42b2006-12-23 06:05:41 +00005362 if (CI->isMaxValue(true)) // A >=s MAX -> A == MAX
5363 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5364 if (isMinValuePlusOne(CI,true)) // A >=s MIN-1 -> A != MIN
5365 return new ICmpInst(ICmpInst::ICMP_NE, Op0, SubOne(CI));
5366 break;
Chris Lattner6862fbd2004-09-29 17:40:11 +00005367 }
5368
Reid Spencer266e42b2006-12-23 06:05:41 +00005369 // If we still have a icmp le or icmp ge instruction, turn it into the
5370 // appropriate icmp lt or icmp gt instruction. Since the border cases have
Chris Lattner6862fbd2004-09-29 17:40:11 +00005371 // already been handled above, this requires little checking.
5372 //
Reid Spencer266e42b2006-12-23 06:05:41 +00005373 if (I.getPredicate() == ICmpInst::ICMP_ULE)
5374 return new ICmpInst(ICmpInst::ICMP_ULT, Op0, AddOne(CI));
5375 if (I.getPredicate() == ICmpInst::ICMP_SLE)
5376 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, AddOne(CI));
5377 if (I.getPredicate() == ICmpInst::ICMP_UGE)
5378 return new ICmpInst( ICmpInst::ICMP_UGT, Op0, SubOne(CI));
5379 if (I.getPredicate() == ICmpInst::ICMP_SGE)
5380 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, SubOne(CI));
Chris Lattneree0f2802006-02-12 02:07:56 +00005381
5382 // See if we can fold the comparison based on bits known to be zero or one
5383 // in the input.
5384 uint64_t KnownZero, KnownOne;
Reid Spencera94d3942007-01-19 21:13:56 +00005385 if (SimplifyDemandedBits(Op0, cast<IntegerType>(Ty)->getBitMask(),
Chris Lattneree0f2802006-02-12 02:07:56 +00005386 KnownZero, KnownOne, 0))
5387 return &I;
5388
5389 // Given the known and unknown bits, compute a range that the LHS could be
5390 // in.
5391 if (KnownOne | KnownZero) {
Reid Spencer266e42b2006-12-23 06:05:41 +00005392 // Compute the Min, Max and RHS values based on the known bits. For the
5393 // EQ and NE we use unsigned values.
Reid Spencer910f23f2006-12-23 19:17:57 +00005394 uint64_t UMin = 0, UMax = 0, URHSVal = 0;
5395 int64_t SMin = 0, SMax = 0, SRHSVal = 0;
Reid Spencer266e42b2006-12-23 06:05:41 +00005396 if (ICmpInst::isSignedPredicate(I.getPredicate())) {
5397 SRHSVal = CI->getSExtValue();
5398 ComputeSignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, SMin,
5399 SMax);
5400 } else {
5401 URHSVal = CI->getZExtValue();
5402 ComputeUnsignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, UMin,
5403 UMax);
5404 }
5405 switch (I.getPredicate()) { // LE/GE have been folded already.
5406 default: assert(0 && "Unknown icmp opcode!");
5407 case ICmpInst::ICMP_EQ:
5408 if (UMax < URHSVal || UMin > URHSVal)
Zhou Sheng75b871f2007-01-11 12:24:14 +00005409 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Reid Spencer266e42b2006-12-23 06:05:41 +00005410 break;
5411 case ICmpInst::ICMP_NE:
5412 if (UMax < URHSVal || UMin > URHSVal)
Zhou Sheng75b871f2007-01-11 12:24:14 +00005413 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Reid Spencer266e42b2006-12-23 06:05:41 +00005414 break;
5415 case ICmpInst::ICMP_ULT:
5416 if (UMax < URHSVal)
Zhou Sheng75b871f2007-01-11 12:24:14 +00005417 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Reid Spencer266e42b2006-12-23 06:05:41 +00005418 if (UMin > URHSVal)
Zhou Sheng75b871f2007-01-11 12:24:14 +00005419 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Reid Spencer266e42b2006-12-23 06:05:41 +00005420 break;
5421 case ICmpInst::ICMP_UGT:
5422 if (UMin > URHSVal)
Zhou Sheng75b871f2007-01-11 12:24:14 +00005423 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Reid Spencer266e42b2006-12-23 06:05:41 +00005424 if (UMax < URHSVal)
Zhou Sheng75b871f2007-01-11 12:24:14 +00005425 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Reid Spencer266e42b2006-12-23 06:05:41 +00005426 break;
5427 case ICmpInst::ICMP_SLT:
5428 if (SMax < SRHSVal)
Zhou Sheng75b871f2007-01-11 12:24:14 +00005429 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Reid Spencer266e42b2006-12-23 06:05:41 +00005430 if (SMin > SRHSVal)
Zhou Sheng75b871f2007-01-11 12:24:14 +00005431 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Reid Spencer266e42b2006-12-23 06:05:41 +00005432 break;
5433 case ICmpInst::ICMP_SGT:
5434 if (SMin > SRHSVal)
Zhou Sheng75b871f2007-01-11 12:24:14 +00005435 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Reid Spencer266e42b2006-12-23 06:05:41 +00005436 if (SMax < SRHSVal)
Zhou Sheng75b871f2007-01-11 12:24:14 +00005437 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Reid Spencer266e42b2006-12-23 06:05:41 +00005438 break;
Chris Lattneree0f2802006-02-12 02:07:56 +00005439 }
5440 }
5441
Reid Spencer266e42b2006-12-23 06:05:41 +00005442 // Since the RHS is a ConstantInt (CI), if the left hand side is an
Reid Spencer7e80b0b2006-10-26 06:15:43 +00005443 // instruction, see if that instruction also has constants so that the
Reid Spencer266e42b2006-12-23 06:05:41 +00005444 // instruction can be folded into the icmp
Chris Lattnere1e10e12004-05-25 06:32:08 +00005445 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
Chris Lattnere1b4d2a2004-09-23 21:52:49 +00005446 switch (LHSI->getOpcode()) {
5447 case Instruction::And:
5448 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
5449 LHSI->getOperand(0)->hasOneUse()) {
Chris Lattner4922a0e2006-09-18 05:27:43 +00005450 ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
5451
Reid Spencer266e42b2006-12-23 06:05:41 +00005452 // If the LHS is an AND of a truncating cast, we can widen the
Chris Lattner4922a0e2006-09-18 05:27:43 +00005453 // and/compare to be the input width without changing the value
5454 // produced, eliminating a cast.
5455 if (CastInst *Cast = dyn_cast<CastInst>(LHSI->getOperand(0))) {
5456 // We can do this transformation if either the AND constant does not
5457 // have its sign bit set or if it is an equality comparison.
5458 // Extending a relational comparison when we're checking the sign
5459 // bit would not work.
Reid Spencer6c38f0b2006-11-27 01:05:10 +00005460 if (Cast->hasOneUse() && isa<TruncInst>(Cast) &&
Chris Lattner4922a0e2006-09-18 05:27:43 +00005461 (I.isEquality() ||
5462 (AndCST->getZExtValue() == (uint64_t)AndCST->getSExtValue()) &&
5463 (CI->getZExtValue() == (uint64_t)CI->getSExtValue()))) {
5464 ConstantInt *NewCST;
5465 ConstantInt *NewCI;
Reid Spencerc635f472006-12-31 05:48:39 +00005466 NewCST = ConstantInt::get(Cast->getOperand(0)->getType(),
5467 AndCST->getZExtValue());
5468 NewCI = ConstantInt::get(Cast->getOperand(0)->getType(),
5469 CI->getZExtValue());
Chris Lattner4922a0e2006-09-18 05:27:43 +00005470 Instruction *NewAnd =
5471 BinaryOperator::createAnd(Cast->getOperand(0), NewCST,
5472 LHSI->getName());
5473 InsertNewInstBefore(NewAnd, I);
Reid Spencer266e42b2006-12-23 06:05:41 +00005474 return new ICmpInst(I.getPredicate(), NewAnd, NewCI);
Chris Lattner4922a0e2006-09-18 05:27:43 +00005475 }
5476 }
5477
Chris Lattnere1b4d2a2004-09-23 21:52:49 +00005478 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
5479 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
5480 // happens a LOT in code produced by the C front-end, for bitfield
5481 // access.
Reid Spencer2341c222007-02-02 02:16:23 +00005482 BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
5483 if (Shift && !Shift->isShift())
5484 Shift = 0;
Chris Lattneree0f2802006-02-12 02:07:56 +00005485
Reid Spencere0fc4df2006-10-20 07:07:24 +00005486 ConstantInt *ShAmt;
5487 ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
Chris Lattneree0f2802006-02-12 02:07:56 +00005488 const Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
5489 const Type *AndTy = AndCST->getType(); // Type of the and.
Misha Brukmanb1c93172005-04-21 23:48:37 +00005490
Chris Lattnere1b4d2a2004-09-23 21:52:49 +00005491 // We can fold this as long as we can't shift unknown bits
5492 // into the mask. This can only happen with signed shift
5493 // rights, as they sign-extend.
5494 if (ShAmt) {
Chris Lattnerb3f24c92006-09-18 04:22:48 +00005495 bool CanFold = Shift->isLogicalShift();
Chris Lattnere1b4d2a2004-09-23 21:52:49 +00005496 if (!CanFold) {
5497 // To test for the bad case of the signed shr, see if any
5498 // of the bits shifted in could be tested after the mask.
Reid Spencere0fc4df2006-10-20 07:07:24 +00005499 int ShAmtVal = Ty->getPrimitiveSizeInBits()-ShAmt->getZExtValue();
Chris Lattnerc53cb9d2005-06-17 01:29:28 +00005500 if (ShAmtVal < 0) ShAmtVal = 0; // Out of range shift.
5501
Reid Spencer2341c222007-02-02 02:16:23 +00005502 Constant *OShAmt = ConstantInt::get(AndTy, ShAmtVal);
Misha Brukmanb1c93172005-04-21 23:48:37 +00005503 Constant *ShVal =
Chris Lattneree0f2802006-02-12 02:07:56 +00005504 ConstantExpr::getShl(ConstantInt::getAllOnesValue(AndTy),
5505 OShAmt);
Chris Lattnere1b4d2a2004-09-23 21:52:49 +00005506 if (ConstantExpr::getAnd(ShVal, AndCST)->isNullValue())
5507 CanFold = true;
5508 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00005509
Chris Lattnere1b4d2a2004-09-23 21:52:49 +00005510 if (CanFold) {
Chris Lattner6afc02f2004-09-28 17:54:07 +00005511 Constant *NewCst;
5512 if (Shift->getOpcode() == Instruction::Shl)
Reid Spencerfdff9382006-11-08 06:47:33 +00005513 NewCst = ConstantExpr::getLShr(CI, ShAmt);
Chris Lattner6afc02f2004-09-28 17:54:07 +00005514 else
5515 NewCst = ConstantExpr::getShl(CI, ShAmt);
Chris Lattnerbfff18a2004-09-27 19:29:18 +00005516
Chris Lattnere1b4d2a2004-09-23 21:52:49 +00005517 // Check to see if we are shifting out any of the bits being
5518 // compared.
5519 if (ConstantExpr::get(Shift->getOpcode(), NewCst, ShAmt) != CI){
5520 // If we shifted bits out, the fold is not going to work out.
5521 // As a special case, check to see if this means that the
5522 // result is always true or false now.
Reid Spencer266e42b2006-12-23 06:05:41 +00005523 if (I.getPredicate() == ICmpInst::ICMP_EQ)
Zhou Sheng75b871f2007-01-11 12:24:14 +00005524 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Reid Spencer266e42b2006-12-23 06:05:41 +00005525 if (I.getPredicate() == ICmpInst::ICMP_NE)
Zhou Sheng75b871f2007-01-11 12:24:14 +00005526 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnere1b4d2a2004-09-23 21:52:49 +00005527 } else {
5528 I.setOperand(1, NewCst);
Chris Lattner6afc02f2004-09-28 17:54:07 +00005529 Constant *NewAndCST;
5530 if (Shift->getOpcode() == Instruction::Shl)
Reid Spencerfdff9382006-11-08 06:47:33 +00005531 NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
Chris Lattner6afc02f2004-09-28 17:54:07 +00005532 else
5533 NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
5534 LHSI->setOperand(1, NewAndCST);
Reid Spencer6ff3e732007-01-04 05:23:51 +00005535 LHSI->setOperand(0, Shift->getOperand(0));
Chris Lattnerb15e2b12007-03-02 21:28:56 +00005536 AddToWorkList(Shift); // Shift is dead.
Chris Lattnere1b4d2a2004-09-23 21:52:49 +00005537 AddUsesToWorkList(I);
5538 return &I;
Chris Lattner1638de42004-07-21 19:50:44 +00005539 }
5540 }
Chris Lattner35167c32004-06-09 07:59:58 +00005541 }
Chris Lattnerb3f24c92006-09-18 04:22:48 +00005542
5543 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
5544 // preferable because it allows the C<<Y expression to be hoisted out
5545 // of a loop if Y is invariant and X is not.
5546 if (Shift && Shift->hasOneUse() && CI->isNullValue() &&
Chris Lattnerde077922006-09-18 18:27:05 +00005547 I.isEquality() && !Shift->isArithmeticShift() &&
5548 isa<Instruction>(Shift->getOperand(0))) {
Chris Lattnerb3f24c92006-09-18 04:22:48 +00005549 // Compute C << Y.
5550 Value *NS;
Reid Spencerfdff9382006-11-08 06:47:33 +00005551 if (Shift->getOpcode() == Instruction::LShr) {
Reid Spencer0d5f9232007-02-02 14:08:20 +00005552 NS = BinaryOperator::createShl(AndCST,
Reid Spencer2341c222007-02-02 02:16:23 +00005553 Shift->getOperand(1), "tmp");
Chris Lattnerb3f24c92006-09-18 04:22:48 +00005554 } else {
Reid Spencer2a499b02006-12-13 17:19:09 +00005555 // Insert a logical shift.
Reid Spencer0d5f9232007-02-02 14:08:20 +00005556 NS = BinaryOperator::createLShr(AndCST,
Reid Spencer2341c222007-02-02 02:16:23 +00005557 Shift->getOperand(1), "tmp");
Chris Lattnerb3f24c92006-09-18 04:22:48 +00005558 }
5559 InsertNewInstBefore(cast<Instruction>(NS), I);
5560
Chris Lattnerb3f24c92006-09-18 04:22:48 +00005561 // Compute X & (C << Y).
Reid Spencer6ff3e732007-01-04 05:23:51 +00005562 Instruction *NewAnd = BinaryOperator::createAnd(
5563 Shift->getOperand(0), NS, LHSI->getName());
Chris Lattnerb3f24c92006-09-18 04:22:48 +00005564 InsertNewInstBefore(NewAnd, I);
5565
5566 I.setOperand(0, NewAnd);
5567 return &I;
5568 }
Chris Lattnere1b4d2a2004-09-23 21:52:49 +00005569 }
5570 break;
Chris Lattnerbfff18a2004-09-27 19:29:18 +00005571
Reid Spencer266e42b2006-12-23 06:05:41 +00005572 case Instruction::Shl: // (icmp pred (shl X, ShAmt), CI)
Reid Spencere0fc4df2006-10-20 07:07:24 +00005573 if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
Chris Lattnerb3f24c92006-09-18 04:22:48 +00005574 if (I.isEquality()) {
Chris Lattner19b57f52005-06-15 20:53:31 +00005575 unsigned TypeBits = CI->getType()->getPrimitiveSizeInBits();
5576
5577 // Check that the shift amount is in range. If not, don't perform
5578 // undefined shifts. When the shift is visited it will be
5579 // simplified.
Reid Spencere0fc4df2006-10-20 07:07:24 +00005580 if (ShAmt->getZExtValue() >= TypeBits)
Chris Lattner19b57f52005-06-15 20:53:31 +00005581 break;
5582
Chris Lattner272d5ca2004-09-28 18:22:15 +00005583 // If we are comparing against bits always shifted out, the
5584 // comparison cannot succeed.
Misha Brukmanb1c93172005-04-21 23:48:37 +00005585 Constant *Comp =
Reid Spencerfdff9382006-11-08 06:47:33 +00005586 ConstantExpr::getShl(ConstantExpr::getLShr(CI, ShAmt), ShAmt);
Chris Lattner272d5ca2004-09-28 18:22:15 +00005587 if (Comp != CI) {// Comparing against a bit that we know is zero.
Reid Spencer266e42b2006-12-23 06:05:41 +00005588 bool IsICMP_NE = I.getPredicate() == ICmpInst::ICMP_NE;
Reid Spencercddc9df2007-01-12 04:24:46 +00005589 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
Chris Lattner272d5ca2004-09-28 18:22:15 +00005590 return ReplaceInstUsesWith(I, Cst);
5591 }
5592
5593 if (LHSI->hasOneUse()) {
5594 // Otherwise strength reduce the shift into an and.
Reid Spencere0fc4df2006-10-20 07:07:24 +00005595 unsigned ShAmtVal = (unsigned)ShAmt->getZExtValue();
Chris Lattner272d5ca2004-09-28 18:22:15 +00005596 uint64_t Val = (1ULL << (TypeBits-ShAmtVal))-1;
Reid Spencerc635f472006-12-31 05:48:39 +00005597 Constant *Mask = ConstantInt::get(CI->getType(), Val);
Misha Brukmanb1c93172005-04-21 23:48:37 +00005598
Chris Lattner272d5ca2004-09-28 18:22:15 +00005599 Instruction *AndI =
5600 BinaryOperator::createAnd(LHSI->getOperand(0),
5601 Mask, LHSI->getName()+".mask");
5602 Value *And = InsertNewInstBefore(AndI, I);
Reid Spencer266e42b2006-12-23 06:05:41 +00005603 return new ICmpInst(I.getPredicate(), And,
Reid Spencerfdff9382006-11-08 06:47:33 +00005604 ConstantExpr::getLShr(CI, ShAmt));
Chris Lattner272d5ca2004-09-28 18:22:15 +00005605 }
5606 }
Chris Lattner272d5ca2004-09-28 18:22:15 +00005607 }
5608 break;
5609
Reid Spencer266e42b2006-12-23 06:05:41 +00005610 case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
Reid Spencerfdff9382006-11-08 06:47:33 +00005611 case Instruction::AShr:
Reid Spencere0fc4df2006-10-20 07:07:24 +00005612 if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
Chris Lattnerb3f24c92006-09-18 04:22:48 +00005613 if (I.isEquality()) {
Chris Lattner19b57f52005-06-15 20:53:31 +00005614 // Check that the shift amount is in range. If not, don't perform
5615 // undefined shifts. When the shift is visited it will be
5616 // simplified.
Chris Lattner104002b2005-06-16 01:52:07 +00005617 unsigned TypeBits = CI->getType()->getPrimitiveSizeInBits();
Reid Spencere0fc4df2006-10-20 07:07:24 +00005618 if (ShAmt->getZExtValue() >= TypeBits)
Chris Lattner19b57f52005-06-15 20:53:31 +00005619 break;
5620
Chris Lattner1023b872004-09-27 16:18:50 +00005621 // If we are comparing against bits always shifted out, the
5622 // comparison cannot succeed.
Reid Spencerfdff9382006-11-08 06:47:33 +00005623 Constant *Comp;
Reid Spencerc635f472006-12-31 05:48:39 +00005624 if (LHSI->getOpcode() == Instruction::LShr)
Reid Spencerfdff9382006-11-08 06:47:33 +00005625 Comp = ConstantExpr::getLShr(ConstantExpr::getShl(CI, ShAmt),
5626 ShAmt);
5627 else
5628 Comp = ConstantExpr::getAShr(ConstantExpr::getShl(CI, ShAmt),
5629 ShAmt);
Misha Brukmanb1c93172005-04-21 23:48:37 +00005630
Chris Lattner1023b872004-09-27 16:18:50 +00005631 if (Comp != CI) {// Comparing against a bit that we know is zero.
Reid Spencer266e42b2006-12-23 06:05:41 +00005632 bool IsICMP_NE = I.getPredicate() == ICmpInst::ICMP_NE;
Reid Spencercddc9df2007-01-12 04:24:46 +00005633 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
Chris Lattner1023b872004-09-27 16:18:50 +00005634 return ReplaceInstUsesWith(I, Cst);
5635 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00005636
Chris Lattner1023b872004-09-27 16:18:50 +00005637 if (LHSI->hasOneUse() || CI->isNullValue()) {
Reid Spencere0fc4df2006-10-20 07:07:24 +00005638 unsigned ShAmtVal = (unsigned)ShAmt->getZExtValue();
Chris Lattner272d5ca2004-09-28 18:22:15 +00005639
Chris Lattner1023b872004-09-27 16:18:50 +00005640 // Otherwise strength reduce the shift into an and.
5641 uint64_t Val = ~0ULL; // All ones.
5642 Val <<= ShAmtVal; // Shift over to the right spot.
Reid Spencerc635f472006-12-31 05:48:39 +00005643 Val &= ~0ULL >> (64-TypeBits);
5644 Constant *Mask = ConstantInt::get(CI->getType(), Val);
Misha Brukmanb1c93172005-04-21 23:48:37 +00005645
Chris Lattner1023b872004-09-27 16:18:50 +00005646 Instruction *AndI =
5647 BinaryOperator::createAnd(LHSI->getOperand(0),
5648 Mask, LHSI->getName()+".mask");
5649 Value *And = InsertNewInstBefore(AndI, I);
Reid Spencer266e42b2006-12-23 06:05:41 +00005650 return new ICmpInst(I.getPredicate(), And,
Chris Lattner1023b872004-09-27 16:18:50 +00005651 ConstantExpr::getShl(CI, ShAmt));
5652 }
Chris Lattner1023b872004-09-27 16:18:50 +00005653 }
5654 }
5655 break;
Chris Lattner7e794272004-09-24 15:21:34 +00005656
Reid Spencer7e80b0b2006-10-26 06:15:43 +00005657 case Instruction::SDiv:
5658 case Instruction::UDiv:
Reid Spencer266e42b2006-12-23 06:05:41 +00005659 // Fold: icmp pred ([us]div X, C1), C2 -> range test
Reid Spencer7e80b0b2006-10-26 06:15:43 +00005660 // Fold this div into the comparison, producing a range check.
5661 // Determine, based on the divide type, what the range is being
5662 // checked. If there is an overflow on the low or high side, remember
5663 // it, otherwise compute the range [low, hi) bounding the new value.
5664 // See: InsertRangeTest above for the kinds of replacements possible.
Chris Lattner6862fbd2004-09-29 17:40:11 +00005665 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
Reid Spencer7e80b0b2006-10-26 06:15:43 +00005666 // FIXME: If the operand types don't match the type of the divide
5667 // then don't attempt this transform. The code below doesn't have the
5668 // logic to deal with a signed divide and an unsigned compare (and
5669 // vice versa). This is because (x /s C1) <s C2 produces different
5670 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
5671 // (x /u C1) <u C2. Simply casting the operands and result won't
5672 // work. :( The if statement below tests that condition and bails
5673 // if it finds it.
Reid Spencer266e42b2006-12-23 06:05:41 +00005674 bool DivIsSigned = LHSI->getOpcode() == Instruction::SDiv;
5675 if (!I.isEquality() && DivIsSigned != I.isSignedPredicate())
Reid Spencer7e80b0b2006-10-26 06:15:43 +00005676 break;
5677
5678 // Initialize the variables that will indicate the nature of the
5679 // range check.
5680 bool LoOverflow = false, HiOverflow = false;
Chris Lattner6862fbd2004-09-29 17:40:11 +00005681 ConstantInt *LoBound = 0, *HiBound = 0;
5682
Reid Spencer7e80b0b2006-10-26 06:15:43 +00005683 // Compute Prod = CI * DivRHS. We are essentially solving an equation
5684 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
5685 // C2 (CI). By solving for X we can turn this into a range check
5686 // instead of computing a divide.
5687 ConstantInt *Prod =
5688 cast<ConstantInt>(ConstantExpr::getMul(CI, DivRHS));
Chris Lattner6862fbd2004-09-29 17:40:11 +00005689
Reid Spencer7e80b0b2006-10-26 06:15:43 +00005690 // Determine if the product overflows by seeing if the product is
5691 // not equal to the divide. Make sure we do the same kind of divide
5692 // as in the LHS instruction that we're folding.
5693 bool ProdOV = !DivRHS->isNullValue() &&
Reid Spencer266e42b2006-12-23 06:05:41 +00005694 (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
Reid Spencer7e80b0b2006-10-26 06:15:43 +00005695 ConstantExpr::getUDiv(Prod, DivRHS)) != CI;
5696
Reid Spencer266e42b2006-12-23 06:05:41 +00005697 // Get the ICmp opcode
5698 ICmpInst::Predicate predicate = I.getPredicate();
Chris Lattnera92af962004-10-11 19:40:04 +00005699
Reid Spencer7e80b0b2006-10-26 06:15:43 +00005700 if (DivRHS->isNullValue()) {
5701 // Don't hack on divide by zeros!
Reid Spencer266e42b2006-12-23 06:05:41 +00005702 } else if (!DivIsSigned) { // udiv
Chris Lattner6862fbd2004-09-29 17:40:11 +00005703 LoBound = Prod;
5704 LoOverflow = ProdOV;
5705 HiOverflow = ProdOV || AddWithOverflow(HiBound, LoBound, DivRHS);
Reid Spencer450434e2007-03-19 20:58:18 +00005706 } else if (DivRHS->getValue().isPositive()) { // Divisor is > 0.
Chris Lattner6862fbd2004-09-29 17:40:11 +00005707 if (CI->isNullValue()) { // (X / pos) op 0
5708 // Can't overflow.
5709 LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
5710 HiBound = DivRHS;
Reid Spencer450434e2007-03-19 20:58:18 +00005711 } else if (CI->getValue().isPositive()) { // (X / pos) op pos
Chris Lattner6862fbd2004-09-29 17:40:11 +00005712 LoBound = Prod;
5713 LoOverflow = ProdOV;
5714 HiOverflow = ProdOV || AddWithOverflow(HiBound, Prod, DivRHS);
5715 } else { // (X / pos) op neg
5716 Constant *DivRHSH = ConstantExpr::getNeg(SubOne(DivRHS));
5717 LoOverflow = AddWithOverflow(LoBound, Prod,
5718 cast<ConstantInt>(DivRHSH));
5719 HiBound = Prod;
5720 HiOverflow = ProdOV;
5721 }
Reid Spencer7e80b0b2006-10-26 06:15:43 +00005722 } else { // Divisor is < 0.
Chris Lattner6862fbd2004-09-29 17:40:11 +00005723 if (CI->isNullValue()) { // (X / neg) op 0
5724 LoBound = AddOne(DivRHS);
5725 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
Chris Lattner73bcba52005-06-17 02:05:55 +00005726 if (HiBound == DivRHS)
Reid Spencer7e80b0b2006-10-26 06:15:43 +00005727 LoBound = 0; // - INTMIN = INTMIN
Reid Spencer450434e2007-03-19 20:58:18 +00005728 } else if (CI->getValue().isPositive()) { // (X / neg) op pos
Chris Lattner6862fbd2004-09-29 17:40:11 +00005729 HiOverflow = LoOverflow = ProdOV;
5730 if (!LoOverflow)
5731 LoOverflow = AddWithOverflow(LoBound, Prod, AddOne(DivRHS));
5732 HiBound = AddOne(Prod);
5733 } else { // (X / neg) op neg
5734 LoBound = Prod;
5735 LoOverflow = HiOverflow = ProdOV;
5736 HiBound = cast<ConstantInt>(ConstantExpr::getSub(Prod, DivRHS));
5737 }
Chris Lattner0b41e862004-10-08 19:15:44 +00005738
Chris Lattnera92af962004-10-11 19:40:04 +00005739 // Dividing by a negate swaps the condition.
Reid Spencer266e42b2006-12-23 06:05:41 +00005740 predicate = ICmpInst::getSwappedPredicate(predicate);
Chris Lattner6862fbd2004-09-29 17:40:11 +00005741 }
5742
5743 if (LoBound) {
5744 Value *X = LHSI->getOperand(0);
Reid Spencer266e42b2006-12-23 06:05:41 +00005745 switch (predicate) {
5746 default: assert(0 && "Unhandled icmp opcode!");
5747 case ICmpInst::ICMP_EQ:
Chris Lattner6862fbd2004-09-29 17:40:11 +00005748 if (LoOverflow && HiOverflow)
Zhou Sheng75b871f2007-01-11 12:24:14 +00005749 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattner6862fbd2004-09-29 17:40:11 +00005750 else if (HiOverflow)
Reid Spencer266e42b2006-12-23 06:05:41 +00005751 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
5752 ICmpInst::ICMP_UGE, X, LoBound);
Chris Lattner6862fbd2004-09-29 17:40:11 +00005753 else if (LoOverflow)
Reid Spencer266e42b2006-12-23 06:05:41 +00005754 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
5755 ICmpInst::ICMP_ULT, X, HiBound);
Chris Lattner6862fbd2004-09-29 17:40:11 +00005756 else
Reid Spencer266e42b2006-12-23 06:05:41 +00005757 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned,
5758 true, I);
5759 case ICmpInst::ICMP_NE:
Chris Lattner6862fbd2004-09-29 17:40:11 +00005760 if (LoOverflow && HiOverflow)
Zhou Sheng75b871f2007-01-11 12:24:14 +00005761 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattner6862fbd2004-09-29 17:40:11 +00005762 else if (HiOverflow)
Reid Spencer266e42b2006-12-23 06:05:41 +00005763 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
5764 ICmpInst::ICMP_ULT, X, LoBound);
Chris Lattner6862fbd2004-09-29 17:40:11 +00005765 else if (LoOverflow)
Reid Spencer266e42b2006-12-23 06:05:41 +00005766 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
5767 ICmpInst::ICMP_UGE, X, HiBound);
Chris Lattner6862fbd2004-09-29 17:40:11 +00005768 else
Reid Spencer266e42b2006-12-23 06:05:41 +00005769 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned,
5770 false, I);
5771 case ICmpInst::ICMP_ULT:
5772 case ICmpInst::ICMP_SLT:
Chris Lattner6862fbd2004-09-29 17:40:11 +00005773 if (LoOverflow)
Zhou Sheng75b871f2007-01-11 12:24:14 +00005774 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Reid Spencer266e42b2006-12-23 06:05:41 +00005775 return new ICmpInst(predicate, X, LoBound);
5776 case ICmpInst::ICMP_UGT:
5777 case ICmpInst::ICMP_SGT:
Chris Lattner6862fbd2004-09-29 17:40:11 +00005778 if (HiOverflow)
Zhou Sheng75b871f2007-01-11 12:24:14 +00005779 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Reid Spencer266e42b2006-12-23 06:05:41 +00005780 if (predicate == ICmpInst::ICMP_UGT)
5781 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
5782 else
5783 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
Chris Lattner6862fbd2004-09-29 17:40:11 +00005784 }
5785 }
5786 }
5787 break;
Chris Lattnere1b4d2a2004-09-23 21:52:49 +00005788 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00005789
Reid Spencer266e42b2006-12-23 06:05:41 +00005790 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
Chris Lattnerb3f24c92006-09-18 04:22:48 +00005791 if (I.isEquality()) {
Reid Spencer266e42b2006-12-23 06:05:41 +00005792 bool isICMP_NE = I.getPredicate() == ICmpInst::ICMP_NE;
Chris Lattnerd492a0b2003-07-23 17:02:11 +00005793
Reid Spencere0fc4df2006-10-20 07:07:24 +00005794 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
5795 // the second operand is a constant, simplify a bit.
Chris Lattnerc992add2003-08-13 05:33:12 +00005796 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0)) {
5797 switch (BO->getOpcode()) {
Reid Spencere0fc4df2006-10-20 07:07:24 +00005798 case Instruction::SRem:
5799 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
5800 if (CI->isNullValue() && isa<ConstantInt>(BO->getOperand(1)) &&
5801 BO->hasOneUse()) {
5802 int64_t V = cast<ConstantInt>(BO->getOperand(1))->getSExtValue();
5803 if (V > 1 && isPowerOf2_64(V)) {
Reid Spencer7eb55b32006-11-02 01:53:59 +00005804 Value *NewRem = InsertNewInstBefore(BinaryOperator::createURem(
5805 BO->getOperand(0), BO->getOperand(1), BO->getName()), I);
Reid Spencer266e42b2006-12-23 06:05:41 +00005806 return new ICmpInst(I.getPredicate(), NewRem,
5807 Constant::getNullValue(BO->getType()));
Chris Lattner23b47b62004-07-06 07:38:18 +00005808 }
Chris Lattner22d00a82005-08-02 19:16:58 +00005809 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00005810 break;
Chris Lattnerc992add2003-08-13 05:33:12 +00005811 case Instruction::Add:
Chris Lattner6e079362004-06-27 22:51:36 +00005812 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
5813 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
Chris Lattnerb121ae12004-09-21 21:35:23 +00005814 if (BO->hasOneUse())
Reid Spencer266e42b2006-12-23 06:05:41 +00005815 return new ICmpInst(I.getPredicate(), BO->getOperand(0),
5816 ConstantExpr::getSub(CI, BOp1C));
Chris Lattner6e079362004-06-27 22:51:36 +00005817 } else if (CI->isNullValue()) {
Chris Lattnerc992add2003-08-13 05:33:12 +00005818 // Replace ((add A, B) != 0) with (A != -B) if A or B is
5819 // efficiently invertible, or if the add has just this one use.
5820 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
Misha Brukmanb1c93172005-04-21 23:48:37 +00005821
Chris Lattnerc992add2003-08-13 05:33:12 +00005822 if (Value *NegVal = dyn_castNegVal(BOp1))
Reid Spencer266e42b2006-12-23 06:05:41 +00005823 return new ICmpInst(I.getPredicate(), BOp0, NegVal);
Chris Lattnerc992add2003-08-13 05:33:12 +00005824 else if (Value *NegVal = dyn_castNegVal(BOp0))
Reid Spencer266e42b2006-12-23 06:05:41 +00005825 return new ICmpInst(I.getPredicate(), NegVal, BOp1);
Chris Lattnerf95d9b92003-10-15 16:48:29 +00005826 else if (BO->hasOneUse()) {
Chris Lattner6e0123b2007-02-11 01:23:03 +00005827 Instruction *Neg = BinaryOperator::createNeg(BOp1);
Chris Lattnerc992add2003-08-13 05:33:12 +00005828 InsertNewInstBefore(Neg, I);
Chris Lattner6e0123b2007-02-11 01:23:03 +00005829 Neg->takeName(BO);
Reid Spencer266e42b2006-12-23 06:05:41 +00005830 return new ICmpInst(I.getPredicate(), BOp0, Neg);
Chris Lattnerc992add2003-08-13 05:33:12 +00005831 }
5832 }
5833 break;
5834 case Instruction::Xor:
5835 // For the xor case, we can xor two constants together, eliminating
5836 // the explicit xor.
5837 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
Reid Spencer266e42b2006-12-23 06:05:41 +00005838 return new ICmpInst(I.getPredicate(), BO->getOperand(0),
5839 ConstantExpr::getXor(CI, BOC));
Chris Lattnerc992add2003-08-13 05:33:12 +00005840
5841 // FALLTHROUGH
5842 case Instruction::Sub:
5843 // Replace (([sub|xor] A, B) != 0) with (A != B)
5844 if (CI->isNullValue())
Reid Spencer266e42b2006-12-23 06:05:41 +00005845 return new ICmpInst(I.getPredicate(), BO->getOperand(0),
5846 BO->getOperand(1));
Chris Lattnerc992add2003-08-13 05:33:12 +00005847 break;
5848
5849 case Instruction::Or:
5850 // If bits are being or'd in that are not present in the constant we
5851 // are comparing against, then the comparison could never succeed!
Chris Lattnerc1e7cc02004-01-12 19:35:11 +00005852 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
Chris Lattnerc8e7e292004-06-10 02:12:35 +00005853 Constant *NotCI = ConstantExpr::getNot(CI);
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00005854 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
Reid Spencercddc9df2007-01-12 04:24:46 +00005855 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
5856 isICMP_NE));
Chris Lattnerc1e7cc02004-01-12 19:35:11 +00005857 }
Chris Lattnerc992add2003-08-13 05:33:12 +00005858 break;
5859
5860 case Instruction::And:
5861 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
Chris Lattnerd492a0b2003-07-23 17:02:11 +00005862 // If bits are being compared against that are and'd out, then the
5863 // comparison can never succeed!
Chris Lattnerc8e7e292004-06-10 02:12:35 +00005864 if (!ConstantExpr::getAnd(CI,
5865 ConstantExpr::getNot(BOC))->isNullValue())
Reid Spencercddc9df2007-01-12 04:24:46 +00005866 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
5867 isICMP_NE));
Chris Lattnerc992add2003-08-13 05:33:12 +00005868
Chris Lattner35167c32004-06-09 07:59:58 +00005869 // If we have ((X & C) == C), turn it into ((X & C) != 0).
