blob: 48b15ce2fba1cd7702637906045752fec3861f3a [file] [log] [blame]
Karthik Bhat76aa6622015-04-20 04:38:33 +00001//===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines common loop utility functions.
11//
12//===----------------------------------------------------------------------===//
13
Adam Nemet2f2bd8c2016-07-26 17:52:02 +000014#include "llvm/Transforms/Utils/LoopUtils.h"
Chandler Carruth4a000882017-06-25 22:45:31 +000015#include "llvm/ADT/ScopeExit.h"
Chandler Carruth31088a92016-02-19 10:45:18 +000016#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/Analysis/BasicAliasAnalysis.h"
Chandler Carruth31088a92016-02-19 10:45:18 +000018#include "llvm/Analysis/GlobalsModRef.h"
Philip Reamesa21d5f12018-03-15 21:04:28 +000019#include "llvm/Analysis/InstructionSimplify.h"
Adam Nemet2f2bd8c2016-07-26 17:52:02 +000020#include "llvm/Analysis/LoopInfo.h"
Igor Laevskyc3ccf5d2016-10-28 12:57:20 +000021#include "llvm/Analysis/LoopPass.h"
Weiming Zhao45d4cb92015-11-24 18:57:06 +000022#include "llvm/Analysis/ScalarEvolution.h"
Adam Nemet2f2bd8c2016-07-26 17:52:02 +000023#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
Elena Demikhovskyc434d092016-05-10 07:33:35 +000024#include "llvm/Analysis/ScalarEvolutionExpander.h"
Weiming Zhao45d4cb92015-11-24 18:57:06 +000025#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000026#include "llvm/Analysis/TargetTransformInfo.h"
Chad Rosiera097bc62018-02-04 15:42:24 +000027#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth31088a92016-02-19 10:45:18 +000028#include "llvm/IR/Dominators.h"
Karthik Bhat76aa6622015-04-20 04:38:33 +000029#include "llvm/IR/Instructions.h"
Weiming Zhao45d4cb92015-11-24 18:57:06 +000030#include "llvm/IR/Module.h"
Karthik Bhat76aa6622015-04-20 04:38:33 +000031#include "llvm/IR/PatternMatch.h"
32#include "llvm/IR/ValueHandle.h"
Chandler Carruth31088a92016-02-19 10:45:18 +000033#include "llvm/Pass.h"
Karthik Bhat76aa6622015-04-20 04:38:33 +000034#include "llvm/Support/Debug.h"
Chad Rosiera097bc62018-02-04 15:42:24 +000035#include "llvm/Support/KnownBits.h"
Chandler Carruth4a000882017-06-25 22:45:31 +000036#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Karthik Bhat76aa6622015-04-20 04:38:33 +000037
38using namespace llvm;
39using namespace llvm::PatternMatch;
40
41#define DEBUG_TYPE "loop-utils"
42
Tyler Nowicki0a913102015-06-16 18:07:34 +000043bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
44 SmallPtrSetImpl<Instruction *> &Set) {
Karthik Bhat76aa6622015-04-20 04:38:33 +000045 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
46 if (!Set.count(dyn_cast<Instruction>(*Use)))
47 return false;
48 return true;
49}
50
Chad Rosierc94f8e22015-08-27 14:12:17 +000051bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) {
52 switch (Kind) {
53 default:
54 break;
55 case RK_IntegerAdd:
56 case RK_IntegerMult:
57 case RK_IntegerOr:
58 case RK_IntegerAnd:
59 case RK_IntegerXor:
60 case RK_IntegerMinMax:
61 return true;
62 }
63 return false;
64}
65
66bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) {
67 return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind);
68}
69
70bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) {
71 switch (Kind) {
72 default:
73 break;
74 case RK_IntegerAdd:
75 case RK_IntegerMult:
76 case RK_FloatAdd:
77 case RK_FloatMult:
78 return true;
79 }
80 return false;
81}
82
Chad Rosiera097bc62018-02-04 15:42:24 +000083/// Determines if Phi may have been type-promoted. If Phi has a single user
84/// that ANDs the Phi with a type mask, return the user. RT is updated to
85/// account for the narrower bit width represented by the mask, and the AND
86/// instruction is added to CI.
87static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT,
88 SmallPtrSetImpl<Instruction *> &Visited,
89 SmallPtrSetImpl<Instruction *> &CI) {
Chad Rosierc94f8e22015-08-27 14:12:17 +000090 if (!Phi->hasOneUse())
91 return Phi;
92
93 const APInt *M = nullptr;
94 Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
95
96 // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
97 // with a new integer type of the corresponding bit width.
Craig Topper72ee6942017-06-24 06:24:01 +000098 if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) {
Chad Rosierc94f8e22015-08-27 14:12:17 +000099 int32_t Bits = (*M + 1).exactLogBase2();
100 if (Bits > 0) {
101 RT = IntegerType::get(Phi->getContext(), Bits);
102 Visited.insert(Phi);
103 CI.insert(J);
104 return J;
105 }
106 }
107 return Phi;
108}
109
Chad Rosiera097bc62018-02-04 15:42:24 +0000110/// Compute the minimal bit width needed to represent a reduction whose exit
111/// instruction is given by Exit.
