blob: be8ff73331801eb5e13f89d268a1f6592c9034f7 [file] [log] [blame]
Misha Brukmanc501f552004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman76307852003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencercb84e432004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman76307852003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattner757528b0b2004-05-23 21:06:01 +000012
Misha Brukman76307852003-11-08 01:05:38 +000013<body>
Chris Lattner757528b0b2004-05-23 21:06:01 +000014
Chris Lattner48b383b02003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner2f7c9632001-06-06 20:29:01 +000016<ol>
Misha Brukman76307852003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Chris Lattnerd79749a2004-12-09 16:36:40 +000023 <li><a href="#linkage">Linkage Types</a></li>
Chris Lattner0132aff2005-05-06 22:57:40 +000024 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnerbc088212009-01-11 20:53:49 +000025 <li><a href="#namedtypes">Named Types</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000026 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner91c15c42006-01-23 23:23:47 +000027 <li><a href="#functionstructure">Functions</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000028 <li><a href="#aliasstructure">Aliases</a></li>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +000029 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel9eb525d2008-09-26 23:51:19 +000030 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen71183b62007-12-10 03:18:06 +000031 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner91c15c42006-01-23 23:23:47 +000032 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencer50c723a2007-02-19 23:54:10 +000033 <li><a href="#datalayout">Data Layout</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000034 </ol>
35 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000036 <li><a href="#typesystem">Type System</a>
37 <ol>
Chris Lattner7824d182008-01-04 04:32:38 +000038 <li><a href="#t_classifications">Type Classifications</a></li>
Robert Bocchino820bc75b2006-02-17 21:18:08 +000039 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner48b383b02003-11-25 01:02:51 +000040 <ol>
Chris Lattner7824d182008-01-04 04:32:38 +000041 <li><a href="#t_floating">Floating Point Types</a></li>
42 <li><a href="#t_void">Void Type</a></li>
43 <li><a href="#t_label">Label Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000044 </ol>
45 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000046 <li><a href="#t_derived">Derived Types</a>
47 <ol>
Chris Lattner9a2e3cb2007-12-18 06:18:21 +000048 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000049 <li><a href="#t_array">Array Type</a></li>
Misha Brukman76307852003-11-08 01:05:38 +000050 <li><a href="#t_function">Function Type</a></li>
51 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000052 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth8df88e22006-12-08 17:13:00 +000053 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer404a3252007-02-15 03:07:05 +000054 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner37b6b092005-04-25 17:34:15 +000055 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000056 </ol>
57 </li>
Chris Lattnercf7a5842009-02-02 07:32:36 +000058 <li><a href="#t_uprefs">Type Up-references</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000059 </ol>
60 </li>
Chris Lattner6af02f32004-12-09 16:11:40 +000061 <li><a href="#constants">Constants</a>
Chris Lattner74d3f822004-12-09 17:30:23 +000062 <ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +000063 <li><a href="#simpleconstants">Simple Constants</a></li>
Chris Lattner361bfcd2009-02-28 18:32:25 +000064 <li><a href="#complexconstants">Complex Constants</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000065 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
66 <li><a href="#undefvalues">Undefined Values</a></li>
67 <li><a href="#constantexprs">Constant Expressions</a></li>
Nick Lewycky49f89192009-04-04 07:22:01 +000068 <li><a href="#metadata">Embedded Metadata</a></li>
Chris Lattner74d3f822004-12-09 17:30:23 +000069 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +000070 </li>
Chris Lattner98f013c2006-01-25 23:47:57 +000071 <li><a href="#othervalues">Other Values</a>
72 <ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +000073 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Chris Lattner98f013c2006-01-25 23:47:57 +000074 </ol>
75 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000076 <li><a href="#instref">Instruction Reference</a>
77 <ol>
78 <li><a href="#terminators">Terminator Instructions</a>
79 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +000080 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
81 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +000082 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
83 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000084 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner08b7d5b2004-10-16 18:04:13 +000085 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000086 </ol>
87 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000088 <li><a href="#binaryops">Binary Operations</a>
89 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +000090 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
91 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
92 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Reid Spencer7e80b0b2006-10-26 06:15:43 +000093 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
94 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
95 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer7eb55b32006-11-02 01:53:59 +000096 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
97 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
98 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000099 </ol>
100 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000101 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
102 <ol>
Reid Spencer2ab01932007-02-02 13:57:07 +0000103 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
104 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
105 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000106 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000107 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000108 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000109 </ol>
110 </li>
Chris Lattnerce83bff2006-04-08 23:07:04 +0000111 <li><a href="#vectorops">Vector Operations</a>
112 <ol>
113 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
114 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
115 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattnerce83bff2006-04-08 23:07:04 +0000116 </ol>
117 </li>
Dan Gohmanb9d66602008-05-12 23:51:09 +0000118 <li><a href="#aggregateops">Aggregate Operations</a>
119 <ol>
120 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
121 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
122 </ol>
123 </li>
Chris Lattner6ab66722006-08-15 00:45:58 +0000124 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000125 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000126 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
127 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
128 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino820bc75b2006-02-17 21:18:08 +0000129 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
130 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
131 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000132 </ol>
133 </li>
Reid Spencer97c5fa42006-11-08 01:18:52 +0000134 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +0000135 <ol>
136 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
137 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
138 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
139 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
140 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencer51b07252006-11-09 23:03:26 +0000141 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
142 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
143 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
144 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencerb7344ff2006-11-11 21:00:47 +0000145 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
146 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5b950642006-11-11 23:08:07 +0000147 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer59b6b7d2006-11-08 01:11:31 +0000148 </ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +0000149 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000150 <li><a href="#otherops">Other Operations</a>
151 <ol>
Reid Spencerc828a0e2006-11-18 21:50:54 +0000152 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
153 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Nate Begemand2195702008-05-12 19:01:56 +0000154 <li><a href="#i_vicmp">'<tt>vicmp</tt>' Instruction</a></li>
155 <li><a href="#i_vfcmp">'<tt>vfcmp</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000156 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnerb53c28d2004-03-12 05:50:16 +0000157 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000158 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattner33337472006-01-13 23:26:01 +0000159 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000160 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000161 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000162 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000163 </li>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +0000164 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +0000165 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000166 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
167 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000168 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
169 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
170 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000171 </ol>
172 </li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000173 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
174 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000175 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
176 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
177 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000178 </ol>
179 </li>
Chris Lattner3649c3a2004-02-14 04:08:35 +0000180 <li><a href="#int_codegen">Code Generator Intrinsics</a>
181 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000182 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
183 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
184 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
185 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
186 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
187 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
188 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswellaa1c3c12004-04-09 16:43:20 +0000189 </ol>
190 </li>
Chris Lattnerfee11462004-02-12 17:01:32 +0000191 <li><a href="#int_libc">Standard C Library Intrinsics</a>
192 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000193 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
194 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
195 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
196 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
197 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohmanb6324c12007-10-15 20:30:11 +0000198 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
199 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
200 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattnerfee11462004-02-12 17:01:32 +0000201 </ol>
202 </li>
Nate Begeman0f223bb2006-01-13 23:26:38 +0000203 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +0000204 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000205 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattnerb748c672006-01-16 22:34:14 +0000206 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
207 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
208 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Reid Spencer5bf54c82007-04-11 23:23:49 +0000209 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
210 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
Andrew Lenharth1d463522005-05-03 18:01:48 +0000211 </ol>
212 </li>
Bill Wendlingf4d70622009-02-08 01:40:31 +0000213 <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
214 <ol>
Bill Wendlingfd2bd722009-02-08 04:04:40 +0000215 <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
216 <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
217 <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
218 <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
219 <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingb9a73272009-02-08 23:00:09 +0000220 <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingf4d70622009-02-08 01:40:31 +0000221 </ol>
222 </li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000223 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskey2211f492007-03-14 19:31:19 +0000224 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sands86e01192007-09-11 14:10:23 +0000225 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands644f9172007-07-27 12:58:54 +0000226 <ol>
227 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands644f9172007-07-27 12:58:54 +0000228 </ol>
229 </li>
Bill Wendlingf85850f2008-11-18 22:10:53 +0000230 <li><a href="#int_atomics">Atomic intrinsics</a>
231 <ol>
232 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
233 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
234 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
235 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
236 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
237 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
238 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
239 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
240 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
241 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
242 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
243 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
244 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
245 </ol>
246 </li>
Reid Spencer5b2cb0f2007-07-20 19:59:11 +0000247 <li><a href="#int_general">General intrinsics</a>
Tanya Lattnercb1b9602007-06-15 20:50:54 +0000248 <ol>
Reid Spencer5b2cb0f2007-07-20 19:59:11 +0000249 <li><a href="#int_var_annotation">
Bill Wendling14313312008-11-19 05:56:17 +0000250 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattner293c0372007-09-21 22:59:12 +0000251 <li><a href="#int_annotation">
Bill Wendling14313312008-11-19 05:56:17 +0000252 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +0000253 <li><a href="#int_trap">
Bill Wendling14313312008-11-19 05:56:17 +0000254 '<tt>llvm.trap</tt>' Intrinsic</a></li>
255 <li><a href="#int_stackprotector">
256 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
Tanya Lattner293c0372007-09-21 22:59:12 +0000257 </ol>
Tanya Lattnercb1b9602007-06-15 20:50:54 +0000258 </li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000259 </ol>
260 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000261</ol>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000262
263<div class="doc_author">
264 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
265 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman76307852003-11-08 01:05:38 +0000266</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000267
Chris Lattner2f7c9632001-06-06 20:29:01 +0000268<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000269<div class="doc_section"> <a name="abstract">Abstract </a></div>
270<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000271
Misha Brukman76307852003-11-08 01:05:38 +0000272<div class="doc_text">
Chris Lattner48b383b02003-11-25 01:02:51 +0000273<p>This document is a reference manual for the LLVM assembly language.
Bill Wendling6e03f9a2008-08-05 22:29:16 +0000274LLVM is a Static Single Assignment (SSA) based representation that provides
Chris Lattner67c37d12008-08-05 18:29:16 +0000275type safety, low-level operations, flexibility, and the capability of
276representing 'all' high-level languages cleanly. It is the common code
Chris Lattner48b383b02003-11-25 01:02:51 +0000277representation used throughout all phases of the LLVM compilation
278strategy.</p>
Misha Brukman76307852003-11-08 01:05:38 +0000279</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000280
Chris Lattner2f7c9632001-06-06 20:29:01 +0000281<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000282<div class="doc_section"> <a name="introduction">Introduction</a> </div>
283<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000284
Misha Brukman76307852003-11-08 01:05:38 +0000285<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000286
Chris Lattner48b383b02003-11-25 01:02:51 +0000287<p>The LLVM code representation is designed to be used in three
Gabor Greifa54634a2007-07-06 22:07:22 +0000288different forms: as an in-memory compiler IR, as an on-disk bitcode
Chris Lattner48b383b02003-11-25 01:02:51 +0000289representation (suitable for fast loading by a Just-In-Time compiler),
290and as a human readable assembly language representation. This allows
291LLVM to provide a powerful intermediate representation for efficient
292compiler transformations and analysis, while providing a natural means
293to debug and visualize the transformations. The three different forms
294of LLVM are all equivalent. This document describes the human readable
295representation and notation.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000296
John Criswell4a3327e2005-05-13 22:25:59 +0000297<p>The LLVM representation aims to be light-weight and low-level
Chris Lattner48b383b02003-11-25 01:02:51 +0000298while being expressive, typed, and extensible at the same time. It
299aims to be a "universal IR" of sorts, by being at a low enough level
300that high-level ideas may be cleanly mapped to it (similar to how
301microprocessors are "universal IR's", allowing many source languages to
302be mapped to them). By providing type information, LLVM can be used as
303the target of optimizations: for example, through pointer analysis, it
304can be proven that a C automatic variable is never accessed outside of
305the current function... allowing it to be promoted to a simple SSA
306value instead of a memory location.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000307
Misha Brukman76307852003-11-08 01:05:38 +0000308</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000309
Chris Lattner2f7c9632001-06-06 20:29:01 +0000310<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000311<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000312
Misha Brukman76307852003-11-08 01:05:38 +0000313<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000314
Chris Lattner48b383b02003-11-25 01:02:51 +0000315<p>It is important to note that this document describes 'well formed'
316LLVM assembly language. There is a difference between what the parser
317accepts and what is considered 'well formed'. For example, the
318following instruction is syntactically okay, but not well formed:</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000319
Bill Wendling3716c5d2007-05-29 09:04:49 +0000320<div class="doc_code">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000321<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000322%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattner757528b0b2004-05-23 21:06:01 +0000323</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000324</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000325
Chris Lattner48b383b02003-11-25 01:02:51 +0000326<p>...because the definition of <tt>%x</tt> does not dominate all of
327its uses. The LLVM infrastructure provides a verification pass that may
328be used to verify that an LLVM module is well formed. This pass is
John Criswell4a3327e2005-05-13 22:25:59 +0000329automatically run by the parser after parsing input assembly and by
Gabor Greifa54634a2007-07-06 22:07:22 +0000330the optimizer before it outputs bitcode. The violations pointed out
Chris Lattner48b383b02003-11-25 01:02:51 +0000331by the verifier pass indicate bugs in transformation passes or input to
332the parser.</p>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000333</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000334
Chris Lattner87a3dbe2007-10-03 17:34:29 +0000335<!-- Describe the typesetting conventions here. -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000336
Chris Lattner2f7c9632001-06-06 20:29:01 +0000337<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000338<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000339<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000340
Misha Brukman76307852003-11-08 01:05:38 +0000341<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000342
Reid Spencerb23b65f2007-08-07 14:34:28 +0000343 <p>LLVM identifiers come in two basic types: global and local. Global
344 identifiers (functions, global variables) begin with the @ character. Local
345 identifiers (register names, types) begin with the % character. Additionally,
Dan Gohmanef9462f2008-10-14 16:51:45 +0000346 there are three different formats for identifiers, for different purposes:</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000347
Chris Lattner2f7c9632001-06-06 20:29:01 +0000348<ol>
Reid Spencerb23b65f2007-08-07 14:34:28 +0000349 <li>Named values are represented as a string of characters with their prefix.
350 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
351 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Chris Lattnerd79749a2004-12-09 16:36:40 +0000352 Identifiers which require other characters in their names can be surrounded
Daniel Dunbar0f8155a2008-10-14 23:51:43 +0000353 with quotes. Special characters may be escaped using "\xx" where xx is the
354 ASCII code for the character in hexadecimal. In this way, any character can
355 be used in a name value, even quotes themselves.
Chris Lattnerd79749a2004-12-09 16:36:40 +0000356
Reid Spencerb23b65f2007-08-07 14:34:28 +0000357 <li>Unnamed values are represented as an unsigned numeric value with their
358 prefix. For example, %12, @2, %44.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000359
Reid Spencer8f08d802004-12-09 18:02:53 +0000360 <li>Constants, which are described in a <a href="#constants">section about
361 constants</a>, below.</li>
Misha Brukman76307852003-11-08 01:05:38 +0000362</ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000363
Reid Spencerb23b65f2007-08-07 14:34:28 +0000364<p>LLVM requires that values start with a prefix for two reasons: Compilers
Chris Lattnerd79749a2004-12-09 16:36:40 +0000365don't need to worry about name clashes with reserved words, and the set of
366reserved words may be expanded in the future without penalty. Additionally,
367unnamed identifiers allow a compiler to quickly come up with a temporary
368variable without having to avoid symbol table conflicts.</p>
369
Chris Lattner48b383b02003-11-25 01:02:51 +0000370<p>Reserved words in LLVM are very similar to reserved words in other
Reid Spencer5b950642006-11-11 23:08:07 +0000371languages. There are keywords for different opcodes
372('<tt><a href="#i_add">add</a></tt>',
373 '<tt><a href="#i_bitcast">bitcast</a></tt>',
374 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000375href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
Chris Lattnerd79749a2004-12-09 16:36:40 +0000376and others. These reserved words cannot conflict with variable names, because
Reid Spencerb23b65f2007-08-07 14:34:28 +0000377none of them start with a prefix character ('%' or '@').</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000378
379<p>Here is an example of LLVM code to multiply the integer variable
380'<tt>%X</tt>' by 8:</p>
381
Misha Brukman76307852003-11-08 01:05:38 +0000382<p>The easy way:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000383
Bill Wendling3716c5d2007-05-29 09:04:49 +0000384<div class="doc_code">
Chris Lattnerd79749a2004-12-09 16:36:40 +0000385<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000386%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnerd79749a2004-12-09 16:36:40 +0000387</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000388</div>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000389
Misha Brukman76307852003-11-08 01:05:38 +0000390<p>After strength reduction:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000391
Bill Wendling3716c5d2007-05-29 09:04:49 +0000392<div class="doc_code">
Chris Lattnerd79749a2004-12-09 16:36:40 +0000393<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000394%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnerd79749a2004-12-09 16:36:40 +0000395</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000396</div>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000397
Misha Brukman76307852003-11-08 01:05:38 +0000398<p>And the hard way:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000399
Bill Wendling3716c5d2007-05-29 09:04:49 +0000400<div class="doc_code">
Chris Lattnerd79749a2004-12-09 16:36:40 +0000401<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000402<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
403<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
404%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnerd79749a2004-12-09 16:36:40 +0000405</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000406</div>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000407
Chris Lattner48b383b02003-11-25 01:02:51 +0000408<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
409important lexical features of LLVM:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000410
Chris Lattner2f7c9632001-06-06 20:29:01 +0000411<ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000412
413 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
414 line.</li>
415
416 <li>Unnamed temporaries are created when the result of a computation is not
417 assigned to a named value.</li>
418
Misha Brukman76307852003-11-08 01:05:38 +0000419 <li>Unnamed temporaries are numbered sequentially</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000420
Misha Brukman76307852003-11-08 01:05:38 +0000421</ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000422
John Criswell02fdc6f2005-05-12 16:52:32 +0000423<p>...and it also shows a convention that we follow in this document. When
Chris Lattnerd79749a2004-12-09 16:36:40 +0000424demonstrating instructions, we will follow an instruction with a comment that
425defines the type and name of value produced. Comments are shown in italic
426text.</p>
427
Misha Brukman76307852003-11-08 01:05:38 +0000428</div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000429
430<!-- *********************************************************************** -->
431<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
432<!-- *********************************************************************** -->
433
434<!-- ======================================================================= -->
435<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
436</div>
437
438<div class="doc_text">
439
440<p>LLVM programs are composed of "Module"s, each of which is a
441translation unit of the input programs. Each module consists of
442functions, global variables, and symbol table entries. Modules may be
443combined together with the LLVM linker, which merges function (and
444global variable) definitions, resolves forward declarations, and merges
445symbol table entries. Here is an example of the "hello world" module:</p>
446
Bill Wendling3716c5d2007-05-29 09:04:49 +0000447<div class="doc_code">
Chris Lattner6af02f32004-12-09 16:11:40 +0000448<pre><i>; Declare the string constant as a global constant...</i>
Chris Lattner2b0bf4f2007-06-12 17:00:26 +0000449<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
450 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000451
452<i>; External declaration of the puts function</i>
Chris Lattner2b0bf4f2007-06-12 17:00:26 +0000453<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000454
455<i>; Definition of main function</i>
Chris Lattner2b0bf4f2007-06-12 17:00:26 +0000456define i32 @main() { <i>; i32()* </i>
Dan Gohman623806e2009-01-04 23:44:43 +0000457 <i>; Convert [13 x i8]* to i8 *...</i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000458 %cast210 = <a
Dan Gohman623806e2009-01-04 23:44:43 +0000459 href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000460
461 <i>; Call puts function to write out the string to stdout...</i>
462 <a
Chris Lattner2b0bf4f2007-06-12 17:00:26 +0000463 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000464 <a
Bill Wendling3716c5d2007-05-29 09:04:49 +0000465 href="#i_ret">ret</a> i32 0<br>}<br>
466</pre>
467</div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000468
469<p>This example is made up of a <a href="#globalvars">global variable</a>
470named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
471function, and a <a href="#functionstructure">function definition</a>
472for "<tt>main</tt>".</p>
473
Chris Lattnerd79749a2004-12-09 16:36:40 +0000474<p>In general, a module is made up of a list of global values,
475where both functions and global variables are global values. Global values are
476represented by a pointer to a memory location (in this case, a pointer to an
477array of char, and a pointer to a function), and have one of the following <a
478href="#linkage">linkage types</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000479
Chris Lattnerd79749a2004-12-09 16:36:40 +0000480</div>
481
482<!-- ======================================================================= -->
483<div class="doc_subsection">
484 <a name="linkage">Linkage Types</a>
485</div>
486
487<div class="doc_text">
488
489<p>
490All Global Variables and Functions have one of the following types of linkage:
491</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000492
493<dl>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000494
Rafael Espindola6de96a12009-01-15 20:18:42 +0000495 <dt><tt><b><a name="linkage_private">private</a></b></tt>: </dt>
496
497 <dd>Global values with private linkage are only directly accessible by
498 objects in the current module. In particular, linking code into a module with
499 an private global value may cause the private to be renamed as necessary to
500 avoid collisions. Because the symbol is private to the module, all
501 references can be updated. This doesn't show up in any symbol table in the
502 object file.
503 </dd>
504
Dale Johannesen4188aad2008-05-23 23:13:41 +0000505 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000506
Duncan Sands35e43c12009-01-16 09:29:46 +0000507 <dd> Similar to private, but the value shows as a local symbol (STB_LOCAL in
Rafael Espindola6de96a12009-01-15 20:18:42 +0000508 the case of ELF) in the object file. This corresponds to the notion of the
Chris Lattnere20b4702007-01-14 06:51:48 +0000509 '<tt>static</tt>' keyword in C.
Chris Lattner6af02f32004-12-09 16:11:40 +0000510 </dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000511
Chris Lattner184f1be2009-04-13 05:44:34 +0000512 <dt><tt><b><a name="available_externally">available_externally</a></b></tt>:
513 </dt>
514
515 <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
516 into the object file corresponding to the LLVM module. They exist to
517 allow inlining and other optimizations to take place given knowledge of the
518 definition of the global, which is known to be somewhere outside the module.
519 Globals with <tt>available_externally</tt> linkage are allowed to be discarded
520 at will, and are otherwise the same as <tt>linkonce_odr</tt>. This linkage
521 type is only allowed on definitions, not declarations.</dd>
522
Chris Lattner6af02f32004-12-09 16:11:40 +0000523 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000524
Chris Lattnere20b4702007-01-14 06:51:48 +0000525 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
526 the same name when linkage occurs. This is typically used to implement
527 inline functions, templates, or other code which must be generated in each
528 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
529 allowed to be discarded.
Chris Lattner6af02f32004-12-09 16:11:40 +0000530 </dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000531
Dale Johannesen4188aad2008-05-23 23:13:41 +0000532 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
533
534 <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt>
535 linkage, except that unreferenced <tt>common</tt> globals may not be
536 discarded. This is used for globals that may be emitted in multiple
537 translation units, but that are not guaranteed to be emitted into every
538 translation unit that uses them. One example of this is tentative
539 definitions in C, such as "<tt>int X;</tt>" at global scope.
540 </dd>
541
Chris Lattner6af02f32004-12-09 16:11:40 +0000542 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000543
Dale Johannesen4188aad2008-05-23 23:13:41 +0000544 <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except
545 that some targets may choose to emit different assembly sequences for them
546 for target-dependent reasons. This is used for globals that are declared
547 "weak" in C source code.
Chris Lattner6af02f32004-12-09 16:11:40 +0000548 </dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000549
Chris Lattner6af02f32004-12-09 16:11:40 +0000550 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000551
552 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
553 pointer to array type. When two global variables with appending linkage are
554 linked together, the two global arrays are appended together. This is the
555 LLVM, typesafe, equivalent of having the system linker append together
556 "sections" with identical names when .o files are linked.
Chris Lattner6af02f32004-12-09 16:11:40 +0000557 </dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000558
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000559 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
Duncan Sands12da8ce2009-03-07 15:45:40 +0000560
Chris Lattner67c37d12008-08-05 18:29:16 +0000561 <dd>The semantics of this linkage follow the ELF object file model: the
562 symbol is weak until linked, if not linked, the symbol becomes null instead
563 of being an undefined reference.
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000564 </dd>
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000565
Duncan Sands12da8ce2009-03-07 15:45:40 +0000566 <dt><tt><b><a name="linkage_linkonce">linkonce_odr</a></b></tt>: </dt>
Duncan Sands12da8ce2009-03-07 15:45:40 +0000567 <dt><tt><b><a name="linkage_weak">weak_odr</a></b></tt>: </dt>
Chris Lattner184f1be2009-04-13 05:44:34 +0000568 <dd>Some languages allow differing globals to be merged, such as two
Duncan Sands12da8ce2009-03-07 15:45:40 +0000569 functions with different semantics. Other languages, such as <tt>C++</tt>,
570 ensure that only equivalent globals are ever merged (the "one definition
Chris Lattner184f1be2009-04-13 05:44:34 +0000571 rule" - "ODR"). Such languages can use the <tt>linkonce_odr</tt>
Duncan Sands4581beb2009-03-11 20:14:15 +0000572 and <tt>weak_odr</tt> linkage types to indicate that the global will only
573 be merged with equivalent globals. These linkage types are otherwise the
574 same as their non-<tt>odr</tt> versions.
Duncan Sands12da8ce2009-03-07 15:45:40 +0000575 </dd>
576
Chris Lattner6af02f32004-12-09 16:11:40 +0000577 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000578
579 <dd>If none of the above identifiers are used, the global is externally
580 visible, meaning that it participates in linkage and can be used to resolve
581 external symbol references.
Chris Lattner6af02f32004-12-09 16:11:40 +0000582 </dd>
Reid Spencer7972c472007-04-11 23:49:50 +0000583</dl>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000584
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000585 <p>
586 The next two types of linkage are targeted for Microsoft Windows platform
587 only. They are designed to support importing (exporting) symbols from (to)
Chris Lattner67c37d12008-08-05 18:29:16 +0000588 DLLs (Dynamic Link Libraries).
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000589 </p>
590
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000591 <dl>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000592 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
593
594 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
595 or variable via a global pointer to a pointer that is set up by the DLL
596 exporting the symbol. On Microsoft Windows targets, the pointer name is
Dan Gohman33a9cef2009-01-12 21:35:55 +0000597 formed by combining <code>__imp_</code> and the function or variable name.
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000598 </dd>
599
600 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
601
602 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
603 pointer to a pointer in a DLL, so that it can be referenced with the
604 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
Dan Gohman33a9cef2009-01-12 21:35:55 +0000605 name is formed by combining <code>__imp_</code> and the function or variable
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000606 name.
607 </dd>
608
Chris Lattner6af02f32004-12-09 16:11:40 +0000609</dl>
610
Dan Gohman8ef44982008-11-24 17:18:39 +0000611<p>For example, since the "<tt>.LC0</tt>"
Chris Lattner6af02f32004-12-09 16:11:40 +0000612variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
613variable and was linked with this one, one of the two would be renamed,
614preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
615external (i.e., lacking any linkage declarations), they are accessible
Reid Spencer92c671e2007-01-05 00:59:10 +0000616outside of the current module.</p>
617<p>It is illegal for a function <i>declaration</i>
Duncan Sandse2881052009-03-11 08:08:06 +0000618to have any linkage type other than "externally visible", <tt>dllimport</tt>
619or <tt>extern_weak</tt>.</p>
Duncan Sands12da8ce2009-03-07 15:45:40 +0000620<p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
621or <tt>weak_odr</tt> linkages.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000622</div>
623
624<!-- ======================================================================= -->
625<div class="doc_subsection">
Chris Lattner0132aff2005-05-06 22:57:40 +0000626 <a name="callingconv">Calling Conventions</a>
627</div>
628
629<div class="doc_text">
630
631<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
632and <a href="#i_invoke">invokes</a> can all have an optional calling convention
633specified for the call. The calling convention of any pair of dynamic
634caller/callee must match, or the behavior of the program is undefined. The
635following calling conventions are supported by LLVM, and more may be added in
636the future:</p>
637
638<dl>
639 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
640
641 <dd>This calling convention (the default if no other calling convention is
642 specified) matches the target C calling conventions. This calling convention
John Criswell02fdc6f2005-05-12 16:52:32 +0000643 supports varargs function calls and tolerates some mismatch in the declared
Reid Spencer72ba4992006-12-31 21:30:18 +0000644 prototype and implemented declaration of the function (as does normal C).
Chris Lattner0132aff2005-05-06 22:57:40 +0000645 </dd>
646
647 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
648
649 <dd>This calling convention attempts to make calls as fast as possible
650 (e.g. by passing things in registers). This calling convention allows the
651 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattner67c37d12008-08-05 18:29:16 +0000652 without having to conform to an externally specified ABI (Application Binary
653 Interface). Implementations of this convention should allow arbitrary
Arnold Schwaighofer2c6b8882008-05-14 09:17:12 +0000654 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be
655 supported. This calling convention does not support varargs and requires the
656 prototype of all callees to exactly match the prototype of the function
657 definition.
Chris Lattner0132aff2005-05-06 22:57:40 +0000658 </dd>
659
660 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
661
662 <dd>This calling convention attempts to make code in the caller as efficient
663 as possible under the assumption that the call is not commonly executed. As
664 such, these calls often preserve all registers so that the call does not break
665 any live ranges in the caller side. This calling convention does not support
666 varargs and requires the prototype of all callees to exactly match the
667 prototype of the function definition.
668 </dd>
669
Chris Lattner573f64e2005-05-07 01:46:40 +0000670 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000671
672 <dd>Any calling convention may be specified by number, allowing
673 target-specific calling conventions to be used. Target specific calling
674 conventions start at 64.
675 </dd>
Chris Lattner573f64e2005-05-07 01:46:40 +0000676</dl>
Chris Lattner0132aff2005-05-06 22:57:40 +0000677
678<p>More calling conventions can be added/defined on an as-needed basis, to
679support pascal conventions or any other well-known target-independent
680convention.</p>
681
682</div>
683
684<!-- ======================================================================= -->
685<div class="doc_subsection">
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000686 <a name="visibility">Visibility Styles</a>
687</div>
688
689<div class="doc_text">
690
691<p>
692All Global Variables and Functions have one of the following visibility styles:
693</p>
694
695<dl>
696 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
697
Chris Lattner67c37d12008-08-05 18:29:16 +0000698 <dd>On targets that use the ELF object file format, default visibility means
699 that the declaration is visible to other
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000700 modules and, in shared libraries, means that the declared entity may be
701 overridden. On Darwin, default visibility means that the declaration is
702 visible to other modules. Default visibility corresponds to "external
703 linkage" in the language.
704 </dd>
705
706 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
707
708 <dd>Two declarations of an object with hidden visibility refer to the same
709 object if they are in the same shared object. Usually, hidden visibility
710 indicates that the symbol will not be placed into the dynamic symbol table,
711 so no other module (executable or shared library) can reference it
712 directly.
713 </dd>
714
Anton Korobeynikov39f3cff2007-04-29 18:35:00 +0000715 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
716
717 <dd>On ELF, protected visibility indicates that the symbol will be placed in
718 the dynamic symbol table, but that references within the defining module will
719 bind to the local symbol. That is, the symbol cannot be overridden by another
720 module.
721 </dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000722</dl>
723
724</div>
725
726<!-- ======================================================================= -->
727<div class="doc_subsection">
Chris Lattnerbc088212009-01-11 20:53:49 +0000728 <a name="namedtypes">Named Types</a>
729</div>
730
731<div class="doc_text">
732
733<p>LLVM IR allows you to specify name aliases for certain types. This can make
734it easier to read the IR and make the IR more condensed (particularly when
735recursive types are involved). An example of a name specification is:
736</p>
737
738<div class="doc_code">
739<pre>
740%mytype = type { %mytype*, i32 }
741</pre>
742</div>
743
744<p>You may give a name to any <a href="#typesystem">type</a> except "<a
745href="t_void">void</a>". Type name aliases may be used anywhere a type is
746expected with the syntax "%mytype".</p>
747
748<p>Note that type names are aliases for the structural type that they indicate,
749and that you can therefore specify multiple names for the same type. This often
750leads to confusing behavior when dumping out a .ll file. Since LLVM IR uses
751structural typing, the name is not part of the type. When printing out LLVM IR,
752the printer will pick <em>one name</em> to render all types of a particular
753shape. This means that if you have code where two different source types end up
754having the same LLVM type, that the dumper will sometimes print the "wrong" or
755unexpected type. This is an important design point and isn't going to
756change.</p>
757
758</div>
759
Chris Lattnerbc088212009-01-11 20:53:49 +0000760<!-- ======================================================================= -->
761<div class="doc_subsection">
Chris Lattner6af02f32004-12-09 16:11:40 +0000762 <a name="globalvars">Global Variables</a>
763</div>
764
765<div class="doc_text">
766
Chris Lattner5d5aede2005-02-12 19:30:21 +0000767<p>Global variables define regions of memory allocated at compilation time
Chris Lattner662c8722005-11-12 00:45:07 +0000768instead of run-time. Global variables may optionally be initialized, may have
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000769an explicit section to be placed in, and may have an optional explicit alignment
770specified. A variable may be defined as "thread_local", which means that it
771will not be shared by threads (each thread will have a separated copy of the
772variable). A variable may be defined as a global "constant," which indicates
773that the contents of the variable will <b>never</b> be modified (enabling better
Chris Lattner5d5aede2005-02-12 19:30:21 +0000774optimization, allowing the global data to be placed in the read-only section of
775an executable, etc). Note that variables that need runtime initialization
John Criswell4c0cf7f2005-10-24 16:17:18 +0000776cannot be marked "constant" as there is a store to the variable.</p>
Chris Lattner5d5aede2005-02-12 19:30:21 +0000777
778<p>
779LLVM explicitly allows <em>declarations</em> of global variables to be marked
780constant, even if the final definition of the global is not. This capability
781can be used to enable slightly better optimization of the program, but requires
782the language definition to guarantee that optimizations based on the
783'constantness' are valid for the translation units that do not include the
784definition.
785</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000786
787<p>As SSA values, global variables define pointer values that are in
788scope (i.e. they dominate) all basic blocks in the program. Global
789variables always define a pointer to their "content" type because they
790describe a region of memory, and all memory objects in LLVM are
791accessed through pointers.</p>
792
Christopher Lamb308121c2007-12-11 09:31:00 +0000793<p>A global variable may be declared to reside in a target-specifc numbered
794address space. For targets that support them, address spaces may affect how
795optimizations are performed and/or what target instructions are used to access
Christopher Lamb25f50762007-12-12 08:44:39 +0000796the variable. The default address space is zero. The address space qualifier
797must precede any other attributes.</p>
Christopher Lamb308121c2007-12-11 09:31:00 +0000798
Chris Lattner662c8722005-11-12 00:45:07 +0000799<p>LLVM allows an explicit section to be specified for globals. If the target
800supports it, it will emit globals to the section specified.</p>
801
Chris Lattner54611b42005-11-06 08:02:57 +0000802<p>An explicit alignment may be specified for a global. If not present, or if
803the alignment is set to zero, the alignment of the global is set by the target
804to whatever it feels convenient. If an explicit alignment is specified, the
805global is forced to have at least that much alignment. All alignments must be
806a power of 2.</p>
807
Christopher Lamb308121c2007-12-11 09:31:00 +0000808<p>For example, the following defines a global in a numbered address space with
809an initializer, section, and alignment:</p>
Chris Lattner5760c502007-01-14 00:27:09 +0000810
Bill Wendling3716c5d2007-05-29 09:04:49 +0000811<div class="doc_code">
Chris Lattner5760c502007-01-14 00:27:09 +0000812<pre>
Dan Gohmanaaa679b2009-01-11 00:40:00 +0000813@G = addrspace(5) constant float 1.0, section "foo", align 4
Chris Lattner5760c502007-01-14 00:27:09 +0000814</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000815</div>
Chris Lattner5760c502007-01-14 00:27:09 +0000816
Chris Lattner6af02f32004-12-09 16:11:40 +0000817</div>
818
819
820<!-- ======================================================================= -->
821<div class="doc_subsection">
822 <a name="functionstructure">Functions</a>
823</div>
824
825<div class="doc_text">
826
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000827<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
828an optional <a href="#linkage">linkage type</a>, an optional
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000829<a href="#visibility">visibility style</a>, an optional
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000830<a href="#callingconv">calling convention</a>, a return type, an optional
831<a href="#paramattrs">parameter attribute</a> for the return type, a function
832name, a (possibly empty) argument list (each with optional
Devang Patel7e9b05e2008-10-06 18:50:38 +0000833<a href="#paramattrs">parameter attributes</a>), optional
834<a href="#fnattrs">function attributes</a>, an optional section,
835an optional alignment, an optional <a href="#gc">garbage collector name</a>,
Chris Lattnercbc4d2a2008-10-04 18:10:21 +0000836an opening curly brace, a list of basic blocks, and a closing curly brace.