Chris Lattneree59d4b2004-06-10 02:33:20 +00005870 if (CI == BOC && isOneBitSet(CI))
Reid Spencer266e42b2006-12-23 06:05:41 +00005871 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
5872 ICmpInst::ICMP_NE, Op0,
5873 Constant::getNullValue(CI->getType()));
Chris Lattner35167c32004-06-09 07:59:58 +00005874
Reid Spencer266e42b2006-12-23 06:05:41 +00005875 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
Chris Lattnerc992add2003-08-13 05:33:12 +00005876 if (isSignBit(BOC)) {
5877 Value *X = BO->getOperand(0);
Reid Spencer266e42b2006-12-23 06:05:41 +00005878 Constant *Zero = Constant::getNullValue(X->getType());
5879 ICmpInst::Predicate pred = isICMP_NE ?
5880 ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
5881 return new ICmpInst(pred, X, Zero);
Chris Lattnerc992add2003-08-13 05:33:12 +00005882 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00005883
Chris Lattnerbfff18a2004-09-27 19:29:18 +00005884 // ((X & ~7) == 0) --> X < 8
Chris Lattner8fc5af42004-09-23 21:46:38 +00005885 if (CI->isNullValue() && isHighOnes(BOC)) {
5886 Value *X = BO->getOperand(0);
Chris Lattnerbfff18a2004-09-27 19:29:18 +00005887 Constant *NegX = ConstantExpr::getNeg(BOC);
Reid Spencer266e42b2006-12-23 06:05:41 +00005888 ICmpInst::Predicate pred = isICMP_NE ?
5889 ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
5890 return new ICmpInst(pred, X, NegX);
Chris Lattner8fc5af42004-09-23 21:46:38 +00005891 }
5892
Chris Lattnerd492a0b2003-07-23 17:02:11 +00005893 }
Chris Lattnerc992add2003-08-13 05:33:12 +00005894 default: break;
5895 }
Chris Lattnera7942b72006-11-29 05:02:16 +00005896 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op0)) {
5897 // Handle set{eq|ne} <intrinsic>, intcst.
5898 switch (II->getIntrinsicID()) {
5899 default: break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005900 case Intrinsic::bswap_i16:
5901 // icmp eq (bswap(x)), c -> icmp eq (x,bswap(c))
Chris Lattnerb15e2b12007-03-02 21:28:56 +00005902 AddToWorkList(II); // Dead?
Chris Lattnera7942b72006-11-29 05:02:16 +00005903 I.setOperand(0, II->getOperand(1));
Reid Spencerc635f472006-12-31 05:48:39 +00005904 I.setOperand(1, ConstantInt::get(Type::Int16Ty,
Chris Lattnera7942b72006-11-29 05:02:16 +00005905 ByteSwap_16(CI->getZExtValue())));
5906 return &I;
Reid Spencer266e42b2006-12-23 06:05:41 +00005907 case Intrinsic::bswap_i32:
5908 // icmp eq (bswap(x)), c -> icmp eq (x,bswap(c))
Chris Lattnerb15e2b12007-03-02 21:28:56 +00005909 AddToWorkList(II); // Dead?
Chris Lattnera7942b72006-11-29 05:02:16 +00005910 I.setOperand(0, II->getOperand(1));
Reid Spencerc635f472006-12-31 05:48:39 +00005911 I.setOperand(1, ConstantInt::get(Type::Int32Ty,
Chris Lattnera7942b72006-11-29 05:02:16 +00005912 ByteSwap_32(CI->getZExtValue())));
5913 return &I;
Reid Spencer266e42b2006-12-23 06:05:41 +00005914 case Intrinsic::bswap_i64:
5915 // icmp eq (bswap(x)), c -> icmp eq (x,bswap(c))
Chris Lattnerb15e2b12007-03-02 21:28:56 +00005916 AddToWorkList(II); // Dead?
Chris Lattnera7942b72006-11-29 05:02:16 +00005917 I.setOperand(0, II->getOperand(1));
Reid Spencerc635f472006-12-31 05:48:39 +00005918 I.setOperand(1, ConstantInt::get(Type::Int64Ty,
Chris Lattnera7942b72006-11-29 05:02:16 +00005919 ByteSwap_64(CI->getZExtValue())));
5920 return &I;
5921 }
Chris Lattnerc992add2003-08-13 05:33:12 +00005922 }
Reid Spencer266e42b2006-12-23 06:05:41 +00005923 } else { // Not a ICMP_EQ/ICMP_NE
5924 // If the LHS is a cast from an integral value of the same size, then
5925 // since we know the RHS is a constant, try to simlify.
Chris Lattner2b55ea32004-02-23 07:16:20 +00005926 if (CastInst *Cast = dyn_cast<CastInst>(Op0)) {
5927 Value *CastOp = Cast->getOperand(0);
5928 const Type *SrcTy = CastOp->getType();
Chris Lattnerd1f46d32005-04-24 06:59:08 +00005929 unsigned SrcTySize = SrcTy->getPrimitiveSizeInBits();
Chris Lattner03c49532007-01-15 02:27:26 +00005930 if (SrcTy->isInteger() &&
Chris Lattnerd1f46d32005-04-24 06:59:08 +00005931 SrcTySize == Cast->getType()->getPrimitiveSizeInBits()) {
Reid Spencer266e42b2006-12-23 06:05:41 +00005932 // If this is an unsigned comparison, try to make the comparison use
5933 // smaller constant values.
5934 switch (I.getPredicate()) {
5935 default: break;
5936 case ICmpInst::ICMP_ULT: { // X u< 128 => X s> -1
5937 ConstantInt *CUI = cast<ConstantInt>(CI);
5938 if (CUI->getZExtValue() == 1ULL << (SrcTySize-1))
5939 return new ICmpInst(ICmpInst::ICMP_SGT, CastOp,
Reid Spencer24f1a0e2007-03-01 19:33:52 +00005940 ConstantInt::get(SrcTy, -1ULL));
Reid Spencer266e42b2006-12-23 06:05:41 +00005941 break;
5942 }
5943 case ICmpInst::ICMP_UGT: { // X u> 127 => X s< 0
5944 ConstantInt *CUI = cast<ConstantInt>(CI);
5945 if (CUI->getZExtValue() == (1ULL << (SrcTySize-1))-1)
5946 return new ICmpInst(ICmpInst::ICMP_SLT, CastOp,
5947 Constant::getNullValue(SrcTy));
5948 break;
5949 }
Chris Lattner2b55ea32004-02-23 07:16:20 +00005950 }
Reid Spencer266e42b2006-12-23 06:05:41 +00005951
Chris Lattner2b55ea32004-02-23 07:16:20 +00005952 }
5953 }
Chris Lattnere967b342003-06-04 05:10:11 +00005954 }
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00005955 }
5956
Reid Spencer266e42b2006-12-23 06:05:41 +00005957 // Handle icmp with constant RHS
Chris Lattner77c32c32005-04-23 15:31:55 +00005958 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
5959 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5960 switch (LHSI->getOpcode()) {
Chris Lattnera816eee2005-05-01 04:42:15 +00005961 case Instruction::GetElementPtr:
5962 if (RHSC->isNullValue()) {
Reid Spencer266e42b2006-12-23 06:05:41 +00005963 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
Chris Lattnera816eee2005-05-01 04:42:15 +00005964 bool isAllZeros = true;
5965 for (unsigned i = 1, e = LHSI->getNumOperands(); i != e; ++i)
5966 if (!isa<Constant>(LHSI->getOperand(i)) ||
5967 !cast<Constant>(LHSI->getOperand(i))->isNullValue()) {
5968 isAllZeros = false;
5969 break;
5970 }
5971 if (isAllZeros)
Reid Spencer266e42b2006-12-23 06:05:41 +00005972 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
Chris Lattnera816eee2005-05-01 04:42:15 +00005973 Constant::getNullValue(LHSI->getOperand(0)->getType()));
5974 }
5975 break;
5976
Chris Lattner77c32c32005-04-23 15:31:55 +00005977 case Instruction::PHI:
5978 if (Instruction *NV = FoldOpIntoPhi(I))
5979 return NV;
5980 break;
5981 case Instruction::Select:
5982 // If either operand of the select is a constant, we can fold the
5983 // comparison into the select arms, which will cause one to be
5984 // constant folded and the select turned into a bitwise or.
5985 Value *Op1 = 0, *Op2 = 0;
5986 if (LHSI->hasOneUse()) {
5987 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5988 // Fold the known value into the constant operand.
Reid Spencer266e42b2006-12-23 06:05:41 +00005989 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5990 // Insert a new ICmp of the other select operand.
5991 Op2 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
5992 LHSI->getOperand(2), RHSC,
5993 I.getName()), I);
Chris Lattner77c32c32005-04-23 15:31:55 +00005994 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5995 // Fold the known value into the constant operand.
Reid Spencer266e42b2006-12-23 06:05:41 +00005996 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5997 // Insert a new ICmp of the other select operand.
5998 Op1 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
5999 LHSI->getOperand(1), RHSC,
6000 I.getName()), I);
Chris Lattner77c32c32005-04-23 15:31:55 +00006001 }
6002 }
Jeff Cohen82639852005-04-23 21:38:35 +00006003
Chris Lattner77c32c32005-04-23 15:31:55 +00006004 if (Op1)
6005 return new SelectInst(LHSI->getOperand(0), Op1, Op2);
6006 break;
6007 }
6008 }
6009
Reid Spencer266e42b2006-12-23 06:05:41 +00006010 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
Chris Lattner0798af32005-01-13 20:14:25 +00006011 if (User *GEP = dyn_castGetElementPtr(Op0))
Reid Spencer266e42b2006-12-23 06:05:41 +00006012 if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
Chris Lattner0798af32005-01-13 20:14:25 +00006013 return NI;
6014 if (User *GEP = dyn_castGetElementPtr(Op1))
Reid Spencer266e42b2006-12-23 06:05:41 +00006015 if (Instruction *NI = FoldGEPICmp(GEP, Op0,
6016 ICmpInst::getSwappedPredicate(I.getPredicate()), I))
Chris Lattner0798af32005-01-13 20:14:25 +00006017 return NI;
6018
Reid Spencer266e42b2006-12-23 06:05:41 +00006019 // Test to see if the operands of the icmp are casted versions of other
Chris Lattner64d87b02007-01-06 01:45:59 +00006020 // values. If the ptr->ptr cast can be stripped off both arguments, we do so
6021 // now.
6022 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
6023 if (isa<PointerType>(Op0->getType()) &&
6024 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
Chris Lattner16930792003-11-03 04:25:02 +00006025 // We keep moving the cast from the left operand over to the right
6026 // operand, where it can often be eliminated completely.
Chris Lattner64d87b02007-01-06 01:45:59 +00006027 Op0 = CI->getOperand(0);
Misha Brukmanb1c93172005-04-21 23:48:37 +00006028
Chris Lattner64d87b02007-01-06 01:45:59 +00006029 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
6030 // so eliminate it as well.
6031 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
6032 Op1 = CI2->getOperand(0);
Misha Brukmanb1c93172005-04-21 23:48:37 +00006033
Chris Lattner16930792003-11-03 04:25:02 +00006034 // If Op1 is a constant, we can fold the cast into the constant.
Chris Lattner64d87b02007-01-06 01:45:59 +00006035 if (Op0->getType() != Op1->getType())
Chris Lattner16930792003-11-03 04:25:02 +00006036 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
Reid Spencerbb65ebf2006-12-12 23:36:14 +00006037 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
Chris Lattner16930792003-11-03 04:25:02 +00006038 } else {
Reid Spencer266e42b2006-12-23 06:05:41 +00006039 // Otherwise, cast the RHS right before the icmp
Reid Spencer13bc5d72006-12-12 09:18:51 +00006040 Op1 = InsertCastBefore(Instruction::BitCast, Op1, Op0->getType(), I);
Chris Lattner16930792003-11-03 04:25:02 +00006041 }
Reid Spencer266e42b2006-12-23 06:05:41 +00006042 return new ICmpInst(I.getPredicate(), Op0, Op1);
Chris Lattner16930792003-11-03 04:25:02 +00006043 }
Chris Lattner64d87b02007-01-06 01:45:59 +00006044 }
6045
6046 if (isa<CastInst>(Op0)) {
Reid Spencer266e42b2006-12-23 06:05:41 +00006047 // Handle the special case of: icmp (cast bool to X), <cst>
Chris Lattner6444c372003-11-03 05:17:03 +00006048 // This comes up when you have code like
6049 // int X = A < B;
6050 // if (X) ...
6051 // For generality, we handle any zero-extension of any operand comparison
Chris Lattnerd1f46d32005-04-24 06:59:08 +00006052 // with a constant or another cast from the same type.
6053 if (isa<ConstantInt>(Op1) || isa<CastInst>(Op1))
Reid Spencer266e42b2006-12-23 06:05:41 +00006054 if (Instruction *R = visitICmpInstWithCastAndCast(I))
Chris Lattnerd1f46d32005-04-24 06:59:08 +00006055 return R;
Chris Lattner6444c372003-11-03 05:17:03 +00006056 }
Chris Lattnerf5c8a0b2006-02-27 01:44:11 +00006057
Chris Lattnerb3f24c92006-09-18 04:22:48 +00006058 if (I.isEquality()) {
Chris Lattner17c7c032007-01-05 03:04:57 +00006059 Value *A, *B, *C, *D;
6060 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
6061 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
6062 Value *OtherVal = A == Op1 ? B : A;
6063 return new ICmpInst(I.getPredicate(), OtherVal,
6064 Constant::getNullValue(A->getType()));
6065 }
6066
6067 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
6068 // A^c1 == C^c2 --> A == C^(c1^c2)
6069 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
6070 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D))
6071 if (Op1->hasOneUse()) {
6072 Constant *NC = ConstantExpr::getXor(C1, C2);
6073 Instruction *Xor = BinaryOperator::createXor(C, NC, "tmp");
6074 return new ICmpInst(I.getPredicate(), A,
6075 InsertNewInstBefore(Xor, I));
6076 }
6077
6078 // A^B == A^D -> B == D
6079 if (A == C) return new ICmpInst(I.getPredicate(), B, D);
6080 if (A == D) return new ICmpInst(I.getPredicate(), B, C);
6081 if (B == C) return new ICmpInst(I.getPredicate(), A, D);
6082 if (B == D) return new ICmpInst(I.getPredicate(), A, C);
6083 }
6084 }
6085
6086 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
6087 (A == Op0 || B == Op0)) {
Chris Lattnerf5c8a0b2006-02-27 01:44:11 +00006088 // A == (A^B) -> B == 0
6089 Value *OtherVal = A == Op0 ? B : A;
Reid Spencer266e42b2006-12-23 06:05:41 +00006090 return new ICmpInst(I.getPredicate(), OtherVal,
6091 Constant::getNullValue(A->getType()));
Chris Lattner17c7c032007-01-05 03:04:57 +00006092 }
6093 if (match(Op0, m_Sub(m_Value(A), m_Value(B))) && A == Op1) {
Chris Lattnerf5c8a0b2006-02-27 01:44:11 +00006094 // (A-B) == A -> B == 0
Reid Spencer266e42b2006-12-23 06:05:41 +00006095 return new ICmpInst(I.getPredicate(), B,
6096 Constant::getNullValue(B->getType()));
Chris Lattner17c7c032007-01-05 03:04:57 +00006097 }
6098 if (match(Op1, m_Sub(m_Value(A), m_Value(B))) && A == Op0) {
Chris Lattnerf5c8a0b2006-02-27 01:44:11 +00006099 // A == (A-B) -> B == 0
Reid Spencer266e42b2006-12-23 06:05:41 +00006100 return new ICmpInst(I.getPredicate(), B,
6101 Constant::getNullValue(B->getType()));
Chris Lattnerf5c8a0b2006-02-27 01:44:11 +00006102 }
Chris Lattnerd12a4bf2006-11-14 06:06:06 +00006103
Chris Lattnerd12a4bf2006-11-14 06:06:06 +00006104 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
6105 if (Op0->hasOneUse() && Op1->hasOneUse() &&
6106 match(Op0, m_And(m_Value(A), m_Value(B))) &&
6107 match(Op1, m_And(m_Value(C), m_Value(D)))) {
6108 Value *X = 0, *Y = 0, *Z = 0;
6109
6110 if (A == C) {
6111 X = B; Y = D; Z = A;
6112 } else if (A == D) {
6113 X = B; Y = C; Z = A;
6114 } else if (B == C) {
6115 X = A; Y = D; Z = B;
6116 } else if (B == D) {
6117 X = A; Y = C; Z = B;
6118 }
6119
6120 if (X) { // Build (X^Y) & Z
6121 Op1 = InsertNewInstBefore(BinaryOperator::createXor(X, Y, "tmp"), I);
6122 Op1 = InsertNewInstBefore(BinaryOperator::createAnd(Op1, Z, "tmp"), I);
6123 I.setOperand(0, Op1);
6124 I.setOperand(1, Constant::getNullValue(Op1->getType()));
6125 return &I;
6126 }
6127 }
Chris Lattnerf5c8a0b2006-02-27 01:44:11 +00006128 }
Chris Lattner113f4f42002-06-25 16:13:24 +00006129 return Changed ? &I : 0;
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00006130}
6131
Reid Spencer266e42b2006-12-23 06:05:41 +00006132// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
Chris Lattnerd1f46d32005-04-24 06:59:08 +00006133// We only handle extending casts so far.
6134//
Reid Spencer266e42b2006-12-23 06:05:41 +00006135Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
6136 const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
Reid Spencer6c38f0b2006-11-27 01:05:10 +00006137 Value *LHSCIOp = LHSCI->getOperand(0);
6138 const Type *SrcTy = LHSCIOp->getType();
Reid Spencer266e42b2006-12-23 06:05:41 +00006139 const Type *DestTy = LHSCI->getType();
Chris Lattnerd1f46d32005-04-24 06:59:08 +00006140 Value *RHSCIOp;
6141
Reid Spencer266e42b2006-12-23 06:05:41 +00006142 // We only handle extension cast instructions, so far. Enforce this.
6143 if (LHSCI->getOpcode() != Instruction::ZExt &&
6144 LHSCI->getOpcode() != Instruction::SExt)
Chris Lattner03f06f12005-01-17 03:20:02 +00006145 return 0;
6146
Reid Spencer266e42b2006-12-23 06:05:41 +00006147 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
6148 bool isSignedCmp = ICI.isSignedPredicate();
Chris Lattnerd1f46d32005-04-24 06:59:08 +00006149
Reid Spencer266e42b2006-12-23 06:05:41 +00006150 if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
Chris Lattnerd1f46d32005-04-24 06:59:08 +00006151 // Not an extension from the same type?
6152 RHSCIOp = CI->getOperand(0);
Reid Spencer266e42b2006-12-23 06:05:41 +00006153 if (RHSCIOp->getType() != LHSCIOp->getType())
6154 return 0;
Chris Lattner387bf3f2007-01-13 23:11:38 +00006155
6156 // If the signedness of the two compares doesn't agree (i.e. one is a sext
6157 // and the other is a zext), then we can't handle this.
6158 if (CI->getOpcode() != LHSCI->getOpcode())
6159 return 0;
6160
6161 // Likewise, if the signedness of the [sz]exts and the compare don't match,
6162 // then we can't handle this.
6163 if (isSignedExt != isSignedCmp && !ICI.isEquality())
6164 return 0;
6165
6166 // Okay, just insert a compare of the reduced operands now!
6167 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
Reid Spencer279fa252004-11-28 21:31:15 +00006168 }
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00006169
Reid Spencer266e42b2006-12-23 06:05:41 +00006170 // If we aren't dealing with a constant on the RHS, exit early
6171 ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
6172 if (!CI)
6173 return 0;
6174
6175 // Compute the constant that would happen if we truncated to SrcTy then
6176 // reextended to DestTy.
6177 Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
6178 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy);
6179
6180 // If the re-extended constant didn't change...
6181 if (Res2 == CI) {
6182 // Make sure that sign of the Cmp and the sign of the Cast are the same.
6183 // For example, we might have:
6184 // %A = sext short %X to uint
6185 // %B = icmp ugt uint %A, 1330
6186 // It is incorrect to transform this into
6187 // %B = icmp ugt short %X, 1330
6188 // because %A may have negative value.
6189 //
6190 // However, it is OK if SrcTy is bool (See cast-set.ll testcase)
6191 // OR operation is EQ/NE.
Reid Spencer542964f2007-01-11 18:21:29 +00006192 if (isSignedExt == isSignedCmp || SrcTy == Type::Int1Ty || ICI.isEquality())
Reid Spencer266e42b2006-12-23 06:05:41 +00006193 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
6194 else
6195 return 0;
6196 }
6197
6198 // The re-extended constant changed so the constant cannot be represented
6199 // in the shorter type. Consequently, we cannot emit a simple comparison.
6200
6201 // First, handle some easy cases. We know the result cannot be equal at this
6202 // point so handle the ICI.isEquality() cases
6203 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
Zhou Sheng75b871f2007-01-11 12:24:14 +00006204 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
Reid Spencer266e42b2006-12-23 06:05:41 +00006205 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
Zhou Sheng75b871f2007-01-11 12:24:14 +00006206 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
Reid Spencer266e42b2006-12-23 06:05:41 +00006207
6208 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
6209 // should have been folded away previously and not enter in here.
6210 Value *Result;
6211 if (isSignedCmp) {
6212 // We're performing a signed comparison.
6213 if (cast<ConstantInt>(CI)->getSExtValue() < 0)
Zhou Sheng75b871f2007-01-11 12:24:14 +00006214 Result = ConstantInt::getFalse(); // X < (small) --> false
Reid Spencer266e42b2006-12-23 06:05:41 +00006215 else
Zhou Sheng75b871f2007-01-11 12:24:14 +00006216 Result = ConstantInt::getTrue(); // X < (large) --> true
Reid Spencer266e42b2006-12-23 06:05:41 +00006217 } else {
6218 // We're performing an unsigned comparison.
6219 if (isSignedExt) {
6220 // We're performing an unsigned comp with a sign extended value.
6221 // This is true if the input is >= 0. [aka >s -1]
Zhou Sheng75b871f2007-01-11 12:24:14 +00006222 Constant *NegOne = ConstantInt::getAllOnesValue(SrcTy);
Reid Spencer266e42b2006-12-23 06:05:41 +00006223 Result = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_SGT, LHSCIOp,
6224 NegOne, ICI.getName()), ICI);
6225 } else {
6226 // Unsigned extend & unsigned compare -> always true.
Zhou Sheng75b871f2007-01-11 12:24:14 +00006227 Result = ConstantInt::getTrue();
Reid Spencer266e42b2006-12-23 06:05:41 +00006228 }
6229 }
6230
6231 // Finally, return the value computed.
6232 if (ICI.getPredicate() == ICmpInst::ICMP_ULT ||
6233 ICI.getPredicate() == ICmpInst::ICMP_SLT) {
6234 return ReplaceInstUsesWith(ICI, Result);
6235 } else {
6236 assert((ICI.getPredicate()==ICmpInst::ICMP_UGT ||
6237 ICI.getPredicate()==ICmpInst::ICMP_SGT) &&
6238 "ICmp should be folded!");
6239 if (Constant *CI = dyn_cast<Constant>(Result))
6240 return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI));
6241 else
6242 return BinaryOperator::createNot(Result);
6243 }
Chris Lattnerd1f46d32005-04-24 06:59:08 +00006244}
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00006245
Reid Spencer2341c222007-02-02 02:16:23 +00006246Instruction *InstCombiner::visitShl(BinaryOperator &I) {
6247 return commonShiftTransforms(I);
6248}
6249
6250Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
6251 return commonShiftTransforms(I);
6252}
6253
6254Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
6255 return commonShiftTransforms(I);
6256}
6257
6258Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
6259 assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
Chris Lattner113f4f42002-06-25 16:13:24 +00006260 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00006261
6262 // shl X, 0 == X and shr X, 0 == X
6263 // shl 0, X == 0 and shr 0, X == 0
Reid Spencer2341c222007-02-02 02:16:23 +00006264 if (Op1 == Constant::getNullValue(Op1->getType()) ||
Chris Lattnere6794492002-08-12 21:17:25 +00006265 Op0 == Constant::getNullValue(Op0->getType()))
6266 return ReplaceInstUsesWith(I, Op0);
Chris Lattnerf5b4ef72006-02-12 08:07:37 +00006267
Reid Spencer266e42b2006-12-23 06:05:41 +00006268 if (isa<UndefValue>(Op0)) {
6269 if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef
Chris Lattner67f05452004-10-16 23:28:04 +00006270 return ReplaceInstUsesWith(I, Op0);
Reid Spencer266e42b2006-12-23 06:05:41 +00006271 else // undef << X -> 0, undef >>u X -> 0
Chris Lattner81a7a232004-10-16 18:11:37 +00006272 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
6273 }
6274 if (isa<UndefValue>(Op1)) {
Reid Spencer266e42b2006-12-23 06:05:41 +00006275 if (I.getOpcode() == Instruction::AShr) // X >>s undef -> X
6276 return ReplaceInstUsesWith(I, Op0);
6277 else // X << undef, X >>u undef -> 0
Chris Lattner81a7a232004-10-16 18:11:37 +00006278 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner81a7a232004-10-16 18:11:37 +00006279 }
6280
Chris Lattnerd4dee402006-11-10 23:38:52 +00006281 // ashr int -1, X = -1 (for any arithmetic shift rights of ~0)
6282 if (I.getOpcode() == Instruction::AShr)
Reid Spencere0fc4df2006-10-20 07:07:24 +00006283 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
Chris Lattnerd4dee402006-11-10 23:38:52 +00006284 if (CSI->isAllOnesValue())
Chris Lattnerdeaa0dd2003-08-12 21:53:41 +00006285 return ReplaceInstUsesWith(I, CSI);
6286
Chris Lattner183b3362004-04-09 19:05:30 +00006287 // Try to fold constant and into select arguments.
6288 if (isa<Constant>(Op0))
6289 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
Chris Lattner86102b82005-01-01 16:22:27 +00006290 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner183b3362004-04-09 19:05:30 +00006291 return R;
6292
Chris Lattnerb18dbbf2005-05-08 17:34:56 +00006293 // See if we can turn a signed shr into an unsigned shr.
Chris Lattnerb3f24c92006-09-18 04:22:48 +00006294 if (I.isArithmeticShift()) {
Chris Lattnerc3ebf402006-02-07 07:27:52 +00006295 if (MaskedValueIsZero(Op0,
6296 1ULL << (I.getType()->getPrimitiveSizeInBits()-1))) {
Reid Spencer0d5f9232007-02-02 14:08:20 +00006297 return BinaryOperator::createLShr(Op0, Op1, I.getName());
Chris Lattnerb18dbbf2005-05-08 17:34:56 +00006298 }
6299 }
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +00006300
Reid Spencere0fc4df2006-10-20 07:07:24 +00006301 if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
Reid Spencerc635f472006-12-31 05:48:39 +00006302 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
6303 return Res;
Chris Lattner14553932006-01-06 07:12:35 +00006304 return 0;
6305}
6306
Reid Spencere0fc4df2006-10-20 07:07:24 +00006307Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
Reid Spencer2341c222007-02-02 02:16:23 +00006308 BinaryOperator &I) {
Reid Spencer266e42b2006-12-23 06:05:41 +00006309 bool isLeftShift = I.getOpcode() == Instruction::Shl;
Chris Lattner14553932006-01-06 07:12:35 +00006310
Chris Lattnerf5b4ef72006-02-12 08:07:37 +00006311 // See if we can simplify any instructions used by the instruction whose sole
6312 // purpose is to compute bits we don't care about.
6313 uint64_t KnownZero, KnownOne;
Reid Spencera94d3942007-01-19 21:13:56 +00006314 if (SimplifyDemandedBits(&I, cast<IntegerType>(I.getType())->getBitMask(),
Chris Lattnerf5b4ef72006-02-12 08:07:37 +00006315 KnownZero, KnownOne))
6316 return &I;
6317
Chris Lattner14553932006-01-06 07:12:35 +00006318 // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr
6319 // of a signed value.
6320 //
6321 unsigned TypeBits = Op0->getType()->getPrimitiveSizeInBits();
Reid Spencere0fc4df2006-10-20 07:07:24 +00006322 if (Op1->getZExtValue() >= TypeBits) {
Chris Lattnerd5fea612007-02-02 05:29:55 +00006323 if (I.getOpcode() != Instruction::AShr)
Chris Lattner14553932006-01-06 07:12:35 +00006324 return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
6325 else {
Chris Lattnerd5fea612007-02-02 05:29:55 +00006326 I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
Chris Lattner14553932006-01-06 07:12:35 +00006327 return &I;
Chris Lattnerf5ce2542004-02-23 20:30:06 +00006328 }
Chris Lattner14553932006-01-06 07:12:35 +00006329 }
6330
6331 // ((X*C1) << C2) == (X * (C1 << C2))
6332 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
6333 if (BO->getOpcode() == Instruction::Mul && isLeftShift)
6334 if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
6335 return BinaryOperator::createMul(BO->getOperand(0),
6336 ConstantExpr::getShl(BOOp, Op1));
6337
6338 // Try to fold constant and into select arguments.
6339 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
6340 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
6341 return R;
6342 if (isa<PHINode>(Op0))
6343 if (Instruction *NV = FoldOpIntoPhi(I))
6344 return NV;
6345
6346 if (Op0->hasOneUse()) {
Chris Lattner14553932006-01-06 07:12:35 +00006347 if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
6348 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
6349 Value *V1, *V2;
6350 ConstantInt *CC;
6351 switch (Op0BO->getOpcode()) {
Chris Lattner27cb9db2005-09-18 05:12:10 +00006352 default: break;
6353 case Instruction::Add:
6354 case Instruction::And:
6355 case Instruction::Or:
Reid Spencer2f34b982007-02-02 14:41:37 +00006356 case Instruction::Xor: {
Chris Lattner27cb9db2005-09-18 05:12:10 +00006357 // These operators commute.
6358 // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
Chris Lattner797dee72005-09-18 06:30:59 +00006359 if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
6360 match(Op0BO->getOperand(1),
Chris Lattner14553932006-01-06 07:12:35 +00006361 m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
Reid Spencer0d5f9232007-02-02 14:08:20 +00006362 Instruction *YS = BinaryOperator::createShl(
Chris Lattner14553932006-01-06 07:12:35 +00006363 Op0BO->getOperand(0), Op1,
Chris Lattner797dee72005-09-18 06:30:59 +00006364 Op0BO->getName());
6365 InsertNewInstBefore(YS, I); // (Y << C)
Chris Lattner24cd2fa2006-02-09 07:41:14 +00006366 Instruction *X =
6367 BinaryOperator::create(Op0BO->getOpcode(), YS, V1,
6368 Op0BO->getOperand(1)->getName());
Chris Lattner797dee72005-09-18 06:30:59 +00006369 InsertNewInstBefore(X, I); // (X + (Y << C))
6370 Constant *C2 = ConstantInt::getAllOnesValue(X->getType());
Chris Lattner14553932006-01-06 07:12:35 +00006371 C2 = ConstantExpr::getShl(C2, Op1);
Chris Lattner797dee72005-09-18 06:30:59 +00006372 return BinaryOperator::createAnd(X, C2);
6373 }
Chris Lattner14553932006-01-06 07:12:35 +00006374
Chris Lattner797dee72005-09-18 06:30:59 +00006375 // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
Reid Spencer2f34b982007-02-02 14:41:37 +00006376 Value *Op0BOOp1 = Op0BO->getOperand(1);
Chris Lattnerfe53cf22007-03-05 00:11:19 +00006377 if (isLeftShift && Op0BOOp1->hasOneUse() &&
Reid Spencer2f34b982007-02-02 14:41:37 +00006378 match(Op0BOOp1,
6379 m_And(m_Shr(m_Value(V1), m_Value(V2)),m_ConstantInt(CC))) &&
Chris Lattnerfe53cf22007-03-05 00:11:19 +00006380 cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse() &&
6381 V2 == Op1) {
Reid Spencer0d5f9232007-02-02 14:08:20 +00006382 Instruction *YS = BinaryOperator::createShl(
Reid Spencer2341c222007-02-02 02:16:23 +00006383 Op0BO->getOperand(0), Op1,
6384 Op0BO->getName());
Chris Lattner797dee72005-09-18 06:30:59 +00006385 InsertNewInstBefore(YS, I); // (Y << C)
6386 Instruction *XM =
Chris Lattner14553932006-01-06 07:12:35 +00006387 BinaryOperator::createAnd(V1, ConstantExpr::getShl(CC, Op1),
Chris Lattner797dee72005-09-18 06:30:59 +00006388 V1->getName()+".mask");
6389 InsertNewInstBefore(XM, I); // X & (CC << C)
6390
6391 return BinaryOperator::create(Op0BO->getOpcode(), YS, XM);
6392 }
Reid Spencer2f34b982007-02-02 14:41:37 +00006393 }
Chris Lattner14553932006-01-06 07:12:35 +00006394
Reid Spencer2f34b982007-02-02 14:41:37 +00006395 // FALL THROUGH.
6396 case Instruction::Sub: {
Chris Lattner27cb9db2005-09-18 05:12:10 +00006397 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
Chris Lattner797dee72005-09-18 06:30:59 +00006398 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
6399 match(Op0BO->getOperand(0),
Chris Lattner14553932006-01-06 07:12:35 +00006400 m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
Reid Spencer0d5f9232007-02-02 14:08:20 +00006401 Instruction *YS = BinaryOperator::createShl(
Reid Spencer2341c222007-02-02 02:16:23 +00006402 Op0BO->getOperand(1), Op1,
6403 Op0BO->getName());
Chris Lattner797dee72005-09-18 06:30:59 +00006404 InsertNewInstBefore(YS, I); // (Y << C)
Chris Lattner24cd2fa2006-02-09 07:41:14 +00006405 Instruction *X =
Chris Lattner1df0e982006-05-31 21:14:00 +00006406 BinaryOperator::create(Op0BO->getOpcode(), V1, YS,
Chris Lattner24cd2fa2006-02-09 07:41:14 +00006407 Op0BO->getOperand(0)->getName());
Chris Lattner797dee72005-09-18 06:30:59 +00006408 InsertNewInstBefore(X, I); // (X + (Y << C))
6409 Constant *C2 = ConstantInt::getAllOnesValue(X->getType());
Chris Lattner14553932006-01-06 07:12:35 +00006410 C2 = ConstantExpr::getShl(C2, Op1);
Chris Lattner797dee72005-09-18 06:30:59 +00006411 return BinaryOperator::createAnd(X, C2);
6412 }
Chris Lattner14553932006-01-06 07:12:35 +00006413
Chris Lattner1df0e982006-05-31 21:14:00 +00006414 // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
Chris Lattner797dee72005-09-18 06:30:59 +00006415 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
6416 match(Op0BO->getOperand(0),
6417 m_And(m_Shr(m_Value(V1), m_Value(V2)),
Chris Lattner14553932006-01-06 07:12:35 +00006418 m_ConstantInt(CC))) && V2 == Op1 &&
Chris Lattner24cd2fa2006-02-09 07:41:14 +00006419 cast<BinaryOperator>(Op0BO->getOperand(0))
6420 ->getOperand(0)->hasOneUse()) {
Reid Spencer0d5f9232007-02-02 14:08:20 +00006421 Instruction *YS = BinaryOperator::createShl(
Reid Spencer2341c222007-02-02 02:16:23 +00006422 Op0BO->getOperand(1), Op1,
6423 Op0BO->getName());
Chris Lattner797dee72005-09-18 06:30:59 +00006424 InsertNewInstBefore(YS, I); // (Y << C)
6425 Instruction *XM =
Chris Lattner14553932006-01-06 07:12:35 +00006426 BinaryOperator::createAnd(V1, ConstantExpr::getShl(CC, Op1),
Chris Lattner797dee72005-09-18 06:30:59 +00006427 V1->getName()+".mask");
6428 InsertNewInstBefore(XM, I); // X & (CC << C)
6429
Chris Lattner1df0e982006-05-31 21:14:00 +00006430 return BinaryOperator::create(Op0BO->getOpcode(), XM, YS);
Chris Lattner797dee72005-09-18 06:30:59 +00006431 }
Chris Lattner14553932006-01-06 07:12:35 +00006432
Chris Lattner27cb9db2005-09-18 05:12:10 +00006433 break;
Reid Spencer2f34b982007-02-02 14:41:37 +00006434 }
Chris Lattner14553932006-01-06 07:12:35 +00006435 }
6436
6437
6438 // If the operand is an bitwise operator with a constant RHS, and the
6439 // shift is the only use, we can pull it out of the shift.
6440 if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
6441 bool isValid = true; // Valid only for And, Or, Xor
6442 bool highBitSet = false; // Transform if high bit of constant set?
6443
6444 switch (Op0BO->getOpcode()) {
Chris Lattnerdeaa0dd2003-08-12 21:53:41 +00006445 default: isValid = false; break; // Do not perform transform!
Chris Lattner44bd3922004-10-08 03:46:20 +00006446 case Instruction::Add:
6447 isValid = isLeftShift;
6448 break;
Chris Lattnerdeaa0dd2003-08-12 21:53:41 +00006449 case Instruction::Or:
6450 case Instruction::Xor:
6451 highBitSet = false;
6452 break;
6453 case Instruction::And:
6454 highBitSet = true;
6455 break;
Chris Lattner14553932006-01-06 07:12:35 +00006456 }
6457
6458 // If this is a signed shift right, and the high bit is modified
6459 // by the logical operation, do not perform the transformation.
6460 // The highBitSet boolean indicates the value of the high bit of
6461 // the constant which would cause it to be modified for this
6462 // operation.
6463 //
Chris Lattner3e009e82007-02-05 00:57:54 +00006464 if (isValid && !isLeftShift && I.getOpcode() == Instruction::AShr) {
Reid Spencere0fc4df2006-10-20 07:07:24 +00006465 uint64_t Val = Op0C->getZExtValue();
Chris Lattner14553932006-01-06 07:12:35 +00006466 isValid = ((Val & (1 << (TypeBits-1))) != 0) == highBitSet;
6467 }
6468
6469 if (isValid) {
6470 Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
6471
6472 Instruction *NewShift =
Chris Lattner6e0123b2007-02-11 01:23:03 +00006473 BinaryOperator::create(I.getOpcode(), Op0BO->getOperand(0), Op1);
Chris Lattner14553932006-01-06 07:12:35 +00006474 InsertNewInstBefore(NewShift, I);
Chris Lattner6e0123b2007-02-11 01:23:03 +00006475 NewShift->takeName(Op0BO);
Chris Lattner14553932006-01-06 07:12:35 +00006476
6477 return BinaryOperator::create(Op0BO->getOpcode(), NewShift,
6478 NewRHS);
6479 }
6480 }
6481 }
6482 }
6483
Chris Lattnereb372a02006-01-06 07:52:12 +00006484 // Find out if this is a shift of a shift by a constant.