112static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit,
113 DemandedBits *DB,
114 AssumptionCache *AC,
115 DominatorTree *DT) {
116 bool IsSigned = false;
117 const DataLayout &DL = Exit->getModule()->getDataLayout();
118 uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType());
Chad Rosierc94f8e22015-08-27 14:12:17 +0000119
Chad Rosiera097bc62018-02-04 15:42:24 +0000120 if (DB) {
121 // Use the demanded bits analysis to determine the bits that are live out
122 // of the exit instruction, rounding up to the nearest power of two. If the
123 // use of demanded bits results in a smaller bit width, we know the value
124 // must be positive (i.e., IsSigned = false), because if this were not the
125 // case, the sign bit would have been demanded.
126 auto Mask = DB->getDemandedBits(Exit);
127 MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros();
128 }
Chad Rosierc94f8e22015-08-27 14:12:17 +0000129
Chad Rosiera097bc62018-02-04 15:42:24 +0000130 if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) {
131 // If demanded bits wasn't able to limit the bit width, we can try to use
132 // value tracking instead. This can be the case, for example, if the value
133 // may be negative.
134 auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT);
135 auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType());
136 MaxBitWidth = NumTypeBits - NumSignBits;
137 KnownBits Bits = computeKnownBits(Exit, DL);
138 if (!Bits.isNonNegative()) {
139 // If the value is not known to be non-negative, we set IsSigned to true,
140 // meaning that we will use sext instructions instead of zext
141 // instructions to restore the original type.
142 IsSigned = true;
143 if (!Bits.isNegative())
144 // If the value is not known to be negative, we don't known what the
145 // upper bit is, and therefore, we don't know what kind of extend we
146 // will need. In this case, just increase the bit width by one bit and
147 // use sext.
148 ++MaxBitWidth;
Chad Rosierc94f8e22015-08-27 14:12:17 +0000149 }
150 }
Chad Rosiera097bc62018-02-04 15:42:24 +0000151 if (!isPowerOf2_64(MaxBitWidth))
152 MaxBitWidth = NextPowerOf2(MaxBitWidth);
153
154 return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth),
155 IsSigned);
156}
157
158/// Collect cast instructions that can be ignored in the vectorizer's cost
159/// model, given a reduction exit value and the minimal type in which the
160/// reduction can be represented.
161static void collectCastsToIgnore(Loop *TheLoop, Instruction *Exit,
162 Type *RecurrenceType,
163 SmallPtrSetImpl<Instruction *> &Casts) {
164
165 SmallVector<Instruction *, 8> Worklist;
166 SmallPtrSet<Instruction *, 8> Visited;
167 Worklist.push_back(Exit);
168
169 while (!Worklist.empty()) {
170 Instruction *Val = Worklist.pop_back_val();
171 Visited.insert(Val);
172 if (auto *Cast = dyn_cast<CastInst>(Val))
173 if (Cast->getSrcTy() == RecurrenceType) {
174 // If the source type of a cast instruction is equal to the recurrence
175 // type, it will be eliminated, and should be ignored in the vectorizer
176 // cost model.
177 Casts.insert(Cast);
178 continue;
179 }
180
181 // Add all operands to the work list if they are loop-varying values that
182 // we haven't yet visited.
183 for (Value *O : cast<User>(Val)->operands())
184 if (auto *I = dyn_cast<Instruction>(O))
185 if (TheLoop->contains(I) && !Visited.count(I))
186 Worklist.push_back(I);
187 }
Chad Rosierc94f8e22015-08-27 14:12:17 +0000188}
189
Tyler Nowicki0a913102015-06-16 18:07:34 +0000190bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
191 Loop *TheLoop, bool HasFunNoNaNAttr,
Chad Rosiera097bc62018-02-04 15:42:24 +0000192 RecurrenceDescriptor &RedDes,
193 DemandedBits *DB,
194 AssumptionCache *AC,
195 DominatorTree *DT) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000196 if (Phi->getNumIncomingValues() != 2)
197 return false;
198
199 // Reduction variables are only found in the loop header block.
200 if (Phi->getParent() != TheLoop->getHeader())
201 return false;
202
203 // Obtain the reduction start value from the value that comes from the loop
204 // preheader.
205 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
206
207 // ExitInstruction is the single value which is used outside the loop.
208 // We only allow for a single reduction value to be used outside the loop.
209 // This includes users of the reduction, variables (which form a cycle
210 // which ends in the phi node).
211 Instruction *ExitInstruction = nullptr;
212 // Indicates that we found a reduction operation in our scan.
213 bool FoundReduxOp = false;
214
215 // We start with the PHI node and scan for all of the users of this
216 // instruction. All users must be instructions that can be used as reduction
217 // variables (such as ADD). We must have a single out-of-block user. The cycle
218 // must include the original PHI.
