blob: 3876ae38b46cfeb0ea51cd63fa3e719a45c86a93 [file] [log] [blame]
Tobias Grosser30aa24c2011-05-14 19:02:06 +00001//===- Schedule.cpp - Calculate an optimized schedule ---------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
Tobias Grosser2219d152016-08-03 05:28:09 +000010// This pass generates an entirely new schedule tree from the data dependences
Tobias Grosser234a4822015-08-15 09:34:33 +000011// and iteration domains. The new schedule tree is computed in two steps:
Tobias Grosser30aa24c2011-05-14 19:02:06 +000012//
Tobias Grosser234a4822015-08-15 09:34:33 +000013// 1) The isl scheduling optimizer is run
14//
15// The isl scheduling optimizer creates a new schedule tree that maximizes
16// parallelism and tileability and minimizes data-dependence distances. The
17// algorithm used is a modified version of the ``Pluto'' algorithm:
18//
19// U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan.
20// A Practical Automatic Polyhedral Parallelizer and Locality Optimizer.
21// In Proceedings of the 2008 ACM SIGPLAN Conference On Programming Language
22// Design and Implementation, PLDI ’08, pages 101–113. ACM, 2008.
23//
24// 2) A set of post-scheduling transformations is applied on the schedule tree.
25//
26// These optimizations include:
27//
28// - Tiling of the innermost tilable bands
29// - Prevectorization - The coice of a possible outer loop that is strip-mined
30// to the innermost level to enable inner-loop
31// vectorization.
32// - Some optimizations for spatial locality are also planned.
33//
34// For a detailed description of the schedule tree itself please see section 6
35// of:
36//
37// Polyhedral AST generation is more than scanning polyhedra
38// Tobias Grosser, Sven Verdoolaege, Albert Cohen
39// ACM Transations on Programming Languages and Systems (TOPLAS),
40// 37(4), July 2015
41// http://www.grosser.es/#pub-polyhedral-AST-generation
42//
43// This publication also contains a detailed discussion of the different options
44// for polyhedral loop unrolling, full/partial tile separation and other uses
45// of the schedule tree.
46//
Tobias Grosser30aa24c2011-05-14 19:02:06 +000047//===----------------------------------------------------------------------===//
48
Tobias Grosser967239c2011-10-23 20:59:44 +000049#include "polly/ScheduleOptimizer.h"
Tobias Grosserba0d0922015-05-09 09:13:42 +000050#include "polly/CodeGen/CodeGeneration.h"
51#include "polly/DependenceInfo.h"
52#include "polly/LinkAllPasses.h"
53#include "polly/Options.h"
54#include "polly/ScopInfo.h"
55#include "polly/Support/GICHelper.h"
Roman Gareev42402c92016-06-22 09:52:37 +000056#include "llvm/Analysis/TargetTransformInfo.h"
Tobias Grosserba0d0922015-05-09 09:13:42 +000057#include "llvm/Support/Debug.h"
Tobias Grosser2493e922011-12-07 07:42:57 +000058#include "isl/aff.h"
Tobias Grosserde68cc92011-06-30 20:01:02 +000059#include "isl/band.h"
Tobias Grosser8ad6bc32012-01-31 13:26:29 +000060#include "isl/constraint.h"
61#include "isl/map.h"
Tobias Grosser42152ff2012-01-30 19:38:47 +000062#include "isl/options.h"
Tobias Grosser97d87452015-05-30 06:46:59 +000063#include "isl/printer.h"
Tobias Grosser8ad6bc32012-01-31 13:26:29 +000064#include "isl/schedule.h"
Tobias Grosserbbb4cec2015-03-22 12:06:39 +000065#include "isl/schedule_node.h"
Tobias Grosser8ad6bc32012-01-31 13:26:29 +000066#include "isl/space.h"
Tobias Grossercd524dc2015-05-09 09:36:38 +000067#include "isl/union_map.h"
68#include "isl/union_set.h"
Tobias Grosser30aa24c2011-05-14 19:02:06 +000069
70using namespace llvm;
71using namespace polly;
72
Chandler Carruth95fef942014-04-22 03:30:19 +000073#define DEBUG_TYPE "polly-opt-isl"
74
Tobias Grossera26db472012-01-30 19:38:43 +000075static cl::opt<std::string>
Tobias Grosser483a90d2014-07-09 10:50:10 +000076 OptimizeDeps("polly-opt-optimize-only",
77 cl::desc("Only a certain kind of dependences (all/raw)"),
78 cl::Hidden, cl::init("all"), cl::ZeroOrMore,
79 cl::cat(PollyCategory));
Tobias Grosser1deda292012-02-14 14:02:48 +000080
81static cl::opt<std::string>
Tobias Grosser483a90d2014-07-09 10:50:10 +000082 SimplifyDeps("polly-opt-simplify-deps",
83 cl::desc("Dependences should be simplified (yes/no)"),
84 cl::Hidden, cl::init("yes"), cl::ZeroOrMore,
85 cl::cat(PollyCategory));
Tobias Grossera26db472012-01-30 19:38:43 +000086
Tobias Grosser483a90d2014-07-09 10:50:10 +000087static cl::opt<int> MaxConstantTerm(
88 "polly-opt-max-constant-term",
89 cl::desc("The maximal constant term allowed (-1 is unlimited)"), cl::Hidden,
90 cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));
Tobias Grosser992e60c2012-02-20 08:41:15 +000091
Tobias Grosser483a90d2014-07-09 10:50:10 +000092static cl::opt<int> MaxCoefficient(
93 "polly-opt-max-coefficient",
94 cl::desc("The maximal coefficient allowed (-1 is unlimited)"), cl::Hidden,
95 cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));
96
97static cl::opt<std::string> FusionStrategy(
98 "polly-opt-fusion", cl::desc("The fusion strategy to choose (min/max)"),
99 cl::Hidden, cl::init("min"), cl::ZeroOrMore, cl::cat(PollyCategory));
Tobias Grosser92f54802012-02-20 08:41:47 +0000100
Tobias Grossere602a072013-05-07 07:30:56 +0000101static cl::opt<std::string>
Tobias Grosser483a90d2014-07-09 10:50:10 +0000102 MaximizeBandDepth("polly-opt-maximize-bands",
103 cl::desc("Maximize the band depth (yes/no)"), cl::Hidden,
104 cl::init("yes"), cl::ZeroOrMore, cl::cat(PollyCategory));
Tobias Grosserb3ad85b2012-01-30 19:38:50 +0000105
Michael Kruse315aa322016-05-02 11:35:27 +0000106static cl::opt<std::string> OuterCoincidence(
107 "polly-opt-outer-coincidence",
108 cl::desc("Try to construct schedules where the outer member of each band "
109 "satisfies the coincidence constraints (yes/no)"),
110 cl::Hidden, cl::init("no"), cl::ZeroOrMore, cl::cat(PollyCategory));
111
Tobias Grosser07c1c2f2015-08-19 08:46:11 +0000112static cl::opt<int> PrevectorWidth(
113 "polly-prevect-width",
114 cl::desc(
115 "The number of loop iterations to strip-mine for pre-vectorization"),
116 cl::Hidden, cl::init(4), cl::ZeroOrMore, cl::cat(PollyCategory));
117
Tobias Grosser04832712015-08-20 13:45:02 +0000118static cl::opt<bool> FirstLevelTiling("polly-tiling",
119 cl::desc("Enable loop tiling"),
120 cl::init(true), cl::ZeroOrMore,
121 cl::cat(PollyCategory));
122
Roman Gareev42402c92016-06-22 09:52:37 +0000123static cl::opt<int> LatencyVectorFma(
124 "polly-target-latency-vector-fma",
125 cl::desc("The minimal number of cycles between issuing two "
126 "dependent consecutive vector fused multiply-add "
127 "instructions."),
128 cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));
129
130static cl::opt<int> ThrougputVectorFma(
131 "polly-target-througput-vector-fma",
132 cl::desc("A throughput of the processor floating-point arithmetic units "
133 "expressed in the number of vector fused multiply-add "
134 "instructions per clock cycle."),
135 cl::Hidden, cl::init(1), cl::ZeroOrMore, cl::cat(PollyCategory));
136
Roman Gareev3a18a932016-07-25 09:42:53 +0000137static cl::list<int>
138 CacheLevelAssociativity("polly-target-cache-level-associativity",
139 cl::desc("The associativity of each cache level."),
140 cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
141 cl::cat(PollyCategory));
142
143static cl::list<int> CacheLevelSizes(
144 "polly-target-cache-level-sizes",
145 cl::desc("The size of each cache level specified in bytes."), cl::Hidden,
146 cl::ZeroOrMore, cl::CommaSeparated, cl::cat(PollyCategory));
147
Tobias Grosser04832712015-08-20 13:45:02 +0000148static cl::opt<int> FirstLevelDefaultTileSize(
Tobias Grosser483a90d2014-07-09 10:50:10 +0000149 "polly-default-tile-size",
150 cl::desc("The default tile size (if not enough were provided by"
151 " --polly-tile-sizes)"),
152 cl::Hidden, cl::init(32), cl::ZeroOrMore, cl::cat(PollyCategory));
Johannes Doerfertc3958b22014-05-28 17:21:02 +0000153
Tobias Grosser04832712015-08-20 13:45:02 +0000154static cl::list<int> FirstLevelTileSizes(
155 "polly-tile-sizes", cl::desc("A tile size for each loop dimension, filled "
156 "with --polly-default-tile-size"),
157 cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated, cl::cat(PollyCategory));
158
159static cl::opt<bool>
160 SecondLevelTiling("polly-2nd-level-tiling",
161 cl::desc("Enable a 2nd level loop of loop tiling"),
162 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
163
164static cl::opt<int> SecondLevelDefaultTileSize(
165 "polly-2nd-level-default-tile-size",
166 cl::desc("The default 2nd-level tile size (if not enough were provided by"
167 " --polly-2nd-level-tile-sizes)"),
168 cl::Hidden, cl::init(16), cl::ZeroOrMore, cl::cat(PollyCategory));
169
170static cl::list<int>
171 SecondLevelTileSizes("polly-2nd-level-tile-sizes",
172 cl::desc("A tile size for each loop dimension, filled "
173 "with --polly-default-tile-size"),
174 cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
175 cl::cat(PollyCategory));
176
Tobias Grosser42e24892015-08-20 13:45:05 +0000177static cl::opt<bool> RegisterTiling("polly-register-tiling",
178 cl::desc("Enable register tiling"),
179 cl::init(false), cl::ZeroOrMore,
180 cl::cat(PollyCategory));
181
182static cl::opt<int> RegisterDefaultTileSize(
183 "polly-register-tiling-default-tile-size",
184 cl::desc("The default register tile size (if not enough were provided by"
185 " --polly-register-tile-sizes)"),
186 cl::Hidden, cl::init(2), cl::ZeroOrMore, cl::cat(PollyCategory));
187
188static cl::list<int>
189 RegisterTileSizes("polly-register-tile-sizes",
190 cl::desc("A tile size for each loop dimension, filled "
191 "with --polly-register-tile-size"),
192 cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
193 cl::cat(PollyCategory));
194
Roman Gareev9c3eb592016-05-28 16:17:58 +0000195static cl::opt<bool>
196 PMBasedOpts("polly-pattern-matching-based-opts",
197 cl::desc("Perform optimizations based on pattern matching"),
198 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
199
Tobias Grosserca7f5bb2015-10-20 09:12:21 +0000200/// @brief Create an isl_union_set, which describes the isolate option based
201/// on IsoalteDomain.
