blob: 0fc8e0ccb725342b9e400d47a5d45b222cd1b963 [file] [log] [blame]
Karthik Bhat76aa6622015-04-20 04:38:33 +00001//===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines common loop utility functions.
11//
12//===----------------------------------------------------------------------===//
13
Adam Nemet2f2bd8c2016-07-26 17:52:02 +000014#include "llvm/Transforms/Utils/LoopUtils.h"
Chandler Carruth4a000882017-06-25 22:45:31 +000015#include "llvm/ADT/ScopeExit.h"
Chandler Carruth31088a92016-02-19 10:45:18 +000016#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/Analysis/BasicAliasAnalysis.h"
Chandler Carruth31088a92016-02-19 10:45:18 +000018#include "llvm/Analysis/GlobalsModRef.h"
Adam Nemet2f2bd8c2016-07-26 17:52:02 +000019#include "llvm/Analysis/LoopInfo.h"
Igor Laevskyc3ccf5d2016-10-28 12:57:20 +000020#include "llvm/Analysis/LoopPass.h"
Weiming Zhao45d4cb92015-11-24 18:57:06 +000021#include "llvm/Analysis/ScalarEvolution.h"
Adam Nemet2f2bd8c2016-07-26 17:52:02 +000022#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
Elena Demikhovskyc434d092016-05-10 07:33:35 +000023#include "llvm/Analysis/ScalarEvolutionExpander.h"
Weiming Zhao45d4cb92015-11-24 18:57:06 +000024#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000025#include "llvm/Analysis/TargetTransformInfo.h"
Chandler Carruth31088a92016-02-19 10:45:18 +000026#include "llvm/IR/Dominators.h"
Karthik Bhat76aa6622015-04-20 04:38:33 +000027#include "llvm/IR/Instructions.h"
Weiming Zhao45d4cb92015-11-24 18:57:06 +000028#include "llvm/IR/Module.h"
Karthik Bhat76aa6622015-04-20 04:38:33 +000029#include "llvm/IR/PatternMatch.h"
30#include "llvm/IR/ValueHandle.h"
Chandler Carruth31088a92016-02-19 10:45:18 +000031#include "llvm/Pass.h"
Karthik Bhat76aa6622015-04-20 04:38:33 +000032#include "llvm/Support/Debug.h"
Chandler Carruth4a000882017-06-25 22:45:31 +000033#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Karthik Bhat76aa6622015-04-20 04:38:33 +000034
35using namespace llvm;
36using namespace llvm::PatternMatch;
37
38#define DEBUG_TYPE "loop-utils"
39
Tyler Nowicki0a913102015-06-16 18:07:34 +000040bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
41 SmallPtrSetImpl<Instruction *> &Set) {
Karthik Bhat76aa6622015-04-20 04:38:33 +000042 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
43 if (!Set.count(dyn_cast<Instruction>(*Use)))
44 return false;
45 return true;
46}
47
Chad Rosierc94f8e22015-08-27 14:12:17 +000048bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) {
49 switch (Kind) {
50 default:
51 break;
52 case RK_IntegerAdd:
53 case RK_IntegerMult:
54 case RK_IntegerOr:
55 case RK_IntegerAnd:
56 case RK_IntegerXor:
57 case RK_IntegerMinMax:
58 return true;
59 }
60 return false;
61}
62
63bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) {
64 return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind);
65}
66
67bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) {
68 switch (Kind) {
69 default:
70 break;
71 case RK_IntegerAdd:
72 case RK_IntegerMult:
73 case RK_FloatAdd:
74 case RK_FloatMult:
75 return true;
76 }
77 return false;
78}
79
80Instruction *
81RecurrenceDescriptor::lookThroughAnd(PHINode *Phi, Type *&RT,
82 SmallPtrSetImpl<Instruction *> &Visited,
83 SmallPtrSetImpl<Instruction *> &CI) {
84 if (!Phi->hasOneUse())
85 return Phi;
86
87 const APInt *M = nullptr;
88 Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
89
90 // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
91 // with a new integer type of the corresponding bit width.
Craig Topper72ee6942017-06-24 06:24:01 +000092 if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) {
Chad Rosierc94f8e22015-08-27 14:12:17 +000093 int32_t Bits = (*M + 1).exactLogBase2();
94 if (Bits > 0) {
95 RT = IntegerType::get(Phi->getContext(), Bits);
96 Visited.insert(Phi);
97 CI.insert(J);
98 return J;
99 }
100 }
101 return Phi;
102}
103
104bool RecurrenceDescriptor::getSourceExtensionKind(
105 Instruction *Start, Instruction *Exit, Type *RT, bool &IsSigned,
106 SmallPtrSetImpl<Instruction *> &Visited,
107 SmallPtrSetImpl<Instruction *> &CI) {
108
109 SmallVector<Instruction *, 8> Worklist;
110 bool FoundOneOperand = false;
Matthew Simpson29dc0f72015-09-10 21:12:57 +0000111 unsigned DstSize = RT->getPrimitiveSizeInBits();
Chad Rosierc94f8e22015-08-27 14:12:17 +0000112 Worklist.push_back(Exit);
113
114 // Traverse the instructions in the reduction expression, beginning with the
115 // exit value.
116 while (!Worklist.empty()) {
117 Instruction *I = Worklist.pop_back_val();
118 for (Use &U : I->operands()) {
119
120 // Terminate the traversal if the operand is not an instruction, or we
121 // reach the starting value.
122 Instruction *J = dyn_cast<Instruction>(U.get());
123 if (!J || J == Start)
124 continue;
125
126 // Otherwise, investigate the operation if it is also in the expression.
127 if (Visited.count(J)) {
128 Worklist.push_back(J);
129 continue;
130 }
131
132 // If the operand is not in Visited, it is not a reduction operation, but
133 // it does feed into one. Make sure it is either a single-use sign- or
Matthew Simpson29dc0f72015-09-10 21:12:57 +0000134 // zero-extend instruction.
Chad Rosierc94f8e22015-08-27 14:12:17 +0000135 CastInst *Cast = dyn_cast<CastInst>(J);
136 bool IsSExtInst = isa<SExtInst>(J);
Matthew Simpson29dc0f72015-09-10 21:12:57 +0000137 if (!Cast || !Cast->hasOneUse() || !(isa<ZExtInst>(J) || IsSExtInst))
138 return false;
139
140 // Ensure the source type of the extend is no larger than the reduction
141 // type. It is not necessary for the types to be identical.
142 unsigned SrcSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
143 if (SrcSize > DstSize)
Chad Rosierc94f8e22015-08-27 14:12:17 +0000144 return false;
145
146 // Furthermore, ensure that all such extends are of the same kind.
147 if (FoundOneOperand) {
148 if (IsSigned != IsSExtInst)
149 return false;
150 } else {
151 FoundOneOperand = true;
152 IsSigned = IsSExtInst;
153 }
154
Matthew Simpson29dc0f72015-09-10 21:12:57 +0000155 // Lastly, if the source type of the extend matches the reduction type,
156 // add the extend to CI so that we can avoid accounting for it in the
157 // cost model.
158 if (SrcSize == DstSize)
159 CI.insert(Cast);
Chad Rosierc94f8e22015-08-27 14:12:17 +0000160 }
161 }
162 return true;
163}
164
Tyler Nowicki0a913102015-06-16 18:07:34 +0000165bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
166 Loop *TheLoop, bool HasFunNoNaNAttr,
167 RecurrenceDescriptor &RedDes) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000168 if (Phi->getNumIncomingValues() != 2)
169 return false;
170
171 // Reduction variables are only found in the loop header block.
172 if (Phi->getParent() != TheLoop->getHeader())
173 return false;
174
175 // Obtain the reduction start value from the value that comes from the loop
176 // preheader.
177 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
178
179 // ExitInstruction is the single value which is used outside the loop.
180 // We only allow for a single reduction value to be used outside the loop.
181 // This includes users of the reduction, variables (which form a cycle
182 // which ends in the phi node).
183 Instruction *ExitInstruction = nullptr;
184 // Indicates that we found a reduction operation in our scan.
185 bool FoundReduxOp = false;
186
187 // We start with the PHI node and scan for all of the users of this
188 // instruction. All users must be instructions that can be used as reduction
189 // variables (such as ADD). We must have a single out-of-block user. The cycle
190 // must include the original PHI.
191 bool FoundStartPHI = false;
192
193 // To recognize min/max patterns formed by a icmp select sequence, we store
194 // the number of instruction we saw from the recognized min/max pattern,
195 // to make sure we only see exactly the two instructions.