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000837
838LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
839optional <a href="#linkage">linkage type</a>, an optional
840<a href="#visibility">visibility style</a>, an optional
841<a href="#callingconv">calling convention</a>, a return type, an optional
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000842<a href="#paramattrs">parameter attribute</a> for the return type, a function
Gordon Henriksen71183b62007-12-10 03:18:06 +0000843name, a possibly empty list of arguments, an optional alignment, and an optional
Gordon Henriksendc5cafb2007-12-10 03:30:21 +0000844<a href="#gc">garbage collector name</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000845
Chris Lattner67c37d12008-08-05 18:29:16 +0000846<p>A function definition contains a list of basic blocks, forming the CFG
847(Control Flow Graph) for
Chris Lattner6af02f32004-12-09 16:11:40 +0000848the function. Each basic block may optionally start with a label (giving the
849basic block a symbol table entry), contains a list of instructions, and ends
850with a <a href="#terminators">terminator</a> instruction (such as a branch or
851function return).</p>
852
Chris Lattnera59fb102007-06-08 16:52:14 +0000853<p>The first basic block in a function is special in two ways: it is immediately
Chris Lattner6af02f32004-12-09 16:11:40 +0000854executed on entrance to the function, and it is not allowed to have predecessor
855basic blocks (i.e. there can not be any branches to the entry block of a
856function). Because the block can have no predecessors, it also cannot have any
857<a href="#i_phi">PHI nodes</a>.</p>
858
Chris Lattner662c8722005-11-12 00:45:07 +0000859<p>LLVM allows an explicit section to be specified for functions. If the target
860supports it, it will emit functions to the section specified.</p>
861
Chris Lattner54611b42005-11-06 08:02:57 +0000862<p>An explicit alignment may be specified for a function. If not present, or if
863the alignment is set to zero, the alignment of the function is set by the target
864to whatever it feels convenient. If an explicit alignment is specified, the
865function is forced to have at least that much alignment. All alignments must be
866a power of 2.</p>
867
Devang Patel02256232008-10-07 17:48:33 +0000868 <h5>Syntax:</h5>
869
870<div class="doc_code">
Chris Lattner0ae02092008-10-13 16:55:18 +0000871<tt>
872define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
873 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
874 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
875 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
876 [<a href="#gc">gc</a>] { ... }
877</tt>
Devang Patel02256232008-10-07 17:48:33 +0000878</div>
879
Chris Lattner6af02f32004-12-09 16:11:40 +0000880</div>
881
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000882
883<!-- ======================================================================= -->
884<div class="doc_subsection">
885 <a name="aliasstructure">Aliases</a>
886</div>
887<div class="doc_text">
888 <p>Aliases act as "second name" for the aliasee value (which can be either
Anton Korobeynikov25b2e822008-03-22 08:36:14 +0000889 function, global variable, another alias or bitcast of global value). Aliases
890 may have an optional <a href="#linkage">linkage type</a>, and an
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000891 optional <a href="#visibility">visibility style</a>.</p>
892
893 <h5>Syntax:</h5>
894
Bill Wendling3716c5d2007-05-29 09:04:49 +0000895<div class="doc_code">
Bill Wendling2d8b9a82007-05-29 09:42:13 +0000896<pre>
Duncan Sands7e99a942008-09-12 20:48:21 +0000897@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendling2d8b9a82007-05-29 09:42:13 +0000898</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000899</div>
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000900
901</div>
902
903
904
Chris Lattner91c15c42006-01-23 23:23:47 +0000905<!-- ======================================================================= -->
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000906<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
907<div class="doc_text">
908 <p>The return type and each parameter of a function type may have a set of
909 <i>parameter attributes</i> associated with them. Parameter attributes are
910 used to communicate additional information about the result or parameters of
Duncan Sandsad0ea2d2007-11-27 13:23:08 +0000911 a function. Parameter attributes are considered to be part of the function,
912 not of the function type, so functions with different parameter attributes
913 can have the same function type.</p>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000914
Reid Spencercf7ebf52007-01-15 18:27:39 +0000915 <p>Parameter attributes are simple keywords that follow the type specified. If
916 multiple parameter attributes are needed, they are space separated. For
Bill Wendling3716c5d2007-05-29 09:04:49 +0000917 example:</p>
918
919<div class="doc_code">
920<pre>
Nick Lewyckydac78d82009-02-15 23:06:14 +0000921declare i32 @printf(i8* noalias nocapture, ...)
Chris Lattnerd2597d72008-10-04 18:33:34 +0000922declare i32 @atoi(i8 zeroext)
923declare signext i8 @returns_signed_char()
Bill Wendling3716c5d2007-05-29 09:04:49 +0000924</pre>
925</div>
926
Duncan Sandsad0ea2d2007-11-27 13:23:08 +0000927 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
928 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000929
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000930 <p>Currently, only the following parameter attributes are defined:</p>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000931 <dl>
Reid Spencer314e1cb2007-07-19 23:13:04 +0000932 <dt><tt>zeroext</tt></dt>
Chris Lattnerd2597d72008-10-04 18:33:34 +0000933 <dd>This indicates to the code generator that the parameter or return value
934 should be zero-extended to a 32-bit value by the caller (for a parameter)
935 or the callee (for a return value).</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000936
Reid Spencer314e1cb2007-07-19 23:13:04 +0000937 <dt><tt>signext</tt></dt>
Chris Lattnerd2597d72008-10-04 18:33:34 +0000938 <dd>This indicates to the code generator that the parameter or return value
939 should be sign-extended to a 32-bit value by the caller (for a parameter)
940 or the callee (for a return value).</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000941
Anton Korobeynikove8166852007-01-28 14:30:45 +0000942 <dt><tt>inreg</tt></dt>
Dale Johannesenc50ada22008-09-25 20:47:45 +0000943 <dd>This indicates that this parameter or return value should be treated
944 in a special target-dependent fashion during while emitting code for a
945 function call or return (usually, by putting it in a register as opposed
Chris Lattnerd2597d72008-10-04 18:33:34 +0000946 to memory, though some targets use it to distinguish between two different
947 kinds of registers). Use of this attribute is target-specific.</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000948
Duncan Sands2a1d8ba2008-10-06 08:14:18 +0000949 <dt><tt><a name="byval">byval</a></tt></dt>
Chris Lattner352ab9b2008-01-15 04:34:22 +0000950 <dd>This indicates that the pointer parameter should really be passed by
951 value to the function. The attribute implies that a hidden copy of the
952 pointee is made between the caller and the callee, so the callee is unable
Chris Lattner1ca5c642008-08-05 18:21:08 +0000953 to modify the value in the callee. This attribute is only valid on LLVM
Chris Lattner352ab9b2008-01-15 04:34:22 +0000954 pointer arguments. It is generally used to pass structs and arrays by
Duncan Sands2a1d8ba2008-10-06 08:14:18 +0000955 value, but is also valid on pointers to scalars. The copy is considered to
956 belong to the caller not the callee (for example,
957 <tt><a href="#readonly">readonly</a></tt> functions should not write to
Devang Patel7e9b05e2008-10-06 18:50:38 +0000958 <tt>byval</tt> parameters). This is not a valid attribute for return
Chris Lattner08aa9062009-02-05 05:42:28 +0000959 values. The byval attribute also supports specifying an alignment with the
960 align attribute. This has a target-specific effect on the code generator
961 that usually indicates a desired alignment for the synthesized stack
962 slot.</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000963
Anton Korobeynikove8166852007-01-28 14:30:45 +0000964 <dt><tt>sret</tt></dt>
Duncan Sandsfa4b6732008-02-18 04:19:38 +0000965 <dd>This indicates that the pointer parameter specifies the address of a
966 structure that is the return value of the function in the source program.
Chris Lattnerd2597d72008-10-04 18:33:34 +0000967 This pointer must be guaranteed by the caller to be valid: loads and stores
968 to the structure may be assumed by the callee to not to trap. This may only
Devang Patel7e9b05e2008-10-06 18:50:38 +0000969 be applied to the first parameter. This is not a valid attribute for
970 return values. </dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000971
Zhou Sheng2444a9a2007-06-05 05:28:26 +0000972 <dt><tt>noalias</tt></dt>
Nick Lewyckyf5ffcbc2008-11-24 03:41:24 +0000973 <dd>This indicates that the pointer does not alias any global or any other
974 parameter. The caller is responsible for ensuring that this is the
Nick Lewyckyd59572c2008-11-24 05:00:44 +0000975 case. On a function return value, <tt>noalias</tt> additionally indicates
976 that the pointer does not alias any other pointers visible to the
Nick Lewycky2abb1082008-12-19 06:39:12 +0000977 caller. For further details, please see the discussion of the NoAlias
978 response in
979 <a href="http://llvm.org/docs/AliasAnalysis.html#MustMayNo">alias
980 analysis</a>.</dd>
981
982 <dt><tt>nocapture</tt></dt>
983 <dd>This indicates that the callee does not make any copies of the pointer
984 that outlive the callee itself. This is not a valid attribute for return
985 values.</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000986
Duncan Sands27e91592007-07-27 19:57:41 +0000987 <dt><tt>nest</tt></dt>
Duncan Sands825bde42008-07-08 09:27:25 +0000988 <dd>This indicates that the pointer parameter can be excised using the
Devang Patel7e9b05e2008-10-06 18:50:38 +0000989 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
990 attribute for return values.</dd>
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000991 </dl>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000992
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000993</div>
994
995<!-- ======================================================================= -->
Chris Lattner91c15c42006-01-23 23:23:47 +0000996<div class="doc_subsection">
Gordon Henriksen71183b62007-12-10 03:18:06 +0000997 <a name="gc">Garbage Collector Names</a>
998</div>
999
1000<div class="doc_text">
1001<p>Each function may specify a garbage collector name, which is simply a
1002string.</p>
1003
1004<div class="doc_code"><pre
1005>define void @f() gc "name" { ...</pre></div>
1006
1007<p>The compiler declares the supported values of <i>name</i>. Specifying a
1008collector which will cause the compiler to alter its output in order to support
1009the named garbage collection algorithm.</p>
1010</div>
1011
1012<!-- ======================================================================= -->
1013<div class="doc_subsection">
Devang Patel9eb525d2008-09-26 23:51:19 +00001014 <a name="fnattrs">Function Attributes</a>
Devang Patelcaacdba2008-09-04 23:05:13 +00001015</div>
1016
1017<div class="doc_text">
Devang Patel9eb525d2008-09-26 23:51:19 +00001018
1019<p>Function attributes are set to communicate additional information about
1020 a function. Function attributes are considered to be part of the function,
1021 not of the function type, so functions with different parameter attributes
1022 can have the same function type.</p>
1023
1024 <p>Function attributes are simple keywords that follow the type specified. If
1025 multiple attributes are needed, they are space separated. For
1026 example:</p>
Devang Patelcaacdba2008-09-04 23:05:13 +00001027
1028<div class="doc_code">
Bill Wendlingb175fa42008-09-07 10:26:33 +00001029<pre>
Devang Patel9eb525d2008-09-26 23:51:19 +00001030define void @f() noinline { ... }
1031define void @f() alwaysinline { ... }
1032define void @f() alwaysinline optsize { ... }
1033define void @f() optsize
Bill Wendlingb175fa42008-09-07 10:26:33 +00001034</pre>
Devang Patelcaacdba2008-09-04 23:05:13 +00001035</div>
1036
Bill Wendlingb175fa42008-09-07 10:26:33 +00001037<dl>
Devang Patel9eb525d2008-09-26 23:51:19 +00001038<dt><tt>alwaysinline</tt></dt>
Chris Lattnerfbf60a42008-10-04 18:23:17 +00001039<dd>This attribute indicates that the inliner should attempt to inline this
1040function into callers whenever possible, ignoring any active inlining size
1041threshold for this caller.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +00001042
Devang Patel9eb525d2008-09-26 23:51:19 +00001043<dt><tt>noinline</tt></dt>
Chris Lattnerfbf60a42008-10-04 18:23:17 +00001044<dd>This attribute indicates that the inliner should never inline this function
Chris Lattner0625c282008-10-05 17:14:59 +00001045in any situation. This attribute may not be used together with the
Chris Lattnerfbf60a42008-10-04 18:23:17 +00001046<tt>alwaysinline</tt> attribute.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +00001047
Devang Patel9eb525d2008-09-26 23:51:19 +00001048<dt><tt>optsize</tt></dt>
Devang Patele9743902008-09-29 18:34:44 +00001049<dd>This attribute suggests that optimization passes and code generator passes
Chris Lattnerfbf60a42008-10-04 18:23:17 +00001050make choices that keep the code size of this function low, and otherwise do
1051optimizations specifically to reduce code size.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +00001052
Devang Patel9eb525d2008-09-26 23:51:19 +00001053<dt><tt>noreturn</tt></dt>
Chris Lattnerfbf60a42008-10-04 18:23:17 +00001054<dd>This function attribute indicates that the function never returns normally.
1055This produces undefined behavior at runtime if the function ever does
1056dynamically return.</dd>
Devang Patel9eb525d2008-09-26 23:51:19 +00001057
1058<dt><tt>nounwind</tt></dt>
Chris Lattnerfbf60a42008-10-04 18:23:17 +00001059<dd>This function attribute indicates that the function never returns with an
1060unwind or exceptional control flow. If the function does unwind, its runtime
1061behavior is undefined.</dd>
1062
1063<dt><tt>readnone</tt></dt>
Duncan Sands2a1d8ba2008-10-06 08:14:18 +00001064<dd>This attribute indicates that the function computes its result (or the
1065exception it throws) based strictly on its arguments, without dereferencing any
1066pointer arguments or otherwise accessing any mutable state (e.g. memory, control
1067registers, etc) visible to caller functions. It does not write through any
1068pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments) and
1069never changes any state visible to callers.</dd>
Devang Patel9eb525d2008-09-26 23:51:19 +00001070
Duncan Sands2a1d8ba2008-10-06 08:14:18 +00001071<dt><tt><a name="readonly">readonly</a></tt></dt>
1072<dd>This attribute indicates that the function does not write through any
1073pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments)
1074or otherwise modify any state (e.g. memory, control registers, etc) visible to
1075caller functions. It may dereference pointer arguments and read state that may
1076be set in the caller. A readonly function always returns the same value (or
1077throws the same exception) when called with the same set of arguments and global
1078state.</dd>
Bill Wendlinga8130172008-11-13 01:02:51 +00001079
1080<dt><tt><a name="ssp">ssp</a></tt></dt>
Bill Wendling6e41add2008-11-26 19:19:05 +00001081<dd>This attribute indicates that the function should emit a stack smashing
Bill Wendlinga8130172008-11-13 01:02:51 +00001082protector. It is in the form of a "canary"&mdash;a random value placed on the
1083stack before the local variables that's checked upon return from the function to
1084see if it has been overwritten. A heuristic is used to determine if a function
Bill Wendling6e41add2008-11-26 19:19:05 +00001085needs stack protectors or not.
Bill Wendlinga8130172008-11-13 01:02:51 +00001086
Bill Wendling0f5541e2008-11-26 19:07:40 +00001087<p>If a function that has an <tt>ssp</tt> attribute is inlined into a function
1088that doesn't have an <tt>ssp</tt> attribute, then the resulting function will
1089have an <tt>ssp</tt> attribute.</p></dd>
1090
1091<dt><tt>sspreq</tt></dt>
Bill Wendling6e41add2008-11-26 19:19:05 +00001092<dd>This attribute indicates that the function should <em>always</em> emit a
Bill Wendlinga8130172008-11-13 01:02:51 +00001093stack smashing protector. This overrides the <tt><a href="#ssp">ssp</a></tt>
Bill Wendling6e41add2008-11-26 19:19:05 +00001094function attribute.
Bill Wendling0f5541e2008-11-26 19:07:40 +00001095
1096<p>If a function that has an <tt>sspreq</tt> attribute is inlined into a
1097function that doesn't have an <tt>sspreq</tt> attribute or which has
1098an <tt>ssp</tt> attribute, then the resulting function will have
1099an <tt>sspreq</tt> attribute.</p></dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +00001100</dl>
1101
Devang Patelcaacdba2008-09-04 23:05:13 +00001102</div>
1103
1104<!-- ======================================================================= -->
1105<div class="doc_subsection">
Chris Lattner93564892006-04-08 04:40:53 +00001106 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner91c15c42006-01-23 23:23:47 +00001107</div>
1108
1109<div class="doc_text">
1110<p>
1111Modules may contain "module-level inline asm" blocks, which corresponds to the
1112GCC "file scope inline asm" blocks. These blocks are internally concatenated by
1113LLVM and treated as a single unit, but may be separated in the .ll file if
1114desired. The syntax is very simple:
1115</p>
1116
Bill Wendling3716c5d2007-05-29 09:04:49 +00001117<div class="doc_code">
1118<pre>
1119module asm "inline asm code goes here"
1120module asm "more can go here"
1121</pre>
1122</div>
Chris Lattner91c15c42006-01-23 23:23:47 +00001123
1124<p>The strings can contain any character by escaping non-printable characters.
1125 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
1126 for the number.
1127</p>
1128
1129<p>
1130 The inline asm code is simply printed to the machine code .s file when
1131 assembly code is generated.
1132</p>
1133</div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001134
Reid Spencer50c723a2007-02-19 23:54:10 +00001135<!-- ======================================================================= -->
1136<div class="doc_subsection">
1137 <a name="datalayout">Data Layout</a>
1138</div>
1139
1140<div class="doc_text">
1141<p>A module may specify a target specific data layout string that specifies how
Reid Spencer7972c472007-04-11 23:49:50 +00001142data is to be laid out in memory. The syntax for the data layout is simply:</p>
1143<pre> target datalayout = "<i>layout specification</i>"</pre>
1144<p>The <i>layout specification</i> consists of a list of specifications
1145separated by the minus sign character ('-'). Each specification starts with a
1146letter and may include other information after the letter to define some
1147aspect of the data layout. The specifications accepted are as follows: </p>
Reid Spencer50c723a2007-02-19 23:54:10 +00001148<dl>
1149 <dt><tt>E</tt></dt>
1150 <dd>Specifies that the target lays out data in big-endian form. That is, the
1151 bits with the most significance have the lowest address location.</dd>
1152 <dt><tt>e</tt></dt>
Chris Lattner67c37d12008-08-05 18:29:16 +00001153 <dd>Specifies that the target lays out data in little-endian form. That is,
Reid Spencer50c723a2007-02-19 23:54:10 +00001154 the bits with the least significance have the lowest address location.</dd>
1155 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1156 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
1157 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
1158 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
1159 too.</dd>
1160 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1161 <dd>This specifies the alignment for an integer type of a given bit
1162 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1163 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1164 <dd>This specifies the alignment for a vector type of a given bit
1165 <i>size</i>.</dd>
1166 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1167 <dd>This specifies the alignment for a floating point type of a given bit
1168 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1169 (double).</dd>
1170 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1171 <dd>This specifies the alignment for an aggregate type of a given bit
1172 <i>size</i>.</dd>
1173</dl>
1174<p>When constructing the data layout for a given target, LLVM starts with a
1175default set of specifications which are then (possibly) overriden by the
1176specifications in the <tt>datalayout</tt> keyword. The default specifications
1177are given in this list:</p>
1178<ul>
1179 <li><tt>E</tt> - big endian</li>
1180 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1181 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1182 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1183 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1184 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattner67c37d12008-08-05 18:29:16 +00001185 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencer50c723a2007-02-19 23:54:10 +00001186 alignment of 64-bits</li>
1187 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1188 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1189 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1190 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1191 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
1192</ul>
Chris Lattner1ca5c642008-08-05 18:21:08 +00001193<p>When LLVM is determining the alignment for a given type, it uses the
Dan Gohmanef9462f2008-10-14 16:51:45 +00001194following rules:</p>
Reid Spencer50c723a2007-02-19 23:54:10 +00001195<ol>
1196 <li>If the type sought is an exact match for one of the specifications, that
1197 specification is used.</li>
1198 <li>If no match is found, and the type sought is an integer type, then the
1199 smallest integer type that is larger than the bitwidth of the sought type is
1200 used. If none of the specifications are larger than the bitwidth then the the
1201 largest integer type is used. For example, given the default specifications
1202 above, the i7 type will use the alignment of i8 (next largest) while both
1203 i65 and i256 will use the alignment of i64 (largest specified).</li>
1204 <li>If no match is found, and the type sought is a vector type, then the
1205 largest vector type that is smaller than the sought vector type will be used
Dan Gohmanef9462f2008-10-14 16:51:45 +00001206 as a fall back. This happens because &lt;128 x double&gt; can be implemented
1207 in terms of 64 &lt;2 x double&gt;, for example.</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001208</ol>
1209</div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001210
Chris Lattner2f7c9632001-06-06 20:29:01 +00001211<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001212<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1213<!-- *********************************************************************** -->
Chris Lattner6af02f32004-12-09 16:11:40 +00001214
Misha Brukman76307852003-11-08 01:05:38 +00001215<div class="doc_text">
Chris Lattner6af02f32004-12-09 16:11:40 +00001216
Misha Brukman76307852003-11-08 01:05:38 +00001217<p>The LLVM type system is one of the most important features of the
Chris Lattner48b383b02003-11-25 01:02:51 +00001218intermediate representation. Being typed enables a number of
Chris Lattner67c37d12008-08-05 18:29:16 +00001219optimizations to be performed on the intermediate representation directly,
1220without having to do
Chris Lattner48b383b02003-11-25 01:02:51 +00001221extra analyses on the side before the transformation. A strong type
1222system makes it easier to read the generated code and enables novel
1223analyses and transformations that are not feasible to perform on normal
1224three address code representations.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +00001225
1226</div>
1227
Chris Lattner2f7c9632001-06-06 20:29:01 +00001228<!-- ======================================================================= -->
Chris Lattner7824d182008-01-04 04:32:38 +00001229<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner48b383b02003-11-25 01:02:51 +00001230Classifications</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001231<div class="doc_text">
Chris Lattner7824d182008-01-04 04:32:38 +00001232<p>The types fall into a few useful
Chris Lattner48b383b02003-11-25 01:02:51 +00001233classifications:</p>
Misha Brukmanc501f552004-03-01 17:47:27 +00001234
1235<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner48b383b02003-11-25 01:02:51 +00001236 <tbody>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001237 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner48b383b02003-11-25 01:02:51 +00001238 <tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001239 <td><a href="#t_integer">integer</a></td>
Reid Spencer138249b2007-05-16 18:44:01 +00001240 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001241 </tr>
1242 <tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001243 <td><a href="#t_floating">floating point</a></td>
1244 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001245 </tr>
1246 <tr>
1247 <td><a name="t_firstclass">first class</a></td>
Chris Lattner7824d182008-01-04 04:32:38 +00001248 <td><a href="#t_integer">integer</a>,
1249 <a href="#t_floating">floating point</a>,
1250 <a href="#t_pointer">pointer</a>,
Dan Gohman08783a882008-06-18 18:42:13 +00001251 <a href="#t_vector">vector</a>,
Dan Gohmanb9d66602008-05-12 23:51:09 +00001252 <a href="#t_struct">structure</a>,
1253 <a href="#t_array">array</a>,
Dan Gohmanda52d212008-05-23 22:50:26 +00001254 <a href="#t_label">label</a>.
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001255 </td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001256 </tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001257 <tr>
1258 <td><a href="#t_primitive">primitive</a></td>
1259 <td><a href="#t_label">label</a>,
1260 <a href="#t_void">void</a>,
Chris Lattner7824d182008-01-04 04:32:38 +00001261 <a href="#t_floating">floating point</a>.</td>
1262 </tr>
1263 <tr>
1264 <td><a href="#t_derived">derived</a></td>
1265 <td><a href="#t_integer">integer</a>,
1266 <a href="#t_array">array</a>,
1267 <a href="#t_function">function</a>,
1268 <a href="#t_pointer">pointer</a>,
1269 <a href="#t_struct">structure</a>,
1270 <a href="#t_pstruct">packed structure</a>,
1271 <a href="#t_vector">vector</a>,
1272 <a href="#t_opaque">opaque</a>.
Dan Gohman93bf60d2008-10-14 16:32:04 +00001273 </td>
Chris Lattner7824d182008-01-04 04:32:38 +00001274 </tr>
Chris Lattner48b383b02003-11-25 01:02:51 +00001275 </tbody>
Misha Brukman76307852003-11-08 01:05:38 +00001276</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00001277
Chris Lattner48b383b02003-11-25 01:02:51 +00001278<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1279most important. Values of these types are the only ones which can be
1280produced by instructions, passed as arguments, or used as operands to
Dan Gohman34d1c0d2008-05-23 21:53:15 +00001281instructions.</p>
Misha Brukman76307852003-11-08 01:05:38 +00001282</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001283
Chris Lattner2f7c9632001-06-06 20:29:01 +00001284<!-- ======================================================================= -->
Chris Lattner7824d182008-01-04 04:32:38 +00001285<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner43542b32008-01-04 04:34:14 +00001286
Chris Lattner7824d182008-01-04 04:32:38 +00001287<div class="doc_text">
1288<p>The primitive types are the fundamental building blocks of the LLVM
1289system.</p>
1290
Chris Lattner43542b32008-01-04 04:34:14 +00001291</div>
1292
Chris Lattner7824d182008-01-04 04:32:38 +00001293<!-- _______________________________________________________________________ -->
1294<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1295
1296<div class="doc_text">
1297 <table>
1298 <tbody>
1299 <tr><th>Type</th><th>Description</th></tr>
1300 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1301 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1302 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1303 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1304 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1305 </tbody>
1306 </table>
1307</div>
1308
1309<!-- _______________________________________________________________________ -->
1310<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1311
1312<div class="doc_text">
1313<h5>Overview:</h5>
1314<p>The void type does not represent any value and has no size.</p>
1315
1316<h5>Syntax:</h5>
1317
1318<pre>
1319 void
1320</pre>
1321</div>
1322
1323<!-- _______________________________________________________________________ -->
1324<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1325
1326<div class="doc_text">
1327<h5>Overview:</h5>
1328<p>The label type represents code labels.</p>
1329
1330<h5>Syntax:</h5>
1331
1332<pre>
1333 label
1334</pre>
1335</div>
1336
1337
1338<!-- ======================================================================= -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001339<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001340
Misha Brukman76307852003-11-08 01:05:38 +00001341<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00001342
Chris Lattner48b383b02003-11-25 01:02:51 +00001343<p>The real power in LLVM comes from the derived types in the system.
1344This is what allows a programmer to represent arrays, functions,
1345pointers, and other useful types. Note that these derived types may be
1346recursive: For example, it is possible to have a two dimensional array.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001347
Misha Brukman76307852003-11-08 01:05:38 +00001348</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001349
Chris Lattner2f7c9632001-06-06 20:29:01 +00001350<!-- _______________________________________________________________________ -->
Reid Spencer138249b2007-05-16 18:44:01 +00001351<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1352
1353<div class="doc_text">
1354
1355<h5>Overview:</h5>
1356<p>The integer type is a very simple derived type that simply specifies an
1357arbitrary bit width for the integer type desired. Any bit width from 1 bit to
13582^23-1 (about 8 million) can be specified.</p>
1359
1360<h5>Syntax:</h5>
1361
1362<pre>
1363 iN
1364</pre>
1365
1366<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1367value.</p>
1368
1369<h5>Examples:</h5>
1370<table class="layout">
Chris Lattner9a2e3cb2007-12-18 06:18:21 +00001371 <tbody>
1372 <tr>
1373 <td><tt>i1</tt></td>
1374 <td>a single-bit integer.</td>
1375 </tr><tr>
1376 <td><tt>i32</tt></td>
1377 <td>a 32-bit integer.</td>
1378 </tr><tr>
1379 <td><tt>i1942652</tt></td>
1380 <td>a really big integer of over 1 million bits.</td>
Reid Spencer138249b2007-05-16 18:44:01 +00001381 </tr>
Chris Lattner9a2e3cb2007-12-18 06:18:21 +00001382 </tbody>
Reid Spencer138249b2007-05-16 18:44:01 +00001383</table>
Dan Gohman142ccc02009-01-24 15:58:40 +00001384
1385<p>Note that the code generator does not yet support large integer types
1386to be used as function return types. The specific limit on how large a
1387return type the code generator can currently handle is target-dependent;
1388currently it's often 64 bits for 32-bit targets and 128 bits for 64-bit
1389targets.</p>
1390
Bill Wendling3716c5d2007-05-29 09:04:49 +00001391</div>
Reid Spencer138249b2007-05-16 18:44:01 +00001392
1393<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001394<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001395
Misha Brukman76307852003-11-08 01:05:38 +00001396<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00001397
Chris Lattner2f7c9632001-06-06 20:29:01 +00001398<h5>Overview:</h5>
Chris Lattner74d3f822004-12-09 17:30:23 +00001399
Misha Brukman76307852003-11-08 01:05:38 +00001400<p>The array type is a very simple derived type that arranges elements
Chris Lattner48b383b02003-11-25 01:02:51 +00001401sequentially in memory. The array type requires a size (number of
1402elements) and an underlying data type.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001403
Chris Lattner590645f2002-04-14 06:13:44 +00001404<h5>Syntax:</h5>
Chris Lattner74d3f822004-12-09 17:30:23 +00001405
1406<pre>
1407 [&lt;# elements&gt; x &lt;elementtype&gt;]
1408</pre>
1409
John Criswell02fdc6f2005-05-12 16:52:32 +00001410<p>The number of elements is a constant integer value; elementtype may
Chris Lattner48b383b02003-11-25 01:02:51 +00001411be any type with a size.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001412
Chris Lattner590645f2002-04-14 06:13:44 +00001413<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001414<table class="layout">
1415 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001416 <td class="left"><tt>[40 x i32]</tt></td>
1417 <td class="left">Array of 40 32-bit integer values.</td>
1418 </tr>
1419 <tr class="layout">
1420 <td class="left"><tt>[41 x i32]</tt></td>
1421 <td class="left">Array of 41 32-bit integer values.</td>
1422 </tr>
1423 <tr class="layout">
1424 <td class="left"><tt>[4 x i8]</tt></td>
1425 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001426 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001427</table>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001428<p>Here are some examples of multidimensional arrays:</p>
1429<table class="layout">
1430 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001431 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1432 <td class="left">3x4 array of 32-bit integer values.</td>
1433 </tr>
1434 <tr class="layout">
1435 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1436 <td class="left">12x10 array of single precision floating point values.</td>
1437 </tr>
1438 <tr class="layout">
1439 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1440 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001441 </tr>
1442</table>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001443
John Criswell4c0cf7f2005-10-24 16:17:18 +00001444<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1445length array. Normally, accesses past the end of an array are undefined in
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001446LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1447As a special case, however, zero length arrays are recognized to be variable
1448length. This allows implementation of 'pascal style arrays' with the LLVM
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001449type "{ i32, [0 x float]}", for example.</p>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001450
Dan Gohman142ccc02009-01-24 15:58:40 +00001451<p>Note that the code generator does not yet support large aggregate types
1452to be used as function return types. The specific limit on how large an
1453aggregate return type the code generator can currently handle is
1454target-dependent, and also dependent on the aggregate element types.</p>
1455
Misha Brukman76307852003-11-08 01:05:38 +00001456</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001457
Chris Lattner2f7c9632001-06-06 20:29:01 +00001458<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001459<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001460<div class="doc_text">
Chris Lattnerda508ac2008-04-23 04:59:35 +00001461
Chris Lattner2f7c9632001-06-06 20:29:01 +00001462<h5>Overview:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001463
Chris Lattner48b383b02003-11-25 01:02:51 +00001464<p>The function type can be thought of as a function signature. It
Devang Patele3dfc1c2008-03-24 05:35:41 +00001465consists of a return type and a list of formal parameter types. The
Chris Lattnerda508ac2008-04-23 04:59:35 +00001466return type of a function type is a scalar type, a void type, or a struct type.
Devang Patel9c1f8b12008-03-24 20:52:42 +00001467If the return type is a struct type then all struct elements must be of first
Chris Lattnerda508ac2008-04-23 04:59:35 +00001468class types, and the struct must have at least one element.</p>
Devang Pateld6cff512008-03-10 20:49:15 +00001469
Chris Lattner2f7c9632001-06-06 20:29:01 +00001470<h5>Syntax:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001471
1472<pre>
1473 &lt;returntype list&gt; (&lt;parameter list&gt;)
1474</pre>
1475
John Criswell4c0cf7f2005-10-24 16:17:18 +00001476<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Misha Brukman20f9a622004-08-12 20:16:08 +00001477specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
Chris Lattner5ed60612003-09-03 00:41:47 +00001478which indicates that the function takes a variable number of arguments.
1479Variable argument functions can access their arguments with the <a
Devang Pateld6cff512008-03-10 20:49:15 +00001480 href="#int_varargs">variable argument handling intrinsic</a> functions.
1481'<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1482<a href="#t_firstclass">first class</a> type specifiers.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001483
Chris Lattner2f7c9632001-06-06 20:29:01 +00001484<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001485<table class="layout">
1486 <tr class="layout">
Reid Spencer58c08712006-12-31 07:18:34 +00001487 <td class="left"><tt>i32 (i32)</tt></td>
1488 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001489 </td>
Reid Spencer58c08712006-12-31 07:18:34 +00001490 </tr><tr class="layout">
Reid Spencer314e1cb2007-07-19 23:13:04 +00001491 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencer655dcc62006-12-31 07:20:23 +00001492 </tt></td>
Reid Spencer58c08712006-12-31 07:18:34 +00001493 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1494 an <tt>i16</tt> that should be sign extended and a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001495 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer58c08712006-12-31 07:18:34 +00001496 <tt>float</tt>.