Reid Spencer2341c222007-02-02 02:16:23 +00006485 BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
6486 if (ShiftOp && !ShiftOp->isShift())
6487 ShiftOp = 0;
Chris Lattnereb372a02006-01-06 07:52:12 +00006488
Reid Spencere0fc4df2006-10-20 07:07:24 +00006489 if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
Reid Spencere0fc4df2006-10-20 07:07:24 +00006490 ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
Reid Spencere0fc4df2006-10-20 07:07:24 +00006491 unsigned ShiftAmt1 = (unsigned)ShiftAmt1C->getZExtValue();
6492 unsigned ShiftAmt2 = (unsigned)Op1->getZExtValue();
Chris Lattner3e009e82007-02-05 00:57:54 +00006493 assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
6494 if (ShiftAmt1 == 0) return 0; // Will be simplified in the future.
6495 Value *X = ShiftOp->getOperand(0);
Chris Lattnereb372a02006-01-06 07:52:12 +00006496
Chris Lattner3e009e82007-02-05 00:57:54 +00006497 unsigned AmtSum = ShiftAmt1+ShiftAmt2; // Fold into one big shift.
6498 if (AmtSum > I.getType()->getPrimitiveSizeInBits())
6499 AmtSum = I.getType()->getPrimitiveSizeInBits();
6500
6501 const IntegerType *Ty = cast<IntegerType>(I.getType());
6502
6503 // Check for (X << c1) << c2 and (X >> c1) >> c2
Chris Lattner6c344e52007-02-03 23:28:07 +00006504 if (I.getOpcode() == ShiftOp->getOpcode()) {
Chris Lattner3e009e82007-02-05 00:57:54 +00006505 return BinaryOperator::create(I.getOpcode(), X,
6506 ConstantInt::get(Ty, AmtSum));
6507 } else if (ShiftOp->getOpcode() == Instruction::LShr &&
6508 I.getOpcode() == Instruction::AShr) {
6509 // ((X >>u C1) >>s C2) -> (X >>u (C1+C2)) since C1 != 0.
6510 return BinaryOperator::createLShr(X, ConstantInt::get(Ty, AmtSum));
6511 } else if (ShiftOp->getOpcode() == Instruction::AShr &&
6512 I.getOpcode() == Instruction::LShr) {
6513 // ((X >>s C1) >>u C2) -> ((X >>s (C1+C2)) & mask) since C1 != 0.
6514 Instruction *Shift =
6515 BinaryOperator::createAShr(X, ConstantInt::get(Ty, AmtSum));
6516 InsertNewInstBefore(Shift, I);
6517
6518 uint64_t Mask = Ty->getBitMask() >> ShiftAmt2;
6519 return BinaryOperator::createAnd(Shift, ConstantInt::get(Ty, Mask));
Chris Lattnereb372a02006-01-06 07:52:12 +00006520 }
6521
Chris Lattner3e009e82007-02-05 00:57:54 +00006522 // Okay, if we get here, one shift must be left, and the other shift must be
6523 // right. See if the amounts are equal.
6524 if (ShiftAmt1 == ShiftAmt2) {
6525 // If we have ((X >>? C) << C), turn this into X & (-1 << C).
6526 if (I.getOpcode() == Instruction::Shl) {
Chris Lattner0a28e902007-02-05 04:09:35 +00006527 uint64_t Mask = Ty->getBitMask() << ShiftAmt1;
Chris Lattner3e009e82007-02-05 00:57:54 +00006528 return BinaryOperator::createAnd(X, ConstantInt::get(Ty, Mask));
6529 }
6530 // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
6531 if (I.getOpcode() == Instruction::LShr) {
Chris Lattner0a28e902007-02-05 04:09:35 +00006532 uint64_t Mask = Ty->getBitMask() >> ShiftAmt1;
Chris Lattner3e009e82007-02-05 00:57:54 +00006533 return BinaryOperator::createAnd(X, ConstantInt::get(Ty, Mask));
6534 }
6535 // We can simplify ((X << C) >>s C) into a trunc + sext.
6536 // NOTE: we could do this for any C, but that would make 'unusual' integer
6537 // types. For now, just stick to ones well-supported by the code
6538 // generators.
6539 const Type *SExtType = 0;
6540 switch (Ty->getBitWidth() - ShiftAmt1) {
6541 case 8 : SExtType = Type::Int8Ty; break;
6542 case 16: SExtType = Type::Int16Ty; break;
6543 case 32: SExtType = Type::Int32Ty; break;
6544 default: break;
6545 }
6546 if (SExtType) {
6547 Instruction *NewTrunc = new TruncInst(X, SExtType, "sext");
6548 InsertNewInstBefore(NewTrunc, I);
6549 return new SExtInst(NewTrunc, Ty);
6550 }
6551 // Otherwise, we can't handle it yet.
6552 } else if (ShiftAmt1 < ShiftAmt2) {
6553 unsigned ShiftDiff = ShiftAmt2-ShiftAmt1;
Chris Lattnereb372a02006-01-06 07:52:12 +00006554
Chris Lattner83ac5ae92007-02-05 05:57:49 +00006555 // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2)
Chris Lattner3e009e82007-02-05 00:57:54 +00006556 if (I.getOpcode() == Instruction::Shl) {
6557 assert(ShiftOp->getOpcode() == Instruction::LShr ||
6558 ShiftOp->getOpcode() == Instruction::AShr);
Chris Lattner9cbfbc22006-01-07 01:32:28 +00006559 Instruction *Shift =
Chris Lattner3e009e82007-02-05 00:57:54 +00006560 BinaryOperator::createShl(X, ConstantInt::get(Ty, ShiftDiff));
Chris Lattner9cbfbc22006-01-07 01:32:28 +00006561 InsertNewInstBefore(Shift, I);
6562
Chris Lattner83ac5ae92007-02-05 05:57:49 +00006563 uint64_t Mask = Ty->getBitMask() << ShiftAmt2;
Chris Lattner3e009e82007-02-05 00:57:54 +00006564 return BinaryOperator::createAnd(Shift, ConstantInt::get(Ty, Mask));
Chris Lattnereb372a02006-01-06 07:52:12 +00006565 }
Chris Lattner3e009e82007-02-05 00:57:54 +00006566
Chris Lattner83ac5ae92007-02-05 05:57:49 +00006567 // (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2)
Chris Lattner3e009e82007-02-05 00:57:54 +00006568 if (I.getOpcode() == Instruction::LShr) {
6569 assert(ShiftOp->getOpcode() == Instruction::Shl);
6570 Instruction *Shift =
6571 BinaryOperator::createLShr(X, ConstantInt::get(Ty, ShiftDiff));
6572 InsertNewInstBefore(Shift, I);
Chris Lattnereb372a02006-01-06 07:52:12 +00006573
Chris Lattner83ac5ae92007-02-05 05:57:49 +00006574 uint64_t Mask = Ty->getBitMask() >> ShiftAmt2;
Chris Lattner3e009e82007-02-05 00:57:54 +00006575 return BinaryOperator::createAnd(Shift, ConstantInt::get(Ty, Mask));
Chris Lattner27cb9db2005-09-18 05:12:10 +00006576 }
Chris Lattner3e009e82007-02-05 00:57:54 +00006577
6578 // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
6579 } else {
6580 assert(ShiftAmt2 < ShiftAmt1);
6581 unsigned ShiftDiff = ShiftAmt1-ShiftAmt2;
6582
Chris Lattner83ac5ae92007-02-05 05:57:49 +00006583 // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2)
Chris Lattner3e009e82007-02-05 00:57:54 +00006584 if (I.getOpcode() == Instruction::Shl) {
6585 assert(ShiftOp->getOpcode() == Instruction::LShr ||
6586 ShiftOp->getOpcode() == Instruction::AShr);
6587 Instruction *Shift =
6588 BinaryOperator::create(ShiftOp->getOpcode(), X,
6589 ConstantInt::get(Ty, ShiftDiff));
6590 InsertNewInstBefore(Shift, I);
6591
6592 uint64_t Mask = Ty->getBitMask() << ShiftAmt2;
6593 return BinaryOperator::createAnd(Shift, ConstantInt::get(Ty, Mask));
6594 }
6595
Chris Lattner83ac5ae92007-02-05 05:57:49 +00006596 // (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2)
Chris Lattner3e009e82007-02-05 00:57:54 +00006597 if (I.getOpcode() == Instruction::LShr) {
6598 assert(ShiftOp->getOpcode() == Instruction::Shl);
6599 Instruction *Shift =
6600 BinaryOperator::createShl(X, ConstantInt::get(Ty, ShiftDiff));
6601 InsertNewInstBefore(Shift, I);
6602
6603 uint64_t Mask = Ty->getBitMask() >> ShiftAmt2;
6604 return BinaryOperator::createAnd(Shift, ConstantInt::get(Ty, Mask));
6605 }
6606
6607 // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
Chris Lattner86102b82005-01-01 16:22:27 +00006608 }
Chris Lattnereb372a02006-01-06 07:52:12 +00006609 }
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00006610 return 0;
6611}
6612
Chris Lattner48a44f72002-05-02 17:06:02 +00006613
Chris Lattner8f663e82005-10-29 04:36:15 +00006614/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
6615/// expression. If so, decompose it, returning some value X, such that Val is
6616/// X*Scale+Offset.
6617///
6618static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
6619 unsigned &Offset) {
Reid Spencerc635f472006-12-31 05:48:39 +00006620 assert(Val->getType() == Type::Int32Ty && "Unexpected allocation size type!");
Reid Spencere0fc4df2006-10-20 07:07:24 +00006621 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
Reid Spencerc635f472006-12-31 05:48:39 +00006622 Offset = CI->getZExtValue();
6623 Scale = 1;
6624 return ConstantInt::get(Type::Int32Ty, 0);
Chris Lattner8f663e82005-10-29 04:36:15 +00006625 } else if (Instruction *I = dyn_cast<Instruction>(Val)) {
6626 if (I->getNumOperands() == 2) {
Reid Spencere0fc4df2006-10-20 07:07:24 +00006627 if (ConstantInt *CUI = dyn_cast<ConstantInt>(I->getOperand(1))) {
Reid Spencerc635f472006-12-31 05:48:39 +00006628 if (I->getOpcode() == Instruction::Shl) {
6629 // This is a value scaled by '1 << the shift amt'.
6630 Scale = 1U << CUI->getZExtValue();
6631 Offset = 0;
6632 return I->getOperand(0);
6633 } else if (I->getOpcode() == Instruction::Mul) {
6634 // This value is scaled by 'CUI'.
6635 Scale = CUI->getZExtValue();
6636 Offset = 0;
6637 return I->getOperand(0);
6638 } else if (I->getOpcode() == Instruction::Add) {
6639 // We have X+C. Check to see if we really have (X*C2)+C1,
6640 // where C1 is divisible by C2.
6641 unsigned SubScale;
6642 Value *SubVal =
6643 DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
6644 Offset += CUI->getZExtValue();
6645 if (SubScale > 1 && (Offset % SubScale == 0)) {
6646 Scale = SubScale;
6647 return SubVal;
Chris Lattner8f663e82005-10-29 04:36:15 +00006648 }
6649 }
6650 }
6651 }
6652 }
6653
6654 // Otherwise, we can't look past this.
6655 Scale = 1;
6656 Offset = 0;
6657 return Val;
6658}
6659
6660
Chris Lattner216be912005-10-24 06:03:58 +00006661/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
6662/// try to eliminate the cast by moving the type information into the alloc.
6663Instruction *InstCombiner::PromoteCastOfAllocation(CastInst &CI,
6664 AllocationInst &AI) {
6665 const PointerType *PTy = dyn_cast<PointerType>(CI.getType());
Chris Lattnerbb171802005-10-27 05:53:56 +00006666 if (!PTy) return 0; // Not casting the allocation to a pointer type.
Chris Lattner216be912005-10-24 06:03:58 +00006667
Chris Lattnerac87beb2005-10-24 06:22:12 +00006668 // Remove any uses of AI that are dead.
6669 assert(!CI.use_empty() && "Dead instructions should be removed earlier!");
Chris Lattner99c6cf62007-02-15 22:52:10 +00006670
Chris Lattnerac87beb2005-10-24 06:22:12 +00006671 for (Value::use_iterator UI = AI.use_begin(), E = AI.use_end(); UI != E; ) {
6672 Instruction *User = cast<Instruction>(*UI++);
6673 if (isInstructionTriviallyDead(User)) {
6674 while (UI != E && *UI == User)
6675 ++UI; // If this instruction uses AI more than once, don't break UI.
6676
Chris Lattnerac87beb2005-10-24 06:22:12 +00006677 ++NumDeadInst;
Bill Wendling5dbf43c2006-11-26 09:46:52 +00006678 DOUT << "IC: DCE: " << *User;
Chris Lattner51f54572007-03-02 19:59:19 +00006679 EraseInstFromFunction(*User);
Chris Lattnerac87beb2005-10-24 06:22:12 +00006680 }
6681 }
6682
Chris Lattner216be912005-10-24 06:03:58 +00006683 // Get the type really allocated and the type casted to.
6684 const Type *AllocElTy = AI.getAllocatedType();
6685 const Type *CastElTy = PTy->getElementType();
6686 if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
Chris Lattner355ecc02005-10-24 06:26:18 +00006687
Chris Lattner945e4372007-02-14 05:52:17 +00006688 unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
6689 unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
Chris Lattner355ecc02005-10-24 06:26:18 +00006690 if (CastElTyAlign < AllocElTyAlign) return 0;
6691
Chris Lattner46705b22005-10-24 06:35:18 +00006692 // If the allocation has multiple uses, only promote it if we are strictly
6693 // increasing the alignment of the resultant allocation. If we keep it the
6694 // same, we open the door to infinite loops of various kinds.
6695 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
6696
Chris Lattner216be912005-10-24 06:03:58 +00006697 uint64_t AllocElTySize = TD->getTypeSize(AllocElTy);
6698 uint64_t CastElTySize = TD->getTypeSize(CastElTy);
Chris Lattnerbb171802005-10-27 05:53:56 +00006699 if (CastElTySize == 0 || AllocElTySize == 0) return 0;
Chris Lattner355ecc02005-10-24 06:26:18 +00006700
Chris Lattner8270c332005-10-29 03:19:53 +00006701 // See if we can satisfy the modulus by pulling a scale out of the array
6702 // size argument.
Chris Lattner8f663e82005-10-29 04:36:15 +00006703 unsigned ArraySizeScale, ArrayOffset;
6704 Value *NumElements = // See if the array size is a decomposable linear expr.
6705 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
6706
Chris Lattner8270c332005-10-29 03:19:53 +00006707 // If we can now satisfy the modulus, by using a non-1 scale, we really can
6708 // do the xform.
Chris Lattner8f663e82005-10-29 04:36:15 +00006709 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
6710 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0;
Chris Lattnerb3ecf962005-10-27 06:12:00 +00006711
Chris Lattner8270c332005-10-29 03:19:53 +00006712 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
6713 Value *Amt = 0;
6714 if (Scale == 1) {
6715 Amt = NumElements;
6716 } else {
Reid Spencere0fc4df2006-10-20 07:07:24 +00006717 // If the allocation size is constant, form a constant mul expression
Reid Spencerc635f472006-12-31 05:48:39 +00006718 Amt = ConstantInt::get(Type::Int32Ty, Scale);
6719 if (isa<ConstantInt>(NumElements))
Reid Spencere0fc4df2006-10-20 07:07:24 +00006720 Amt = ConstantExpr::getMul(
6721 cast<ConstantInt>(NumElements), cast<ConstantInt>(Amt));
6722 // otherwise multiply the amount and the number of elements
Chris Lattner8270c332005-10-29 03:19:53 +00006723 else if (Scale != 1) {
6724 Instruction *Tmp = BinaryOperator::createMul(Amt, NumElements, "tmp");
6725 Amt = InsertNewInstBefore(Tmp, AI);
Chris Lattnerb3ecf962005-10-27 06:12:00 +00006726 }
Chris Lattnerbb171802005-10-27 05:53:56 +00006727 }
6728
Chris Lattner8f663e82005-10-29 04:36:15 +00006729 if (unsigned Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
Reid Spencerc635f472006-12-31 05:48:39 +00006730 Value *Off = ConstantInt::get(Type::Int32Ty, Offset);
Chris Lattner8f663e82005-10-29 04:36:15 +00006731 Instruction *Tmp = BinaryOperator::createAdd(Amt, Off, "tmp");
6732 Amt = InsertNewInstBefore(Tmp, AI);
6733 }
6734
Chris Lattner216be912005-10-24 06:03:58 +00006735 AllocationInst *New;
6736 if (isa<MallocInst>(AI))
Chris Lattner6e0123b2007-02-11 01:23:03 +00006737 New = new MallocInst(CastElTy, Amt, AI.getAlignment());
Chris Lattner216be912005-10-24 06:03:58 +00006738 else
Chris Lattner6e0123b2007-02-11 01:23:03 +00006739 New = new AllocaInst(CastElTy, Amt, AI.getAlignment());
Chris Lattner216be912005-10-24 06:03:58 +00006740 InsertNewInstBefore(New, AI);
Chris Lattner6e0123b2007-02-11 01:23:03 +00006741 New->takeName(&AI);
Chris Lattner46705b22005-10-24 06:35:18 +00006742
6743 // If the allocation has multiple uses, insert a cast and change all things
6744 // that used it to use the new cast. This will also hack on CI, but it will
6745 // die soon.
6746 if (!AI.hasOneUse()) {
6747 AddUsesToWorkList(AI);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00006748 // New is the allocation instruction, pointer typed. AI is the original
6749 // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
6750 CastInst *NewCast = new BitCastInst(New, AI.getType(), "tmpcast");
Chris Lattner46705b22005-10-24 06:35:18 +00006751 InsertNewInstBefore(NewCast, AI);
6752 AI.replaceAllUsesWith(NewCast);
6753 }
Chris Lattner216be912005-10-24 06:03:58 +00006754 return ReplaceInstUsesWith(CI, New);
6755}
6756
Chris Lattner1ebbe6a2006-05-13 02:06:03 +00006757/// CanEvaluateInDifferentType - Return true if we can take the specified value
Chris Lattnerda1d04a2007-03-03 05:27:34 +00006758/// and return it as type Ty without inserting any new casts and without
6759/// changing the computed value. This is used by code that tries to decide
6760/// whether promoting or shrinking integer operations to wider or smaller types
6761/// will allow us to eliminate a truncate or extend.
6762///
6763/// This is a truncation operation if Ty is smaller than V->getType(), or an
6764/// extension operation if Ty is larger.
6765static bool CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
Chris Lattner1ebbe6a2006-05-13 02:06:03 +00006766 int &NumCastsRemoved) {
Chris Lattnerda1d04a2007-03-03 05:27:34 +00006767 // We can always evaluate constants in another type.
6768 if (isa<ConstantInt>(V))
6769 return true;
Chris Lattner1ebbe6a2006-05-13 02:06:03 +00006770
6771 Instruction *I = dyn_cast<Instruction>(V);
Chris Lattnerda1d04a2007-03-03 05:27:34 +00006772 if (!I) return false;
6773
6774 const IntegerType *OrigTy = cast<IntegerType>(V->getType());
Chris Lattner1ebbe6a2006-05-13 02:06:03 +00006775
6776 switch (I->getOpcode()) {
Chris Lattnerda1d04a2007-03-03 05:27:34 +00006777 case Instruction::Add:
6778 case Instruction::Sub:
Chris Lattner1ebbe6a2006-05-13 02:06:03 +00006779 case Instruction::And:
6780 case Instruction::Or:
6781 case Instruction::Xor:
Chris Lattnerda1d04a2007-03-03 05:27:34 +00006782 if (!I->hasOneUse()) return false;
Chris Lattner1ebbe6a2006-05-13 02:06:03 +00006783 // These operators can all arbitrarily be extended or truncated.
6784 return CanEvaluateInDifferentType(I->getOperand(0), Ty, NumCastsRemoved) &&
6785 CanEvaluateInDifferentType(I->getOperand(1), Ty, NumCastsRemoved);
Chris Lattnerda1d04a2007-03-03 05:27:34 +00006786
Chris Lattner960acb02006-11-29 07:18:39 +00006787 case Instruction::Shl:
Chris Lattnerda1d04a2007-03-03 05:27:34 +00006788 if (!I->hasOneUse()) return false;
6789 // If we are truncating the result of this SHL, and if it's a shift of a
6790 // constant amount, we can always perform a SHL in a smaller type.
6791 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
6792 if (Ty->getBitWidth() < OrigTy->getBitWidth() &&
6793 CI->getZExtValue() < Ty->getBitWidth())
6794 return CanEvaluateInDifferentType(I->getOperand(0), Ty,NumCastsRemoved);
6795 }
6796 break;
6797 case Instruction::LShr:
6798 if (!I->hasOneUse()) return false;
6799 // If this is a truncate of a logical shr, we can truncate it to a smaller
6800 // lshr iff we know that the bits we would otherwise be shifting in are
6801 // already zeros.
6802 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
6803 if (Ty->getBitWidth() < OrigTy->getBitWidth() &&
6804 MaskedValueIsZero(I->getOperand(0),
6805 OrigTy->getBitMask() & ~Ty->getBitMask()) &&
6806 CI->getZExtValue() < Ty->getBitWidth()) {
6807 return CanEvaluateInDifferentType(I->getOperand(0), Ty, NumCastsRemoved);
6808 }
6809 }
Chris Lattner960acb02006-11-29 07:18:39 +00006810 break;
Reid Spencer6c38f0b2006-11-27 01:05:10 +00006811 case Instruction::Trunc:
6812 case Instruction::ZExt:
6813 case Instruction::SExt:
Chris Lattner1ebbe6a2006-05-13 02:06:03 +00006814 // If this is a cast from the destination type, we can trivially eliminate
6815 // it, and this will remove a cast overall.
6816 if (I->getOperand(0)->getType() == Ty) {
Chris Lattner3fda3862006-06-28 17:34:50 +00006817 // If the first operand is itself a cast, and is eliminable, do not count
6818 // this as an eliminable cast. We would prefer to eliminate those two
6819 // casts first.
Reid Spencerde46e482006-11-02 20:25:50 +00006820 if (isa<CastInst>(I->getOperand(0)))
Chris Lattner3fda3862006-06-28 17:34:50 +00006821 return true;
6822
Chris Lattner1ebbe6a2006-05-13 02:06:03 +00006823 ++NumCastsRemoved;
6824 return true;
6825 }
Reid Spencer6c38f0b2006-11-27 01:05:10 +00006826 break;
6827 default:
Chris Lattner1ebbe6a2006-05-13 02:06:03 +00006828 // TODO: Can handle more cases here.
6829 break;
6830 }
6831
6832 return false;
6833}
6834
6835/// EvaluateInDifferentType - Given an expression that
6836/// CanEvaluateInDifferentType returns true for, actually insert the code to
6837/// evaluate the expression.
Reid Spencer74a528b2006-12-13 18:21:21 +00006838Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
Chris Lattnerda1d04a2007-03-03 05:27:34 +00006839 bool isSigned) {
Chris Lattner1ebbe6a2006-05-13 02:06:03 +00006840 if (Constant *C = dyn_cast<Constant>(V))
Reid Spencer74a528b2006-12-13 18:21:21 +00006841 return ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
Chris Lattner1ebbe6a2006-05-13 02:06:03 +00006842
6843 // Otherwise, it must be an instruction.
6844 Instruction *I = cast<Instruction>(V);
Chris Lattnerd0622b62006-05-20 23:14:03 +00006845 Instruction *Res = 0;
Chris Lattner1ebbe6a2006-05-13 02:06:03 +00006846 switch (I->getOpcode()) {
Chris Lattnerda1d04a2007-03-03 05:27:34 +00006847 case Instruction::Add:
6848 case Instruction::Sub:
Chris Lattner1ebbe6a2006-05-13 02:06:03 +00006849 case Instruction::And:
6850 case Instruction::Or:
Chris Lattnerda1d04a2007-03-03 05:27:34 +00006851 case Instruction::Xor:
Chris Lattner960acb02006-11-29 07:18:39 +00006852 case Instruction::AShr:
6853 case Instruction::LShr:
6854 case Instruction::Shl: {
Reid Spencer74a528b2006-12-13 18:21:21 +00006855 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
Chris Lattnerda1d04a2007-03-03 05:27:34 +00006856 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
6857 Res = BinaryOperator::create((Instruction::BinaryOps)I->getOpcode(),
6858 LHS, RHS, I->getName());
Chris Lattner960acb02006-11-29 07:18:39 +00006859 break;
6860 }
Reid Spencer6c38f0b2006-11-27 01:05:10 +00006861 case Instruction::Trunc:
6862 case Instruction::ZExt:
6863 case Instruction::SExt:
6864 case Instruction::BitCast:
6865 // If the source type of the cast is the type we're trying for then we can
6866 // just return the source. There's no need to insert it because its not new.
Chris Lattner1ebbe6a2006-05-13 02:06:03 +00006867 if (I->getOperand(0)->getType() == Ty)
6868 return I->getOperand(0);
6869
Reid Spencer6c38f0b2006-11-27 01:05:10 +00006870 // Some other kind of cast, which shouldn't happen, so just ..
6871 // FALL THROUGH
6872 default:
Chris Lattner1ebbe6a2006-05-13 02:06:03 +00006873 // TODO: Can handle more cases here.
6874 assert(0 && "Unreachable!");
6875 break;
6876 }
6877
6878 return InsertNewInstBefore(Res, *I);
6879}
6880
Reid Spencer6c38f0b2006-11-27 01:05:10 +00006881/// @brief Implement the transforms common to all CastInst visitors.
6882Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
Chris Lattner55d4bda2003-06-23 21:59:52 +00006883 Value *Src = CI.getOperand(0);
6884
Reid Spencer6c38f0b2006-11-27 01:05:10 +00006885 // Casting undef to anything results in undef so might as just replace it and
6886 // get rid of the cast.
Chris Lattner81a7a232004-10-16 18:11:37 +00006887 if (isa<UndefValue>(Src)) // cast undef -> undef
6888 return ReplaceInstUsesWith(CI, UndefValue::get(CI.getType()));
6889
Reid Spencer6c38f0b2006-11-27 01:05:10 +00006890 // Many cases of "cast of a cast" are eliminable. If its eliminable we just
6891 // eliminate it now.
Chris Lattner86102b82005-01-01 16:22:27 +00006892 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
Reid Spencer6c38f0b2006-11-27 01:05:10 +00006893 if (Instruction::CastOps opc =
6894 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
6895 // The first cast (CSrc) is eliminable so we need to fix up or replace
6896 // the second cast (CI). CSrc will then have a good chance of being dead.
6897 return CastInst::create(opc, CSrc->getOperand(0), CI.getType());
Chris Lattner650b6da2002-08-02 20:00:25 +00006898 }
6899 }
Chris Lattner03841652004-05-25 04:29:21 +00006900
Chris Lattnerd0d51602003-06-21 23:12:02 +00006901 // If casting the result of a getelementptr instruction with no offset, turn
6902 // this into a cast of the original pointer!
6903 //
Chris Lattner55d4bda2003-06-23 21:59:52 +00006904 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
Chris Lattnerd0d51602003-06-21 23:12:02 +00006905 bool AllZeroOperands = true;
6906 for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
6907 if (!isa<Constant>(GEP->getOperand(i)) ||
6908 !cast<Constant>(GEP->getOperand(i))->isNullValue()) {
6909 AllZeroOperands = false;
6910 break;
6911 }
6912 if (AllZeroOperands) {
Reid Spencer6c38f0b2006-11-27 01:05:10 +00006913 // Changing the cast operand is usually not a good idea but it is safe
6914 // here because the pointer operand is being replaced with another
6915 // pointer operand so the opcode doesn't need to change.
Chris Lattnerd0d51602003-06-21 23:12:02 +00006916 CI.setOperand(0, GEP->getOperand(0));
6917 return &CI;
6918 }
6919 }
Chris Lattnerec45a4c2006-11-21 17:05:13 +00006920
Chris Lattnerf4ad1652003-11-02 05:57:39 +00006921 // If we are casting a malloc or alloca to a pointer to a type of the same
6922 // size, rewrite the allocation instruction to allocate the "right" type.
Chris Lattnerf4ad1652003-11-02 05:57:39 +00006923 if (AllocationInst *AI = dyn_cast<AllocationInst>(Src))
Chris Lattner216be912005-10-24 06:03:58 +00006924 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
6925 return V;
Chris Lattnerf4ad1652003-11-02 05:57:39 +00006926
Reid Spencer6c38f0b2006-11-27 01:05:10 +00006927 // If we are casting a select then fold the cast into the select
Chris Lattner86102b82005-01-01 16:22:27 +00006928 if (SelectInst *SI = dyn_cast<SelectInst>(Src))
6929 if (Instruction *NV = FoldOpIntoSelect(CI, SI, this))
6930 return NV;
Reid Spencer6c38f0b2006-11-27 01:05:10 +00006931
6932 // If we are casting a PHI then fold the cast into the PHI
Chris Lattner6a4adcd2004-09-29 05:07:12 +00006933 if (isa<PHINode>(Src))
6934 if (Instruction *NV = FoldOpIntoPhi(CI))
6935 return NV;
Chris Lattnerb19a5c62006-04-12 18:09:35 +00006936
Reid Spencer6c38f0b2006-11-27 01:05:10 +00006937 return 0;
6938}
6939
Chris Lattnerda1d04a2007-03-03 05:27:34 +00006940/// Only the TRUNC, ZEXT, SEXT, and BITCAST can both operand and result as
6941/// integer types. This function implements the common transforms for all those
Reid Spencer6c38f0b2006-11-27 01:05:10 +00006942/// cases.
6943/// @brief Implement the transforms common to CastInst with integer operands
6944Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
6945 if (Instruction *Result = commonCastTransforms(CI))
6946 return Result;
6947
6948 Value *Src = CI.getOperand(0);
6949 const Type *SrcTy = Src->getType();
6950 const Type *DestTy = CI.getType();
6951 unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
6952 unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
6953
Reid Spencer6c38f0b2006-11-27 01:05:10 +00006954 // See if we can simplify any instructions used by the LHS whose sole
6955 // purpose is to compute bits we don't care about.
6956 uint64_t KnownZero = 0, KnownOne = 0;
Reid Spencera94d3942007-01-19 21:13:56 +00006957 if (SimplifyDemandedBits(&CI, cast<IntegerType>(DestTy)->getBitMask(),
Reid Spencer6c38f0b2006-11-27 01:05:10 +00006958 KnownZero, KnownOne))
6959 return &CI;
6960
6961 // If the source isn't an instruction or has more than one use then we
6962 // can't do anything more.
Reid Spencer266e42b2006-12-23 06:05:41 +00006963 Instruction *SrcI = dyn_cast<Instruction>(Src);
6964 if (!SrcI || !Src->hasOneUse())
Reid Spencer6c38f0b2006-11-27 01:05:10 +00006965 return 0;
6966
Chris Lattnerda1d04a2007-03-03 05:27:34 +00006967 // Attempt to propagate the cast into the instruction for int->int casts.
Reid Spencer6c38f0b2006-11-27 01:05:10 +00006968 int NumCastsRemoved = 0;
Chris Lattnerda1d04a2007-03-03 05:27:34 +00006969 if (!isa<BitCastInst>(CI) &&
6970 CanEvaluateInDifferentType(SrcI, cast<IntegerType>(DestTy),
6971 NumCastsRemoved)) {
Reid Spencer6c38f0b2006-11-27 01:05:10 +00006972 // If this cast is a truncate, evaluting in a different type always
6973 // eliminates the cast, so it is always a win. If this is a noop-cast
6974 // this just removes a noop cast which isn't pointful, but simplifies
6975 // the code. If this is a zero-extension, we need to do an AND to
6976 // maintain the clear top-part of the computation, so we require that
6977 // the input have eliminated at least one cast. If this is a sign
6978 // extension, we insert two new casts (to do the extension) so we
6979 // require that two casts have been eliminated.
Chris Lattnerda1d04a2007-03-03 05:27:34 +00006980 bool DoXForm;
6981 switch (CI.getOpcode()) {
6982 default:
6983 // All the others use floating point so we shouldn't actually
6984 // get here because of the check above.
6985 assert(0 && "Unknown cast type");
6986 case Instruction::Trunc:
6987 DoXForm = true;
6988 break;
6989 case Instruction::ZExt:
6990 DoXForm = NumCastsRemoved >= 1;
6991 break;
6992 case Instruction::SExt:
6993 DoXForm = NumCastsRemoved >= 2;
6994 break;
6995 case Instruction::BitCast:
6996 DoXForm = false;
6997 break;
Reid Spencer6c38f0b2006-11-27 01:05:10 +00006998 }
6999
7000 if (DoXForm) {
Reid Spencer74a528b2006-12-13 18:21:21 +00007001 Value *Res = EvaluateInDifferentType(SrcI, DestTy,
7002 CI.getOpcode() == Instruction::SExt);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007003 assert(Res->getType() == DestTy);
7004 switch (CI.getOpcode()) {
7005 default: assert(0 && "Unknown cast type!");
7006 case Instruction::Trunc:
7007 case Instruction::BitCast:
7008 // Just replace this cast with the result.
7009 return ReplaceInstUsesWith(CI, Res);
7010 case Instruction::ZExt: {
7011 // We need to emit an AND to clear the high bits.
7012 assert(SrcBitSize < DestBitSize && "Not a zext?");
7013 Constant *C =
Reid Spencerc635f472006-12-31 05:48:39 +00007014 ConstantInt::get(Type::Int64Ty, (1ULL << SrcBitSize)-1);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007015 if (DestBitSize < 64)
7016 C = ConstantExpr::getTrunc(C, DestTy);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007017 return BinaryOperator::createAnd(Res, C);
7018 }
7019 case Instruction::SExt:
7020 // We need to emit a cast to truncate, then a cast to sext.
7021 return CastInst::create(Instruction::SExt,
Reid Spencer13bc5d72006-12-12 09:18:51 +00007022 InsertCastBefore(Instruction::Trunc, Res, Src->getType(),
7023 CI), DestTy);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007024 }
7025 }
7026 }
7027
7028 Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
7029 Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;
7030
7031 switch (SrcI->getOpcode()) {
7032 case Instruction::Add:
7033 case Instruction::Mul:
7034 case Instruction::And:
7035 case Instruction::Or:
7036 case Instruction::Xor:
7037 // If we are discarding information, or just changing the sign,
7038 // rewrite.
7039 if (DestBitSize <= SrcBitSize && DestBitSize != 1) {
7040 // Don't insert two casts if they cannot be eliminated. We allow
7041 // two casts to be inserted if the sizes are the same. This could
7042 // only be converting signedness, which is a noop.
7043 if (DestBitSize == SrcBitSize ||
Reid Spencer266e42b2006-12-23 06:05:41 +00007044 !ValueRequiresCast(CI.getOpcode(), Op1, DestTy,TD) ||
7045 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
Reid Spencer2a499b02006-12-13 17:19:09 +00007046 Instruction::CastOps opcode = CI.getOpcode();
Reid Spencer13bc5d72006-12-12 09:18:51 +00007047 Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI);
7048 Value *Op1c = InsertOperandCastBefore(opcode, Op1, DestTy, SrcI);
7049 return BinaryOperator::create(
7050 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007051 }
7052 }
7053
7054 // cast (xor bool X, true) to int --> xor (cast bool X to int), 1
7055 if (isa<ZExtInst>(CI) && SrcBitSize == 1 &&
7056 SrcI->getOpcode() == Instruction::Xor &&
Zhou Sheng75b871f2007-01-11 12:24:14 +00007057 Op1 == ConstantInt::getTrue() &&
Reid Spencer266e42b2006-12-23 06:05:41 +00007058 (!Op0->hasOneUse() || !isa<CmpInst>(Op0))) {
Reid Spencer13bc5d72006-12-12 09:18:51 +00007059 Value *New = InsertOperandCastBefore(Instruction::ZExt, Op0, DestTy, &CI);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007060 return BinaryOperator::createXor(New, ConstantInt::get(CI.getType(), 1));
7061 }
7062 break;
7063 case Instruction::SDiv:
7064 case Instruction::UDiv:
7065 case Instruction::SRem:
7066 case Instruction::URem:
7067 // If we are just changing the sign, rewrite.
7068 if (DestBitSize == SrcBitSize) {
7069 // Don't insert two casts if they cannot be eliminated. We allow
7070 // two casts to be inserted if the sizes are the same. This could
7071 // only be converting signedness, which is a noop.
Reid Spencer266e42b2006-12-23 06:05:41 +00007072 if (!ValueRequiresCast(CI.getOpcode(), Op1, DestTy, TD) ||
7073 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
Reid Spencer13bc5d72006-12-12 09:18:51 +00007074 Value *Op0c = InsertOperandCastBefore(Instruction::BitCast,
7075 Op0, DestTy, SrcI);
7076 Value *Op1c = InsertOperandCastBefore(Instruction::BitCast,
7077 Op1, DestTy, SrcI);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007078 return BinaryOperator::create(
7079 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
7080 }
7081 }
7082 break;
7083
7084 case Instruction::Shl:
7085 // Allow changing the sign of the source operand. Do not allow
7086 // changing the size of the shift, UNLESS the shift amount is a
7087 // constant. We must not change variable sized shifts to a smaller
7088 // size, because it is undefined to shift more bits out than exist
7089 // in the value.