202///
203/// @param IsolateDomain An isl_set whose last dimension is the only one that
204/// should belong to the current band node.
205static __isl_give isl_union_set *
206getIsolateOptions(__isl_take isl_set *IsolateDomain) {
207 auto Dims = isl_set_dim(IsolateDomain, isl_dim_set);
208 auto *IsolateRelation = isl_map_from_domain(IsolateDomain);
209 IsolateRelation = isl_map_move_dims(IsolateRelation, isl_dim_out, 0,
210 isl_dim_in, Dims - 1, 1);
211 auto *IsolateOption = isl_map_wrap(IsolateRelation);
Tobias Grosser8dd653d2016-06-22 16:22:00 +0000212 auto *Id = isl_id_alloc(isl_set_get_ctx(IsolateOption), "isolate", nullptr);
Tobias Grosserca7f5bb2015-10-20 09:12:21 +0000213 return isl_union_set_from_set(isl_set_set_tuple_id(IsolateOption, Id));
214}
215
216/// @brief Create an isl_union_set, which describes the atomic option for the
217/// dimension of the current node.
218///
219/// It may help to reduce the size of generated code.
220///
221/// @param Ctx An isl_ctx, which is used to create the isl_union_set.
222static __isl_give isl_union_set *getAtomicOptions(__isl_take isl_ctx *Ctx) {
223 auto *Space = isl_space_set_alloc(Ctx, 0, 1);
224 auto *AtomicOption = isl_set_universe(Space);
Tobias Grosser8dd653d2016-06-22 16:22:00 +0000225 auto *Id = isl_id_alloc(Ctx, "atomic", nullptr);
Tobias Grosserca7f5bb2015-10-20 09:12:21 +0000226 return isl_union_set_from_set(isl_set_set_tuple_id(AtomicOption, Id));
227}
228
229/// @brief Make the last dimension of Set to take values
230/// from 0 to VectorWidth - 1.
231///
232/// @param Set A set, which should be modified.
233/// @param VectorWidth A parameter, which determines the constraint.
234static __isl_give isl_set *addExtentConstraints(__isl_take isl_set *Set,
235 int VectorWidth) {
236 auto Dims = isl_set_dim(Set, isl_dim_set);
237 auto Space = isl_set_get_space(Set);
238 auto *LocalSpace = isl_local_space_from_space(Space);
239 auto *ExtConstr =
240 isl_constraint_alloc_inequality(isl_local_space_copy(LocalSpace));
241 ExtConstr = isl_constraint_set_constant_si(ExtConstr, 0);
242 ExtConstr =
243 isl_constraint_set_coefficient_si(ExtConstr, isl_dim_set, Dims - 1, 1);
244 Set = isl_set_add_constraint(Set, ExtConstr);
245 ExtConstr = isl_constraint_alloc_inequality(LocalSpace);
246 ExtConstr = isl_constraint_set_constant_si(ExtConstr, VectorWidth - 1);
247 ExtConstr =
248 isl_constraint_set_coefficient_si(ExtConstr, isl_dim_set, Dims - 1, -1);
249 return isl_set_add_constraint(Set, ExtConstr);
250}
251
252/// @brief Build the desired set of partial tile prefixes.
253///
254/// We build a set of partial tile prefixes, which are prefixes of the vector
255/// loop that have exactly VectorWidth iterations.
256///
257/// 1. Get all prefixes of the vector loop.
258/// 2. Extend it to a set, which has exactly VectorWidth iterations for
259/// any prefix from the set that was built on the previous step.
260/// 3. Subtract loop domain from it, project out the vector loop dimension and
Roman Gareev76614d32016-05-31 11:22:21 +0000261/// get a set of prefixes, which don't have exactly VectorWidth iterations.
Tobias Grosserca7f5bb2015-10-20 09:12:21 +0000262/// 4. Subtract it from all prefixes of the vector loop and get the desired
263/// set.
264///
265/// @param ScheduleRange A range of a map, which describes a prefix schedule
266/// relation.
267static __isl_give isl_set *
268getPartialTilePrefixes(__isl_take isl_set *ScheduleRange, int VectorWidth) {
269 auto Dims = isl_set_dim(ScheduleRange, isl_dim_set);
270 auto *LoopPrefixes = isl_set_project_out(isl_set_copy(ScheduleRange),
271 isl_dim_set, Dims - 1, 1);
272 auto *ExtentPrefixes =
273 isl_set_add_dims(isl_set_copy(LoopPrefixes), isl_dim_set, 1);
274 ExtentPrefixes = addExtentConstraints(ExtentPrefixes, VectorWidth);
275 auto *BadPrefixes = isl_set_subtract(ExtentPrefixes, ScheduleRange);
276 BadPrefixes = isl_set_project_out(BadPrefixes, isl_dim_set, Dims - 1, 1);
277 return isl_set_subtract(LoopPrefixes, BadPrefixes);
278}
279
280__isl_give isl_schedule_node *ScheduleTreeOptimizer::isolateFullPartialTiles(
281 __isl_take isl_schedule_node *Node, int VectorWidth) {
282 assert(isl_schedule_node_get_type(Node) == isl_schedule_node_band);
283 Node = isl_schedule_node_child(Node, 0);
284 Node = isl_schedule_node_child(Node, 0);
285 auto *SchedRelUMap = isl_schedule_node_get_prefix_schedule_relation(Node);
286 auto *ScheduleRelation = isl_map_from_union_map(SchedRelUMap);
287 auto *ScheduleRange = isl_map_range(ScheduleRelation);
288 auto *IsolateDomain = getPartialTilePrefixes(ScheduleRange, VectorWidth);
289 auto *AtomicOption = getAtomicOptions(isl_set_get_ctx(IsolateDomain));
290 auto *IsolateOption = getIsolateOptions(IsolateDomain);
291 Node = isl_schedule_node_parent(Node);
292 Node = isl_schedule_node_parent(Node);
293 auto *Options = isl_union_set_union(IsolateOption, AtomicOption);
294 Node = isl_schedule_node_band_set_ast_build_options(Node, Options);
295 return Node;
296}
297
Tobias Grosserb241d922015-07-28 18:03:36 +0000298__isl_give isl_schedule_node *
Tobias Grosserfa57e9b2015-08-24 06:01:47 +0000299ScheduleTreeOptimizer::prevectSchedBand(__isl_take isl_schedule_node *Node,
300 unsigned DimToVectorize,
301 int VectorWidth) {
Tobias Grosserb241d922015-07-28 18:03:36 +0000302 assert(isl_schedule_node_get_type(Node) == isl_schedule_node_band);
Tobias Grosserc6699b72011-06-30 20:29:13 +0000303
Tobias Grosserb241d922015-07-28 18:03:36 +0000304 auto Space = isl_schedule_node_band_get_space(Node);
305 auto ScheduleDimensions = isl_space_dim(Space, isl_dim_set);
306 isl_space_free(Space);
307 assert(DimToVectorize < ScheduleDimensions);
Tobias Grosserf5338802011-10-06 00:03:35 +0000308
Tobias Grosserb241d922015-07-28 18:03:36 +0000309 if (DimToVectorize > 0) {
310 Node = isl_schedule_node_band_split(Node, DimToVectorize);
311 Node = isl_schedule_node_child(Node, 0);
312 }
313 if (DimToVectorize < ScheduleDimensions - 1)
314 Node = isl_schedule_node_band_split(Node, 1);
315 Space = isl_schedule_node_band_get_space(Node);
316 auto Sizes = isl_multi_val_zero(Space);
317 auto Ctx = isl_schedule_node_get_ctx(Node);
318 Sizes =
319 isl_multi_val_set_val(Sizes, 0, isl_val_int_from_si(Ctx, VectorWidth));
320 Node = isl_schedule_node_band_tile(Node, Sizes);
Tobias Grosserca7f5bb2015-10-20 09:12:21 +0000321 Node = isolateFullPartialTiles(Node, VectorWidth);
Tobias Grosserb241d922015-07-28 18:03:36 +0000322 Node = isl_schedule_node_child(Node, 0);
Tobias Grosser42e24892015-08-20 13:45:05 +0000323 // Make sure the "trivially vectorizable loop" is not unrolled. Otherwise,
324 // we will have troubles to match it in the backend.