1497 </td>
1498 </tr><tr class="layout">
1499 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1500 <td class="left">A vararg function that takes at least one
Reid Spencer3e628eb92007-01-04 16:43:23 +00001501 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer58c08712006-12-31 07:18:34 +00001502 which returns an integer. This is the signature for <tt>printf</tt> in
1503 LLVM.
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001504 </td>
Devang Patele3dfc1c2008-03-24 05:35:41 +00001505 </tr><tr class="layout">
1506 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Misha Brukmanc9813bd2008-11-27 06:41:20 +00001507 <td class="left">A function taking an <tt>i32</tt>, returning two
1508 <tt>i32</tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
Devang Patele3dfc1c2008-03-24 05:35:41 +00001509 </td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001510 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001511</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00001512
Misha Brukman76307852003-11-08 01:05:38 +00001513</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001514<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001515<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001516<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00001517<h5>Overview:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001518<p>The structure type is used to represent a collection of data members
1519together in memory. The packing of the field types is defined to match
1520the ABI of the underlying processor. The elements of a structure may
1521be any type that has a size.</p>
1522<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1523and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1524field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1525instruction.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001526<h5>Syntax:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001527<pre> { &lt;type list&gt; }<br></pre>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001528<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001529<table class="layout">
1530 <tr class="layout">
Jeff Cohen5819f182007-04-22 01:17:39 +00001531 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1532 <td class="left">A triple of three <tt>i32</tt> values</td>
1533 </tr><tr class="layout">
1534 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1535 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1536 second element is a <a href="#t_pointer">pointer</a> to a
1537 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1538 an <tt>i32</tt>.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001539 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001540</table>
Dan Gohman142ccc02009-01-24 15:58:40 +00001541
1542<p>Note that the code generator does not yet support large aggregate types
1543to be used as function return types. The specific limit on how large an
1544aggregate return type the code generator can currently handle is
1545target-dependent, and also dependent on the aggregate element types.</p>
1546
Misha Brukman76307852003-11-08 01:05:38 +00001547</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001548
Chris Lattner2f7c9632001-06-06 20:29:01 +00001549<!-- _______________________________________________________________________ -->
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001550<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1551</div>
1552<div class="doc_text">
1553<h5>Overview:</h5>
1554<p>The packed structure type is used to represent a collection of data members
1555together in memory. There is no padding between fields. Further, the alignment
1556of a packed structure is 1 byte. The elements of a packed structure may
1557be any type that has a size.</p>
1558<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1559and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1560field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1561instruction.</p>
1562<h5>Syntax:</h5>
1563<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1564<h5>Examples:</h5>
1565<table class="layout">
1566 <tr class="layout">
Jeff Cohen5819f182007-04-22 01:17:39 +00001567 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1568 <td class="left">A triple of three <tt>i32</tt> values</td>
1569 </tr><tr class="layout">
Bill Wendlingb175fa42008-09-07 10:26:33 +00001570 <td class="left">
1571<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Jeff Cohen5819f182007-04-22 01:17:39 +00001572 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1573 second element is a <a href="#t_pointer">pointer</a> to a
1574 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1575 an <tt>i32</tt>.</td>
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001576 </tr>
1577</table>
1578</div>
1579
1580<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001581<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001582<div class="doc_text">
Chris Lattner590645f2002-04-14 06:13:44 +00001583<h5>Overview:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001584<p>As in many languages, the pointer type represents a pointer or
Christopher Lamb308121c2007-12-11 09:31:00 +00001585reference to another object, which must live in memory. Pointer types may have
1586an optional address space attribute defining the target-specific numbered
1587address space where the pointed-to object resides. The default address space is
1588zero.</p>
Chris Lattner4a67c912009-02-08 19:53:29 +00001589
1590<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does
Chris Lattnerd1d4cff2009-02-08 22:21:28 +00001591it permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p>
Chris Lattner4a67c912009-02-08 19:53:29 +00001592
Chris Lattner590645f2002-04-14 06:13:44 +00001593<h5>Syntax:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001594<pre> &lt;type&gt; *<br></pre>
Chris Lattner590645f2002-04-14 06:13:44 +00001595<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001596<table class="layout">
1597 <tr class="layout">
Dan Gohman623806e2009-01-04 23:44:43 +00001598 <td class="left"><tt>[4 x i32]*</tt></td>
Chris Lattner747359f2007-12-19 05:04:11 +00001599 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1600 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1601 </tr>
1602 <tr class="layout">
1603 <td class="left"><tt>i32 (i32 *) *</tt></td>
1604 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001605 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner747359f2007-12-19 05:04:11 +00001606 <tt>i32</tt>.</td>
1607 </tr>
1608 <tr class="layout">
1609 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1610 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1611 that resides in address space #5.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001612 </tr>
Misha Brukman76307852003-11-08 01:05:38 +00001613</table>
Misha Brukman76307852003-11-08 01:05:38 +00001614</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001615
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001616<!-- _______________________________________________________________________ -->
Reid Spencer404a3252007-02-15 03:07:05 +00001617<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001618<div class="doc_text">
Chris Lattner37b6b092005-04-25 17:34:15 +00001619
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001620<h5>Overview:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001621
Reid Spencer404a3252007-02-15 03:07:05 +00001622<p>A vector type is a simple derived type that represents a vector
1623of elements. Vector types are used when multiple primitive data
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001624are operated in parallel using a single instruction (SIMD).
Reid Spencer404a3252007-02-15 03:07:05 +00001625A vector type requires a size (number of
Chris Lattner330ce692005-11-10 01:44:22 +00001626elements) and an underlying primitive data type. Vectors must have a power
Reid Spencer404a3252007-02-15 03:07:05 +00001627of two length (1, 2, 4, 8, 16 ...). Vector types are
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001628considered <a href="#t_firstclass">first class</a>.</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00001629
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001630<h5>Syntax:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001631
1632<pre>
1633 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1634</pre>
1635
John Criswell4a3327e2005-05-13 22:25:59 +00001636<p>The number of elements is a constant integer value; elementtype may
Chris Lattnerc0f423a2007-01-15 01:54:13 +00001637be any integer or floating point type.</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00001638
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001639<h5>Examples:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001640
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001641<table class="layout">
1642 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001643 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1644 <td class="left">Vector of 4 32-bit integer values.</td>
1645 </tr>
1646 <tr class="layout">
1647 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1648 <td class="left">Vector of 8 32-bit floating-point values.</td>
1649 </tr>
1650 <tr class="layout">
1651 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1652 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001653 </tr>
1654</table>
Dan Gohman142ccc02009-01-24 15:58:40 +00001655
1656<p>Note that the code generator does not yet support large vector types
1657to be used as function return types. The specific limit on how large a
1658vector return type codegen can currently handle is target-dependent;
1659currently it's often a few times longer than a hardware vector register.</p>
1660
Misha Brukman76307852003-11-08 01:05:38 +00001661</div>
1662
Chris Lattner37b6b092005-04-25 17:34:15 +00001663<!-- _______________________________________________________________________ -->
1664<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1665<div class="doc_text">
1666
1667<h5>Overview:</h5>
1668
1669<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksena699c4d2007-10-14 00:34:53 +00001670corresponds (for example) to the C notion of a forward declared structure type.
Chris Lattner37b6b092005-04-25 17:34:15 +00001671In LLVM, opaque types can eventually be resolved to any type (not just a
1672structure type).</p>
1673
1674<h5>Syntax:</h5>
1675
1676<pre>
1677 opaque
1678</pre>
1679
1680<h5>Examples:</h5>
1681
1682<table class="layout">
1683 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001684 <td class="left"><tt>opaque</tt></td>
1685 <td class="left">An opaque type.</td>
Chris Lattner37b6b092005-04-25 17:34:15 +00001686 </tr>
1687</table>
1688</div>
1689
Chris Lattnercf7a5842009-02-02 07:32:36 +00001690<!-- ======================================================================= -->
1691<div class="doc_subsection">
1692 <a name="t_uprefs">Type Up-references</a>
1693</div>
1694
1695<div class="doc_text">
1696<h5>Overview:</h5>
1697<p>
1698An "up reference" allows you to refer to a lexically enclosing type without
1699requiring it to have a name. For instance, a structure declaration may contain a
1700pointer to any of the types it is lexically a member of. Example of up
1701references (with their equivalent as named type declarations) include:</p>
1702
1703<pre>
Chris Lattnerbf1d5452009-02-09 10:00:56 +00001704 { \2 * } %x = type { %x* }
Chris Lattnercf7a5842009-02-02 07:32:36 +00001705 { \2 }* %y = type { %y }*
1706 \1* %z = type %z*
1707</pre>
1708
1709<p>
1710An up reference is needed by the asmprinter for printing out cyclic types when
1711there is no declared name for a type in the cycle. Because the asmprinter does
1712not want to print out an infinite type string, it needs a syntax to handle
1713recursive types that have no names (all names are optional in llvm IR).
1714</p>
1715
1716<h5>Syntax:</h5>
1717<pre>
1718 \&lt;level&gt;
1719</pre>
1720
1721<p>
1722The level is the count of the lexical type that is being referred to.
1723</p>
1724
1725<h5>Examples:</h5>
1726
1727<table class="layout">
1728 <tr class="layout">
1729 <td class="left"><tt>\1*</tt></td>
1730 <td class="left">Self-referential pointer.</td>
1731 </tr>
1732 <tr class="layout">
1733 <td class="left"><tt>{ { \3*, i8 }, i32 }</tt></td>
1734 <td class="left">Recursive structure where the upref refers to the out-most
1735 structure.</td>
1736 </tr>
1737</table>
1738</div>
1739
Chris Lattner37b6b092005-04-25 17:34:15 +00001740
Chris Lattner74d3f822004-12-09 17:30:23 +00001741<!-- *********************************************************************** -->
1742<div class="doc_section"> <a name="constants">Constants</a> </div>
1743<!-- *********************************************************************** -->
1744
1745<div class="doc_text">
1746
1747<p>LLVM has several different basic types of constants. This section describes
1748them all and their syntax.</p>
1749
1750</div>
1751
1752<!-- ======================================================================= -->
Reid Spencer8f08d802004-12-09 18:02:53 +00001753<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001754
1755<div class="doc_text">
1756
1757<dl>
1758 <dt><b>Boolean constants</b></dt>
1759
1760 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Reid Spencer36a15422007-01-12 03:35:51 +00001761 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
Chris Lattner74d3f822004-12-09 17:30:23 +00001762 </dd>
1763
1764 <dt><b>Integer constants</b></dt>
1765
Reid Spencer8f08d802004-12-09 18:02:53 +00001766 <dd>Standard integers (such as '4') are constants of the <a
Reid Spencer3e628eb92007-01-04 16:43:23 +00001767 href="#t_integer">integer</a> type. Negative numbers may be used with
Chris Lattner74d3f822004-12-09 17:30:23 +00001768 integer types.
1769 </dd>
1770
1771 <dt><b>Floating point constants</b></dt>
1772
1773 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1774 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattner1429e6f2008-04-01 18:45:27 +00001775 notation (see below). The assembler requires the exact decimal value of
1776 a floating-point constant. For example, the assembler accepts 1.25 but
1777 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1778 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001779
1780 <dt><b>Null pointer constants</b></dt>
1781
John Criswelldfe6a862004-12-10 15:51:16 +00001782 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Chris Lattner74d3f822004-12-09 17:30:23 +00001783 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1784
1785</dl>
1786
Dale Johannesencd4a3012009-02-11 22:14:51 +00001787<p>The one non-intuitive notation for constants is the hexadecimal form
Chris Lattner74d3f822004-12-09 17:30:23 +00001788of floating point constants. For example, the form '<tt>double
17890x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
17904.5e+15</tt>'. The only time hexadecimal floating point constants are required
Reid Spencer8f08d802004-12-09 18:02:53 +00001791(and the only time that they are generated by the disassembler) is when a
1792floating point constant must be emitted but it cannot be represented as a
Dale Johannesencd4a3012009-02-11 22:14:51 +00001793decimal floating point number in a reasonable number of digits. For example,
1794NaN's, infinities, and other
Reid Spencer8f08d802004-12-09 18:02:53 +00001795special values are represented in their IEEE hexadecimal format so that
1796assembly and disassembly do not cause any bits to change in the constants.</p>
Dale Johannesencd4a3012009-02-11 22:14:51 +00001797<p>When using the hexadecimal form, constants of types float and double are
1798represented using the 16-digit form shown above (which matches the IEEE754
1799representation for double); float values must, however, be exactly representable
1800as IEE754 single precision.
1801Hexadecimal format is always used for long
1802double, and there are three forms of long double. The 80-bit
1803format used by x86 is represented as <tt>0xK</tt>
1804followed by 20 hexadecimal digits.
1805The 128-bit format used by PowerPC (two adjacent doubles) is represented
1806by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit
1807format is represented
1808by <tt>0xL</tt> followed by 32 hexadecimal digits; no currently supported
1809target uses this format. Long doubles will only work if they match
1810the long double format on your target. All hexadecimal formats are big-endian
1811(sign bit at the left).</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001812</div>
1813
1814<!-- ======================================================================= -->
Chris Lattner361bfcd2009-02-28 18:32:25 +00001815<div class="doc_subsection">
1816<a name="aggregateconstants"> <!-- old anchor -->
1817<a name="complexconstants">Complex Constants</a></a>
Chris Lattner74d3f822004-12-09 17:30:23 +00001818</div>
1819
1820<div class="doc_text">
Chris Lattner361bfcd2009-02-28 18:32:25 +00001821<p>Complex constants are a (potentially recursive) combination of simple
1822constants and smaller complex constants.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001823
1824<dl>
1825 <dt><b>Structure constants</b></dt>
1826
1827 <dd>Structure constants are represented with notation similar to structure
1828 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattnerbea11172007-12-25 20:34:52 +00001829 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1830 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Chris Lattner455fc8c2005-03-07 22:13:59 +00001831 must have <a href="#t_struct">structure type</a>, and the number and
Chris Lattner74d3f822004-12-09 17:30:23 +00001832 types of elements must match those specified by the type.
1833 </dd>
1834
1835 <dt><b>Array constants</b></dt>
1836
1837 <dd>Array constants are represented with notation similar to array type
1838 definitions (a comma separated list of elements, surrounded by square brackets
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001839 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
Chris Lattner74d3f822004-12-09 17:30:23 +00001840 constants must have <a href="#t_array">array type</a>, and the number and
1841 types of elements must match those specified by the type.
1842 </dd>
1843
Reid Spencer404a3252007-02-15 03:07:05 +00001844 <dt><b>Vector constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00001845
Reid Spencer404a3252007-02-15 03:07:05 +00001846 <dd>Vector constants are represented with notation similar to vector type
Chris Lattner74d3f822004-12-09 17:30:23 +00001847 definitions (a comma separated list of elements, surrounded by
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001848 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
Jeff Cohen5819f182007-04-22 01:17:39 +00001849 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
Reid Spencer404a3252007-02-15 03:07:05 +00001850 href="#t_vector">vector type</a>, and the number and types of elements must
Chris Lattner74d3f822004-12-09 17:30:23 +00001851 match those specified by the type.
1852 </dd>
1853
1854 <dt><b>Zero initialization</b></dt>
1855
1856 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1857 value to zero of <em>any</em> type, including scalar and aggregate types.
1858 This is often used to avoid having to print large zero initializers (e.g. for
John Criswell4c0cf7f2005-10-24 16:17:18 +00001859 large arrays) and is always exactly equivalent to using explicit zero
Chris Lattner74d3f822004-12-09 17:30:23 +00001860 initializers.
1861 </dd>
Nick Lewycky49f89192009-04-04 07:22:01 +00001862
1863 <dt><b>Metadata node</b></dt>
1864
1865 <dd>A metadata node is a structure-like constant with the type of an empty
1866 struct. For example: "<tt>{ } !{ i32 0, { } !"test" }</tt>". Unlike other
1867 constants that are meant to be interpreted as part of the instruction stream,
1868 metadata is a place to attach additional information such as debug info.
1869 </dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001870</dl>
1871
1872</div>
1873
1874<!-- ======================================================================= -->
1875<div class="doc_subsection">
1876 <a name="globalconstants">Global Variable and Function Addresses</a>
1877</div>
1878
1879<div class="doc_text">
1880
1881<p>The addresses of <a href="#globalvars">global variables</a> and <a
1882href="#functionstructure">functions</a> are always implicitly valid (link-time)
John Criswelldfe6a862004-12-10 15:51:16 +00001883constants. These constants are explicitly referenced when the <a
1884href="#identifiers">identifier for the global</a> is used and always have <a
Chris Lattner74d3f822004-12-09 17:30:23 +00001885href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1886file:</p>
1887
Bill Wendling3716c5d2007-05-29 09:04:49 +00001888<div class="doc_code">
Chris Lattner74d3f822004-12-09 17:30:23 +00001889<pre>
Chris Lattner00538a12007-06-06 18:28:13 +00001890@X = global i32 17
1891@Y = global i32 42
1892@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattner74d3f822004-12-09 17:30:23 +00001893</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00001894</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001895
1896</div>
1897
1898<!-- ======================================================================= -->
Reid Spencer641f5c92004-12-09 18:13:12 +00001899<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001900<div class="doc_text">
Reid Spencer641f5c92004-12-09 18:13:12 +00001901 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
John Criswell4a3327e2005-05-13 22:25:59 +00001902 no specific value. Undefined values may be of any type and be used anywhere
Reid Spencer641f5c92004-12-09 18:13:12 +00001903 a constant is permitted.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001904
Reid Spencer641f5c92004-12-09 18:13:12 +00001905 <p>Undefined values indicate to the compiler that the program is well defined
1906 no matter what value is used, giving the compiler more freedom to optimize.
1907 </p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001908</div>
1909
1910<!-- ======================================================================= -->
1911<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1912</div>
1913
1914<div class="doc_text">
1915
1916<p>Constant expressions are used to allow expressions involving other constants
1917to be used as constants. Constant expressions may be of any <a
John Criswell4a3327e2005-05-13 22:25:59 +00001918href="#t_firstclass">first class</a> type and may involve any LLVM operation
Chris Lattner74d3f822004-12-09 17:30:23 +00001919that does not have side effects (e.g. load and call are not supported). The
1920following is the syntax for constant expressions:</p>
1921
1922<dl>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001923 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1924 <dd>Truncate a constant to another type. The bit size of CST must be larger
Chris Lattnerc0f423a2007-01-15 01:54:13 +00001925 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001926
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001927 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1928 <dd>Zero extend a constant to another type. The bit size of CST must be
Chris Lattnerc0f423a2007-01-15 01:54:13 +00001929 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001930
1931 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1932 <dd>Sign extend a constant to another type. The bit size of CST must be
Chris Lattnerc0f423a2007-01-15 01:54:13 +00001933 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001934
1935 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1936 <dd>Truncate a floating point constant to another floating point type. The
1937 size of CST must be larger than the size of TYPE. Both types must be
1938 floating point.</dd>
1939
1940 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1941 <dd>Floating point extend a constant to another type. The size of CST must be
1942 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1943
Reid Spencer753163d2007-07-31 14:40:14 +00001944 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001945 <dd>Convert a floating point constant to the corresponding unsigned integer
Nate Begemand4d45c22007-11-17 03:58:34 +00001946 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1947 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1948 of the same number of elements. If the value won't fit in the integer type,
1949 the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001950
Reid Spencer51b07252006-11-09 23:03:26 +00001951 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001952 <dd>Convert a floating point constant to the corresponding signed integer
Nate Begemand4d45c22007-11-17 03:58:34 +00001953 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1954 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1955 of the same number of elements. If the value won't fit in the integer type,
1956 the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001957
Reid Spencer51b07252006-11-09 23:03:26 +00001958 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001959 <dd>Convert an unsigned integer constant to the corresponding floating point
Nate Begemand4d45c22007-11-17 03:58:34 +00001960 constant. TYPE must be a scalar or vector floating point type. CST must be of
1961 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1962 of the same number of elements. If the value won't fit in the floating point
1963 type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001964
Reid Spencer51b07252006-11-09 23:03:26 +00001965 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001966 <dd>Convert a signed integer constant to the corresponding floating point
Nate Begemand4d45c22007-11-17 03:58:34 +00001967 constant. TYPE must be a scalar or vector floating point type. CST must be of
1968 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1969 of the same number of elements. If the value won't fit in the floating point
1970 type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001971
Reid Spencer5b950642006-11-11 23:08:07 +00001972 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1973 <dd>Convert a pointer typed constant to the corresponding integer constant
1974 TYPE must be an integer type. CST must be of pointer type. The CST value is
1975 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1976
1977 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1978 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1979 pointer type. CST must be of integer type. The CST value is zero extended,
1980 truncated, or unchanged to make it fit in a pointer size. This one is
1981 <i>really</i> dangerous!</dd>
1982
1983 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Chris Lattner789dee32009-02-28 18:27:03 +00001984 <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
1985 are the same as those for the <a href="#i_bitcast">bitcast
1986 instruction</a>.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001987
1988 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1989
1990 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1991 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1992 instruction, the index list may have zero or more indexes, which are required
1993 to make sense for the type of "CSTPTR".</dd>
1994
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00001995 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1996
1997 <dd>Perform the <a href="#i_select">select operation</a> on
Reid Spencer9965ee72006-12-04 19:23:19 +00001998 constants.</dd>
1999
2000 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
2001 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
2002
2003 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
2004 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002005
Nate Begemand2195702008-05-12 19:01:56 +00002006 <dt><b><tt>vicmp COND ( VAL1, VAL2 )</tt></b></dt>
2007 <dd>Performs the <a href="#i_vicmp">vicmp operation</a> on constants.</dd>
2008
2009 <dt><b><tt>vfcmp COND ( VAL1, VAL2 )</tt></b></dt>
2010 <dd>Performs the <a href="#i_vfcmp">vfcmp operation</a> on constants.</dd>
2011
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002012 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
2013
2014 <dd>Perform the <a href="#i_extractelement">extractelement
Dan Gohmanef9462f2008-10-14 16:51:45 +00002015 operation</a> on constants.</dd>
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002016
Robert Bocchinof72fdfe2006-01-15 20:48:27 +00002017 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
2018
2019 <dd>Perform the <a href="#i_insertelement">insertelement
Reid Spencer9965ee72006-12-04 19:23:19 +00002020 operation</a> on constants.</dd>
Robert Bocchinof72fdfe2006-01-15 20:48:27 +00002021
Chris Lattner016a0e52006-04-08 00:13:41 +00002022
2023 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
2024
2025 <dd>Perform the <a href="#i_shufflevector">shufflevector
Reid Spencer9965ee72006-12-04 19:23:19 +00002026 operation</a> on constants.</dd>
Chris Lattner016a0e52006-04-08 00:13:41 +00002027
Chris Lattner74d3f822004-12-09 17:30:23 +00002028 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
2029
Reid Spencer641f5c92004-12-09 18:13:12 +00002030 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2031 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
Chris Lattner74d3f822004-12-09 17:30:23 +00002032 binary</a> operations. The constraints on operands are the same as those for
2033 the corresponding instruction (e.g. no bitwise operations on floating point
John Criswell02fdc6f2005-05-12 16:52:32 +00002034 values are allowed).</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002035</dl>
Chris Lattner74d3f822004-12-09 17:30:23 +00002036</div>
Chris Lattnerb1652612004-03-08 16:49:10 +00002037
Nick Lewycky49f89192009-04-04 07:22:01 +00002038<!-- ======================================================================= -->
2039<div class="doc_subsection"><a name="metadata">Embedded Metadata</a>
2040</div>
2041
2042<div class="doc_text">
2043
2044<p>Embedded metadata provides a way to attach arbitrary data to the
2045instruction stream without affecting the behaviour of the program. There are
2046two metadata primitives, strings and nodes. All metadata has the type of an
2047empty struct and is identified in syntax by a preceding exclamation point
2048('<tt>!</tt>').
2049</p>
2050
2051<p>A metadata string is a string surrounded by double quotes. It can contain
2052any character by escaping non-printable characters with "\xx" where "xx" is
2053the two digit hex code. For example: "<tt>!"test\00"</tt>".
2054</p>
2055
2056<p>Metadata nodes are represented with notation similar to structure constants
2057(a comma separated list of elements, surrounded by braces and preceeded by an
2058exclamation point). For example: "<tt>!{ { } !"test\00", i32 10}</tt>".
2059</p>
2060
2061<p>Optimizations may rely on metadata to provide additional information about
2062the program that isn't available in the instructions, or that isn't easily
2063computable. Similarly, the code generator may expect a certain metadata format
2064to be used to express debugging information.</p>
2065</div>
2066
Chris Lattner2f7c9632001-06-06 20:29:01 +00002067<!-- *********************************************************************** -->
Chris Lattner98f013c2006-01-25 23:47:57 +00002068<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
2069<!-- *********************************************************************** -->
2070
2071<!-- ======================================================================= -->
2072<div class="doc_subsection">
2073<a name="inlineasm">Inline Assembler Expressions</a>
2074</div>
2075
2076<div class="doc_text">
2077
2078<p>
2079LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
2080Module-Level Inline Assembly</a>) through the use of a special value. This
2081value represents the inline assembler as a string (containing the instructions
2082to emit), a list of operand constraints (stored as a string), and a flag that
2083indicates whether or not the inline asm expression has side effects. An example
2084inline assembler expression is:
2085</p>
2086
Bill Wendling3716c5d2007-05-29 09:04:49 +00002087<div class="doc_code">
Chris Lattner98f013c2006-01-25 23:47:57 +00002088<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002089i32 (i32) asm "bswap $0", "=r,r"
Chris Lattner98f013c2006-01-25 23:47:57 +00002090</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002091</div>
Chris Lattner98f013c2006-01-25 23:47:57 +00002092
2093<p>
2094Inline assembler expressions may <b>only</b> be used as the callee operand of
2095a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
2096</p>
2097
Bill Wendling3716c5d2007-05-29 09:04:49 +00002098<div class="doc_code">
Chris Lattner98f013c2006-01-25 23:47:57 +00002099<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002100%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattner98f013c2006-01-25 23:47:57 +00002101</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002102</div>
Chris Lattner98f013c2006-01-25 23:47:57 +00002103
2104<p>
2105Inline asms with side effects not visible in the constraint list must be marked
2106as having side effects. This is done through the use of the
2107'<tt>sideeffect</tt>' keyword, like so:
2108</p>
2109
Bill Wendling3716c5d2007-05-29 09:04:49 +00002110<div class="doc_code">
Chris Lattner98f013c2006-01-25 23:47:57 +00002111<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002112call void asm sideeffect "eieio", ""()
Chris Lattner98f013c2006-01-25 23:47:57 +00002113</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002114</div>
Chris Lattner98f013c2006-01-25 23:47:57 +00002115
2116<p>TODO: The format of the asm and constraints string still need to be
2117documented here. Constraints on what can be done (e.g. duplication, moving, etc
Chris Lattnerd5528262008-10-04 18:36:02 +00002118need to be documented). This is probably best done by reference to another
2119document that covers inline asm from a holistic perspective.
Chris Lattner98f013c2006-01-25 23:47:57 +00002120</p>
2121
2122</div>
2123
2124<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002125<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
2126<!-- *********************************************************************** -->
Chris Lattner74d3f822004-12-09 17:30:23 +00002127
Misha Brukman76307852003-11-08 01:05:38 +00002128<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00002129
Chris Lattner48b383b02003-11-25 01:02:51 +00002130<p>The LLVM instruction set consists of several different
2131classifications of instructions: <a href="#terminators">terminator
John Criswell4a3327e2005-05-13 22:25:59 +00002132instructions</a>, <a href="#binaryops">binary instructions</a>,
2133<a href="#bitwiseops">bitwise binary instructions</a>, <a
Chris Lattner48b383b02003-11-25 01:02:51 +00002134 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
2135instructions</a>.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002136
Misha Brukman76307852003-11-08 01:05:38 +00002137</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002138
Chris Lattner2f7c9632001-06-06 20:29:01 +00002139<!-- ======================================================================= -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002140<div class="doc_subsection"> <a name="terminators">Terminator
2141Instructions</a> </div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002142
Misha Brukman76307852003-11-08 01:05:38 +00002143<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00002144
Chris Lattner48b383b02003-11-25 01:02:51 +00002145<p>As mentioned <a href="#functionstructure">previously</a>, every
2146basic block in a program ends with a "Terminator" instruction, which
2147indicates which block should be executed after the current block is
2148finished. These terminator instructions typically yield a '<tt>void</tt>'
2149value: they produce control flow, not values (the one exception being
2150the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
John Criswelldfe6a862004-12-10 15:51:16 +00002151<p>There are six different terminator instructions: the '<a
Chris Lattner48b383b02003-11-25 01:02:51 +00002152 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
2153instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002154the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
2155 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
2156 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002157
Misha Brukman76307852003-11-08 01:05:38 +00002158</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002159
Chris Lattner2f7c9632001-06-06 20:29:01 +00002160<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002161<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
2162Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00002163<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00002164<h5>Syntax:</h5>
Dan Gohmancc3132e2008-10-04 19:00:07 +00002165<pre>
2166 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner590645f2002-04-14 06:13:44 +00002167 ret void <i>; Return from void function</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002168</pre>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002169
Chris Lattner2f7c9632001-06-06 20:29:01 +00002170<h5>Overview:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002171
Dan Gohmancc3132e2008-10-04 19:00:07 +00002172<p>The '<tt>ret</tt>' instruction is used to return control flow (and
2173optionally a value) from a function back to the caller.</p>
John Criswell417228d2004-04-09 16:48:45 +00002174<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Dan Gohmancc3132e2008-10-04 19:00:07 +00002175returns a value and then causes control flow, and one that just causes
Chris Lattner48b383b02003-11-25 01:02:51 +00002176control flow to occur.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002177
Chris Lattner2f7c9632001-06-06 20:29:01 +00002178<h5>Arguments:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002179
Dan Gohmancc3132e2008-10-04 19:00:07 +00002180<p>The '<tt>ret</tt>' instruction optionally accepts a single argument,
2181the return value. The type of the return value must be a
2182'<a href="#t_firstclass">first class</a>' type.</p>
2183
2184<p>A function is not <a href="#wellformed">well formed</a> if
2185it it has a non-void return type and contains a '<tt>ret</tt>'
2186instruction with no return value or a return value with a type that
2187does not match its type, or if it has a void return type and contains
2188a '<tt>ret</tt>' instruction with a return value.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002189
Chris Lattner2f7c9632001-06-06 20:29:01 +00002190<h5>Semantics:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002191
Chris Lattner48b383b02003-11-25 01:02:51 +00002192<p>When the '<tt>ret</tt>' instruction is executed, control flow
2193returns back to the calling function's context. If the caller is a "<a
John Criswell40db33f2004-06-25 15:16:57 +00002194 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
Chris Lattner48b383b02003-11-25 01:02:51 +00002195the instruction after the call. If the caller was an "<a
2196 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
John Criswell02fdc6f2005-05-12 16:52:32 +00002197at the beginning of the "normal" destination block. If the instruction
Chris Lattner48b383b02003-11-25 01:02:51 +00002198returns a value, that value shall set the call or invoke instruction's
Dan Gohmanef9462f2008-10-14 16:51:45 +00002199return value.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002200
Chris Lattner2f7c9632001-06-06 20:29:01 +00002201<h5>Example:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002202
2203<pre>
2204 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner590645f2002-04-14 06:13:44 +00002205 ret void <i>; Return from a void function</i>
Bill Wendling050ee8f2009-02-28 22:12:54 +00002206 ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002207</pre>
Dan Gohman3065b612009-01-12 23:12:39 +00002208
Dan Gohman142ccc02009-01-24 15:58:40 +00002209<p>Note that the code generator does not yet fully support large
2210 return values. The specific sizes that are currently supported are
2211 dependent on the target. For integers, on 32-bit targets the limit
2212 is often 64 bits, and on 64-bit targets the limit is often 128 bits.
2213 For aggregate types, the current limits are dependent on the element
2214 types; for example targets are often limited to 2 total integer
2215 elements and 2 total floating-point elements.</p>
Dan Gohman3065b612009-01-12 23:12:39 +00002216
Misha Brukman76307852003-11-08 01:05:38 +00002217</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002218<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002219<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00002220<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00002221<h5>Syntax:</h5>
Reid Spencer36a15422007-01-12 03:35:51 +00002222<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002223</pre>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002224<h5>Overview:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00002225<p>The '<tt>br</tt>' instruction is used to cause control flow to
2226transfer to a different basic block in the current function. There are
2227two forms of this instruction, corresponding to a conditional branch
2228and an unconditional branch.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002229<h5>Arguments:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00002230<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
Reid Spencer36a15422007-01-12 03:35:51 +00002231single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
Reid Spencer50c723a2007-02-19 23:54:10 +00002232unconditional form of the '<tt>br</tt>' instruction takes a single
2233'<tt>label</tt>' value as a target.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002234<h5>Semantics:</h5>
Reid Spencer36a15422007-01-12 03:35:51 +00002235<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Chris Lattner48b383b02003-11-25 01:02:51 +00002236argument is evaluated. If the value is <tt>true</tt>, control flows
2237to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
2238control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002239<h5>Example:</h5>
Reid Spencer36a15422007-01-12 03:35:51 +00002240<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002241 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
Misha Brukman76307852003-11-08 01:05:38 +00002242</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002243<!-- _______________________________________________________________________ -->
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002244<div class="doc_subsubsection">
2245 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
2246</div>
2247
Misha Brukman76307852003-11-08 01:05:38 +00002248<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00002249<h5>Syntax:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002250
2251<pre>
2252 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
2253</pre>
2254
Chris Lattner2f7c9632001-06-06 20:29:01 +00002255<h5>Overview:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002256
2257<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
2258several different places. It is a generalization of the '<tt>br</tt>'
Misha Brukman76307852003-11-08 01:05:38 +00002259instruction, allowing a branch to occur to one of many possible
2260destinations.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002261
2262
Chris Lattner2f7c9632001-06-06 20:29:01 +00002263<h5>Arguments:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002264
2265<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
2266comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
2267an array of pairs of comparison value constants and '<tt>label</tt>'s. The
2268table is not allowed to contain duplicate constant entries.</p>
2269
Chris Lattner2f7c9632001-06-06 20:29:01 +00002270<h5>Semantics:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002271
Chris Lattner48b383b02003-11-25 01:02:51 +00002272<p>The <tt>switch</tt> instruction specifies a table of values and
2273destinations. When the '<tt>switch</tt>' instruction is executed, this
John Criswellbcbb18c2004-06-25 16:05:06 +00002274table is searched for the given value. If the value is found, control flow is
2275transfered to the corresponding destination; otherwise, control flow is
2276transfered to the default destination.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002277
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002278<h5>Implementation:</h5>
2279
2280<p>Depending on properties of the target machine and the particular
2281<tt>switch</tt> instruction, this instruction may be code generated in different
John Criswellbcbb18c2004-06-25 16:05:06 +00002282ways. For example, it could be generated as a series of chained conditional
2283branches or with a lookup table.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002284
2285<h5>Example:</h5>
2286
2287<pre>
2288 <i>; Emulate a conditional br instruction</i>
Reid Spencer36a15422007-01-12 03:35:51 +00002289 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Dan Gohman623806e2009-01-04 23:44:43 +00002290 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002291
2292 <i>; Emulate an unconditional br instruction</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002293 switch i32 0, label %dest [ ]
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002294
2295 <i>; Implement a jump table:</i>
Dan Gohman623806e2009-01-04 23:44:43 +00002296 switch i32 %val, label %otherwise [ i32 0, label %onzero
2297 i32 1, label %onone
2298 i32 2, label %ontwo ]
Chris Lattner2f7c9632001-06-06 20:29:01 +00002299</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002300</div>
Chris Lattner0132aff2005-05-06 22:57:40 +00002301
Chris Lattner2f7c9632001-06-06 20:29:01 +00002302<!-- _______________________________________________________________________ -->
Chris Lattner0132aff2005-05-06 22:57:40 +00002303<div class="doc_subsubsection">
2304 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2305</div>
2306
Misha Brukman76307852003-11-08 01:05:38 +00002307<div class="doc_text">
Chris Lattner0132aff2005-05-06 22:57:40 +00002308
Chris Lattner2f7c9632001-06-06 20:29:01 +00002309<h5>Syntax:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00002310
2311<pre>
Devang Patel02256232008-10-07 17:48:33 +00002312 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner6b7a0082006-05-14 18:23:06 +00002313 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattner0132aff2005-05-06 22:57:40 +00002314</pre>
2315
Chris Lattnera8292f32002-05-06 22:08:29 +00002316<h5>Overview:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00002317
2318<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
2319function, with the possibility of control flow transfer to either the
John Criswell02fdc6f2005-05-12 16:52:32 +00002320'<tt>normal</tt>' label or the
2321'<tt>exception</tt>' label. If the callee function returns with the
Chris Lattner0132aff2005-05-06 22:57:40 +00002322"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
2323"normal" label. If the callee (or any indirect callees) returns with the "<a
John Criswell02fdc6f2005-05-12 16:52:32 +00002324href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
Dan Gohmanef9462f2008-10-14 16:51:45 +00002325continued at the dynamically nearest "exception" label.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00002326
Chris Lattner2f7c9632001-06-06 20:29:01 +00002327<h5>Arguments:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00002328
Misha Brukman76307852003-11-08 01:05:38 +00002329<p>This instruction requires several arguments:</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00002330
Chris Lattner2f7c9632001-06-06 20:29:01 +00002331<ol>
Chris Lattner0132aff2005-05-06 22:57:40 +00002332 <li>
Duncan Sands16f122e2007-03-30 12:22:09 +00002333 The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattner0132aff2005-05-06 22:57:40 +00002334 convention</a> the call should use. If none is specified, the call defaults
2335 to using C calling conventions.