7090 if (DestBitSize == SrcBitSize ||
7091 (DestBitSize < SrcBitSize && isa<Constant>(Op1))) {
Reid Spencer13bc5d72006-12-12 09:18:51 +00007092 Instruction::CastOps opcode = (DestBitSize == SrcBitSize ?
7093 Instruction::BitCast : Instruction::Trunc);
7094 Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI);
Reid Spencer2341c222007-02-02 02:16:23 +00007095 Value *Op1c = InsertOperandCastBefore(opcode, Op1, DestTy, SrcI);
Reid Spencer0d5f9232007-02-02 14:08:20 +00007096 return BinaryOperator::createShl(Op0c, Op1c);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007097 }
7098 break;
7099 case Instruction::AShr:
7100 // If this is a signed shr, and if all bits shifted in are about to be
7101 // truncated off, turn it into an unsigned shr to allow greater
7102 // simplifications.
7103 if (DestBitSize < SrcBitSize &&
7104 isa<ConstantInt>(Op1)) {
7105 unsigned ShiftAmt = cast<ConstantInt>(Op1)->getZExtValue();
7106 if (SrcBitSize > ShiftAmt && SrcBitSize-ShiftAmt >= DestBitSize) {
7107 // Insert the new logical shift right.
Reid Spencer0d5f9232007-02-02 14:08:20 +00007108 return BinaryOperator::createLShr(Op0, Op1);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007109 }
7110 }
7111 break;
7112
Reid Spencer266e42b2006-12-23 06:05:41 +00007113 case Instruction::ICmp:
7114 // If we are just checking for a icmp eq of a single bit and casting it
7115 // to an integer, then shift the bit to the appropriate place and then
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007116 // cast to integer to avoid the comparison.
7117 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
7118 uint64_t Op1CV = Op1C->getZExtValue();
7119 // cast (X == 0) to int --> X^1 iff X has only the low bit set.
7120 // cast (X == 0) to int --> (X>>1)^1 iff X has only the 2nd bit set.
7121 // cast (X == 1) to int --> X iff X has only the low bit set.
7122 // cast (X == 2) to int --> X>>1 iff X has only the 2nd bit set.
7123 // cast (X != 0) to int --> X iff X has only the low bit set.
7124 // cast (X != 0) to int --> X>>1 iff X has only the 2nd bit set.
7125 // cast (X != 1) to int --> X^1 iff X has only the low bit set.
7126 // cast (X != 2) to int --> (X>>1)^1 iff X has only the 2nd bit set.
7127 if (Op1CV == 0 || isPowerOf2_64(Op1CV)) {
7128 // If Op1C some other power of two, convert:
7129 uint64_t KnownZero, KnownOne;
Reid Spencera94d3942007-01-19 21:13:56 +00007130 uint64_t TypeMask = Op1C->getType()->getBitMask();
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007131 ComputeMaskedBits(Op0, TypeMask, KnownZero, KnownOne);
Reid Spencer266e42b2006-12-23 06:05:41 +00007132
7133 // This only works for EQ and NE
7134 ICmpInst::Predicate pred = cast<ICmpInst>(SrcI)->getPredicate();
7135 if (pred != ICmpInst::ICMP_NE && pred != ICmpInst::ICMP_EQ)
7136 break;
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007137
7138 if (isPowerOf2_64(KnownZero^TypeMask)) { // Exactly 1 possible 1?
Reid Spencer266e42b2006-12-23 06:05:41 +00007139 bool isNE = pred == ICmpInst::ICMP_NE;
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007140 if (Op1CV && (Op1CV != (KnownZero^TypeMask))) {
7141 // (X&4) == 2 --> false
7142 // (X&4) != 2 --> true
Reid Spencercddc9df2007-01-12 04:24:46 +00007143 Constant *Res = ConstantInt::get(Type::Int1Ty, isNE);
Reid Spencerbb65ebf2006-12-12 23:36:14 +00007144 Res = ConstantExpr::getZExt(Res, CI.getType());
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007145 return ReplaceInstUsesWith(CI, Res);
7146 }
7147
7148 unsigned ShiftAmt = Log2_64(KnownZero^TypeMask);
7149 Value *In = Op0;
7150 if (ShiftAmt) {
7151 // Perform a logical shr by shiftamt.
7152 // Insert the shift to put the result in the low bit.
7153 In = InsertNewInstBefore(
Reid Spencer0d5f9232007-02-02 14:08:20 +00007154 BinaryOperator::createLShr(In,
Reid Spencer2341c222007-02-02 02:16:23 +00007155 ConstantInt::get(In->getType(), ShiftAmt),
7156 In->getName()+".lobit"), CI);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007157 }
7158
Reid Spencer266e42b2006-12-23 06:05:41 +00007159 if ((Op1CV != 0) == isNE) { // Toggle the low bit.
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007160 Constant *One = ConstantInt::get(In->getType(), 1);
7161 In = BinaryOperator::createXor(In, One, "tmp");
7162 InsertNewInstBefore(cast<Instruction>(In), CI);
7163 }
7164
7165 if (CI.getType() == In->getType())
7166 return ReplaceInstUsesWith(CI, In);
7167 else
Reid Spencerbb65ebf2006-12-12 23:36:14 +00007168 return CastInst::createIntegerCast(In, CI.getType(), false/*ZExt*/);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007169 }
7170 }
7171 }
7172 break;
7173 }
7174 return 0;
7175}
7176
7177Instruction *InstCombiner::visitTrunc(CastInst &CI) {
Chris Lattnerd747f012006-11-29 07:04:07 +00007178 if (Instruction *Result = commonIntCastTransforms(CI))
7179 return Result;
7180
7181 Value *Src = CI.getOperand(0);
7182 const Type *Ty = CI.getType();
7183 unsigned DestBitWidth = Ty->getPrimitiveSizeInBits();
7184
7185 if (Instruction *SrcI = dyn_cast<Instruction>(Src)) {
7186 switch (SrcI->getOpcode()) {
7187 default: break;
7188 case Instruction::LShr:
7189 // We can shrink lshr to something smaller if we know the bits shifted in
7190 // are already zeros.
7191 if (ConstantInt *ShAmtV = dyn_cast<ConstantInt>(SrcI->getOperand(1))) {
7192 unsigned ShAmt = ShAmtV->getZExtValue();
7193
7194 // Get a mask for the bits shifting in.
7195 uint64_t Mask = (~0ULL >> (64-ShAmt)) << DestBitWidth;
Reid Spencer13bc5d72006-12-12 09:18:51 +00007196 Value* SrcIOp0 = SrcI->getOperand(0);
7197 if (SrcI->hasOneUse() && MaskedValueIsZero(SrcIOp0, Mask)) {
Chris Lattnerd747f012006-11-29 07:04:07 +00007198 if (ShAmt >= DestBitWidth) // All zeros.
7199 return ReplaceInstUsesWith(CI, Constant::getNullValue(Ty));
7200
7201 // Okay, we can shrink this. Truncate the input, then return a new
7202 // shift.
Reid Spencer2341c222007-02-02 02:16:23 +00007203 Value *V1 = InsertCastBefore(Instruction::Trunc, SrcIOp0, Ty, CI);
7204 Value *V2 = InsertCastBefore(Instruction::Trunc, SrcI->getOperand(1),
7205 Ty, CI);
Reid Spencer0d5f9232007-02-02 14:08:20 +00007206 return BinaryOperator::createLShr(V1, V2);
Chris Lattnerd747f012006-11-29 07:04:07 +00007207 }
Chris Lattnerc209b582006-12-05 01:26:29 +00007208 } else { // This is a variable shr.
7209
7210 // Turn 'trunc (lshr X, Y) to bool' into '(X & (1 << Y)) != 0'. This is
7211 // more LLVM instructions, but allows '1 << Y' to be hoisted if
7212 // loop-invariant and CSE'd.
Reid Spencer542964f2007-01-11 18:21:29 +00007213 if (CI.getType() == Type::Int1Ty && SrcI->hasOneUse()) {
Chris Lattnerc209b582006-12-05 01:26:29 +00007214 Value *One = ConstantInt::get(SrcI->getType(), 1);
7215
Reid Spencer2341c222007-02-02 02:16:23 +00007216 Value *V = InsertNewInstBefore(
Reid Spencer0d5f9232007-02-02 14:08:20 +00007217 BinaryOperator::createShl(One, SrcI->getOperand(1),
Reid Spencer2341c222007-02-02 02:16:23 +00007218 "tmp"), CI);
Chris Lattnerc209b582006-12-05 01:26:29 +00007219 V = InsertNewInstBefore(BinaryOperator::createAnd(V,
7220 SrcI->getOperand(0),
7221 "tmp"), CI);
7222 Value *Zero = Constant::getNullValue(V->getType());
Reid Spencer266e42b2006-12-23 06:05:41 +00007223 return new ICmpInst(ICmpInst::ICMP_NE, V, Zero);
Chris Lattnerc209b582006-12-05 01:26:29 +00007224 }
Chris Lattnerd747f012006-11-29 07:04:07 +00007225 }
7226 break;
7227 }
7228 }
7229
7230 return 0;
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007231}
7232
7233Instruction *InstCombiner::visitZExt(CastInst &CI) {
7234 // If one of the common conversion will work ..
7235 if (Instruction *Result = commonIntCastTransforms(CI))
7236 return Result;
7237
7238 Value *Src = CI.getOperand(0);
7239
7240 // If this is a cast of a cast
7241 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007242 // If this is a TRUNC followed by a ZEXT then we are dealing with integral
7243 // types and if the sizes are just right we can convert this into a logical
7244 // 'and' which will be much cheaper than the pair of casts.
7245 if (isa<TruncInst>(CSrc)) {
7246 // Get the sizes of the types involved
7247 Value *A = CSrc->getOperand(0);
7248 unsigned SrcSize = A->getType()->getPrimitiveSizeInBits();
7249 unsigned MidSize = CSrc->getType()->getPrimitiveSizeInBits();
7250 unsigned DstSize = CI.getType()->getPrimitiveSizeInBits();
7251 // If we're actually extending zero bits and the trunc is a no-op
7252 if (MidSize < DstSize && SrcSize == DstSize) {
7253 // Replace both of the casts with an And of the type mask.
Reid Spencera94d3942007-01-19 21:13:56 +00007254 uint64_t AndValue = cast<IntegerType>(CSrc->getType())->getBitMask();
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007255 Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
7256 Instruction *And =
7257 BinaryOperator::createAnd(CSrc->getOperand(0), AndConst);
7258 // Unfortunately, if the type changed, we need to cast it back.
7259 if (And->getType() != CI.getType()) {
7260 And->setName(CSrc->getName()+".mask");
7261 InsertNewInstBefore(And, CI);
Reid Spencerbb65ebf2006-12-12 23:36:14 +00007262 And = CastInst::createIntegerCast(And, CI.getType(), false/*ZExt*/);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007263 }
7264 return And;
7265 }
7266 }
7267 }
7268
7269 return 0;
7270}
7271
7272Instruction *InstCombiner::visitSExt(CastInst &CI) {
7273 return commonIntCastTransforms(CI);
7274}
7275
7276Instruction *InstCombiner::visitFPTrunc(CastInst &CI) {
7277 return commonCastTransforms(CI);
7278}
7279
7280Instruction *InstCombiner::visitFPExt(CastInst &CI) {
7281 return commonCastTransforms(CI);
7282}
7283
7284Instruction *InstCombiner::visitFPToUI(CastInst &CI) {
Reid Spencerad05ee92006-11-30 23:13:36 +00007285 return commonCastTransforms(CI);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007286}
7287
7288Instruction *InstCombiner::visitFPToSI(CastInst &CI) {
Reid Spencerad05ee92006-11-30 23:13:36 +00007289 return commonCastTransforms(CI);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007290}
7291
7292Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
7293 return commonCastTransforms(CI);
7294}
7295
7296Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
7297 return commonCastTransforms(CI);
7298}
7299
7300Instruction *InstCombiner::visitPtrToInt(CastInst &CI) {
Reid Spencerad05ee92006-11-30 23:13:36 +00007301 return commonCastTransforms(CI);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007302}
7303
7304Instruction *InstCombiner::visitIntToPtr(CastInst &CI) {
7305 return commonCastTransforms(CI);
7306}
7307
7308Instruction *InstCombiner::visitBitCast(CastInst &CI) {
7309
7310 // If the operands are integer typed then apply the integer transforms,
7311 // otherwise just apply the common ones.
7312 Value *Src = CI.getOperand(0);
7313 const Type *SrcTy = Src->getType();
7314 const Type *DestTy = CI.getType();
7315
Chris Lattner03c49532007-01-15 02:27:26 +00007316 if (SrcTy->isInteger() && DestTy->isInteger()) {
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007317 if (Instruction *Result = commonIntCastTransforms(CI))
7318 return Result;
7319 } else {
7320 if (Instruction *Result = commonCastTransforms(CI))
7321 return Result;
7322 }
7323
7324
7325 // Get rid of casts from one type to the same type. These are useless and can
7326 // be replaced by the operand.
7327 if (DestTy == Src->getType())
7328 return ReplaceInstUsesWith(CI, Src);
7329
Chris Lattnerb19a5c62006-04-12 18:09:35 +00007330 // If the source and destination are pointers, and this cast is equivalent to
7331 // a getelementptr X, 0, 0, 0... turn it into the appropriate getelementptr.
7332 // This can enhance SROA and other transforms that want type-safe pointers.
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007333 if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
7334 if (const PointerType *SrcPTy = dyn_cast<PointerType>(SrcTy)) {
7335 const Type *DstElTy = DstPTy->getElementType();
7336 const Type *SrcElTy = SrcPTy->getElementType();
Chris Lattnerb19a5c62006-04-12 18:09:35 +00007337
Reid Spencerc635f472006-12-31 05:48:39 +00007338 Constant *ZeroUInt = Constant::getNullValue(Type::Int32Ty);
Chris Lattnerb19a5c62006-04-12 18:09:35 +00007339 unsigned NumZeros = 0;
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007340 while (SrcElTy != DstElTy &&
7341 isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) &&
7342 SrcElTy->getNumContainedTypes() /* not "{}" */) {
7343 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
Chris Lattnerb19a5c62006-04-12 18:09:35 +00007344 ++NumZeros;
7345 }
Chris Lattner6a4adcd2004-09-29 05:07:12 +00007346
Chris Lattnerb19a5c62006-04-12 18:09:35 +00007347 // If we found a path from the src to dest, create the getelementptr now.
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007348 if (SrcElTy == DstElTy) {
Chris Lattner416a8932007-01-31 20:08:52 +00007349 SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
7350 return new GetElementPtrInst(Src, &Idxs[0], Idxs.size());
Chris Lattnerb19a5c62006-04-12 18:09:35 +00007351 }
7352 }
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007353 }
Chris Lattnerdfae8be2003-07-24 17:35:25 +00007354
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007355 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
7356 if (SVI->hasOneUse()) {
7357 // Okay, we have (bitconvert (shuffle ..)). Check to see if this is
7358 // a bitconvert to a vector with the same # elts.
Reid Spencerd84d35b2007-02-15 02:26:10 +00007359 if (isa<VectorType>(DestTy) &&
7360 cast<VectorType>(DestTy)->getNumElements() ==
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007361 SVI->getType()->getNumElements()) {
7362 CastInst *Tmp;
7363 // If either of the operands is a cast from CI.getType(), then
7364 // evaluating the shuffle in the casted destination's type will allow
7365 // us to eliminate at least one cast.
7366 if (((Tmp = dyn_cast<CastInst>(SVI->getOperand(0))) &&
7367 Tmp->getOperand(0)->getType() == DestTy) ||
7368 ((Tmp = dyn_cast<CastInst>(SVI->getOperand(1))) &&
7369 Tmp->getOperand(0)->getType() == DestTy)) {
Reid Spencer13bc5d72006-12-12 09:18:51 +00007370 Value *LHS = InsertOperandCastBefore(Instruction::BitCast,
7371 SVI->getOperand(0), DestTy, &CI);
7372 Value *RHS = InsertOperandCastBefore(Instruction::BitCast,
7373 SVI->getOperand(1), DestTy, &CI);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007374 // Return a new shuffle vector. Use the same element ID's, as we
7375 // know the vector types match #elts.
7376 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
Chris Lattner99155be2006-05-25 23:24:33 +00007377 }
7378 }
7379 }
7380 }
Chris Lattner260ab202002-04-18 17:39:14 +00007381 return 0;
Chris Lattnerca081252001-12-14 16:52:21 +00007382}
7383
Chris Lattner56e4d3d2004-04-09 23:46:01 +00007384/// GetSelectFoldableOperands - We want to turn code that looks like this:
7385/// %C = or %A, %B
7386/// %D = select %cond, %C, %A
7387/// into:
7388/// %C = select %cond, %B, 0
7389/// %D = or %A, %C
7390///
7391/// Assuming that the specified instruction is an operand to the select, return
7392/// a bitmask indicating which operands of this instruction are foldable if they
7393/// equal the other incoming value of the select.
7394///
7395static unsigned GetSelectFoldableOperands(Instruction *I) {
7396 switch (I->getOpcode()) {
7397 case Instruction::Add:
7398 case Instruction::Mul:
7399 case Instruction::And:
7400 case Instruction::Or:
7401 case Instruction::Xor:
7402 return 3; // Can fold through either operand.
7403 case Instruction::Sub: // Can only fold on the amount subtracted.
7404 case Instruction::Shl: // Can only fold on the shift amount.
Reid Spencerfdff9382006-11-08 06:47:33 +00007405 case Instruction::LShr:
7406 case Instruction::AShr:
Misha Brukmanb1c93172005-04-21 23:48:37 +00007407 return 1;
Chris Lattner56e4d3d2004-04-09 23:46:01 +00007408 default:
7409 return 0; // Cannot fold
7410 }
7411}
7412
7413/// GetSelectFoldableConstant - For the same transformation as the previous
7414/// function, return the identity constant that goes into the select.
7415static Constant *GetSelectFoldableConstant(Instruction *I) {
7416 switch (I->getOpcode()) {
7417 default: assert(0 && "This cannot happen!"); abort();
7418 case Instruction::Add:
7419 case Instruction::Sub:
7420 case Instruction::Or:
7421 case Instruction::Xor:
Chris Lattner56e4d3d2004-04-09 23:46:01 +00007422 case Instruction::Shl:
Reid Spencerfdff9382006-11-08 06:47:33 +00007423 case Instruction::LShr:
7424 case Instruction::AShr:
Reid Spencer2341c222007-02-02 02:16:23 +00007425 return Constant::getNullValue(I->getType());
Chris Lattner56e4d3d2004-04-09 23:46:01 +00007426 case Instruction::And:
7427 return ConstantInt::getAllOnesValue(I->getType());
7428 case Instruction::Mul:
7429 return ConstantInt::get(I->getType(), 1);
7430 }
7431}
7432
Chris Lattner411336f2005-01-19 21:50:18 +00007433/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
7434/// have the same opcode and only one use each. Try to simplify this.
7435Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
7436 Instruction *FI) {
7437 if (TI->getNumOperands() == 1) {
7438 // If this is a non-volatile load or a cast from the same type,
7439 // merge.
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007440 if (TI->isCast()) {
Chris Lattner411336f2005-01-19 21:50:18 +00007441 if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
7442 return 0;
7443 } else {
7444 return 0; // unknown unary op.
7445 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00007446
Chris Lattner411336f2005-01-19 21:50:18 +00007447 // Fold this by inserting a select from the input values.
7448 SelectInst *NewSI = new SelectInst(SI.getCondition(), TI->getOperand(0),
7449 FI->getOperand(0), SI.getName()+".v");
7450 InsertNewInstBefore(NewSI, SI);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007451 return CastInst::create(Instruction::CastOps(TI->getOpcode()), NewSI,
7452 TI->getType());
Chris Lattner411336f2005-01-19 21:50:18 +00007453 }
7454
Reid Spencer2341c222007-02-02 02:16:23 +00007455 // Only handle binary operators here.
7456 if (!isa<BinaryOperator>(TI))
Chris Lattner411336f2005-01-19 21:50:18 +00007457 return 0;
7458
7459 // Figure out if the operations have any operands in common.
7460 Value *MatchOp, *OtherOpT, *OtherOpF;
7461 bool MatchIsOpZero;
7462 if (TI->getOperand(0) == FI->getOperand(0)) {
7463 MatchOp = TI->getOperand(0);
7464 OtherOpT = TI->getOperand(1);
7465 OtherOpF = FI->getOperand(1);
7466 MatchIsOpZero = true;
7467 } else if (TI->getOperand(1) == FI->getOperand(1)) {
7468 MatchOp = TI->getOperand(1);
7469 OtherOpT = TI->getOperand(0);
7470 OtherOpF = FI->getOperand(0);
7471 MatchIsOpZero = false;
7472 } else if (!TI->isCommutative()) {
7473 return 0;
7474 } else if (TI->getOperand(0) == FI->getOperand(1)) {
7475 MatchOp = TI->getOperand(0);
7476 OtherOpT = TI->getOperand(1);
7477 OtherOpF = FI->getOperand(0);
7478 MatchIsOpZero = true;
7479 } else if (TI->getOperand(1) == FI->getOperand(0)) {
7480 MatchOp = TI->getOperand(1);
7481 OtherOpT = TI->getOperand(0);
7482 OtherOpF = FI->getOperand(1);
7483 MatchIsOpZero = true;
7484 } else {
7485 return 0;
7486 }
7487
7488 // If we reach here, they do have operations in common.
7489 SelectInst *NewSI = new SelectInst(SI.getCondition(), OtherOpT,
7490 OtherOpF, SI.getName()+".v");
7491 InsertNewInstBefore(NewSI, SI);
7492
7493 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
7494 if (MatchIsOpZero)
7495 return BinaryOperator::create(BO->getOpcode(), MatchOp, NewSI);
7496 else
7497 return BinaryOperator::create(BO->getOpcode(), NewSI, MatchOp);
Chris Lattner411336f2005-01-19 21:50:18 +00007498 }
Reid Spencer2f34b982007-02-02 14:41:37 +00007499 assert(0 && "Shouldn't get here");
7500 return 0;
Chris Lattner411336f2005-01-19 21:50:18 +00007501}
7502
Chris Lattnerb909e8b2004-03-12 05:52:32 +00007503Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
Chris Lattner533bc492004-03-30 19:37:13 +00007504 Value *CondVal = SI.getCondition();
7505 Value *TrueVal = SI.getTrueValue();
7506 Value *FalseVal = SI.getFalseValue();
7507
7508 // select true, X, Y -> X
7509 // select false, X, Y -> Y
Zhou Sheng75b871f2007-01-11 12:24:14 +00007510 if (ConstantInt *C = dyn_cast<ConstantInt>(CondVal))
Reid Spencercddc9df2007-01-12 04:24:46 +00007511 return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal);
Chris Lattner533bc492004-03-30 19:37:13 +00007512
7513 // select C, X, X -> X
7514 if (TrueVal == FalseVal)
7515 return ReplaceInstUsesWith(SI, TrueVal);
7516
Chris Lattner81a7a232004-10-16 18:11:37 +00007517 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
7518 return ReplaceInstUsesWith(SI, FalseVal);
7519 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
7520 return ReplaceInstUsesWith(SI, TrueVal);
7521 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
7522 if (isa<Constant>(TrueVal))
7523 return ReplaceInstUsesWith(SI, TrueVal);
7524 else
7525 return ReplaceInstUsesWith(SI, FalseVal);
7526 }
7527
Reid Spencer542964f2007-01-11 18:21:29 +00007528 if (SI.getType() == Type::Int1Ty) {
Reid Spencer7a9c62b2007-01-12 07:05:14 +00007529 if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
Reid Spencercddc9df2007-01-12 04:24:46 +00007530 if (C->getZExtValue()) {
Chris Lattner1c631e82004-04-08 04:43:23 +00007531 // Change: A = select B, true, C --> A = or B, C
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00007532 return BinaryOperator::createOr(CondVal, FalseVal);
Chris Lattner1c631e82004-04-08 04:43:23 +00007533 } else {
7534 // Change: A = select B, false, C --> A = and !B, C
7535 Value *NotCond =
7536 InsertNewInstBefore(BinaryOperator::createNot(CondVal,
7537 "not."+CondVal->getName()), SI);
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00007538 return BinaryOperator::createAnd(NotCond, FalseVal);
Chris Lattner1c631e82004-04-08 04:43:23 +00007539 }
Reid Spencer7a9c62b2007-01-12 07:05:14 +00007540 } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
Reid Spencercddc9df2007-01-12 04:24:46 +00007541 if (C->getZExtValue() == false) {
Chris Lattner1c631e82004-04-08 04:43:23 +00007542 // Change: A = select B, C, false --> A = and B, C
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00007543 return BinaryOperator::createAnd(CondVal, TrueVal);
Chris Lattner1c631e82004-04-08 04:43:23 +00007544 } else {
7545 // Change: A = select B, C, true --> A = or !B, C
7546 Value *NotCond =
7547 InsertNewInstBefore(BinaryOperator::createNot(CondVal,
7548 "not."+CondVal->getName()), SI);
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00007549 return BinaryOperator::createOr(NotCond, TrueVal);
Chris Lattner1c631e82004-04-08 04:43:23 +00007550 }
7551 }
Zhou Sheng75b871f2007-01-11 12:24:14 +00007552 }
Chris Lattner1c631e82004-04-08 04:43:23 +00007553
Chris Lattner183b3362004-04-09 19:05:30 +00007554 // Selecting between two integer constants?
7555 if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
7556 if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
7557 // select C, 1, 0 -> cast C to int
Reid Spencere0fc4df2006-10-20 07:07:24 +00007558 if (FalseValC->isNullValue() && TrueValC->getZExtValue() == 1) {
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007559 return CastInst::create(Instruction::ZExt, CondVal, SI.getType());
Reid Spencere0fc4df2006-10-20 07:07:24 +00007560 } else if (TrueValC->isNullValue() && FalseValC->getZExtValue() == 1) {
Chris Lattner183b3362004-04-09 19:05:30 +00007561 // select C, 0, 1 -> cast !C to int
7562 Value *NotCond =
7563 InsertNewInstBefore(BinaryOperator::createNot(CondVal,
Chris Lattnercf7baf32004-04-09 18:19:44 +00007564 "not."+CondVal->getName()), SI);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007565 return CastInst::create(Instruction::ZExt, NotCond, SI.getType());
Chris Lattnercf7baf32004-04-09 18:19:44 +00007566 }
Chris Lattner35167c32004-06-09 07:59:58 +00007567
Reid Spencer266e42b2006-12-23 06:05:41 +00007568 if (ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition())) {
Chris Lattner380c7e92006-09-20 04:44:59 +00007569
Reid Spencer266e42b2006-12-23 06:05:41 +00007570 // (x <s 0) ? -1 : 0 -> ashr x, 31
7571 // (x >u 2147483647) ? -1 : 0 -> ashr x, 31
Chris Lattner380c7e92006-09-20 04:44:59 +00007572 if (TrueValC->isAllOnesValue() && FalseValC->isNullValue())
7573 if (ConstantInt *CmpCst = dyn_cast<ConstantInt>(IC->getOperand(1))) {
7574 bool CanXForm = false;
Reid Spencer266e42b2006-12-23 06:05:41 +00007575 if (IC->isSignedPredicate())
Chris Lattner380c7e92006-09-20 04:44:59 +00007576 CanXForm = CmpCst->isNullValue() &&
Reid Spencer266e42b2006-12-23 06:05:41 +00007577 IC->getPredicate() == ICmpInst::ICMP_SLT;
Chris Lattner380c7e92006-09-20 04:44:59 +00007578 else {
7579 unsigned Bits = CmpCst->getType()->getPrimitiveSizeInBits();
Reid Spencere0fc4df2006-10-20 07:07:24 +00007580 CanXForm = (CmpCst->getZExtValue() == ~0ULL >> (64-Bits+1)) &&
Reid Spencer266e42b2006-12-23 06:05:41 +00007581 IC->getPredicate() == ICmpInst::ICMP_UGT;
Chris Lattner380c7e92006-09-20 04:44:59 +00007582 }
7583
7584 if (CanXForm) {
7585 // The comparison constant and the result are not neccessarily the
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007586 // same width. Make an all-ones value by inserting a AShr.
Chris Lattner380c7e92006-09-20 04:44:59 +00007587 Value *X = IC->getOperand(0);
Chris Lattner380c7e92006-09-20 04:44:59 +00007588 unsigned Bits = X->getType()->getPrimitiveSizeInBits();
Reid Spencer2341c222007-02-02 02:16:23 +00007589 Constant *ShAmt = ConstantInt::get(X->getType(), Bits-1);
7590 Instruction *SRA = BinaryOperator::create(Instruction::AShr, X,
7591 ShAmt, "ones");
Chris Lattner380c7e92006-09-20 04:44:59 +00007592 InsertNewInstBefore(SRA, SI);
7593
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007594 // Finally, convert to the type of the select RHS. We figure out
7595 // if this requires a SExt, Trunc or BitCast based on the sizes.
7596 Instruction::CastOps opc = Instruction::BitCast;
7597 unsigned SRASize = SRA->getType()->getPrimitiveSizeInBits();
7598 unsigned SISize = SI.getType()->getPrimitiveSizeInBits();
7599 if (SRASize < SISize)
7600 opc = Instruction::SExt;
7601 else if (SRASize > SISize)
7602 opc = Instruction::Trunc;
7603 return CastInst::create(opc, SRA, SI.getType());
Chris Lattner380c7e92006-09-20 04:44:59 +00007604 }
7605 }
7606
7607
7608 // If one of the constants is zero (we know they can't both be) and we
Reid Spencer266e42b2006-12-23 06:05:41 +00007609 // have a fcmp instruction with zero, and we have an 'and' with the
Chris Lattner380c7e92006-09-20 04:44:59 +00007610 // non-constant value, eliminate this whole mess. This corresponds to
7611 // cases like this: ((X & 27) ? 27 : 0)
7612 if (TrueValC->isNullValue() || FalseValC->isNullValue())
Chris Lattnerb3f24c92006-09-18 04:22:48 +00007613 if (IC->isEquality() && isa<ConstantInt>(IC->getOperand(1)) &&
Chris Lattner35167c32004-06-09 07:59:58 +00007614 cast<Constant>(IC->getOperand(1))->isNullValue())
7615 if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
7616 if (ICA->getOpcode() == Instruction::And &&
Misha Brukmanb1c93172005-04-21 23:48:37 +00007617 isa<ConstantInt>(ICA->getOperand(1)) &&
7618 (ICA->getOperand(1) == TrueValC ||
7619 ICA->getOperand(1) == FalseValC) &&
Chris Lattner35167c32004-06-09 07:59:58 +00007620 isOneBitSet(cast<ConstantInt>(ICA->getOperand(1)))) {
7621 // Okay, now we know that everything is set up, we just don't
Reid Spencer266e42b2006-12-23 06:05:41 +00007622 // know whether we have a icmp_ne or icmp_eq and whether the
7623 // true or false val is the zero.
Chris Lattner35167c32004-06-09 07:59:58 +00007624 bool ShouldNotVal = !TrueValC->isNullValue();
Reid Spencer266e42b2006-12-23 06:05:41 +00007625 ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
Chris Lattner35167c32004-06-09 07:59:58 +00007626 Value *V = ICA;
7627 if (ShouldNotVal)
7628 V = InsertNewInstBefore(BinaryOperator::create(
7629 Instruction::Xor, V, ICA->getOperand(1)), SI);
7630 return ReplaceInstUsesWith(SI, V);
7631 }
Chris Lattner380c7e92006-09-20 04:44:59 +00007632 }
Chris Lattner533bc492004-03-30 19:37:13 +00007633 }
Chris Lattner623fba12004-04-10 22:21:27 +00007634
7635 // See if we are selecting two values based on a comparison of the two values.
Reid Spencer266e42b2006-12-23 06:05:41 +00007636 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
7637 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
Chris Lattner623fba12004-04-10 22:21:27 +00007638 // Transform (X == Y) ? X : Y -> Y
Reid Spencer266e42b2006-12-23 06:05:41 +00007639 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ)
Chris Lattner623fba12004-04-10 22:21:27 +00007640 return ReplaceInstUsesWith(SI, FalseVal);
7641 // Transform (X != Y) ? X : Y -> X
Reid Spencer266e42b2006-12-23 06:05:41 +00007642 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
Chris Lattner623fba12004-04-10 22:21:27 +00007643 return ReplaceInstUsesWith(SI, TrueVal);
7644 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
7645
Reid Spencer266e42b2006-12-23 06:05:41 +00007646 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
Chris Lattner623fba12004-04-10 22:21:27 +00007647 // Transform (X == Y) ? Y : X -> X
Reid Spencer266e42b2006-12-23 06:05:41 +00007648 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ)
Chris Lattner24cf0202004-04-11 01:39:19 +00007649 return ReplaceInstUsesWith(SI, FalseVal);
Chris Lattner623fba12004-04-10 22:21:27 +00007650 // Transform (X != Y) ? Y : X -> Y
Reid Spencer266e42b2006-12-23 06:05:41 +00007651 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
7652 return ReplaceInstUsesWith(SI, TrueVal);
7653 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
7654 }
7655 }
7656
7657 // See if we are selecting two values based on a comparison of the two values.
7658 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) {
7659 if (ICI->getOperand(0) == TrueVal && ICI->getOperand(1) == FalseVal) {
7660 // Transform (X == Y) ? X : Y -> Y
7661 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
7662 return ReplaceInstUsesWith(SI, FalseVal);
7663 // Transform (X != Y) ? X : Y -> X
7664 if (ICI->getPredicate() == ICmpInst::ICMP_NE)
7665 return ReplaceInstUsesWith(SI, TrueVal);
7666 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
7667
7668 } else if (ICI->getOperand(0) == FalseVal && ICI->getOperand(1) == TrueVal){
7669 // Transform (X == Y) ? Y : X -> X
7670 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
7671 return ReplaceInstUsesWith(SI, FalseVal);
7672 // Transform (X != Y) ? Y : X -> Y
7673 if (ICI->getPredicate() == ICmpInst::ICMP_NE)
Chris Lattner24cf0202004-04-11 01:39:19 +00007674 return ReplaceInstUsesWith(SI, TrueVal);
Chris Lattner623fba12004-04-10 22:21:27 +00007675 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
7676 }
7677 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00007678
Chris Lattnera04c9042005-01-13 22:52:24 +00007679 if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
7680 if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
7681 if (TI->hasOneUse() && FI->hasOneUse()) {
Chris Lattnera04c9042005-01-13 22:52:24 +00007682 Instruction *AddOp = 0, *SubOp = 0;
7683
Chris Lattner411336f2005-01-19 21:50:18 +00007684 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
7685 if (TI->getOpcode() == FI->getOpcode())
7686 if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
7687 return IV;
7688
7689 // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is
7690 // even legal for FP.
Chris Lattnera04c9042005-01-13 22:52:24 +00007691 if (TI->getOpcode() == Instruction::Sub &&
7692 FI->getOpcode() == Instruction::Add) {
7693 AddOp = FI; SubOp = TI;
7694 } else if (FI->getOpcode() == Instruction::Sub &&
7695 TI->getOpcode() == Instruction::Add) {
7696 AddOp = TI; SubOp = FI;
7697 }
7698
7699 if (AddOp) {
7700 Value *OtherAddOp = 0;
7701 if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
7702 OtherAddOp = AddOp->getOperand(1);
7703 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
7704 OtherAddOp = AddOp->getOperand(0);
7705 }
7706
7707 if (OtherAddOp) {
Chris Lattnerb580d262006-02-24 18:05:58 +00007708 // So at this point we know we have (Y -> OtherAddOp):
7709 // select C, (add X, Y), (sub X, Z)
7710 Value *NegVal; // Compute -Z
7711 if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
7712 NegVal = ConstantExpr::getNeg(C);
7713 } else {
7714 NegVal = InsertNewInstBefore(
7715 BinaryOperator::createNeg(SubOp->getOperand(1), "tmp"), SI);
Chris Lattnera04c9042005-01-13 22:52:24 +00007716 }
Chris Lattnerb580d262006-02-24 18:05:58 +00007717
7718 Value *NewTrueOp = OtherAddOp;
7719 Value *NewFalseOp = NegVal;
7720 if (AddOp != TI)
7721 std::swap(NewTrueOp, NewFalseOp);
7722 Instruction *NewSel =
7723 new SelectInst(CondVal, NewTrueOp,NewFalseOp,SI.getName()+".p");
7724
7725 NewSel = InsertNewInstBefore(NewSel, SI);
7726 return BinaryOperator::createAdd(SubOp->getOperand(0), NewSel);
Chris Lattnera04c9042005-01-13 22:52:24 +00007727 }
7728 }
7729 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00007730
Chris Lattner56e4d3d2004-04-09 23:46:01 +00007731 // See if we can fold the select into one of our operands.
Chris Lattner03c49532007-01-15 02:27:26 +00007732 if (SI.getType()->isInteger()) {
Chris Lattner56e4d3d2004-04-09 23:46:01 +00007733 // See the comment above GetSelectFoldableOperands for a description of the
7734 // transformation we are doing here.