325 Node = isl_schedule_node_band_set_ast_build_options(
Tobias Grosserfc490a92015-08-20 19:08:16 +0000326 Node, isl_union_set_read_from_str(Ctx, "{ unroll[x]: 1 = 0 }"));
327 Node = isl_schedule_node_band_sink(Node);
Tobias Grosserb241d922015-07-28 18:03:36 +0000328 Node = isl_schedule_node_child(Node, 0);
Roman Gareev11001e12016-02-23 09:00:13 +0000329 if (isl_schedule_node_get_type(Node) == isl_schedule_node_leaf)
330 Node = isl_schedule_node_parent(Node);
331 isl_id *LoopMarker = isl_id_alloc(Ctx, "SIMD", nullptr);
332 Node = isl_schedule_node_insert_mark(Node, LoopMarker);
Tobias Grosserb241d922015-07-28 18:03:36 +0000333 return Node;
Tobias Grosserc6699b72011-06-30 20:29:13 +0000334}
335
Tobias Grosserd891b542015-08-20 12:16:23 +0000336__isl_give isl_schedule_node *
Tobias Grosserfa57e9b2015-08-24 06:01:47 +0000337ScheduleTreeOptimizer::tileNode(__isl_take isl_schedule_node *Node,
338 const char *Identifier, ArrayRef<int> TileSizes,
339 int DefaultTileSize) {
Tobias Grosser9bdea572015-08-20 12:22:37 +0000340 auto Ctx = isl_schedule_node_get_ctx(Node);
341 auto Space = isl_schedule_node_band_get_space(Node);
342 auto Dims = isl_space_dim(Space, isl_dim_set);
343 auto Sizes = isl_multi_val_zero(Space);
Tobias Grosser1ac884d2015-08-23 09:11:00 +0000344 std::string IdentifierString(Identifier);
Tobias Grosser9bdea572015-08-20 12:22:37 +0000345 for (unsigned i = 0; i < Dims; i++) {
346 auto tileSize = i < TileSizes.size() ? TileSizes[i] : DefaultTileSize;
347 Sizes = isl_multi_val_set_val(Sizes, i, isl_val_int_from_si(Ctx, tileSize));
348 }
Tobias Grosser1ac884d2015-08-23 09:11:00 +0000349 auto TileLoopMarkerStr = IdentifierString + " - Tiles";
350 isl_id *TileLoopMarker =
351 isl_id_alloc(Ctx, TileLoopMarkerStr.c_str(), nullptr);
352 Node = isl_schedule_node_insert_mark(Node, TileLoopMarker);
353 Node = isl_schedule_node_child(Node, 0);
Tobias Grosser9bdea572015-08-20 12:22:37 +0000354 Node = isl_schedule_node_band_tile(Node, Sizes);
Tobias Grosser1ac884d2015-08-23 09:11:00 +0000355 Node = isl_schedule_node_child(Node, 0);
356 auto PointLoopMarkerStr = IdentifierString + " - Points";
357 isl_id *PointLoopMarker =
358 isl_id_alloc(Ctx, PointLoopMarkerStr.c_str(), nullptr);
359 Node = isl_schedule_node_insert_mark(Node, PointLoopMarker);
360 Node = isl_schedule_node_child(Node, 0);
361 return Node;
Tobias Grosser9bdea572015-08-20 12:22:37 +0000362}
363
Roman Gareevb17b9a82016-06-12 17:20:05 +0000364__isl_give isl_schedule_node *
365ScheduleTreeOptimizer::applyRegisterTiling(__isl_take isl_schedule_node *Node,
366 llvm::ArrayRef<int> TileSizes,
367 int DefaultTileSize) {
368 auto *Ctx = isl_schedule_node_get_ctx(Node);
369 Node = tileNode(Node, "Register tiling", TileSizes, DefaultTileSize);
370 Node = isl_schedule_node_band_set_ast_build_options(
371 Node, isl_union_set_read_from_str(Ctx, "{unroll[x]}"));
372 return Node;
373}
374
Tobias Grosserfa57e9b2015-08-24 06:01:47 +0000375bool ScheduleTreeOptimizer::isTileableBandNode(
Tobias Grosser862b9b52015-08-20 12:32:45 +0000376 __isl_keep isl_schedule_node *Node) {
Tobias Grosserbbb4cec2015-03-22 12:06:39 +0000377 if (isl_schedule_node_get_type(Node) != isl_schedule_node_band)
Tobias Grosser862b9b52015-08-20 12:32:45 +0000378 return false;
Tobias Grosserde68cc92011-06-30 20:01:02 +0000379
Tobias Grosserbbb4cec2015-03-22 12:06:39 +0000380 if (isl_schedule_node_n_children(Node) != 1)
Tobias Grosser862b9b52015-08-20 12:32:45 +0000381 return false;
Tobias Grosserde68cc92011-06-30 20:01:02 +0000382
Tobias Grosserbbb4cec2015-03-22 12:06:39 +0000383 if (!isl_schedule_node_band_get_permutable(Node))
Tobias Grosser862b9b52015-08-20 12:32:45 +0000384 return false;
Tobias Grosser44f19ac2011-07-05 22:15:53 +0000385
Tobias Grosserbbb4cec2015-03-22 12:06:39 +0000386 auto Space = isl_schedule_node_band_get_space(Node);
387 auto Dims = isl_space_dim(Space, isl_dim_set);
Tobias Grosser9bdea572015-08-20 12:22:37 +0000388 isl_space_free(Space);
Tobias Grosserde68cc92011-06-30 20:01:02 +0000389
Tobias Grosser9bdea572015-08-20 12:22:37 +0000390 if (Dims <= 1)
Tobias Grosser862b9b52015-08-20 12:32:45 +0000391 return false;
Tobias Grosserde68cc92011-06-30 20:01:02 +0000392
Tobias Grosserbbb4cec2015-03-22 12:06:39 +0000393 auto Child = isl_schedule_node_get_child(Node, 0);
394 auto Type = isl_schedule_node_get_type(Child);
395 isl_schedule_node_free(Child);
396
Tobias Grosser9bdea572015-08-20 12:22:37 +0000397 if (Type != isl_schedule_node_leaf)
Tobias Grosser862b9b52015-08-20 12:32:45 +0000398 return false;
399
400 return true;
401}
402
403__isl_give isl_schedule_node *
Roman Gareev9c3eb592016-05-28 16:17:58 +0000404ScheduleTreeOptimizer::standardBandOpts(__isl_take isl_schedule_node *Node,
405 void *User) {
Tobias Grosser04832712015-08-20 13:45:02 +0000406 if (FirstLevelTiling)
Tobias Grosser1ac884d2015-08-23 09:11:00 +0000407 Node = tileNode(Node, "1st level tiling", FirstLevelTileSizes,
408 FirstLevelDefaultTileSize);
Tobias Grosser04832712015-08-20 13:45:02 +0000409
410 if (SecondLevelTiling)
Tobias Grosser1ac884d2015-08-23 09:11:00 +0000411 Node = tileNode(Node, "2nd level tiling", SecondLevelTileSizes,
412 SecondLevelDefaultTileSize);
Tobias Grosserbbb4cec2015-03-22 12:06:39 +0000413
Roman Gareevb17b9a82016-06-12 17:20:05 +0000414 if (RegisterTiling)
415 Node =
416 applyRegisterTiling(Node, RegisterTileSizes, RegisterDefaultTileSize);
Tobias Grosser42e24892015-08-20 13:45:05 +0000417
Tobias Grosserbbb4cec2015-03-22 12:06:39 +0000418 if (PollyVectorizerChoice == VECTORIZER_NONE)
Tobias Grosserf10f4632015-08-19 08:03:37 +0000419 return Node;
Tobias Grosserbbb4cec2015-03-22 12:06:39 +0000420
Tobias Grosser862b9b52015-08-20 12:32:45 +0000421 auto Space = isl_schedule_node_band_get_space(Node);
422 auto Dims = isl_space_dim(Space, isl_dim_set);
423 isl_space_free(Space);
424
Tobias Grosserb241d922015-07-28 18:03:36 +0000425 for (int i = Dims - 1; i >= 0; i--)
Tobias Grosserf10f4632015-08-19 08:03:37 +0000426 if (isl_schedule_node_band_member_get_coincident(Node, i)) {
Tobias Grosserfa57e9b2015-08-24 06:01:47 +0000427 Node = prevectSchedBand(Node, i, PrevectorWidth);
Tobias Grosserbbb4cec2015-03-22 12:06:39 +0000428 break;
429 }
Tobias Grosserbbb4cec2015-03-22 12:06:39 +0000430
Tobias Grosserf10f4632015-08-19 08:03:37 +0000431 return Node;
Tobias Grosserde68cc92011-06-30 20:01:02 +0000432}
433
Roman Gareev9c3eb592016-05-28 16:17:58 +0000434/// @brief Check whether output dimensions of the map rely on the specified
435/// input dimension.