196 unsigned NumCmpSelectPatternInst = 0;
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000197 InstDesc ReduxDesc(false, nullptr);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000198
Chad Rosierc94f8e22015-08-27 14:12:17 +0000199 // Data used for determining if the recurrence has been type-promoted.
200 Type *RecurrenceType = Phi->getType();
201 SmallPtrSet<Instruction *, 4> CastInsts;
202 Instruction *Start = Phi;
203 bool IsSigned = false;
204
Karthik Bhat76aa6622015-04-20 04:38:33 +0000205 SmallPtrSet<Instruction *, 8> VisitedInsts;
206 SmallVector<Instruction *, 8> Worklist;
Chad Rosierc94f8e22015-08-27 14:12:17 +0000207
208 // Return early if the recurrence kind does not match the type of Phi. If the
209 // recurrence kind is arithmetic, we attempt to look through AND operations
210 // resulting from the type promotion performed by InstCombine. Vector
211 // operations are not limited to the legal integer widths, so we may be able
212 // to evaluate the reduction in the narrower width.
213 if (RecurrenceType->isFloatingPointTy()) {
214 if (!isFloatingPointRecurrenceKind(Kind))
215 return false;
216 } else {
217 if (!isIntegerRecurrenceKind(Kind))
218 return false;
219 if (isArithmeticRecurrenceKind(Kind))
220 Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
221 }
222
223 Worklist.push_back(Start);
224 VisitedInsts.insert(Start);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000225
226 // A value in the reduction can be used:
227 // - By the reduction:
228 // - Reduction operation:
229 // - One use of reduction value (safe).
230 // - Multiple use of reduction value (not safe).
231 // - PHI:
232 // - All uses of the PHI must be the reduction (safe).
233 // - Otherwise, not safe.
Michael Kuperstein7cefb402017-01-18 19:02:52 +0000234 // - By instructions outside of the loop (safe).
235 // * One value may have several outside users, but all outside
236 // uses must be of the same value.
Karthik Bhat76aa6622015-04-20 04:38:33 +0000237 // - By an instruction that is not part of the reduction (not safe).
238 // This is either:
239 // * An instruction type other than PHI or the reduction operation.
240 // * A PHI in the header other than the initial PHI.
241 while (!Worklist.empty()) {
242 Instruction *Cur = Worklist.back();
243 Worklist.pop_back();
244
245 // No Users.
246 // If the instruction has no users then this is a broken chain and can't be
247 // a reduction variable.
248 if (Cur->use_empty())
249 return false;
250
251 bool IsAPhi = isa<PHINode>(Cur);
252
253 // A header PHI use other than the original PHI.
254 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
255 return false;
256
257 // Reductions of instructions such as Div, and Sub is only possible if the
258 // LHS is the reduction variable.
259 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
260 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
261 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
262 return false;
263
Chad Rosierc94f8e22015-08-27 14:12:17 +0000264 // Any reduction instruction must be of one of the allowed kinds. We ignore
265 // the starting value (the Phi or an AND instruction if the Phi has been
266 // type-promoted).
267 if (Cur != Start) {
268 ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
269 if (!ReduxDesc.isRecurrence())
270 return false;
271 }
Karthik Bhat76aa6622015-04-20 04:38:33 +0000272
273 // A reduction operation must only have one use of the reduction value.
274 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
275 hasMultipleUsesOf(Cur, VisitedInsts))
276 return false;
277
278 // All inputs to a PHI node must be a reduction value.
279 if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
280 return false;
281
282 if (Kind == RK_IntegerMinMax &&
283 (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
284 ++NumCmpSelectPatternInst;
285 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
286 ++NumCmpSelectPatternInst;
287
288 // Check whether we found a reduction operator.
Chad Rosierc94f8e22015-08-27 14:12:17 +0000289 FoundReduxOp |= !IsAPhi && Cur != Start;
Karthik Bhat76aa6622015-04-20 04:38:33 +0000290
291 // Process users of current instruction. Push non-PHI nodes after PHI nodes
292 // onto the stack. This way we are going to have seen all inputs to PHI
293 // nodes once we get to them.
294 SmallVector<Instruction *, 8> NonPHIs;
295 SmallVector<Instruction *, 8> PHIs;
296 for (User *U : Cur->users()) {
297 Instruction *UI = cast<Instruction>(U);
298
299 // Check if we found the exit user.
300 BasicBlock *Parent = UI->getParent();
301 if (!TheLoop->contains(Parent)) {
Michael Kuperstein7cefb402017-01-18 19:02:52 +0000302 // If we already know this instruction is used externally, move on to
303 // the next user.
304 if (ExitInstruction == Cur)
305 continue;
306
307 // Exit if you find multiple values used outside or if the header phi
308 // node is being used. In this case the user uses the value of the
309 // previous iteration, in which case we would loose "VF-1" iterations of
310 // the reduction operation if we vectorize.
Karthik Bhat76aa6622015-04-20 04:38:33 +0000311 if (ExitInstruction != nullptr || Cur == Phi)
312 return false;
313
314 // The instruction used by an outside user must be the last instruction
315 // before we feed back to the reduction phi. Otherwise, we loose VF-1
316 // operations on the value.
David Majnemer42531262016-08-12 03:55:06 +0000317 if (!is_contained(Phi->operands(), Cur))
Karthik Bhat76aa6622015-04-20 04:38:33 +0000318 return false;
319
320 ExitInstruction = Cur;
321 continue;
322 }
323
324 // Process instructions only once (termination). Each reduction cycle
325 // value must only be used once, except by phi nodes and min/max
326 // reductions which are represented as a cmp followed by a select.
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000327 InstDesc IgnoredVal(false, nullptr);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000328 if (VisitedInsts.insert(UI).second) {
329 if (isa<PHINode>(UI))
330 PHIs.push_back(UI);
331 else
332 NonPHIs.push_back(UI);
333 } else if (!isa<PHINode>(UI) &&
334 ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
335 !isa<SelectInst>(UI)) ||
Tyler Nowicki0a913102015-06-16 18:07:34 +0000336 !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence()))
Karthik Bhat76aa6622015-04-20 04:38:33 +0000337 return false;
338
339 // Remember that we completed the cycle.
340 if (UI == Phi)
341 FoundStartPHI = true;
342 }
343 Worklist.append(PHIs.begin(), PHIs.end());
344 Worklist.append(NonPHIs.begin(), NonPHIs.end());
345 }
346
347 // This means we have seen one but not the other instruction of the
348 // pattern or more than just a select and cmp.
349 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
350 NumCmpSelectPatternInst != 2)
351 return false;
352
353 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
354 return false;
355
Chad Rosierc94f8e22015-08-27 14:12:17 +0000356 // If we think Phi may have been type-promoted, we also need to ensure that
357 // all source operands of the reduction are either SExtInsts or ZEstInsts. If
358 // so, we will be able to evaluate the reduction in the narrower bit width.
359 if (Start != Phi)
360 if (!getSourceExtensionKind(Start, ExitInstruction, RecurrenceType,
361 IsSigned, VisitedInsts, CastInsts))
362 return false;
363
Karthik Bhat76aa6622015-04-20 04:38:33 +0000364 // We found a reduction var if we have reached the original phi node and we
365 // only have a single instruction with out-of-loop users.
366
367 // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
Tyler Nowicki0a913102015-06-16 18:07:34 +0000368 // is saved as part of the RecurrenceDescriptor.
Karthik Bhat76aa6622015-04-20 04:38:33 +0000369
370 // Save the description of this reduction variable.
Chad Rosierc94f8e22015-08-27 14:12:17 +0000371 RecurrenceDescriptor RD(
372 RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(),
373 ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000374 RedDes = RD;
375
376 return true;
377}
378
379/// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
380/// pattern corresponding to a min(X, Y) or max(X, Y).
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000381RecurrenceDescriptor::InstDesc
382RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000383
384 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
385 "Expect a select instruction");
386 Instruction *Cmp = nullptr;
387 SelectInst *Select = nullptr;
388
389 // We must handle the select(cmp()) as a single instruction. Advance to the
390 // select.
391 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
392 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000393 return InstDesc(false, I);
394 return InstDesc(Select, Prev.getMinMaxKind());
Karthik Bhat76aa6622015-04-20 04:38:33 +0000395 }
396
397 // Only handle single use cases for now.
398 if (!(Select = dyn_cast<SelectInst>(I)))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000399 return InstDesc(false, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000400 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
401 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000402 return InstDesc(false, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000403 if (!Cmp->hasOneUse())
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000404 return InstDesc(false, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000405
406 Value *CmpLeft;
407 Value *CmpRight;
408
409 // Look for a min/max pattern.