7735 if (Instruction *TVI = dyn_cast<Instruction>(TrueVal))
7736 if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
7737 !isa<Constant>(FalseVal))
7738 if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
7739 unsigned OpToFold = 0;
7740 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
7741 OpToFold = 1;
7742 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
7743 OpToFold = 2;
7744 }
7745
7746 if (OpToFold) {
7747 Constant *C = GetSelectFoldableConstant(TVI);
Chris Lattner56e4d3d2004-04-09 23:46:01 +00007748 Instruction *NewSel =
Chris Lattner6e0123b2007-02-11 01:23:03 +00007749 new SelectInst(SI.getCondition(), TVI->getOperand(2-OpToFold), C);
Chris Lattner56e4d3d2004-04-09 23:46:01 +00007750 InsertNewInstBefore(NewSel, SI);
Chris Lattner6e0123b2007-02-11 01:23:03 +00007751 NewSel->takeName(TVI);
Chris Lattner56e4d3d2004-04-09 23:46:01 +00007752 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
7753 return BinaryOperator::create(BO->getOpcode(), FalseVal, NewSel);
Chris Lattner56e4d3d2004-04-09 23:46:01 +00007754 else {
7755 assert(0 && "Unknown instruction!!");
7756 }
7757 }
7758 }
Chris Lattner6862fbd2004-09-29 17:40:11 +00007759
Chris Lattner56e4d3d2004-04-09 23:46:01 +00007760 if (Instruction *FVI = dyn_cast<Instruction>(FalseVal))
7761 if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
7762 !isa<Constant>(TrueVal))
7763 if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
7764 unsigned OpToFold = 0;
7765 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
7766 OpToFold = 1;
7767 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
7768 OpToFold = 2;
7769 }
7770
7771 if (OpToFold) {
7772 Constant *C = GetSelectFoldableConstant(FVI);
Chris Lattner56e4d3d2004-04-09 23:46:01 +00007773 Instruction *NewSel =
Chris Lattner6e0123b2007-02-11 01:23:03 +00007774 new SelectInst(SI.getCondition(), C, FVI->getOperand(2-OpToFold));
Chris Lattner56e4d3d2004-04-09 23:46:01 +00007775 InsertNewInstBefore(NewSel, SI);
Chris Lattner6e0123b2007-02-11 01:23:03 +00007776 NewSel->takeName(FVI);
Chris Lattner56e4d3d2004-04-09 23:46:01 +00007777 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
7778 return BinaryOperator::create(BO->getOpcode(), TrueVal, NewSel);
Reid Spencer2341c222007-02-02 02:16:23 +00007779 else
Chris Lattner56e4d3d2004-04-09 23:46:01 +00007780 assert(0 && "Unknown instruction!!");
Chris Lattner56e4d3d2004-04-09 23:46:01 +00007781 }
7782 }
7783 }
Chris Lattnerd6f636a2005-04-24 07:30:14 +00007784
7785 if (BinaryOperator::isNot(CondVal)) {
7786 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
7787 SI.setOperand(1, FalseVal);
7788 SI.setOperand(2, TrueVal);
7789 return &SI;
7790 }
7791
Chris Lattnerb909e8b2004-03-12 05:52:32 +00007792 return 0;
7793}
7794
Chris Lattner82f2ef22006-03-06 20:18:44 +00007795/// GetKnownAlignment - If the specified pointer has an alignment that we can
7796/// determine, return it, otherwise return 0.
7797static unsigned GetKnownAlignment(Value *V, TargetData *TD) {
7798 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
7799 unsigned Align = GV->getAlignment();
7800 if (Align == 0 && TD)
Chris Lattner945e4372007-02-14 05:52:17 +00007801 Align = TD->getPrefTypeAlignment(GV->getType()->getElementType());
Chris Lattner82f2ef22006-03-06 20:18:44 +00007802 return Align;
7803 } else if (AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
7804 unsigned Align = AI->getAlignment();
7805 if (Align == 0 && TD) {
7806 if (isa<AllocaInst>(AI))
Chris Lattner945e4372007-02-14 05:52:17 +00007807 Align = TD->getPrefTypeAlignment(AI->getType()->getElementType());
Chris Lattner82f2ef22006-03-06 20:18:44 +00007808 else if (isa<MallocInst>(AI)) {
7809 // Malloc returns maximally aligned memory.
Chris Lattner945e4372007-02-14 05:52:17 +00007810 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
Chris Lattner50ee0e42007-01-20 22:35:55 +00007811 Align =
7812 std::max(Align,
Chris Lattner945e4372007-02-14 05:52:17 +00007813 (unsigned)TD->getABITypeAlignment(Type::DoubleTy));
Chris Lattner50ee0e42007-01-20 22:35:55 +00007814 Align =
7815 std::max(Align,
Chris Lattner945e4372007-02-14 05:52:17 +00007816 (unsigned)TD->getABITypeAlignment(Type::Int64Ty));
Chris Lattner82f2ef22006-03-06 20:18:44 +00007817 }
7818 }
7819 return Align;
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007820 } else if (isa<BitCastInst>(V) ||
Chris Lattner53ef5a02006-03-07 01:28:57 +00007821 (isa<ConstantExpr>(V) &&
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007822 cast<ConstantExpr>(V)->getOpcode() == Instruction::BitCast)) {
Chris Lattner53ef5a02006-03-07 01:28:57 +00007823 User *CI = cast<User>(V);
Chris Lattner82f2ef22006-03-06 20:18:44 +00007824 if (isa<PointerType>(CI->getOperand(0)->getType()))
7825 return GetKnownAlignment(CI->getOperand(0), TD);
7826 return 0;
Chris Lattner53ef5a02006-03-07 01:28:57 +00007827 } else if (isa<GetElementPtrInst>(V) ||
7828 (isa<ConstantExpr>(V) &&
7829 cast<ConstantExpr>(V)->getOpcode()==Instruction::GetElementPtr)) {
7830 User *GEPI = cast<User>(V);
Chris Lattner82f2ef22006-03-06 20:18:44 +00007831 unsigned BaseAlignment = GetKnownAlignment(GEPI->getOperand(0), TD);
7832 if (BaseAlignment == 0) return 0;
7833
7834 // If all indexes are zero, it is just the alignment of the base pointer.
7835 bool AllZeroOperands = true;
7836 for (unsigned i = 1, e = GEPI->getNumOperands(); i != e; ++i)
7837 if (!isa<Constant>(GEPI->getOperand(i)) ||
7838 !cast<Constant>(GEPI->getOperand(i))->isNullValue()) {
7839 AllZeroOperands = false;
7840 break;
7841 }
7842 if (AllZeroOperands)
7843 return BaseAlignment;
7844
7845 // Otherwise, if the base alignment is >= the alignment we expect for the
7846 // base pointer type, then we know that the resultant pointer is aligned at
7847 // least as much as its type requires.
7848 if (!TD) return 0;
7849
7850 const Type *BasePtrTy = GEPI->getOperand(0)->getType();
Chris Lattner50ee0e42007-01-20 22:35:55 +00007851 const PointerType *PtrTy = cast<PointerType>(BasePtrTy);
Chris Lattner945e4372007-02-14 05:52:17 +00007852 if (TD->getABITypeAlignment(PtrTy->getElementType())
Chris Lattner53ef5a02006-03-07 01:28:57 +00007853 <= BaseAlignment) {
7854 const Type *GEPTy = GEPI->getType();
Chris Lattner50ee0e42007-01-20 22:35:55 +00007855 const PointerType *GEPPtrTy = cast<PointerType>(GEPTy);
Chris Lattner945e4372007-02-14 05:52:17 +00007856 return TD->getABITypeAlignment(GEPPtrTy->getElementType());
Chris Lattner53ef5a02006-03-07 01:28:57 +00007857 }
Chris Lattner82f2ef22006-03-06 20:18:44 +00007858 return 0;
7859 }
7860 return 0;
7861}
7862
Chris Lattnerb909e8b2004-03-12 05:52:32 +00007863
Chris Lattnerc66b2232006-01-13 20:11:04 +00007864/// visitCallInst - CallInst simplification. This mostly only handles folding
7865/// of intrinsic instructions. For normal calls, it allows visitCallSite to do
7866/// the heavy lifting.
7867///
Chris Lattner970c33a2003-06-19 17:00:31 +00007868Instruction *InstCombiner::visitCallInst(CallInst &CI) {
Chris Lattnerc66b2232006-01-13 20:11:04 +00007869 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
7870 if (!II) return visitCallSite(&CI);
7871
Chris Lattner51ea1272004-02-28 05:22:00 +00007872 // Intrinsics cannot occur in an invoke, so handle them here instead of in
7873 // visitCallSite.
Chris Lattnerc66b2232006-01-13 20:11:04 +00007874 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
Chris Lattner00648e12004-10-12 04:52:52 +00007875 bool Changed = false;
7876
7877 // memmove/cpy/set of zero bytes is a noop.
7878 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
7879 if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
7880
Chris Lattner00648e12004-10-12 04:52:52 +00007881 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
Reid Spencere0fc4df2006-10-20 07:07:24 +00007882 if (CI->getZExtValue() == 1) {
Chris Lattner00648e12004-10-12 04:52:52 +00007883 // Replace the instruction with just byte operations. We would
7884 // transform other cases to loads/stores, but we don't know if
7885 // alignment is sufficient.
7886 }
Chris Lattner51ea1272004-02-28 05:22:00 +00007887 }
7888
Chris Lattner00648e12004-10-12 04:52:52 +00007889 // If we have a memmove and the source operation is a constant global,
7890 // then the source and dest pointers can't alias, so we can change this
7891 // into a call to memcpy.
Chris Lattner82f2ef22006-03-06 20:18:44 +00007892 if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(II)) {
Chris Lattner00648e12004-10-12 04:52:52 +00007893 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
7894 if (GVSrc->isConstant()) {
7895 Module *M = CI.getParent()->getParent()->getParent();
Chris Lattner681ef2f2006-03-03 01:34:17 +00007896 const char *Name;
Andrew Lenharth0ebb0b02006-11-03 22:45:50 +00007897 if (CI.getCalledFunction()->getFunctionType()->getParamType(2) ==
Reid Spencerc635f472006-12-31 05:48:39 +00007898 Type::Int32Ty)
Chris Lattner681ef2f2006-03-03 01:34:17 +00007899 Name = "llvm.memcpy.i32";
7900 else
7901 Name = "llvm.memcpy.i64";
Chris Lattnerfbc524f2007-01-07 06:58:05 +00007902 Constant *MemCpy = M->getOrInsertFunction(Name,
Chris Lattner00648e12004-10-12 04:52:52 +00007903 CI.getCalledFunction()->getFunctionType());
7904 CI.setOperand(0, MemCpy);
7905 Changed = true;
7906 }
Chris Lattner82f2ef22006-03-06 20:18:44 +00007907 }
Chris Lattner00648e12004-10-12 04:52:52 +00007908
Chris Lattner82f2ef22006-03-06 20:18:44 +00007909 // If we can determine a pointer alignment that is bigger than currently
7910 // set, update the alignment.
7911 if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
7912 unsigned Alignment1 = GetKnownAlignment(MI->getOperand(1), TD);
7913 unsigned Alignment2 = GetKnownAlignment(MI->getOperand(2), TD);
7914 unsigned Align = std::min(Alignment1, Alignment2);
Reid Spencere0fc4df2006-10-20 07:07:24 +00007915 if (MI->getAlignment()->getZExtValue() < Align) {
Reid Spencerc635f472006-12-31 05:48:39 +00007916 MI->setAlignment(ConstantInt::get(Type::Int32Ty, Align));
Chris Lattner82f2ef22006-03-06 20:18:44 +00007917 Changed = true;
7918 }
7919 } else if (isa<MemSetInst>(MI)) {
7920 unsigned Alignment = GetKnownAlignment(MI->getDest(), TD);
Reid Spencere0fc4df2006-10-20 07:07:24 +00007921 if (MI->getAlignment()->getZExtValue() < Alignment) {
Reid Spencerc635f472006-12-31 05:48:39 +00007922 MI->setAlignment(ConstantInt::get(Type::Int32Ty, Alignment));
Chris Lattner82f2ef22006-03-06 20:18:44 +00007923 Changed = true;
7924 }
7925 }
7926
Chris Lattnerc66b2232006-01-13 20:11:04 +00007927 if (Changed) return II;
Chris Lattner503221f2006-01-13 21:28:09 +00007928 } else {
7929 switch (II->getIntrinsicID()) {
7930 default: break;
Chris Lattnerf42d0ae2006-04-02 05:30:25 +00007931 case Intrinsic::ppc_altivec_lvx:
7932 case Intrinsic::ppc_altivec_lvxl:
Chris Lattner36dd7c92006-04-17 22:26:56 +00007933 case Intrinsic::x86_sse_loadu_ps:
7934 case Intrinsic::x86_sse2_loadu_pd:
7935 case Intrinsic::x86_sse2_loadu_dq:
7936 // Turn PPC lvx -> load if the pointer is known aligned.
7937 // Turn X86 loadups -> load if the pointer is known aligned.
Chris Lattnerf42d0ae2006-04-02 05:30:25 +00007938 if (GetKnownAlignment(II->getOperand(1), TD) >= 16) {
Reid Spencer13bc5d72006-12-12 09:18:51 +00007939 Value *Ptr = InsertCastBefore(Instruction::BitCast, II->getOperand(1),
Chris Lattnere79d2492006-04-06 19:19:17 +00007940 PointerType::get(II->getType()), CI);
Chris Lattnerf42d0ae2006-04-02 05:30:25 +00007941 return new LoadInst(Ptr);
7942 }
7943 break;
7944 case Intrinsic::ppc_altivec_stvx:
7945 case Intrinsic::ppc_altivec_stvxl:
7946 // Turn stvx -> store if the pointer is known aligned.
7947 if (GetKnownAlignment(II->getOperand(2), TD) >= 16) {
Chris Lattnere79d2492006-04-06 19:19:17 +00007948 const Type *OpPtrTy = PointerType::get(II->getOperand(1)->getType());
Reid Spencer13bc5d72006-12-12 09:18:51 +00007949 Value *Ptr = InsertCastBefore(Instruction::BitCast, II->getOperand(2),
7950 OpPtrTy, CI);
Chris Lattnerf42d0ae2006-04-02 05:30:25 +00007951 return new StoreInst(II->getOperand(1), Ptr);
7952 }
7953 break;
Chris Lattner36dd7c92006-04-17 22:26:56 +00007954 case Intrinsic::x86_sse_storeu_ps:
7955 case Intrinsic::x86_sse2_storeu_pd:
7956 case Intrinsic::x86_sse2_storeu_dq:
7957 case Intrinsic::x86_sse2_storel_dq:
7958 // Turn X86 storeu -> store if the pointer is known aligned.
7959 if (GetKnownAlignment(II->getOperand(1), TD) >= 16) {
7960 const Type *OpPtrTy = PointerType::get(II->getOperand(2)->getType());
Reid Spencer13bc5d72006-12-12 09:18:51 +00007961 Value *Ptr = InsertCastBefore(Instruction::BitCast, II->getOperand(1),
7962 OpPtrTy, CI);
Chris Lattner36dd7c92006-04-17 22:26:56 +00007963 return new StoreInst(II->getOperand(2), Ptr);
7964 }
7965 break;
Chris Lattner2deeaea2006-10-05 06:55:50 +00007966
7967 case Intrinsic::x86_sse_cvttss2si: {
7968 // These intrinsics only demands the 0th element of its input vector. If
7969 // we can simplify the input based on that, do so now.
7970 uint64_t UndefElts;
7971 if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), 1,
7972 UndefElts)) {
7973 II->setOperand(1, V);
7974 return II;
7975 }
7976 break;
7977 }
7978
Chris Lattnere79d2492006-04-06 19:19:17 +00007979 case Intrinsic::ppc_altivec_vperm:
7980 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
Reid Spencerd84d35b2007-02-15 02:26:10 +00007981 if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
Chris Lattnere79d2492006-04-06 19:19:17 +00007982 assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
7983
7984 // Check that all of the elements are integer constants or undefs.
7985 bool AllEltsOk = true;
7986 for (unsigned i = 0; i != 16; ++i) {
7987 if (!isa<ConstantInt>(Mask->getOperand(i)) &&
7988 !isa<UndefValue>(Mask->getOperand(i))) {
7989 AllEltsOk = false;
7990 break;
7991 }
7992 }
7993
7994 if (AllEltsOk) {
7995 // Cast the input vectors to byte vectors.
Reid Spencer13bc5d72006-12-12 09:18:51 +00007996 Value *Op0 = InsertCastBefore(Instruction::BitCast,
7997 II->getOperand(1), Mask->getType(), CI);
7998 Value *Op1 = InsertCastBefore(Instruction::BitCast,
7999 II->getOperand(2), Mask->getType(), CI);
Chris Lattnere79d2492006-04-06 19:19:17 +00008000 Value *Result = UndefValue::get(Op0->getType());
8001
8002 // Only extract each element once.
8003 Value *ExtractedElts[32];
8004 memset(ExtractedElts, 0, sizeof(ExtractedElts));
8005
8006 for (unsigned i = 0; i != 16; ++i) {
8007 if (isa<UndefValue>(Mask->getOperand(i)))
8008 continue;
Reid Spencere0fc4df2006-10-20 07:07:24 +00008009 unsigned Idx =cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
Chris Lattnere79d2492006-04-06 19:19:17 +00008010 Idx &= 31; // Match the hardware behavior.
8011
8012 if (ExtractedElts[Idx] == 0) {
8013 Instruction *Elt =
Chris Lattner2deeaea2006-10-05 06:55:50 +00008014 new ExtractElementInst(Idx < 16 ? Op0 : Op1, Idx&15, "tmp");
Chris Lattnere79d2492006-04-06 19:19:17 +00008015 InsertNewInstBefore(Elt, CI);
8016 ExtractedElts[Idx] = Elt;
8017 }
8018
8019 // Insert this value into the result vector.
Chris Lattner2deeaea2006-10-05 06:55:50 +00008020 Result = new InsertElementInst(Result, ExtractedElts[Idx], i,"tmp");
Chris Lattnere79d2492006-04-06 19:19:17 +00008021 InsertNewInstBefore(cast<Instruction>(Result), CI);
8022 }
Reid Spencer6c38f0b2006-11-27 01:05:10 +00008023 return CastInst::create(Instruction::BitCast, Result, CI.getType());
Chris Lattnere79d2492006-04-06 19:19:17 +00008024 }
8025 }
8026 break;
8027
Chris Lattner503221f2006-01-13 21:28:09 +00008028 case Intrinsic::stackrestore: {
8029 // If the save is right next to the restore, remove the restore. This can
8030 // happen when variable allocas are DCE'd.
8031 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
8032 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
8033 BasicBlock::iterator BI = SS;
8034 if (&*++BI == II)
8035 return EraseInstFromFunction(CI);
8036 }
8037 }
8038
8039 // If the stack restore is in a return/unwind block and if there are no
8040 // allocas or calls between the restore and the return, nuke the restore.
8041 TerminatorInst *TI = II->getParent()->getTerminator();
8042 if (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)) {
8043 BasicBlock::iterator BI = II;
8044 bool CannotRemove = false;
8045 for (++BI; &*BI != TI; ++BI) {
8046 if (isa<AllocaInst>(BI) ||
8047 (isa<CallInst>(BI) && !isa<IntrinsicInst>(BI))) {
8048 CannotRemove = true;
8049 break;
8050 }
8051 }
8052 if (!CannotRemove)
8053 return EraseInstFromFunction(CI);
8054 }
8055 break;
8056 }
8057 }
Chris Lattner00648e12004-10-12 04:52:52 +00008058 }
8059
Chris Lattnerc66b2232006-01-13 20:11:04 +00008060 return visitCallSite(II);
Chris Lattner970c33a2003-06-19 17:00:31 +00008061}
8062
8063// InvokeInst simplification
8064//
8065Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
Chris Lattneraec3d942003-10-07 22:32:43 +00008066 return visitCallSite(&II);
Chris Lattner970c33a2003-06-19 17:00:31 +00008067}
8068
Chris Lattneraec3d942003-10-07 22:32:43 +00008069// visitCallSite - Improvements for call and invoke instructions.
8070//
8071Instruction *InstCombiner::visitCallSite(CallSite CS) {
Chris Lattner75b4d1d2003-10-07 22:54:13 +00008072 bool Changed = false;
8073
8074 // If the callee is a constexpr cast of a function, attempt to move the cast
8075 // to the arguments of the call/invoke.
Chris Lattneraec3d942003-10-07 22:32:43 +00008076 if (transformConstExprCastCall(CS)) return 0;
8077
Chris Lattner75b4d1d2003-10-07 22:54:13 +00008078 Value *Callee = CS.getCalledValue();
Chris Lattner81a7a232004-10-16 18:11:37 +00008079
Chris Lattner61d9d812005-05-13 07:09:09 +00008080 if (Function *CalleeF = dyn_cast<Function>(Callee))
8081 if (CalleeF->getCallingConv() != CS.getCallingConv()) {
8082 Instruction *OldCall = CS.getInstruction();
8083 // If the call and callee calling conventions don't match, this call must
8084 // be unreachable, as the call is undefined.
Zhou Sheng75b871f2007-01-11 12:24:14 +00008085 new StoreInst(ConstantInt::getTrue(),
Reid Spencer542964f2007-01-11 18:21:29 +00008086 UndefValue::get(PointerType::get(Type::Int1Ty)), OldCall);
Chris Lattner61d9d812005-05-13 07:09:09 +00008087 if (!OldCall->use_empty())
8088 OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
8089 if (isa<CallInst>(OldCall)) // Not worth removing an invoke here.
8090 return EraseInstFromFunction(*OldCall);
8091 return 0;
8092 }
8093
Chris Lattner8ba9ec92004-10-18 02:59:09 +00008094 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
8095 // This instruction is not reachable, just remove it. We insert a store to
8096 // undef so that we know that this code is not reachable, despite the fact
8097 // that we can't modify the CFG here.
Zhou Sheng75b871f2007-01-11 12:24:14 +00008098 new StoreInst(ConstantInt::getTrue(),
Reid Spencer542964f2007-01-11 18:21:29 +00008099 UndefValue::get(PointerType::get(Type::Int1Ty)),
Chris Lattner8ba9ec92004-10-18 02:59:09 +00008100 CS.getInstruction());
8101
8102 if (!CS.getInstruction()->use_empty())
8103 CS.getInstruction()->
8104 replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
8105
8106 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
8107 // Don't break the CFG, insert a dummy cond branch.
8108 new BranchInst(II->getNormalDest(), II->getUnwindDest(),
Zhou Sheng75b871f2007-01-11 12:24:14 +00008109 ConstantInt::getTrue(), II);
Chris Lattner81a7a232004-10-16 18:11:37 +00008110 }
Chris Lattner8ba9ec92004-10-18 02:59:09 +00008111 return EraseInstFromFunction(*CS.getInstruction());
8112 }
Chris Lattner81a7a232004-10-16 18:11:37 +00008113
Chris Lattner75b4d1d2003-10-07 22:54:13 +00008114 const PointerType *PTy = cast<PointerType>(Callee->getType());
8115 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
8116 if (FTy->isVarArg()) {
8117 // See if we can optimize any arguments passed through the varargs area of
8118 // the call.
8119 for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
8120 E = CS.arg_end(); I != E; ++I)
8121 if (CastInst *CI = dyn_cast<CastInst>(*I)) {
8122 // If this cast does not effect the value passed through the varargs
8123 // area, we can eliminate the use of the cast.
8124 Value *Op = CI->getOperand(0);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00008125 if (CI->isLosslessCast()) {
Chris Lattner75b4d1d2003-10-07 22:54:13 +00008126 *I = Op;
8127 Changed = true;
8128 }
8129 }
8130 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00008131
Chris Lattner75b4d1d2003-10-07 22:54:13 +00008132 return Changed ? CS.getInstruction() : 0;
Chris Lattneraec3d942003-10-07 22:32:43 +00008133}
8134
Chris Lattner970c33a2003-06-19 17:00:31 +00008135// transformConstExprCastCall - If the callee is a constexpr cast of a function,
8136// attempt to move the cast to the arguments of the call/invoke.
8137//
8138bool InstCombiner::transformConstExprCastCall(CallSite CS) {
8139 if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
8140 ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
Reid Spencer6c38f0b2006-11-27 01:05:10 +00008141 if (CE->getOpcode() != Instruction::BitCast ||
8142 !isa<Function>(CE->getOperand(0)))
Chris Lattner970c33a2003-06-19 17:00:31 +00008143 return false;
Reid Spencer87436872004-07-18 00:38:32 +00008144 Function *Callee = cast<Function>(CE->getOperand(0));
Chris Lattner970c33a2003-06-19 17:00:31 +00008145 Instruction *Caller = CS.getInstruction();
8146
8147 // Okay, this is a cast from a function to a different type. Unless doing so
8148 // would cause a type conversion of one of our arguments, change this call to
8149 // be a direct call with arguments casted to the appropriate types.
8150 //
8151 const FunctionType *FT = Callee->getFunctionType();
8152 const Type *OldRetTy = Caller->getType();
8153
Chris Lattner1f7942f2004-01-14 06:06:08 +00008154 // Check to see if we are changing the return type...
8155 if (OldRetTy != FT->getReturnType()) {
Reid Spencer5301e7c2007-01-30 20:08:39 +00008156 if (Callee->isDeclaration() && !Caller->use_empty() &&
Chris Lattner7051d752007-01-06 19:53:32 +00008157 // Conversion is ok if changing from pointer to int of same size.
8158 !(isa<PointerType>(FT->getReturnType()) &&
8159 TD->getIntPtrType() == OldRetTy))
Chris Lattner400f9592007-01-06 02:09:32 +00008160 return false; // Cannot transform this return value.
Chris Lattner1f7942f2004-01-14 06:06:08 +00008161
8162 // If the callsite is an invoke instruction, and the return value is used by
8163 // a PHI node in a successor, we cannot change the return type of the call
8164 // because there is no place to put the cast instruction (without breaking
8165 // the critical edge). Bail out in this case.
8166 if (!Caller->use_empty())
8167 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
8168 for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
8169 UI != E; ++UI)
8170 if (PHINode *PN = dyn_cast<PHINode>(*UI))
8171 if (PN->getParent() == II->getNormalDest() ||
Chris Lattnerfae8ab32004-02-08 21:44:31 +00008172 PN->getParent() == II->getUnwindDest())
Chris Lattner1f7942f2004-01-14 06:06:08 +00008173 return false;
8174 }
Chris Lattner970c33a2003-06-19 17:00:31 +00008175
8176 unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
8177 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
Misha Brukmanb1c93172005-04-21 23:48:37 +00008178
Chris Lattner970c33a2003-06-19 17:00:31 +00008179 CallSite::arg_iterator AI = CS.arg_begin();
8180 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
8181 const Type *ParamTy = FT->getParamType(i);
Andrew Lenharthebfa24e2006-06-28 01:01:52 +00008182 const Type *ActTy = (*AI)->getType();
Reid Spencer6c38f0b2006-11-27 01:05:10 +00008183 ConstantInt *c = dyn_cast<ConstantInt>(*AI);
Andrew Lenharthebfa24e2006-06-28 01:01:52 +00008184 //Either we can cast directly, or we can upconvert the argument
Chris Lattner400f9592007-01-06 02:09:32 +00008185 bool isConvertible = ActTy == ParamTy ||
Chris Lattner7051d752007-01-06 19:53:32 +00008186 (isa<PointerType>(ParamTy) && isa<PointerType>(ActTy)) ||
Chris Lattner03c49532007-01-15 02:27:26 +00008187 (ParamTy->isInteger() && ActTy->isInteger() &&
Reid Spencer8f166b02007-01-08 16:32:00 +00008188 ParamTy->getPrimitiveSizeInBits() >= ActTy->getPrimitiveSizeInBits()) ||
8189 (c && ParamTy->getPrimitiveSizeInBits() >= ActTy->getPrimitiveSizeInBits()
8190 && c->getSExtValue() > 0);
Reid Spencer5301e7c2007-01-30 20:08:39 +00008191 if (Callee->isDeclaration() && !isConvertible) return false;
Chris Lattner970c33a2003-06-19 17:00:31 +00008192 }
8193
8194 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
Reid Spencer5301e7c2007-01-30 20:08:39 +00008195 Callee->isDeclaration())
Chris Lattner970c33a2003-06-19 17:00:31 +00008196 return false; // Do not delete arguments unless we have a function body...
8197
8198 // Okay, we decided that this is a safe thing to do: go ahead and start
8199 // inserting cast instructions as necessary...
8200 std::vector<Value*> Args;
8201 Args.reserve(NumActualArgs);
8202
8203 AI = CS.arg_begin();
8204 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
8205 const Type *ParamTy = FT->getParamType(i);
8206 if ((*AI)->getType() == ParamTy) {
8207 Args.push_back(*AI);
8208 } else {
Reid Spencer668d90f2006-12-18 08:47:13 +00008209 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
Reid Spencerc635f472006-12-31 05:48:39 +00008210 false, ParamTy, false);
Reid Spencer668d90f2006-12-18 08:47:13 +00008211 CastInst *NewCast = CastInst::create(opcode, *AI, ParamTy, "tmp");
Reid Spencer6c38f0b2006-11-27 01:05:10 +00008212 Args.push_back(InsertNewInstBefore(NewCast, *Caller));
Chris Lattner970c33a2003-06-19 17:00:31 +00008213 }
8214 }
8215
8216 // If the function takes more arguments than the call was taking, add them
8217 // now...
8218 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
8219 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
8220
8221 // If we are removing arguments to the function, emit an obnoxious warning...
8222 if (FT->getNumParams() < NumActualArgs)
8223 if (!FT->isVarArg()) {
Bill Wendlingf3baad32006-12-07 01:30:32 +00008224 cerr << "WARNING: While resolving call to function '"
8225 << Callee->getName() << "' arguments were dropped!\n";
Chris Lattner970c33a2003-06-19 17:00:31 +00008226 } else {
8227 // Add all of the arguments in their promoted form to the arg list...
8228 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
8229 const Type *PTy = getPromotedType((*AI)->getType());
8230 if (PTy != (*AI)->getType()) {
8231 // Must promote to pass through va_arg area!
Reid Spencerc635f472006-12-31 05:48:39 +00008232 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, false,
8233 PTy, false);
Reid Spencer668d90f2006-12-18 08:47:13 +00008234 Instruction *Cast = CastInst::create(opcode, *AI, PTy, "tmp");
Chris Lattner970c33a2003-06-19 17:00:31 +00008235 InsertNewInstBefore(Cast, *Caller);
8236 Args.push_back(Cast);
8237 } else {
8238 Args.push_back(*AI);
8239 }
8240 }
8241 }
8242
8243 if (FT->getReturnType() == Type::VoidTy)
Chris Lattner6e0123b2007-02-11 01:23:03 +00008244 Caller->setName(""); // Void type should not have a name.
Chris Lattner970c33a2003-06-19 17:00:31 +00008245
8246 Instruction *NC;
8247 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Chris Lattnerfae8ab32004-02-08 21:44:31 +00008248 NC = new InvokeInst(Callee, II->getNormalDest(), II->getUnwindDest(),
Chris Lattnera06a8fd2007-02-13 02:10:56 +00008249 &Args[0], Args.size(), Caller->getName(), Caller);
Chris Lattner05c703e2005-05-14 12:25:32 +00008250 cast<InvokeInst>(II)->setCallingConv(II->getCallingConv());
Chris Lattner970c33a2003-06-19 17:00:31 +00008251 } else {
Chris Lattnera06a8fd2007-02-13 02:10:56 +00008252 NC = new CallInst(Callee, &Args[0], Args.size(), Caller->getName(), Caller);
Chris Lattner6aacb0f2005-05-06 06:48:21 +00008253 if (cast<CallInst>(Caller)->isTailCall())
8254 cast<CallInst>(NC)->setTailCall();
Chris Lattner05c703e2005-05-14 12:25:32 +00008255 cast<CallInst>(NC)->setCallingConv(cast<CallInst>(Caller)->getCallingConv());
Chris Lattner970c33a2003-06-19 17:00:31 +00008256 }
8257
Chris Lattner6e0123b2007-02-11 01:23:03 +00008258 // Insert a cast of the return type as necessary.
Chris Lattner970c33a2003-06-19 17:00:31 +00008259 Value *NV = NC;
8260 if (Caller->getType() != NV->getType() && !Caller->use_empty()) {
8261 if (NV->getType() != Type::VoidTy) {
Reid Spencer668d90f2006-12-18 08:47:13 +00008262 const Type *CallerTy = Caller->getType();
Reid Spencerc635f472006-12-31 05:48:39 +00008263 Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
8264 CallerTy, false);
Reid Spencer668d90f2006-12-18 08:47:13 +00008265 NV = NC = CastInst::create(opcode, NC, CallerTy, "tmp");
Chris Lattner686767f2003-10-30 00:46:41 +00008266
8267 // If this is an invoke instruction, we should insert it after the first
8268 // non-phi, instruction in the normal successor block.
8269 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
8270 BasicBlock::iterator I = II->getNormalDest()->begin();
8271 while (isa<PHINode>(I)) ++I;
8272 InsertNewInstBefore(NC, *I);
8273 } else {
8274 // Otherwise, it's a call, just insert cast right after the call instr
8275 InsertNewInstBefore(NC, *Caller);
8276 }
Chris Lattner51ea1272004-02-28 05:22:00 +00008277 AddUsersToWorkList(*Caller);
Chris Lattner970c33a2003-06-19 17:00:31 +00008278 } else {
Chris Lattnere29d6342004-10-17 21:22:38 +00008279 NV = UndefValue::get(Caller->getType());
Chris Lattner970c33a2003-06-19 17:00:31 +00008280 }
8281 }
8282
8283 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
8284 Caller->replaceAllUsesWith(NV);
Chris Lattner51f54572007-03-02 19:59:19 +00008285 Caller->eraseFromParent();
Chris Lattnerb15e2b12007-03-02 21:28:56 +00008286 RemoveFromWorkList(Caller);
Chris Lattner970c33a2003-06-19 17:00:31 +00008287 return true;
8288}
8289
Chris Lattnercadac0c2006-11-01 04:51:18 +00008290/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(c,d)]
8291/// and if a/b/c/d and the add's all have a single use, turn this into two phi's
8292/// and a single binop.
8293Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
8294 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
Reid Spencer2341c222007-02-02 02:16:23 +00008295 assert(isa<BinaryOperator>(FirstInst) || isa<GetElementPtrInst>(FirstInst) ||
8296 isa<CmpInst>(FirstInst));
Chris Lattnercadac0c2006-11-01 04:51:18 +00008297 unsigned Opc = FirstInst->getOpcode();
Chris Lattnercd62f112006-11-08 19:29:23 +00008298 Value *LHSVal = FirstInst->getOperand(0);
8299 Value *RHSVal = FirstInst->getOperand(1);
8300
8301 const Type *LHSType = LHSVal->getType();
8302 const Type *RHSType = RHSVal->getType();
Chris Lattnercadac0c2006-11-01 04:51:18 +00008303
8304 // Scan to see if all operands are the same opcode, all have one use, and all
8305 // kill their operands (i.e. the operands have one use).
Chris Lattnerdc826fc2006-11-01 04:55:47 +00008306 for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) {
Chris Lattnercadac0c2006-11-01 04:51:18 +00008307 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
Chris Lattnerdc826fc2006-11-01 04:55:47 +00008308 if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
Reid Spencer266e42b2006-12-23 06:05:41 +00008309 // Verify type of the LHS matches so we don't fold cmp's of different
Chris Lattnereebea432006-11-01 07:43:41 +00008310 // types or GEP's with different index types.
8311 I->getOperand(0)->getType() != LHSType ||
8312 I->getOperand(1)->getType() != RHSType)
Chris Lattnercadac0c2006-11-01 04:51:18 +00008313 return 0;
Reid Spencer266e42b2006-12-23 06:05:41 +00008314
8315 // If they are CmpInst instructions, check their predicates
8316 if (Opc == Instruction::ICmp || Opc == Instruction::FCmp)
8317 if (cast<CmpInst>(I)->getPredicate() !=
8318 cast<CmpInst>(FirstInst)->getPredicate())
8319 return 0;
Chris Lattnercd62f112006-11-08 19:29:23 +00008320
8321 // Keep track of which operand needs a phi node.
8322 if (I->getOperand(0) != LHSVal) LHSVal = 0;
8323 if (I->getOperand(1) != RHSVal) RHSVal = 0;
Chris Lattnercadac0c2006-11-01 04:51:18 +00008324 }
8325
Chris Lattner4f218d52006-11-08 19:42:28 +00008326 // Otherwise, this is safe to transform, determine if it is profitable.
8327
8328 // If this is a GEP, and if the index (not the pointer) needs a PHI, bail out.
8329 // Indexes are often folded into load/store instructions, so we don't want to
8330 // hide them behind a phi.
8331 if (isa<GetElementPtrInst>(FirstInst) && RHSVal == 0)
8332 return 0;
8333
Chris Lattnercadac0c2006-11-01 04:51:18 +00008334 Value *InLHS = FirstInst->getOperand(0);
Chris Lattnercadac0c2006-11-01 04:51:18 +00008335 Value *InRHS = FirstInst->getOperand(1);
Chris Lattner4f218d52006-11-08 19:42:28 +00008336 PHINode *NewLHS = 0, *NewRHS = 0;
Chris Lattnercd62f112006-11-08 19:29:23 +00008337 if (LHSVal == 0) {
8338 NewLHS = new PHINode(LHSType, FirstInst->getOperand(0)->getName()+".pn");
8339 NewLHS->reserveOperandSpace(PN.getNumOperands()/2);
8340 NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
Chris Lattnereebea432006-11-01 07:43:41 +00008341 InsertNewInstBefore(NewLHS, PN);
8342 LHSVal = NewLHS;
8343 }
Chris Lattnercd62f112006-11-08 19:29:23 +00008344
8345 if (RHSVal == 0) {
8346 NewRHS = new PHINode(RHSType, FirstInst->getOperand(1)->getName()+".pn");
8347 NewRHS->reserveOperandSpace(PN.getNumOperands()/2);
8348 NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
Chris Lattnereebea432006-11-01 07:43:41 +00008349 InsertNewInstBefore(NewRHS, PN);
8350 RHSVal = NewRHS;
8351 }
8352
Chris Lattnercd62f112006-11-08 19:29:23 +00008353 // Add all operands to the new PHIs.