219 bool FoundStartPHI = false;
220
221 // To recognize min/max patterns formed by a icmp select sequence, we store
222 // the number of instruction we saw from the recognized min/max pattern,
223 // to make sure we only see exactly the two instructions.
224 unsigned NumCmpSelectPatternInst = 0;
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000225 InstDesc ReduxDesc(false, nullptr);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000226
Chad Rosierc94f8e22015-08-27 14:12:17 +0000227 // Data used for determining if the recurrence has been type-promoted.
228 Type *RecurrenceType = Phi->getType();
229 SmallPtrSet<Instruction *, 4> CastInsts;
230 Instruction *Start = Phi;
231 bool IsSigned = false;
232
Karthik Bhat76aa6622015-04-20 04:38:33 +0000233 SmallPtrSet<Instruction *, 8> VisitedInsts;
234 SmallVector<Instruction *, 8> Worklist;
Chad Rosierc94f8e22015-08-27 14:12:17 +0000235
236 // Return early if the recurrence kind does not match the type of Phi. If the
237 // recurrence kind is arithmetic, we attempt to look through AND operations
238 // resulting from the type promotion performed by InstCombine. Vector
239 // operations are not limited to the legal integer widths, so we may be able
240 // to evaluate the reduction in the narrower width.
241 if (RecurrenceType->isFloatingPointTy()) {
242 if (!isFloatingPointRecurrenceKind(Kind))
243 return false;
244 } else {
245 if (!isIntegerRecurrenceKind(Kind))
246 return false;
247 if (isArithmeticRecurrenceKind(Kind))
248 Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
249 }
250
251 Worklist.push_back(Start);
252 VisitedInsts.insert(Start);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000253
254 // A value in the reduction can be used:
255 // - By the reduction:
256 // - Reduction operation:
257 // - One use of reduction value (safe).
258 // - Multiple use of reduction value (not safe).
259 // - PHI:
260 // - All uses of the PHI must be the reduction (safe).
261 // - Otherwise, not safe.
Michael Kuperstein7cefb402017-01-18 19:02:52 +0000262 // - By instructions outside of the loop (safe).
263 // * One value may have several outside users, but all outside
264 // uses must be of the same value.
Karthik Bhat76aa6622015-04-20 04:38:33 +0000265 // - By an instruction that is not part of the reduction (not safe).
266 // This is either:
267 // * An instruction type other than PHI or the reduction operation.
268 // * A PHI in the header other than the initial PHI.
269 while (!Worklist.empty()) {
270 Instruction *Cur = Worklist.back();
271 Worklist.pop_back();
272
273 // No Users.
274 // If the instruction has no users then this is a broken chain and can't be
275 // a reduction variable.
276 if (Cur->use_empty())
277 return false;
278
279 bool IsAPhi = isa<PHINode>(Cur);
280
281 // A header PHI use other than the original PHI.
282 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
283 return false;
284
285 // Reductions of instructions such as Div, and Sub is only possible if the
286 // LHS is the reduction variable.
287 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
288 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
289 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
290 return false;
291
Chad Rosierc94f8e22015-08-27 14:12:17 +0000292 // Any reduction instruction must be of one of the allowed kinds. We ignore
293 // the starting value (the Phi or an AND instruction if the Phi has been
294 // type-promoted).
295 if (Cur != Start) {
296 ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
297 if (!ReduxDesc.isRecurrence())
298 return false;
299 }
Karthik Bhat76aa6622015-04-20 04:38:33 +0000300
301 // A reduction operation must only have one use of the reduction value.
302 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
303 hasMultipleUsesOf(Cur, VisitedInsts))
304 return false;
305
306 // All inputs to a PHI node must be a reduction value.
307 if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
308 return false;
309
310 if (Kind == RK_IntegerMinMax &&
311 (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
312 ++NumCmpSelectPatternInst;
313 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
314 ++NumCmpSelectPatternInst;
315
316 // Check whether we found a reduction operator.
Chad Rosierc94f8e22015-08-27 14:12:17 +0000317 FoundReduxOp |= !IsAPhi && Cur != Start;
Karthik Bhat76aa6622015-04-20 04:38:33 +0000318
319 // Process users of current instruction. Push non-PHI nodes after PHI nodes
320 // onto the stack. This way we are going to have seen all inputs to PHI
321 // nodes once we get to them.
322 SmallVector<Instruction *, 8> NonPHIs;
323 SmallVector<Instruction *, 8> PHIs;
324 for (User *U : Cur->users()) {
325 Instruction *UI = cast<Instruction>(U);
326
327 // Check if we found the exit user.
328 BasicBlock *Parent = UI->getParent();
329 if (!TheLoop->contains(Parent)) {
Michael Kuperstein7cefb402017-01-18 19:02:52 +0000330 // If we already know this instruction is used externally, move on to
331 // the next user.