410 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000411 return InstDesc(Select, MRK_UIntMin);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000412 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000413 return InstDesc(Select, MRK_UIntMax);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000414 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000415 return InstDesc(Select, MRK_SIntMax);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000416 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000417 return InstDesc(Select, MRK_SIntMin);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000418 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000419 return InstDesc(Select, MRK_FloatMin);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000420 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000421 return InstDesc(Select, MRK_FloatMax);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000422 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000423 return InstDesc(Select, MRK_FloatMin);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000424 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000425 return InstDesc(Select, MRK_FloatMax);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000426
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000427 return InstDesc(false, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000428}
429
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000430RecurrenceDescriptor::InstDesc
Tyler Nowicki0a913102015-06-16 18:07:34 +0000431RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000432 InstDesc &Prev, bool HasFunNoNaNAttr) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000433 bool FP = I->getType()->isFloatingPointTy();
Tyler Nowickic1a86f52015-08-10 19:51:46 +0000434 Instruction *UAI = Prev.getUnsafeAlgebraInst();
Sanjay Patel629c4112017-11-06 16:27:15 +0000435 if (!UAI && FP && !I->isFast())
Tyler Nowickic1a86f52015-08-10 19:51:46 +0000436 UAI = I; // Found an unsafe (unvectorizable) algebra instruction.
437
Karthik Bhat76aa6622015-04-20 04:38:33 +0000438 switch (I->getOpcode()) {
439 default:
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000440 return InstDesc(false, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000441 case Instruction::PHI:
Tim Northover10a1e8b2016-05-27 16:40:27 +0000442 return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst());
Karthik Bhat76aa6622015-04-20 04:38:33 +0000443 case Instruction::Sub:
444 case Instruction::Add:
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000445 return InstDesc(Kind == RK_IntegerAdd, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000446 case Instruction::Mul:
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000447 return InstDesc(Kind == RK_IntegerMult, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000448 case Instruction::And:
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000449 return InstDesc(Kind == RK_IntegerAnd, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000450 case Instruction::Or:
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000451 return InstDesc(Kind == RK_IntegerOr, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000452 case Instruction::Xor:
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000453 return InstDesc(Kind == RK_IntegerXor, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000454 case Instruction::FMul:
Tyler Nowickic1a86f52015-08-10 19:51:46 +0000455 return InstDesc(Kind == RK_FloatMult, I, UAI);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000456 case Instruction::FSub:
457 case Instruction::FAdd:
Tyler Nowickic1a86f52015-08-10 19:51:46 +0000458 return InstDesc(Kind == RK_FloatAdd, I, UAI);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000459 case Instruction::FCmp:
460 case Instruction::ICmp:
461 case Instruction::Select:
462 if (Kind != RK_IntegerMinMax &&
463 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000464 return InstDesc(false, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000465 return isMinMaxSelectCmpPattern(I, Prev);
466 }
467}
468
Tyler Nowicki0a913102015-06-16 18:07:34 +0000469bool RecurrenceDescriptor::hasMultipleUsesOf(
Karthik Bhat76aa6622015-04-20 04:38:33 +0000470 Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) {
471 unsigned NumUses = 0;
472 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
473 ++Use) {
474 if (Insts.count(dyn_cast<Instruction>(*Use)))
475 ++NumUses;
476 if (NumUses > 1)
477 return true;
478 }
479
480 return false;
481}
Tyler Nowicki0a913102015-06-16 18:07:34 +0000482bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
483 RecurrenceDescriptor &RedDes) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000484
Karthik Bhat76aa6622015-04-20 04:38:33 +0000485 BasicBlock *Header = TheLoop->getHeader();
486 Function &F = *Header->getParent();
Nirav Dave8dd66e52016-03-30 15:41:12 +0000487 bool HasFunNoNaNAttr =
488 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
Karthik Bhat76aa6622015-04-20 04:38:33 +0000489
490 if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
491 DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
492 return true;
493 }
494 if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
495 DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
496 return true;
497 }
498 if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) {
499 DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
500 return true;
501 }
502 if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) {
503 DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
504 return true;
505 }
506 if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) {
507 DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
508 return true;
509 }
510 if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr,
511 RedDes)) {
512 DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
513 return true;
514 }
515 if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
516 DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
517 return true;
518 }
519 if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
520 DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
521 return true;
522 }
523 if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) {
524 DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n");
525 return true;
526 }
527 // Not a reduction of known type.
528 return false;
529}
530
Ayal Zaks2ff59d42017-06-30 21:05:06 +0000531bool RecurrenceDescriptor::isFirstOrderRecurrence(
532 PHINode *Phi, Loop *TheLoop,
533 DenseMap<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) {
Matthew Simpson29c997c2016-02-19 17:56:08 +0000534
535 // Ensure the phi node is in the loop header and has two incoming values.
536 if (Phi->getParent() != TheLoop->getHeader() ||
537 Phi->getNumIncomingValues() != 2)
538 return false;
539
540 // Ensure the loop has a preheader and a single latch block. The loop
541 // vectorizer will need the latch to set up the next iteration of the loop.
542 auto *Preheader = TheLoop->getLoopPreheader();
543 auto *Latch = TheLoop->getLoopLatch();
544 if (!Preheader || !Latch)
545 return false;
546
547 // Ensure the phi node's incoming blocks are the loop preheader and latch.
548 if (Phi->getBasicBlockIndex(Preheader) < 0 ||
549 Phi->getBasicBlockIndex(Latch) < 0)
550 return false;
551
552 // Get the previous value. The previous value comes from the latch edge while
553 // the initial value comes form the preheader edge.
554 auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
Ayal Zaks2ff59d42017-06-30 21:05:06 +0000555 if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) ||
556 SinkAfter.count(Previous)) // Cannot rely on dominance due to motion.
Matthew Simpson29c997c2016-02-19 17:56:08 +0000557 return false;
558
Anna Thomasdcdb3252017-04-13 18:59:25 +0000559 // Ensure every user of the phi node is dominated by the previous value.
560 // The dominance requirement ensures the loop vectorizer will not need to
561 // vectorize the initial value prior to the first iteration of the loop.
Ayal Zaks2ff59d42017-06-30 21:05:06 +0000562 // TODO: Consider extending this sinking to handle other kinds of instructions
563 // and expressions, beyond sinking a single cast past Previous.
564 if (Phi->hasOneUse()) {
565 auto *I = Phi->user_back();
566 if (I->isCast() && (I->getParent() == Phi->getParent()) && I->hasOneUse() &&
567 DT->dominates(Previous, I->user_back())) {
Ayal Zaks25e28002017-08-15 08:32:59 +0000568 if (!DT->dominates(Previous, I)) // Otherwise we're good w/o sinking.
569 SinkAfter[I] = Previous;
Ayal Zaks2ff59d42017-06-30 21:05:06 +0000570 return true;
571 }
572 }
573
Matthew Simpson29c997c2016-02-19 17:56:08 +0000574 for (User *U : Phi->users())
Anna Thomas00dc1b72017-04-11 21:02:00 +0000575 if (auto *I = dyn_cast<Instruction>(U)) {
Matthew Simpson29c997c2016-02-19 17:56:08 +0000576 if (!DT->dominates(Previous, I))
577 return false;
Anna Thomas00dc1b72017-04-11 21:02:00 +0000578 }
Matthew Simpson29c997c2016-02-19 17:56:08 +0000579
580 return true;
581}
582
Karthik Bhat76aa6622015-04-20 04:38:33 +0000583/// This function returns the identity element (or neutral element) for
584/// the operation K.
Tyler Nowicki0a913102015-06-16 18:07:34 +0000585Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K,
586 Type *Tp) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000587 switch (K) {
588 case RK_IntegerXor:
589 case RK_IntegerAdd:
590 case RK_IntegerOr:
591 // Adding, Xoring, Oring zero to a number does not change it.
592 return ConstantInt::get(Tp, 0);
593 case RK_IntegerMult:
594 // Multiplying a number by 1 does not change it.
595 return ConstantInt::get(Tp, 1);
596 case RK_IntegerAnd:
597 // AND-ing a number with an all-1 value does not change it.
598 return ConstantInt::get(Tp, -1, true);
599 case RK_FloatMult:
600 // Multiplying a number by 1 does not change it.
601 return ConstantFP::get(Tp, 1.0L);
602 case RK_FloatAdd:
603 // Adding zero to a number does not change it.