8354 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
8355 if (NewLHS) {
8356 Value *NewInLHS =cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
8357 NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
8358 }
8359 if (NewRHS) {
8360 Value *NewInRHS =cast<Instruction>(PN.getIncomingValue(i))->getOperand(1);
8361 NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
8362 }
8363 }
8364
Chris Lattnercadac0c2006-11-01 04:51:18 +00008365 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Chris Lattnereebea432006-11-01 07:43:41 +00008366 return BinaryOperator::create(BinOp->getOpcode(), LHSVal, RHSVal);
Reid Spencer266e42b2006-12-23 06:05:41 +00008367 else if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
8368 return CmpInst::create(CIOp->getOpcode(), CIOp->getPredicate(), LHSVal,
8369 RHSVal);
Chris Lattnereebea432006-11-01 07:43:41 +00008370 else {
8371 assert(isa<GetElementPtrInst>(FirstInst));
8372 return new GetElementPtrInst(LHSVal, RHSVal);
8373 }
Chris Lattnercadac0c2006-11-01 04:51:18 +00008374}
8375
Chris Lattner14f82c72006-11-01 07:13:54 +00008376/// isSafeToSinkLoad - Return true if we know that it is safe sink the load out
8377/// of the block that defines it. This means that it must be obvious the value
8378/// of the load is not changed from the point of the load to the end of the
8379/// block it is in.
Chris Lattnerc9042052007-02-01 22:30:07 +00008380///
8381/// Finally, it is safe, but not profitable, to sink a load targetting a
8382/// non-address-taken alloca. Doing so will cause us to not promote the alloca
8383/// to a register.
Chris Lattner14f82c72006-11-01 07:13:54 +00008384static bool isSafeToSinkLoad(LoadInst *L) {
8385 BasicBlock::iterator BBI = L, E = L->getParent()->end();
8386
8387 for (++BBI; BBI != E; ++BBI)
8388 if (BBI->mayWriteToMemory())
8389 return false;
Chris Lattnerc9042052007-02-01 22:30:07 +00008390
8391 // Check for non-address taken alloca. If not address-taken already, it isn't
8392 // profitable to do this xform.
8393 if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
8394 bool isAddressTaken = false;
8395 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
8396 UI != E; ++UI) {
8397 if (isa<LoadInst>(UI)) continue;
8398 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
8399 // If storing TO the alloca, then the address isn't taken.
8400 if (SI->getOperand(1) == AI) continue;
8401 }
8402 isAddressTaken = true;
8403 break;
8404 }
8405
8406 if (!isAddressTaken)
8407 return false;
8408 }
8409
Chris Lattner14f82c72006-11-01 07:13:54 +00008410 return true;
8411}
8412
Chris Lattner970c33a2003-06-19 17:00:31 +00008413
Chris Lattner7515cab2004-11-14 19:13:23 +00008414// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
8415// operator and they all are only used by the PHI, PHI together their
8416// inputs, and do the operation once, to the result of the PHI.
8417Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
8418 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
8419
8420 // Scan the instruction, looking for input operations that can be folded away.
8421 // If all input operands to the phi are the same instruction (e.g. a cast from
8422 // the same type or "+42") we can pull the operation through the PHI, reducing
8423 // code size and simplifying code.
8424 Constant *ConstantOp = 0;
8425 const Type *CastSrcTy = 0;
Chris Lattner14f82c72006-11-01 07:13:54 +00008426 bool isVolatile = false;
Chris Lattner7515cab2004-11-14 19:13:23 +00008427 if (isa<CastInst>(FirstInst)) {
8428 CastSrcTy = FirstInst->getOperand(0)->getType();
Reid Spencer2341c222007-02-02 02:16:23 +00008429 } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
Reid Spencer266e42b2006-12-23 06:05:41 +00008430 // Can fold binop, compare or shift here if the RHS is a constant,
8431 // otherwise call FoldPHIArgBinOpIntoPHI.
Chris Lattner7515cab2004-11-14 19:13:23 +00008432 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
Chris Lattnercadac0c2006-11-01 04:51:18 +00008433 if (ConstantOp == 0)
8434 return FoldPHIArgBinOpIntoPHI(PN);
Chris Lattner14f82c72006-11-01 07:13:54 +00008435 } else if (LoadInst *LI = dyn_cast<LoadInst>(FirstInst)) {
8436 isVolatile = LI->isVolatile();
8437 // We can't sink the load if the loaded value could be modified between the
8438 // load and the PHI.
8439 if (LI->getParent() != PN.getIncomingBlock(0) ||
8440 !isSafeToSinkLoad(LI))
8441 return 0;
Chris Lattnereebea432006-11-01 07:43:41 +00008442 } else if (isa<GetElementPtrInst>(FirstInst)) {
Chris Lattner4f218d52006-11-08 19:42:28 +00008443 if (FirstInst->getNumOperands() == 2)
Chris Lattnereebea432006-11-01 07:43:41 +00008444 return FoldPHIArgBinOpIntoPHI(PN);
8445 // Can't handle general GEPs yet.
8446 return 0;
Chris Lattner7515cab2004-11-14 19:13:23 +00008447 } else {
8448 return 0; // Cannot fold this operation.
8449 }
8450
8451 // Check to see if all arguments are the same operation.
8452 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
8453 if (!isa<Instruction>(PN.getIncomingValue(i))) return 0;
8454 Instruction *I = cast<Instruction>(PN.getIncomingValue(i));
Reid Spencer266e42b2006-12-23 06:05:41 +00008455 if (!I->hasOneUse() || !I->isSameOperationAs(FirstInst))
Chris Lattner7515cab2004-11-14 19:13:23 +00008456 return 0;
8457 if (CastSrcTy) {
8458 if (I->getOperand(0)->getType() != CastSrcTy)
8459 return 0; // Cast operation must match.
Chris Lattner14f82c72006-11-01 07:13:54 +00008460 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
Reid Spencer266e42b2006-12-23 06:05:41 +00008461 // We can't sink the load if the loaded value could be modified between
8462 // the load and the PHI.
Chris Lattner14f82c72006-11-01 07:13:54 +00008463 if (LI->isVolatile() != isVolatile ||
8464 LI->getParent() != PN.getIncomingBlock(i) ||
8465 !isSafeToSinkLoad(LI))
8466 return 0;
Chris Lattner7515cab2004-11-14 19:13:23 +00008467 } else if (I->getOperand(1) != ConstantOp) {
8468 return 0;
8469 }
8470 }
8471
8472 // Okay, they are all the same operation. Create a new PHI node of the
8473 // correct type, and PHI together all of the LHS's of the instructions.
8474 PHINode *NewPN = new PHINode(FirstInst->getOperand(0)->getType(),
8475 PN.getName()+".in");
Chris Lattnerd8e20182005-01-29 00:39:08 +00008476 NewPN->reserveOperandSpace(PN.getNumOperands()/2);
Chris Lattner46dd5a62004-11-14 19:29:34 +00008477
8478 Value *InVal = FirstInst->getOperand(0);
8479 NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
Chris Lattner7515cab2004-11-14 19:13:23 +00008480
8481 // Add all operands to the new PHI.
Chris Lattner46dd5a62004-11-14 19:29:34 +00008482 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
8483 Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
8484 if (NewInVal != InVal)
8485 InVal = 0;
8486 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
8487 }
8488
8489 Value *PhiVal;
8490 if (InVal) {
8491 // The new PHI unions all of the same values together. This is really
8492 // common, so we handle it intelligently here for compile-time speed.
8493 PhiVal = InVal;
8494 delete NewPN;
8495 } else {
8496 InsertNewInstBefore(NewPN, PN);
8497 PhiVal = NewPN;
8498 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00008499
Chris Lattner7515cab2004-11-14 19:13:23 +00008500 // Insert and return the new operation.
Reid Spencer6c38f0b2006-11-27 01:05:10 +00008501 if (CastInst* FirstCI = dyn_cast<CastInst>(FirstInst))
8502 return CastInst::create(FirstCI->getOpcode(), PhiVal, PN.getType());
Reid Spencerde46e482006-11-02 20:25:50 +00008503 else if (isa<LoadInst>(FirstInst))
Chris Lattner14f82c72006-11-01 07:13:54 +00008504 return new LoadInst(PhiVal, "", isVolatile);
Chris Lattner7515cab2004-11-14 19:13:23 +00008505 else if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Chris Lattner46dd5a62004-11-14 19:29:34 +00008506 return BinaryOperator::create(BinOp->getOpcode(), PhiVal, ConstantOp);
Reid Spencer266e42b2006-12-23 06:05:41 +00008507 else if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
8508 return CmpInst::create(CIOp->getOpcode(), CIOp->getPredicate(),
8509 PhiVal, ConstantOp);
Chris Lattner7515cab2004-11-14 19:13:23 +00008510 else
Reid Spencer2341c222007-02-02 02:16:23 +00008511 assert(0 && "Unknown operation");
Jeff Cohenb622c112007-03-05 00:00:42 +00008512 return 0;
Chris Lattner7515cab2004-11-14 19:13:23 +00008513}
Chris Lattner48a44f72002-05-02 17:06:02 +00008514
Chris Lattner71536432005-01-17 05:10:15 +00008515/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
8516/// that is dead.
8517static bool DeadPHICycle(PHINode *PN, std::set<PHINode*> &PotentiallyDeadPHIs) {
8518 if (PN->use_empty()) return true;
8519 if (!PN->hasOneUse()) return false;
8520
8521 // Remember this node, and if we find the cycle, return.
8522 if (!PotentiallyDeadPHIs.insert(PN).second)
8523 return true;
8524
8525 if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
8526 return DeadPHICycle(PU, PotentiallyDeadPHIs);
Misha Brukmanb1c93172005-04-21 23:48:37 +00008527
Chris Lattner71536432005-01-17 05:10:15 +00008528 return false;
8529}
8530
Chris Lattnerbbbdd852002-05-06 18:06:38 +00008531// PHINode simplification
8532//
Chris Lattner113f4f42002-06-25 16:13:24 +00008533Instruction *InstCombiner::visitPHINode(PHINode &PN) {
Owen Andersonbbf89902006-07-10 22:15:25 +00008534 // If LCSSA is around, don't mess with Phi nodes
Chris Lattner8258b442007-03-04 04:27:24 +00008535 if (MustPreserveLCSSA) return 0;
Owen Andersona6968f82006-07-10 19:03:49 +00008536
Owen Andersonae8aa642006-07-10 22:03:18 +00008537 if (Value *V = PN.hasConstantValue())
8538 return ReplaceInstUsesWith(PN, V);
8539
Owen Andersonae8aa642006-07-10 22:03:18 +00008540 // If all PHI operands are the same operation, pull them through the PHI,
8541 // reducing code size.
8542 if (isa<Instruction>(PN.getIncomingValue(0)) &&
8543 PN.getIncomingValue(0)->hasOneUse())
8544 if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
8545 return Result;
8546
8547 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
8548 // this PHI only has a single use (a PHI), and if that PHI only has one use (a
8549 // PHI)... break the cycle.
Chris Lattnerc8dcede2007-01-15 07:30:06 +00008550 if (PN.hasOneUse()) {
8551 Instruction *PHIUser = cast<Instruction>(PN.use_back());
8552 if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
Owen Andersonae8aa642006-07-10 22:03:18 +00008553 std::set<PHINode*> PotentiallyDeadPHIs;
8554 PotentiallyDeadPHIs.insert(&PN);
8555 if (DeadPHICycle(PU, PotentiallyDeadPHIs))
8556 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
8557 }
Chris Lattnerc8dcede2007-01-15 07:30:06 +00008558
8559 // If this phi has a single use, and if that use just computes a value for
8560 // the next iteration of a loop, delete the phi. This occurs with unused
8561 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
8562 // common case here is good because the only other things that catch this
8563 // are induction variable analysis (sometimes) and ADCE, which is only run
8564 // late.
8565 if (PHIUser->hasOneUse() &&
8566 (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
8567 PHIUser->use_back() == &PN) {
8568 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
8569 }
8570 }
Owen Andersonae8aa642006-07-10 22:03:18 +00008571
Chris Lattner91daeb52003-12-19 05:58:40 +00008572 return 0;
Chris Lattnerbbbdd852002-05-06 18:06:38 +00008573}
8574
Reid Spencer13bc5d72006-12-12 09:18:51 +00008575static Value *InsertCastToIntPtrTy(Value *V, const Type *DTy,
8576 Instruction *InsertPoint,
8577 InstCombiner *IC) {
Reid Spencer8f166b02007-01-08 16:32:00 +00008578 unsigned PtrSize = DTy->getPrimitiveSizeInBits();
8579 unsigned VTySize = V->getType()->getPrimitiveSizeInBits();
Reid Spencer13bc5d72006-12-12 09:18:51 +00008580 // We must cast correctly to the pointer type. Ensure that we
8581 // sign extend the integer value if it is smaller as this is
8582 // used for address computation.
8583 Instruction::CastOps opcode =
8584 (VTySize < PtrSize ? Instruction::SExt :
8585 (VTySize == PtrSize ? Instruction::BitCast : Instruction::Trunc));
8586 return IC->InsertCastBefore(opcode, V, DTy, *InsertPoint);
Chris Lattner69193f92004-04-05 01:30:19 +00008587}
8588
Chris Lattner48a44f72002-05-02 17:06:02 +00008589
Chris Lattner113f4f42002-06-25 16:13:24 +00008590Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
Chris Lattner5f667a62004-05-07 22:09:22 +00008591 Value *PtrOp = GEP.getOperand(0);
Chris Lattner471bd762003-05-22 19:07:21 +00008592 // Is it 'getelementptr %P, long 0' or 'getelementptr %P'
Chris Lattner113f4f42002-06-25 16:13:24 +00008593 // If so, eliminate the noop.
Chris Lattner8d0bacb2004-02-22 05:25:17 +00008594 if (GEP.getNumOperands() == 1)
Chris Lattner5f667a62004-05-07 22:09:22 +00008595 return ReplaceInstUsesWith(GEP, PtrOp);
Chris Lattner8d0bacb2004-02-22 05:25:17 +00008596
Chris Lattner81a7a232004-10-16 18:11:37 +00008597 if (isa<UndefValue>(GEP.getOperand(0)))
8598 return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
8599
Chris Lattner8d0bacb2004-02-22 05:25:17 +00008600 bool HasZeroPointerIndex = false;
8601 if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1)))
8602 HasZeroPointerIndex = C->isNullValue();
8603
8604 if (GEP.getNumOperands() == 2 && HasZeroPointerIndex)
Chris Lattner5f667a62004-05-07 22:09:22 +00008605 return ReplaceInstUsesWith(GEP, PtrOp);
Chris Lattner48a44f72002-05-02 17:06:02 +00008606
Chris Lattner69193f92004-04-05 01:30:19 +00008607 // Eliminate unneeded casts for indices.
8608 bool MadeChange = false;
Chris Lattner2b2412d2004-04-07 18:38:20 +00008609 gep_type_iterator GTI = gep_type_begin(GEP);
8610 for (unsigned i = 1, e = GEP.getNumOperands(); i != e; ++i, ++GTI)
8611 if (isa<SequentialType>(*GTI)) {
8612 if (CastInst *CI = dyn_cast<CastInst>(GEP.getOperand(i))) {
Chris Lattner27df1db2007-01-15 07:02:54 +00008613 if (CI->getOpcode() == Instruction::ZExt ||
8614 CI->getOpcode() == Instruction::SExt) {
8615 const Type *SrcTy = CI->getOperand(0)->getType();
8616 // We can eliminate a cast from i32 to i64 iff the target
8617 // is a 32-bit pointer target.
8618 if (SrcTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()) {
8619 MadeChange = true;
8620 GEP.setOperand(i, CI->getOperand(0));
Chris Lattner69193f92004-04-05 01:30:19 +00008621 }
8622 }
8623 }
Chris Lattner2b2412d2004-04-07 18:38:20 +00008624 // If we are using a wider index than needed for this platform, shrink it
8625 // to what we need. If the incoming value needs a cast instruction,
8626 // insert it. This explicit cast can make subsequent optimizations more
8627 // obvious.
8628 Value *Op = GEP.getOperand(i);
Reid Spencer7a9c62b2007-01-12 07:05:14 +00008629 if (TD->getTypeSize(Op->getType()) > TD->getPointerSize())
Chris Lattner1e9ac1a2004-04-17 18:16:10 +00008630 if (Constant *C = dyn_cast<Constant>(Op)) {
Reid Spencer266e42b2006-12-23 06:05:41 +00008631 GEP.setOperand(i, ConstantExpr::getTrunc(C, TD->getIntPtrType()));
Chris Lattner1e9ac1a2004-04-17 18:16:10 +00008632 MadeChange = true;
8633 } else {
Reid Spencer13bc5d72006-12-12 09:18:51 +00008634 Op = InsertCastBefore(Instruction::Trunc, Op, TD->getIntPtrType(),
8635 GEP);
Chris Lattner2b2412d2004-04-07 18:38:20 +00008636 GEP.setOperand(i, Op);
8637 MadeChange = true;
8638 }
Chris Lattner69193f92004-04-05 01:30:19 +00008639 }
8640 if (MadeChange) return &GEP;
8641
Chris Lattnerae7a0d32002-08-02 19:29:35 +00008642 // Combine Indices - If the source pointer to this getelementptr instruction
8643 // is a getelementptr instruction, combine the indices of the two
8644 // getelementptr instructions into a single instruction.
8645 //
Chris Lattneraf6094f2007-02-15 22:48:32 +00008646 SmallVector<Value*, 8> SrcGEPOperands;
Chris Lattner0798af32005-01-13 20:14:25 +00008647 if (User *Src = dyn_castGetElementPtr(PtrOp))
Chris Lattneraf6094f2007-02-15 22:48:32 +00008648 SrcGEPOperands.append(Src->op_begin(), Src->op_end());
Chris Lattner57c67b02004-03-25 22:59:29 +00008649
8650 if (!SrcGEPOperands.empty()) {
Chris Lattner5f667a62004-05-07 22:09:22 +00008651 // Note that if our source is a gep chain itself that we wait for that
8652 // chain to be resolved before we perform this transformation. This
8653 // avoids us creating a TON of code in some cases.
8654 //
8655 if (isa<GetElementPtrInst>(SrcGEPOperands[0]) &&
8656 cast<Instruction>(SrcGEPOperands[0])->getNumOperands() == 2)
8657 return 0; // Wait until our source is folded to completion.
8658
Chris Lattneraf6094f2007-02-15 22:48:32 +00008659 SmallVector<Value*, 8> Indices;
Chris Lattner5f667a62004-05-07 22:09:22 +00008660
8661 // Find out whether the last index in the source GEP is a sequential idx.
8662 bool EndsWithSequential = false;
8663 for (gep_type_iterator I = gep_type_begin(*cast<User>(PtrOp)),
8664 E = gep_type_end(*cast<User>(PtrOp)); I != E; ++I)
Chris Lattner8ec5f882004-05-08 22:41:42 +00008665 EndsWithSequential = !isa<StructType>(*I);
Misha Brukmanb1c93172005-04-21 23:48:37 +00008666
Chris Lattnerae7a0d32002-08-02 19:29:35 +00008667 // Can we combine the two pointer arithmetics offsets?
Chris Lattner5f667a62004-05-07 22:09:22 +00008668 if (EndsWithSequential) {
Chris Lattner235af562003-03-05 22:33:14 +00008669 // Replace: gep (gep %P, long B), long A, ...
8670 // With: T = long A+B; gep %P, T, ...
8671 //
Chris Lattner5f667a62004-05-07 22:09:22 +00008672 Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1);
Chris Lattner69193f92004-04-05 01:30:19 +00008673 if (SO1 == Constant::getNullValue(SO1->getType())) {
8674 Sum = GO1;
8675 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
8676 Sum = SO1;
8677 } else {
8678 // If they aren't the same type, convert both to an integer of the
8679 // target's pointer size.
8680 if (SO1->getType() != GO1->getType()) {
8681 if (Constant *SO1C = dyn_cast<Constant>(SO1)) {
Reid Spencer13bc5d72006-12-12 09:18:51 +00008682 SO1 = ConstantExpr::getIntegerCast(SO1C, GO1->getType(), true);
Chris Lattner69193f92004-04-05 01:30:19 +00008683 } else if (Constant *GO1C = dyn_cast<Constant>(GO1)) {
Reid Spencer13bc5d72006-12-12 09:18:51 +00008684 GO1 = ConstantExpr::getIntegerCast(GO1C, SO1->getType(), true);
Chris Lattner69193f92004-04-05 01:30:19 +00008685 } else {
8686 unsigned PS = TD->getPointerSize();
Reid Spencer7a9c62b2007-01-12 07:05:14 +00008687 if (TD->getTypeSize(SO1->getType()) == PS) {
Chris Lattner69193f92004-04-05 01:30:19 +00008688 // Convert GO1 to SO1's type.
Reid Spencer13bc5d72006-12-12 09:18:51 +00008689 GO1 = InsertCastToIntPtrTy(GO1, SO1->getType(), &GEP, this);
Chris Lattner69193f92004-04-05 01:30:19 +00008690
Reid Spencer7a9c62b2007-01-12 07:05:14 +00008691 } else if (TD->getTypeSize(GO1->getType()) == PS) {
Chris Lattner69193f92004-04-05 01:30:19 +00008692 // Convert SO1 to GO1's type.
Reid Spencer13bc5d72006-12-12 09:18:51 +00008693 SO1 = InsertCastToIntPtrTy(SO1, GO1->getType(), &GEP, this);
Chris Lattner69193f92004-04-05 01:30:19 +00008694 } else {
8695 const Type *PT = TD->getIntPtrType();
Reid Spencer13bc5d72006-12-12 09:18:51 +00008696 SO1 = InsertCastToIntPtrTy(SO1, PT, &GEP, this);
8697 GO1 = InsertCastToIntPtrTy(GO1, PT, &GEP, this);
Chris Lattner69193f92004-04-05 01:30:19 +00008698 }
8699 }
8700 }
Chris Lattner5f667a62004-05-07 22:09:22 +00008701 if (isa<Constant>(SO1) && isa<Constant>(GO1))
8702 Sum = ConstantExpr::getAdd(cast<Constant>(SO1), cast<Constant>(GO1));
8703 else {
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00008704 Sum = BinaryOperator::createAdd(SO1, GO1, PtrOp->getName()+".sum");
8705 InsertNewInstBefore(cast<Instruction>(Sum), GEP);
Chris Lattner5f667a62004-05-07 22:09:22 +00008706 }
Chris Lattner69193f92004-04-05 01:30:19 +00008707 }
Chris Lattner5f667a62004-05-07 22:09:22 +00008708
8709 // Recycle the GEP we already have if possible.
8710 if (SrcGEPOperands.size() == 2) {
8711 GEP.setOperand(0, SrcGEPOperands[0]);
8712 GEP.setOperand(1, Sum);
8713 return &GEP;
8714 } else {
8715 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
8716 SrcGEPOperands.end()-1);
8717 Indices.push_back(Sum);
8718 Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end());
8719 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00008720 } else if (isa<Constant>(*GEP.idx_begin()) &&
Chris Lattner69193f92004-04-05 01:30:19 +00008721 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
Misha Brukmanb1c93172005-04-21 23:48:37 +00008722 SrcGEPOperands.size() != 1) {
Chris Lattnerae7a0d32002-08-02 19:29:35 +00008723 // Otherwise we can do the fold if the first index of the GEP is a zero
Chris Lattner57c67b02004-03-25 22:59:29 +00008724 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
8725 SrcGEPOperands.end());
Chris Lattnerae7a0d32002-08-02 19:29:35 +00008726 Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end());
8727 }
8728
8729 if (!Indices.empty())
Chris Lattnera7315132007-02-12 22:56:41 +00008730 return new GetElementPtrInst(SrcGEPOperands[0], &Indices[0],
8731 Indices.size(), GEP.getName());
Chris Lattnerc59af1d2002-08-17 22:21:59 +00008732
Chris Lattner5f667a62004-05-07 22:09:22 +00008733 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(PtrOp)) {
Chris Lattnerc59af1d2002-08-17 22:21:59 +00008734 // GEP of global variable. If all of the indices for this GEP are
8735 // constants, we can promote this to a constexpr instead of an instruction.
8736
8737 // Scan for nonconstants...
Chris Lattnerf96f4a82007-01-31 04:40:53 +00008738 SmallVector<Constant*, 8> Indices;
Chris Lattnerc59af1d2002-08-17 22:21:59 +00008739 User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end();
8740 for (; I != E && isa<Constant>(*I); ++I)
8741 Indices.push_back(cast<Constant>(*I));
8742
8743 if (I == E) { // If they are all constants...
Chris Lattnerf96f4a82007-01-31 04:40:53 +00008744 Constant *CE = ConstantExpr::getGetElementPtr(GV,
8745 &Indices[0],Indices.size());
Chris Lattnerc59af1d2002-08-17 22:21:59 +00008746
8747 // Replace all uses of the GEP with the new constexpr...
8748 return ReplaceInstUsesWith(GEP, CE);
8749 }
Reid Spencer6c38f0b2006-11-27 01:05:10 +00008750 } else if (Value *X = getBitCastOperand(PtrOp)) { // Is the operand a cast?
Chris Lattner567b81f2005-09-13 00:40:14 +00008751 if (!isa<PointerType>(X->getType())) {
8752 // Not interesting. Source pointer must be a cast from pointer.
8753 } else if (HasZeroPointerIndex) {
8754 // transform: GEP (cast [10 x ubyte]* X to [0 x ubyte]*), long 0, ...
8755 // into : GEP [10 x ubyte]* X, long 0, ...
8756 //
8757 // This occurs when the program declares an array extern like "int X[];"
8758 //
8759 const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
8760 const PointerType *XTy = cast<PointerType>(X->getType());
8761 if (const ArrayType *XATy =
8762 dyn_cast<ArrayType>(XTy->getElementType()))
8763 if (const ArrayType *CATy =
8764 dyn_cast<ArrayType>(CPTy->getElementType()))
8765 if (CATy->getElementType() == XATy->getElementType()) {
8766 // At this point, we know that the cast source type is a pointer
8767 // to an array of the same type as the destination pointer
8768 // array. Because the array type is never stepped over (there
8769 // is a leading zero) we can fold the cast into this GEP.
8770 GEP.setOperand(0, X);
8771 return &GEP;
8772 }
8773 } else if (GEP.getNumOperands() == 2) {
8774 // Transform things like:
Chris Lattner2a893292005-09-13 18:36:04 +00008775 // %t = getelementptr ubyte* cast ([2 x int]* %str to uint*), uint %V
8776 // into: %t1 = getelementptr [2 x int*]* %str, int 0, uint %V; cast
Chris Lattner567b81f2005-09-13 00:40:14 +00008777 const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType();
8778 const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
8779 if (isa<ArrayType>(SrcElTy) &&
8780 TD->getTypeSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
8781 TD->getTypeSize(ResElTy)) {
8782 Value *V = InsertNewInstBefore(
Reid Spencerc635f472006-12-31 05:48:39 +00008783 new GetElementPtrInst(X, Constant::getNullValue(Type::Int32Ty),
Chris Lattner567b81f2005-09-13 00:40:14 +00008784 GEP.getOperand(1), GEP.getName()), GEP);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00008785 // V and GEP are both pointer types --> BitCast
8786 return new BitCastInst(V, GEP.getType());
Chris Lattner8d0bacb2004-02-22 05:25:17 +00008787 }
Chris Lattner2a893292005-09-13 18:36:04 +00008788
8789 // Transform things like:
8790 // getelementptr sbyte* cast ([100 x double]* X to sbyte*), int %tmp
8791 // (where tmp = 8*tmp2) into:
8792 // getelementptr [100 x double]* %arr, int 0, int %tmp.2
8793
8794 if (isa<ArrayType>(SrcElTy) &&
Reid Spencerc635f472006-12-31 05:48:39 +00008795 (ResElTy == Type::Int8Ty || ResElTy == Type::Int8Ty)) {
Chris Lattner2a893292005-09-13 18:36:04 +00008796 uint64_t ArrayEltSize =
8797 TD->getTypeSize(cast<ArrayType>(SrcElTy)->getElementType());
8798
8799 // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We
8800 // allow either a mul, shift, or constant here.
8801 Value *NewIdx = 0;
8802 ConstantInt *Scale = 0;
8803 if (ArrayEltSize == 1) {
8804 NewIdx = GEP.getOperand(1);
8805 Scale = ConstantInt::get(NewIdx->getType(), 1);
8806 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
Chris Lattnera393e4d2005-09-14 17:32:56 +00008807 NewIdx = ConstantInt::get(CI->getType(), 1);
Chris Lattner2a893292005-09-13 18:36:04 +00008808 Scale = CI;
8809 } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
8810 if (Inst->getOpcode() == Instruction::Shl &&
8811 isa<ConstantInt>(Inst->getOperand(1))) {
Reid Spencere0fc4df2006-10-20 07:07:24 +00008812 unsigned ShAmt =
8813 cast<ConstantInt>(Inst->getOperand(1))->getZExtValue();
Reid Spencer266e42b2006-12-23 06:05:41 +00008814 Scale = ConstantInt::get(Inst->getType(), 1ULL << ShAmt);
Chris Lattner2a893292005-09-13 18:36:04 +00008815 NewIdx = Inst->getOperand(0);
8816 } else if (Inst->getOpcode() == Instruction::Mul &&
8817 isa<ConstantInt>(Inst->getOperand(1))) {
8818 Scale = cast<ConstantInt>(Inst->getOperand(1));
8819 NewIdx = Inst->getOperand(0);
8820 }
8821 }
8822
8823 // If the index will be to exactly the right offset with the scale taken
8824 // out, perform the transformation.
Reid Spencere0fc4df2006-10-20 07:07:24 +00008825 if (Scale && Scale->getZExtValue() % ArrayEltSize == 0) {
Reid Spencerde46e482006-11-02 20:25:50 +00008826 if (isa<ConstantInt>(Scale))
Reid Spencere0fc4df2006-10-20 07:07:24 +00008827 Scale = ConstantInt::get(Scale->getType(),
8828 Scale->getZExtValue() / ArrayEltSize);
8829 if (Scale->getZExtValue() != 1) {
Reid Spencer13bc5d72006-12-12 09:18:51 +00008830 Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
8831 true /*SExt*/);
Chris Lattner2a893292005-09-13 18:36:04 +00008832 Instruction *Sc = BinaryOperator::createMul(NewIdx, C, "idxscale");
8833 NewIdx = InsertNewInstBefore(Sc, GEP);
8834 }
8835
8836 // Insert the new GEP instruction.
Reid Spencer6c38f0b2006-11-27 01:05:10 +00008837 Instruction *NewGEP =
Reid Spencerc635f472006-12-31 05:48:39 +00008838 new GetElementPtrInst(X, Constant::getNullValue(Type::Int32Ty),
Chris Lattner2a893292005-09-13 18:36:04 +00008839 NewIdx, GEP.getName());
Reid Spencer6c38f0b2006-11-27 01:05:10 +00008840 NewGEP = InsertNewInstBefore(NewGEP, GEP);
8841 // The NewGEP must be pointer typed, so must the old one -> BitCast
8842 return new BitCastInst(NewGEP, GEP.getType());
Chris Lattner2a893292005-09-13 18:36:04 +00008843 }
8844 }
Chris Lattner8d0bacb2004-02-22 05:25:17 +00008845 }
Chris Lattnerca081252001-12-14 16:52:21 +00008846 }
8847
Chris Lattnerca081252001-12-14 16:52:21 +00008848 return 0;
8849}
8850
Chris Lattner1085bdf2002-11-04 16:18:53 +00008851Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
8852 // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
8853 if (AI.isArrayAllocation()) // Check C != 1
Reid Spencere0fc4df2006-10-20 07:07:24 +00008854 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
8855 const Type *NewTy =
8856 ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
Chris Lattnera2620ac2002-11-09 00:49:43 +00008857 AllocationInst *New = 0;
Chris Lattner1085bdf2002-11-04 16:18:53 +00008858
8859 // Create and insert the replacement instruction...
8860 if (isa<MallocInst>(AI))
Nate Begeman848622f2005-11-05 09:21:28 +00008861 New = new MallocInst(NewTy, 0, AI.getAlignment(), AI.getName());
Chris Lattnera2620ac2002-11-09 00:49:43 +00008862 else {
8863 assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
Nate Begeman848622f2005-11-05 09:21:28 +00008864 New = new AllocaInst(NewTy, 0, AI.getAlignment(), AI.getName());
Chris Lattnera2620ac2002-11-09 00:49:43 +00008865 }
Chris Lattnerabb77c92004-03-19 06:08:10 +00008866
8867 InsertNewInstBefore(New, AI);
Misha Brukmanb1c93172005-04-21 23:48:37 +00008868
Chris Lattner1085bdf2002-11-04 16:18:53 +00008869 // Scan to the end of the allocation instructions, to skip over a block of
8870 // allocas if possible...
8871 //
8872 BasicBlock::iterator It = New;
8873 while (isa<AllocationInst>(*It)) ++It;
8874
8875 // Now that I is pointing to the first non-allocation-inst in the block,
8876 // insert our getelementptr instruction...
8877 //
Reid Spencerc635f472006-12-31 05:48:39 +00008878 Value *NullIdx = Constant::getNullValue(Type::Int32Ty);
Chris Lattner809dfac2005-05-04 19:10:26 +00008879 Value *V = new GetElementPtrInst(New, NullIdx, NullIdx,
8880 New->getName()+".sub", It);
Chris Lattner1085bdf2002-11-04 16:18:53 +00008881
8882 // Now make everything use the getelementptr instead of the original
8883 // allocation.
Chris Lattnerabb77c92004-03-19 06:08:10 +00008884 return ReplaceInstUsesWith(AI, V);
Chris Lattner81a7a232004-10-16 18:11:37 +00008885 } else if (isa<UndefValue>(AI.getArraySize())) {
8886 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
Chris Lattner1085bdf2002-11-04 16:18:53 +00008887 }
Chris Lattnerabb77c92004-03-19 06:08:10 +00008888
8889 // If alloca'ing a zero byte object, replace the alloca with a null pointer.
8890 // Note that we only do this for alloca's, because malloc should allocate and
8891 // return a unique pointer, even for a zero byte allocation.
Misha Brukmanb1c93172005-04-21 23:48:37 +00008892 if (isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized() &&
Chris Lattner49df6ce2004-07-02 22:55:47 +00008893 TD->getTypeSize(AI.getAllocatedType()) == 0)
Chris Lattnerabb77c92004-03-19 06:08:10 +00008894 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
8895
Chris Lattner1085bdf2002-11-04 16:18:53 +00008896 return 0;
8897}
8898
Chris Lattner8427bff2003-12-07 01:24:23 +00008899Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
8900 Value *Op = FI.getOperand(0);
8901
8902 // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X
8903 if (CastInst *CI = dyn_cast<CastInst>(Op))
8904 if (isa<PointerType>(CI->getOperand(0)->getType())) {
8905 FI.setOperand(0, CI->getOperand(0));
8906 return &FI;
8907 }
8908
Chris Lattner8ba9ec92004-10-18 02:59:09 +00008909 // free undef -> unreachable.
8910 if (isa<UndefValue>(Op)) {
8911 // Insert a new store to null because we cannot modify the CFG here.
Zhou Sheng75b871f2007-01-11 12:24:14 +00008912 new StoreInst(ConstantInt::getTrue(),
Reid Spencer542964f2007-01-11 18:21:29 +00008913 UndefValue::get(PointerType::get(Type::Int1Ty)), &FI);
Chris Lattner8ba9ec92004-10-18 02:59:09 +00008914 return EraseInstFromFunction(FI);
8915 }
8916
Chris Lattnerf3a36602004-02-28 04:57:37 +00008917 // If we have 'free null' delete the instruction. This can happen in stl code
8918 // when lots of inlining happens.
Chris Lattner8ba9ec92004-10-18 02:59:09 +00008919 if (isa<ConstantPointerNull>(Op))
Chris Lattner51ea1272004-02-28 05:22:00 +00008920 return EraseInstFromFunction(FI);
Chris Lattnerf3a36602004-02-28 04:57:37 +00008921
Chris Lattner8427bff2003-12-07 01:24:23 +00008922 return 0;
8923}
8924
8925
Chris Lattner72684fe2005-01-31 05:51:45 +00008926/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
Chris Lattner35e24772004-07-13 01:49:43 +00008927static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI) {
8928 User *CI = cast<User>(LI.getOperand(0));
Chris Lattnerfe1b0b82005-01-31 04:50:46 +00008929 Value *CastOp = CI->getOperand(0);
Chris Lattner35e24772004-07-13 01:49:43 +00008930
8931 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
Chris Lattnerfe1b0b82005-01-31 04:50:46 +00008932 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
Chris Lattner35e24772004-07-13 01:49:43 +00008933 const Type *SrcPTy = SrcTy->getElementType();
Chris Lattnerfe1b0b82005-01-31 04:50:46 +00008934
Reid Spencer31a4ef42007-01-22 05:51:25 +00008935 if (DestPTy->isInteger() || isa<PointerType>(DestPTy) ||
Reid Spencerd84d35b2007-02-15 02:26:10 +00008936 isa<VectorType>(DestPTy)) {
Chris Lattnerfe1b0b82005-01-31 04:50:46 +00008937 // If the source is an array, the code below will not succeed. Check to
8938 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
8939 // constants.