332 if (ExitInstruction == Cur)
333 continue;
334
335 // Exit if you find multiple values used outside or if the header phi
336 // node is being used. In this case the user uses the value of the
337 // previous iteration, in which case we would loose "VF-1" iterations of
338 // the reduction operation if we vectorize.
Karthik Bhat76aa6622015-04-20 04:38:33 +0000339 if (ExitInstruction != nullptr || Cur == Phi)
340 return false;
341
342 // The instruction used by an outside user must be the last instruction
343 // before we feed back to the reduction phi. Otherwise, we loose VF-1
344 // operations on the value.
David Majnemer42531262016-08-12 03:55:06 +0000345 if (!is_contained(Phi->operands(), Cur))
Karthik Bhat76aa6622015-04-20 04:38:33 +0000346 return false;
347
348 ExitInstruction = Cur;
349 continue;
350 }
351
352 // Process instructions only once (termination). Each reduction cycle
353 // value must only be used once, except by phi nodes and min/max
354 // reductions which are represented as a cmp followed by a select.
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000355 InstDesc IgnoredVal(false, nullptr);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000356 if (VisitedInsts.insert(UI).second) {
357 if (isa<PHINode>(UI))
358 PHIs.push_back(UI);
359 else
360 NonPHIs.push_back(UI);
361 } else if (!isa<PHINode>(UI) &&
362 ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
363 !isa<SelectInst>(UI)) ||
Tyler Nowicki0a913102015-06-16 18:07:34 +0000364 !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence()))
Karthik Bhat76aa6622015-04-20 04:38:33 +0000365 return false;
366
367 // Remember that we completed the cycle.
368 if (UI == Phi)
369 FoundStartPHI = true;
370 }
371 Worklist.append(PHIs.begin(), PHIs.end());
372 Worklist.append(NonPHIs.begin(), NonPHIs.end());
373 }
374
375 // This means we have seen one but not the other instruction of the
376 // pattern or more than just a select and cmp.
377 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
378 NumCmpSelectPatternInst != 2)
379 return false;
380
381 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
382 return false;
383
Chad Rosiera097bc62018-02-04 15:42:24 +0000384 if (Start != Phi) {
385 // If the starting value is not the same as the phi node, we speculatively
386 // looked through an 'and' instruction when evaluating a potential
387 // arithmetic reduction to determine if it may have been type-promoted.
388 //
389 // We now compute the minimal bit width that is required to represent the
390 // reduction. If this is the same width that was indicated by the 'and', we
391 // can represent the reduction in the smaller type. The 'and' instruction
392 // will be eliminated since it will essentially be a cast instruction that
393 // can be ignore in the cost model. If we compute a different type than we
394 // did when evaluating the 'and', the 'and' will not be eliminated, and we
395 // will end up with different kinds of operations in the recurrence
396 // expression (e.g., RK_IntegerAND, RK_IntegerADD). We give up if this is
397 // the case.
398 //
399 // The vectorizer relies on InstCombine to perform the actual
400 // type-shrinking. It does this by inserting instructions to truncate the
401 // exit value of the reduction to the width indicated by RecurrenceType and
402 // then extend this value back to the original width. If IsSigned is false,
403 // a 'zext' instruction will be generated; otherwise, a 'sext' will be
404 // used.
405 //
406 // TODO: We should not rely on InstCombine to rewrite the reduction in the
407 // smaller type. We should just generate a correctly typed expression
408 // to begin with.
409 Type *ComputedType;
410 std::tie(ComputedType, IsSigned) =
411 computeRecurrenceType(ExitInstruction, DB, AC, DT);
412 if (ComputedType != RecurrenceType)
Chad Rosierc94f8e22015-08-27 14:12:17 +0000413 return false;
414
Chad Rosiera097bc62018-02-04 15:42:24 +0000415 // The recurrence expression will be represented in a narrower type. If
416 // there are any cast instructions that will be unnecessary, collect them
417 // in CastInsts. Note that the 'and' instruction was already included in
418 // this list.
419 //
420 // TODO: A better way to represent this may be to tag in some way all the
421 // instructions that are a part of the reduction. The vectorizer cost
422 // model could then apply the recurrence type to these instructions,
423 // without needing a white list of instructions to ignore.
424 collectCastsToIgnore(TheLoop, ExitInstruction, RecurrenceType, CastInsts);
425 }
426
Karthik Bhat76aa6622015-04-20 04:38:33 +0000427 // We found a reduction var if we have reached the original phi node and we
428 // only have a single instruction with out-of-loop users.
429
430 // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
Tyler Nowicki0a913102015-06-16 18:07:34 +0000431 // is saved as part of the RecurrenceDescriptor.
Karthik Bhat76aa6622015-04-20 04:38:33 +0000432
433 // Save the description of this reduction variable.
Chad Rosierc94f8e22015-08-27 14:12:17 +0000434 RecurrenceDescriptor RD(
435 RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(),
436 ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000437 RedDes = RD;
438
439 return true;
440}
441
442/// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
443/// pattern corresponding to a min(X, Y) or max(X, Y).