604 return ConstantFP::get(Tp, 0.0L);
605 default:
Tyler Nowicki0a913102015-06-16 18:07:34 +0000606 llvm_unreachable("Unknown recurrence kind");
Karthik Bhat76aa6622015-04-20 04:38:33 +0000607 }
608}
609
Tyler Nowicki0a913102015-06-16 18:07:34 +0000610/// This function translates the recurrence kind to an LLVM binary operator.
611unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000612 switch (Kind) {
613 case RK_IntegerAdd:
614 return Instruction::Add;
615 case RK_IntegerMult:
616 return Instruction::Mul;
617 case RK_IntegerOr:
618 return Instruction::Or;
619 case RK_IntegerAnd:
620 return Instruction::And;
621 case RK_IntegerXor:
622 return Instruction::Xor;
623 case RK_FloatMult:
624 return Instruction::FMul;
625 case RK_FloatAdd:
626 return Instruction::FAdd;
627 case RK_IntegerMinMax:
628 return Instruction::ICmp;
629 case RK_FloatMinMax:
630 return Instruction::FCmp;
631 default:
Tyler Nowicki0a913102015-06-16 18:07:34 +0000632 llvm_unreachable("Unknown recurrence operation");
Karthik Bhat76aa6622015-04-20 04:38:33 +0000633 }
634}
635
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000636Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder,
637 MinMaxRecurrenceKind RK,
638 Value *Left, Value *Right) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000639 CmpInst::Predicate P = CmpInst::ICMP_NE;
640 switch (RK) {
641 default:
Tyler Nowicki0a913102015-06-16 18:07:34 +0000642 llvm_unreachable("Unknown min/max recurrence kind");
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000643 case MRK_UIntMin:
Karthik Bhat76aa6622015-04-20 04:38:33 +0000644 P = CmpInst::ICMP_ULT;
645 break;
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000646 case MRK_UIntMax:
Karthik Bhat76aa6622015-04-20 04:38:33 +0000647 P = CmpInst::ICMP_UGT;
648 break;
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000649 case MRK_SIntMin:
Karthik Bhat76aa6622015-04-20 04:38:33 +0000650 P = CmpInst::ICMP_SLT;
651 break;
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000652 case MRK_SIntMax:
Karthik Bhat76aa6622015-04-20 04:38:33 +0000653 P = CmpInst::ICMP_SGT;
654 break;
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000655 case MRK_FloatMin:
Karthik Bhat76aa6622015-04-20 04:38:33 +0000656 P = CmpInst::FCMP_OLT;
657 break;
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000658 case MRK_FloatMax:
Karthik Bhat76aa6622015-04-20 04:38:33 +0000659 P = CmpInst::FCMP_OGT;
660 break;
661 }
662
Sanjay Patel629c4112017-11-06 16:27:15 +0000663 // We only match FP sequences that are 'fast', so we can unconditionally
James Molloy50a4c272015-09-21 19:41:19 +0000664 // set it on any generated instructions.
665 IRBuilder<>::FastMathFlagGuard FMFG(Builder);
666 FastMathFlags FMF;
Sanjay Patel629c4112017-11-06 16:27:15 +0000667 FMF.setFast();
Sanjay Patela2528152016-01-12 18:03:37 +0000668 Builder.setFastMathFlags(FMF);
James Molloy50a4c272015-09-21 19:41:19 +0000669
Karthik Bhat76aa6622015-04-20 04:38:33 +0000670 Value *Cmp;
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000671 if (RK == MRK_FloatMin || RK == MRK_FloatMax)
Karthik Bhat76aa6622015-04-20 04:38:33 +0000672 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
673 else
674 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
675
676 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
677 return Select;
678}
Karthik Bhat24e6cc22015-04-23 08:29:20 +0000679
James Molloy1bbf15c2015-08-27 09:53:00 +0000680InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000681 const SCEV *Step, BinaryOperator *BOp)
682 : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
James Molloy1bbf15c2015-08-27 09:53:00 +0000683 assert(IK != IK_NoInduction && "Not an induction");
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000684
685 // Start value type should match the induction kind and the value
686 // itself should not be null.
James Molloy1bbf15c2015-08-27 09:53:00 +0000687 assert(StartValue && "StartValue is null");
James Molloy1bbf15c2015-08-27 09:53:00 +0000688 assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
689 "StartValue is not a pointer for pointer induction");
690 assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
691 "StartValue is not an integer for integer induction");
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000692
693 // Check the Step Value. It should be non-zero integer value.
694 assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
695 "Step value is zero");
696
697 assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
698 "Step value should be constant for pointer induction");
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000699 assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
700 "StepValue is not an integer");
701
702 assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
703 "StepValue is not FP for FpInduction");
704 assert((IK != IK_FpInduction || (InductionBinOp &&
705 (InductionBinOp->getOpcode() == Instruction::FAdd ||
706 InductionBinOp->getOpcode() == Instruction::FSub))) &&
707 "Binary opcode should be specified for FP induction");
James Molloy1bbf15c2015-08-27 09:53:00 +0000708}
709
710int InductionDescriptor::getConsecutiveDirection() const {
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000711 ConstantInt *ConstStep = getConstIntStepValue();
712 if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne()))
713 return ConstStep->getSExtValue();
James Molloy1bbf15c2015-08-27 09:53:00 +0000714 return 0;
715}
716
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000717ConstantInt *InductionDescriptor::getConstIntStepValue() const {
718 if (isa<SCEVConstant>(Step))
719 return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
720 return nullptr;
721}
722
723Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index,
724 ScalarEvolution *SE,
725 const DataLayout& DL) const {
726
727 SCEVExpander Exp(*SE, DL, "induction");
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000728 assert(Index->getType() == Step->getType() &&
729 "Index type does not match StepValue type");
James Molloy1bbf15c2015-08-27 09:53:00 +0000730 switch (IK) {
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000731 case IK_IntInduction: {
James Molloy1bbf15c2015-08-27 09:53:00 +0000732 assert(Index->getType() == StartValue->getType() &&
733 "Index type does not match StartValue type");
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000734
735 // FIXME: Theoretically, we can call getAddExpr() of ScalarEvolution
736 // and calculate (Start + Index * Step) for all cases, without
737 // special handling for "isOne" and "isMinusOne".
738 // But in the real life the result code getting worse. We mix SCEV
739 // expressions and ADD/SUB operations and receive redundant
740 // intermediate values being calculated in different ways and
741 // Instcombine is unable to reduce them all.
742
743 if (getConstIntStepValue() &&
744 getConstIntStepValue()->isMinusOne())
James Molloy1bbf15c2015-08-27 09:53:00 +0000745 return B.CreateSub(StartValue, Index);
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000746 if (getConstIntStepValue() &&
747 getConstIntStepValue()->isOne())
748 return B.CreateAdd(StartValue, Index);
749 const SCEV *S = SE->getAddExpr(SE->getSCEV(StartValue),
750 SE->getMulExpr(Step, SE->getSCEV(Index)));
751 return Exp.expandCodeFor(S, StartValue->getType(), &*B.GetInsertPoint());
752 }
753 case IK_PtrInduction: {
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000754 assert(isa<SCEVConstant>(Step) &&
755 "Expected constant step for pointer induction");
756 const SCEV *S = SE->getMulExpr(SE->getSCEV(Index), Step);
757 Index = Exp.expandCodeFor(S, Index->getType(), &*B.GetInsertPoint());
James Molloy1bbf15c2015-08-27 09:53:00 +0000758 return B.CreateGEP(nullptr, StartValue, Index);
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000759 }
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000760 case IK_FpInduction: {
761 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
762 assert(InductionBinOp &&
763 (InductionBinOp->getOpcode() == Instruction::FAdd ||
764 InductionBinOp->getOpcode() == Instruction::FSub) &&
765 "Original bin op should be defined for FP induction");
766
767 Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
768
769 // Floating point operations had to be 'fast' to enable the induction.
770 FastMathFlags Flags;
Sanjay Patel629c4112017-11-06 16:27:15 +0000771 Flags.setFast();
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000772
773 Value *MulExp = B.CreateFMul(StepValue, Index);
774 if (isa<Instruction>(MulExp))
775 // We have to check, the MulExp may be a constant.
776 cast<Instruction>(MulExp)->setFastMathFlags(Flags);
777
778 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode() , StartValue,
779 MulExp, "induction");
780 if (isa<Instruction>(BOp))
781 cast<Instruction>(BOp)->setFastMathFlags(Flags);
782
783 return BOp;
784 }
James Molloy1bbf15c2015-08-27 09:53:00 +0000785 case IK_NoInduction:
786 return nullptr;
787 }
788 llvm_unreachable("invalid enum");
789}
790
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000791bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
792 ScalarEvolution *SE,
793 InductionDescriptor &D) {
794
795 // Here we only handle FP induction variables.