436///
437/// @param IslMap The isl map to be considered.
438/// @param DimNum The number of an input dimension to be checked.
439static bool isInputDimUsed(__isl_take isl_map *IslMap, unsigned DimNum) {
440 auto *CheckedAccessRelation =
441 isl_map_project_out(isl_map_copy(IslMap), isl_dim_in, DimNum, 1);
442 CheckedAccessRelation =
443 isl_map_insert_dims(CheckedAccessRelation, isl_dim_in, DimNum, 1);
444 auto *InputDimsId = isl_map_get_tuple_id(IslMap, isl_dim_in);
445 CheckedAccessRelation =
446 isl_map_set_tuple_id(CheckedAccessRelation, isl_dim_in, InputDimsId);
447 InputDimsId = isl_map_get_tuple_id(IslMap, isl_dim_out);
448 CheckedAccessRelation =
449 isl_map_set_tuple_id(CheckedAccessRelation, isl_dim_out, InputDimsId);
450 auto res = !isl_map_is_equal(CheckedAccessRelation, IslMap);
451 isl_map_free(CheckedAccessRelation);
452 isl_map_free(IslMap);
453 return res;
454}
455
456/// @brief Check if the SCoP statement could probably be optimized with
457/// analytical modeling.
458///
459/// containsMatrMult tries to determine whether the following conditions
460/// are true:
461/// 1. all memory accesses of the statement will have stride 0 or 1,
462/// if we interchange loops (switch the variable used in the inner
463/// loop to the outer loop).
464/// 2. all memory accesses of the statement except from the last one, are
465/// read memory access and the last one is write memory access.
Roman Gareev76614d32016-05-31 11:22:21 +0000466/// 3. all subscripts of the last memory access of the statement don't contain
Roman Gareev9c3eb592016-05-28 16:17:58 +0000467/// the variable used in the inner loop.
468///
469/// @param PartialSchedule The PartialSchedule that contains a SCoP statement
470/// to check.
471static bool containsMatrMult(__isl_keep isl_map *PartialSchedule) {
472 auto InputDimsId = isl_map_get_tuple_id(PartialSchedule, isl_dim_in);
473 auto *ScpStmt = static_cast<ScopStmt *>(isl_id_get_user(InputDimsId));
474 isl_id_free(InputDimsId);
475 if (ScpStmt->size() <= 1)
476 return false;
477 auto MemA = ScpStmt->begin();
478 for (unsigned i = 0; i < ScpStmt->size() - 2 && MemA != ScpStmt->end();
479 i++, MemA++)
Roman Gareev76614d32016-05-31 11:22:21 +0000480 if (!(*MemA)->isRead() ||
481 ((*MemA)->isArrayKind() &&
482 !((*MemA)->isStrideOne(isl_map_copy(PartialSchedule)) ||
Roman Gareev9c3eb592016-05-28 16:17:58 +0000483 (*MemA)->isStrideZero(isl_map_copy(PartialSchedule)))))
484 return false;
485 MemA++;
Roman Gareev76614d32016-05-31 11:22:21 +0000486 if (!(*MemA)->isWrite() || !(*MemA)->isArrayKind() ||
487 !((*MemA)->isStrideOne(isl_map_copy(PartialSchedule)) ||
Roman Gareev9c3eb592016-05-28 16:17:58 +0000488 (*MemA)->isStrideZero(isl_map_copy(PartialSchedule))))
489 return false;
490 auto DimNum = isl_map_dim(PartialSchedule, isl_dim_in);
491 return !isInputDimUsed((*MemA)->getAccessRelation(), DimNum - 1);
492}
493
494/// @brief Circular shift of output dimensions of the integer map.
495///
496/// @param IslMap The isl map to be modified.
497static __isl_give isl_map *circularShiftOutputDims(__isl_take isl_map *IslMap) {
Roman Gareev9c3eb592016-05-28 16:17:58 +0000498 auto DimNum = isl_map_dim(IslMap, isl_dim_out);
Roman Gareev4b8c7ae2016-06-03 18:46:29 +0000499 if (DimNum == 0)
500 return IslMap;
501 auto InputDimsId = isl_map_get_tuple_id(IslMap, isl_dim_in);
Roman Gareev9c3eb592016-05-28 16:17:58 +0000502 IslMap = isl_map_move_dims(IslMap, isl_dim_in, 0, isl_dim_out, DimNum - 1, 1);
503 IslMap = isl_map_move_dims(IslMap, isl_dim_out, 0, isl_dim_in, 0, 1);
504 return isl_map_set_tuple_id(IslMap, isl_dim_in, InputDimsId);
505}
506
Roman Gareev3a18a932016-07-25 09:42:53 +0000507/// @brief Permute two dimensions of the band node.
508///
509/// Permute FirstDim and SecondDim dimensions of the Node.
510///
511/// @param Node The band node to be modified.
512/// @param FirstDim The first dimension to be permuted.
513/// @param SecondDim The second dimension to be permuted.
514static __isl_give isl_schedule_node *
515permuteBandNodeDimensions(__isl_take isl_schedule_node *Node, unsigned FirstDim,
516 unsigned SecondDim) {
517 assert(isl_schedule_node_get_type(Node) == isl_schedule_node_band &&
518 isl_schedule_node_band_n_member(Node) > std::max(FirstDim, SecondDim));
519 auto PartialSchedule = isl_schedule_node_band_get_partial_schedule(Node);
520 auto PartialScheduleFirstDim =
521 isl_multi_union_pw_aff_get_union_pw_aff(PartialSchedule, FirstDim);
522 auto PartialScheduleSecondDim =
523 isl_multi_union_pw_aff_get_union_pw_aff(PartialSchedule, SecondDim);
524 PartialSchedule = isl_multi_union_pw_aff_set_union_pw_aff(
525 PartialSchedule, SecondDim, PartialScheduleFirstDim);
526 PartialSchedule = isl_multi_union_pw_aff_set_union_pw_aff(
527 PartialSchedule, FirstDim, PartialScheduleSecondDim);
528 Node = isl_schedule_node_delete(Node);
529 Node = isl_schedule_node_insert_partial_schedule(Node, PartialSchedule);
530 return Node;
531}
532
Roman Gareev2cb4d132016-07-25 07:27:59 +0000533__isl_give isl_schedule_node *ScheduleTreeOptimizer::createMicroKernel(
534 __isl_take isl_schedule_node *Node, MicroKernelParamsTy MicroKernelParams) {
535 return applyRegisterTiling(Node, {MicroKernelParams.Mr, MicroKernelParams.Nr},
536 1);
537}
538
Roman Gareev3a18a932016-07-25 09:42:53 +0000539__isl_give isl_schedule_node *ScheduleTreeOptimizer::createMacroKernel(
540 __isl_take isl_schedule_node *Node, MacroKernelParamsTy MacroKernelParams) {
541 assert(isl_schedule_node_get_type(Node) == isl_schedule_node_band);
542 if (MacroKernelParams.Mc == 1 && MacroKernelParams.Nc == 1 &&
543 MacroKernelParams.Kc == 1)
544 return Node;
545 Node = tileNode(
546 Node, "1st level tiling",
547 {MacroKernelParams.Mc, MacroKernelParams.Nc, MacroKernelParams.Kc}, 1);
548 Node = isl_schedule_node_parent(isl_schedule_node_parent(Node));
549 Node = permuteBandNodeDimensions(Node, 1, 2);
550 return isl_schedule_node_child(isl_schedule_node_child(Node, 0), 0);
551}
552
Roman Gareev2cb4d132016-07-25 07:27:59 +0000553/// Get parameters of the BLIS micro kernel.
554///
555/// We choose the Mr and Nr parameters of the micro kernel to be large enough
556/// such that no stalls caused by the combination of latencies and dependencies
557/// are introduced during the updates of the resulting matrix of the matrix
558/// multiplication. However, they should also be as small as possible to
559/// release more registers for entries of multiplied matrices.
560///
561/// @param TTI Target Transform Info.
562/// @return The structure of type MicroKernelParamsTy.