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000444RecurrenceDescriptor::InstDesc
445RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000446
447 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
448 "Expect a select instruction");
449 Instruction *Cmp = nullptr;
450 SelectInst *Select = nullptr;
451
452 // We must handle the select(cmp()) as a single instruction. Advance to the
453 // select.
454 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
455 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000456 return InstDesc(false, I);
457 return InstDesc(Select, Prev.getMinMaxKind());
Karthik Bhat76aa6622015-04-20 04:38:33 +0000458 }
459
460 // Only handle single use cases for now.
461 if (!(Select = dyn_cast<SelectInst>(I)))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000462 return InstDesc(false, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000463 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
464 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000465 return InstDesc(false, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000466 if (!Cmp->hasOneUse())
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000467 return InstDesc(false, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000468
469 Value *CmpLeft;
470 Value *CmpRight;
471
472 // Look for a min/max pattern.
473 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000474 return InstDesc(Select, MRK_UIntMin);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000475 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000476 return InstDesc(Select, MRK_UIntMax);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000477 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000478 return InstDesc(Select, MRK_SIntMax);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000479 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000480 return InstDesc(Select, MRK_SIntMin);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000481 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000482 return InstDesc(Select, MRK_FloatMin);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000483 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000484 return InstDesc(Select, MRK_FloatMax);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000485 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000486 return InstDesc(Select, MRK_FloatMin);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000487 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000488 return InstDesc(Select, MRK_FloatMax);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000489
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000490 return InstDesc(false, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000491}
492
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000493RecurrenceDescriptor::InstDesc
Tyler Nowicki0a913102015-06-16 18:07:34 +0000494RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000495 InstDesc &Prev, bool HasFunNoNaNAttr) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000496 bool FP = I->getType()->isFloatingPointTy();
Tyler Nowickic1a86f52015-08-10 19:51:46 +0000497 Instruction *UAI = Prev.getUnsafeAlgebraInst();
Sanjay Patel629c4112017-11-06 16:27:15 +0000498 if (!UAI && FP && !I->isFast())
Tyler Nowickic1a86f52015-08-10 19:51:46 +0000499 UAI = I; // Found an unsafe (unvectorizable) algebra instruction.
500
Karthik Bhat76aa6622015-04-20 04:38:33 +0000501 switch (I->getOpcode()) {
502 default:
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000503 return InstDesc(false, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000504 case Instruction::PHI:
Tim Northover10a1e8b2016-05-27 16:40:27 +0000505 return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst());
Karthik Bhat76aa6622015-04-20 04:38:33 +0000506 case Instruction::Sub:
507 case Instruction::Add:
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000508 return InstDesc(Kind == RK_IntegerAdd, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000509 case Instruction::Mul:
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000510 return InstDesc(Kind == RK_IntegerMult, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000511 case Instruction::And:
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000512 return InstDesc(Kind == RK_IntegerAnd, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000513 case Instruction::Or:
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000514 return InstDesc(Kind == RK_IntegerOr, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000515 case Instruction::Xor:
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000516 return InstDesc(Kind == RK_IntegerXor, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000517 case Instruction::FMul:
Tyler Nowickic1a86f52015-08-10 19:51:46 +0000518 return InstDesc(Kind == RK_FloatMult, I, UAI);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000519 case Instruction::FSub:
520 case Instruction::FAdd:
Tyler Nowickic1a86f52015-08-10 19:51:46 +0000521 return InstDesc(Kind == RK_FloatAdd, I, UAI);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000522 case Instruction::FCmp:
523 case Instruction::ICmp:
524 case Instruction::Select:
525 if (Kind != RK_IntegerMinMax &&
526 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000527 return InstDesc(false, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000528 return isMinMaxSelectCmpPattern(I, Prev);
529 }
530}
531
Tyler Nowicki0a913102015-06-16 18:07:34 +0000532bool RecurrenceDescriptor::hasMultipleUsesOf(
Karthik Bhat76aa6622015-04-20 04:38:33 +0000533 Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) {
534 unsigned NumUses = 0;
535 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
536 ++Use) {
537 if (Insts.count(dyn_cast<Instruction>(*Use)))
538 ++NumUses;
539 if (NumUses > 1)
540 return true;
541 }
542
543 return false;
544}
Tyler Nowicki0a913102015-06-16 18:07:34 +0000545bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
Chad Rosiera097bc62018-02-04 15:42:24 +0000546 RecurrenceDescriptor &RedDes,
547 DemandedBits *DB, AssumptionCache *AC,
548 DominatorTree *DT) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000549
Karthik Bhat76aa6622015-04-20 04:38:33 +0000550 BasicBlock *Header = TheLoop->getHeader();
551 Function &F = *Header->getParent();
Nirav Dave8dd66e52016-03-30 15:41:12 +0000552 bool HasFunNoNaNAttr =
553 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
Karthik Bhat76aa6622015-04-20 04:38:33 +0000554
Chad Rosiera097bc62018-02-04 15:42:24 +0000555 if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
556 AC, DT)) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000557 DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
558 return true;
559 }
Chad Rosiera097bc62018-02-04 15:42:24 +0000560 if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes, DB,
561 AC, DT)) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000562 DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
563 return true;
564 }
Chad Rosiera097bc62018-02-04 15:42:24 +0000565 if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes, DB,
566 AC, DT)) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000567 DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
568 return true;
569 }
Chad Rosiera097bc62018-02-04 15:42:24 +0000570 if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
571 AC, DT)) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000572 DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
573 return true;
574 }
Chad Rosiera097bc62018-02-04 15:42:24 +0000575 if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes, DB,
576 AC, DT)) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000577 DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
578 return true;
579 }
Chad Rosiera097bc62018-02-04 15:42:24 +0000580 if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, RedDes,
581 DB, AC, DT)) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000582 DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
583 return true;
584 }
Chad Rosiera097bc62018-02-04 15:42:24 +0000585 if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes, DB,
586 AC, DT)) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000587 DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
588 return true;
589 }
Chad Rosiera097bc62018-02-04 15:42:24 +0000590 if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
591 AC, DT)) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000592 DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
593 return true;
594 }
Chad Rosiera097bc62018-02-04 15:42:24 +0000595 if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes, DB,
596 AC, DT)) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000597 DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n");
598 return true;
599 }
600 // Not a reduction of known type.