796 assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
797
798 if (TheLoop->getHeader() != Phi->getParent())
799 return false;
800
801 // The loop may have multiple entrances or multiple exits; we can analyze
802 // this phi if it has a unique entry value and a unique backedge value.
803 if (Phi->getNumIncomingValues() != 2)
804 return false;
805 Value *BEValue = nullptr, *StartValue = nullptr;
806 if (TheLoop->contains(Phi->getIncomingBlock(0))) {
807 BEValue = Phi->getIncomingValue(0);
808 StartValue = Phi->getIncomingValue(1);
809 } else {
810 assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
811 "Unexpected Phi node in the loop");
812 BEValue = Phi->getIncomingValue(1);
813 StartValue = Phi->getIncomingValue(0);
814 }
815
816 BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
817 if (!BOp)
818 return false;
819
820 Value *Addend = nullptr;
821 if (BOp->getOpcode() == Instruction::FAdd) {
822 if (BOp->getOperand(0) == Phi)
823 Addend = BOp->getOperand(1);
824 else if (BOp->getOperand(1) == Phi)
825 Addend = BOp->getOperand(0);
826 } else if (BOp->getOpcode() == Instruction::FSub)
827 if (BOp->getOperand(0) == Phi)
828 Addend = BOp->getOperand(1);
829
830 if (!Addend)
831 return false;
832
833 // The addend should be loop invariant
834 if (auto *I = dyn_cast<Instruction>(Addend))
835 if (TheLoop->contains(I))
836 return false;
837
838 // FP Step has unknown SCEV
839 const SCEV *Step = SE->getUnknown(Addend);
840 D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
841 return true;
842}
843
844bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
Silviu Barangac05bab82016-05-05 15:20:39 +0000845 PredicatedScalarEvolution &PSE,
846 InductionDescriptor &D,
847 bool Assume) {
848 Type *PhiTy = Phi->getType();
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000849
850 // Handle integer and pointer inductions variables.
851 // Now we handle also FP induction but not trying to make a
852 // recurrent expression from the PHI node in-place.
853
854 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() &&
855 !PhiTy->isFloatTy() && !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
Silviu Barangac05bab82016-05-05 15:20:39 +0000856 return false;
857
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000858 if (PhiTy->isFloatingPointTy())
859 return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
860
Silviu Barangac05bab82016-05-05 15:20:39 +0000861 const SCEV *PhiScev = PSE.getSCEV(Phi);
862 const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
863
864 // We need this expression to be an AddRecExpr.
865 if (Assume && !AR)
866 AR = PSE.getAsAddRec(Phi);
867
868 if (!AR) {
869 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
870 return false;
871 }
872
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000873 return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
Silviu Barangac05bab82016-05-05 15:20:39 +0000874}
875
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000876bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
Silviu Barangac05bab82016-05-05 15:20:39 +0000877 ScalarEvolution *SE,
878 InductionDescriptor &D,
879 const SCEV *Expr) {
Karthik Bhat24e6cc22015-04-23 08:29:20 +0000880 Type *PhiTy = Phi->getType();
881 // We only handle integer and pointer inductions variables.
882 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
883 return false;
884
885 // Check that the PHI is consecutive.
Silviu Barangac05bab82016-05-05 15:20:39 +0000886 const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
Karthik Bhat24e6cc22015-04-23 08:29:20 +0000887 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
Silviu Barangac05bab82016-05-05 15:20:39 +0000888
Karthik Bhat24e6cc22015-04-23 08:29:20 +0000889 if (!AR) {
890 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
891 return false;
892 }
893
Michael Kupersteinee31cbe2017-01-10 19:32:30 +0000894 if (AR->getLoop() != TheLoop) {
895 // FIXME: We should treat this as a uniform. Unfortunately, we
896 // don't currently know how to handled uniform PHIs.
897 DEBUG(dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
898 return false;
899 }
900
James Molloy1bbf15c2015-08-27 09:53:00 +0000901 Value *StartValue =
902 Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
Karthik Bhat24e6cc22015-04-23 08:29:20 +0000903 const SCEV *Step = AR->getStepRecurrence(*SE);
904 // Calculate the pointer stride and check if it is consecutive.
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000905 // The stride may be a constant or a loop invariant integer value.
906 const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000907 if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
Karthik Bhat24e6cc22015-04-23 08:29:20 +0000908 return false;
909
Karthik Bhat24e6cc22015-04-23 08:29:20 +0000910 if (PhiTy->isIntegerTy()) {
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000911 D = InductionDescriptor(StartValue, IK_IntInduction, Step);
Karthik Bhat24e6cc22015-04-23 08:29:20 +0000912 return true;
913 }
914
915 assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000916 // Pointer induction should be a constant.
917 if (!ConstStep)
918 return false;
919
920 ConstantInt *CV = ConstStep->getValue();
Karthik Bhat24e6cc22015-04-23 08:29:20 +0000921 Type *PointerElementType = PhiTy->getPointerElementType();
922 // The pointer stride cannot be determined if the pointer element type is not
923 // sized.
924 if (!PointerElementType->isSized())
925 return false;
926
927 const DataLayout &DL = Phi->getModule()->getDataLayout();
928 int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
David Majnemerb58f32f2015-06-05 10:52:40 +0000929 if (!Size)
930 return false;
931
Karthik Bhat24e6cc22015-04-23 08:29:20 +0000932 int64_t CVSize = CV->getSExtValue();
933 if (CVSize % Size)
934 return false;
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000935 auto *StepValue = SE->getConstant(CV->getType(), CVSize / Size,
936 true /* signed */);
James Molloy1bbf15c2015-08-27 09:53:00 +0000937 D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue);
Karthik Bhat24e6cc22015-04-23 08:29:20 +0000938 return true;
939}
Ashutosh Nemac5b7b552015-08-19 05:40:42 +0000940
Chandler Carruth4a000882017-06-25 22:45:31 +0000941bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
942 bool PreserveLCSSA) {
943 bool Changed = false;
944
945 // We re-use a vector for the in-loop predecesosrs.
946 SmallVector<BasicBlock *, 4> InLoopPredecessors;
947
948 auto RewriteExit = [&](BasicBlock *BB) {
949 assert(InLoopPredecessors.empty() &&
950 "Must start with an empty predecessors list!");
951 auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
952
953 // See if there are any non-loop predecessors of this exit block and
954 // keep track of the in-loop predecessors.
955 bool IsDedicatedExit = true;
956 for (auto *PredBB : predecessors(BB))
957 if (L->contains(PredBB)) {
958 if (isa<IndirectBrInst>(PredBB->getTerminator()))
959 // We cannot rewrite exiting edges from an indirectbr.
960 return false;
961
962 InLoopPredecessors.push_back(PredBB);
963 } else {
964 IsDedicatedExit = false;
965 }
966
967 assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
968
969 // Nothing to do if this is already a dedicated exit.
970 if (IsDedicatedExit)
971 return false;
972
973 auto *NewExitBB = SplitBlockPredecessors(
974 BB, InLoopPredecessors, ".loopexit", DT, LI, PreserveLCSSA);
975
976 if (!NewExitBB)
977 DEBUG(dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
978 << *L << "\n");
979 else
980 DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
981 << NewExitBB->getName() << "\n");
982 return true;
983 };
984
985 // Walk the exit blocks directly rather than building up a data structure for
986 // them, but only visit each one once.
987 SmallPtrSet<BasicBlock *, 4> Visited;
988 for (auto *BB : L->blocks())
989 for (auto *SuccBB : successors(BB)) {
990 // We're looking for exit blocks so skip in-loop successors.
991 if (L->contains(SuccBB))
992 continue;
993
994 // Visit each exit block exactly once.
995 if (!Visited.insert(SuccBB).second)
996 continue;
997
998 Changed |= RewriteExit(SuccBB);
999 }
1000
1001 return Changed;
1002}
1003
Ashutosh Nemac5b7b552015-08-19 05:40:42 +00001004/// \brief Returns the instructions that use values defined in the loop.
1005SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
1006 SmallVector<Instruction *, 8> UsedOutside;
1007
1008 for (auto *Block : L->getBlocks())
1009 // FIXME: I believe that this could use copy_if if the Inst reference could
1010 // be adapted into a pointer.