563/// @see MicroKernelParamsTy
564static struct MicroKernelParamsTy
565getMicroKernelParams(const llvm::TargetTransformInfo *TTI) {
Roman Gareev42402c92016-06-22 09:52:37 +0000566 assert(TTI && "The target transform info should be provided.");
Roman Gareev2cb4d132016-07-25 07:27:59 +0000567
Roman Gareev42402c92016-06-22 09:52:37 +0000568 // Nvec - Number of double-precision floating-point numbers that can be hold
569 // by a vector register. Use 2 by default.
570 auto Nvec = TTI->getRegisterBitWidth(true) / 64;
571 if (Nvec == 0)
572 Nvec = 2;
573 int Nr =
574 ceil(sqrt(Nvec * LatencyVectorFma * ThrougputVectorFma) / Nvec) * Nvec;
575 int Mr = ceil(Nvec * LatencyVectorFma * ThrougputVectorFma / Nr);
Roman Gareev2cb4d132016-07-25 07:27:59 +0000576 return {Mr, Nr};
577}
578
Roman Gareev3a18a932016-07-25 09:42:53 +0000579/// Get parameters of the BLIS macro kernel.
580///
581/// During the computation of matrix multiplication, blocks of partitioned
582/// matrices are mapped to different layers of the memory hierarchy.
583/// To optimize data reuse, blocks should be ideally kept in cache between
584/// iterations. Since parameters of the macro kernel determine sizes of these
585/// blocks, there are upper and lower bounds on these parameters.
586///
587/// @param MicroKernelParams Parameters of the micro-kernel
588/// to be taken into account.
589/// @return The structure of type MacroKernelParamsTy.
590/// @see MacroKernelParamsTy
591/// @see MicroKernelParamsTy
592static struct MacroKernelParamsTy
593getMacroKernelParams(const MicroKernelParamsTy &MicroKernelParams) {
594 // According to www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf,
595 // it requires information about the first two levels of a cache to determine
596 // all the parameters of a macro-kernel. It also checks that an associativity
597 // degree of a cache level is greater than two. Otherwise, another algorithm
598 // for determination of the parameters should be used.
599 if (!(MicroKernelParams.Mr > 0 && MicroKernelParams.Nr > 0 &&
600 CacheLevelSizes.size() >= 2 && CacheLevelAssociativity.size() >= 2 &&
601 CacheLevelSizes[0] > 0 && CacheLevelSizes[1] > 0 &&
602 CacheLevelAssociativity[0] > 2 && CacheLevelAssociativity[1] > 2))
603 return {1, 1, 1};
604 int Cbr = floor(
605 (CacheLevelAssociativity[0] - 1) /
606 (1 + static_cast<double>(MicroKernelParams.Mr) / MicroKernelParams.Nr));
607 int Kc = (Cbr * CacheLevelSizes[0]) /
608 (MicroKernelParams.Nr * CacheLevelAssociativity[0] * 8);
609 double Cac = static_cast<double>(MicroKernelParams.Mr * Kc * 8 *
610 CacheLevelAssociativity[1]) /
611 CacheLevelSizes[1];
612 double Cbc = static_cast<double>(MicroKernelParams.Nr * Kc * 8 *
613 CacheLevelAssociativity[1]) /
614 CacheLevelSizes[1];
615 int Mc = floor(MicroKernelParams.Mr / Cac);
616 int Nc =
617 floor((MicroKernelParams.Nr * (CacheLevelAssociativity[1] - 2)) / Cbc);
618 return {Mc, Nc, Kc};
619}
620
Roman Gareev1c892e92016-08-15 12:22:54 +0000621/// @brief Identify a memory access through the shape of its memory access
622/// relation.
623///
624/// Identify the unique memory access in @p Stmt, that has an access relation
625/// equal to @p ExpectedAccessRelation.
626///
627/// @param Stmt The SCoP statement that contains the memory accesses under
628/// consideration.
629/// @param ExpectedAccessRelation The access relation that identifies
630/// the memory access.
631/// @return The memory access of @p Stmt whose memory access relation is equal
632/// to @p ExpectedAccessRelation. nullptr in case there is no or more
633/// than one such access.
634MemoryAccess *
635identifyAccessByAccessRelation(ScopStmt *Stmt,
636 __isl_take isl_map *ExpectedAccessRelation) {
637 if (isl_map_has_tuple_id(ExpectedAccessRelation, isl_dim_out))
638 ExpectedAccessRelation =
639 isl_map_reset_tuple_id(ExpectedAccessRelation, isl_dim_out);
640 MemoryAccess *IdentifiedAccess = nullptr;
641 for (auto *Access : *Stmt) {
642 auto *AccessRelation = Access->getAccessRelation();
643 AccessRelation = isl_map_reset_tuple_id(AccessRelation, isl_dim_out);
644 if (isl_map_is_equal(ExpectedAccessRelation, AccessRelation)) {
645 if (IdentifiedAccess) {
646 isl_map_free(AccessRelation);
647 isl_map_free(ExpectedAccessRelation);
648 return nullptr;
649 }
650 IdentifiedAccess = Access;
651 }
652 isl_map_free(AccessRelation);
653 }
654 isl_map_free(ExpectedAccessRelation);
655 return IdentifiedAccess;
656}
657
658/// @brief Create an access relation that is specific to the matrix
659/// multiplication pattern.
660///
661/// Create an access relation of the following form:
662/// Stmt[O0, O1, O2]->[OI, OJ],
663/// where I is @p I, J is @J
664///
665/// @param Stmt The SCoP statement for which to generate the access relation.
666/// @param I The index of the input dimension that is mapped to the first output
667/// dimension.
668/// @param J The index of the input dimension that is mapped to the second
669/// output dimension.
670/// @return The specified access relation.
671__isl_give isl_map *
672getMatMulPatternOriginalAccessRelation(ScopStmt *Stmt, unsigned I, unsigned J) {
673 auto *AccessRelSpace = isl_space_alloc(Stmt->getIslCtx(), 0, 3, 2);
674 auto *AccessRel = isl_map_universe(AccessRelSpace);
675 AccessRel = isl_map_equate(AccessRel, isl_dim_in, I, isl_dim_out, 0);
676 AccessRel = isl_map_equate(AccessRel, isl_dim_in, J, isl_dim_out, 1);
677 AccessRel = isl_map_set_tuple_id(AccessRel, isl_dim_in, Stmt->getDomainId());
678 return AccessRel;
679}
680
681/// @brief Identify the memory access that corresponds to the access
682/// to the second operand of the matrix multiplication.
683///
684/// Identify the memory access that corresponds to the access
685/// to the matrix B of the matrix multiplication C = A x B.
686///
687/// @param Stmt The SCoP statement that contains the memory accesses
688/// under consideration.
689/// @return The memory access of @p Stmt that corresponds to the access
690/// to the second operand of the matrix multiplication.
691MemoryAccess *identifyAccessA(ScopStmt *Stmt) {
692 auto *OriginalRel = getMatMulPatternOriginalAccessRelation(Stmt, 0, 2);
693 return identifyAccessByAccessRelation(Stmt, OriginalRel);
694}
695
696/// @brief Identify the memory access that corresponds to the access
697/// to the first operand of the matrix multiplication.
698///
699/// Identify the memory access that corresponds to the access
700/// to the matrix A of the matrix multiplication C = A x B.
701///
702/// @param Stmt The SCoP statement that contains the memory accesses
703/// under consideration.
704/// @return The memory access of @p Stmt that corresponds to the access
705/// to the first operand of the matrix multiplication.
706MemoryAccess *identifyAccessB(ScopStmt *Stmt) {
707 auto *OriginalRel = getMatMulPatternOriginalAccessRelation(Stmt, 2, 1);
708 return identifyAccessByAccessRelation(Stmt, OriginalRel);
709}
710
711/// @brief Create an access relation that is specific to
712/// the matrix multiplication pattern.
713///
714/// Create an access relation of the following form:
715/// [O0, O1, O2, O3, O4, O5, O6, O7, O8] -> [0, O5 + K * OI, OJ],
716/// where K is @p Coeff, I is @p FirstDim, J is @p SecondDim.
717///
718/// It can be used, for example, to create relations that helps to consequently
719/// access elements of operands of a matrix multiplication after creation of
720/// the BLIS micro and macro kernels.
721///
722/// @see ScheduleTreeOptimizer::createMicroKernel
723/// @see ScheduleTreeOptimizer::createMacroKernel
724///
725/// Subsequently, the described access relation is applied to the range of
726/// @p MapOldIndVar, that is used to map original induction variables to
727/// the ones, which are produced by schedule transformations. It helps to
728/// define relations using a new space and, at the same time, keep them
729/// in the original one.
730///
731/// @param MapOldIndVar The relation, which maps original induction variables
732/// to the ones, which are produced by schedule
733/// transformations.
734/// @param Coeff The coefficient that is used to define the specified access
735/// relation.
736/// @param FirstDim, SecondDim The input dimensions that are used to define
737/// the specified access relation.
738/// @return The specified access relation.