2336 </li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00002337
2338 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
2339 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
2340 and '<tt>inreg</tt>' attributes are valid here.</li>
2341
Chris Lattner0132aff2005-05-06 22:57:40 +00002342 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
2343 function value being invoked. In most cases, this is a direct function
2344 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
2345 an arbitrary pointer to function value.
2346 </li>
2347
2348 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
2349 function to be invoked. </li>
2350
2351 <li>'<tt>function args</tt>': argument list whose types match the function
2352 signature argument types. If the function signature indicates the function
2353 accepts a variable number of arguments, the extra arguments can be
2354 specified. </li>
2355
2356 <li>'<tt>normal label</tt>': the label reached when the called function
2357 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
2358
2359 <li>'<tt>exception label</tt>': the label reached when a callee returns with
2360 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
2361
Devang Patel02256232008-10-07 17:48:33 +00002362 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patel7e9b05e2008-10-06 18:50:38 +00002363 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
2364 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002365</ol>
Chris Lattner0132aff2005-05-06 22:57:40 +00002366
Chris Lattner2f7c9632001-06-06 20:29:01 +00002367<h5>Semantics:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00002368
Misha Brukman76307852003-11-08 01:05:38 +00002369<p>This instruction is designed to operate as a standard '<tt><a
Chris Lattner0132aff2005-05-06 22:57:40 +00002370href="#i_call">call</a></tt>' instruction in most regards. The primary
2371difference is that it establishes an association with a label, which is used by
2372the runtime library to unwind the stack.</p>
2373
2374<p>This instruction is used in languages with destructors to ensure that proper
2375cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2376exception. Additionally, this is important for implementation of
2377'<tt>catch</tt>' clauses in high-level languages that support them.</p>
2378
Chris Lattner2f7c9632001-06-06 20:29:01 +00002379<h5>Example:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00002380<pre>
Nick Lewycky084ab472008-03-16 07:18:12 +00002381 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen5819f182007-04-22 01:17:39 +00002382 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewycky084ab472008-03-16 07:18:12 +00002383 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen5819f182007-04-22 01:17:39 +00002384 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002385</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002386</div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002387
2388
Chris Lattner5ed60612003-09-03 00:41:47 +00002389<!-- _______________________________________________________________________ -->
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002390
Chris Lattner48b383b02003-11-25 01:02:51 +00002391<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2392Instruction</a> </div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002393
Misha Brukman76307852003-11-08 01:05:38 +00002394<div class="doc_text">
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002395
Chris Lattner5ed60612003-09-03 00:41:47 +00002396<h5>Syntax:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002397<pre>
2398 unwind
2399</pre>
2400
Chris Lattner5ed60612003-09-03 00:41:47 +00002401<h5>Overview:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002402
2403<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
2404at the first callee in the dynamic call stack which used an <a
2405href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
2406primarily used to implement exception handling.</p>
2407
Chris Lattner5ed60612003-09-03 00:41:47 +00002408<h5>Semantics:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002409
Chris Lattnerfe8519c2008-04-19 21:01:16 +00002410<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002411immediately halt. The dynamic call stack is then searched for the first <a
2412href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
2413execution continues at the "exceptional" destination block specified by the
2414<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
2415dynamic call chain, undefined behavior results.</p>
Misha Brukman76307852003-11-08 01:05:38 +00002416</div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002417
2418<!-- _______________________________________________________________________ -->
2419
2420<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2421Instruction</a> </div>
2422
2423<div class="doc_text">
2424
2425<h5>Syntax:</h5>
2426<pre>
2427 unreachable
2428</pre>
2429
2430<h5>Overview:</h5>
2431
2432<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2433instruction is used to inform the optimizer that a particular portion of the
2434code is not reachable. This can be used to indicate that the code after a
2435no-return function cannot be reached, and other facts.</p>
2436
2437<h5>Semantics:</h5>
2438
2439<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2440</div>
2441
2442
2443
Chris Lattner2f7c9632001-06-06 20:29:01 +00002444<!-- ======================================================================= -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002445<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00002446<div class="doc_text">
Chris Lattner48b383b02003-11-25 01:02:51 +00002447<p>Binary operators are used to do most of the computation in a
Chris Lattner81f92972008-04-01 18:47:32 +00002448program. They require two operands of the same type, execute an operation on them, and
John Criswelldfe6a862004-12-10 15:51:16 +00002449produce a single value. The operands might represent
Reid Spencer404a3252007-02-15 03:07:05 +00002450multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattner81f92972008-04-01 18:47:32 +00002451The result value has the same type as its operands.</p>
Misha Brukman76307852003-11-08 01:05:38 +00002452<p>There are several different binary operators:</p>
Misha Brukman76307852003-11-08 01:05:38 +00002453</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002454<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002455<div class="doc_subsubsection">
2456 <a name="i_add">'<tt>add</tt>' Instruction</a>
2457</div>
2458
Misha Brukman76307852003-11-08 01:05:38 +00002459<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002460
Chris Lattner2f7c9632001-06-06 20:29:01 +00002461<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002462
2463<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002464 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002465</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002466
Chris Lattner2f7c9632001-06-06 20:29:01 +00002467<h5>Overview:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002468
Misha Brukman76307852003-11-08 01:05:38 +00002469<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002470
Chris Lattner2f7c9632001-06-06 20:29:01 +00002471<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002472
2473<p>The two arguments to the '<tt>add</tt>' instruction must be <a
2474 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>, or
2475 <a href="#t_vector">vector</a> values. Both arguments must have identical
2476 types.</p>
2477
Chris Lattner2f7c9632001-06-06 20:29:01 +00002478<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002479
Misha Brukman76307852003-11-08 01:05:38 +00002480<p>The value produced is the integer or floating point sum of the two
2481operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002482
Chris Lattner2f2427e2008-01-28 00:36:27 +00002483<p>If an integer sum has unsigned overflow, the result returned is the
2484mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2485the result.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002486
Chris Lattner2f2427e2008-01-28 00:36:27 +00002487<p>Because LLVM integers use a two's complement representation, this
2488instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002489
Chris Lattner2f7c9632001-06-06 20:29:01 +00002490<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002491
2492<pre>
2493 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002494</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002495</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002496<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002497<div class="doc_subsubsection">
2498 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2499</div>
2500
Misha Brukman76307852003-11-08 01:05:38 +00002501<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002502
Chris Lattner2f7c9632001-06-06 20:29:01 +00002503<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002504
2505<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002506 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002507</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002508
Chris Lattner2f7c9632001-06-06 20:29:01 +00002509<h5>Overview:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002510
Misha Brukman76307852003-11-08 01:05:38 +00002511<p>The '<tt>sub</tt>' instruction returns the difference of its two
2512operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002513
2514<p>Note that the '<tt>sub</tt>' instruction is used to represent the
2515'<tt>neg</tt>' instruction present in most other intermediate
2516representations.</p>
2517
Chris Lattner2f7c9632001-06-06 20:29:01 +00002518<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002519
2520<p>The two arguments to the '<tt>sub</tt>' instruction must be <a
2521 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2522 or <a href="#t_vector">vector</a> values. Both arguments must have identical
2523 types.</p>
2524
Chris Lattner2f7c9632001-06-06 20:29:01 +00002525<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002526
Chris Lattner48b383b02003-11-25 01:02:51 +00002527<p>The value produced is the integer or floating point difference of
2528the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002529
Chris Lattner2f2427e2008-01-28 00:36:27 +00002530<p>If an integer difference has unsigned overflow, the result returned is the
2531mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2532the result.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002533
Chris Lattner2f2427e2008-01-28 00:36:27 +00002534<p>Because LLVM integers use a two's complement representation, this
2535instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002536
Chris Lattner2f7c9632001-06-06 20:29:01 +00002537<h5>Example:</h5>
Bill Wendling2d8b9a82007-05-29 09:42:13 +00002538<pre>
2539 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002540 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002541</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002542</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002543
Chris Lattner2f7c9632001-06-06 20:29:01 +00002544<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002545<div class="doc_subsubsection">
2546 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2547</div>
2548
Misha Brukman76307852003-11-08 01:05:38 +00002549<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002550
Chris Lattner2f7c9632001-06-06 20:29:01 +00002551<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002552<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002553</pre>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002554<h5>Overview:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00002555<p>The '<tt>mul</tt>' instruction returns the product of its two
2556operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002557
Chris Lattner2f7c9632001-06-06 20:29:01 +00002558<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002559
2560<p>The two arguments to the '<tt>mul</tt>' instruction must be <a
2561href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2562or <a href="#t_vector">vector</a> values. Both arguments must have identical
2563types.</p>
2564
Chris Lattner2f7c9632001-06-06 20:29:01 +00002565<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002566
Chris Lattner48b383b02003-11-25 01:02:51 +00002567<p>The value produced is the integer or floating point product of the
Misha Brukman76307852003-11-08 01:05:38 +00002568two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002569
Chris Lattner2f2427e2008-01-28 00:36:27 +00002570<p>If the result of an integer multiplication has unsigned overflow,
2571the result returned is the mathematical result modulo
25722<sup>n</sup>, where n is the bit width of the result.</p>
2573<p>Because LLVM integers use a two's complement representation, and the
2574result is the same width as the operands, this instruction returns the
2575correct result for both signed and unsigned integers. If a full product
2576(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
2577should be sign-extended or zero-extended as appropriate to the
2578width of the full product.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002579<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002580<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002581</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002582</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002583
Chris Lattner2f7c9632001-06-06 20:29:01 +00002584<!-- _______________________________________________________________________ -->
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002585<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2586</a></div>
2587<div class="doc_text">
2588<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002589<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002590</pre>
2591<h5>Overview:</h5>
2592<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2593operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002594
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002595<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002596
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002597<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002598<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2599values. Both arguments must have identical types.</p>
2600
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002601<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002602
Chris Lattner2f2427e2008-01-28 00:36:27 +00002603<p>The value produced is the unsigned integer quotient of the two operands.</p>
2604<p>Note that unsigned integer division and signed integer division are distinct
2605operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2606<p>Division by zero leads to undefined behavior.</p>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002607<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002608<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002609</pre>
2610</div>
2611<!-- _______________________________________________________________________ -->
2612<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2613</a> </div>
2614<div class="doc_text">
2615<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002616<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002617 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002618</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002619
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002620<h5>Overview:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002621
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002622<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2623operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002624
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002625<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002626
2627<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2628<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2629values. Both arguments must have identical types.</p>
2630
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002631<h5>Semantics:</h5>
Chris Lattner1429e6f2008-04-01 18:45:27 +00002632<p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p>
Chris Lattner2f2427e2008-01-28 00:36:27 +00002633<p>Note that signed integer division and unsigned integer division are distinct
2634operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2635<p>Division by zero leads to undefined behavior. Overflow also leads to
2636undefined behavior; this is a rare case, but can occur, for example,
2637by doing a 32-bit division of -2147483648 by -1.</p>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002638<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002639<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002640</pre>
2641</div>
2642<!-- _______________________________________________________________________ -->
2643<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner48b383b02003-11-25 01:02:51 +00002644Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00002645<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00002646<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002647<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002648 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00002649</pre>
2650<h5>Overview:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002651
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002652<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
Chris Lattner48b383b02003-11-25 01:02:51 +00002653operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002654
Chris Lattner48b383b02003-11-25 01:02:51 +00002655<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002656
Jeff Cohen5819f182007-04-22 01:17:39 +00002657<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002658<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2659of floating point values. Both arguments must have identical types.</p>
2660
Chris Lattner48b383b02003-11-25 01:02:51 +00002661<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002662
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002663<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002664
Chris Lattner48b383b02003-11-25 01:02:51 +00002665<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002666
2667<pre>
2668 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00002669</pre>
2670</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002671
Chris Lattner48b383b02003-11-25 01:02:51 +00002672<!-- _______________________________________________________________________ -->
Reid Spencer7eb55b32006-11-02 01:53:59 +00002673<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2674</div>
2675<div class="doc_text">
2676<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002677<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00002678</pre>
2679<h5>Overview:</h5>
2680<p>The '<tt>urem</tt>' instruction returns the remainder from the
2681unsigned division of its two arguments.</p>
2682<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002683<p>The two arguments to the '<tt>urem</tt>' instruction must be
2684<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2685values. Both arguments must have identical types.</p>
Reid Spencer7eb55b32006-11-02 01:53:59 +00002686<h5>Semantics:</h5>
2687<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Chris Lattner1429e6f2008-04-01 18:45:27 +00002688This instruction always performs an unsigned division to get the remainder.</p>
Chris Lattner2f2427e2008-01-28 00:36:27 +00002689<p>Note that unsigned integer remainder and signed integer remainder are
2690distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
2691<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Reid Spencer7eb55b32006-11-02 01:53:59 +00002692<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002693<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00002694</pre>
2695
2696</div>
2697<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002698<div class="doc_subsubsection">
2699 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
2700</div>
2701
Chris Lattner48b383b02003-11-25 01:02:51 +00002702<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002703
Chris Lattner48b383b02003-11-25 01:02:51 +00002704<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002705
2706<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002707 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00002708</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002709
Chris Lattner48b383b02003-11-25 01:02:51 +00002710<h5>Overview:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002711
Reid Spencer7eb55b32006-11-02 01:53:59 +00002712<p>The '<tt>srem</tt>' instruction returns the remainder from the
Dan Gohman08143e32007-11-05 23:35:22 +00002713signed division of its two operands. This instruction can also take
2714<a href="#t_vector">vector</a> versions of the values in which case
2715the elements must be integers.</p>
Chris Lattnerb8f816e2008-01-04 04:33:49 +00002716
Chris Lattner48b383b02003-11-25 01:02:51 +00002717<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002718
Reid Spencer7eb55b32006-11-02 01:53:59 +00002719<p>The two arguments to the '<tt>srem</tt>' instruction must be
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002720<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2721values. Both arguments must have identical types.</p>
2722
Chris Lattner48b383b02003-11-25 01:02:51 +00002723<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002724
Reid Spencer7eb55b32006-11-02 01:53:59 +00002725<p>This instruction returns the <i>remainder</i> of a division (where the result
Gabor Greif0f75ad02008-08-07 21:46:00 +00002726has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
2727operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
Reid Spencer806ad6a2007-03-24 22:23:39 +00002728a value. For more information about the difference, see <a
Chris Lattner48b383b02003-11-25 01:02:51 +00002729 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
Reid Spencer806ad6a2007-03-24 22:23:39 +00002730Math Forum</a>. For a table of how this is implemented in various languages,
Reid Spencerdb3b93b2007-03-24 22:40:44 +00002731please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
Reid Spencer806ad6a2007-03-24 22:23:39 +00002732Wikipedia: modulo operation</a>.</p>
Chris Lattner2f2427e2008-01-28 00:36:27 +00002733<p>Note that signed integer remainder and unsigned integer remainder are
2734distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
2735<p>Taking the remainder of a division by zero leads to undefined behavior.
2736Overflow also leads to undefined behavior; this is a rare case, but can occur,
2737for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
2738(The remainder doesn't actually overflow, but this rule lets srem be
2739implemented using instructions that return both the result of the division
2740and the remainder.)</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00002741<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002742<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00002743</pre>
2744
2745</div>
2746<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002747<div class="doc_subsubsection">
2748 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
2749
Reid Spencer7eb55b32006-11-02 01:53:59 +00002750<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002751
Reid Spencer7eb55b32006-11-02 01:53:59 +00002752<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002753<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00002754</pre>
2755<h5>Overview:</h5>
2756<p>The '<tt>frem</tt>' instruction returns the remainder from the
2757division of its two operands.</p>
2758<h5>Arguments:</h5>
2759<p>The two arguments to the '<tt>frem</tt>' instruction must be
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002760<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2761of floating point values. Both arguments must have identical types.</p>
2762
Reid Spencer7eb55b32006-11-02 01:53:59 +00002763<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002764
Chris Lattner1429e6f2008-04-01 18:45:27 +00002765<p>This instruction returns the <i>remainder</i> of a division.
2766The remainder has the same sign as the dividend.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002767
Reid Spencer7eb55b32006-11-02 01:53:59 +00002768<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002769
2770<pre>
2771 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00002772</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002773</div>
Robert Bocchino820bc75b2006-02-17 21:18:08 +00002774
Reid Spencer2ab01932007-02-02 13:57:07 +00002775<!-- ======================================================================= -->
2776<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2777Operations</a> </div>
2778<div class="doc_text">
2779<p>Bitwise binary operators are used to do various forms of
2780bit-twiddling in a program. They are generally very efficient
2781instructions and can commonly be strength reduced from other
Chris Lattner1429e6f2008-04-01 18:45:27 +00002782instructions. They require two operands of the same type, execute an operation on them,
2783and produce a single value. The resulting value is the same type as its operands.</p>
Reid Spencer2ab01932007-02-02 13:57:07 +00002784</div>
2785
Reid Spencer04e259b2007-01-31 21:39:12 +00002786<!-- _______________________________________________________________________ -->
2787<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2788Instruction</a> </div>
2789<div class="doc_text">
2790<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002791<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00002792</pre>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002793
Reid Spencer04e259b2007-01-31 21:39:12 +00002794<h5>Overview:</h5>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002795
Reid Spencer04e259b2007-01-31 21:39:12 +00002796<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2797the left a specified number of bits.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002798
Reid Spencer04e259b2007-01-31 21:39:12 +00002799<h5>Arguments:</h5>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002800
Reid Spencer04e259b2007-01-31 21:39:12 +00002801<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
Nate Begemanfecbc8c2008-07-29 15:49:41 +00002802 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greif0f75ad02008-08-07 21:46:00 +00002803type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002804
Reid Spencer04e259b2007-01-31 21:39:12 +00002805<h5>Semantics:</h5>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002806
Gabor Greif0f75ad02008-08-07 21:46:00 +00002807<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod 2<sup>n</sup>,
2808where n is the width of the result. If <tt>op2</tt> is (statically or dynamically) negative or
Mon P Wang68d4eee2008-12-10 08:55:09 +00002809equal to or larger than the number of bits in <tt>op1</tt>, the result is undefined.
2810If the arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
2811corresponding shift amount in <tt>op2</tt>.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002812
Reid Spencer04e259b2007-01-31 21:39:12 +00002813<h5>Example:</h5><pre>
2814 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2815 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2816 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002817 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00002818 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00002819</pre>
2820</div>
2821<!-- _______________________________________________________________________ -->
2822<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2823Instruction</a> </div>
2824<div class="doc_text">
2825<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002826<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00002827</pre>
2828
2829<h5>Overview:</h5>
2830<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
Jeff Cohen5819f182007-04-22 01:17:39 +00002831operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00002832
2833<h5>Arguments:</h5>
2834<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Nate Begemanfecbc8c2008-07-29 15:49:41 +00002835<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greif0f75ad02008-08-07 21:46:00 +00002836type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00002837
2838<h5>Semantics:</h5>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002839
Reid Spencer04e259b2007-01-31 21:39:12 +00002840<p>This instruction always performs a logical shift right operation. The most
2841significant bits of the result will be filled with zero bits after the
Gabor Greif0f75ad02008-08-07 21:46:00 +00002842shift. If <tt>op2</tt> is (statically or dynamically) equal to or larger than
Mon P Wang68d4eee2008-12-10 08:55:09 +00002843the number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
2844vectors, each vector element of <tt>op1</tt> is shifted by the corresponding shift
2845amount in <tt>op2</tt>.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00002846
2847<h5>Example:</h5>
2848<pre>
2849 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2850 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2851 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2852 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002853 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00002854 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00002855</pre>
2856</div>
2857
Reid Spencer2ab01932007-02-02 13:57:07 +00002858<!-- _______________________________________________________________________ -->
Reid Spencer04e259b2007-01-31 21:39:12 +00002859<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2860Instruction</a> </div>
2861<div class="doc_text">
2862
2863<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002864<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00002865</pre>
2866
2867<h5>Overview:</h5>
2868<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
Jeff Cohen5819f182007-04-22 01:17:39 +00002869operand shifted to the right a specified number of bits with sign extension.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00002870
2871<h5>Arguments:</h5>
2872<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Nate Begemanfecbc8c2008-07-29 15:49:41 +00002873<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greif0f75ad02008-08-07 21:46:00 +00002874type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00002875
2876<h5>Semantics:</h5>
2877<p>This instruction always performs an arithmetic shift right operation,
2878The most significant bits of the result will be filled with the sign bit
Gabor Greif0f75ad02008-08-07 21:46:00 +00002879of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
Mon P Wang68d4eee2008-12-10 08:55:09 +00002880larger than the number of bits in <tt>op1</tt>, the result is undefined. If the
2881arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
2882corresponding shift amount in <tt>op2</tt>.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00002883
2884<h5>Example:</h5>
2885<pre>
2886 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2887 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2888 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2889 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002890 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00002891 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00002892</pre>
2893</div>
2894
Chris Lattner2f7c9632001-06-06 20:29:01 +00002895<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002896<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2897Instruction</a> </div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002898
Misha Brukman76307852003-11-08 01:05:38 +00002899<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002900
Chris Lattner2f7c9632001-06-06 20:29:01 +00002901<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002902
2903<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002904 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002905</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002906
Chris Lattner2f7c9632001-06-06 20:29:01 +00002907<h5>Overview:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002908
Chris Lattner48b383b02003-11-25 01:02:51 +00002909<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2910its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002911
Chris Lattner2f7c9632001-06-06 20:29:01 +00002912<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002913
2914<p>The two arguments to the '<tt>and</tt>' instruction must be
2915<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2916values. Both arguments must have identical types.</p>
2917
Chris Lattner2f7c9632001-06-06 20:29:01 +00002918<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00002919<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00002920<p> </p>
Bill Wendling5703c6e2008-09-07 10:29:20 +00002921<div>
Misha Brukman76307852003-11-08 01:05:38 +00002922<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner48b383b02003-11-25 01:02:51 +00002923 <tbody>
2924 <tr>
2925 <td>In0</td>
2926 <td>In1</td>
2927 <td>Out</td>
2928 </tr>
2929 <tr>
2930 <td>0</td>
2931 <td>0</td>
2932 <td>0</td>
2933 </tr>
2934 <tr>
2935 <td>0</td>
2936 <td>1</td>
2937 <td>0</td>
2938 </tr>
2939 <tr>
2940 <td>1</td>
2941 <td>0</td>
2942 <td>0</td>
2943 </tr>
2944 <tr>
2945 <td>1</td>
2946 <td>1</td>
2947 <td>1</td>
2948 </tr>
2949 </tbody>
2950</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00002951</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002952<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002953<pre>
2954 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002955 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2956 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002957</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002958</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002959<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002960<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00002961<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00002962<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002963<pre> &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002964</pre>
Chris Lattner48b383b02003-11-25 01:02:51 +00002965<h5>Overview:</h5>
2966<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2967or of its two operands.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002968<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002969
2970<p>The two arguments to the '<tt>or</tt>' instruction must be
2971<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2972values. Both arguments must have identical types.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002973<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00002974<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00002975<p> </p>
Bill Wendling5703c6e2008-09-07 10:29:20 +00002976<div>
Chris Lattner48b383b02003-11-25 01:02:51 +00002977<table border="1" cellspacing="0" cellpadding="4">
2978 <tbody>
2979 <tr>
2980 <td>In0</td>
2981 <td>In1</td>
2982 <td>Out</td>
2983 </tr>
2984 <tr>
2985 <td>0</td>
2986 <td>0</td>
2987 <td>0</td>
2988 </tr>
2989 <tr>
2990 <td>0</td>
2991 <td>1</td>
2992 <td>1</td>
2993 </tr>
2994 <tr>
2995 <td>1</td>
2996 <td>0</td>
2997 <td>1</td>
2998 </tr>
2999 <tr>
3000 <td>1</td>
3001 <td>1</td>
3002 <td>1</td>
3003 </tr>
3004 </tbody>
3005</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00003006</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003007<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003008<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
3009 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
3010 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003011</pre>
Misha Brukman76307852003-11-08 01:05:38 +00003012</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003013<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003014<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
3015Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00003016<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00003017<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00003018<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003019</pre>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003020<h5>Overview:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00003021<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
3022or of its two operands. The <tt>xor</tt> is used to implement the
3023"one's complement" operation, which is the "~" operator in C.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003024<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003025<p>The two arguments to the '<tt>xor</tt>' instruction must be
3026<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3027values. Both arguments must have identical types.</p>
3028
Chris Lattner2f7c9632001-06-06 20:29:01 +00003029<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003030
Misha Brukman76307852003-11-08 01:05:38 +00003031<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00003032<p> </p>
Bill Wendling5703c6e2008-09-07 10:29:20 +00003033<div>
Chris Lattner48b383b02003-11-25 01:02:51 +00003034<table border="1" cellspacing="0" cellpadding="4">
3035 <tbody>
3036 <tr>
3037 <td>In0</td>
3038 <td>In1</td>
3039 <td>Out</td>
3040 </tr>
3041 <tr>
3042 <td>0</td>
3043 <td>0</td>
3044 <td>0</td>
3045 </tr>
3046 <tr>
3047 <td>0</td>
3048 <td>1</td>
3049 <td>1</td>
3050 </tr>
3051 <tr>
3052 <td>1</td>
3053 <td>0</td>
3054 <td>1</td>
3055 </tr>
3056 <tr>
3057 <td>1</td>
3058 <td>1</td>
3059 <td>0</td>
3060 </tr>
3061 </tbody>
3062</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00003063</div>
Chris Lattner48b383b02003-11-25 01:02:51 +00003064<p> </p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003065<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003066<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
3067 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
3068 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
3069 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003070</pre>
Misha Brukman76307852003-11-08 01:05:38 +00003071</div>
Chris Lattner54611b42005-11-06 08:02:57 +00003072
Chris Lattner2f7c9632001-06-06 20:29:01 +00003073<!-- ======================================================================= -->
Chris Lattner54611b42005-11-06 08:02:57 +00003074<div class="doc_subsection">
Chris Lattnerce83bff2006-04-08 23:07:04 +00003075 <a name="vectorops">Vector Operations</a>
3076</div>
3077
3078<div class="doc_text">
3079
3080<p>LLVM supports several instructions to represent vector operations in a
Jeff Cohen5819f182007-04-22 01:17:39 +00003081target-independent manner. These instructions cover the element-access and
Chris Lattnerce83bff2006-04-08 23:07:04 +00003082vector-specific operations needed to process vectors effectively. While LLVM
3083does directly support these vector operations, many sophisticated algorithms
3084will want to use target-specific intrinsics to take full advantage of a specific
3085target.</p>
3086
3087</div>
3088
3089<!-- _______________________________________________________________________ -->
3090<div class="doc_subsubsection">
3091 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
3092</div>
3093
3094<div class="doc_text">
3095
3096<h5>Syntax:</h5>
3097
3098<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003099 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003100</pre>
3101
3102<h5>Overview:</h5>
3103
3104<p>
3105The '<tt>extractelement</tt>' instruction extracts a single scalar
Reid Spencer404a3252007-02-15 03:07:05 +00003106element from a vector at a specified index.
Chris Lattnerce83bff2006-04-08 23:07:04 +00003107</p>
3108
3109
3110<h5>Arguments:</h5>
3111
3112<p>
3113The first operand of an '<tt>extractelement</tt>' instruction is a
Reid Spencer404a3252007-02-15 03:07:05 +00003114value of <a href="#t_vector">vector</a> type. The second operand is
Chris Lattnerce83bff2006-04-08 23:07:04 +00003115an index indicating the position from which to extract the element.
3116The index may be a variable.</p>
3117
3118<h5>Semantics:</h5>
3119
3120<p>
3121The result is a scalar of the same type as the element type of
3122<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
3123<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
3124results are undefined.
3125</p>
3126
3127<h5>Example:</h5>
3128
3129<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003130 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003131</pre>
3132</div>
3133
3134
3135<!-- _______________________________________________________________________ -->
3136<div class="doc_subsubsection">
3137 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
3138</div>
3139
3140<div class="doc_text">
3141
3142<h5>Syntax:</h5>
3143
3144<pre>
Dan Gohman43ba0672008-05-12 23:38:42 +00003145 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003146</pre>
3147
3148<h5>Overview:</h5>
3149
3150<p>
3151The '<tt>insertelement</tt>' instruction inserts a scalar
Reid Spencer404a3252007-02-15 03:07:05 +00003152element into a vector at a specified index.
Chris Lattnerce83bff2006-04-08 23:07:04 +00003153</p>
3154
3155
3156<h5>Arguments:</h5>
3157
3158<p>
3159The first operand of an '<tt>insertelement</tt>' instruction is a
Reid Spencer404a3252007-02-15 03:07:05 +00003160value of <a href="#t_vector">vector</a> type. The second operand is a
Chris Lattnerce83bff2006-04-08 23:07:04 +00003161scalar value whose type must equal the element type of the first
3162operand. The third operand is an index indicating the position at
3163which to insert the value. The index may be a variable.</p>
3164
3165<h5>Semantics:</h5>
3166
3167<p>
Reid Spencer404a3252007-02-15 03:07:05 +00003168The result is a vector of the same type as <tt>val</tt>. Its
Chris Lattnerce83bff2006-04-08 23:07:04 +00003169element values are those of <tt>val</tt> except at position
3170<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
3171exceeds the length of <tt>val</tt>, the results are undefined.
3172</p>
3173
3174<h5>Example:</h5>
3175
3176<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003177 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003178</pre>
3179</div>
3180
3181<!-- _______________________________________________________________________ -->
3182<div class="doc_subsubsection">
3183 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
3184</div>
3185
3186<div class="doc_text">
3187
3188<h5>Syntax:</h5>
3189
3190<pre>
Mon P Wang25f01062008-11-10 04:46:22 +00003191 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003192</pre>
3193
3194<h5>Overview:</h5>
3195
3196<p>
3197The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
Mon P Wang25f01062008-11-10 04:46:22 +00003198from two input vectors, returning a vector with the same element type as
3199the input and length that is the same as the shuffle mask.
Chris Lattnerce83bff2006-04-08 23:07:04 +00003200</p>
3201
3202<h5>Arguments:</h5>
3203
3204<p>
Mon P Wang25f01062008-11-10 04:46:22 +00003205The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
3206with types that match each other. The third argument is a shuffle mask whose
3207element type is always 'i32'. The result of the instruction is a vector whose
3208length is the same as the shuffle mask and whose element type is the same as
3209the element type of the first two operands.
Chris Lattnerce83bff2006-04-08 23:07:04 +00003210</p>
3211
3212<p>
3213The shuffle mask operand is required to be a constant vector with either
3214constant integer or undef values.
3215</p>
3216
3217<h5>Semantics:</h5>
3218
3219<p>
3220The elements of the two input vectors are numbered from left to right across
3221both of the vectors. The shuffle mask operand specifies, for each element of
Mon P Wang25f01062008-11-10 04:46:22 +00003222the result vector, which element of the two input vectors the result element
Chris Lattnerce83bff2006-04-08 23:07:04 +00003223gets. The element selector may be undef (meaning "don't care") and the second
3224operand may be undef if performing a shuffle from only one vector.
3225</p>
3226
3227<h5>Example:</h5>
3228
3229<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003230 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen5819f182007-04-22 01:17:39 +00003231 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003232 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
3233 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Mon P Wang25f01062008-11-10 04:46:22 +00003234 %result = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
3235 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
3236 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
3237 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003238</pre>
3239</div>
3240
Tanya Lattnerb138bbe2006-04-14 19:24:33 +00003241
Chris Lattnerce83bff2006-04-08 23:07:04 +00003242<!-- ======================================================================= -->
3243<div class="doc_subsection">
Dan Gohmanb9d66602008-05-12 23:51:09 +00003244 <a name="aggregateops">Aggregate Operations</a>
3245</div>
3246
3247<div class="doc_text">
3248
3249<p>LLVM supports several instructions for working with aggregate values.
3250</p>
3251
3252</div>
3253
3254<!-- _______________________________________________________________________ -->
3255<div class="doc_subsubsection">
3256 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
3257</div>
3258
3259<div class="doc_text">
3260
3261<h5>Syntax:</h5>
3262
3263<pre>
3264 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
3265</pre>
3266
3267<h5>Overview:</h5>
3268
3269<p>
Dan Gohman35a835c2008-05-13 18:16:06 +00003270The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
3271or array element from an aggregate value.
Dan Gohmanb9d66602008-05-12 23:51:09 +00003272</p>
3273
3274
3275<h5>Arguments:</h5>
3276
3277<p>
3278The first operand of an '<tt>extractvalue</tt>' instruction is a
3279value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a>
Dan Gohman35a835c2008-05-13 18:16:06 +00003280type. The operands are constant indices to specify which value to extract
Dan Gohman1ecaf452008-05-31 00:58:22 +00003281in a similar manner as indices in a
Dan Gohmanb9d66602008-05-12 23:51:09 +00003282'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3283</p>
3284
3285<h5>Semantics:</h5>
3286
3287<p>
3288The result is the value at the position in the aggregate specified by
3289the index operands.
3290</p>
3291
3292<h5>Example:</h5>
3293
3294<pre>
Dan Gohman1ecaf452008-05-31 00:58:22 +00003295 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003296</pre>
3297</div>
3298
3299
3300<!-- _______________________________________________________________________ -->
3301<div class="doc_subsubsection">
3302 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
3303</div>
3304
3305<div class="doc_text">
3306
3307<h5>Syntax:</h5>
3308
3309<pre>
Dan Gohman1ecaf452008-05-31 00:58:22 +00003310 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003311</pre>
3312
3313<h5>Overview:</h5>
3314
3315<p>
3316The '<tt>insertvalue</tt>' instruction inserts a value
Dan Gohman35a835c2008-05-13 18:16:06 +00003317into a struct field or array element in an aggregate.
Dan Gohmanb9d66602008-05-12 23:51:09 +00003318</p>
3319
3320
3321<h5>Arguments:</h5>
3322
3323<p>
3324The first operand of an '<tt>insertvalue</tt>' instruction is a
3325value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.
3326The second operand is a first-class value to insert.