1011 for (auto &Inst : *Block) {
1012 auto Users = Inst.users();
David Majnemer0a16c222016-08-11 21:15:00 +00001013 if (any_of(Users, [&](User *U) {
Ashutosh Nemac5b7b552015-08-19 05:40:42 +00001014 auto *Use = cast<Instruction>(U);
1015 return !L->contains(Use->getParent());
1016 }))
1017 UsedOutside.push_back(&Inst);
1018 }
1019
1020 return UsedOutside;
1021}
Chandler Carruth31088a92016-02-19 10:45:18 +00001022
1023void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
1024 // By definition, all loop passes need the LoopInfo analysis and the
1025 // Dominator tree it depends on. Because they all participate in the loop
1026 // pass manager, they must also preserve these.
1027 AU.addRequired<DominatorTreeWrapperPass>();
1028 AU.addPreserved<DominatorTreeWrapperPass>();
1029 AU.addRequired<LoopInfoWrapperPass>();
1030 AU.addPreserved<LoopInfoWrapperPass>();
1031
1032 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
1033 // here because users shouldn't directly get them from this header.
1034 extern char &LoopSimplifyID;
1035 extern char &LCSSAID;
1036 AU.addRequiredID(LoopSimplifyID);
1037 AU.addPreservedID(LoopSimplifyID);
1038 AU.addRequiredID(LCSSAID);
1039 AU.addPreservedID(LCSSAID);
Igor Laevskyc3ccf5d2016-10-28 12:57:20 +00001040 // This is used in the LPPassManager to perform LCSSA verification on passes
1041 // which preserve lcssa form
1042 AU.addRequired<LCSSAVerificationPass>();
1043 AU.addPreserved<LCSSAVerificationPass>();
Chandler Carruth31088a92016-02-19 10:45:18 +00001044
1045 // Loop passes are designed to run inside of a loop pass manager which means
1046 // that any function analyses they require must be required by the first loop
1047 // pass in the manager (so that it is computed before the loop pass manager
1048 // runs) and preserved by all loop pasess in the manager. To make this
1049 // reasonably robust, the set needed for most loop passes is maintained here.
1050 // If your loop pass requires an analysis not listed here, you will need to
1051 // carefully audit the loop pass manager nesting structure that results.
1052 AU.addRequired<AAResultsWrapperPass>();
1053 AU.addPreserved<AAResultsWrapperPass>();
1054 AU.addPreserved<BasicAAWrapperPass>();
1055 AU.addPreserved<GlobalsAAWrapperPass>();
1056 AU.addPreserved<SCEVAAWrapperPass>();
1057 AU.addRequired<ScalarEvolutionWrapperPass>();
1058 AU.addPreserved<ScalarEvolutionWrapperPass>();
1059}
1060
1061/// Manually defined generic "LoopPass" dependency initialization. This is used
1062/// to initialize the exact set of passes from above in \c
1063/// getLoopAnalysisUsage. It can be used within a loop pass's initialization
1064/// with:
1065///
1066/// INITIALIZE_PASS_DEPENDENCY(LoopPass)
1067///
1068/// As-if "LoopPass" were a pass.
1069void llvm::initializeLoopPassPass(PassRegistry &Registry) {
1070 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1071 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1072 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
Easwaran Ramane12c4872016-06-09 19:44:46 +00001073 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
Chandler Carruth31088a92016-02-19 10:45:18 +00001074 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1075 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
1076 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
1077 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
1078 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1079}
Adam Nemet963341c2016-04-21 17:33:17 +00001080
Adam Nemetfe3def72016-04-22 19:10:05 +00001081/// \brief Find string metadata for loop
1082///
1083/// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
1084/// operand or null otherwise. If the string metadata is not found return
1085/// Optional's not-a-value.
1086Optional<const MDOperand *> llvm::findStringMetadataForLoop(Loop *TheLoop,
1087 StringRef Name) {
Adam Nemet963341c2016-04-21 17:33:17 +00001088 MDNode *LoopID = TheLoop->getLoopID();
Adam Nemetfe3def72016-04-22 19:10:05 +00001089 // Return none if LoopID is false.
Adam Nemet963341c2016-04-21 17:33:17 +00001090 if (!LoopID)
Adam Nemetfe3def72016-04-22 19:10:05 +00001091 return None;
Adam Nemet293be662016-04-21 17:33:20 +00001092
1093 // First operand should refer to the loop id itself.
1094 assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
1095 assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
1096
Adam Nemet963341c2016-04-21 17:33:17 +00001097 // Iterate over LoopID operands and look for MDString Metadata
1098 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
1099 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
1100 if (!MD)
1101 continue;
1102 MDString *S = dyn_cast<MDString>(MD->getOperand(0));
1103 if (!S)
1104 continue;
1105 // Return true if MDString holds expected MetaData.
1106 if (Name.equals(S->getString()))
Adam Nemetfe3def72016-04-22 19:10:05 +00001107 switch (MD->getNumOperands()) {
1108 case 1:
1109 return nullptr;
1110 case 2:
1111 return &MD->getOperand(1);
1112 default:
1113 llvm_unreachable("loop metadata has 0 or 1 operand");
1114 }
Adam Nemet963341c2016-04-21 17:33:17 +00001115 }
Adam Nemetfe3def72016-04-22 19:10:05 +00001116 return None;
Adam Nemet963341c2016-04-21 17:33:17 +00001117}
Evgeniy Stepanov122f9842016-06-10 20:03:17 +00001118
Alina Sbirlea7ed58562017-09-15 00:04:16 +00001119/// Does a BFS from a given node to all of its children inside a given loop.
1120/// The returned vector of nodes includes the starting point.
1121SmallVector<DomTreeNode *, 16>
1122llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
1123 SmallVector<DomTreeNode *, 16> Worklist;
1124 auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
1125 // Only include subregions in the top level loop.
1126 BasicBlock *BB = DTN->getBlock();
1127 if (CurLoop->contains(BB))
1128 Worklist.push_back(DTN);
1129 };
1130
1131 AddRegionToWorklist(N);
1132
1133 for (size_t I = 0; I < Worklist.size(); I++)
1134 for (DomTreeNode *Child : Worklist[I]->getChildren())
1135 AddRegionToWorklist(Child);
1136
1137 return Worklist;
1138}
1139
Marcello Maggionidf3e71e2017-10-04 20:42:46 +00001140void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr,
1141 ScalarEvolution *SE = nullptr,
1142 LoopInfo *LI = nullptr) {
Hans Wennborg899809d2017-10-04 21:14:07 +00001143 assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
Marcello Maggionidf3e71e2017-10-04 20:42:46 +00001144 auto *Preheader = L->getLoopPreheader();
1145 assert(Preheader && "Preheader should exist!");
1146
1147 // Now that we know the removal is safe, remove the loop by changing the
1148 // branch from the preheader to go to the single exit block.
1149 //
1150 // Because we're deleting a large chunk of code at once, the sequence in which
1151 // we remove things is very important to avoid invalidation issues.
1152
1153 // Tell ScalarEvolution that the loop is deleted. Do this before
1154 // deleting the loop so that ScalarEvolution can look at the loop
1155 // to determine what it needs to clean up.
1156 if (SE)
1157 SE->forgetLoop(L);
1158
1159 auto *ExitBlock = L->getUniqueExitBlock();
1160 assert(ExitBlock && "Should have a unique exit block!");
1161 assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
1162
1163 auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
1164 assert(OldBr && "Preheader must end with a branch");
1165 assert(OldBr->isUnconditional() && "Preheader must have a single successor");
1166 // Connect the preheader to the exit block. Keep the old edge to the header
1167 // around to perform the dominator tree update in two separate steps
1168 // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
1169 // preheader -> header.
1170 //
1171 //
1172 // 0. Preheader 1. Preheader 2. Preheader
1173 // | | | |
1174 // V | V |
1175 // Header <--\ | Header <--\ | Header <--\
1176 // | | | | | | | | | | |
1177 // | V | | | V | | | V |
1178 // | Body --/ | | Body --/ | | Body --/
1179 // V V V V V
1180 // Exit Exit Exit
1181 //
1182 // By doing this is two separate steps we can perform the dominator tree
1183 // update without using the batch update API.
1184 //
1185 // Even when the loop is never executed, we cannot remove the edge from the
1186 // source block to the exit block. Consider the case where the unexecuted loop
1187 // branches back to an outer loop. If we deleted the loop and removed the edge
1188 // coming to this inner loop, this will break the outer loop structure (by
1189 // deleting the backedge of the outer loop). If the outer loop is indeed a
1190 // non-loop, it will be deleted in a future iteration of loop deletion pass.