739__isl_give isl_map *getMatMulAccRel(__isl_take isl_map *MapOldIndVar,
740 unsigned Coeff, unsigned FirstDim,
741 unsigned SecondDim) {
742 auto *Ctx = isl_map_get_ctx(MapOldIndVar);
743 auto *AccessRelSpace = isl_space_alloc(Ctx, 0, 9, 3);
744 auto *AccessRel = isl_map_universe(isl_space_copy(AccessRelSpace));
745 auto *ConstrSpace = isl_local_space_from_space(AccessRelSpace);
746 auto *Constr = isl_constraint_alloc_equality(ConstrSpace);
747 Constr = isl_constraint_set_coefficient_si(Constr, isl_dim_out, 1, -1);
748 Constr = isl_constraint_set_coefficient_si(Constr, isl_dim_in, 5, 1);
749 Constr =
750 isl_constraint_set_coefficient_si(Constr, isl_dim_in, FirstDim, Coeff);
751 AccessRel = isl_map_add_constraint(AccessRel, Constr);
752 AccessRel = isl_map_fix_si(AccessRel, isl_dim_out, 0, 0);
753 AccessRel = isl_map_equate(AccessRel, isl_dim_in, SecondDim, isl_dim_out, 2);
754 return isl_map_apply_range(MapOldIndVar, AccessRel);
755}
756
757/// @brief Apply the packing transformation.
758///
759/// The packing transformation can be described as a data-layout
760/// transformation that requires to introduce a new array, copy data
761/// to the array, and change memory access locations of the compute kernel
762/// to reference the array.
763///
764/// @param Node The schedule node to be optimized.
765/// @param MapOldIndVar The relation, which maps original induction variables
766/// to the ones, which are produced by schedule
767/// transformations.
768/// @param MicroParams, MacroParams Parameters of the BLIS kernel
769/// to be taken into account.
770/// @return The optimized schedule node.
771static void optimizeDataLayoutMatrMulPattern(__isl_take isl_map *MapOldIndVar,
772 MicroKernelParamsTy MicroParams,
773 MacroKernelParamsTy MacroParams) {
774 auto InputDimsId = isl_map_get_tuple_id(MapOldIndVar, isl_dim_in);
775 auto *Stmt = static_cast<ScopStmt *>(isl_id_get_user(InputDimsId));
776 isl_id_free(InputDimsId);
777 MemoryAccess *MemAccessA = identifyAccessA(Stmt);
778 MemoryAccess *MemAccessB = identifyAccessB(Stmt);
779 if (!MemAccessA || !MemAccessB) {
780 isl_map_free(MapOldIndVar);
781 return;
782 }
783 auto *AccRel =
784 getMatMulAccRel(isl_map_copy(MapOldIndVar), MacroParams.Kc, 3, 6);
785 unsigned FirstDimSize = MacroParams.Mc * MacroParams.Kc / MicroParams.Mr;
786 unsigned SecondDimSize = MicroParams.Mr;
787 auto *SAI = Stmt->getParent()->createScopArrayInfo(
788 MemAccessA->getElementType(), "Packed_A", {FirstDimSize, SecondDimSize});
789 AccRel = isl_map_set_tuple_id(AccRel, isl_dim_out, SAI->getBasePtrId());
790 MemAccessA->setNewAccessRelation(AccRel);
791 AccRel = getMatMulAccRel(MapOldIndVar, MacroParams.Kc, 4, 7);
792 FirstDimSize = MacroParams.Nc * MacroParams.Kc / MicroParams.Nr;
793 SecondDimSize = MicroParams.Nr;
794 SAI = Stmt->getParent()->createScopArrayInfo(
795 MemAccessB->getElementType(), "Packed_B", {FirstDimSize, SecondDimSize});
796 AccRel = isl_map_set_tuple_id(AccRel, isl_dim_out, SAI->getBasePtrId());
797 MemAccessB->setNewAccessRelation(AccRel);
798}
799
800/// @brief Get a relation mapping induction variables produced by schedule
801/// transformations to the original ones.
802///
803/// @param Node The schedule node produced as the result of creation
804/// of the BLIS kernels.
805/// @param MicroKernelParams, MacroKernelParams Parameters of the BLIS kernel
806/// to be taken into account.
807/// @return The relation mapping original induction variables to the ones
808/// produced by schedule transformation.
809/// @see ScheduleTreeOptimizer::createMicroKernel
810/// @see ScheduleTreeOptimizer::createMacroKernel
811/// @see getMacroKernelParams
812__isl_give isl_map *
813getInductionVariablesSubstitution(__isl_take isl_schedule_node *Node,
814 MicroKernelParamsTy MicroKernelParams,
815 MacroKernelParamsTy MacroKernelParams) {
816 auto *Child = isl_schedule_node_get_child(Node, 0);
817 auto *UnMapOldIndVar = isl_schedule_node_get_prefix_schedule_union_map(Child);
818 isl_schedule_node_free(Child);
819 auto *MapOldIndVar = isl_map_from_union_map(UnMapOldIndVar);
820 if (isl_map_dim(MapOldIndVar, isl_dim_out) > 9)
821 MapOldIndVar =
822 isl_map_project_out(MapOldIndVar, isl_dim_out, 0,
823 isl_map_dim(MapOldIndVar, isl_dim_out) - 9);
824 return MapOldIndVar;
825}
826
Roman Gareev2cb4d132016-07-25 07:27:59 +0000827__isl_give isl_schedule_node *ScheduleTreeOptimizer::optimizeMatMulPattern(
828 __isl_take isl_schedule_node *Node, const llvm::TargetTransformInfo *TTI) {
829 assert(TTI && "The target transform info should be provided.");
830 auto MicroKernelParams = getMicroKernelParams(TTI);
Roman Gareev3a18a932016-07-25 09:42:53 +0000831 auto MacroKernelParams = getMacroKernelParams(MicroKernelParams);
832 Node = createMacroKernel(Node, MacroKernelParams);
Roman Gareev2cb4d132016-07-25 07:27:59 +0000833 Node = createMicroKernel(Node, MicroKernelParams);
Roman Gareev1c892e92016-08-15 12:22:54 +0000834 if (MacroKernelParams.Mc == 1 || MacroKernelParams.Nc == 1 ||
835 MacroKernelParams.Kc == 1)
836 return Node;
837 auto *MapOldIndVar = getInductionVariablesSubstitution(
838 Node, MicroKernelParams, MacroKernelParams);
839 if (!MapOldIndVar)
840 return Node;
841 optimizeDataLayoutMatrMulPattern(MapOldIndVar, MicroKernelParams,
842 MacroKernelParams);
Roman Gareev42402c92016-06-22 09:52:37 +0000843 return Node;
844}
845
Roman Gareev9c3eb592016-05-28 16:17:58 +0000846bool ScheduleTreeOptimizer::isMatrMultPattern(
847 __isl_keep isl_schedule_node *Node) {
848 auto *PartialSchedule =
849 isl_schedule_node_band_get_partial_schedule_union_map(Node);
Roman Gareev397a34a2016-06-22 12:11:30 +0000850 if (isl_schedule_node_band_n_member(Node) != 3 ||
851 isl_union_map_n_map(PartialSchedule) != 1) {
852 isl_union_map_free(PartialSchedule);
Roman Gareev9c3eb592016-05-28 16:17:58 +0000853 return false;
854 }
Roman Gareev397a34a2016-06-22 12:11:30 +0000855 auto *NewPartialSchedule = isl_map_from_union_map(PartialSchedule);
Roman Gareev9c3eb592016-05-28 16:17:58 +0000856 NewPartialSchedule = circularShiftOutputDims(NewPartialSchedule);
857 if (containsMatrMult(NewPartialSchedule)) {
858 isl_map_free(NewPartialSchedule);
859 return true;
860 }
861 isl_map_free(NewPartialSchedule);
862 return false;
863}
864
865__isl_give isl_schedule_node *
866ScheduleTreeOptimizer::optimizeBand(__isl_take isl_schedule_node *Node,
867 void *User) {
868 if (!isTileableBandNode(Node))
869 return Node;
870
Roman Gareev42402c92016-06-22 09:52:37 +0000871 if (PMBasedOpts && User && isMatrMultPattern(Node)) {
Roman Gareev9c3eb592016-05-28 16:17:58 +0000872 DEBUG(dbgs() << "The matrix multiplication pattern was detected\n");
Roman Gareev42402c92016-06-22 09:52:37 +0000873 const llvm::TargetTransformInfo *TTI;
874 TTI = static_cast<const llvm::TargetTransformInfo *>(User);
875 Node = optimizeMatMulPattern(Node, TTI);
876 }
Roman Gareev9c3eb592016-05-28 16:17:58 +0000877
878 return standardBandOpts(Node, User);
879}
880
Tobias Grosser808cd692015-07-14 09:33:13 +0000881__isl_give isl_schedule *
Roman Gareev42402c92016-06-22 09:52:37 +0000882ScheduleTreeOptimizer::optimizeSchedule(__isl_take isl_schedule *Schedule,
883 const llvm::TargetTransformInfo *TTI) {
Tobias Grosserbbb4cec2015-03-22 12:06:39 +0000884 isl_schedule_node *Root = isl_schedule_get_root(Schedule);
Roman Gareev42402c92016-06-22 09:52:37 +0000885 Root = optimizeScheduleNode(Root, TTI);
Tobias Grosser808cd692015-07-14 09:33:13 +0000886 isl_schedule_free(Schedule);
Tobias Grosser808cd692015-07-14 09:33:13 +0000887 auto S = isl_schedule_node_get_schedule(Root);
Tobias Grosserbbb4cec2015-03-22 12:06:39 +0000888 isl_schedule_node_free(Root);
Tobias Grosser808cd692015-07-14 09:33:13 +0000889 return S;
Tobias Grosser30aa24c2011-05-14 19:02:06 +0000890}
891
Tobias Grosserfa57e9b2015-08-24 06:01:47 +0000892__isl_give isl_schedule_node *ScheduleTreeOptimizer::optimizeScheduleNode(
Roman Gareev42402c92016-06-22 09:52:37 +0000893 __isl_take isl_schedule_node *Node, const llvm::TargetTransformInfo *TTI) {
894 Node = isl_schedule_node_map_descendant_bottom_up(
895 Node, optimizeBand, const_cast<void *>(static_cast<const void *>(TTI)));
Tobias Grosserfa57e9b2015-08-24 06:01:47 +0000896 return Node;
897}
898
899bool ScheduleTreeOptimizer::isProfitableSchedule(
Johannes Doerfert7ceb0402015-02-11 17:25:09 +0000900 Scop &S, __isl_keep isl_union_map *NewSchedule) {
901 // To understand if the schedule has been optimized we check if the schedule
902 // has changed at all.