8940 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
8941 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
8942 if (ASrcTy->getNumElements() != 0) {
Chris Lattnerf96f4a82007-01-31 04:40:53 +00008943 Value *Idxs[2];
8944 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
8945 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
Chris Lattnerfe1b0b82005-01-31 04:50:46 +00008946 SrcTy = cast<PointerType>(CastOp->getType());
8947 SrcPTy = SrcTy->getElementType();
8948 }
8949
Reid Spencer31a4ef42007-01-22 05:51:25 +00008950 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy) ||
Reid Spencerd84d35b2007-02-15 02:26:10 +00008951 isa<VectorType>(SrcPTy)) &&
Chris Lattnerecfa9b52005-03-29 06:37:47 +00008952 // Do not allow turning this into a load of an integer, which is then
8953 // casted to a pointer, this pessimizes pointer analysis a lot.
8954 (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) &&
Reid Spencer31a4ef42007-01-22 05:51:25 +00008955 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
8956 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
Misha Brukmanb1c93172005-04-21 23:48:37 +00008957
Chris Lattnerfe1b0b82005-01-31 04:50:46 +00008958 // Okay, we are casting from one integer or pointer type to another of
8959 // the same size. Instead of casting the pointer before the load, cast
8960 // the result of the loaded value.
8961 Value *NewLoad = IC.InsertNewInstBefore(new LoadInst(CastOp,
8962 CI->getName(),
8963 LI.isVolatile()),LI);
8964 // Now cast the result of the load.
Reid Spencerbb65ebf2006-12-12 23:36:14 +00008965 return new BitCastInst(NewLoad, LI.getType());
Chris Lattnerfe1b0b82005-01-31 04:50:46 +00008966 }
Chris Lattner35e24772004-07-13 01:49:43 +00008967 }
8968 }
8969 return 0;
8970}
8971
Chris Lattnerf62ea8e2004-09-19 18:43:46 +00008972/// isSafeToLoadUnconditionally - Return true if we know that executing a load
Chris Lattnere6f13092004-09-19 19:18:10 +00008973/// from this value cannot trap. If it is not obviously safe to load from the
8974/// specified pointer, we do a quick local scan of the basic block containing
8975/// ScanFrom, to determine if the address is already accessed.
8976static bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
8977 // If it is an alloca or global variable, it is always safe to load from.
8978 if (isa<AllocaInst>(V) || isa<GlobalVariable>(V)) return true;
8979
8980 // Otherwise, be a little bit agressive by scanning the local block where we
8981 // want to check to see if the pointer is already being loaded or stored
Alkis Evlogimenosd59cebf2004-09-20 06:42:58 +00008982 // from/to. If so, the previous load or store would have already trapped,
8983 // so there is no harm doing an extra load (also, CSE will later eliminate
8984 // the load entirely).
Chris Lattnere6f13092004-09-19 19:18:10 +00008985 BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
8986
Alkis Evlogimenosd59cebf2004-09-20 06:42:58 +00008987 while (BBI != E) {
Chris Lattnere6f13092004-09-19 19:18:10 +00008988 --BBI;
8989
8990 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
8991 if (LI->getOperand(0) == V) return true;
8992 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
8993 if (SI->getOperand(1) == V) return true;
Misha Brukmanb1c93172005-04-21 23:48:37 +00008994
Alkis Evlogimenosd59cebf2004-09-20 06:42:58 +00008995 }
Chris Lattnere6f13092004-09-19 19:18:10 +00008996 return false;
Chris Lattnerf62ea8e2004-09-19 18:43:46 +00008997}
8998
Chris Lattner0f1d8a32003-06-26 05:06:25 +00008999Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
9000 Value *Op = LI.getOperand(0);
Chris Lattner7e8af382004-01-12 04:13:56 +00009001
Chris Lattnera9d84e32005-05-01 04:24:53 +00009002 // load (cast X) --> cast (load X) iff safe
Reid Spencerde46e482006-11-02 20:25:50 +00009003 if (isa<CastInst>(Op))
Chris Lattnera9d84e32005-05-01 04:24:53 +00009004 if (Instruction *Res = InstCombineLoadCast(*this, LI))
9005 return Res;
9006
9007 // None of the following transforms are legal for volatile loads.
9008 if (LI.isVolatile()) return 0;
Chris Lattnerb990f7d2005-09-12 22:00:15 +00009009
Chris Lattnerb990f7d2005-09-12 22:00:15 +00009010 if (&LI.getParent()->front() != &LI) {
9011 BasicBlock::iterator BBI = &LI; --BBI;
Chris Lattnere0bfdf12005-09-12 22:21:03 +00009012 // If the instruction immediately before this is a store to the same
9013 // address, do a simple form of store->load forwarding.
Chris Lattnerb990f7d2005-09-12 22:00:15 +00009014 if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
9015 if (SI->getOperand(1) == LI.getOperand(0))
9016 return ReplaceInstUsesWith(LI, SI->getOperand(0));
Chris Lattnere0bfdf12005-09-12 22:21:03 +00009017 if (LoadInst *LIB = dyn_cast<LoadInst>(BBI))
9018 if (LIB->getOperand(0) == LI.getOperand(0))
9019 return ReplaceInstUsesWith(LI, LIB);
Chris Lattnerb990f7d2005-09-12 22:00:15 +00009020 }
Chris Lattnera9d84e32005-05-01 04:24:53 +00009021
9022 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op))
9023 if (isa<ConstantPointerNull>(GEPI->getOperand(0)) ||
9024 isa<UndefValue>(GEPI->getOperand(0))) {
9025 // Insert a new store to null instruction before the load to indicate
9026 // that this code is not reachable. We do this instead of inserting
9027 // an unreachable instruction directly because we cannot modify the
9028 // CFG.
9029 new StoreInst(UndefValue::get(LI.getType()),
9030 Constant::getNullValue(Op->getType()), &LI);
9031 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
9032 }
9033
Chris Lattner81a7a232004-10-16 18:11:37 +00009034 if (Constant *C = dyn_cast<Constant>(Op)) {
Chris Lattnera9d84e32005-05-01 04:24:53 +00009035 // load null/undef -> undef
9036 if ((C->isNullValue() || isa<UndefValue>(C))) {
Chris Lattner8ba9ec92004-10-18 02:59:09 +00009037 // Insert a new store to null instruction before the load to indicate that
9038 // this code is not reachable. We do this instead of inserting an
9039 // unreachable instruction directly because we cannot modify the CFG.
Chris Lattnera9d84e32005-05-01 04:24:53 +00009040 new StoreInst(UndefValue::get(LI.getType()),
9041 Constant::getNullValue(Op->getType()), &LI);
Chris Lattner81a7a232004-10-16 18:11:37 +00009042 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
Chris Lattner8ba9ec92004-10-18 02:59:09 +00009043 }
Chris Lattner0f1d8a32003-06-26 05:06:25 +00009044
Chris Lattner81a7a232004-10-16 18:11:37 +00009045 // Instcombine load (constant global) into the value loaded.
9046 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op))
Reid Spencer5301e7c2007-01-30 20:08:39 +00009047 if (GV->isConstant() && !GV->isDeclaration())
Chris Lattner81a7a232004-10-16 18:11:37 +00009048 return ReplaceInstUsesWith(LI, GV->getInitializer());
Misha Brukmanb1c93172005-04-21 23:48:37 +00009049
Chris Lattner81a7a232004-10-16 18:11:37 +00009050 // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded.
9051 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op))
9052 if (CE->getOpcode() == Instruction::GetElementPtr) {
9053 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
Reid Spencer5301e7c2007-01-30 20:08:39 +00009054 if (GV->isConstant() && !GV->isDeclaration())
Chris Lattner0b011ec2005-09-26 05:28:06 +00009055 if (Constant *V =
9056 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
Chris Lattner81a7a232004-10-16 18:11:37 +00009057 return ReplaceInstUsesWith(LI, V);
Chris Lattnera9d84e32005-05-01 04:24:53 +00009058 if (CE->getOperand(0)->isNullValue()) {
9059 // Insert a new store to null instruction before the load to indicate
9060 // that this code is not reachable. We do this instead of inserting
9061 // an unreachable instruction directly because we cannot modify the
9062 // CFG.
9063 new StoreInst(UndefValue::get(LI.getType()),
9064 Constant::getNullValue(Op->getType()), &LI);
9065 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
9066 }
9067
Reid Spencer6c38f0b2006-11-27 01:05:10 +00009068 } else if (CE->isCast()) {
Chris Lattner81a7a232004-10-16 18:11:37 +00009069 if (Instruction *Res = InstCombineLoadCast(*this, LI))
9070 return Res;
9071 }
9072 }
Chris Lattnere228ee52004-04-08 20:39:49 +00009073
Chris Lattnera9d84e32005-05-01 04:24:53 +00009074 if (Op->hasOneUse()) {
Chris Lattnerf62ea8e2004-09-19 18:43:46 +00009075 // Change select and PHI nodes to select values instead of addresses: this
9076 // helps alias analysis out a lot, allows many others simplifications, and
9077 // exposes redundancy in the code.
9078 //
9079 // Note that we cannot do the transformation unless we know that the
9080 // introduced loads cannot trap! Something like this is valid as long as
9081 // the condition is always false: load (select bool %C, int* null, int* %G),
9082 // but it would not be valid if we transformed it to load from null
9083 // unconditionally.
9084 //
9085 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
9086 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
Chris Lattnere6f13092004-09-19 19:18:10 +00009087 if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
9088 isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
Chris Lattnerf62ea8e2004-09-19 18:43:46 +00009089 Value *V1 = InsertNewInstBefore(new LoadInst(SI->getOperand(1),
Chris Lattner42618552004-09-20 10:15:10 +00009090 SI->getOperand(1)->getName()+".val"), LI);
Chris Lattnerf62ea8e2004-09-19 18:43:46 +00009091 Value *V2 = InsertNewInstBefore(new LoadInst(SI->getOperand(2),
Chris Lattner42618552004-09-20 10:15:10 +00009092 SI->getOperand(2)->getName()+".val"), LI);
Chris Lattnerf62ea8e2004-09-19 18:43:46 +00009093 return new SelectInst(SI->getCondition(), V1, V2);
9094 }
9095
Chris Lattnerbdcf41a2004-09-23 15:46:00 +00009096 // load (select (cond, null, P)) -> load P
9097 if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
9098 if (C->isNullValue()) {
9099 LI.setOperand(0, SI->getOperand(2));
9100 return &LI;
9101 }
9102
9103 // load (select (cond, P, null)) -> load P
9104 if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
9105 if (C->isNullValue()) {
9106 LI.setOperand(0, SI->getOperand(1));
9107 return &LI;
9108 }
Chris Lattnerf62ea8e2004-09-19 18:43:46 +00009109 }
9110 }
Chris Lattner0f1d8a32003-06-26 05:06:25 +00009111 return 0;
9112}
9113
Reid Spencere928a152007-01-19 21:20:31 +00009114/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
Chris Lattner72684fe2005-01-31 05:51:45 +00009115/// when possible.
9116static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
9117 User *CI = cast<User>(SI.getOperand(1));
9118 Value *CastOp = CI->getOperand(0);
9119
9120 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
9121 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
9122 const Type *SrcPTy = SrcTy->getElementType();
9123
Reid Spencer31a4ef42007-01-22 05:51:25 +00009124 if (DestPTy->isInteger() || isa<PointerType>(DestPTy)) {
Chris Lattner72684fe2005-01-31 05:51:45 +00009125 // If the source is an array, the code below will not succeed. Check to
9126 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
9127 // constants.
9128 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
9129 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
9130 if (ASrcTy->getNumElements() != 0) {
Chris Lattnerf96f4a82007-01-31 04:40:53 +00009131 Value* Idxs[2];
9132 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
9133 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
Chris Lattner72684fe2005-01-31 05:51:45 +00009134 SrcTy = cast<PointerType>(CastOp->getType());
9135 SrcPTy = SrcTy->getElementType();
9136 }
9137
Reid Spencer9a4bed02007-01-20 23:35:48 +00009138 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy)) &&
9139 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
9140 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
Chris Lattner72684fe2005-01-31 05:51:45 +00009141
9142 // Okay, we are casting from one integer or pointer type to another of
Reid Spencerc050af92007-01-18 18:54:33 +00009143 // the same size. Instead of casting the pointer before
9144 // the store, cast the value to be stored.
Chris Lattner72684fe2005-01-31 05:51:45 +00009145 Value *NewCast;
Reid Spencerbb65ebf2006-12-12 23:36:14 +00009146 Value *SIOp0 = SI.getOperand(0);
Reid Spencerc050af92007-01-18 18:54:33 +00009147 Instruction::CastOps opcode = Instruction::BitCast;
9148 const Type* CastSrcTy = SIOp0->getType();
9149 const Type* CastDstTy = SrcPTy;
9150 if (isa<PointerType>(CastDstTy)) {
9151 if (CastSrcTy->isInteger())
Reid Spencerbb65ebf2006-12-12 23:36:14 +00009152 opcode = Instruction::IntToPtr;
Reid Spencer9a4bed02007-01-20 23:35:48 +00009153 } else if (isa<IntegerType>(CastDstTy)) {
Reid Spencer74a528b2006-12-13 18:21:21 +00009154 if (isa<PointerType>(SIOp0->getType()))
Reid Spencerbb65ebf2006-12-12 23:36:14 +00009155 opcode = Instruction::PtrToInt;
9156 }
9157 if (Constant *C = dyn_cast<Constant>(SIOp0))
Reid Spencerc050af92007-01-18 18:54:33 +00009158 NewCast = ConstantExpr::getCast(opcode, C, CastDstTy);
Chris Lattner72684fe2005-01-31 05:51:45 +00009159 else
Reid Spencer6c38f0b2006-11-27 01:05:10 +00009160 NewCast = IC.InsertNewInstBefore(
Reid Spencerc050af92007-01-18 18:54:33 +00009161 CastInst::create(opcode, SIOp0, CastDstTy, SIOp0->getName()+".c"),
9162 SI);
Chris Lattner72684fe2005-01-31 05:51:45 +00009163 return new StoreInst(NewCast, CastOp);
9164 }
9165 }
9166 }
9167 return 0;
9168}
9169
Chris Lattner31f486c2005-01-31 05:36:43 +00009170Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
9171 Value *Val = SI.getOperand(0);
9172 Value *Ptr = SI.getOperand(1);
9173
9174 if (isa<UndefValue>(Ptr)) { // store X, undef -> noop (even if volatile)
Chris Lattner5997cf92006-02-08 03:25:32 +00009175 EraseInstFromFunction(SI);
Chris Lattner31f486c2005-01-31 05:36:43 +00009176 ++NumCombined;
9177 return 0;
9178 }
Chris Lattnera4beeef2007-01-15 06:51:56 +00009179
9180 // If the RHS is an alloca with a single use, zapify the store, making the
9181 // alloca dead.
9182 if (Ptr->hasOneUse()) {
9183 if (isa<AllocaInst>(Ptr)) {
9184 EraseInstFromFunction(SI);
9185 ++NumCombined;
9186 return 0;
9187 }
9188
9189 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
9190 if (isa<AllocaInst>(GEP->getOperand(0)) &&
9191 GEP->getOperand(0)->hasOneUse()) {
9192 EraseInstFromFunction(SI);
9193 ++NumCombined;
9194 return 0;
9195 }
9196 }
Chris Lattner31f486c2005-01-31 05:36:43 +00009197
Chris Lattner5997cf92006-02-08 03:25:32 +00009198 // Do really simple DSE, to catch cases where there are several consequtive
9199 // stores to the same location, separated by a few arithmetic operations. This
9200 // situation often occurs with bitfield accesses.
9201 BasicBlock::iterator BBI = &SI;
9202 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
9203 --ScanInsts) {
9204 --BBI;
9205
9206 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
9207 // Prev store isn't volatile, and stores to the same location?
9208 if (!PrevSI->isVolatile() && PrevSI->getOperand(1) == SI.getOperand(1)) {
9209 ++NumDeadStore;
9210 ++BBI;
9211 EraseInstFromFunction(*PrevSI);
9212 continue;
9213 }
9214 break;
9215 }
9216
Chris Lattnerdab43b22006-05-26 19:19:20 +00009217 // If this is a load, we have to stop. However, if the loaded value is from
9218 // the pointer we're loading and is producing the pointer we're storing,
9219 // then *this* store is dead (X = load P; store X -> P).
9220 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
9221 if (LI == Val && LI->getOperand(0) == Ptr) {
9222 EraseInstFromFunction(SI);
9223 ++NumCombined;
9224 return 0;
9225 }
9226 // Otherwise, this is a load from some other location. Stores before it
9227 // may not be dead.
9228 break;
9229 }
9230
Chris Lattner5997cf92006-02-08 03:25:32 +00009231 // Don't skip over loads or things that can modify memory.
Chris Lattnerdab43b22006-05-26 19:19:20 +00009232 if (BBI->mayWriteToMemory())
Chris Lattner5997cf92006-02-08 03:25:32 +00009233 break;
9234 }
9235
9236
9237 if (SI.isVolatile()) return 0; // Don't hack volatile stores.
Chris Lattner31f486c2005-01-31 05:36:43 +00009238
9239 // store X, null -> turns into 'unreachable' in SimplifyCFG
9240 if (isa<ConstantPointerNull>(Ptr)) {
9241 if (!isa<UndefValue>(Val)) {
9242 SI.setOperand(0, UndefValue::get(Val->getType()));
9243 if (Instruction *U = dyn_cast<Instruction>(Val))
Chris Lattnerb15e2b12007-03-02 21:28:56 +00009244 AddToWorkList(U); // Dropped a use.
Chris Lattner31f486c2005-01-31 05:36:43 +00009245 ++NumCombined;
9246 }
9247 return 0; // Do not modify these!
9248 }
9249
9250 // store undef, Ptr -> noop
9251 if (isa<UndefValue>(Val)) {
Chris Lattner5997cf92006-02-08 03:25:32 +00009252 EraseInstFromFunction(SI);
Chris Lattner31f486c2005-01-31 05:36:43 +00009253 ++NumCombined;
9254 return 0;
9255 }
9256
Chris Lattner72684fe2005-01-31 05:51:45 +00009257 // If the pointer destination is a cast, see if we can fold the cast into the
9258 // source instead.
Reid Spencerde46e482006-11-02 20:25:50 +00009259 if (isa<CastInst>(Ptr))
Chris Lattner72684fe2005-01-31 05:51:45 +00009260 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
9261 return Res;
9262 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
Reid Spencer6c38f0b2006-11-27 01:05:10 +00009263 if (CE->isCast())
Chris Lattner72684fe2005-01-31 05:51:45 +00009264 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
9265 return Res;
9266
Chris Lattner219175c2005-09-12 23:23:25 +00009267
9268 // If this store is the last instruction in the basic block, and if the block
9269 // ends with an unconditional branch, try to move it to the successor block.
Chris Lattner5997cf92006-02-08 03:25:32 +00009270 BBI = &SI; ++BBI;
Chris Lattner219175c2005-09-12 23:23:25 +00009271 if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
9272 if (BI->isUnconditional()) {
9273 // Check to see if the successor block has exactly two incoming edges. If
9274 // so, see if the other predecessor contains a store to the same location.
9275 // if so, insert a PHI node (if needed) and move the stores down.
9276 BasicBlock *Dest = BI->getSuccessor(0);
9277
9278 pred_iterator PI = pred_begin(Dest);
9279 BasicBlock *Other = 0;
9280 if (*PI != BI->getParent())
9281 Other = *PI;
9282 ++PI;
9283 if (PI != pred_end(Dest)) {
9284 if (*PI != BI->getParent())
9285 if (Other)
9286 Other = 0;
9287 else
9288 Other = *PI;
9289 if (++PI != pred_end(Dest))
9290 Other = 0;
9291 }
9292 if (Other) { // If only one other pred...
9293 BBI = Other->getTerminator();
9294 // Make sure this other block ends in an unconditional branch and that
9295 // there is an instruction before the branch.
9296 if (isa<BranchInst>(BBI) && cast<BranchInst>(BBI)->isUnconditional() &&
9297 BBI != Other->begin()) {
9298 --BBI;
9299 StoreInst *OtherStore = dyn_cast<StoreInst>(BBI);
9300
9301 // If this instruction is a store to the same location.
9302 if (OtherStore && OtherStore->getOperand(1) == SI.getOperand(1)) {
9303 // Okay, we know we can perform this transformation. Insert a PHI
9304 // node now if we need it.
9305 Value *MergedVal = OtherStore->getOperand(0);
9306 if (MergedVal != SI.getOperand(0)) {
9307 PHINode *PN = new PHINode(MergedVal->getType(), "storemerge");
9308 PN->reserveOperandSpace(2);
9309 PN->addIncoming(SI.getOperand(0), SI.getParent());
9310 PN->addIncoming(OtherStore->getOperand(0), Other);
9311 MergedVal = InsertNewInstBefore(PN, Dest->front());
9312 }
9313
9314 // Advance to a place where it is safe to insert the new store and
9315 // insert it.
9316 BBI = Dest->begin();
9317 while (isa<PHINode>(BBI)) ++BBI;
9318 InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1),
9319 OtherStore->isVolatile()), *BBI);
9320
9321 // Nuke the old stores.
Chris Lattner5997cf92006-02-08 03:25:32 +00009322 EraseInstFromFunction(SI);
9323 EraseInstFromFunction(*OtherStore);
Chris Lattner219175c2005-09-12 23:23:25 +00009324 ++NumCombined;
9325 return 0;
9326 }
9327 }
9328 }
9329 }
9330
Chris Lattner31f486c2005-01-31 05:36:43 +00009331 return 0;
9332}
9333
9334
Chris Lattner9eef8a72003-06-04 04:46:00 +00009335Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
9336 // Change br (not X), label True, label False to: br X, label False, True
Reid Spencer4fdd96c2005-06-18 17:37:34 +00009337 Value *X = 0;
Chris Lattnerd4252a72004-07-30 07:50:03 +00009338 BasicBlock *TrueDest;
9339 BasicBlock *FalseDest;
9340 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
9341 !isa<Constant>(X)) {
9342 // Swap Destinations and condition...
9343 BI.setCondition(X);
9344 BI.setSuccessor(0, FalseDest);
9345 BI.setSuccessor(1, TrueDest);
9346 return &BI;
9347 }
9348
Reid Spencer266e42b2006-12-23 06:05:41 +00009349 // Cannonicalize fcmp_one -> fcmp_oeq
9350 FCmpInst::Predicate FPred; Value *Y;
9351 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
9352 TrueDest, FalseDest)))
9353 if ((FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
9354 FPred == FCmpInst::FCMP_OGE) && BI.getCondition()->hasOneUse()) {
9355 FCmpInst *I = cast<FCmpInst>(BI.getCondition());
Reid Spencer266e42b2006-12-23 06:05:41 +00009356 FCmpInst::Predicate NewPred = FCmpInst::getInversePredicate(FPred);
Chris Lattner6e0123b2007-02-11 01:23:03 +00009357 Instruction *NewSCC = new FCmpInst(NewPred, X, Y, "", I);
9358 NewSCC->takeName(I);
Reid Spencer266e42b2006-12-23 06:05:41 +00009359 // Swap Destinations and condition...
9360 BI.setCondition(NewSCC);
9361 BI.setSuccessor(0, FalseDest);
9362 BI.setSuccessor(1, TrueDest);
Chris Lattnerb15e2b12007-03-02 21:28:56 +00009363 RemoveFromWorkList(I);
Chris Lattner6e0123b2007-02-11 01:23:03 +00009364 I->eraseFromParent();
Chris Lattnerb15e2b12007-03-02 21:28:56 +00009365 AddToWorkList(NewSCC);
Reid Spencer266e42b2006-12-23 06:05:41 +00009366 return &BI;
9367 }
9368
9369 // Cannonicalize icmp_ne -> icmp_eq
9370 ICmpInst::Predicate IPred;
9371 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
9372 TrueDest, FalseDest)))
9373 if ((IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
9374 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
9375 IPred == ICmpInst::ICMP_SGE) && BI.getCondition()->hasOneUse()) {
9376 ICmpInst *I = cast<ICmpInst>(BI.getCondition());
Reid Spencer266e42b2006-12-23 06:05:41 +00009377 ICmpInst::Predicate NewPred = ICmpInst::getInversePredicate(IPred);
Chris Lattner6e0123b2007-02-11 01:23:03 +00009378 Instruction *NewSCC = new ICmpInst(NewPred, X, Y, "", I);
9379 NewSCC->takeName(I);
Chris Lattnere967b342003-06-04 05:10:11 +00009380 // Swap Destinations and condition...
Chris Lattnerd4252a72004-07-30 07:50:03 +00009381 BI.setCondition(NewSCC);
Chris Lattnere967b342003-06-04 05:10:11 +00009382 BI.setSuccessor(0, FalseDest);
9383 BI.setSuccessor(1, TrueDest);
Chris Lattnerb15e2b12007-03-02 21:28:56 +00009384 RemoveFromWorkList(I);
Chris Lattner6e0123b2007-02-11 01:23:03 +00009385 I->eraseFromParent();;
Chris Lattnerb15e2b12007-03-02 21:28:56 +00009386 AddToWorkList(NewSCC);
Chris Lattnere967b342003-06-04 05:10:11 +00009387 return &BI;
9388 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00009389
Chris Lattner9eef8a72003-06-04 04:46:00 +00009390 return 0;
9391}
Chris Lattner1085bdf2002-11-04 16:18:53 +00009392
Chris Lattner4c9c20a2004-07-03 00:26:11 +00009393Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
9394 Value *Cond = SI.getCondition();
9395 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
9396 if (I->getOpcode() == Instruction::Add)
9397 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
9398 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
9399 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
Chris Lattner81a7a232004-10-16 18:11:37 +00009400 SI.setOperand(i,ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
Chris Lattner4c9c20a2004-07-03 00:26:11 +00009401 AddRHS));
9402 SI.setOperand(0, I->getOperand(0));
Chris Lattnerb15e2b12007-03-02 21:28:56 +00009403 AddToWorkList(I);
Chris Lattner4c9c20a2004-07-03 00:26:11 +00009404 return &SI;
9405 }
9406 }
9407 return 0;
9408}
9409
Chris Lattner6bc98652006-03-05 00:22:33 +00009410/// CheapToScalarize - Return true if the value is cheaper to scalarize than it
9411/// is to leave as a vector operation.
9412static bool CheapToScalarize(Value *V, bool isConstant) {
9413 if (isa<ConstantAggregateZero>(V))
9414 return true;
Reid Spencerd84d35b2007-02-15 02:26:10 +00009415 if (ConstantVector *C = dyn_cast<ConstantVector>(V)) {
Chris Lattner6bc98652006-03-05 00:22:33 +00009416 if (isConstant) return true;
9417 // If all elts are the same, we can extract.
9418 Constant *Op0 = C->getOperand(0);
9419 for (unsigned i = 1; i < C->getNumOperands(); ++i)
9420 if (C->getOperand(i) != Op0)
9421 return false;
9422 return true;
9423 }
9424 Instruction *I = dyn_cast<Instruction>(V);
9425 if (!I) return false;
9426
9427 // Insert element gets simplified to the inserted element or is deleted if
9428 // this is constant idx extract element and its a constant idx insertelt.
9429 if (I->getOpcode() == Instruction::InsertElement && isConstant &&
9430 isa<ConstantInt>(I->getOperand(2)))
9431 return true;
9432 if (I->getOpcode() == Instruction::Load && I->hasOneUse())
9433 return true;
9434 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
9435 if (BO->hasOneUse() &&
9436 (CheapToScalarize(BO->getOperand(0), isConstant) ||
9437 CheapToScalarize(BO->getOperand(1), isConstant)))
9438 return true;
Reid Spencer266e42b2006-12-23 06:05:41 +00009439 if (CmpInst *CI = dyn_cast<CmpInst>(I))
9440 if (CI->hasOneUse() &&
9441 (CheapToScalarize(CI->getOperand(0), isConstant) ||
9442 CheapToScalarize(CI->getOperand(1), isConstant)))
9443 return true;
Chris Lattner6bc98652006-03-05 00:22:33 +00009444
9445 return false;
9446}
9447
Chris Lattner945e4372007-02-14 05:52:17 +00009448/// Read and decode a shufflevector mask.
9449///
9450/// It turns undef elements into values that are larger than the number of
9451/// elements in the input.
Chris Lattner12249be2006-05-25 23:48:38 +00009452static std::vector<unsigned> getShuffleMask(const ShuffleVectorInst *SVI) {
9453 unsigned NElts = SVI->getType()->getNumElements();
9454 if (isa<ConstantAggregateZero>(SVI->getOperand(2)))
9455 return std::vector<unsigned>(NElts, 0);
9456 if (isa<UndefValue>(SVI->getOperand(2)))
9457 return std::vector<unsigned>(NElts, 2*NElts);
9458
9459 std::vector<unsigned> Result;
Reid Spencerd84d35b2007-02-15 02:26:10 +00009460 const ConstantVector *CP = cast<ConstantVector>(SVI->getOperand(2));
Chris Lattner12249be2006-05-25 23:48:38 +00009461 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
9462 if (isa<UndefValue>(CP->getOperand(i)))
9463 Result.push_back(NElts*2); // undef -> 8
9464 else
Reid Spencere0fc4df2006-10-20 07:07:24 +00009465 Result.push_back(cast<ConstantInt>(CP->getOperand(i))->getZExtValue());
Chris Lattner12249be2006-05-25 23:48:38 +00009466 return Result;
9467}
9468
Chris Lattner8d1d8d32006-03-31 23:01:56 +00009469/// FindScalarElement - Given a vector and an element number, see if the scalar
9470/// value is already around as a register, for example if it were inserted then
9471/// extracted from the vector.
9472static Value *FindScalarElement(Value *V, unsigned EltNo) {
Reid Spencerd84d35b2007-02-15 02:26:10 +00009473 assert(isa<VectorType>(V->getType()) && "Not looking at a vector?");
9474 const VectorType *PTy = cast<VectorType>(V->getType());
Chris Lattner2d37f922006-04-10 23:06:36 +00009475 unsigned Width = PTy->getNumElements();
9476 if (EltNo >= Width) // Out of range access.
Chris Lattner8d1d8d32006-03-31 23:01:56 +00009477 return UndefValue::get(PTy->getElementType());
9478
9479 if (isa<UndefValue>(V))
9480 return UndefValue::get(PTy->getElementType());
9481 else if (isa<ConstantAggregateZero>(V))
9482 return Constant::getNullValue(PTy->getElementType());
Reid Spencerd84d35b2007-02-15 02:26:10 +00009483 else if (ConstantVector *CP = dyn_cast<ConstantVector>(V))
Chris Lattner8d1d8d32006-03-31 23:01:56 +00009484 return CP->getOperand(EltNo);
9485 else if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
9486 // If this is an insert to a variable element, we don't know what it is.
Reid Spencere0fc4df2006-10-20 07:07:24 +00009487 if (!isa<ConstantInt>(III->getOperand(2)))
9488 return 0;
9489 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
Chris Lattner8d1d8d32006-03-31 23:01:56 +00009490
9491 // If this is an insert to the element we are looking for, return the
9492 // inserted value.
Reid Spencere0fc4df2006-10-20 07:07:24 +00009493 if (EltNo == IIElt)
9494 return III->getOperand(1);
Chris Lattner8d1d8d32006-03-31 23:01:56 +00009495
9496 // Otherwise, the insertelement doesn't modify the value, recurse on its
9497 // vector input.
9498 return FindScalarElement(III->getOperand(0), EltNo);
Chris Lattner2d37f922006-04-10 23:06:36 +00009499 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
Chris Lattner12249be2006-05-25 23:48:38 +00009500 unsigned InEl = getShuffleMask(SVI)[EltNo];
9501 if (InEl < Width)
9502 return FindScalarElement(SVI->getOperand(0), InEl);
9503 else if (InEl < Width*2)
9504 return FindScalarElement(SVI->getOperand(1), InEl - Width);
9505 else
9506 return UndefValue::get(PTy->getElementType());
Chris Lattner8d1d8d32006-03-31 23:01:56 +00009507 }
9508
9509 // Otherwise, we don't know.
9510 return 0;
9511}
9512
Robert Bocchinoa8352962006-01-13 22:48:06 +00009513Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
Chris Lattner8d1d8d32006-03-31 23:01:56 +00009514
Chris Lattner92346c32006-03-31 18:25:14 +00009515 // If packed val is undef, replace extract with scalar undef.
9516 if (isa<UndefValue>(EI.getOperand(0)))
9517 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
9518
9519 // If packed val is constant 0, replace extract with scalar 0.
9520 if (isa<ConstantAggregateZero>(EI.getOperand(0)))
9521 return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType()));
9522
Reid Spencerd84d35b2007-02-15 02:26:10 +00009523 if (ConstantVector *C = dyn_cast<ConstantVector>(EI.getOperand(0))) {
Robert Bocchinoa8352962006-01-13 22:48:06 +00009524 // If packed val is constant with uniform operands, replace EI
9525 // with that operand
Chris Lattner6bc98652006-03-05 00:22:33 +00009526 Constant *op0 = C->getOperand(0);
Robert Bocchinoa8352962006-01-13 22:48:06 +00009527 for (unsigned i = 1; i < C->getNumOperands(); ++i)
Chris Lattner6bc98652006-03-05 00:22:33 +00009528 if (C->getOperand(i) != op0) {
9529 op0 = 0;
9530 break;
9531 }
9532 if (op0)
9533 return ReplaceInstUsesWith(EI, op0);
Robert Bocchinoa8352962006-01-13 22:48:06 +00009534 }
Chris Lattner6bc98652006-03-05 00:22:33 +00009535
Chris Lattner8d1d8d32006-03-31 23:01:56 +00009536 // If extracting a specified index from the vector, see if we can recursively
9537 // find a previously computed scalar that was inserted into the vector.
Reid Spencere0fc4df2006-10-20 07:07:24 +00009538 if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
Chris Lattner2deeaea2006-10-05 06:55:50 +00009539 // This instruction only demands the single element from the input vector.
9540 // If the input vector has a single use, simplify it based on this use
9541 // property.
Reid Spencere0fc4df2006-10-20 07:07:24 +00009542 uint64_t IndexVal = IdxC->getZExtValue();
Chris Lattner2deeaea2006-10-05 06:55:50 +00009543 if (EI.getOperand(0)->hasOneUse()) {
9544 uint64_t UndefElts;
9545 if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
Reid Spencere0fc4df2006-10-20 07:07:24 +00009546 1 << IndexVal,
Chris Lattner2deeaea2006-10-05 06:55:50 +00009547 UndefElts)) {
9548 EI.setOperand(0, V);
9549 return &EI;
9550 }
9551 }
9552
Reid Spencere0fc4df2006-10-20 07:07:24 +00009553 if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
Chris Lattner8d1d8d32006-03-31 23:01:56 +00009554 return ReplaceInstUsesWith(EI, Elt);
Chris Lattner2d37f922006-04-10 23:06:36 +00009555 }
Chris Lattner8d1d8d32006-03-31 23:01:56 +00009556
Chris Lattner83f65782006-05-25 22:53:38 +00009557 if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
Robert Bocchinoa8352962006-01-13 22:48:06 +00009558 if (I->hasOneUse()) {
9559 // Push extractelement into predecessor operation if legal and
9560 // profitable to do so
9561 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
Chris Lattner6bc98652006-03-05 00:22:33 +00009562 bool isConstantElt = isa<ConstantInt>(EI.getOperand(1));
9563 if (CheapToScalarize(BO, isConstantElt)) {
9564 ExtractElementInst *newEI0 =
9565 new ExtractElementInst(BO->getOperand(0), EI.getOperand(1),
9566 EI.getName()+".lhs");
9567 ExtractElementInst *newEI1 =
9568 new ExtractElementInst(BO->getOperand(1), EI.getOperand(1),
9569 EI.getName()+".rhs");
9570 InsertNewInstBefore(newEI0, EI);
9571 InsertNewInstBefore(newEI1, EI);
9572 return BinaryOperator::create(BO->getOpcode(), newEI0, newEI1);
9573 }
Reid Spencerde46e482006-11-02 20:25:50 +00009574 } else if (isa<LoadInst>(I)) {
Reid Spencer13bc5d72006-12-12 09:18:51 +00009575 Value *Ptr = InsertCastBefore(Instruction::BitCast, I->getOperand(0),
Robert Bocchinoa8352962006-01-13 22:48:06 +00009576 PointerType::get(EI.getType()), EI);
9577 GetElementPtrInst *GEP =
Reid Spencera736fdf2006-11-29 01:11:01 +00009578 new GetElementPtrInst(Ptr, EI.getOperand(1), I->getName() + ".gep");
Robert Bocchinoa8352962006-01-13 22:48:06 +00009579 InsertNewInstBefore(GEP, EI);
9580 return new LoadInst(GEP);
Chris Lattner83f65782006-05-25 22:53:38 +00009581 }
9582 }
9583 if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
9584 // Extracting the inserted element?
9585 if (IE->getOperand(2) == EI.getOperand(1))
9586 return ReplaceInstUsesWith(EI, IE->getOperand(1));
9587 // If the inserted and extracted elements are constants, they must not
9588 // be the same value, extract from the pre-inserted value instead.
9589 if (isa<Constant>(IE->getOperand(2)) &&
9590 isa<Constant>(EI.getOperand(1))) {
9591 AddUsesToWorkList(EI);
9592 EI.setOperand(0, IE->getOperand(0));
9593 return &EI;
9594 }
9595 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
9596 // If this is extracting an element from a shufflevector, figure out where
9597 // it came from and extract from the appropriate input element instead.