1191 IRBuilder<> Builder(OldBr);
1192 Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
1193 // Remove the old branch. The conditional branch becomes a new terminator.
1194 OldBr->eraseFromParent();
1195
1196 // Rewrite phis in the exit block to get their inputs from the Preheader
1197 // instead of the exiting block.
1198 BasicBlock::iterator BI = ExitBlock->begin();
1199 while (PHINode *P = dyn_cast<PHINode>(BI)) {
1200 // Set the zero'th element of Phi to be from the preheader and remove all
1201 // other incoming values. Given the loop has dedicated exits, all other
1202 // incoming values must be from the exiting blocks.
1203 int PredIndex = 0;
1204 P->setIncomingBlock(PredIndex, Preheader);
1205 // Removes all incoming values from all other exiting blocks (including
1206 // duplicate values from an exiting block).
1207 // Nuke all entries except the zero'th entry which is the preheader entry.
1208 // NOTE! We need to remove Incoming Values in the reverse order as done
1209 // below, to keep the indices valid for deletion (removeIncomingValues
1210 // updates getNumIncomingValues and shifts all values down into the operand
1211 // being deleted).
1212 for (unsigned i = 0, e = P->getNumIncomingValues() - 1; i != e; ++i)
1213 P->removeIncomingValue(e - i, false);
1214
1215 assert((P->getNumIncomingValues() == 1 &&
1216 P->getIncomingBlock(PredIndex) == Preheader) &&
1217 "Should have exactly one value and that's from the preheader!");
1218 ++BI;
1219 }
1220
1221 // Disconnect the loop body by branching directly to its exit.
1222 Builder.SetInsertPoint(Preheader->getTerminator());
1223 Builder.CreateBr(ExitBlock);
1224 // Remove the old branch.
1225 Preheader->getTerminator()->eraseFromParent();
1226
1227 if (DT) {
1228 // Update the dominator tree by informing it about the new edge from the
1229 // preheader to the exit.
1230 DT->insertEdge(Preheader, ExitBlock);
1231 // Inform the dominator tree about the removed edge.
1232 DT->deleteEdge(Preheader, L->getHeader());
1233 }
1234
1235 // Remove the block from the reference counting scheme, so that we can
1236 // delete it freely later.
1237 for (auto *Block : L->blocks())
1238 Block->dropAllReferences();
1239
1240 if (LI) {
1241 // Erase the instructions and the blocks without having to worry
1242 // about ordering because we already dropped the references.
1243 // NOTE: This iteration is safe because erasing the block does not remove
1244 // its entry from the loop's block list. We do that in the next section.
1245 for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
1246 LpI != LpE; ++LpI)
1247 (*LpI)->eraseFromParent();
1248
1249 // Finally, the blocks from loopinfo. This has to happen late because
1250 // otherwise our loop iterators won't work.
1251
1252 SmallPtrSet<BasicBlock *, 8> blocks;
1253 blocks.insert(L->block_begin(), L->block_end());
1254 for (BasicBlock *BB : blocks)
1255 LI->removeBlock(BB);
1256
1257 // The last step is to update LoopInfo now that we've eliminated this loop.
1258 LI->erase(L);
1259 }
1260}
1261
Evgeniy Stepanov122f9842016-06-10 20:03:17 +00001262/// Returns true if the instruction in a loop is guaranteed to execute at least
1263/// once.
1264bool llvm::isGuaranteedToExecute(const Instruction &Inst,
1265 const DominatorTree *DT, const Loop *CurLoop,
1266 const LoopSafetyInfo *SafetyInfo) {
1267 // We have to check to make sure that the instruction dominates all
Evgeniy Stepanov58ccc092017-04-24 18:25:07 +00001268 // of the exit blocks. If it doesn't, then there is a path out of the loop
1269 // which does not execute this instruction, so we can't hoist it.
1270
1271 // If the instruction is in the header block for the loop (which is very
1272 // common), it is always guaranteed to dominate the exit blocks. Since this
1273 // is a common case, and can save some work, check it now.
1274 if (Inst.getParent() == CurLoop->getHeader())
1275 // If there's a throw in the header block, we can't guarantee we'll reach
1276 // Inst.
1277 return !SafetyInfo->HeaderMayThrow;
1278
1279 // Somewhere in this loop there is an instruction which may throw and make us
1280 // exit the loop.
1281 if (SafetyInfo->MayThrow)
1282 return false;
Evgeniy Stepanov122f9842016-06-10 20:03:17 +00001283
1284 // Get the exit blocks for the current loop.
1285 SmallVector<BasicBlock *, 8> ExitBlocks;
1286 CurLoop->getExitBlocks(ExitBlocks);
1287
1288 // Verify that the block dominates each of the exit blocks of the loop.
1289 for (BasicBlock *ExitBlock : ExitBlocks)
1290 if (!DT->dominates(Inst.getParent(), ExitBlock))
1291 return false;
1292
1293 // As a degenerate case, if the loop is statically infinite then we haven't
1294 // proven anything since there are no exit blocks.
Evgeniy Stepanov58ccc092017-04-24 18:25:07 +00001295 if (ExitBlocks.empty())
Evgeniy Stepanov122f9842016-06-10 20:03:17 +00001296 return false;
1297
Eli Friedmanf1da33e2016-06-11 21:48:25 +00001298 // FIXME: In general, we have to prove that the loop isn't an infinite loop.
1299 // See http::llvm.org/PR24078 . (The "ExitBlocks.empty()" check above is
1300 // just a special case of this.)
Evgeniy Stepanov122f9842016-06-10 20:03:17 +00001301 return true;
1302}
Dehao Chen41d72a82016-11-17 01:17:02 +00001303
1304Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) {
1305 // Only support loops with a unique exiting block, and a latch.
1306 if (!L->getExitingBlock())
1307 return None;
1308
1309 // Get the branch weights for the the loop's backedge.
1310 BranchInst *LatchBR =
1311 dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator());
1312 if (!LatchBR || LatchBR->getNumSuccessors() != 2)
1313 return None;
1314
1315 assert((LatchBR->getSuccessor(0) == L->getHeader() ||
1316 LatchBR->getSuccessor(1) == L->getHeader()) &&
1317 "At least one edge out of the latch must go to the header");
1318
1319 // To estimate the number of times the loop body was executed, we want to
1320 // know the number of times the backedge was taken, vs. the number of times
1321 // we exited the loop.
Dehao Chen41d72a82016-11-17 01:17:02 +00001322 uint64_t TrueVal, FalseVal;
Michael Kupersteinb151a642016-11-30 21:13:57 +00001323 if (!LatchBR->extractProfMetadata(TrueVal, FalseVal))
Dehao Chen41d72a82016-11-17 01:17:02 +00001324 return None;
1325
Michael Kupersteinb151a642016-11-30 21:13:57 +00001326 if (!TrueVal || !FalseVal)
1327 return 0;
Dehao Chen41d72a82016-11-17 01:17:02 +00001328
Michael Kupersteinb151a642016-11-30 21:13:57 +00001329 // Divide the count of the backedge by the count of the edge exiting the loop,
1330 // rounding to nearest.
Dehao Chen41d72a82016-11-17 01:17:02 +00001331 if (LatchBR->getSuccessor(0) == L->getHeader())
Michael Kupersteinb151a642016-11-30 21:13:57 +00001332 return (TrueVal + (FalseVal / 2)) / FalseVal;
Dehao Chen41d72a82016-11-17 01:17:02 +00001333 else
Michael Kupersteinb151a642016-11-30 21:13:57 +00001334 return (FalseVal + (TrueVal / 2)) / TrueVal;
Dehao Chen41d72a82016-11-17 01:17:02 +00001335}
Amara Emersoncf9daa32017-05-09 10:43:25 +00001336
1337/// \brief Adds a 'fast' flag to floating point operations.
1338static Value *addFastMathFlag(Value *V) {
1339 if (isa<FPMathOperator>(V)) {
1340 FastMathFlags Flags;
Sanjay Patel629c4112017-11-06 16:27:15 +00001341 Flags.setFast();
Amara Emersoncf9daa32017-05-09 10:43:25 +00001342 cast<Instruction>(V)->setFastMathFlags(Flags);
1343 }
1344 return V;
1345}
1346
1347// Helper to generate a log2 shuffle reduction.
Amara Emerson836b0f42017-05-10 09:42:49 +00001348Value *
1349llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op,
1350 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
1351 ArrayRef<Value *> RedOps) {
Amara Emersoncf9daa32017-05-09 10:43:25 +00001352 unsigned VF = Src->getType()->getVectorNumElements();
1353 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
1354 // and vector ops, reducing the set of values being computed by half each
1355 // round.