Dan Gohman34d1c0d2008-05-23 21:53:15 +00003327The following operands are constant indices
Dan Gohman1ecaf452008-05-31 00:58:22 +00003328indicating the position at which to insert the value in a similar manner as
Dan Gohman35a835c2008-05-13 18:16:06 +00003329indices in a
Dan Gohmanb9d66602008-05-12 23:51:09 +00003330'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3331The value to insert must have the same type as the value identified
Dan Gohman35a835c2008-05-13 18:16:06 +00003332by the indices.
Dan Gohmanef9462f2008-10-14 16:51:45 +00003333</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003334
3335<h5>Semantics:</h5>
3336
3337<p>
3338The result is an aggregate of the same type as <tt>val</tt>. Its
3339value is that of <tt>val</tt> except that the value at the position
Dan Gohman35a835c2008-05-13 18:16:06 +00003340specified by the indices is that of <tt>elt</tt>.
Dan Gohmanb9d66602008-05-12 23:51:09 +00003341</p>
3342
3343<h5>Example:</h5>
3344
3345<pre>
Dan Gohman88ce1a52008-06-23 15:26:37 +00003346 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003347</pre>
3348</div>
3349
3350
3351<!-- ======================================================================= -->
3352<div class="doc_subsection">
Chris Lattner6ab66722006-08-15 00:45:58 +00003353 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner54611b42005-11-06 08:02:57 +00003354</div>
3355
Misha Brukman76307852003-11-08 01:05:38 +00003356<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00003357
Chris Lattner48b383b02003-11-25 01:02:51 +00003358<p>A key design point of an SSA-based representation is how it
3359represents memory. In LLVM, no memory locations are in SSA form, which
3360makes things very simple. This section describes how to read, write,
John Criswelldfe6a862004-12-10 15:51:16 +00003361allocate, and free memory in LLVM.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003362
Misha Brukman76307852003-11-08 01:05:38 +00003363</div>
Chris Lattner54611b42005-11-06 08:02:57 +00003364
Chris Lattner2f7c9632001-06-06 20:29:01 +00003365<!-- _______________________________________________________________________ -->
Chris Lattner54611b42005-11-06 08:02:57 +00003366<div class="doc_subsubsection">
3367 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
3368</div>
3369
Misha Brukman76307852003-11-08 01:05:38 +00003370<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00003371
Chris Lattner2f7c9632001-06-06 20:29:01 +00003372<h5>Syntax:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003373
3374<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003375 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003376</pre>
Chris Lattner54611b42005-11-06 08:02:57 +00003377
Chris Lattner2f7c9632001-06-06 20:29:01 +00003378<h5>Overview:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003379
Chris Lattner48b383b02003-11-25 01:02:51 +00003380<p>The '<tt>malloc</tt>' instruction allocates memory from the system
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00003381heap and returns a pointer to it. The object is always allocated in the generic
3382address space (address space zero).</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003383
Chris Lattner2f7c9632001-06-06 20:29:01 +00003384<h5>Arguments:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003385
3386<p>The '<tt>malloc</tt>' instruction allocates
3387<tt>sizeof(&lt;type&gt;)*NumElements</tt>
John Criswella92e5862004-02-24 16:13:56 +00003388bytes of memory from the operating system and returns a pointer of the
Chris Lattner54611b42005-11-06 08:02:57 +00003389appropriate type to the program. If "NumElements" is specified, it is the
Gabor Greifdd1fc982008-02-09 22:24:34 +00003390number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner1f17cce2008-04-02 00:38:26 +00003391If a constant alignment is specified, the value result of the allocation is guaranteed to
Gabor Greifdd1fc982008-02-09 22:24:34 +00003392be aligned to at least that boundary. If not specified, or if zero, the target can
3393choose to align the allocation on any convenient boundary.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003394
Misha Brukman76307852003-11-08 01:05:38 +00003395<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003396
Chris Lattner2f7c9632001-06-06 20:29:01 +00003397<h5>Semantics:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003398
Chris Lattner48b383b02003-11-25 01:02:51 +00003399<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
Nick Lewyckyf5ffcbc2008-11-24 03:41:24 +00003400a pointer is returned. The result of a zero byte allocation is undefined. The
Chris Lattnerfe8519c2008-04-19 21:01:16 +00003401result is null if there is insufficient memory available.</p>
Misha Brukman76307852003-11-08 01:05:38 +00003402
Chris Lattner54611b42005-11-06 08:02:57 +00003403<h5>Example:</h5>
3404
3405<pre>
Dan Gohman7a5acb52009-01-04 23:49:44 +00003406 %array = malloc [4 x i8] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner54611b42005-11-06 08:02:57 +00003407
Bill Wendling2d8b9a82007-05-29 09:42:13 +00003408 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3409 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3410 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3411 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3412 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003413</pre>
Dan Gohman3065b612009-01-12 23:12:39 +00003414
3415<p>Note that the code generator does not yet respect the
3416 alignment value.</p>
3417
Misha Brukman76307852003-11-08 01:05:38 +00003418</div>
Chris Lattner54611b42005-11-06 08:02:57 +00003419
Chris Lattner2f7c9632001-06-06 20:29:01 +00003420<!-- _______________________________________________________________________ -->
Chris Lattner54611b42005-11-06 08:02:57 +00003421<div class="doc_subsubsection">
3422 <a name="i_free">'<tt>free</tt>' Instruction</a>
3423</div>
3424
Misha Brukman76307852003-11-08 01:05:38 +00003425<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00003426
Chris Lattner2f7c9632001-06-06 20:29:01 +00003427<h5>Syntax:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003428
3429<pre>
Dan Gohman7a5acb52009-01-04 23:49:44 +00003430 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003431</pre>
Chris Lattner54611b42005-11-06 08:02:57 +00003432
Chris Lattner2f7c9632001-06-06 20:29:01 +00003433<h5>Overview:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003434
Chris Lattner48b383b02003-11-25 01:02:51 +00003435<p>The '<tt>free</tt>' instruction returns memory back to the unused
John Criswell4a3327e2005-05-13 22:25:59 +00003436memory heap to be reallocated in the future.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003437
Chris Lattner2f7c9632001-06-06 20:29:01 +00003438<h5>Arguments:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003439
Chris Lattner48b383b02003-11-25 01:02:51 +00003440<p>'<tt>value</tt>' shall be a pointer value that points to a value
3441that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
3442instruction.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003443
Chris Lattner2f7c9632001-06-06 20:29:01 +00003444<h5>Semantics:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003445
John Criswelldfe6a862004-12-10 15:51:16 +00003446<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattner0f103e12008-04-19 22:41:32 +00003447after this instruction executes. If the pointer is null, the operation
3448is a noop.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003449
Chris Lattner2f7c9632001-06-06 20:29:01 +00003450<h5>Example:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003451
3452<pre>
Dan Gohman7a5acb52009-01-04 23:49:44 +00003453 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003454 free [4 x i8]* %array
Chris Lattner2f7c9632001-06-06 20:29:01 +00003455</pre>
Misha Brukman76307852003-11-08 01:05:38 +00003456</div>
Chris Lattner54611b42005-11-06 08:02:57 +00003457
Chris Lattner2f7c9632001-06-06 20:29:01 +00003458<!-- _______________________________________________________________________ -->
Chris Lattner54611b42005-11-06 08:02:57 +00003459<div class="doc_subsubsection">
3460 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3461</div>
3462
Misha Brukman76307852003-11-08 01:05:38 +00003463<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00003464
Chris Lattner2f7c9632001-06-06 20:29:01 +00003465<h5>Syntax:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003466
3467<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003468 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003469</pre>
Chris Lattner54611b42005-11-06 08:02:57 +00003470
Chris Lattner2f7c9632001-06-06 20:29:01 +00003471<h5>Overview:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003472
Jeff Cohen5819f182007-04-22 01:17:39 +00003473<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
3474currently executing function, to be automatically released when this function
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00003475returns to its caller. The object is always allocated in the generic address
3476space (address space zero).</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003477
Chris Lattner2f7c9632001-06-06 20:29:01 +00003478<h5>Arguments:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003479
John Criswelldfe6a862004-12-10 15:51:16 +00003480<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
Chris Lattner48b383b02003-11-25 01:02:51 +00003481bytes of memory on the runtime stack, returning a pointer of the
Gabor Greifdd1fc982008-02-09 22:24:34 +00003482appropriate type to the program. If "NumElements" is specified, it is the
3483number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner1f17cce2008-04-02 00:38:26 +00003484If a constant alignment is specified, the value result of the allocation is guaranteed
Gabor Greifdd1fc982008-02-09 22:24:34 +00003485to be aligned to at least that boundary. If not specified, or if zero, the target
3486can choose to align the allocation on any convenient boundary.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003487
Misha Brukman76307852003-11-08 01:05:38 +00003488<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003489
Chris Lattner2f7c9632001-06-06 20:29:01 +00003490<h5>Semantics:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003491
Chris Lattnerfe8519c2008-04-19 21:01:16 +00003492<p>Memory is allocated; a pointer is returned. The operation is undefiend if
3493there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
Chris Lattner48b383b02003-11-25 01:02:51 +00003494memory is automatically released when the function returns. The '<tt>alloca</tt>'
3495instruction is commonly used to represent automatic variables that must
3496have an address available. When the function returns (either with the <tt><a
John Criswellc932bef2005-05-12 16:55:34 +00003497 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Chris Lattner1f17cce2008-04-02 00:38:26 +00003498instructions), the memory is reclaimed. Allocating zero bytes
3499is legal, but the result is undefined.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003500
Chris Lattner2f7c9632001-06-06 20:29:01 +00003501<h5>Example:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003502
3503<pre>
Dan Gohman7a5acb52009-01-04 23:49:44 +00003504 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
3505 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3506 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
3507 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003508</pre>
Misha Brukman76307852003-11-08 01:05:38 +00003509</div>
Chris Lattner54611b42005-11-06 08:02:57 +00003510
Chris Lattner2f7c9632001-06-06 20:29:01 +00003511<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003512<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3513Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00003514<div class="doc_text">
Chris Lattner095735d2002-05-06 03:03:22 +00003515<h5>Syntax:</h5>
Christopher Lambbff50202007-04-21 08:16:25 +00003516<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
Chris Lattner095735d2002-05-06 03:03:22 +00003517<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003518<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Chris Lattner095735d2002-05-06 03:03:22 +00003519<h5>Arguments:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00003520<p>The argument to the '<tt>load</tt>' instruction specifies the memory
John Criswell4c0cf7f2005-10-24 16:17:18 +00003521address from which to load. The pointer must point to a <a
Chris Lattner10ee9652004-06-03 22:57:15 +00003522 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
John Criswell4c0cf7f2005-10-24 16:17:18 +00003523marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
Chris Lattner48b383b02003-11-25 01:02:51 +00003524the number or order of execution of this <tt>load</tt> with other
3525volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3526instructions. </p>
Chris Lattner2a1993f2008-01-06 21:04:43 +00003527<p>
Chris Lattner1f17cce2008-04-02 00:38:26 +00003528The optional constant "align" argument specifies the alignment of the operation
Chris Lattner2a1993f2008-01-06 21:04:43 +00003529(that is, the alignment of the memory address). A value of 0 or an
3530omitted "align" argument means that the operation has the preferential
3531alignment for the target. It is the responsibility of the code emitter
3532to ensure that the alignment information is correct. Overestimating
3533the alignment results in an undefined behavior. Underestimating the
3534alignment may produce less efficient code. An alignment of 1 is always
3535safe.
3536</p>
Chris Lattner095735d2002-05-06 03:03:22 +00003537<h5>Semantics:</h5>
Duncan Sandsb1656c12009-03-22 11:33:16 +00003538<p>The location of memory pointed to is loaded. If the value being loaded
3539is of scalar type then the number of bytes read does not exceed the minimum
3540number of bytes needed to hold all bits of the type. For example, loading an
3541<tt>i24</tt> reads at most three bytes. When loading a value of a type like
3542<tt>i20</tt> with a size that is not an integral number of bytes, the result
3543is undefined if the value was not originally written using a store of the
3544same type.</p>
Chris Lattner095735d2002-05-06 03:03:22 +00003545<h5>Examples:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003546<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003547 <a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003548 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
3549 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner095735d2002-05-06 03:03:22 +00003550</pre>
Misha Brukman76307852003-11-08 01:05:38 +00003551</div>
Chris Lattner095735d2002-05-06 03:03:22 +00003552<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003553<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3554Instruction</a> </div>
Reid Spencera89fb182006-11-09 21:18:01 +00003555<div class="doc_text">
Chris Lattner095735d2002-05-06 03:03:22 +00003556<h5>Syntax:</h5>
Christopher Lambbff50202007-04-21 08:16:25 +00003557<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3558 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Chris Lattner095735d2002-05-06 03:03:22 +00003559</pre>
Chris Lattner095735d2002-05-06 03:03:22 +00003560<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003561<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Chris Lattner095735d2002-05-06 03:03:22 +00003562<h5>Arguments:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00003563<p>There are two arguments to the '<tt>store</tt>' instruction: a value
Jeff Cohen5819f182007-04-22 01:17:39 +00003564to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner1f17cce2008-04-02 00:38:26 +00003565operand must be a pointer to the <a href="#t_firstclass">first class</a> type
3566of the '<tt>&lt;value&gt;</tt>'
John Criswell4a3327e2005-05-13 22:25:59 +00003567operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
Chris Lattner48b383b02003-11-25 01:02:51 +00003568optimizer is not allowed to modify the number or order of execution of
3569this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
3570 href="#i_store">store</a></tt> instructions.</p>
Chris Lattner2a1993f2008-01-06 21:04:43 +00003571<p>
Chris Lattner1f17cce2008-04-02 00:38:26 +00003572The optional constant "align" argument specifies the alignment of the operation
Chris Lattner2a1993f2008-01-06 21:04:43 +00003573(that is, the alignment of the memory address). A value of 0 or an
3574omitted "align" argument means that the operation has the preferential
3575alignment for the target. It is the responsibility of the code emitter
3576to ensure that the alignment information is correct. Overestimating
3577the alignment results in an undefined behavior. Underestimating the
3578alignment may produce less efficient code. An alignment of 1 is always
3579safe.
3580</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00003581<h5>Semantics:</h5>
3582<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
Duncan Sandsb1656c12009-03-22 11:33:16 +00003583at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.
3584If '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes
3585written does not exceed the minimum number of bytes needed to hold all
3586bits of the type. For example, storing an <tt>i24</tt> writes at most
3587three bytes. When writing a value of a type like <tt>i20</tt> with a
3588size that is not an integral number of bytes, it is unspecified what
3589happens to the extra bits that do not belong to the type, but they will
3590typically be overwritten.</p>
Chris Lattner095735d2002-05-06 03:03:22 +00003591<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003592<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8830ffe2007-10-22 05:10:05 +00003593 store i32 3, i32* %ptr <i>; yields {void}</i>
3594 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner095735d2002-05-06 03:03:22 +00003595</pre>
Reid Spencer443460a2006-11-09 21:15:49 +00003596</div>
3597
Chris Lattner095735d2002-05-06 03:03:22 +00003598<!-- _______________________________________________________________________ -->
Chris Lattner33fd7022004-04-05 01:30:49 +00003599<div class="doc_subsubsection">
3600 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3601</div>
3602
Misha Brukman76307852003-11-08 01:05:38 +00003603<div class="doc_text">
Chris Lattner590645f2002-04-14 06:13:44 +00003604<h5>Syntax:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00003605<pre>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00003606 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Chris Lattner33fd7022004-04-05 01:30:49 +00003607</pre>
3608
Chris Lattner590645f2002-04-14 06:13:44 +00003609<h5>Overview:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00003610
3611<p>
3612The '<tt>getelementptr</tt>' instruction is used to get the address of a
Matthijs Kooijman0e268272008-10-13 13:44:15 +00003613subelement of an aggregate data structure. It performs address calculation only
3614and does not access memory.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00003615
Chris Lattner590645f2002-04-14 06:13:44 +00003616<h5>Arguments:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00003617
Matthijs Kooijman0e268272008-10-13 13:44:15 +00003618<p>The first argument is always a pointer, and forms the basis of the
3619calculation. The remaining arguments are indices, that indicate which of the
3620elements of the aggregate object are indexed. The interpretation of each index
3621is dependent on the type being indexed into. The first index always indexes the
3622pointer value given as the first argument, the second index indexes a value of
3623the type pointed to (not necessarily the value directly pointed to, since the
3624first index can be non-zero), etc. The first type indexed into must be a pointer
3625value, subsequent types can be arrays, vectors and structs. Note that subsequent
3626types being indexed into can never be pointers, since that would require loading
3627the pointer before continuing calculation.</p>
3628
3629<p>The type of each index argument depends on the type it is indexing into.
3630When indexing into a (packed) structure, only <tt>i32</tt> integer
3631<b>constants</b> are allowed. When indexing into an array, pointer or vector,
Sanjiv Gupta1f8555a2009-04-27 03:21:00 +00003632integers of any width are allowed (also non-constants).</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00003633
Chris Lattner48b383b02003-11-25 01:02:51 +00003634<p>For example, let's consider a C code fragment and how it gets
3635compiled to LLVM:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00003636
Bill Wendling3716c5d2007-05-29 09:04:49 +00003637<div class="doc_code">
Chris Lattner33fd7022004-04-05 01:30:49 +00003638<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00003639struct RT {
3640 char A;
Chris Lattnera446f1b2007-05-29 15:43:56 +00003641 int B[10][20];
Bill Wendling3716c5d2007-05-29 09:04:49 +00003642 char C;
3643};
3644struct ST {
Chris Lattnera446f1b2007-05-29 15:43:56 +00003645 int X;
Bill Wendling3716c5d2007-05-29 09:04:49 +00003646 double Y;
3647 struct RT Z;
3648};
Chris Lattner33fd7022004-04-05 01:30:49 +00003649
Chris Lattnera446f1b2007-05-29 15:43:56 +00003650int *foo(struct ST *s) {
Bill Wendling3716c5d2007-05-29 09:04:49 +00003651 return &amp;s[1].Z.B[5][13];
3652}
Chris Lattner33fd7022004-04-05 01:30:49 +00003653</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00003654</div>
Chris Lattner33fd7022004-04-05 01:30:49 +00003655
Misha Brukman76307852003-11-08 01:05:38 +00003656<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00003657
Bill Wendling3716c5d2007-05-29 09:04:49 +00003658<div class="doc_code">
Chris Lattner33fd7022004-04-05 01:30:49 +00003659<pre>
Chris Lattnerbc088212009-01-11 20:53:49 +00003660%RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
3661%ST = <a href="#namedtypes">type</a> { i32, double, %RT }
Chris Lattner33fd7022004-04-05 01:30:49 +00003662
Bill Wendling3716c5d2007-05-29 09:04:49 +00003663define i32* %foo(%ST* %s) {
3664entry:
3665 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3666 ret i32* %reg
3667}
Chris Lattner33fd7022004-04-05 01:30:49 +00003668</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00003669</div>
Chris Lattner33fd7022004-04-05 01:30:49 +00003670
Chris Lattner590645f2002-04-14 06:13:44 +00003671<h5>Semantics:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00003672
Misha Brukman76307852003-11-08 01:05:38 +00003673<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003674type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
Chris Lattner33fd7022004-04-05 01:30:49 +00003675}</tt>' type, a structure. The second index indexes into the third element of
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003676the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3677i8 }</tt>' type, another structure. The third index indexes into the second
3678element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
Chris Lattner33fd7022004-04-05 01:30:49 +00003679array. The two dimensions of the array are subscripted into, yielding an
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003680'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
3681to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00003682
Chris Lattner48b383b02003-11-25 01:02:51 +00003683<p>Note that it is perfectly legal to index partially through a
3684structure, returning a pointer to an inner element. Because of this,
3685the LLVM code for the given testcase is equivalent to:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00003686
3687<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003688 define i32* %foo(%ST* %s) {
3689 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen5819f182007-04-22 01:17:39 +00003690 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3691 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003692 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3693 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3694 ret i32* %t5
Chris Lattner33fd7022004-04-05 01:30:49 +00003695 }
Chris Lattnera8292f32002-05-06 22:08:29 +00003696</pre>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00003697
Chris Lattnerdd282822009-03-09 20:55:18 +00003698<p>Note that it is undefined to access an array out of bounds: array
3699and pointer indexes must always be within the defined bounds of the
3700array type when accessed with an instruction that dereferences the
3701pointer (e.g. a load or store instruction). The one exception for
3702this rule is zero length arrays. These arrays are defined to be
3703accessible as variable length arrays, which requires access beyond the
3704zero'th element.</p>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00003705
Chris Lattner6ab66722006-08-15 00:45:58 +00003706<p>The getelementptr instruction is often confusing. For some more insight
3707into how it works, see <a href="GetElementPtr.html">the getelementptr
3708FAQ</a>.</p>
3709
Chris Lattner590645f2002-04-14 06:13:44 +00003710<h5>Example:</h5>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00003711
Chris Lattner33fd7022004-04-05 01:30:49 +00003712<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003713 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00003714 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
3715 <i>; yields i8*:vptr</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00003716 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijman0e268272008-10-13 13:44:15 +00003717 <i>; yields i8*:eptr</i>
3718 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Sanjiv Gupta0c155e62009-04-25 07:27:44 +00003719 <i>; yields i32*:iptr</i>
Sanjiv Gupta77abea02009-04-24 16:38:13 +00003720 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
Chris Lattner33fd7022004-04-05 01:30:49 +00003721</pre>
Chris Lattner33fd7022004-04-05 01:30:49 +00003722</div>
Reid Spencer443460a2006-11-09 21:15:49 +00003723
Chris Lattner2f7c9632001-06-06 20:29:01 +00003724<!-- ======================================================================= -->
Reid Spencer97c5fa42006-11-08 01:18:52 +00003725<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman76307852003-11-08 01:05:38 +00003726</div>
Misha Brukman76307852003-11-08 01:05:38 +00003727<div class="doc_text">
Reid Spencer97c5fa42006-11-08 01:18:52 +00003728<p>The instructions in this category are the conversion instructions (casting)
3729which all take a single operand and a type. They perform various bit conversions
3730on the operand.</p>
Misha Brukman76307852003-11-08 01:05:38 +00003731</div>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00003732
Chris Lattnera8292f32002-05-06 22:08:29 +00003733<!-- _______________________________________________________________________ -->
Chris Lattnerb53c28d2004-03-12 05:50:16 +00003734<div class="doc_subsubsection">
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003735 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3736</div>
3737<div class="doc_text">
3738
3739<h5>Syntax:</h5>
3740<pre>
3741 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3742</pre>
3743
3744<h5>Overview:</h5>
3745<p>
3746The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3747</p>
3748
3749<h5>Arguments:</h5>
3750<p>
3751The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
3752be an <a href="#t_integer">integer</a> type, and a type that specifies the size
Chris Lattnerc0f423a2007-01-15 01:54:13 +00003753and type of the result, which must be an <a href="#t_integer">integer</a>
Reid Spencer51b07252006-11-09 23:03:26 +00003754type. The bit size of <tt>value</tt> must be larger than the bit size of
3755<tt>ty2</tt>. Equal sized types are not allowed.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003756
3757<h5>Semantics:</h5>
3758<p>
3759The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
Reid Spencer51b07252006-11-09 23:03:26 +00003760and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3761larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3762It will always truncate bits.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003763
3764<h5>Example:</h5>
3765<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003766 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencer36a15422007-01-12 03:35:51 +00003767 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
3768 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003769</pre>
3770</div>
3771
3772<!-- _______________________________________________________________________ -->
3773<div class="doc_subsubsection">
3774 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3775</div>
3776<div class="doc_text">
3777
3778<h5>Syntax:</h5>
3779<pre>
3780 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3781</pre>
3782
3783<h5>Overview:</h5>
3784<p>The '<tt>zext</tt>' instruction zero extends its operand to type
3785<tt>ty2</tt>.</p>
3786
3787
3788<h5>Arguments:</h5>
3789<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Chris Lattnerc0f423a2007-01-15 01:54:13 +00003790<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3791also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencer51b07252006-11-09 23:03:26 +00003792<tt>value</tt> must be smaller than the bit size of the destination type,
3793<tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003794
3795<h5>Semantics:</h5>
3796<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Chris Lattnerc87f3df2007-05-24 19:13:27 +00003797bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003798
Reid Spencer07c9c682007-01-12 15:46:11 +00003799<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003800
3801<h5>Example:</h5>
3802<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003803 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencer36a15422007-01-12 03:35:51 +00003804 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003805</pre>
3806</div>
3807
3808<!-- _______________________________________________________________________ -->
3809<div class="doc_subsubsection">
3810 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3811</div>
3812<div class="doc_text">
3813
3814<h5>Syntax:</h5>
3815<pre>
3816 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3817</pre>
3818
3819<h5>Overview:</h5>
3820<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3821
3822<h5>Arguments:</h5>
3823<p>
3824The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Chris Lattnerc0f423a2007-01-15 01:54:13 +00003825<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3826also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencer51b07252006-11-09 23:03:26 +00003827<tt>value</tt> must be smaller than the bit size of the destination type,
3828<tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003829
3830<h5>Semantics:</h5>
3831<p>
3832The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3833bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
Chris Lattnerc87f3df2007-05-24 19:13:27 +00003834the type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003835
Reid Spencer36a15422007-01-12 03:35:51 +00003836<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003837
3838<h5>Example:</h5>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003839<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003840 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencer36a15422007-01-12 03:35:51 +00003841 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003842</pre>
3843</div>
3844
3845<!-- _______________________________________________________________________ -->
3846<div class="doc_subsubsection">
Reid Spencer2e2740d2006-11-09 21:48:10 +00003847 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3848</div>
3849
3850<div class="doc_text">
3851
3852<h5>Syntax:</h5>
3853
3854<pre>
3855 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3856</pre>
3857
3858<h5>Overview:</h5>
3859<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3860<tt>ty2</tt>.</p>
3861
3862
3863<h5>Arguments:</h5>
3864<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3865 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3866cast it to. The size of <tt>value</tt> must be larger than the size of
3867<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3868<i>no-op cast</i>.</p>
3869
3870<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00003871<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3872<a href="#t_floating">floating point</a> type to a smaller
3873<a href="#t_floating">floating point</a> type. If the value cannot fit within
3874the destination type, <tt>ty2</tt>, then the results are undefined.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00003875
3876<h5>Example:</h5>
3877<pre>
3878 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3879 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3880</pre>
3881</div>
3882
3883<!-- _______________________________________________________________________ -->
3884<div class="doc_subsubsection">
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003885 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3886</div>
3887<div class="doc_text">
3888
3889<h5>Syntax:</h5>
3890<pre>
3891 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3892</pre>
3893
3894<h5>Overview:</h5>
3895<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3896floating point value.</p>
3897
3898<h5>Arguments:</h5>
3899<p>The '<tt>fpext</tt>' instruction takes a
3900<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
Reid Spencer51b07252006-11-09 23:03:26 +00003901and a <a href="#t_floating">floating point</a> type to cast it to. The source
3902type must be smaller than the destination type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003903
3904<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00003905<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Duncan Sands16f122e2007-03-30 12:22:09 +00003906<a href="#t_floating">floating point</a> type to a larger
3907<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
Reid Spencer51b07252006-11-09 23:03:26 +00003908used to make a <i>no-op cast</i> because it always changes bits. Use
Reid Spencer5b950642006-11-11 23:08:07 +00003909<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003910
3911<h5>Example:</h5>
3912<pre>
3913 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3914 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3915</pre>
3916</div>
3917
3918<!-- _______________________________________________________________________ -->
3919<div class="doc_subsubsection">
Reid Spencer2eadb532007-01-21 00:29:26 +00003920 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003921</div>
3922<div class="doc_text">
3923
3924<h5>Syntax:</h5>
3925<pre>
Reid Spencer753163d2007-07-31 14:40:14 +00003926 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003927</pre>
3928
3929<h5>Overview:</h5>
Reid Spencer753163d2007-07-31 14:40:14 +00003930<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003931unsigned integer equivalent of type <tt>ty2</tt>.
3932</p>
3933
3934<h5>Arguments:</h5>
Reid Spencer753163d2007-07-31 14:40:14 +00003935<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Nate Begemand4d45c22007-11-17 03:58:34 +00003936scalar or vector <a href="#t_floating">floating point</a> value, and a type
3937to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3938type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3939vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003940
3941<h5>Semantics:</h5>
Reid Spencer753163d2007-07-31 14:40:14 +00003942<p> The '<tt>fptoui</tt>' instruction converts its
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003943<a href="#t_floating">floating point</a> operand into the nearest (rounding
3944towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3945the results are undefined.</p>
3946
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003947<h5>Example:</h5>
3948<pre>
Reid Spencer753163d2007-07-31 14:40:14 +00003949 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner5b95a172007-09-22 03:17:52 +00003950 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencer753163d2007-07-31 14:40:14 +00003951 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003952</pre>
3953</div>
3954
3955<!-- _______________________________________________________________________ -->
3956<div class="doc_subsubsection">
Reid Spencer51b07252006-11-09 23:03:26 +00003957 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003958</div>
3959<div class="doc_text">
3960
3961<h5>Syntax:</h5>
3962<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00003963 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003964</pre>
3965
3966<h5>Overview:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00003967<p>The '<tt>fptosi</tt>' instruction converts
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003968<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
Chris Lattnerb53c28d2004-03-12 05:50:16 +00003969</p>
3970
Chris Lattnera8292f32002-05-06 22:08:29 +00003971<h5>Arguments:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00003972<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Nate Begemand4d45c22007-11-17 03:58:34 +00003973scalar or vector <a href="#t_floating">floating point</a> value, and a type
3974to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3975type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3976vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00003977
Chris Lattnera8292f32002-05-06 22:08:29 +00003978<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00003979<p>The '<tt>fptosi</tt>' instruction converts its
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003980<a href="#t_floating">floating point</a> operand into the nearest (rounding
3981towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3982the results are undefined.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00003983
Chris Lattner70de6632001-07-09 00:26:23 +00003984<h5>Example:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00003985<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00003986 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner5b95a172007-09-22 03:17:52 +00003987 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003988 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003989</pre>
3990</div>
3991
3992<!-- _______________________________________________________________________ -->
3993<div class="doc_subsubsection">
Reid Spencer51b07252006-11-09 23:03:26 +00003994 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003995</div>
3996<div class="doc_text">
3997
3998<h5>Syntax:</h5>
3999<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00004000 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004001</pre>
4002
4003<h5>Overview:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004004<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004005integer and converts that value to the <tt>ty2</tt> type.</p>
4006
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004007<h5>Arguments:</h5>
Nate Begemand4d45c22007-11-17 03:58:34 +00004008<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
4009scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
4010to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4011type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4012floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004013
4014<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004015<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004016integer quantity and converts it to the corresponding floating point value. If
Jeff Cohenbeccb742007-04-22 14:56:37 +00004017the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004018
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004019<h5>Example:</h5>
4020<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004021 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004022 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004023</pre>
4024</div>
4025
4026<!-- _______________________________________________________________________ -->
4027<div class="doc_subsubsection">
Reid Spencer51b07252006-11-09 23:03:26 +00004028 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004029</div>
4030<div class="doc_text">
4031
4032<h5>Syntax:</h5>
4033<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00004034 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004035</pre>
4036
4037<h5>Overview:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004038<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004039integer and converts that value to the <tt>ty2</tt> type.</p>
4040
4041<h5>Arguments:</h5>
Nate Begemand4d45c22007-11-17 03:58:34 +00004042<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
4043scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
4044to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4045type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4046floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004047
4048<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004049<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004050integer quantity and converts it to the corresponding floating point value. If
Jeff Cohenbeccb742007-04-22 14:56:37 +00004051the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004052
4053<h5>Example:</h5>
4054<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004055 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004056 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004057</pre>
4058</div>
4059
4060<!-- _______________________________________________________________________ -->
4061<div class="doc_subsubsection">
Reid Spencerb7344ff2006-11-11 21:00:47 +00004062 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
4063</div>
4064<div class="doc_text">
4065
4066<h5>Syntax:</h5>
4067<pre>
4068 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4069</pre>
4070
4071<h5>Overview:</h5>
4072<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
4073the integer type <tt>ty2</tt>.</p>
4074
4075<h5>Arguments:</h5>
4076<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
Duncan Sands16f122e2007-03-30 12:22:09 +00004077must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
Dan Gohmanef9462f2008-10-14 16:51:45 +00004078<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004079
4080<h5>Semantics:</h5>
4081<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
4082<tt>ty2</tt> by interpreting the pointer value as an integer and either
4083truncating or zero extending that value to the size of the integer type. If
4084<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
4085<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
Jeff Cohen222a8a42007-04-29 01:07:00 +00004086are the same size, then nothing is done (<i>no-op cast</i>) other than a type
4087change.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004088
4089<h5>Example:</h5>
4090<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00004091 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
4092 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004093</pre>
4094</div>
4095
4096<!-- _______________________________________________________________________ -->
4097<div class="doc_subsubsection">
4098 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
4099</div>
4100<div class="doc_text">
4101
4102<h5>Syntax:</h5>
4103<pre>
4104 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4105</pre>
4106
4107<h5>Overview:</h5>
4108<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
4109a pointer type, <tt>ty2</tt>.</p>
4110
4111<h5>Arguments:</h5>
Duncan Sands16f122e2007-03-30 12:22:09 +00004112<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004113value to cast, and a type to cast it to, which must be a
Dan Gohmanef9462f2008-10-14 16:51:45 +00004114<a href="#t_pointer">pointer</a> type.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004115
4116<h5>Semantics:</h5>
4117<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
4118<tt>ty2</tt> by applying either a zero extension or a truncation depending on
4119the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
4120size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
4121the size of a pointer then a zero extension is done. If they are the same size,
4122nothing is done (<i>no-op cast</i>).</p>
4123
4124<h5>Example:</h5>
4125<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00004126 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
4127 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
4128 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004129</pre>
4130</div>
4131
4132<!-- _______________________________________________________________________ -->
4133<div class="doc_subsubsection">
Reid Spencer5b950642006-11-11 23:08:07 +00004134 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004135</div>
4136<div class="doc_text">
4137
4138<h5>Syntax:</h5>
4139<pre>
Reid Spencer5b950642006-11-11 23:08:07 +00004140 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004141</pre>
4142
4143<h5>Overview:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004144
Reid Spencer5b950642006-11-11 23:08:07 +00004145<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004146<tt>ty2</tt> without changing any bits.</p>
4147
4148<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004149
Reid Spencer5b950642006-11-11 23:08:07 +00004150<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Dan Gohmanc05dca92008-09-08 16:45:59 +00004151a non-aggregate first class value, and a type to cast it to, which must also be
4152a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes of
4153<tt>value</tt>
Reid Spencere3db84c2007-01-09 20:08:58 +00004154and the destination type, <tt>ty2</tt>, must be identical. If the source
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004155type is a pointer, the destination type must also be a pointer. This
4156instruction supports bitwise conversion of vectors to integers and to vectors
4157of other types (as long as they have the same size).</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004158
4159<h5>Semantics:</h5>
Reid Spencer5b950642006-11-11 23:08:07 +00004160<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencerb7344ff2006-11-11 21:00:47 +00004161<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
4162this conversion. The conversion is done as if the <tt>value</tt> had been
4163stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
4164converted to other pointer types with this instruction. To convert pointers to
4165other types, use the <a href="#i_inttoptr">inttoptr</a> or
4166<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004167
4168<h5>Example:</h5>
4169<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00004170 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004171 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004172 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
Chris Lattner70de6632001-07-09 00:26:23 +00004173</pre>
Misha Brukman76307852003-11-08 01:05:38 +00004174</div>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004175
Reid Spencer97c5fa42006-11-08 01:18:52 +00004176<!-- ======================================================================= -->
4177<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
4178<div class="doc_text">
4179<p>The instructions in this category are the "miscellaneous"
4180instructions, which defy better classification.</p>
4181</div>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004182
4183<!-- _______________________________________________________________________ -->
4184<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
4185</div>
4186<div class="doc_text">
4187<h5>Syntax:</h5>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004188<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004189</pre>
4190<h5>Overview:</h5>
Dan Gohmanc579d972008-09-09 01:02:47 +00004191<p>The '<tt>icmp</tt>' instruction returns a boolean value or
4192a vector of boolean values based on comparison
4193of its two integer, integer vector, or pointer operands.</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004194<h5>Arguments:</h5>
4195<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Jeff Cohen222a8a42007-04-29 01:07:00 +00004196the condition code indicating the kind of comparison to perform. It is not
4197a value, just a keyword. The possible condition code are:
Dan Gohmanef9462f2008-10-14 16:51:45 +00004198</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004199<ol>
4200 <li><tt>eq</tt>: equal</li>
4201 <li><tt>ne</tt>: not equal </li>
4202 <li><tt>ugt</tt>: unsigned greater than</li>
4203 <li><tt>uge</tt>: unsigned greater or equal</li>
4204 <li><tt>ult</tt>: unsigned less than</li>
4205 <li><tt>ule</tt>: unsigned less or equal</li>
4206 <li><tt>sgt</tt>: signed greater than</li>
4207 <li><tt>sge</tt>: signed greater or equal</li>
4208 <li><tt>slt</tt>: signed less than</li>
4209 <li><tt>sle</tt>: signed less or equal</li>
4210</ol>
Chris Lattnerc0f423a2007-01-15 01:54:13 +00004211<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Dan Gohmanc579d972008-09-09 01:02:47 +00004212<a href="#t_pointer">pointer</a>
4213or integer <a href="#t_vector">vector</a> typed.