Reid Spencere0fc4df2006-10-20 07:07:24 +00009598 if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
9599 unsigned SrcIdx = getShuffleMask(SVI)[Elt->getZExtValue()];
Chris Lattner12249be2006-05-25 23:48:38 +00009600 Value *Src;
9601 if (SrcIdx < SVI->getType()->getNumElements())
9602 Src = SVI->getOperand(0);
9603 else if (SrcIdx < SVI->getType()->getNumElements()*2) {
9604 SrcIdx -= SVI->getType()->getNumElements();
9605 Src = SVI->getOperand(1);
9606 } else {
9607 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
Chris Lattner612fa8e2006-03-30 22:02:40 +00009608 }
Chris Lattner2deeaea2006-10-05 06:55:50 +00009609 return new ExtractElementInst(Src, SrcIdx);
Robert Bocchinoa8352962006-01-13 22:48:06 +00009610 }
9611 }
Chris Lattner83f65782006-05-25 22:53:38 +00009612 }
Robert Bocchinoa8352962006-01-13 22:48:06 +00009613 return 0;
9614}
9615
Chris Lattner90951862006-04-16 00:51:47 +00009616/// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
9617/// elements from either LHS or RHS, return the shuffle mask and true.
9618/// Otherwise, return false.
9619static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
9620 std::vector<Constant*> &Mask) {
9621 assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
9622 "Invalid CollectSingleShuffleElements");
Reid Spencerd84d35b2007-02-15 02:26:10 +00009623 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
Chris Lattner90951862006-04-16 00:51:47 +00009624
9625 if (isa<UndefValue>(V)) {
Reid Spencerc635f472006-12-31 05:48:39 +00009626 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
Chris Lattner90951862006-04-16 00:51:47 +00009627 return true;
9628 } else if (V == LHS) {
9629 for (unsigned i = 0; i != NumElts; ++i)
Reid Spencerc635f472006-12-31 05:48:39 +00009630 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
Chris Lattner90951862006-04-16 00:51:47 +00009631 return true;
9632 } else if (V == RHS) {
9633 for (unsigned i = 0; i != NumElts; ++i)
Reid Spencerc635f472006-12-31 05:48:39 +00009634 Mask.push_back(ConstantInt::get(Type::Int32Ty, i+NumElts));
Chris Lattner90951862006-04-16 00:51:47 +00009635 return true;
9636 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
9637 // If this is an insert of an extract from some other vector, include it.
9638 Value *VecOp = IEI->getOperand(0);
9639 Value *ScalarOp = IEI->getOperand(1);
9640 Value *IdxOp = IEI->getOperand(2);
9641
Chris Lattnerb6cb64b2006-04-27 21:14:21 +00009642 if (!isa<ConstantInt>(IdxOp))
9643 return false;
Reid Spencere0fc4df2006-10-20 07:07:24 +00009644 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
Chris Lattnerb6cb64b2006-04-27 21:14:21 +00009645
9646 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
9647 // Okay, we can handle this if the vector we are insertinting into is
9648 // transitively ok.
9649 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
9650 // If so, update the mask to reflect the inserted undef.
Reid Spencerc635f472006-12-31 05:48:39 +00009651 Mask[InsertedIdx] = UndefValue::get(Type::Int32Ty);
Chris Lattnerb6cb64b2006-04-27 21:14:21 +00009652 return true;
9653 }
9654 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
9655 if (isa<ConstantInt>(EI->getOperand(1)) &&
Chris Lattner90951862006-04-16 00:51:47 +00009656 EI->getOperand(0)->getType() == V->getType()) {
9657 unsigned ExtractedIdx =
Reid Spencere0fc4df2006-10-20 07:07:24 +00009658 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
Chris Lattner90951862006-04-16 00:51:47 +00009659
9660 // This must be extracting from either LHS or RHS.
9661 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
9662 // Okay, we can handle this if the vector we are insertinting into is
9663 // transitively ok.
9664 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
9665 // If so, update the mask to reflect the inserted value.
9666 if (EI->getOperand(0) == LHS) {
9667 Mask[InsertedIdx & (NumElts-1)] =
Reid Spencerc635f472006-12-31 05:48:39 +00009668 ConstantInt::get(Type::Int32Ty, ExtractedIdx);
Chris Lattner90951862006-04-16 00:51:47 +00009669 } else {
9670 assert(EI->getOperand(0) == RHS);
9671 Mask[InsertedIdx & (NumElts-1)] =
Reid Spencerc635f472006-12-31 05:48:39 +00009672 ConstantInt::get(Type::Int32Ty, ExtractedIdx+NumElts);
Chris Lattner90951862006-04-16 00:51:47 +00009673
9674 }
9675 return true;
9676 }
9677 }
9678 }
9679 }
9680 }
9681 // TODO: Handle shufflevector here!
9682
9683 return false;
9684}
9685
9686/// CollectShuffleElements - We are building a shuffle of V, using RHS as the
9687/// RHS of the shuffle instruction, if it is not null. Return a shuffle mask
9688/// that computes V and the LHS value of the shuffle.
Chris Lattner39fac442006-04-15 01:39:45 +00009689static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
Chris Lattner90951862006-04-16 00:51:47 +00009690 Value *&RHS) {
Reid Spencerd84d35b2007-02-15 02:26:10 +00009691 assert(isa<VectorType>(V->getType()) &&
Chris Lattner90951862006-04-16 00:51:47 +00009692 (RHS == 0 || V->getType() == RHS->getType()) &&
Chris Lattner39fac442006-04-15 01:39:45 +00009693 "Invalid shuffle!");
Reid Spencerd84d35b2007-02-15 02:26:10 +00009694 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
Chris Lattner39fac442006-04-15 01:39:45 +00009695
9696 if (isa<UndefValue>(V)) {
Reid Spencerc635f472006-12-31 05:48:39 +00009697 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
Chris Lattner39fac442006-04-15 01:39:45 +00009698 return V;
9699 } else if (isa<ConstantAggregateZero>(V)) {
Reid Spencerc635f472006-12-31 05:48:39 +00009700 Mask.assign(NumElts, ConstantInt::get(Type::Int32Ty, 0));
Chris Lattner39fac442006-04-15 01:39:45 +00009701 return V;
9702 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
9703 // If this is an insert of an extract from some other vector, include it.
9704 Value *VecOp = IEI->getOperand(0);
9705 Value *ScalarOp = IEI->getOperand(1);
9706 Value *IdxOp = IEI->getOperand(2);
9707
9708 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
9709 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
9710 EI->getOperand(0)->getType() == V->getType()) {
9711 unsigned ExtractedIdx =
Reid Spencere0fc4df2006-10-20 07:07:24 +00009712 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
9713 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
Chris Lattner39fac442006-04-15 01:39:45 +00009714
9715 // Either the extracted from or inserted into vector must be RHSVec,
9716 // otherwise we'd end up with a shuffle of three inputs.
Chris Lattner90951862006-04-16 00:51:47 +00009717 if (EI->getOperand(0) == RHS || RHS == 0) {
9718 RHS = EI->getOperand(0);
9719 Value *V = CollectShuffleElements(VecOp, Mask, RHS);
Chris Lattner39fac442006-04-15 01:39:45 +00009720 Mask[InsertedIdx & (NumElts-1)] =
Reid Spencerc635f472006-12-31 05:48:39 +00009721 ConstantInt::get(Type::Int32Ty, NumElts+ExtractedIdx);
Chris Lattner39fac442006-04-15 01:39:45 +00009722 return V;
9723 }
9724
Chris Lattner90951862006-04-16 00:51:47 +00009725 if (VecOp == RHS) {
9726 Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
Chris Lattner39fac442006-04-15 01:39:45 +00009727 // Everything but the extracted element is replaced with the RHS.
9728 for (unsigned i = 0; i != NumElts; ++i) {
9729 if (i != InsertedIdx)
Reid Spencerc635f472006-12-31 05:48:39 +00009730 Mask[i] = ConstantInt::get(Type::Int32Ty, NumElts+i);
Chris Lattner39fac442006-04-15 01:39:45 +00009731 }
9732 return V;
9733 }
Chris Lattner90951862006-04-16 00:51:47 +00009734
9735 // If this insertelement is a chain that comes from exactly these two
9736 // vectors, return the vector and the effective shuffle.
9737 if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
9738 return EI->getOperand(0);
9739
Chris Lattner39fac442006-04-15 01:39:45 +00009740 }
9741 }
9742 }
Chris Lattner90951862006-04-16 00:51:47 +00009743 // TODO: Handle shufflevector here!
Chris Lattner39fac442006-04-15 01:39:45 +00009744
9745 // Otherwise, can't do anything fancy. Return an identity vector.
9746 for (unsigned i = 0; i != NumElts; ++i)
Reid Spencerc635f472006-12-31 05:48:39 +00009747 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
Chris Lattner39fac442006-04-15 01:39:45 +00009748 return V;
9749}
9750
9751Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
9752 Value *VecOp = IE.getOperand(0);
9753 Value *ScalarOp = IE.getOperand(1);
9754 Value *IdxOp = IE.getOperand(2);
9755
9756 // If the inserted element was extracted from some other vector, and if the
9757 // indexes are constant, try to turn this into a shufflevector operation.
9758 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
9759 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
9760 EI->getOperand(0)->getType() == IE.getType()) {
9761 unsigned NumVectorElts = IE.getType()->getNumElements();
Reid Spencere0fc4df2006-10-20 07:07:24 +00009762 unsigned ExtractedIdx=cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
9763 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
Chris Lattner39fac442006-04-15 01:39:45 +00009764
9765 if (ExtractedIdx >= NumVectorElts) // Out of range extract.
9766 return ReplaceInstUsesWith(IE, VecOp);
9767
9768 if (InsertedIdx >= NumVectorElts) // Out of range insert.
9769 return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
9770
9771 // If we are extracting a value from a vector, then inserting it right
9772 // back into the same place, just use the input vector.
9773 if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
9774 return ReplaceInstUsesWith(IE, VecOp);
9775
9776 // We could theoretically do this for ANY input. However, doing so could
9777 // turn chains of insertelement instructions into a chain of shufflevector
9778 // instructions, and right now we do not merge shufflevectors. As such,
9779 // only do this in a situation where it is clear that there is benefit.
9780 if (isa<UndefValue>(VecOp) || isa<ConstantAggregateZero>(VecOp)) {
9781 // Turn this into shuffle(EIOp0, VecOp, Mask). The result has all of
9782 // the values of VecOp, except then one read from EIOp0.
9783 // Build a new shuffle mask.
9784 std::vector<Constant*> Mask;
9785 if (isa<UndefValue>(VecOp))
Reid Spencerc635f472006-12-31 05:48:39 +00009786 Mask.assign(NumVectorElts, UndefValue::get(Type::Int32Ty));
Chris Lattner39fac442006-04-15 01:39:45 +00009787 else {
9788 assert(isa<ConstantAggregateZero>(VecOp) && "Unknown thing");
Reid Spencerc635f472006-12-31 05:48:39 +00009789 Mask.assign(NumVectorElts, ConstantInt::get(Type::Int32Ty,
Chris Lattner39fac442006-04-15 01:39:45 +00009790 NumVectorElts));
9791 }
Reid Spencerc635f472006-12-31 05:48:39 +00009792 Mask[InsertedIdx] = ConstantInt::get(Type::Int32Ty, ExtractedIdx);
Chris Lattner39fac442006-04-15 01:39:45 +00009793 return new ShuffleVectorInst(EI->getOperand(0), VecOp,
Reid Spencerd84d35b2007-02-15 02:26:10 +00009794 ConstantVector::get(Mask));
Chris Lattner39fac442006-04-15 01:39:45 +00009795 }
9796
9797 // If this insertelement isn't used by some other insertelement, turn it
9798 // (and any insertelements it points to), into one big shuffle.
9799 if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
9800 std::vector<Constant*> Mask;
Chris Lattner90951862006-04-16 00:51:47 +00009801 Value *RHS = 0;
9802 Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
9803 if (RHS == 0) RHS = UndefValue::get(LHS->getType());
9804 // We now have a shuffle of LHS, RHS, Mask.
Reid Spencerd84d35b2007-02-15 02:26:10 +00009805 return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask));
Chris Lattner39fac442006-04-15 01:39:45 +00009806 }
9807 }
9808 }
9809
9810 return 0;
9811}
9812
9813
Chris Lattnerfbb77a42006-04-10 22:45:52 +00009814Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
9815 Value *LHS = SVI.getOperand(0);
9816 Value *RHS = SVI.getOperand(1);
Chris Lattner12249be2006-05-25 23:48:38 +00009817 std::vector<unsigned> Mask = getShuffleMask(&SVI);
Chris Lattnerfbb77a42006-04-10 22:45:52 +00009818
9819 bool MadeChange = false;
9820
Chris Lattner2deeaea2006-10-05 06:55:50 +00009821 // Undefined shuffle mask -> undefined value.
Chris Lattner12249be2006-05-25 23:48:38 +00009822 if (isa<UndefValue>(SVI.getOperand(2)))
Chris Lattnerfbb77a42006-04-10 22:45:52 +00009823 return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
9824
Chris Lattnerd7b6ea12007-01-05 07:36:08 +00009825 // If we have shuffle(x, undef, mask) and any elements of mask refer to
Chris Lattner39fac442006-04-15 01:39:45 +00009826 // the undef, change them to undefs.
Chris Lattnerd7b6ea12007-01-05 07:36:08 +00009827 if (isa<UndefValue>(SVI.getOperand(1))) {
9828 // Scan to see if there are any references to the RHS. If so, replace them
9829 // with undef element refs and set MadeChange to true.
9830 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
9831 if (Mask[i] >= e && Mask[i] != 2*e) {
9832 Mask[i] = 2*e;
9833 MadeChange = true;
9834 }
9835 }
9836
9837 if (MadeChange) {
9838 // Remap any references to RHS to use LHS.
9839 std::vector<Constant*> Elts;
9840 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
9841 if (Mask[i] == 2*e)
9842 Elts.push_back(UndefValue::get(Type::Int32Ty));
9843 else
9844 Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i]));
9845 }
Reid Spencerd84d35b2007-02-15 02:26:10 +00009846 SVI.setOperand(2, ConstantVector::get(Elts));
Chris Lattnerd7b6ea12007-01-05 07:36:08 +00009847 }
9848 }
Chris Lattner39fac442006-04-15 01:39:45 +00009849
Chris Lattner12249be2006-05-25 23:48:38 +00009850 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
9851 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
9852 if (LHS == RHS || isa<UndefValue>(LHS)) {
9853 if (isa<UndefValue>(LHS) && LHS == RHS) {
Chris Lattnerfbb77a42006-04-10 22:45:52 +00009854 // shuffle(undef,undef,mask) -> undef.
9855 return ReplaceInstUsesWith(SVI, LHS);
9856 }
9857
Chris Lattner12249be2006-05-25 23:48:38 +00009858 // Remap any references to RHS to use LHS.
9859 std::vector<Constant*> Elts;
9860 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
Chris Lattner0e477162006-05-26 00:29:06 +00009861 if (Mask[i] >= 2*e)
Reid Spencerc635f472006-12-31 05:48:39 +00009862 Elts.push_back(UndefValue::get(Type::Int32Ty));
Chris Lattner0e477162006-05-26 00:29:06 +00009863 else {
9864 if ((Mask[i] >= e && isa<UndefValue>(RHS)) ||
9865 (Mask[i] < e && isa<UndefValue>(LHS)))
9866 Mask[i] = 2*e; // Turn into undef.
9867 else
9868 Mask[i] &= (e-1); // Force to LHS.
Reid Spencerc635f472006-12-31 05:48:39 +00009869 Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i]));
Chris Lattner0e477162006-05-26 00:29:06 +00009870 }
Chris Lattnerfbb77a42006-04-10 22:45:52 +00009871 }
Chris Lattner12249be2006-05-25 23:48:38 +00009872 SVI.setOperand(0, SVI.getOperand(1));
Chris Lattnerfbb77a42006-04-10 22:45:52 +00009873 SVI.setOperand(1, UndefValue::get(RHS->getType()));
Reid Spencerd84d35b2007-02-15 02:26:10 +00009874 SVI.setOperand(2, ConstantVector::get(Elts));
Chris Lattner0e477162006-05-26 00:29:06 +00009875 LHS = SVI.getOperand(0);
9876 RHS = SVI.getOperand(1);
Chris Lattnerfbb77a42006-04-10 22:45:52 +00009877 MadeChange = true;
9878 }
9879
Chris Lattner0e477162006-05-26 00:29:06 +00009880 // Analyze the shuffle, are the LHS or RHS and identity shuffles?
Chris Lattner12249be2006-05-25 23:48:38 +00009881 bool isLHSID = true, isRHSID = true;
Chris Lattner34cebe72006-04-16 00:03:56 +00009882
Chris Lattner12249be2006-05-25 23:48:38 +00009883 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
9884 if (Mask[i] >= e*2) continue; // Ignore undef values.
9885 // Is this an identity shuffle of the LHS value?
9886 isLHSID &= (Mask[i] == i);
9887
9888 // Is this an identity shuffle of the RHS value?
9889 isRHSID &= (Mask[i]-e == i);
Chris Lattner34cebe72006-04-16 00:03:56 +00009890 }
Chris Lattnerfbb77a42006-04-10 22:45:52 +00009891
Chris Lattner12249be2006-05-25 23:48:38 +00009892 // Eliminate identity shuffles.
9893 if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
9894 if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
Chris Lattnerfbb77a42006-04-10 22:45:52 +00009895
Chris Lattner0e477162006-05-26 00:29:06 +00009896 // If the LHS is a shufflevector itself, see if we can combine it with this
9897 // one without producing an unusual shuffle. Here we are really conservative:
9898 // we are absolutely afraid of producing a shuffle mask not in the input
9899 // program, because the code gen may not be smart enough to turn a merged
9900 // shuffle into two specific shuffles: it may produce worse code. As such,
9901 // we only merge two shuffles if the result is one of the two input shuffle
9902 // masks. In this case, merging the shuffles just removes one instruction,
9903 // which we know is safe. This is good for things like turning:
9904 // (splat(splat)) -> splat.
9905 if (ShuffleVectorInst *LHSSVI = dyn_cast<ShuffleVectorInst>(LHS)) {
9906 if (isa<UndefValue>(RHS)) {
9907 std::vector<unsigned> LHSMask = getShuffleMask(LHSSVI);
9908
9909 std::vector<unsigned> NewMask;
9910 for (unsigned i = 0, e = Mask.size(); i != e; ++i)
9911 if (Mask[i] >= 2*e)
9912 NewMask.push_back(2*e);
9913 else
9914 NewMask.push_back(LHSMask[Mask[i]]);
9915
9916 // If the result mask is equal to the src shuffle or this shuffle mask, do
9917 // the replacement.
9918 if (NewMask == LHSMask || NewMask == Mask) {
9919 std::vector<Constant*> Elts;
9920 for (unsigned i = 0, e = NewMask.size(); i != e; ++i) {
9921 if (NewMask[i] >= e*2) {
Reid Spencerc635f472006-12-31 05:48:39 +00009922 Elts.push_back(UndefValue::get(Type::Int32Ty));
Chris Lattner0e477162006-05-26 00:29:06 +00009923 } else {
Reid Spencerc635f472006-12-31 05:48:39 +00009924 Elts.push_back(ConstantInt::get(Type::Int32Ty, NewMask[i]));
Chris Lattner0e477162006-05-26 00:29:06 +00009925 }
9926 }
9927 return new ShuffleVectorInst(LHSSVI->getOperand(0),
9928 LHSSVI->getOperand(1),
Reid Spencerd84d35b2007-02-15 02:26:10 +00009929 ConstantVector::get(Elts));
Chris Lattner0e477162006-05-26 00:29:06 +00009930 }
9931 }
9932 }
Chris Lattner4284f642007-01-30 22:32:46 +00009933
Chris Lattnerfbb77a42006-04-10 22:45:52 +00009934 return MadeChange ? &SVI : 0;
9935}
9936
9937
Robert Bocchinoa8352962006-01-13 22:48:06 +00009938
Chris Lattner39c98bb2004-12-08 23:43:58 +00009939
9940/// TryToSinkInstruction - Try to move the specified instruction from its
9941/// current block into the beginning of DestBlock, which can only happen if it's
9942/// safe to move the instruction past all of the instructions between it and the
9943/// end of its block.
9944static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
9945 assert(I->hasOneUse() && "Invariants didn't hold!");
9946
Chris Lattnerc4f67e62005-10-27 17:13:11 +00009947 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
9948 if (isa<PHINode>(I) || I->mayWriteToMemory()) return false;
Misha Brukmanb1c93172005-04-21 23:48:37 +00009949
Chris Lattner39c98bb2004-12-08 23:43:58 +00009950 // Do not sink alloca instructions out of the entry block.
9951 if (isa<AllocaInst>(I) && I->getParent() == &DestBlock->getParent()->front())
9952 return false;
9953
Chris Lattnerf17a2fb2004-12-09 07:14:34 +00009954 // We can only sink load instructions if there is nothing between the load and
9955 // the end of block that could change the value.
9956 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
Chris Lattnerf17a2fb2004-12-09 07:14:34 +00009957 for (BasicBlock::iterator Scan = LI, E = LI->getParent()->end();
9958 Scan != E; ++Scan)
9959 if (Scan->mayWriteToMemory())
9960 return false;
Chris Lattnerf17a2fb2004-12-09 07:14:34 +00009961 }
Chris Lattner39c98bb2004-12-08 23:43:58 +00009962
9963 BasicBlock::iterator InsertPos = DestBlock->begin();
9964 while (isa<PHINode>(InsertPos)) ++InsertPos;
9965
Chris Lattner9f269e42005-08-08 19:11:57 +00009966 I->moveBefore(InsertPos);
Chris Lattner39c98bb2004-12-08 23:43:58 +00009967 ++NumSunkInst;
9968 return true;
9969}
9970
Chris Lattnera36ee4e2006-05-10 19:00:36 +00009971
9972/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
9973/// all reachable code to the worklist.
9974///
9975/// This has a couple of tricks to make the code faster and more powerful. In
9976/// particular, we constant fold and DCE instructions as we go, to avoid adding
9977/// them to the worklist (this significantly speeds up instcombine on code where
9978/// many instructions are dead or constant). Additionally, if we find a branch
9979/// whose condition is a known constant, we only visit the reachable successors.
9980///
9981static void AddReachableCodeToWorklist(BasicBlock *BB,
Chris Lattner7907e5f2007-02-15 19:41:52 +00009982 SmallPtrSet<BasicBlock*, 64> &Visited,
Chris Lattnerb15e2b12007-03-02 21:28:56 +00009983 InstCombiner &IC,
Chris Lattner1443bc52006-05-11 17:11:52 +00009984 const TargetData *TD) {
Chris Lattnera36ee4e2006-05-10 19:00:36 +00009985 // We have now visited this block! If we've already been here, bail out.
Chris Lattner7907e5f2007-02-15 19:41:52 +00009986 if (!Visited.insert(BB)) return;
Chris Lattnera36ee4e2006-05-10 19:00:36 +00009987
9988 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
9989 Instruction *Inst = BBI++;
9990
9991 // DCE instruction if trivially dead.
9992 if (isInstructionTriviallyDead(Inst)) {
9993 ++NumDeadInst;
Bill Wendling5dbf43c2006-11-26 09:46:52 +00009994 DOUT << "IC: DCE: " << *Inst;
Chris Lattnera36ee4e2006-05-10 19:00:36 +00009995 Inst->eraseFromParent();
9996 continue;
9997 }
9998
9999 // ConstantProp instruction if trivially constant.
Chris Lattnere3eda252007-01-30 23:16:15 +000010000 if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
Bill Wendling5dbf43c2006-11-26 09:46:52 +000010001 DOUT << "IC: ConstFold to: " << *C << " from: " << *Inst;
Chris Lattnera36ee4e2006-05-10 19:00:36 +000010002 Inst->replaceAllUsesWith(C);
10003 ++NumConstProp;
10004 Inst->eraseFromParent();
10005 continue;
10006 }
10007
Chris Lattnerb15e2b12007-03-02 21:28:56 +000010008 IC.AddToWorkList(Inst);
Chris Lattnera36ee4e2006-05-10 19:00:36 +000010009 }
10010
10011 // Recursively visit successors. If this is a branch or switch on a constant,
10012 // only visit the reachable successor.
10013 TerminatorInst *TI = BB->getTerminator();
10014 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
Reid Spencer7a9c62b2007-01-12 07:05:14 +000010015 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
Reid Spencercddc9df2007-01-12 04:24:46 +000010016 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
Chris Lattnerb15e2b12007-03-02 21:28:56 +000010017 AddReachableCodeToWorklist(BI->getSuccessor(!CondVal), Visited, IC, TD);
Chris Lattnera36ee4e2006-05-10 19:00:36 +000010018 return;
10019 }
10020 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
10021 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
10022 // See if this is an explicit destination.
10023 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
10024 if (SI->getCaseValue(i) == Cond) {
Chris Lattnerb15e2b12007-03-02 21:28:56 +000010025 AddReachableCodeToWorklist(SI->getSuccessor(i), Visited, IC, TD);
Chris Lattnera36ee4e2006-05-10 19:00:36 +000010026 return;
10027 }
10028
10029 // Otherwise it is the default destination.
Chris Lattnerb15e2b12007-03-02 21:28:56 +000010030 AddReachableCodeToWorklist(SI->getSuccessor(0), Visited, IC, TD);
Chris Lattnera36ee4e2006-05-10 19:00:36 +000010031 return;
10032 }
10033 }
10034
10035 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
Chris Lattnerb15e2b12007-03-02 21:28:56 +000010036 AddReachableCodeToWorklist(TI->getSuccessor(i), Visited, IC, TD);
Chris Lattnera36ee4e2006-05-10 19:00:36 +000010037}
10038
Chris Lattner960a5432007-03-03 02:04:50 +000010039bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
Chris Lattner260ab202002-04-18 17:39:14 +000010040 bool Changed = false;
Chris Lattnerf4ad1652003-11-02 05:57:39 +000010041 TD = &getAnalysis<TargetData>();
Chris Lattner960a5432007-03-03 02:04:50 +000010042
10043 DEBUG(DOUT << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
10044 << F.getNameStr() << "\n");
Chris Lattnerca081252001-12-14 16:52:21 +000010045
Chris Lattner4ed40f72005-07-07 20:40:38 +000010046 {
Chris Lattnera36ee4e2006-05-10 19:00:36 +000010047 // Do a depth-first traversal of the function, populate the worklist with
10048 // the reachable instructions. Ignore blocks that are not reachable. Keep
10049 // track of which blocks we visit.
Chris Lattner7907e5f2007-02-15 19:41:52 +000010050 SmallPtrSet<BasicBlock*, 64> Visited;
Chris Lattnerb15e2b12007-03-02 21:28:56 +000010051 AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +000010052
Chris Lattner4ed40f72005-07-07 20:40:38 +000010053 // Do a quick scan over the function. If we find any blocks that are
10054 // unreachable, remove any instructions inside of them. This prevents
10055 // the instcombine code from having to deal with some bad special cases.
10056 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
10057 if (!Visited.count(BB)) {
10058 Instruction *Term = BB->getTerminator();
10059 while (Term != BB->begin()) { // Remove instrs bottom-up
10060 BasicBlock::iterator I = Term; --I;
Chris Lattner2d3a7a62004-04-27 15:13:33 +000010061
Bill Wendling5dbf43c2006-11-26 09:46:52 +000010062 DOUT << "IC: DCE: " << *I;
Chris Lattner4ed40f72005-07-07 20:40:38 +000010063 ++NumDeadInst;
10064
10065 if (!I->use_empty())
10066 I->replaceAllUsesWith(UndefValue::get(I->getType()));
10067 I->eraseFromParent();
10068 }
10069 }
10070 }
Chris Lattnerca081252001-12-14 16:52:21 +000010071
Chris Lattnerb15e2b12007-03-02 21:28:56 +000010072 while (!Worklist.empty()) {
10073 Instruction *I = RemoveOneFromWorkList();
10074 if (I == 0) continue; // skip null values.
Chris Lattnerca081252001-12-14 16:52:21 +000010075
Chris Lattner1443bc52006-05-11 17:11:52 +000010076 // Check to see if we can DCE the instruction.
Chris Lattner99f48c62002-09-02 04:59:56 +000010077 if (isInstructionTriviallyDead(I)) {
Chris Lattner1443bc52006-05-11 17:11:52 +000010078 // Add operands to the worklist.
Chris Lattnere8ed4ef2003-10-06 17:11:01 +000010079 if (I->getNumOperands() < 4)
Chris Lattner51ea1272004-02-28 05:22:00 +000010080 AddUsesToWorkList(*I);
Chris Lattner99f48c62002-09-02 04:59:56 +000010081 ++NumDeadInst;
Chris Lattnere8ed4ef2003-10-06 17:11:01 +000010082
Bill Wendling5dbf43c2006-11-26 09:46:52 +000010083 DOUT << "IC: DCE: " << *I;
Chris Lattnercd517ff2005-01-28 19:32:01 +000010084
10085 I->eraseFromParent();
Chris Lattnerb15e2b12007-03-02 21:28:56 +000010086 RemoveFromWorkList(I);
Chris Lattnere8ed4ef2003-10-06 17:11:01 +000010087 continue;
10088 }
Chris Lattner99f48c62002-09-02 04:59:56 +000010089
Chris Lattner1443bc52006-05-11 17:11:52 +000010090 // Instruction isn't dead, see if we can constant propagate it.
Chris Lattnere3eda252007-01-30 23:16:15 +000010091 if (Constant *C = ConstantFoldInstruction(I, TD)) {
Bill Wendling5dbf43c2006-11-26 09:46:52 +000010092 DOUT << "IC: ConstFold to: " << *C << " from: " << *I;
Chris Lattnercd517ff2005-01-28 19:32:01 +000010093
Chris Lattner1443bc52006-05-11 17:11:52 +000010094 // Add operands to the worklist.
Chris Lattner51ea1272004-02-28 05:22:00 +000010095 AddUsesToWorkList(*I);
Chris Lattnerc6509f42002-12-05 22:41:53 +000010096 ReplaceInstUsesWith(*I, C);
10097
Chris Lattner99f48c62002-09-02 04:59:56 +000010098 ++NumConstProp;
Chris Lattnera36ee4e2006-05-10 19:00:36 +000010099 I->eraseFromParent();
Chris Lattnerb15e2b12007-03-02 21:28:56 +000010100 RemoveFromWorkList(I);
Chris Lattnere8ed4ef2003-10-06 17:11:01 +000010101 continue;
Chris Lattner99f48c62002-09-02 04:59:56 +000010102 }
Chris Lattnere8ed4ef2003-10-06 17:11:01 +000010103
Chris Lattner39c98bb2004-12-08 23:43:58 +000010104 // See if we can trivially sink this instruction to a successor basic block.
10105 if (I->hasOneUse()) {
10106 BasicBlock *BB = I->getParent();
10107 BasicBlock *UserParent = cast<Instruction>(I->use_back())->getParent();
10108 if (UserParent != BB) {
10109 bool UserIsSuccessor = false;
10110 // See if the user is one of our successors.
10111 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
10112 if (*SI == UserParent) {
10113 UserIsSuccessor = true;
10114 break;
10115 }
10116
10117 // If the user is one of our immediate successors, and if that successor
10118 // only has us as a predecessors (we'd have to split the critical edge
10119 // otherwise), we can keep going.
10120 if (UserIsSuccessor && !isa<PHINode>(I->use_back()) &&
10121 next(pred_begin(UserParent)) == pred_end(UserParent))
10122 // Okay, the CFG is simple enough, try to sink this instruction.
10123 Changed |= TryToSinkInstruction(I, UserParent);
10124 }
10125 }
10126
Chris Lattnerca081252001-12-14 16:52:21 +000010127 // Now that we have an instruction, try combining it to simplify it...
Chris Lattnerae7a0d32002-08-02 19:29:35 +000010128 if (Instruction *Result = visit(*I)) {
Chris Lattner0b18c1d2002-05-10 15:38:35 +000010129 ++NumCombined;
Chris Lattner260ab202002-04-18 17:39:14 +000010130 // Should we replace the old instruction with a new one?
Chris Lattner053c0932002-05-14 15:24:07 +000010131 if (Result != I) {
Bill Wendling5dbf43c2006-11-26 09:46:52 +000010132 DOUT << "IC: Old = " << *I
10133 << " New = " << *Result;
Chris Lattner7d2a5392004-03-13 23:54:27 +000010134
Chris Lattner396dbfe2004-06-09 05:08:07 +000010135 // Everything uses the new instruction now.
10136 I->replaceAllUsesWith(Result);
10137
10138 // Push the new instruction and any users onto the worklist.
Chris Lattnerb15e2b12007-03-02 21:28:56 +000010139 AddToWorkList(Result);
Chris Lattner396dbfe2004-06-09 05:08:07 +000010140 AddUsersToWorkList(*Result);
Chris Lattnere8ed4ef2003-10-06 17:11:01 +000010141
Chris Lattner6e0123b2007-02-11 01:23:03 +000010142 // Move the name to the new instruction first.
10143 Result->takeName(I);
Chris Lattnere8ed4ef2003-10-06 17:11:01 +000010144
10145 // Insert the new instruction into the basic block...
10146 BasicBlock *InstParent = I->getParent();
Chris Lattner7515cab2004-11-14 19:13:23 +000010147 BasicBlock::iterator InsertPos = I;
10148
10149 if (!isa<PHINode>(Result)) // If combining a PHI, don't insert
10150 while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
10151 ++InsertPos;
10152
10153 InstParent->getInstList().insert(InsertPos, Result);
Chris Lattnere8ed4ef2003-10-06 17:11:01 +000010154
Chris Lattner63d75af2004-05-01 23:27:23 +000010155 // Make sure that we reprocess all operands now that we reduced their
10156 // use counts.
Chris Lattnerb15e2b12007-03-02 21:28:56 +000010157 AddUsesToWorkList(*I);
Chris Lattnerb643a9e2004-05-01 23:19:52 +000010158
Chris Lattner396dbfe2004-06-09 05:08:07 +000010159 // Instructions can end up on the worklist more than once. Make sure
10160 // we do not process an instruction that has been deleted.
Chris Lattnerb15e2b12007-03-02 21:28:56 +000010161 RemoveFromWorkList(I);
Chris Lattnere8ed4ef2003-10-06 17:11:01 +000010162
10163 // Erase the old instruction.
10164 InstParent->getInstList().erase(I);
Chris Lattner113f4f42002-06-25 16:13:24 +000010165 } else {
Bill Wendling5dbf43c2006-11-26 09:46:52 +000010166 DOUT << "IC: MOD = " << *I;
Chris Lattner7d2a5392004-03-13 23:54:27 +000010167
Chris Lattnerae7a0d32002-08-02 19:29:35 +000010168 // If the instruction was modified, it's possible that it is now dead.
10169 // if so, remove it.
Chris Lattner63d75af2004-05-01 23:27:23 +000010170 if (isInstructionTriviallyDead(I)) {
10171 // Make sure we process all operands now that we are reducing their
10172 // use counts.
Chris Lattner960a5432007-03-03 02:04:50 +000010173 AddUsesToWorkList(*I);
Misha Brukmanb1c93172005-04-21 23:48:37 +000010174
Chris Lattner63d75af2004-05-01 23:27:23 +000010175 // Instructions may end up in the worklist more than once. Erase all
Robert Bocchinoa8352962006-01-13 22:48:06 +000010176 // occurrences of this instruction.
Chris Lattnerb15e2b12007-03-02 21:28:56 +000010177 RemoveFromWorkList(I);
Chris Lattner31f486c2005-01-31 05:36:43 +000010178 I->eraseFromParent();
Chris Lattner396dbfe2004-06-09 05:08:07 +000010179 } else {
Chris Lattner960a5432007-03-03 02:04:50 +000010180 AddToWorkList(I);
10181 AddUsersToWorkList(*I);
Chris Lattnerae7a0d32002-08-02 19:29:35 +000010182 }
Chris Lattner053c0932002-05-14 15:24:07 +000010183 }
Chris Lattner260ab202002-04-18 17:39:14 +000010184 Changed = true;
Chris Lattnerca081252001-12-14 16:52:21 +000010185 }
10186 }
10187
Chris Lattner960a5432007-03-03 02:04:50 +000010188 assert(WorklistMap.empty() && "Worklist empty, but map not?");
Chris Lattner260ab202002-04-18 17:39:14 +000010189 return Changed;
Chris Lattner04805fa2002-02-26 21:46:54 +000010190}
10191
Chris Lattner960a5432007-03-03 02:04:50 +000010192
10193bool InstCombiner::runOnFunction(Function &F) {
Chris Lattner8258b442007-03-04 04:27:24 +000010194 MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
10195
Chris Lattner960a5432007-03-03 02:04:50 +000010196 bool EverMadeChange = false;
10197
10198 // Iterate while there is work to do.
10199 unsigned Iteration = 0;
10200 while (DoOneIteration(F, Iteration++))
10201 EverMadeChange = true;
10202 return EverMadeChange;
10203}
10204
Brian Gaeke38b79e82004-07-27 17:43:21 +000010205FunctionPass *llvm::createInstructionCombiningPass() {
Chris Lattner260ab202002-04-18 17:39:14 +000010206 return new InstCombiner();
Chris Lattner04805fa2002-02-26 21:46:54 +000010207}
Brian Gaeke960707c2003-11-11 22:41:34 +000010208