601 return false;
602}
603
Ayal Zaks2ff59d42017-06-30 21:05:06 +0000604bool RecurrenceDescriptor::isFirstOrderRecurrence(
605 PHINode *Phi, Loop *TheLoop,
606 DenseMap<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) {
Matthew Simpson29c997c2016-02-19 17:56:08 +0000607
608 // Ensure the phi node is in the loop header and has two incoming values.
609 if (Phi->getParent() != TheLoop->getHeader() ||
610 Phi->getNumIncomingValues() != 2)
611 return false;
612
613 // Ensure the loop has a preheader and a single latch block. The loop
614 // vectorizer will need the latch to set up the next iteration of the loop.
615 auto *Preheader = TheLoop->getLoopPreheader();
616 auto *Latch = TheLoop->getLoopLatch();
617 if (!Preheader || !Latch)
618 return false;
619
620 // Ensure the phi node's incoming blocks are the loop preheader and latch.
621 if (Phi->getBasicBlockIndex(Preheader) < 0 ||
622 Phi->getBasicBlockIndex(Latch) < 0)
623 return false;
624
625 // Get the previous value. The previous value comes from the latch edge while
626 // the initial value comes form the preheader edge.
627 auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
Ayal Zaks2ff59d42017-06-30 21:05:06 +0000628 if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) ||
629 SinkAfter.count(Previous)) // Cannot rely on dominance due to motion.
Matthew Simpson29c997c2016-02-19 17:56:08 +0000630 return false;
631
Anna Thomasdcdb3252017-04-13 18:59:25 +0000632 // Ensure every user of the phi node is dominated by the previous value.
633 // The dominance requirement ensures the loop vectorizer will not need to
634 // vectorize the initial value prior to the first iteration of the loop.
Ayal Zaks2ff59d42017-06-30 21:05:06 +0000635 // TODO: Consider extending this sinking to handle other kinds of instructions
636 // and expressions, beyond sinking a single cast past Previous.
637 if (Phi->hasOneUse()) {
638 auto *I = Phi->user_back();
639 if (I->isCast() && (I->getParent() == Phi->getParent()) && I->hasOneUse() &&
640 DT->dominates(Previous, I->user_back())) {
Ayal Zaks25e28002017-08-15 08:32:59 +0000641 if (!DT->dominates(Previous, I)) // Otherwise we're good w/o sinking.
642 SinkAfter[I] = Previous;
Ayal Zaks2ff59d42017-06-30 21:05:06 +0000643 return true;
644 }
645 }
646
Matthew Simpson29c997c2016-02-19 17:56:08 +0000647 for (User *U : Phi->users())
Anna Thomas00dc1b72017-04-11 21:02:00 +0000648 if (auto *I = dyn_cast<Instruction>(U)) {
Matthew Simpson29c997c2016-02-19 17:56:08 +0000649 if (!DT->dominates(Previous, I))
650 return false;
Anna Thomas00dc1b72017-04-11 21:02:00 +0000651 }
Matthew Simpson29c997c2016-02-19 17:56:08 +0000652
653 return true;
654}
655
Karthik Bhat76aa6622015-04-20 04:38:33 +0000656/// This function returns the identity element (or neutral element) for
657/// the operation K.
Tyler Nowicki0a913102015-06-16 18:07:34 +0000658Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K,
659 Type *Tp) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000660 switch (K) {
661 case RK_IntegerXor:
662 case RK_IntegerAdd:
663 case RK_IntegerOr:
664 // Adding, Xoring, Oring zero to a number does not change it.