903 // TODO: We can improve this by tracking if any necessarily beneficial
904 // transformations have been performed. This can e.g. be tiling, loop
905 // interchange, or ...) We can track this either at the place where the
906 // transformation has been performed or, in case of automatic ILP based
907 // optimizations, by comparing (yet to be defined) performance metrics
908 // before/after the scheduling optimizer
909 // (e.g., #stride-one accesses)
910 isl_union_map *OldSchedule = S.getSchedule();
911 bool changed = !isl_union_map_is_equal(OldSchedule, NewSchedule);
912 isl_union_map_free(OldSchedule);
913 return changed;
914}
915
Tobias Grosserfa57e9b2015-08-24 06:01:47 +0000916namespace {
917class IslScheduleOptimizer : public ScopPass {
918public:
919 static char ID;
920 explicit IslScheduleOptimizer() : ScopPass(ID) { LastSchedule = nullptr; }
921
922 ~IslScheduleOptimizer() { isl_schedule_free(LastSchedule); }
923
Johannes Doerfert45be6442015-09-27 15:43:29 +0000924 /// @brief Optimize the schedule of the SCoP @p S.
Tobias Grosserfa57e9b2015-08-24 06:01:47 +0000925 bool runOnScop(Scop &S) override;
Tobias Grosserfa57e9b2015-08-24 06:01:47 +0000926
Johannes Doerfert45be6442015-09-27 15:43:29 +0000927 /// @brief Print the new schedule for the SCoP @p S.
928 void printScop(raw_ostream &OS, Scop &S) const override;
929
930 /// @brief Register all analyses and transformation required.
931 void getAnalysisUsage(AnalysisUsage &AU) const override;
Tobias Grosserfa57e9b2015-08-24 06:01:47 +0000932
Johannes Doerfert0f376302015-09-27 15:42:28 +0000933 /// @brief Release the internal memory.
934 void releaseMemory() override {
Tobias Grosserfa57e9b2015-08-24 06:01:47 +0000935 isl_schedule_free(LastSchedule);
936 LastSchedule = nullptr;
Tobias Grosserfa57e9b2015-08-24 06:01:47 +0000937 }
Johannes Doerfert45be6442015-09-27 15:43:29 +0000938
939private:
940 isl_schedule *LastSchedule;
Tobias Grosserfa57e9b2015-08-24 06:01:47 +0000941};
Tobias Grosser522478d2016-06-23 22:17:27 +0000942} // namespace
Tobias Grosserfa57e9b2015-08-24 06:01:47 +0000943
944char IslScheduleOptimizer::ID = 0;
945
Tobias Grosser73600b82011-10-08 00:30:40 +0000946bool IslScheduleOptimizer::runOnScop(Scop &S) {
Johannes Doerfert6f7921f2015-02-14 12:02:24 +0000947
948 // Skip empty SCoPs but still allow code generation as it will delete the
949 // loops present but not needed.
950 if (S.getSize() == 0) {
951 S.markAsOptimized();
952 return false;
953 }
954
Hongbin Zheng2a798852016-03-03 08:15:33 +0000955 const Dependences &D =
956 getAnalysis<DependenceInfo>().getDependences(Dependences::AL_Statement);
Tobias Grosser30aa24c2011-05-14 19:02:06 +0000957
Johannes Doerfert7e6424b2015-03-05 00:43:48 +0000958 if (!D.hasValidDependences())
Tobias Grosser38c36ea2014-02-23 15:15:44 +0000959 return false;
960
Tobias Grosser28781422012-10-16 07:29:19 +0000961 isl_schedule_free(LastSchedule);
Tobias Grosser5a56cbf2014-04-16 07:33:47 +0000962 LastSchedule = nullptr;
Tobias Grosser28781422012-10-16 07:29:19 +0000963
Tobias Grosser30aa24c2011-05-14 19:02:06 +0000964 // Build input data.
Johannes Doerfert7e6424b2015-03-05 00:43:48 +0000965 int ValidityKinds =
966 Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
Tobias Grosser1deda292012-02-14 14:02:48 +0000967 int ProximityKinds;
968
969 if (OptimizeDeps == "all")
Johannes Doerfert7e6424b2015-03-05 00:43:48 +0000970 ProximityKinds =
971 Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
Tobias Grosser1deda292012-02-14 14:02:48 +0000972 else if (OptimizeDeps == "raw")
Johannes Doerfert7e6424b2015-03-05 00:43:48 +0000973 ProximityKinds = Dependences::TYPE_RAW;
Tobias Grosser1deda292012-02-14 14:02:48 +0000974 else {
975 errs() << "Do not know how to optimize for '" << OptimizeDeps << "'"
Tobias Grosser4d96c8d2013-03-23 01:05:07 +0000976 << " Falling back to optimizing all dependences.\n";
Johannes Doerfert7e6424b2015-03-05 00:43:48 +0000977 ProximityKinds =
978 Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
Tobias Grosser1deda292012-02-14 14:02:48 +0000979 }
980
Tobias Grosser5f9a7622012-02-14 14:02:40 +0000981 isl_union_set *Domain = S.getDomains();
Tobias Grosser30aa24c2011-05-14 19:02:06 +0000982
Tobias Grosser98610ee2012-02-13 23:31:39 +0000983 if (!Domain)
Tobias Grosser30aa24c2011-05-14 19:02:06 +0000984 return false;
985
Johannes Doerfert7e6424b2015-03-05 00:43:48 +0000986 isl_union_map *Validity = D.getDependences(ValidityKinds);
987 isl_union_map *Proximity = D.getDependences(ProximityKinds);
Tobias Grosser8a507022012-03-16 11:51:41 +0000988
Tobias Grossera26db472012-01-30 19:38:43 +0000989 // Simplify the dependences by removing the constraints introduced by the
990 // domains. This can speed up the scheduling time significantly, as large
991 // constant coefficients will be removed from the dependences. The
992 // introduction of some additional dependences reduces the possible
993 // transformations, but in most cases, such transformation do not seem to be
994 // interesting anyway. In some cases this option may stop the scheduler to
995 // find any schedule.