4214They must also be identical types.</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004215<h5>Semantics:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004216<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to
Reid Spencerc828a0e2006-11-18 21:50:54 +00004217the condition code given as <tt>cond</tt>. The comparison performed always
Dan Gohmanc579d972008-09-09 01:02:47 +00004218yields either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt> result, as follows:
Dan Gohmanef9462f2008-10-14 16:51:45 +00004219</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004220<ol>
4221 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
4222 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
4223 </li>
4224 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Dan Gohmanef9462f2008-10-14 16:51:45 +00004225 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004226 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00004227 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004228 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00004229 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004230 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00004231 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004232 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00004233 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004234 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00004235 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004236 <li><tt>sge</tt>: interprets the operands as signed values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00004237 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004238 <li><tt>slt</tt>: interprets the operands as signed values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00004239 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004240 <li><tt>sle</tt>: interprets the operands as signed values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00004241 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004242</ol>
4243<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Jeff Cohen222a8a42007-04-29 01:07:00 +00004244values are compared as if they were integers.</p>
Dan Gohmanc579d972008-09-09 01:02:47 +00004245<p>If the operands are integer vectors, then they are compared
4246element by element. The result is an <tt>i1</tt> vector with
4247the same number of elements as the values being compared.
4248Otherwise, the result is an <tt>i1</tt>.
4249</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004250
4251<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004252<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
4253 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
4254 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
4255 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
4256 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
4257 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004258</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00004259
4260<p>Note that the code generator does not yet support vector types with
4261 the <tt>icmp</tt> instruction.</p>
4262
Reid Spencerc828a0e2006-11-18 21:50:54 +00004263</div>
4264
4265<!-- _______________________________________________________________________ -->
4266<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
4267</div>
4268<div class="doc_text">
4269<h5>Syntax:</h5>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004270<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004271</pre>
4272<h5>Overview:</h5>
Dan Gohmanc579d972008-09-09 01:02:47 +00004273<p>The '<tt>fcmp</tt>' instruction returns a boolean value
4274or vector of boolean values based on comparison
Dan Gohmanef9462f2008-10-14 16:51:45 +00004275of its operands.</p>
Dan Gohmanc579d972008-09-09 01:02:47 +00004276<p>
4277If the operands are floating point scalars, then the result
4278type is a boolean (<a href="#t_primitive"><tt>i1</tt></a>).
4279</p>
4280<p>If the operands are floating point vectors, then the result type
4281is a vector of boolean with the same number of elements as the
4282operands being compared.</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004283<h5>Arguments:</h5>
4284<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Jeff Cohen222a8a42007-04-29 01:07:00 +00004285the condition code indicating the kind of comparison to perform. It is not
Dan Gohmanef9462f2008-10-14 16:51:45 +00004286a value, just a keyword. The possible condition code are:</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004287<ol>
Reid Spencerf69acf32006-11-19 03:00:14 +00004288 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004289 <li><tt>oeq</tt>: ordered and equal</li>
4290 <li><tt>ogt</tt>: ordered and greater than </li>
4291 <li><tt>oge</tt>: ordered and greater than or equal</li>
4292 <li><tt>olt</tt>: ordered and less than </li>
4293 <li><tt>ole</tt>: ordered and less than or equal</li>
4294 <li><tt>one</tt>: ordered and not equal</li>
4295 <li><tt>ord</tt>: ordered (no nans)</li>
4296 <li><tt>ueq</tt>: unordered or equal</li>
4297 <li><tt>ugt</tt>: unordered or greater than </li>
4298 <li><tt>uge</tt>: unordered or greater than or equal</li>
4299 <li><tt>ult</tt>: unordered or less than </li>
4300 <li><tt>ule</tt>: unordered or less than or equal</li>
4301 <li><tt>une</tt>: unordered or not equal</li>
4302 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004303 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004304</ol>
Jeff Cohen222a8a42007-04-29 01:07:00 +00004305<p><i>Ordered</i> means that neither operand is a QNAN while
Reid Spencer02e0d1d2006-12-06 07:08:07 +00004306<i>unordered</i> means that either operand may be a QNAN.</p>
Dan Gohmanc579d972008-09-09 01:02:47 +00004307<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be
4308either a <a href="#t_floating">floating point</a> type
4309or a <a href="#t_vector">vector</a> of floating point type.
4310They must have identical types.</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004311<h5>Semantics:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004312<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Dan Gohmanc579d972008-09-09 01:02:47 +00004313according to the condition code given as <tt>cond</tt>.
4314If the operands are vectors, then the vectors are compared
4315element by element.
4316Each comparison performed
Dan Gohmanef9462f2008-10-14 16:51:45 +00004317always yields an <a href="#t_primitive">i1</a> result, as follows:</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004318<ol>
4319 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004320 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greif0f75ad02008-08-07 21:46:00 +00004321 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004322 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greif0f75ad02008-08-07 21:46:00 +00004323 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004324 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greif0f75ad02008-08-07 21:46:00 +00004325 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004326 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greif0f75ad02008-08-07 21:46:00 +00004327 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004328 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greif0f75ad02008-08-07 21:46:00 +00004329 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004330 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greif0f75ad02008-08-07 21:46:00 +00004331 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004332 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
4333 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greif0f75ad02008-08-07 21:46:00 +00004334 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004335 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greif0f75ad02008-08-07 21:46:00 +00004336 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004337 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greif0f75ad02008-08-07 21:46:00 +00004338 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004339 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greif0f75ad02008-08-07 21:46:00 +00004340 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004341 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greif0f75ad02008-08-07 21:46:00 +00004342 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004343 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greif0f75ad02008-08-07 21:46:00 +00004344 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004345 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004346 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
4347</ol>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004348
4349<h5>Example:</h5>
4350<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanc579d972008-09-09 01:02:47 +00004351 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
4352 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
4353 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004354</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00004355
4356<p>Note that the code generator does not yet support vector types with
4357 the <tt>fcmp</tt> instruction.</p>
4358
Reid Spencerc828a0e2006-11-18 21:50:54 +00004359</div>
4360
Reid Spencer97c5fa42006-11-08 01:18:52 +00004361<!-- _______________________________________________________________________ -->
Nate Begemand2195702008-05-12 19:01:56 +00004362<div class="doc_subsubsection">
4363 <a name="i_vicmp">'<tt>vicmp</tt>' Instruction</a>
4364</div>
4365<div class="doc_text">
4366<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004367<pre> &lt;result&gt; = vicmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Nate Begemand2195702008-05-12 19:01:56 +00004368</pre>
4369<h5>Overview:</h5>
4370<p>The '<tt>vicmp</tt>' instruction returns an integer vector value based on
4371element-wise comparison of its two integer vector operands.</p>
4372<h5>Arguments:</h5>
4373<p>The '<tt>vicmp</tt>' instruction takes three operands. The first operand is
4374the condition code indicating the kind of comparison to perform. It is not
Dan Gohmanef9462f2008-10-14 16:51:45 +00004375a value, just a keyword. The possible condition code are:</p>
Nate Begemand2195702008-05-12 19:01:56 +00004376<ol>
4377 <li><tt>eq</tt>: equal</li>
4378 <li><tt>ne</tt>: not equal </li>
4379 <li><tt>ugt</tt>: unsigned greater than</li>
4380 <li><tt>uge</tt>: unsigned greater or equal</li>
4381 <li><tt>ult</tt>: unsigned less than</li>
4382 <li><tt>ule</tt>: unsigned less or equal</li>
4383 <li><tt>sgt</tt>: signed greater than</li>
4384 <li><tt>sge</tt>: signed greater or equal</li>
4385 <li><tt>slt</tt>: signed less than</li>
4386 <li><tt>sle</tt>: signed less or equal</li>
4387</ol>
Dan Gohmanc579d972008-09-09 01:02:47 +00004388<p>The remaining two arguments must be <a href="#t_vector">vector</a> or
Nate Begemand2195702008-05-12 19:01:56 +00004389<a href="#t_integer">integer</a> typed. They must also be identical types.</p>
4390<h5>Semantics:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004391<p>The '<tt>vicmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemand2195702008-05-12 19:01:56 +00004392according to the condition code given as <tt>cond</tt>. The comparison yields a
4393<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, of
4394identical type as the values being compared. The most significant bit in each
4395element is 1 if the element-wise comparison evaluates to true, and is 0
4396otherwise. All other bits of the result are undefined. The condition codes
4397are evaluated identically to the <a href="#i_icmp">'<tt>icmp</tt>'
Dan Gohmanef9462f2008-10-14 16:51:45 +00004398instruction</a>.</p>
Nate Begemand2195702008-05-12 19:01:56 +00004399
4400<h5>Example:</h5>
4401<pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004402 &lt;result&gt; = vicmp eq &lt;2 x i32&gt; &lt; i32 4, i32 0&gt;, &lt; i32 5, i32 0&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4403 &lt;result&gt; = vicmp ult &lt;2 x i8 &gt; &lt; i8 1, i8 2&gt;, &lt; i8 2, i8 2 &gt; <i>; yields: result=&lt;2 x i8&gt; &lt; i8 -1, i8 0 &gt;</i>
Nate Begemand2195702008-05-12 19:01:56 +00004404</pre>
4405</div>
4406
4407<!-- _______________________________________________________________________ -->
4408<div class="doc_subsubsection">
4409 <a name="i_vfcmp">'<tt>vfcmp</tt>' Instruction</a>
4410</div>
4411<div class="doc_text">
4412<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004413<pre> &lt;result&gt; = vfcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;</pre>
Nate Begemand2195702008-05-12 19:01:56 +00004414<h5>Overview:</h5>
4415<p>The '<tt>vfcmp</tt>' instruction returns an integer vector value based on
4416element-wise comparison of its two floating point vector operands. The output
4417elements have the same width as the input elements.</p>
4418<h5>Arguments:</h5>
4419<p>The '<tt>vfcmp</tt>' instruction takes three operands. The first operand is
4420the condition code indicating the kind of comparison to perform. It is not
Dan Gohmanef9462f2008-10-14 16:51:45 +00004421a value, just a keyword. The possible condition code are:</p>
Nate Begemand2195702008-05-12 19:01:56 +00004422<ol>
4423 <li><tt>false</tt>: no comparison, always returns false</li>
4424 <li><tt>oeq</tt>: ordered and equal</li>
4425 <li><tt>ogt</tt>: ordered and greater than </li>
4426 <li><tt>oge</tt>: ordered and greater than or equal</li>
4427 <li><tt>olt</tt>: ordered and less than </li>
4428 <li><tt>ole</tt>: ordered and less than or equal</li>
4429 <li><tt>one</tt>: ordered and not equal</li>
4430 <li><tt>ord</tt>: ordered (no nans)</li>
4431 <li><tt>ueq</tt>: unordered or equal</li>
4432 <li><tt>ugt</tt>: unordered or greater than </li>
4433 <li><tt>uge</tt>: unordered or greater than or equal</li>
4434 <li><tt>ult</tt>: unordered or less than </li>
4435 <li><tt>ule</tt>: unordered or less than or equal</li>
4436 <li><tt>une</tt>: unordered or not equal</li>
4437 <li><tt>uno</tt>: unordered (either nans)</li>
4438 <li><tt>true</tt>: no comparison, always returns true</li>
4439</ol>
4440<p>The remaining two arguments must be <a href="#t_vector">vector</a> of
4441<a href="#t_floating">floating point</a> typed. They must also be identical
4442types.</p>
4443<h5>Semantics:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004444<p>The '<tt>vfcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemand2195702008-05-12 19:01:56 +00004445according to the condition code given as <tt>cond</tt>. The comparison yields a
4446<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, with
4447an identical number of elements as the values being compared, and each element
4448having identical with to the width of the floating point elements. The most
4449significant bit in each element is 1 if the element-wise comparison evaluates to
4450true, and is 0 otherwise. All other bits of the result are undefined. The
4451condition codes are evaluated identically to the
Dan Gohmanef9462f2008-10-14 16:51:45 +00004452<a href="#i_fcmp">'<tt>fcmp</tt>' instruction</a>.</p>
Nate Begemand2195702008-05-12 19:01:56 +00004453
4454<h5>Example:</h5>
4455<pre>
Chris Lattner0ae02092008-10-13 16:55:18 +00004456 <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4457 &lt;result&gt; = vfcmp oeq &lt;2 x float&gt; &lt; float 4, float 0 &gt;, &lt; float 5, float 0 &gt;
4458
4459 <i>; yields: result=&lt;2 x i64&gt; &lt; i64 -1, i64 0 &gt;</i>
4460 &lt;result&gt; = vfcmp ult &lt;2 x double&gt; &lt; double 1, double 2 &gt;, &lt; double 2, double 2&gt;
Nate Begemand2195702008-05-12 19:01:56 +00004461</pre>
4462</div>
4463
4464<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004465<div class="doc_subsubsection">
4466 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4467</div>
4468
Reid Spencer97c5fa42006-11-08 01:18:52 +00004469<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004470
Reid Spencer97c5fa42006-11-08 01:18:52 +00004471<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004472
Reid Spencer97c5fa42006-11-08 01:18:52 +00004473<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
4474<h5>Overview:</h5>
4475<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
4476the SSA graph representing the function.</p>
4477<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004478
Jeff Cohen222a8a42007-04-29 01:07:00 +00004479<p>The type of the incoming values is specified with the first type
Reid Spencer97c5fa42006-11-08 01:18:52 +00004480field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
4481as arguments, with one pair for each predecessor basic block of the
4482current block. Only values of <a href="#t_firstclass">first class</a>
4483type may be used as the value arguments to the PHI node. Only labels
4484may be used as the label arguments.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004485
Reid Spencer97c5fa42006-11-08 01:18:52 +00004486<p>There must be no non-phi instructions between the start of a basic
4487block and the PHI instructions: i.e. PHI instructions must be first in
4488a basic block.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004489
Reid Spencer97c5fa42006-11-08 01:18:52 +00004490<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004491
Jeff Cohen222a8a42007-04-29 01:07:00 +00004492<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
4493specified by the pair corresponding to the predecessor basic block that executed
4494just prior to the current block.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004495
Reid Spencer97c5fa42006-11-08 01:18:52 +00004496<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004497<pre>
4498Loop: ; Infinite loop that counts from 0 on up...
4499 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4500 %nextindvar = add i32 %indvar, 1
4501 br label %Loop
4502</pre>
Reid Spencer97c5fa42006-11-08 01:18:52 +00004503</div>
4504
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004505<!-- _______________________________________________________________________ -->
4506<div class="doc_subsubsection">
4507 <a name="i_select">'<tt>select</tt>' Instruction</a>
4508</div>
4509
4510<div class="doc_text">
4511
4512<h5>Syntax:</h5>
4513
4514<pre>
Dan Gohmanc579d972008-09-09 01:02:47 +00004515 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
4516
Dan Gohmanef9462f2008-10-14 16:51:45 +00004517 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004518</pre>
4519
4520<h5>Overview:</h5>
4521
4522<p>
4523The '<tt>select</tt>' instruction is used to choose one value based on a
4524condition, without branching.
4525</p>
4526
4527
4528<h5>Arguments:</h5>
4529
4530<p>
Dan Gohmanc579d972008-09-09 01:02:47 +00004531The '<tt>select</tt>' instruction requires an 'i1' value or
4532a vector of 'i1' values indicating the
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004533condition, and two values of the same <a href="#t_firstclass">first class</a>
Dan Gohmanc579d972008-09-09 01:02:47 +00004534type. If the val1/val2 are vectors and
4535the condition is a scalar, then entire vectors are selected, not
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004536individual elements.
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004537</p>
4538
4539<h5>Semantics:</h5>
4540
4541<p>
Dan Gohmanc579d972008-09-09 01:02:47 +00004542If the condition is an i1 and it evaluates to 1, the instruction returns the first
John Criswell88190562005-05-16 16:17:45 +00004543value argument; otherwise, it returns the second value argument.
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004544</p>
Dan Gohmanc579d972008-09-09 01:02:47 +00004545<p>
4546If the condition is a vector of i1, then the value arguments must
4547be vectors of the same size, and the selection is done element
4548by element.
4549</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004550
4551<h5>Example:</h5>
4552
4553<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00004554 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004555</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00004556
4557<p>Note that the code generator does not yet support conditions
4558 with vector type.</p>
4559
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004560</div>
4561
Robert Bocchinof72fdfe2006-01-15 20:48:27 +00004562
4563<!-- _______________________________________________________________________ -->
4564<div class="doc_subsubsection">
Chris Lattnere23c1392005-05-06 05:47:36 +00004565 <a name="i_call">'<tt>call</tt>' Instruction</a>
4566</div>
4567
Misha Brukman76307852003-11-08 01:05:38 +00004568<div class="doc_text">
Chris Lattnere23c1392005-05-06 05:47:36 +00004569
Chris Lattner2f7c9632001-06-06 20:29:01 +00004570<h5>Syntax:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00004571<pre>
Devang Patel02256232008-10-07 17:48:33 +00004572 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattnere23c1392005-05-06 05:47:36 +00004573</pre>
4574
Chris Lattner2f7c9632001-06-06 20:29:01 +00004575<h5>Overview:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00004576
Misha Brukman76307852003-11-08 01:05:38 +00004577<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00004578
Chris Lattner2f7c9632001-06-06 20:29:01 +00004579<h5>Arguments:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00004580
Misha Brukman76307852003-11-08 01:05:38 +00004581<p>This instruction requires several arguments:</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00004582
Chris Lattnera8292f32002-05-06 22:08:29 +00004583<ol>
Chris Lattner48b383b02003-11-25 01:02:51 +00004584 <li>
Chris Lattner0132aff2005-05-06 22:57:40 +00004585 <p>The optional "tail" marker indicates whether the callee function accesses
4586 any allocas or varargs in the caller. If the "tail" marker is present, the
Chris Lattnere23c1392005-05-06 05:47:36 +00004587 function call is eligible for tail call optimization. Note that calls may
4588 be marked "tail" even if they do not occur before a <a
Dan Gohmanef9462f2008-10-14 16:51:45 +00004589 href="#i_ret"><tt>ret</tt></a> instruction.</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00004590 </li>
4591 <li>
Duncan Sands16f122e2007-03-30 12:22:09 +00004592 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattner0132aff2005-05-06 22:57:40 +00004593 convention</a> the call should use. If none is specified, the call defaults
Dan Gohmanef9462f2008-10-14 16:51:45 +00004594 to using C calling conventions.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00004595 </li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00004596
4597 <li>
4598 <p>The optional <a href="#paramattrs">Parameter Attributes</a> list for
4599 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
4600 and '<tt>inreg</tt>' attributes are valid here.</p>
4601 </li>
4602
Chris Lattner0132aff2005-05-06 22:57:40 +00004603 <li>
Nick Lewyckya9b13d52007-09-08 13:57:50 +00004604 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
4605 the type of the return value. Functions that return no value are marked
4606 <tt><a href="#t_void">void</a></tt>.</p>
4607 </li>
4608 <li>
4609 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
4610 value being invoked. The argument types must match the types implied by
4611 this signature. This type can be omitted if the function is not varargs
4612 and if the function type does not return a pointer to a function.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00004613 </li>
4614 <li>
4615 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4616 be invoked. In most cases, this is a direct function invocation, but
4617 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
John Criswell88190562005-05-16 16:17:45 +00004618 to function value.</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00004619 </li>
4620 <li>
4621 <p>'<tt>function args</tt>': argument list whose types match the
Reid Spencerd845d162005-05-01 22:22:57 +00004622 function signature argument types. All arguments must be of
4623 <a href="#t_firstclass">first class</a> type. If the function signature
4624 indicates the function accepts a variable number of arguments, the extra
4625 arguments can be specified.</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00004626 </li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00004627 <li>
Devang Patel02256232008-10-07 17:48:33 +00004628 <p>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patel7e9b05e2008-10-06 18:50:38 +00004629 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
4630 '<tt>readnone</tt>' attributes are valid here.</p>
4631 </li>
Chris Lattnera8292f32002-05-06 22:08:29 +00004632</ol>
Chris Lattnere23c1392005-05-06 05:47:36 +00004633
Chris Lattner2f7c9632001-06-06 20:29:01 +00004634<h5>Semantics:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00004635
Chris Lattner48b383b02003-11-25 01:02:51 +00004636<p>The '<tt>call</tt>' instruction is used to cause control flow to
4637transfer to a specified function, with its incoming arguments bound to
4638the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
4639instruction in the called function, control flow continues with the
4640instruction after the function call, and the return value of the
Dan Gohmanef9462f2008-10-14 16:51:45 +00004641function is bound to the result argument.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00004642
Chris Lattner2f7c9632001-06-06 20:29:01 +00004643<h5>Example:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00004644
4645<pre>
Nick Lewyckya9b13d52007-09-08 13:57:50 +00004646 %retval = call i32 @test(i32 %argc)
Chris Lattnerfb7c88d2008-03-21 17:24:17 +00004647 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4648 %X = tail call i32 @foo() <i>; yields i32</i>
4649 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4650 call void %foo(i8 97 signext)
Devang Pateld6cff512008-03-10 20:49:15 +00004651
4652 %struct.A = type { i32, i8 }
Devang Patel7e9b05e2008-10-06 18:50:38 +00004653 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmancc3132e2008-10-04 19:00:07 +00004654 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
4655 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner6cbe8e92008-10-08 06:26:11 +00004656 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijmaneefa7df2008-10-07 10:03:45 +00004657 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Chris Lattnere23c1392005-05-06 05:47:36 +00004658</pre>
4659
Misha Brukman76307852003-11-08 01:05:38 +00004660</div>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004661
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004662<!-- _______________________________________________________________________ -->
Chris Lattner6a4a0492004-09-27 21:51:25 +00004663<div class="doc_subsubsection">
Chris Lattner33337472006-01-13 23:26:01 +00004664 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004665</div>
4666
Misha Brukman76307852003-11-08 01:05:38 +00004667<div class="doc_text">
Chris Lattner6a4a0492004-09-27 21:51:25 +00004668
Chris Lattner26ca62e2003-10-18 05:51:36 +00004669<h5>Syntax:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004670
4671<pre>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004672 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattner6a4a0492004-09-27 21:51:25 +00004673</pre>
4674
Chris Lattner26ca62e2003-10-18 05:51:36 +00004675<h5>Overview:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004676
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004677<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Chris Lattner6a4a0492004-09-27 21:51:25 +00004678the "variable argument" area of a function call. It is used to implement the
4679<tt>va_arg</tt> macro in C.</p>
4680
Chris Lattner26ca62e2003-10-18 05:51:36 +00004681<h5>Arguments:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004682
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004683<p>This instruction takes a <tt>va_list*</tt> value and the type of
4684the argument. It returns a value of the specified argument type and
Jeff Cohen222a8a42007-04-29 01:07:00 +00004685increments the <tt>va_list</tt> to point to the next argument. The
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004686actual type of <tt>va_list</tt> is target specific.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004687
Chris Lattner26ca62e2003-10-18 05:51:36 +00004688<h5>Semantics:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004689
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004690<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
4691type from the specified <tt>va_list</tt> and causes the
4692<tt>va_list</tt> to point to the next argument. For more information,
4693see the variable argument handling <a href="#int_varargs">Intrinsic
4694Functions</a>.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004695
4696<p>It is legal for this instruction to be called in a function which does not
4697take a variable number of arguments, for example, the <tt>vfprintf</tt>
Misha Brukman76307852003-11-08 01:05:38 +00004698function.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004699
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004700<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
John Criswell88190562005-05-16 16:17:45 +00004701href="#intrinsics">intrinsic function</a> because it takes a type as an
Chris Lattner6a4a0492004-09-27 21:51:25 +00004702argument.</p>
4703
Chris Lattner26ca62e2003-10-18 05:51:36 +00004704<h5>Example:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004705
4706<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4707
Dan Gohman3065b612009-01-12 23:12:39 +00004708<p>Note that the code generator does not yet fully support va_arg
4709 on many targets. Also, it does not currently support va_arg with
4710 aggregate types on any target.</p>
4711
Misha Brukman76307852003-11-08 01:05:38 +00004712</div>
Chris Lattner941515c2004-01-06 05:31:32 +00004713
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004714<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +00004715<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4716<!-- *********************************************************************** -->
Chris Lattner941515c2004-01-06 05:31:32 +00004717
Misha Brukman76307852003-11-08 01:05:38 +00004718<div class="doc_text">
Chris Lattnerfee11462004-02-12 17:01:32 +00004719
4720<p>LLVM supports the notion of an "intrinsic function". These functions have
Reid Spencer4eefaab2007-04-01 08:04:23 +00004721well known names and semantics and are required to follow certain restrictions.
4722Overall, these intrinsics represent an extension mechanism for the LLVM
Jeff Cohen222a8a42007-04-29 01:07:00 +00004723language that does not require changing all of the transformations in LLVM when
Gabor Greifa54634a2007-07-06 22:07:22 +00004724adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00004725
John Criswell88190562005-05-16 16:17:45 +00004726<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Jeff Cohen222a8a42007-04-29 01:07:00 +00004727prefix is reserved in LLVM for intrinsic names; thus, function names may not
4728begin with this prefix. Intrinsic functions must always be external functions:
4729you cannot define the body of intrinsic functions. Intrinsic functions may
4730only be used in call or invoke instructions: it is illegal to take the address
4731of an intrinsic function. Additionally, because intrinsic functions are part
4732of the LLVM language, it is required if any are added that they be documented
4733here.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00004734
Chandler Carruth7132e002007-08-04 01:51:18 +00004735<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
4736a family of functions that perform the same operation but on different data
4737types. Because LLVM can represent over 8 million different integer types,
4738overloading is used commonly to allow an intrinsic function to operate on any
4739integer type. One or more of the argument types or the result type can be
4740overloaded to accept any integer type. Argument types may also be defined as
4741exactly matching a previous argument's type or the result type. This allows an
4742intrinsic function which accepts multiple arguments, but needs all of them to
4743be of the same type, to only be overloaded with respect to a single argument or
4744the result.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00004745
Chandler Carruth7132e002007-08-04 01:51:18 +00004746<p>Overloaded intrinsics will have the names of its overloaded argument types
4747encoded into its function name, each preceded by a period. Only those types
4748which are overloaded result in a name suffix. Arguments whose type is matched
4749against another type do not. For example, the <tt>llvm.ctpop</tt> function can
4750take an integer of any width and returns an integer of exactly the same integer
4751width. This leads to a family of functions such as
4752<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
4753Only one type, the return type, is overloaded, and only one type suffix is
4754required. Because the argument's type is matched against the return type, it
4755does not require its own name suffix.</p>
Reid Spencer4eefaab2007-04-01 08:04:23 +00004756
4757<p>To learn how to add an intrinsic function, please see the
4758<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
Chris Lattnerfee11462004-02-12 17:01:32 +00004759</p>
4760
Misha Brukman76307852003-11-08 01:05:38 +00004761</div>
Chris Lattner941515c2004-01-06 05:31:32 +00004762
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004763<!-- ======================================================================= -->
Chris Lattner941515c2004-01-06 05:31:32 +00004764<div class="doc_subsection">
4765 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
4766</div>
4767
Misha Brukman76307852003-11-08 01:05:38 +00004768<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +00004769
Misha Brukman76307852003-11-08 01:05:38 +00004770<p>Variable argument support is defined in LLVM with the <a
Chris Lattner33337472006-01-13 23:26:01 +00004771 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
Chris Lattner48b383b02003-11-25 01:02:51 +00004772intrinsic functions. These functions are related to the similarly
4773named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004774
Chris Lattner48b383b02003-11-25 01:02:51 +00004775<p>All of these functions operate on arguments that use a
4776target-specific value type "<tt>va_list</tt>". The LLVM assembly
4777language reference manual does not define what this type is, so all
Jeff Cohen222a8a42007-04-29 01:07:00 +00004778transformations should be prepared to handle these functions regardless of
4779the type used.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004780
Chris Lattner30b868d2006-05-15 17:26:46 +00004781<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Chris Lattner48b383b02003-11-25 01:02:51 +00004782instruction and the variable argument handling intrinsic functions are
4783used.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004784
Bill Wendling3716c5d2007-05-29 09:04:49 +00004785<div class="doc_code">
Chris Lattnerfee11462004-02-12 17:01:32 +00004786<pre>
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00004787define i32 @test(i32 %X, ...) {
Chris Lattnerfee11462004-02-12 17:01:32 +00004788 ; Initialize variable argument processing
Jeff Cohen222a8a42007-04-29 01:07:00 +00004789 %ap = alloca i8*
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004790 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00004791 call void @llvm.va_start(i8* %ap2)
Chris Lattnerfee11462004-02-12 17:01:32 +00004792
4793 ; Read a single integer argument
Jeff Cohen222a8a42007-04-29 01:07:00 +00004794 %tmp = va_arg i8** %ap, i32
Chris Lattnerfee11462004-02-12 17:01:32 +00004795
4796 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohen222a8a42007-04-29 01:07:00 +00004797 %aq = alloca i8*
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004798 %aq2 = bitcast i8** %aq to i8*
Jeff Cohen222a8a42007-04-29 01:07:00 +00004799 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00004800 call void @llvm.va_end(i8* %aq2)
Chris Lattnerfee11462004-02-12 17:01:32 +00004801
4802 ; Stop processing of arguments.
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00004803 call void @llvm.va_end(i8* %ap2)
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004804 ret i32 %tmp
Chris Lattnerfee11462004-02-12 17:01:32 +00004805}
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00004806
4807declare void @llvm.va_start(i8*)
4808declare void @llvm.va_copy(i8*, i8*)
4809declare void @llvm.va_end(i8*)
Chris Lattnerfee11462004-02-12 17:01:32 +00004810</pre>
Misha Brukman76307852003-11-08 01:05:38 +00004811</div>
Chris Lattner941515c2004-01-06 05:31:32 +00004812
Bill Wendling3716c5d2007-05-29 09:04:49 +00004813</div>
4814
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004815<!-- _______________________________________________________________________ -->
Chris Lattner941515c2004-01-06 05:31:32 +00004816<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00004817 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner941515c2004-01-06 05:31:32 +00004818</div>
4819
4820
Misha Brukman76307852003-11-08 01:05:38 +00004821<div class="doc_text">
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004822<h5>Syntax:</h5>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004823<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004824<h5>Overview:</h5>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004825<p>The '<tt>llvm.va_start</tt>' intrinsic initializes
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004826<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
4827href="#i_va_arg">va_arg</a></tt>.</p>
4828
4829<h5>Arguments:</h5>
4830
Dan Gohmanef9462f2008-10-14 16:51:45 +00004831<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004832
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004833<h5>Semantics:</h5>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004834
Dan Gohmanef9462f2008-10-14 16:51:45 +00004835<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004836macro available in C. In a target-dependent way, it initializes the
Jeff Cohen222a8a42007-04-29 01:07:00 +00004837<tt>va_list</tt> element to which the argument points, so that the next call to
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004838<tt>va_arg</tt> will produce the first variable argument passed to the function.
4839Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
Jeff Cohen222a8a42007-04-29 01:07:00 +00004840last argument of the function as the compiler can figure that out.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004841
Misha Brukman76307852003-11-08 01:05:38 +00004842</div>
Chris Lattner941515c2004-01-06 05:31:32 +00004843
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004844<!-- _______________________________________________________________________ -->
Chris Lattner941515c2004-01-06 05:31:32 +00004845<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00004846 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner941515c2004-01-06 05:31:32 +00004847</div>
4848
Misha Brukman76307852003-11-08 01:05:38 +00004849<div class="doc_text">
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004850<h5>Syntax:</h5>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00004851<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004852<h5>Overview:</h5>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004853
Jeff Cohen222a8a42007-04-29 01:07:00 +00004854<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Reid Spencer96a5f022007-04-04 02:42:35 +00004855which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
Chris Lattner48b383b02003-11-25 01:02:51 +00004856or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004857
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004858<h5>Arguments:</h5>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004859
Jeff Cohen222a8a42007-04-29 01:07:00 +00004860<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004861
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004862<h5>Semantics:</h5>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004863
Misha Brukman76307852003-11-08 01:05:38 +00004864<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Jeff Cohen222a8a42007-04-29 01:07:00 +00004865macro available in C. In a target-dependent way, it destroys the
4866<tt>va_list</tt> element to which the argument points. Calls to <a
4867href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
4868<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
4869<tt>llvm.va_end</tt>.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004870
Misha Brukman76307852003-11-08 01:05:38 +00004871</div>
Chris Lattner941515c2004-01-06 05:31:32 +00004872
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004873<!-- _______________________________________________________________________ -->
Chris Lattner941515c2004-01-06 05:31:32 +00004874<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00004875 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner941515c2004-01-06 05:31:32 +00004876</div>
4877
Misha Brukman76307852003-11-08 01:05:38 +00004878<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +00004879
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004880<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004881
4882<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00004883 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattner757528b0b2004-05-23 21:06:01 +00004884</pre>
4885
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004886<h5>Overview:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004887
Jeff Cohen222a8a42007-04-29 01:07:00 +00004888<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
4889from the source argument list to the destination argument list.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004890
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004891<h5>Arguments:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004892
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004893<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Andrew Lenharth5305ea52005-06-22 20:38:11 +00004894The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004895
Chris Lattner757528b0b2004-05-23 21:06:01 +00004896
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004897<h5>Semantics:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004898
Jeff Cohen222a8a42007-04-29 01:07:00 +00004899<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
4900macro available in C. In a target-dependent way, it copies the source
4901<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
4902intrinsic is necessary because the <tt><a href="#int_va_start">
4903llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
4904example, memory allocation.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004905
Misha Brukman76307852003-11-08 01:05:38 +00004906</div>
Chris Lattner941515c2004-01-06 05:31:32 +00004907
Chris Lattnerfee11462004-02-12 17:01:32 +00004908<!-- ======================================================================= -->
4909<div class="doc_subsection">
Chris Lattner757528b0b2004-05-23 21:06:01 +00004910 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
4911</div>
4912
4913<div class="doc_text">
4914
4915<p>
4916LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattner67c37d12008-08-05 18:29:16 +00004917Collection</a> (GC) requires the implementation and generation of these
4918intrinsics.