665 return ConstantInt::get(Tp, 0);
666 case RK_IntegerMult:
667 // Multiplying a number by 1 does not change it.
668 return ConstantInt::get(Tp, 1);
669 case RK_IntegerAnd:
670 // AND-ing a number with an all-1 value does not change it.
671 return ConstantInt::get(Tp, -1, true);
672 case RK_FloatMult:
673 // Multiplying a number by 1 does not change it.
674 return ConstantFP::get(Tp, 1.0L);
675 case RK_FloatAdd:
676 // Adding zero to a number does not change it.
677 return ConstantFP::get(Tp, 0.0L);
678 default:
Tyler Nowicki0a913102015-06-16 18:07:34 +0000679 llvm_unreachable("Unknown recurrence kind");
Karthik Bhat76aa6622015-04-20 04:38:33 +0000680 }
681}
682
Tyler Nowicki0a913102015-06-16 18:07:34 +0000683/// This function translates the recurrence kind to an LLVM binary operator.
684unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000685 switch (Kind) {
686 case RK_IntegerAdd:
687 return Instruction::Add;
688 case RK_IntegerMult:
689 return Instruction::Mul;
690 case RK_IntegerOr:
691 return Instruction::Or;
692 case RK_IntegerAnd:
693 return Instruction::And;
694 case RK_IntegerXor:
695 return Instruction::Xor;
696 case RK_FloatMult:
697 return Instruction::FMul;
698 case RK_FloatAdd:
699 return Instruction::FAdd;
700 case RK_IntegerMinMax:
701 return Instruction::ICmp;
702 case RK_FloatMinMax:
703 return Instruction::FCmp;
704 default:
Tyler Nowicki0a913102015-06-16 18:07:34 +0000705 llvm_unreachable("Unknown recurrence operation");
Karthik Bhat76aa6622015-04-20 04:38:33 +0000706 }
707}
708
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000709Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder,
710 MinMaxRecurrenceKind RK,
711 Value *Left, Value *Right) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000712 CmpInst::Predicate P = CmpInst::ICMP_NE;
713 switch (RK) {
714 default:
Tyler Nowicki0a913102015-06-16 18:07:34 +0000715 llvm_unreachable("Unknown min/max recurrence kind");
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000716 case MRK_UIntMin:
Karthik Bhat76aa6622015-04-20 04:38:33 +0000717 P = CmpInst::ICMP_ULT;
718 break;
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000719 case MRK_UIntMax:
Karthik Bhat76aa6622015-04-20 04:38:33 +0000720 P = CmpInst::ICMP_UGT;
721 break;
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000722 case MRK_SIntMin:
Karthik Bhat76aa6622015-04-20 04:38:33 +0000723 P = CmpInst::ICMP_SLT;
724 break;
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000725 case MRK_SIntMax:
Karthik Bhat76aa6622015-04-20 04:38:33 +0000726 P = CmpInst::ICMP_SGT;
727 break;
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000728 case MRK_FloatMin:
Karthik Bhat76aa6622015-04-20 04:38:33 +0000729 P = CmpInst::FCMP_OLT;
730 break;
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000731 case MRK_FloatMax:
Karthik Bhat76aa6622015-04-20 04:38:33 +0000732 P = CmpInst::FCMP_OGT;
733 break;
734 }
735
Sanjay Patel629c4112017-11-06 16:27:15 +0000736 // We only match FP sequences that are 'fast', so we can unconditionally
James Molloy50a4c272015-09-21 19:41:19 +0000737 // set it on any generated instructions.
738 IRBuilder<>::FastMathFlagGuard FMFG(Builder);
739 FastMathFlags FMF;
Sanjay Patel629c4112017-11-06 16:27:15 +0000740 FMF.setFast();
Sanjay Patela2528152016-01-12 18:03:37 +0000741 Builder.setFastMathFlags(FMF);
James Molloy50a4c272015-09-21 19:41:19 +0000742
Karthik Bhat76aa6622015-04-20 04:38:33 +0000743 Value *Cmp;
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000744 if (RK == MRK_FloatMin || RK == MRK_FloatMax)
Karthik Bhat76aa6622015-04-20 04:38:33 +0000745 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
746 else
747 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
748
749 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
750 return Select;
751}
Karthik Bhat24e6cc22015-04-23 08:29:20 +0000752
James Molloy1bbf15c2015-08-27 09:53:00 +0000753InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
Dorit Nuzman4750c782017-12-14 07:56:31 +0000754 const SCEV *Step, BinaryOperator *BOp,
755 SmallVectorImpl<Instruction *> *Casts)
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000756 : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
James Molloy1bbf15c2015-08-27 09:53:00 +0000757 assert(IK != IK_NoInduction && "Not an induction");
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000758
759 // Start value type should match the induction kind and the value
760 // itself should not be null.
James Molloy1bbf15c2015-08-27 09:53:00 +0000761 assert(StartValue && "StartValue is null");
James Molloy1bbf15c2015-08-27 09:53:00 +0000762 assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
763 "StartValue is not a pointer for pointer induction");
764 assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
765 "StartValue is not an integer for integer induction");
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000766
767 // Check the Step Value. It should be non-zero integer value.