996 if (SimplifyDeps == "yes") {
Tobias Grosser00383a72012-02-14 14:02:44 +0000997 Validity = isl_union_map_gist_domain(Validity, isl_union_set_copy(Domain));
998 Validity = isl_union_map_gist_range(Validity, isl_union_set_copy(Domain));
Tobias Grosser4d96c8d2013-03-23 01:05:07 +0000999 Proximity =
1000 isl_union_map_gist_domain(Proximity, isl_union_set_copy(Domain));
Tobias Grosser00383a72012-02-14 14:02:44 +00001001 Proximity = isl_union_map_gist_range(Proximity, isl_union_set_copy(Domain));
Tobias Grossera26db472012-01-30 19:38:43 +00001002 } else if (SimplifyDeps != "no") {
1003 errs() << "warning: Option -polly-opt-simplify-deps should either be 'yes' "
1004 "or 'no'. Falling back to default: 'yes'\n";
1005 }
1006
Tobias Grosser30aa24c2011-05-14 19:02:06 +00001007 DEBUG(dbgs() << "\n\nCompute schedule from: ");
Tobias Grosser01aea582014-10-22 23:16:28 +00001008 DEBUG(dbgs() << "Domain := " << stringFromIslObj(Domain) << ";\n");
1009 DEBUG(dbgs() << "Proximity := " << stringFromIslObj(Proximity) << ";\n");
1010 DEBUG(dbgs() << "Validity := " << stringFromIslObj(Validity) << ";\n");
Tobias Grosser30aa24c2011-05-14 19:02:06 +00001011
Michael Krusec59f22c2015-06-18 16:45:40 +00001012 unsigned IslSerializeSCCs;
Tobias Grosserb3ad85b2012-01-30 19:38:50 +00001013
1014 if (FusionStrategy == "max") {
Michael Krusec59f22c2015-06-18 16:45:40 +00001015 IslSerializeSCCs = 0;
Tobias Grosserb3ad85b2012-01-30 19:38:50 +00001016 } else if (FusionStrategy == "min") {
Michael Krusec59f22c2015-06-18 16:45:40 +00001017 IslSerializeSCCs = 1;
Tobias Grosserb3ad85b2012-01-30 19:38:50 +00001018 } else {
1019 errs() << "warning: Unknown fusion strategy. Falling back to maximal "
1020 "fusion.\n";
Michael Krusec59f22c2015-06-18 16:45:40 +00001021 IslSerializeSCCs = 0;
Tobias Grosserb3ad85b2012-01-30 19:38:50 +00001022 }
1023
Tobias Grosser95e860c2012-01-30 19:38:54 +00001024 int IslMaximizeBands;
1025
Tobias Grossera4ea90b2012-01-30 22:43:56 +00001026 if (MaximizeBandDepth == "yes") {
Tobias Grosser95e860c2012-01-30 19:38:54 +00001027 IslMaximizeBands = 1;
Tobias Grossera4ea90b2012-01-30 22:43:56 +00001028 } else if (MaximizeBandDepth == "no") {
Tobias Grosser95e860c2012-01-30 19:38:54 +00001029 IslMaximizeBands = 0;
1030 } else {
1031 errs() << "warning: Option -polly-opt-maximize-bands should either be 'yes'"
1032 " or 'no'. Falling back to default: 'yes'\n";
1033 IslMaximizeBands = 1;
1034 }
1035
Michael Kruse315aa322016-05-02 11:35:27 +00001036 int IslOuterCoincidence;
1037
1038 if (OuterCoincidence == "yes") {
1039 IslOuterCoincidence = 1;
1040 } else if (OuterCoincidence == "no") {
1041 IslOuterCoincidence = 0;
1042 } else {
1043 errs() << "warning: Option -polly-opt-outer-coincidence should either be "
1044 "'yes' or 'no'. Falling back to default: 'no'\n";
1045 IslOuterCoincidence = 0;
1046 }
1047
Tobias Grosseraf149932016-06-30 20:42:56 +00001048 isl_ctx *Ctx = S.getIslCtx();
Tobias Grosser42152ff2012-01-30 19:38:47 +00001049
Tobias Grosseraf149932016-06-30 20:42:56 +00001050 isl_options_set_schedule_outer_coincidence(Ctx, IslOuterCoincidence);
1051 isl_options_set_schedule_serialize_sccs(Ctx, IslSerializeSCCs);
1052 isl_options_set_schedule_maximize_band_depth(Ctx, IslMaximizeBands);
1053 isl_options_set_schedule_max_constant_term(Ctx, MaxConstantTerm);
1054 isl_options_set_schedule_max_coefficient(Ctx, MaxCoefficient);
1055 isl_options_set_tile_scale_tile_loops(Ctx, 0);
1056
Tobias Grosser3898a042016-06-30 20:42:58 +00001057 auto OnErrorStatus = isl_options_get_on_error(Ctx);
Tobias Grosseraf149932016-06-30 20:42:56 +00001058 isl_options_set_on_error(Ctx, ISL_ON_ERROR_CONTINUE);
Tobias Grossera38c9242014-01-26 19:36:28 +00001059
1060 isl_schedule_constraints *ScheduleConstraints;
1061 ScheduleConstraints = isl_schedule_constraints_on_domain(Domain);
1062 ScheduleConstraints =
1063 isl_schedule_constraints_set_proximity(ScheduleConstraints, Proximity);
1064 ScheduleConstraints = isl_schedule_constraints_set_validity(
1065 ScheduleConstraints, isl_union_map_copy(Validity));
1066 ScheduleConstraints =
1067 isl_schedule_constraints_set_coincidence(ScheduleConstraints, Validity);
Tobias Grosser00383a72012-02-14 14:02:44 +00001068 isl_schedule *Schedule;
Tobias Grossera38c9242014-01-26 19:36:28 +00001069 Schedule = isl_schedule_constraints_compute_schedule(ScheduleConstraints);
Tobias Grosser3898a042016-06-30 20:42:58 +00001070 isl_options_set_on_error(Ctx, OnErrorStatus);
Tobias Grosser42152ff2012-01-30 19:38:47 +00001071
1072 // In cases the scheduler is not able to optimize the code, we just do not
1073 // touch the schedule.
Tobias Grosser98610ee2012-02-13 23:31:39 +00001074 if (!Schedule)
Tobias Grosser42152ff2012-01-30 19:38:47 +00001075 return false;
Tobias Grosser30aa24c2011-05-14 19:02:06 +00001076
Tobias Grosser97d87452015-05-30 06:46:59 +00001077 DEBUG({
Tobias Grosseraf149932016-06-30 20:42:56 +00001078 auto *P = isl_printer_to_str(Ctx);
Tobias Grosser97d87452015-05-30 06:46:59 +00001079 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK);
1080 P = isl_printer_print_schedule(P, Schedule);
1081 dbgs() << "NewScheduleTree: \n" << isl_printer_get_str(P) << "\n";
1082 isl_printer_free(P);
1083 });
Tobias Grosser4d63b9d2012-02-20 08:41:21 +00001084
Roman Gareev42402c92016-06-22 09:52:37 +00001085 Function &F = S.getFunction();
1086 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1087 isl_schedule *NewSchedule =
1088 ScheduleTreeOptimizer::optimizeSchedule(Schedule, TTI);
Tobias Grosser808cd692015-07-14 09:33:13 +00001089 isl_union_map *NewScheduleMap = isl_schedule_get_map(NewSchedule);
Johannes Doerfert7ceb0402015-02-11 17:25:09 +00001090
Tobias Grosserfa57e9b2015-08-24 06:01:47 +00001091 if (!ScheduleTreeOptimizer::isProfitableSchedule(S, NewScheduleMap)) {
Tobias Grosser808cd692015-07-14 09:33:13 +00001092 isl_union_map_free(NewScheduleMap);
1093 isl_schedule_free(NewSchedule);
Johannes Doerfert7ceb0402015-02-11 17:25:09 +00001094 return false;
1095 }
1096
Tobias Grosser808cd692015-07-14 09:33:13 +00001097 S.setScheduleTree(NewSchedule);
Johannes Doerfert7ceb0402015-02-11 17:25:09 +00001098 S.markAsOptimized();
Tobias Grosser30aa24c2011-05-14 19:02:06 +00001099
Tobias Grosser808cd692015-07-14 09:33:13 +00001100 isl_union_map_free(NewScheduleMap);
Tobias Grosser30aa24c2011-05-14 19:02:06 +00001101 return false;
1102}
1103
Johannes Doerfert3fe584d2015-03-01 18:40:25 +00001104void IslScheduleOptimizer::printScop(raw_ostream &OS, Scop &) const {
Tobias Grosser28781422012-10-16 07:29:19 +00001105 isl_printer *p;
1106 char *ScheduleStr;
1107
1108 OS << "Calculated schedule:\n";
1109
1110 if (!LastSchedule) {
1111 OS << "n/a\n";
1112 return;
1113 }
1114
1115 p = isl_printer_to_str(isl_schedule_get_ctx(LastSchedule));
1116 p = isl_printer_print_schedule(p, LastSchedule);
1117 ScheduleStr = isl_printer_get_str(p);
1118 isl_printer_free(p);
1119
1120 OS << ScheduleStr << "\n";
Tobias Grosser30aa24c2011-05-14 19:02:06 +00001121}
1122
Tobias Grosser73600b82011-10-08 00:30:40 +00001123void IslScheduleOptimizer::getAnalysisUsage(AnalysisUsage &AU) const {
Tobias Grosser30aa24c2011-05-14 19:02:06 +00001124 ScopPass::getAnalysisUsage(AU);
Johannes Doerfertf6557f92015-03-04 22:43:40 +00001125 AU.addRequired<DependenceInfo>();
Roman Gareev42402c92016-06-22 09:52:37 +00001126 AU.addRequired<TargetTransformInfoWrapperPass>();
Tobias Grosser30aa24c2011-05-14 19:02:06 +00001127}
1128
Tobias Grosser4d96c8d2013-03-23 01:05:07 +00001129Pass *polly::createIslScheduleOptimizerPass() {
Tobias Grosser73600b82011-10-08 00:30:40 +00001130 return new IslScheduleOptimizer();
Tobias Grosser30aa24c2011-05-14 19:02:06 +00001131}
Tobias Grosser4d96c8d2013-03-23 01:05:07 +00001132
1133INITIALIZE_PASS_BEGIN(IslScheduleOptimizer, "polly-opt-isl",
1134 "Polly - Optimize schedule of SCoP", false, false);
Johannes Doerfertf6557f92015-03-04 22:43:40 +00001135INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
Johannes Doerfert99191c72016-05-31 09:41:04 +00001136INITIALIZE_PASS_DEPENDENCY(ScopInfoRegionPass);
Roman Gareev42402c92016-06-22 09:52:37 +00001137INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass);
Tobias Grosser4d96c8d2013-03-23 01:05:07 +00001138INITIALIZE_PASS_END(IslScheduleOptimizer, "polly-opt-isl",
1139 "Polly - Optimize schedule of SCoP", false, false)