1356 assert(isPowerOf2_32(VF) &&
1357 "Reduction emission only supported for pow2 vectors!");
1358 Value *TmpVec = Src;
1359 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr);
1360 for (unsigned i = VF; i != 1; i >>= 1) {
1361 // Move the upper half of the vector to the lower half.
1362 for (unsigned j = 0; j != i / 2; ++j)
1363 ShuffleMask[j] = Builder.getInt32(i / 2 + j);
1364
1365 // Fill the rest of the mask with undef.
1366 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(),
1367 UndefValue::get(Builder.getInt32Ty()));
1368
1369 Value *Shuf = Builder.CreateShuffleVector(
1370 TmpVec, UndefValue::get(TmpVec->getType()),
1371 ConstantVector::get(ShuffleMask), "rdx.shuf");
1372
1373 if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
1374 // Floating point operations had to be 'fast' to enable the reduction.
1375 TmpVec = addFastMathFlag(Builder.CreateBinOp((Instruction::BinaryOps)Op,
1376 TmpVec, Shuf, "bin.rdx"));
1377 } else {
1378 assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
1379 "Invalid min/max");
1380 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, TmpVec,
1381 Shuf);
1382 }
1383 if (!RedOps.empty())
1384 propagateIRFlags(TmpVec, RedOps);
1385 }
1386 // The result is in the first element of the vector.
1387 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
1388}
1389
1390/// Create a simple vector reduction specified by an opcode and some
1391/// flags (if generating min/max reductions).
1392Value *llvm::createSimpleTargetReduction(
1393 IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode,
1394 Value *Src, TargetTransformInfo::ReductionFlags Flags,
1395 ArrayRef<Value *> RedOps) {
1396 assert(isa<VectorType>(Src->getType()) && "Type must be a vector");
1397
1398 Value *ScalarUdf = UndefValue::get(Src->getType()->getVectorElementType());
1399 std::function<Value*()> BuildFunc;
1400 using RD = RecurrenceDescriptor;
1401 RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid;
1402 // TODO: Support creating ordered reductions.
Sanjay Patel1ea7b6f2017-12-06 19:11:23 +00001403 FastMathFlags FMFFast;
1404 FMFFast.setFast();
Amara Emersoncf9daa32017-05-09 10:43:25 +00001405
1406 switch (Opcode) {
1407 case Instruction::Add:
1408 BuildFunc = [&]() { return Builder.CreateAddReduce(Src); };
1409 break;
1410 case Instruction::Mul:
1411 BuildFunc = [&]() { return Builder.CreateMulReduce(Src); };
1412 break;
1413 case Instruction::And:
1414 BuildFunc = [&]() { return Builder.CreateAndReduce(Src); };
1415 break;
1416 case Instruction::Or:
1417 BuildFunc = [&]() { return Builder.CreateOrReduce(Src); };
1418 break;
1419 case Instruction::Xor:
1420 BuildFunc = [&]() { return Builder.CreateXorReduce(Src); };
1421 break;
1422 case Instruction::FAdd:
1423 BuildFunc = [&]() {
1424 auto Rdx = Builder.CreateFAddReduce(ScalarUdf, Src);
Sanjay Patel1ea7b6f2017-12-06 19:11:23 +00001425 cast<CallInst>(Rdx)->setFastMathFlags(FMFFast);
Amara Emersoncf9daa32017-05-09 10:43:25 +00001426 return Rdx;
1427 };
1428 break;
1429 case Instruction::FMul:
1430 BuildFunc = [&]() {
1431 auto Rdx = Builder.CreateFMulReduce(ScalarUdf, Src);
Sanjay Patel1ea7b6f2017-12-06 19:11:23 +00001432 cast<CallInst>(Rdx)->setFastMathFlags(FMFFast);
Amara Emersoncf9daa32017-05-09 10:43:25 +00001433 return Rdx;
1434 };
1435 break;
1436 case Instruction::ICmp:
1437 if (Flags.IsMaxOp) {
1438 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax;
1439 BuildFunc = [&]() {
1440 return Builder.CreateIntMaxReduce(Src, Flags.IsSigned);
1441 };
1442 } else {
1443 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin;
1444 BuildFunc = [&]() {
1445 return Builder.CreateIntMinReduce(Src, Flags.IsSigned);
1446 };
1447 }
1448 break;
1449 case Instruction::FCmp:
1450 if (Flags.IsMaxOp) {
1451 MinMaxKind = RD::MRK_FloatMax;
1452 BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); };
1453 } else {
1454 MinMaxKind = RD::MRK_FloatMin;
1455 BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); };
1456 }
1457 break;
1458 default:
1459 llvm_unreachable("Unhandled opcode");
1460 break;
1461 }
1462 if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags))
1463 return BuildFunc();
1464 return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps);
1465}
1466
1467/// Create a vector reduction using a given recurrence descriptor.
1468Value *llvm::createTargetReduction(IRBuilder<> &Builder,
1469 const TargetTransformInfo *TTI,
1470 RecurrenceDescriptor &Desc, Value *Src,
1471 bool NoNaN) {
1472 // TODO: Support in-order reductions based on the recurrence descriptor.
1473 RecurrenceDescriptor::RecurrenceKind RecKind = Desc.getRecurrenceKind();
1474 TargetTransformInfo::ReductionFlags Flags;
1475 Flags.NoNaN = NoNaN;
1476 auto getSimpleRdx = [&](unsigned Opc) {
1477 return createSimpleTargetReduction(Builder, TTI, Opc, Src, Flags);
1478 };
1479 switch (RecKind) {
1480 case RecurrenceDescriptor::RK_FloatAdd:
1481 return getSimpleRdx(Instruction::FAdd);
1482 case RecurrenceDescriptor::RK_FloatMult:
1483 return getSimpleRdx(Instruction::FMul);
1484 case RecurrenceDescriptor::RK_IntegerAdd:
1485 return getSimpleRdx(Instruction::Add);
1486 case RecurrenceDescriptor::RK_IntegerMult:
1487 return getSimpleRdx(Instruction::Mul);
1488 case RecurrenceDescriptor::RK_IntegerAnd:
1489 return getSimpleRdx(Instruction::And);
1490 case RecurrenceDescriptor::RK_IntegerOr:
1491 return getSimpleRdx(Instruction::Or);
1492 case RecurrenceDescriptor::RK_IntegerXor:
1493 return getSimpleRdx(Instruction::Xor);
1494 case RecurrenceDescriptor::RK_IntegerMinMax: {
1495 switch (Desc.getMinMaxRecurrenceKind()) {
1496 case RecurrenceDescriptor::MRK_SIntMax:
1497 Flags.IsSigned = true;
1498 Flags.IsMaxOp = true;
1499 break;
1500 case RecurrenceDescriptor::MRK_UIntMax:
1501 Flags.IsMaxOp = true;
1502 break;
1503 case RecurrenceDescriptor::MRK_SIntMin:
1504 Flags.IsSigned = true;
1505 break;
1506 case RecurrenceDescriptor::MRK_UIntMin:
1507 break;
1508 default:
1509 llvm_unreachable("Unhandled MRK");
1510 }
1511 return getSimpleRdx(Instruction::ICmp);
1512 }
1513 case RecurrenceDescriptor::RK_FloatMinMax: {
1514 Flags.IsMaxOp =
1515 Desc.getMinMaxRecurrenceKind() == RecurrenceDescriptor::MRK_FloatMax;
1516 return getSimpleRdx(Instruction::FCmp);
1517 }
1518 default:
1519 llvm_unreachable("Unhandled RecKind");
1520 }
1521}
1522
Dinar Temirbulatova61f4b82017-07-19 10:02:07 +00001523void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
1524 auto *VecOp = dyn_cast<Instruction>(I);
1525 if (!VecOp)
1526 return;
1527 auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
1528 : dyn_cast<Instruction>(OpValue);
1529 if (!Intersection)
1530 return;
1531 const unsigned Opcode = Intersection->getOpcode();
1532 VecOp->copyIRFlags(Intersection);
1533 for (auto *V : VL) {
1534 auto *Instr = dyn_cast<Instruction>(V);
1535 if (!Instr)
1536 continue;
1537 if (OpValue == nullptr || Opcode == Instr->getOpcode())
1538 VecOp->andIRFlags(V);
Amara Emersoncf9daa32017-05-09 10:43:25 +00001539 }
1540}