Reid Spencer96a5f022007-04-04 02:42:35 +00004919These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
Chris Lattner757528b0b2004-05-23 21:06:01 +00004920stack</a>, as well as garbage collector implementations that require <a
Reid Spencer96a5f022007-04-04 02:42:35 +00004921href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
Chris Lattner757528b0b2004-05-23 21:06:01 +00004922Front-ends for type-safe garbage collected languages should generate these
4923intrinsics to make use of the LLVM garbage collectors. For more details, see <a
4924href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
4925</p>
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00004926
4927<p>The garbage collection intrinsics only operate on objects in the generic
4928 address space (address space zero).</p>
4929
Chris Lattner757528b0b2004-05-23 21:06:01 +00004930</div>
4931
4932<!-- _______________________________________________________________________ -->
4933<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00004934 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004935</div>
4936
4937<div class="doc_text">
4938
4939<h5>Syntax:</h5>
4940
4941<pre>
Chris Lattner12477732007-09-21 17:30:40 +00004942 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattner757528b0b2004-05-23 21:06:01 +00004943</pre>
4944
4945<h5>Overview:</h5>
4946
John Criswelldfe6a862004-12-10 15:51:16 +00004947<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Chris Lattner757528b0b2004-05-23 21:06:01 +00004948the code generator, and allows some metadata to be associated with it.</p>
4949
4950<h5>Arguments:</h5>
4951
4952<p>The first argument specifies the address of a stack object that contains the
4953root pointer. The second pointer (which must be either a constant or a global
4954value address) contains the meta-data to be associated with the root.</p>
4955
4956<h5>Semantics:</h5>
4957
Chris Lattner851b7712008-04-24 05:59:56 +00004958<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Chris Lattner757528b0b2004-05-23 21:06:01 +00004959location. At compile-time, the code generator generates information to allow
Gordon Henriksenfb56bde2007-12-25 02:31:26 +00004960the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
4961intrinsic may only be used in a function which <a href="#gc">specifies a GC
4962algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004963
4964</div>
4965
4966
4967<!-- _______________________________________________________________________ -->
4968<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00004969 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004970</div>
4971
4972<div class="doc_text">
4973
4974<h5>Syntax:</h5>
4975
4976<pre>
Chris Lattner12477732007-09-21 17:30:40 +00004977 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattner757528b0b2004-05-23 21:06:01 +00004978</pre>
4979
4980<h5>Overview:</h5>
4981
4982<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
4983locations, allowing garbage collector implementations that require read
4984barriers.</p>
4985
4986<h5>Arguments:</h5>
4987
Chris Lattnerf9228072006-03-14 20:02:51 +00004988<p>The second argument is the address to read from, which should be an address
4989allocated from the garbage collector. The first object is a pointer to the
4990start of the referenced object, if needed by the language runtime (otherwise
4991null).</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004992
4993<h5>Semantics:</h5>
4994
4995<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
4996instruction, but may be replaced with substantially more complex code by the
Gordon Henriksenfb56bde2007-12-25 02:31:26 +00004997garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
4998may only be used in a function which <a href="#gc">specifies a GC
4999algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005000
5001</div>
5002
5003
5004<!-- _______________________________________________________________________ -->
5005<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005006 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005007</div>
5008
5009<div class="doc_text">
5010
5011<h5>Syntax:</h5>
5012
5013<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005014 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattner757528b0b2004-05-23 21:06:01 +00005015</pre>
5016
5017<h5>Overview:</h5>
5018
5019<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
5020locations, allowing garbage collector implementations that require write
5021barriers (such as generational or reference counting collectors).</p>
5022
5023<h5>Arguments:</h5>
5024
Chris Lattnerf9228072006-03-14 20:02:51 +00005025<p>The first argument is the reference to store, the second is the start of the
5026object to store it to, and the third is the address of the field of Obj to
5027store to. If the runtime does not require a pointer to the object, Obj may be
5028null.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005029
5030<h5>Semantics:</h5>
5031
5032<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
5033instruction, but may be replaced with substantially more complex code by the
Gordon Henriksenfb56bde2007-12-25 02:31:26 +00005034garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
5035may only be used in a function which <a href="#gc">specifies a GC
5036algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005037
5038</div>
5039
5040
5041
5042<!-- ======================================================================= -->
5043<div class="doc_subsection">
Chris Lattner3649c3a2004-02-14 04:08:35 +00005044 <a name="int_codegen">Code Generator Intrinsics</a>
5045</div>
5046
5047<div class="doc_text">
5048<p>
5049These intrinsics are provided by LLVM to expose special features that may only
5050be implemented with code generator support.
5051</p>
5052
5053</div>
5054
5055<!-- _______________________________________________________________________ -->
5056<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005057 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005058</div>
5059
5060<div class="doc_text">
5061
5062<h5>Syntax:</h5>
5063<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005064 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00005065</pre>
5066
5067<h5>Overview:</h5>
5068
5069<p>
Chris Lattnerc1fb4262006-10-15 20:05:59 +00005070The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
5071target-specific value indicating the return address of the current function
5072or one of its callers.
Chris Lattner3649c3a2004-02-14 04:08:35 +00005073</p>
5074
5075<h5>Arguments:</h5>
5076
5077<p>
5078The argument to this intrinsic indicates which function to return the address
5079for. Zero indicates the calling function, one indicates its caller, etc. The
5080argument is <b>required</b> to be a constant integer value.
5081</p>
5082
5083<h5>Semantics:</h5>
5084
5085<p>
5086The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
5087the return address of the specified call frame, or zero if it cannot be
5088identified. The value returned by this intrinsic is likely to be incorrect or 0
5089for arguments other than zero, so it should only be used for debugging purposes.
5090</p>
5091
5092<p>
5093Note that calling this intrinsic does not prevent function inlining or other
Chris Lattner2e6eb5f2005-03-07 20:30:51 +00005094aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner3649c3a2004-02-14 04:08:35 +00005095source-language caller.
5096</p>
5097</div>
5098
5099
5100<!-- _______________________________________________________________________ -->
5101<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005102 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005103</div>
5104
5105<div class="doc_text">
5106
5107<h5>Syntax:</h5>
5108<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005109 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00005110</pre>
5111
5112<h5>Overview:</h5>
5113
5114<p>
Chris Lattnerc1fb4262006-10-15 20:05:59 +00005115The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
5116target-specific frame pointer value for the specified stack frame.
Chris Lattner3649c3a2004-02-14 04:08:35 +00005117</p>
5118
5119<h5>Arguments:</h5>
5120
5121<p>
5122The argument to this intrinsic indicates which function to return the frame
5123pointer for. Zero indicates the calling function, one indicates its caller,
5124etc. The argument is <b>required</b> to be a constant integer value.
5125</p>
5126
5127<h5>Semantics:</h5>
5128
5129<p>
5130The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
5131the frame address of the specified call frame, or zero if it cannot be
5132identified. The value returned by this intrinsic is likely to be incorrect or 0
5133for arguments other than zero, so it should only be used for debugging purposes.
5134</p>
5135
5136<p>
5137Note that calling this intrinsic does not prevent function inlining or other
Chris Lattner2e6eb5f2005-03-07 20:30:51 +00005138aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner3649c3a2004-02-14 04:08:35 +00005139source-language caller.
5140</p>
5141</div>
5142
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005143<!-- _______________________________________________________________________ -->
5144<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005145 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005146</div>
5147
5148<div class="doc_text">
5149
5150<h5>Syntax:</h5>
5151<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005152 declare i8 *@llvm.stacksave()
Chris Lattner2f0f0012006-01-13 02:03:13 +00005153</pre>
5154
5155<h5>Overview:</h5>
5156
5157<p>
5158The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
Reid Spencer96a5f022007-04-04 02:42:35 +00005159the function stack, for use with <a href="#int_stackrestore">
Chris Lattner2f0f0012006-01-13 02:03:13 +00005160<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
5161features like scoped automatic variable sized arrays in C99.
5162</p>
5163
5164<h5>Semantics:</h5>
5165
5166<p>
5167This intrinsic returns a opaque pointer value that can be passed to <a
Reid Spencer96a5f022007-04-04 02:42:35 +00005168href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
Chris Lattner2f0f0012006-01-13 02:03:13 +00005169<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
5170<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
5171state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
5172practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
5173that were allocated after the <tt>llvm.stacksave</tt> was executed.
5174</p>
5175
5176</div>
5177
5178<!-- _______________________________________________________________________ -->
5179<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005180 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005181</div>
5182
5183<div class="doc_text">
5184
5185<h5>Syntax:</h5>
5186<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005187 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner2f0f0012006-01-13 02:03:13 +00005188</pre>
5189
5190<h5>Overview:</h5>
5191
5192<p>
5193The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
5194the function stack to the state it was in when the corresponding <a
Reid Spencer96a5f022007-04-04 02:42:35 +00005195href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
Chris Lattner2f0f0012006-01-13 02:03:13 +00005196useful for implementing language features like scoped automatic variable sized
5197arrays in C99.
5198</p>
5199
5200<h5>Semantics:</h5>
5201
5202<p>
Reid Spencer96a5f022007-04-04 02:42:35 +00005203See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
Chris Lattner2f0f0012006-01-13 02:03:13 +00005204</p>
5205
5206</div>
5207
5208
5209<!-- _______________________________________________________________________ -->
5210<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005211 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005212</div>
5213
5214<div class="doc_text">
5215
5216<h5>Syntax:</h5>
5217<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005218 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005219</pre>
5220
5221<h5>Overview:</h5>
5222
5223
5224<p>
5225The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
John Criswell88190562005-05-16 16:17:45 +00005226a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
5227no
5228effect on the behavior of the program but can change its performance
Chris Lattnerff851072005-02-28 19:47:14 +00005229characteristics.
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005230</p>
5231
5232<h5>Arguments:</h5>
5233
5234<p>
5235<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
5236determining if the fetch should be for a read (0) or write (1), and
5237<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Chris Lattnerd3e641c2005-03-07 20:31:38 +00005238locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005239<tt>locality</tt> arguments must be constant integers.
5240</p>
5241
5242<h5>Semantics:</h5>
5243
5244<p>
5245This intrinsic does not modify the behavior of the program. In particular,
5246prefetches cannot trap and do not produce a value. On targets that support this
5247intrinsic, the prefetch can provide hints to the processor cache for better
5248performance.
5249</p>
5250
5251</div>
5252
Andrew Lenharthb4427912005-03-28 20:05:49 +00005253<!-- _______________________________________________________________________ -->
5254<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005255 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharthb4427912005-03-28 20:05:49 +00005256</div>
5257
5258<div class="doc_text">
5259
5260<h5>Syntax:</h5>
5261<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005262 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharthb4427912005-03-28 20:05:49 +00005263</pre>
5264
5265<h5>Overview:</h5>
5266
5267
5268<p>
John Criswell88190562005-05-16 16:17:45 +00005269The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
Chris Lattner67c37d12008-08-05 18:29:16 +00005270(PC) in a region of
5271code to simulators and other tools. The method is target specific, but it is
5272expected that the marker will use exported symbols to transmit the PC of the
5273marker.
5274The marker makes no guarantees that it will remain with any specific instruction
5275after optimizations. It is possible that the presence of a marker will inhibit
Chris Lattnerb40261e2006-03-24 07:16:10 +00005276optimizations. The intended use is to be inserted after optimizations to allow
John Criswell88190562005-05-16 16:17:45 +00005277correlations of simulation runs.
Andrew Lenharthb4427912005-03-28 20:05:49 +00005278</p>
5279
5280<h5>Arguments:</h5>
5281
5282<p>
5283<tt>id</tt> is a numerical id identifying the marker.
5284</p>
5285
5286<h5>Semantics:</h5>
5287
5288<p>
5289This intrinsic does not modify the behavior of the program. Backends that do not
5290support this intrinisic may ignore it.
5291</p>
5292
5293</div>
5294
Andrew Lenharth01aa5632005-11-11 16:47:30 +00005295<!-- _______________________________________________________________________ -->
5296<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005297 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00005298</div>
5299
5300<div class="doc_text">
5301
5302<h5>Syntax:</h5>
5303<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005304 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth01aa5632005-11-11 16:47:30 +00005305</pre>
5306
5307<h5>Overview:</h5>
5308
5309
5310<p>
5311The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
5312counter register (or similar low latency, high accuracy clocks) on those targets
5313that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
5314As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
5315should only be used for small timings.
5316</p>
5317
5318<h5>Semantics:</h5>
5319
5320<p>
5321When directly supported, reading the cycle counter should not modify any memory.
5322Implementations are allowed to either return a application specific value or a
5323system wide value. On backends without support, this is lowered to a constant 0.
5324</p>
5325
5326</div>
5327
Chris Lattner3649c3a2004-02-14 04:08:35 +00005328<!-- ======================================================================= -->
5329<div class="doc_subsection">
Chris Lattnerfee11462004-02-12 17:01:32 +00005330 <a name="int_libc">Standard C Library Intrinsics</a>
5331</div>
5332
5333<div class="doc_text">
5334<p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005335LLVM provides intrinsics for a few important standard C library functions.
5336These intrinsics allow source-language front-ends to pass information about the
5337alignment of the pointer arguments to the code generator, providing opportunity
5338for more efficient code generation.
Chris Lattnerfee11462004-02-12 17:01:32 +00005339</p>
5340
5341</div>
5342
5343<!-- _______________________________________________________________________ -->
5344<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005345 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattnerfee11462004-02-12 17:01:32 +00005346</div>
5347
5348<div class="doc_text">
5349
5350<h5>Syntax:</h5>
Chris Lattnerdd708342008-11-21 16:42:48 +00005351<p>This is an overloaded intrinsic. You can use llvm.memcpy on any integer bit
5352width. Not all targets support all bit widths however.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005353<pre>
Chris Lattnerdd708342008-11-21 16:42:48 +00005354 declare void @llvm.memcpy.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5355 i8 &lt;len&gt;, i32 &lt;align&gt;)
5356 declare void @llvm.memcpy.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5357 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005358 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005359 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005360 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005361 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattnerfee11462004-02-12 17:01:32 +00005362</pre>
5363
5364<h5>Overview:</h5>
5365
5366<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005367The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattnerfee11462004-02-12 17:01:32 +00005368location to the destination location.
5369</p>
5370
5371<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005372Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5373intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattnerfee11462004-02-12 17:01:32 +00005374</p>
5375
5376<h5>Arguments:</h5>
5377
5378<p>
5379The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner0c8b2592006-03-03 00:07:20 +00005380the source. The third argument is an integer argument
Chris Lattnerfee11462004-02-12 17:01:32 +00005381specifying the number of bytes to copy, and the fourth argument is the alignment
5382of the source and destination locations.
5383</p>
5384
Chris Lattner4c67c482004-02-12 21:18:15 +00005385<p>
5386If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattner5316e5d2006-03-04 00:02:10 +00005387the caller guarantees that both the source and destination pointers are aligned
5388to that boundary.
Chris Lattner4c67c482004-02-12 21:18:15 +00005389</p>
5390
Chris Lattnerfee11462004-02-12 17:01:32 +00005391<h5>Semantics:</h5>
5392
5393<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005394The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattnerfee11462004-02-12 17:01:32 +00005395location to the destination location, which are not allowed to overlap. It
5396copies "len" bytes of memory over. If the argument is known to be aligned to
5397some boundary, this can be specified as the fourth argument, otherwise it should
5398be set to 0 or 1.
5399</p>
5400</div>
5401
5402
Chris Lattnerf30152e2004-02-12 18:10:10 +00005403<!-- _______________________________________________________________________ -->
5404<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005405 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattnerf30152e2004-02-12 18:10:10 +00005406</div>
5407
5408<div class="doc_text">
5409
5410<h5>Syntax:</h5>
Chris Lattnerdd708342008-11-21 16:42:48 +00005411<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
5412width. Not all targets support all bit widths however.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00005413<pre>
Chris Lattnerdd708342008-11-21 16:42:48 +00005414 declare void @llvm.memmove.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5415 i8 &lt;len&gt;, i32 &lt;align&gt;)
5416 declare void @llvm.memmove.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5417 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005418 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005419 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005420 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005421 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattnerf30152e2004-02-12 18:10:10 +00005422</pre>
5423
5424<h5>Overview:</h5>
5425
5426<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005427The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
5428location to the destination location. It is similar to the
Chris Lattnerec564022008-01-06 19:51:52 +00005429'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
Chris Lattnerf30152e2004-02-12 18:10:10 +00005430</p>
5431
5432<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005433Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5434intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattnerf30152e2004-02-12 18:10:10 +00005435</p>
5436
5437<h5>Arguments:</h5>
5438
5439<p>
5440The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner0c8b2592006-03-03 00:07:20 +00005441the source. The third argument is an integer argument
Chris Lattnerf30152e2004-02-12 18:10:10 +00005442specifying the number of bytes to copy, and the fourth argument is the alignment
5443of the source and destination locations.
5444</p>
5445
Chris Lattner4c67c482004-02-12 21:18:15 +00005446<p>
5447If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattner5316e5d2006-03-04 00:02:10 +00005448the caller guarantees that the source and destination pointers are aligned to
5449that boundary.
Chris Lattner4c67c482004-02-12 21:18:15 +00005450</p>
5451
Chris Lattnerf30152e2004-02-12 18:10:10 +00005452<h5>Semantics:</h5>
5453
5454<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005455The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
Chris Lattnerf30152e2004-02-12 18:10:10 +00005456location to the destination location, which may overlap. It
5457copies "len" bytes of memory over. If the argument is known to be aligned to
5458some boundary, this can be specified as the fourth argument, otherwise it should
5459be set to 0 or 1.
5460</p>
5461</div>
5462
Chris Lattner941515c2004-01-06 05:31:32 +00005463
Chris Lattner3649c3a2004-02-14 04:08:35 +00005464<!-- _______________________________________________________________________ -->
5465<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005466 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005467</div>
5468
5469<div class="doc_text">
5470
5471<h5>Syntax:</h5>
Chris Lattnerdd708342008-11-21 16:42:48 +00005472<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
5473width. Not all targets support all bit widths however.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005474<pre>
Chris Lattnerdd708342008-11-21 16:42:48 +00005475 declare void @llvm.memset.i8(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5476 i8 &lt;len&gt;, i32 &lt;align&gt;)
5477 declare void @llvm.memset.i16(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5478 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005479 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005480 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005481 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005482 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00005483</pre>
5484
5485<h5>Overview:</h5>
5486
5487<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005488The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
Chris Lattner3649c3a2004-02-14 04:08:35 +00005489byte value.
5490</p>
5491
5492<p>
5493Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
5494does not return a value, and takes an extra alignment argument.
5495</p>
5496
5497<h5>Arguments:</h5>
5498
5499<p>
5500The first argument is a pointer to the destination to fill, the second is the
Chris Lattner0c8b2592006-03-03 00:07:20 +00005501byte value to fill it with, the third argument is an integer
Chris Lattner3649c3a2004-02-14 04:08:35 +00005502argument specifying the number of bytes to fill, and the fourth argument is the
5503known alignment of destination location.
5504</p>
5505
5506<p>
5507If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattner5316e5d2006-03-04 00:02:10 +00005508the caller guarantees that the destination pointer is aligned to that boundary.
Chris Lattner3649c3a2004-02-14 04:08:35 +00005509</p>
5510
5511<h5>Semantics:</h5>
5512
5513<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005514The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
5515the
Chris Lattner3649c3a2004-02-14 04:08:35 +00005516destination location. If the argument is known to be aligned to some boundary,
5517this can be specified as the fourth argument, otherwise it should be set to 0 or
55181.
5519</p>
5520</div>
5521
5522
Chris Lattner3b4f4372004-06-11 02:28:03 +00005523<!-- _______________________________________________________________________ -->
5524<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005525 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005526</div>
5527
5528<div class="doc_text">
5529
5530<h5>Syntax:</h5>
Dale Johannesendd89d272007-10-02 17:47:38 +00005531<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohmanb6324c12007-10-15 20:30:11 +00005532floating point or vector of floating point type. Not all targets support all
Dan Gohmanef9462f2008-10-14 16:51:45 +00005533types however.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005534<pre>
Dale Johannesendd89d272007-10-02 17:47:38 +00005535 declare float @llvm.sqrt.f32(float %Val)
5536 declare double @llvm.sqrt.f64(double %Val)
5537 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5538 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5539 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005540</pre>
5541
5542<h5>Overview:</h5>
5543
5544<p>
Reid Spencerb4f9a6f2006-01-16 21:12:35 +00005545The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohmanb6324c12007-10-15 20:30:11 +00005546returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005547<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
Chris Lattner00d7cb92008-01-29 07:00:44 +00005548negative numbers other than -0.0 (which allows for better optimization, because
5549there is no need to worry about errno being set). <tt>llvm.sqrt(-0.0)</tt> is
5550defined to return -0.0 like IEEE sqrt.
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005551</p>
5552
5553<h5>Arguments:</h5>
5554
5555<p>
5556The argument and return value are floating point numbers of the same type.
5557</p>
5558
5559<h5>Semantics:</h5>
5560
5561<p>
Dan Gohman33988db2007-07-16 14:37:41 +00005562This function returns the sqrt of the specified operand if it is a nonnegative
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005563floating point number.
5564</p>
5565</div>
5566
Chris Lattner33b73f92006-09-08 06:34:02 +00005567<!-- _______________________________________________________________________ -->
5568<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005569 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattner33b73f92006-09-08 06:34:02 +00005570</div>
5571
5572<div class="doc_text">
5573
5574<h5>Syntax:</h5>
Dale Johannesendd89d272007-10-02 17:47:38 +00005575<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohmanb6324c12007-10-15 20:30:11 +00005576floating point or vector of floating point type. Not all targets support all
Dan Gohmanef9462f2008-10-14 16:51:45 +00005577types however.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00005578<pre>
Dale Johannesendd89d272007-10-02 17:47:38 +00005579 declare float @llvm.powi.f32(float %Val, i32 %power)
5580 declare double @llvm.powi.f64(double %Val, i32 %power)
5581 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5582 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5583 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattner33b73f92006-09-08 06:34:02 +00005584</pre>
5585
5586<h5>Overview:</h5>
5587
5588<p>
5589The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5590specified (positive or negative) power. The order of evaluation of
Dan Gohmanb6324c12007-10-15 20:30:11 +00005591multiplications is not defined. When a vector of floating point type is
5592used, the second argument remains a scalar integer value.
Chris Lattner33b73f92006-09-08 06:34:02 +00005593</p>
5594
5595<h5>Arguments:</h5>
5596
5597<p>
5598The second argument is an integer power, and the first is a value to raise to
5599that power.
5600</p>
5601
5602<h5>Semantics:</h5>
5603
5604<p>
5605This function returns the first value raised to the second power with an
5606unspecified sequence of rounding operations.</p>
5607</div>
5608
Dan Gohmanb6324c12007-10-15 20:30:11 +00005609<!-- _______________________________________________________________________ -->
5610<div class="doc_subsubsection">
5611 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5612</div>
5613
5614<div class="doc_text">
5615
5616<h5>Syntax:</h5>
5617<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5618floating point or vector of floating point type. Not all targets support all
Dan Gohmanef9462f2008-10-14 16:51:45 +00005619types however.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005620<pre>
5621 declare float @llvm.sin.f32(float %Val)
5622 declare double @llvm.sin.f64(double %Val)
5623 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5624 declare fp128 @llvm.sin.f128(fp128 %Val)
5625 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5626</pre>
5627
5628<h5>Overview:</h5>
5629
5630<p>
5631The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
5632</p>
5633
5634<h5>Arguments:</h5>
5635
5636<p>
5637The argument and return value are floating point numbers of the same type.
5638</p>
5639
5640<h5>Semantics:</h5>
5641
5642<p>
5643This function returns the sine of the specified operand, returning the
5644same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmand0806a02007-10-17 18:05:13 +00005645conditions in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005646</div>
5647
5648<!-- _______________________________________________________________________ -->
5649<div class="doc_subsubsection">
5650 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5651</div>
5652
5653<div class="doc_text">
5654
5655<h5>Syntax:</h5>
5656<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5657floating point or vector of floating point type. Not all targets support all
Dan Gohmanef9462f2008-10-14 16:51:45 +00005658types however.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005659<pre>
5660 declare float @llvm.cos.f32(float %Val)
5661 declare double @llvm.cos.f64(double %Val)
5662 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5663 declare fp128 @llvm.cos.f128(fp128 %Val)
5664 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5665</pre>
5666
5667<h5>Overview:</h5>
5668
5669<p>
5670The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
5671</p>
5672
5673<h5>Arguments:</h5>
5674
5675<p>
5676The argument and return value are floating point numbers of the same type.
5677</p>
5678
5679<h5>Semantics:</h5>
5680
5681<p>
5682This function returns the cosine of the specified operand, returning the
5683same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmand0806a02007-10-17 18:05:13 +00005684conditions in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005685</div>
5686
5687<!-- _______________________________________________________________________ -->
5688<div class="doc_subsubsection">
5689 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5690</div>
5691
5692<div class="doc_text">
5693
5694<h5>Syntax:</h5>
5695<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5696floating point or vector of floating point type. Not all targets support all
Dan Gohmanef9462f2008-10-14 16:51:45 +00005697types however.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005698<pre>
5699 declare float @llvm.pow.f32(float %Val, float %Power)
5700 declare double @llvm.pow.f64(double %Val, double %Power)
5701 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5702 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5703 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5704</pre>
5705
5706<h5>Overview:</h5>
5707
5708<p>
5709The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5710specified (positive or negative) power.
5711</p>
5712
5713<h5>Arguments:</h5>
5714
5715<p>
5716The second argument is a floating point power, and the first is a value to
5717raise to that power.
5718</p>
5719
5720<h5>Semantics:</h5>
5721
5722<p>
5723This function returns the first value raised to the second power,
5724returning the
5725same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmand0806a02007-10-17 18:05:13 +00005726conditions in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005727</div>
5728
Chris Lattner33b73f92006-09-08 06:34:02 +00005729
Andrew Lenharth1d463522005-05-03 18:01:48 +00005730<!-- ======================================================================= -->
5731<div class="doc_subsection">
Nate Begeman0f223bb2006-01-13 23:26:38 +00005732 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +00005733</div>
5734
5735<div class="doc_text">
5736<p>
Nate Begeman0f223bb2006-01-13 23:26:38 +00005737LLVM provides intrinsics for a few important bit manipulation operations.
Andrew Lenharth1d463522005-05-03 18:01:48 +00005738These allow efficient code generation for some algorithms.
5739</p>
5740
5741</div>
5742
5743<!-- _______________________________________________________________________ -->
5744<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005745 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman0f223bb2006-01-13 23:26:38 +00005746</div>
5747
5748<div class="doc_text">
5749
5750<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00005751<p>This is an overloaded intrinsic function. You can use bswap on any integer
Dan Gohmanef9462f2008-10-14 16:51:45 +00005752type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
Nate Begeman0f223bb2006-01-13 23:26:38 +00005753<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00005754 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
5755 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
5756 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman0f223bb2006-01-13 23:26:38 +00005757</pre>
5758
5759<h5>Overview:</h5>
5760
5761<p>
Reid Spencerf361c4f2007-04-02 02:25:19 +00005762The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
Reid Spencer4eefaab2007-04-01 08:04:23 +00005763values with an even number of bytes (positive multiple of 16 bits). These are
5764useful for performing operations on data that is not in the target's native
5765byte order.
Nate Begeman0f223bb2006-01-13 23:26:38 +00005766</p>
5767
5768<h5>Semantics:</h5>
5769
5770<p>
Chandler Carruth7132e002007-08-04 01:51:18 +00005771The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005772and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
5773intrinsic returns an i32 value that has the four bytes of the input i32
5774swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carruth7132e002007-08-04 01:51:18 +00005775i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
5776<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Reid Spencer4eefaab2007-04-01 08:04:23 +00005777additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
Nate Begeman0f223bb2006-01-13 23:26:38 +00005778</p>
5779
5780</div>
5781
5782<!-- _______________________________________________________________________ -->
5783<div class="doc_subsubsection">
Reid Spencerb4f9a6f2006-01-16 21:12:35 +00005784 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +00005785</div>
5786
5787<div class="doc_text">
5788
5789<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00005790<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Dan Gohmanef9462f2008-10-14 16:51:45 +00005791width. Not all targets support all bit widths however.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00005792<pre>
Bill Wendlingf4d70622009-02-08 01:40:31 +00005793 declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00005794 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005795 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00005796 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
5797 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharth1d463522005-05-03 18:01:48 +00005798</pre>
5799
5800<h5>Overview:</h5>
5801
5802<p>
Chris Lattner069b5bd2006-01-16 22:38:59 +00005803The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
5804value.
Andrew Lenharth1d463522005-05-03 18:01:48 +00005805</p>
5806
5807<h5>Arguments:</h5>
5808
5809<p>
Chris Lattner573f64e2005-05-07 01:46:40 +00005810The only argument is the value to be counted. The argument may be of any
Reid Spencer3e628eb92007-01-04 16:43:23 +00005811integer type. The return type must match the argument type.
Andrew Lenharth1d463522005-05-03 18:01:48 +00005812</p>
5813
5814<h5>Semantics:</h5>
5815
5816<p>
5817The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
5818</p>
5819</div>
5820
5821<!-- _______________________________________________________________________ -->
5822<div class="doc_subsubsection">
Chris Lattnerb748c672006-01-16 22:34:14 +00005823 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +00005824</div>
5825
5826<div class="doc_text">
5827
5828<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00005829<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
Dan Gohmanef9462f2008-10-14 16:51:45 +00005830integer bit width. Not all targets support all bit widths however.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00005831<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00005832 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5833 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005834 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00005835 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5836 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharth1d463522005-05-03 18:01:48 +00005837</pre>
5838
5839<h5>Overview:</h5>
5840
5841<p>
Reid Spencerb4f9a6f2006-01-16 21:12:35 +00005842The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5843leading zeros in a variable.
Andrew Lenharth1d463522005-05-03 18:01:48 +00005844</p>
5845
5846<h5>Arguments:</h5>
5847
5848<p>
Chris Lattner573f64e2005-05-07 01:46:40 +00005849The only argument is the value to be counted. The argument may be of any
Reid Spencer3e628eb92007-01-04 16:43:23 +00005850integer type. The return type must match the argument type.
Andrew Lenharth1d463522005-05-03 18:01:48 +00005851</p>
5852
5853<h5>Semantics:</h5>
5854
5855<p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00005856The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
5857in a variable. If the src == 0 then the result is the size in bits of the type
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005858of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
Andrew Lenharth1d463522005-05-03 18:01:48 +00005859</p>
5860</div>
Chris Lattner3b4f4372004-06-11 02:28:03 +00005861
5862
Chris Lattnerefa20fa2005-05-15 19:39:26 +00005863
5864<!-- _______________________________________________________________________ -->
5865<div class="doc_subsubsection">
Chris Lattnerb748c672006-01-16 22:34:14 +00005866 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00005867</div>
5868
5869<div class="doc_text">
5870
5871<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00005872<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
Dan Gohmanef9462f2008-10-14 16:51:45 +00005873integer bit width. Not all targets support all bit widths however.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00005874<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00005875 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
5876 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005877 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00005878 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
5879 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnerefa20fa2005-05-15 19:39:26 +00005880</pre>
5881
5882<h5>Overview:</h5>
5883
5884<p>
Reid Spencerb4f9a6f2006-01-16 21:12:35 +00005885The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
5886trailing zeros.
Chris Lattnerefa20fa2005-05-15 19:39:26 +00005887</p>
5888
5889<h5>Arguments:</h5>
5890
5891<p>
5892The only argument is the value to be counted. The argument may be of any
Reid Spencer3e628eb92007-01-04 16:43:23 +00005893integer type. The return type must match the argument type.
Chris Lattnerefa20fa2005-05-15 19:39:26 +00005894</p>
5895
5896<h5>Semantics:</h5>
5897
5898<p>
5899The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
5900in a variable. If the src == 0 then the result is the size in bits of the type
5901of src. For example, <tt>llvm.cttz(2) = 1</tt>.
5902</p>
5903</div>
5904
Reid Spencer8a5799f2007-04-01 08:27:01 +00005905<!-- _______________________________________________________________________ -->
5906<div class="doc_subsubsection">
Reid Spencerea2945e2007-04-10 02:51:31 +00005907 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
Reid Spencer8bc7d952007-04-01 19:00:37 +00005908</div>
5909
5910<div class="doc_text">
5911
5912<h5>Syntax:</h5>
Reid Spencerea2945e2007-04-10 02:51:31 +00005913<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
Dan Gohmanef9462f2008-10-14 16:51:45 +00005914on any integer bit width.</p>
Reid Spencer8bc7d952007-04-01 19:00:37 +00005915<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00005916 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
5917 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Reid Spencer8bc7d952007-04-01 19:00:37 +00005918</pre>
5919
5920<h5>Overview:</h5>
Reid Spencerea2945e2007-04-10 02:51:31 +00005921<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
Reid Spencer8bc7d952007-04-01 19:00:37 +00005922range of bits from an integer value and returns them in the same bit width as
5923the original value.</p>
5924
5925<h5>Arguments:</h5>
5926<p>The first argument, <tt>%val</tt> and the result may be integer types of
5927any bit width but they must have the same bit width. The second and third
Reid Spencer96a5f022007-04-04 02:42:35 +00005928arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
Reid Spencer8bc7d952007-04-01 19:00:37 +00005929
5930<h5>Semantics:</h5>
Reid Spencerea2945e2007-04-10 02:51:31 +00005931<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
Reid Spencer96a5f022007-04-04 02:42:35 +00005932of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
5933<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
5934operates in forward mode.</p>
5935<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
5936right by <tt>%loBit</tt> bits and then ANDing it with a mask with
Reid Spencer8bc7d952007-04-01 19:00:37 +00005937only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
5938<ol>
5939 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
5940 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
5941 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
5942 to determine the number of bits to retain.</li>
5943 <li>A mask of the retained bits is created by shifting a -1 value.</li>
Dan Gohmanef9462f2008-10-14 16:51:45 +00005944 <li>The mask is ANDed with <tt>%val</tt> to produce the result.</li>
Reid Spencer8bc7d952007-04-01 19:00:37 +00005945</ol>
Reid Spencer70845c02007-05-14 16:14:57 +00005946<p>In reverse mode, a similar computation is made except that the bits are
5947returned in the reverse order. So, for example, if <tt>X</tt> has the value
5948<tt>i16 0x0ACF (101011001111)</tt> and we apply
5949<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
5950<tt>i16 0x0026 (000000100110)</tt>.</p>
Reid Spencer8bc7d952007-04-01 19:00:37 +00005951</div>
5952
Reid Spencer5bf54c82007-04-11 23:23:49 +00005953<div class="doc_subsubsection">
5954 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
5955</div>
5956
5957<div class="doc_text">
5958
5959<h5>Syntax:</h5>
5960<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
Dan Gohmanef9462f2008-10-14 16:51:45 +00005961on any integer bit width.</p>
Reid Spencer5bf54c82007-04-11 23:23:49 +00005962<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00005963 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
5964 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Reid Spencer5bf54c82007-04-11 23:23:49 +00005965</pre>
5966
5967<h5>Overview:</h5>
5968<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
5969of bits in an integer value with another integer value. It returns the integer
5970with the replaced bits.</p>
5971
5972<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00005973<p>The first argument, <tt>%val</tt>, and the result may be integer types of
5974any bit width, but they must have the same bit width. <tt>%val</tt> is the value
Reid Spencer5bf54c82007-04-11 23:23:49 +00005975whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
5976integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
5977type since they specify only a bit index.</p>
5978
5979<h5>Semantics:</h5>
5980<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
5981of operation: forwards and reverse. If <tt>%lo</tt> is greater than
5982<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
5983operates in forward mode.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00005984
Reid Spencer5bf54c82007-04-11 23:23:49 +00005985<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
5986truncating it down to the size of the replacement area or zero extending it
5987up to that size.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00005988
Reid Spencer5bf54c82007-04-11 23:23:49 +00005989<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
5990are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
5991in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
Dan Gohmanef9462f2008-10-14 16:51:45 +00005992to the <tt>%hi</tt>th bit.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00005993
Reid Spencer146281c2007-05-14 16:50:20 +00005994<p>In reverse mode, a similar computation is made except that the bits are
5995reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
Dan Gohmanef9462f2008-10-14 16:51:45 +00005996<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00005997
Reid Spencer5bf54c82007-04-11 23:23:49 +00005998<h5>Examples:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00005999
Reid Spencer5bf54c82007-04-11 23:23:49 +00006000<pre>
Reid Spencerc70afc32007-04-12 01:03:03 +00006001 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
Reid Spencer146281c2007-05-14 16:50:20 +00006002 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
6003 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
6004 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
Reid Spencerc70afc32007-04-12 01:03:03 +00006005 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
Reid Spencer7972c472007-04-11 23:49:50 +00006006</pre>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006007
6008</div>
6009
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006010<!-- ======================================================================= -->
6011<div class="doc_subsection">
6012 <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
6013</div>
6014
6015<div class="doc_text">
6016<p>
6017LLVM provides intrinsics for some arithmetic with overflow operations.
6018</p>
6019
6020</div>
6021
Bill Wendlingf4d70622009-02-08 01:40:31 +00006022<!-- _______________________________________________________________________ -->
6023<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006024 <a name="int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006025</div>
6026
6027<div class="doc_text">
6028
6029<h5>Syntax:</h5>
6030
6031<p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006032on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006033
6034<pre>
6035 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
6036 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6037 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
6038</pre>
6039
6040<h5>Overview:</h5>
6041
6042<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
6043a signed addition of the two arguments, and indicate whether an overflow
6044occurred during the signed summation.</p>
6045
6046<h5>Arguments:</h5>
6047
6048<p>The arguments (%a and %b) and the first element of the result structure may
6049be of integer types of any bit width, but they must have the same bit width. The
6050second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6051and <tt>%b</tt> are the two values that will undergo signed addition.</p>
6052
6053<h5>Semantics:</h5>
6054
6055<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
6056a signed addition of the two variables. They return a structure &mdash; the
6057first element of which is the signed summation, and the second element of which
6058is a bit specifying if the signed summation resulted in an overflow.</p>
6059
6060<h5>Examples:</h5>
6061<pre>
6062 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6063 %sum = extractvalue {i32, i1} %res, 0
6064 %obit = extractvalue {i32, i1} %res, 1
6065 br i1 %obit, label %overflow, label %normal
6066</pre>
6067
6068</div>
6069
6070<!-- _______________________________________________________________________ -->
6071<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006072 <a name="int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006073</div>
6074
6075<div class="doc_text">
6076
6077<h5>Syntax:</h5>
6078
6079<p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006080on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006081
6082<pre>
6083 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
6084 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6085 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
6086</pre>
6087
6088<h5>Overview:</h5>
6089
6090<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
6091an unsigned addition of the two arguments, and indicate whether a carry occurred
6092during the unsigned summation.</p>
6093
6094<h5>Arguments:</h5>
6095
6096<p>The arguments (%a and %b) and the first element of the result structure may
6097be of integer types of any bit width, but they must have the same bit width. The
6098second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6099and <tt>%b</tt> are the two values that will undergo unsigned addition.</p>
6100
6101<h5>Semantics:</h5>
6102
6103<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
6104an unsigned addition of the two arguments. They return a structure &mdash; the
6105first element of which is the sum, and the second element of which is a bit
6106specifying if the unsigned summation resulted in a carry.</p>
6107
6108<h5>Examples:</h5>
6109<pre>
6110 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6111 %sum = extractvalue {i32, i1} %res, 0
6112 %obit = extractvalue {i32, i1} %res, 1
6113 br i1 %obit, label %carry, label %normal
6114</pre>
6115
6116</div>
6117
6118<!-- _______________________________________________________________________ -->
6119<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006120 <a name="int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006121</div>
6122
6123<div class="doc_text">
6124
6125<h5>Syntax:</h5>
6126
6127<p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006128on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006129
6130<pre>
6131 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
6132 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6133 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
6134</pre>
6135
6136<h5>Overview:</h5>
6137
6138<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
6139a signed subtraction of the two arguments, and indicate whether an overflow
6140occurred during the signed subtraction.</p>
6141
6142<h5>Arguments:</h5>
6143
6144<p>The arguments (%a and %b) and the first element of the result structure may
6145be of integer types of any bit width, but they must have the same bit width. The
6146second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6147and <tt>%b</tt> are the two values that will undergo signed subtraction.</p>
6148
6149<h5>Semantics:</h5>
6150
6151<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
6152a signed subtraction of the two arguments. They return a structure &mdash; the
6153first element of which is the subtraction, and the second element of which is a bit
6154specifying if the signed subtraction resulted in an overflow.</p>
6155
6156<h5>Examples:</h5>
6157<pre>
6158 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6159 %sum = extractvalue {i32, i1} %res, 0
6160 %obit = extractvalue {i32, i1} %res, 1
6161 br i1 %obit, label %overflow, label %normal
6162</pre>
6163
6164</div>
6165
6166<!-- _______________________________________________________________________ -->
6167<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006168 <a name="int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006169</div>
6170
6171<div class="doc_text">
6172
6173<h5>Syntax:</h5>
6174
6175<p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006176on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006177
6178<pre>
6179 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
6180 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6181 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
6182</pre>
6183
6184<h5>Overview:</h5>
6185
6186<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
6187an unsigned subtraction of the two arguments, and indicate whether an overflow
6188occurred during the unsigned subtraction.</p>
6189
6190<h5>Arguments:</h5>
6191
6192<p>The arguments (%a and %b) and the first element of the result structure may
6193be of integer types of any bit width, but they must have the same bit width. The
6194second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6195and <tt>%b</tt> are the two values that will undergo unsigned subtraction.</p>
6196
6197<h5>Semantics:</h5>
6198
6199<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
6200an unsigned subtraction of the two arguments. They return a structure &mdash; the
6201first element of which is the subtraction, and the second element of which is a bit
6202specifying if the unsigned subtraction resulted in an overflow.</p>
6203
6204<h5>Examples:</h5>
6205<pre>
6206 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6207 %sum = extractvalue {i32, i1} %res, 0
6208 %obit = extractvalue {i32, i1} %res, 1
6209 br i1 %obit, label %overflow, label %normal
6210</pre>
6211
6212</div>
6213
6214<!-- _______________________________________________________________________ -->
6215<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006216 <a name="int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006217</div>
6218
6219<div class="doc_text">
6220
6221<h5>Syntax:</h5>
6222
6223<p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006224on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006225
6226<pre>
6227 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
6228 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6229 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
6230</pre>
6231
6232<h5>Overview:</h5>
6233
6234<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
6235a signed multiplication of the two arguments, and indicate whether an overflow
6236occurred during the signed multiplication.</p>
6237
6238<h5>Arguments:</h5>
6239
6240<p>The arguments (%a and %b) and the first element of the result structure may
6241be of integer types of any bit width, but they must have the same bit width. The
6242second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6243and <tt>%b</tt> are the two values that will undergo signed multiplication.</p>
6244
6245<h5>Semantics:</h5>
6246
6247<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
6248a signed multiplication of the two arguments. They return a structure &mdash;
6249the first element of which is the multiplication, and the second element of
6250which is a bit specifying if the signed multiplication resulted in an
6251overflow.</p>
6252
6253<h5>Examples:</h5>
6254<pre>
6255 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6256 %sum = extractvalue {i32, i1} %res, 0
6257 %obit = extractvalue {i32, i1} %res, 1
6258 br i1 %obit, label %overflow, label %normal
6259</pre>
6260
Reid Spencer5bf54c82007-04-11 23:23:49 +00006261</div>
6262
Bill Wendlingb9a73272009-02-08 23:00:09 +00006263<!-- _______________________________________________________________________ -->
6264<div class="doc_subsubsection">
6265 <a name="int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt>' Intrinsics</a>
6266</div>
6267
6268<div class="doc_text">
6269
6270<h5>Syntax:</h5>
6271
6272<p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
6273on any integer bit width.</p>
6274
6275<pre>
6276 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
6277 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6278 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
6279</pre>
6280
6281<h5>Overview:</h5>
6282
6283<p><i><b>Warning:</b> '<tt>llvm.umul.with.overflow</tt>' is badly broken. It is
6284actively being fixed, but it should not currently be used!</i></p>
6285
6286<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
6287a unsigned multiplication of the two arguments, and indicate whether an overflow
6288occurred during the unsigned multiplication.</p>
6289
6290<h5>Arguments:</h5>
6291
6292<p>The arguments (%a and %b) and the first element of the result structure may
6293be of integer types of any bit width, but they must have the same bit width. The
6294second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6295and <tt>%b</tt> are the two values that will undergo unsigned
6296multiplication.</p>
6297
6298<h5>Semantics:</h5>
6299
6300<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
6301an unsigned multiplication of the two arguments. They return a structure &mdash;
6302the first element of which is the multiplication, and the second element of
6303which is a bit specifying if the unsigned multiplication resulted in an
6304overflow.</p>
6305
6306<h5>Examples:</h5>
6307<pre>
6308 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6309 %sum = extractvalue {i32, i1} %res, 0
6310 %obit = extractvalue {i32, i1} %res, 1
6311 br i1 %obit, label %overflow, label %normal
6312</pre>
6313
6314</div>
6315
Chris Lattner941515c2004-01-06 05:31:32 +00006316<!-- ======================================================================= -->
6317<div class="doc_subsection">
6318 <a name="int_debugger">Debugger Intrinsics</a>
6319</div>
6320
6321<div class="doc_text">
6322<p>
6323The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
6324are described in the <a
6325href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
6326Debugging</a> document.
6327</p>
6328</div>
6329
6330
Jim Laskey2211f492007-03-14 19:31:19 +00006331<!-- ======================================================================= -->
6332<div class="doc_subsection">
6333 <a name="int_eh">Exception Handling Intrinsics</a>
6334</div>
6335
6336<div class="doc_text">
6337<p> The LLVM exception handling intrinsics (which all start with
6338<tt>llvm.eh.</tt> prefix), are described in the <a
6339href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
6340Handling</a> document. </p>
6341</div>
6342
Tanya Lattnercb1b9602007-06-15 20:50:54 +00006343<!-- ======================================================================= -->
6344<div class="doc_subsection">
Duncan Sands86e01192007-09-11 14:10:23 +00006345 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands644f9172007-07-27 12:58:54 +00006346</div>
6347
6348<div class="doc_text">
6349<p>
Duncan Sands86e01192007-09-11 14:10:23 +00006350 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands644f9172007-07-27 12:58:54 +00006351 the <tt>nest</tt> attribute, from a function. The result is a callable
6352 function pointer lacking the nest parameter - the caller does not need
6353 to provide a value for it. Instead, the value to use is stored in
6354 advance in a "trampoline", a block of memory usually allocated
6355 on the stack, which also contains code to splice the nest value into the
6356 argument list. This is used to implement the GCC nested function address
6357 extension.
6358</p>
6359<p>
6360 For example, if the function is
6361 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendling252570f2007-09-22 09:23:55 +00006362 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands644f9172007-07-27 12:58:54 +00006363<pre>
Duncan Sands86e01192007-09-11 14:10:23 +00006364 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
6365 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
6366 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
6367 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands644f9172007-07-27 12:58:54 +00006368</pre>
Bill Wendling252570f2007-09-22 09:23:55 +00006369 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
6370 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands644f9172007-07-27 12:58:54 +00006371</div>
6372
6373<!-- _______________________________________________________________________ -->
6374<div class="doc_subsubsection">
6375 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
6376</div>
6377<div class="doc_text">
6378<h5>Syntax:</h5>
6379<pre>
Duncan Sands86e01192007-09-11 14:10:23 +00006380declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands644f9172007-07-27 12:58:54 +00006381</pre>
6382<h5>Overview:</h5>
6383<p>
Duncan Sands86e01192007-09-11 14:10:23 +00006384 This fills the memory pointed to by <tt>tramp</tt> with code
6385 and returns a function pointer suitable for executing it.
Duncan Sands644f9172007-07-27 12:58:54 +00006386</p>
6387<h5>Arguments:</h5>
6388<p>
6389 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
6390 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
6391 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sandsf2bcd372007-08-22 23:39:54 +00006392 intrinsic. Note that the size and the alignment are target-specific - LLVM
6393 currently provides no portable way of determining them, so a front-end that
6394 generates this intrinsic needs to have some target-specific knowledge.
6395 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands644f9172007-07-27 12:58:54 +00006396</p>
6397<h5>Semantics:</h5>
6398<p>
6399 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sands86e01192007-09-11 14:10:23 +00006400 dependent code, turning it into a function. A pointer to this function is
6401 returned, but needs to be bitcast to an
Duncan Sands644f9172007-07-27 12:58:54 +00006402 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sands86e01192007-09-11 14:10:23 +00006403 before being called. The new function's signature is the same as that of
6404 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
6405 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
6406 of pointer type. Calling the new function is equivalent to calling
6407 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
6408 missing <tt>nest</tt> argument. If, after calling
6409 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
6410 modified, then the effect of any later call to the returned function pointer is
6411 undefined.
Duncan Sands644f9172007-07-27 12:58:54 +00006412</p>
6413</div>
6414
6415<!-- ======================================================================= -->
6416<div class="doc_subsection">
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006417 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
6418</div>
6419
6420<div class="doc_text">
6421<p>
6422 These intrinsic functions expand the "universal IR" of LLVM to represent
6423 hardware constructs for atomic operations and memory synchronization. This
6424 provides an interface to the hardware, not an interface to the programmer. It
Chris Lattner67c37d12008-08-05 18:29:16 +00006425 is aimed at a low enough level to allow any programming models or APIs
6426 (Application Programming Interfaces) which
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006427 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
6428 hardware behavior. Just as hardware provides a "universal IR" for source
6429 languages, it also provides a starting point for developing a "universal"
6430 atomic operation and synchronization IR.
6431</p>
6432<p>
6433 These do <em>not</em> form an API such as high-level threading libraries,
6434 software transaction memory systems, atomic primitives, and intrinsic
6435 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
6436 application libraries. The hardware interface provided by LLVM should allow
6437 a clean implementation of all of these APIs and parallel programming models.
6438 No one model or paradigm should be selected above others unless the hardware
6439 itself ubiquitously does so.
6440
6441</p>
6442</div>
6443
6444<!-- _______________________________________________________________________ -->
6445<div class="doc_subsubsection">
6446 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
6447</div>
6448<div class="doc_text">
6449<h5>Syntax:</h5>
6450<pre>
6451declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;,
6452i1 &lt;device&gt; )
6453
6454</pre>
6455<h5>Overview:</h5>
6456<p>
6457 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
6458 specific pairs of memory access types.
6459</p>
6460<h5>Arguments:</h5>
6461<p>
6462 The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
6463 The first four arguments enables a specific barrier as listed below. The fith
6464 argument specifies that the barrier applies to io or device or uncached memory.
6465
6466</p>
6467 <ul>
6468 <li><tt>ll</tt>: load-load barrier</li>
6469 <li><tt>ls</tt>: load-store barrier</li>
6470 <li><tt>sl</tt>: store-load barrier</li>
6471 <li><tt>ss</tt>: store-store barrier</li>
Dan Gohmanef9462f2008-10-14 16:51:45 +00006472 <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006473 </ul>
6474<h5>Semantics:</h5>
6475<p>
6476 This intrinsic causes the system to enforce some ordering constraints upon
6477 the loads and stores of the program. This barrier does not indicate
6478 <em>when</em> any events will occur, it only enforces an <em>order</em> in
6479 which they occur. For any of the specified pairs of load and store operations
6480 (f.ex. load-load, or store-load), all of the first operations preceding the
6481 barrier will complete before any of the second operations succeeding the
6482 barrier begin. Specifically the semantics for each pairing is as follows:
6483</p>
6484 <ul>
6485 <li><tt>ll</tt>: All loads before the barrier must complete before any load
6486 after the barrier begins.</li>
6487
6488 <li><tt>ls</tt>: All loads before the barrier must complete before any
6489 store after the barrier begins.</li>
6490 <li><tt>ss</tt>: All stores before the barrier must complete before any
6491 store after the barrier begins.</li>
6492 <li><tt>sl</tt>: All stores before the barrier must complete before any
6493 load after the barrier begins.</li>
6494 </ul>
6495<p>
6496 These semantics are applied with a logical "and" behavior when more than one
6497 is enabled in a single memory barrier intrinsic.
6498</p>
6499<p>
6500 Backends may implement stronger barriers than those requested when they do not
6501 support as fine grained a barrier as requested. Some architectures do not
6502 need all types of barriers and on such architectures, these become noops.
6503</p>
6504<h5>Example:</h5>
6505<pre>
6506%ptr = malloc i32
6507 store i32 4, %ptr
6508
6509%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
6510 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
6511 <i>; guarantee the above finishes</i>
6512 store i32 8, %ptr <i>; before this begins</i>
6513</pre>
6514</div>
6515
Andrew Lenharth95528942008-02-21 06:45:13 +00006516<!-- _______________________________________________________________________ -->
6517<div class="doc_subsubsection">
Mon P Wang6a490372008-06-25 08:15:39 +00006518 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharth95528942008-02-21 06:45:13 +00006519</div>
6520<div class="doc_text">
6521<h5>Syntax:</h5>
6522<p>
Mon P Wang2c839d42008-07-30 04:36:53 +00006523 This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
6524 any integer bit width and for different address spaces. Not all targets
6525 support all bit widths however.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00006526
6527<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006528declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
6529declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
6530declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
6531declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharth95528942008-02-21 06:45:13 +00006532
6533</pre>
6534<h5>Overview:</h5>
6535<p>
6536 This loads a value in memory and compares it to a given value. If they are
6537 equal, it stores a new value into the memory.
6538</p>
6539<h5>Arguments:</h5>
6540<p>
Mon P Wang6a490372008-06-25 08:15:39 +00006541 The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result as
Andrew Lenharth95528942008-02-21 06:45:13 +00006542 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
6543 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
6544 this integer type. While any bit width integer may be used, targets may only
6545 lower representations they support in hardware.
6546
6547</p>
6548<h5>Semantics:</h5>
6549<p>
6550 This entire intrinsic must be executed atomically. It first loads the value
6551 in memory pointed to by <tt>ptr</tt> and compares it with the value
6552 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
6553 loaded value is yielded in all cases. This provides the equivalent of an
6554 atomic compare-and-swap operation within the SSA framework.
6555</p>
6556<h5>Examples:</h5>
6557
6558<pre>
6559%ptr = malloc i32
6560 store i32 4, %ptr
6561
6562%val1 = add i32 4, 4
Mon P Wang2c839d42008-07-30 04:36:53 +00006563%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006564 <i>; yields {i32}:result1 = 4</i>
6565%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6566%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6567
6568%val2 = add i32 1, 1
Mon P Wang2c839d42008-07-30 04:36:53 +00006569%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006570 <i>; yields {i32}:result2 = 8</i>
6571%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
6572
6573%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
6574</pre>
6575</div>
6576
6577<!-- _______________________________________________________________________ -->
6578<div class="doc_subsubsection">
6579 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
6580</div>
6581<div class="doc_text">
6582<h5>Syntax:</h5>
6583
6584<p>
6585 This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
6586 integer bit width. Not all targets support all bit widths however.</p>
6587<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006588declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
6589declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
6590declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
6591declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharth95528942008-02-21 06:45:13 +00006592
6593</pre>
6594<h5>Overview:</h5>
6595<p>
6596 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
6597 the value from memory. It then stores the value in <tt>val</tt> in the memory
6598 at <tt>ptr</tt>.
6599</p>
6600<h5>Arguments:</h5>
6601
6602<p>
Mon P Wang6a490372008-06-25 08:15:39 +00006603 The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both the
Andrew Lenharth95528942008-02-21 06:45:13 +00006604 <tt>val</tt> argument and the result must be integers of the same bit width.
6605 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
6606 integer type. The targets may only lower integer representations they
6607 support.
6608</p>
6609<h5>Semantics:</h5>
6610<p>
6611 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
6612 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
6613 equivalent of an atomic swap operation within the SSA framework.
6614
6615</p>
6616<h5>Examples:</h5>
6617<pre>
6618%ptr = malloc i32
6619 store i32 4, %ptr
6620
6621%val1 = add i32 4, 4
Mon P Wang2c839d42008-07-30 04:36:53 +00006622%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006623 <i>; yields {i32}:result1 = 4</i>
6624%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6625%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6626
6627%val2 = add i32 1, 1
Mon P Wang2c839d42008-07-30 04:36:53 +00006628%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006629 <i>; yields {i32}:result2 = 8</i>
6630
6631%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
6632%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
6633</pre>
6634</div>
6635
6636<!-- _______________________________________________________________________ -->
6637<div class="doc_subsubsection">
Mon P Wang6a490372008-06-25 08:15:39 +00006638 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharth95528942008-02-21 06:45:13 +00006639
6640</div>
6641<div class="doc_text">
6642<h5>Syntax:</h5>
6643<p>
Mon P Wang6a490372008-06-25 08:15:39 +00006644 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on any
Andrew Lenharth95528942008-02-21 06:45:13 +00006645 integer bit width. Not all targets support all bit widths however.</p>
6646<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006647declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6648declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6649declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6650declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharth95528942008-02-21 06:45:13 +00006651
6652</pre>
6653<h5>Overview:</h5>
6654<p>
6655 This intrinsic adds <tt>delta</tt> to the value stored in memory at
6656 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6657</p>
6658<h5>Arguments:</h5>
6659<p>
6660
6661 The intrinsic takes two arguments, the first a pointer to an integer value
6662 and the second an integer value. The result is also an integer value. These
6663 integer types can have any bit width, but they must all have the same bit
6664 width. The targets may only lower integer representations they support.
6665</p>
6666<h5>Semantics:</h5>
6667<p>
6668 This intrinsic does a series of operations atomically. It first loads the
6669 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
6670 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6671</p>
6672
6673<h5>Examples:</h5>
6674<pre>
6675%ptr = malloc i32
6676 store i32 4, %ptr
Mon P Wang2c839d42008-07-30 04:36:53 +00006677%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006678 <i>; yields {i32}:result1 = 4</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006679%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006680 <i>; yields {i32}:result2 = 8</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006681%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006682 <i>; yields {i32}:result3 = 10</i>
Mon P Wang6a490372008-06-25 08:15:39 +00006683%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharth95528942008-02-21 06:45:13 +00006684</pre>
6685</div>
6686
Mon P Wang6a490372008-06-25 08:15:39 +00006687<!-- _______________________________________________________________________ -->
6688<div class="doc_subsubsection">
6689 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6690
6691</div>
6692<div class="doc_text">
6693<h5>Syntax:</h5>
6694<p>
6695 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
Mon P Wang2c839d42008-07-30 04:36:53 +00006696 any integer bit width and for different address spaces. Not all targets
6697 support all bit widths however.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00006698<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006699declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6700declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6701declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6702declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006703
6704</pre>
6705<h5>Overview:</h5>
6706<p>
6707 This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
6708 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6709</p>
6710<h5>Arguments:</h5>
6711<p>
6712
6713 The intrinsic takes two arguments, the first a pointer to an integer value
6714 and the second an integer value. The result is also an integer value. These
6715 integer types can have any bit width, but they must all have the same bit
6716 width. The targets may only lower integer representations they support.
6717</p>
6718<h5>Semantics:</h5>
6719<p>
6720 This intrinsic does a series of operations atomically. It first loads the
6721 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6722 result to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6723</p>
6724
6725<h5>Examples:</h5>
6726<pre>
6727%ptr = malloc i32
6728 store i32 8, %ptr
Mon P Wang2c839d42008-07-30 04:36:53 +00006729%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang6a490372008-06-25 08:15:39 +00006730 <i>; yields {i32}:result1 = 8</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006731%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang6a490372008-06-25 08:15:39 +00006732 <i>; yields {i32}:result2 = 4</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006733%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang6a490372008-06-25 08:15:39 +00006734 <i>; yields {i32}:result3 = 2</i>
6735%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6736</pre>
6737</div>
6738
6739<!-- _______________________________________________________________________ -->
6740<div class="doc_subsubsection">
6741 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6742 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6743 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6744 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
6745
6746</div>
6747<div class="doc_text">
6748<h5>Syntax:</h5>
6749<p>
6750 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_and</tt>,
6751 <tt>llvm.atomic.load_nand</tt>, <tt>llvm.atomic.load_or</tt>, and
Mon P Wang2c839d42008-07-30 04:36:53 +00006752 <tt>llvm.atomic.load_xor</tt> on any integer bit width and for different
6753 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00006754<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006755declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6756declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6757declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6758declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006759
6760</pre>
6761
6762<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006763declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6764declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6765declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6766declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006767
6768</pre>
6769
6770<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006771declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6772declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6773declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6774declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006775
6776</pre>
6777
6778<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006779declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6780declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6781declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6782declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006783
6784</pre>
6785<h5>Overview:</h5>
6786<p>
6787 These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6788 the value stored in memory at <tt>ptr</tt>. It yields the original value
6789 at <tt>ptr</tt>.
6790</p>
6791<h5>Arguments:</h5>
6792<p>
6793
6794 These intrinsics take two arguments, the first a pointer to an integer value
6795 and the second an integer value. The result is also an integer value. These
6796 integer types can have any bit width, but they must all have the same bit
6797 width. The targets may only lower integer representations they support.
6798</p>
6799<h5>Semantics:</h5>
6800<p>
6801 These intrinsics does a series of operations atomically. They first load the
6802 value stored at <tt>ptr</tt>. They then do the bitwise operation
6803 <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the original
6804 value stored at <tt>ptr</tt>.
6805</p>
6806
6807<h5>Examples:</h5>
6808<pre>
6809%ptr = malloc i32
6810 store i32 0x0F0F, %ptr
Mon P Wang2c839d42008-07-30 04:36:53 +00006811%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang6a490372008-06-25 08:15:39 +00006812 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006813%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang6a490372008-06-25 08:15:39 +00006814 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006815%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang6a490372008-06-25 08:15:39 +00006816 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006817%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang6a490372008-06-25 08:15:39 +00006818 <i>; yields {i32}:result3 = FF</i>
6819%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6820</pre>
6821</div>
6822
6823
6824<!-- _______________________________________________________________________ -->
6825<div class="doc_subsubsection">
6826 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6827 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6828 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6829 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
6830
6831</div>
6832<div class="doc_text">
6833<h5>Syntax:</h5>
6834<p>
6835 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6836 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
Mon P Wang2c839d42008-07-30 04:36:53 +00006837 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6838 address spaces. Not all targets
Mon P Wang6a490372008-06-25 08:15:39 +00006839 support all bit widths however.</p>
6840<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006841declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6842declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6843declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6844declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006845
6846</pre>
6847
6848<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006849declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6850declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6851declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6852declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006853
6854</pre>
6855
6856<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006857declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6858declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6859declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6860declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006861
6862</pre>
6863
6864<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006865declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6866declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6867declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6868declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006869
6870</pre>
6871<h5>Overview:</h5>
6872<p>
6873 These intrinsics takes the signed or unsigned minimum or maximum of
6874 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
6875 original value at <tt>ptr</tt>.
6876</p>
6877<h5>Arguments:</h5>
6878<p>
6879
6880 These intrinsics take two arguments, the first a pointer to an integer value
6881 and the second an integer value. The result is also an integer value. These
6882 integer types can have any bit width, but they must all have the same bit
6883 width. The targets may only lower integer representations they support.
6884</p>
6885<h5>Semantics:</h5>
6886<p>
6887 These intrinsics does a series of operations atomically. They first load the
6888 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or max
6889 <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They yield
6890 the original value stored at <tt>ptr</tt>.
6891</p>
6892
6893<h5>Examples:</h5>
6894<pre>
6895%ptr = malloc i32
6896 store i32 7, %ptr
Mon P Wang2c839d42008-07-30 04:36:53 +00006897%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang6a490372008-06-25 08:15:39 +00006898 <i>; yields {i32}:result0 = 7</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006899%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang6a490372008-06-25 08:15:39 +00006900 <i>; yields {i32}:result1 = -2</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006901%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang6a490372008-06-25 08:15:39 +00006902 <i>; yields {i32}:result2 = 8</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006903%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang6a490372008-06-25 08:15:39 +00006904 <i>; yields {i32}:result3 = 8</i>
6905%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
6906</pre>
6907</div>
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006908
6909<!-- ======================================================================= -->
6910<div class="doc_subsection">
Tanya Lattnercb1b9602007-06-15 20:50:54 +00006911 <a name="int_general">General Intrinsics</a>
6912</div>
6913
6914<div class="doc_text">
6915<p> This class of intrinsics is designed to be generic and has
6916no specific purpose. </p>
6917</div>
6918
6919<!-- _______________________________________________________________________ -->
6920<div class="doc_subsubsection">
6921 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
6922</div>
6923
6924<div class="doc_text">
6925
6926<h5>Syntax:</h5>
6927<pre>
Tanya Lattnerbed1d4d2007-06-18 23:42:37 +00006928 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnercb1b9602007-06-15 20:50:54 +00006929</pre>
6930
6931<h5>Overview:</h5>
6932
6933<p>
6934The '<tt>llvm.var.annotation</tt>' intrinsic
6935</p>
6936
6937<h5>Arguments:</h5>
6938
6939<p>
Tanya Lattnerbed1d4d2007-06-18 23:42:37 +00006940The first argument is a pointer to a value, the second is a pointer to a
6941global string, the third is a pointer to a global string which is the source
6942file name, and the last argument is the line number.
Tanya Lattnercb1b9602007-06-15 20:50:54 +00006943</p>
6944
6945<h5>Semantics:</h5>
6946
6947<p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00006948This intrinsic allows annotation of local variables with arbitrary strings.
Tanya Lattnercb1b9602007-06-15 20:50:54 +00006949This can be useful for special purpose optimizations that want to look for these
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00006950annotations. These have no other defined use, they are ignored by code
6951generation and optimization.
6952</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00006953</div>
6954
Tanya Lattner293c0372007-09-21 22:59:12 +00006955<!-- _______________________________________________________________________ -->
6956<div class="doc_subsubsection">
Tanya Lattner0186a652007-09-21 23:57:59 +00006957 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattner293c0372007-09-21 22:59:12 +00006958</div>
6959
6960<div class="doc_text">
6961
6962<h5>Syntax:</h5>
Tanya Lattner23dbd572007-09-21 23:56:27 +00006963<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
6964any integer bit width.
6965</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00006966<pre>
Tanya Lattnercf3e26f2007-09-22 00:03:01 +00006967 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6968 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6969 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6970 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6971 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner293c0372007-09-21 22:59:12 +00006972</pre>
6973
6974<h5>Overview:</h5>
Tanya Lattner23dbd572007-09-21 23:56:27 +00006975
6976<p>
6977The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattner293c0372007-09-21 22:59:12 +00006978</p>
6979
6980<h5>Arguments:</h5>
6981
6982<p>
6983The first argument is an integer value (result of some expression),
6984the second is a pointer to a global string, the third is a pointer to a global
6985string which is the source file name, and the last argument is the line number.
Tanya Lattner23dbd572007-09-21 23:56:27 +00006986It returns the value of the first argument.
Tanya Lattner293c0372007-09-21 22:59:12 +00006987</p>
6988
6989<h5>Semantics:</h5>
6990
6991<p>
6992This intrinsic allows annotations to be put on arbitrary expressions
6993with arbitrary strings. This can be useful for special purpose optimizations
6994that want to look for these annotations. These have no other defined use, they
6995are ignored by code generation and optimization.
Dan Gohmanef9462f2008-10-14 16:51:45 +00006996</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00006997</div>
Jim Laskey2211f492007-03-14 19:31:19 +00006998
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00006999<!-- _______________________________________________________________________ -->
7000<div class="doc_subsubsection">
7001 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
7002</div>
7003
7004<div class="doc_text">
7005
7006<h5>Syntax:</h5>
7007<pre>
7008 declare void @llvm.trap()
7009</pre>
7010
7011<h5>Overview:</h5>
7012
7013<p>
7014The '<tt>llvm.trap</tt>' intrinsic
7015</p>
7016
7017<h5>Arguments:</h5>
7018
7019<p>
7020None
7021</p>
7022
7023<h5>Semantics:</h5>
7024
7025<p>
7026This intrinsics is lowered to the target dependent trap instruction. If the
7027target does not have a trap instruction, this intrinsic will be lowered to the
7028call of the abort() function.
7029</p>
7030</div>
7031
Bill Wendling14313312008-11-19 05:56:17 +00007032<!-- _______________________________________________________________________ -->
7033<div class="doc_subsubsection">
Misha Brukman50de2b22008-11-22 23:55:29 +00007034 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
Bill Wendling14313312008-11-19 05:56:17 +00007035</div>
7036<div class="doc_text">
7037<h5>Syntax:</h5>
7038<pre>
7039declare void @llvm.stackprotector( i8* &lt;guard&gt;, i8** &lt;slot&gt; )
7040
7041</pre>
7042<h5>Overview:</h5>
7043<p>
7044 The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and stores
7045 it onto the stack at <tt>slot</tt>. The stack slot is adjusted to ensure that
7046 it is placed on the stack before local variables.
7047</p>
7048<h5>Arguments:</h5>
7049<p>
7050 The <tt>llvm.stackprotector</tt> intrinsic requires two pointer arguments. The
7051 first argument is the value loaded from the stack guard
7052 <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt> that
7053 has enough space to hold the value of the guard.
7054</p>
7055<h5>Semantics:</h5>
7056<p>
7057 This intrinsic causes the prologue/epilogue inserter to force the position of
7058 the <tt>AllocaInst</tt> stack slot to be before local variables on the
7059 stack. This is to ensure that if a local variable on the stack is overwritten,
7060 it will destroy the value of the guard. When the function exits, the guard on
7061 the stack is checked against the original guard. If they're different, then
7062 the program aborts by calling the <tt>__stack_chk_fail()</tt> function.
7063</p>
7064</div>
7065
Chris Lattner2f7c9632001-06-06 20:29:01 +00007066<!-- *********************************************************************** -->
Chris Lattner2f7c9632001-06-06 20:29:01 +00007067<hr>
Misha Brukmanc501f552004-03-01 17:47:27 +00007068<address>
7069 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman86242e12008-12-11 17:34:48 +00007070 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Misha Brukmanc501f552004-03-01 17:47:27 +00007071 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman86242e12008-12-11 17:34:48 +00007072 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Misha Brukmanc501f552004-03-01 17:47:27 +00007073
7074 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencerca058542006-03-14 05:39:39 +00007075 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmanc501f552004-03-01 17:47:27 +00007076 Last modified: $Date$
7077</address>
Chris Lattnerb8f816e2008-01-04 04:33:49 +00007078
Misha Brukman76307852003-11-08 01:05:38 +00007079</body>
7080</html>