768 assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
769 "Step value is zero");
770
771 assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
772 "Step value should be constant for pointer induction");
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000773 assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
774 "StepValue is not an integer");
775
776 assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
777 "StepValue is not FP for FpInduction");
778 assert((IK != IK_FpInduction || (InductionBinOp &&
779 (InductionBinOp->getOpcode() == Instruction::FAdd ||
780 InductionBinOp->getOpcode() == Instruction::FSub))) &&
781 "Binary opcode should be specified for FP induction");
Dorit Nuzman4750c782017-12-14 07:56:31 +0000782
783 if (Casts) {
784 for (auto &Inst : *Casts) {
785 RedundantCasts.push_back(Inst);
786 }
787 }
James Molloy1bbf15c2015-08-27 09:53:00 +0000788}
789
790int InductionDescriptor::getConsecutiveDirection() const {
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000791 ConstantInt *ConstStep = getConstIntStepValue();
792 if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne()))
793 return ConstStep->getSExtValue();
James Molloy1bbf15c2015-08-27 09:53:00 +0000794 return 0;
795}
796
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000797ConstantInt *InductionDescriptor::getConstIntStepValue() const {
798 if (isa<SCEVConstant>(Step))
799 return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
800 return nullptr;
801}
802
803Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index,
804 ScalarEvolution *SE,
805 const DataLayout& DL) const {
806
807 SCEVExpander Exp(*SE, DL, "induction");
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000808 assert(Index->getType() == Step->getType() &&
809 "Index type does not match StepValue type");
James Molloy1bbf15c2015-08-27 09:53:00 +0000810 switch (IK) {
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000811 case IK_IntInduction: {
James Molloy1bbf15c2015-08-27 09:53:00 +0000812 assert(Index->getType() == StartValue->getType() &&
813 "Index type does not match StartValue type");
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000814
815 // FIXME: Theoretically, we can call getAddExpr() of ScalarEvolution
816 // and calculate (Start + Index * Step) for all cases, without
817 // special handling for "isOne" and "isMinusOne".
818 // But in the real life the result code getting worse. We mix SCEV
819 // expressions and ADD/SUB operations and receive redundant
820 // intermediate values being calculated in different ways and
821 // Instcombine is unable to reduce them all.
822
823 if (getConstIntStepValue() &&
824 getConstIntStepValue()->isMinusOne())
James Molloy1bbf15c2015-08-27 09:53:00 +0000825 return B.CreateSub(StartValue, Index);
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000826 if (getConstIntStepValue() &&
827 getConstIntStepValue()->isOne())
828 return B.CreateAdd(StartValue, Index);
829 const SCEV *S = SE->getAddExpr(SE->getSCEV(StartValue),
830 SE->getMulExpr(Step, SE->getSCEV(Index)));
831 return Exp.expandCodeFor(S, StartValue->getType(), &*B.GetInsertPoint());
832 }
833 case IK_PtrInduction: {
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000834 assert(isa<SCEVConstant>(Step) &&
835 "Expected constant step for pointer induction");
836 const SCEV *S = SE->getMulExpr(SE->getSCEV(Index), Step);
837 Index = Exp.expandCodeFor(S, Index->getType(), &*B.GetInsertPoint());
James Molloy1bbf15c2015-08-27 09:53:00 +0000838 return B.CreateGEP(nullptr, StartValue, Index);
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000839 }
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000840 case IK_FpInduction: {
841 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
842 assert(InductionBinOp &&
843 (InductionBinOp->getOpcode() == Instruction::FAdd ||
844 InductionBinOp->getOpcode() == Instruction::FSub) &&
845 "Original bin op should be defined for FP induction");
846
847 Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
848
849 // Floating point operations had to be 'fast' to enable the induction.
850 FastMathFlags Flags;
Sanjay Patel629c4112017-11-06 16:27:15 +0000851 Flags.setFast();
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000852
853 Value *MulExp = B.CreateFMul(StepValue, Index);
854 if (isa<Instruction>(MulExp))
855 // We have to check, the MulExp may be a constant.
856 cast<Instruction>(MulExp)->setFastMathFlags(Flags);
857
858 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode() , StartValue,
859 MulExp, "induction");
860 if (isa<Instruction>(BOp))
861 cast<Instruction>(BOp)->setFastMathFlags(Flags);
862
863 return BOp;
864 }
James Molloy1bbf15c2015-08-27 09:53:00 +0000865 case IK_NoInduction:
866 return nullptr;
867 }
868 llvm_unreachable("invalid enum");
869}
870
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000871bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
872 ScalarEvolution *SE,
873 InductionDescriptor &D) {
874
875 // Here we only handle FP induction variables.
876 assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
877
878 if (TheLoop->getHeader() != Phi->getParent())
879 return false;
880
881 // The loop may have multiple entrances or multiple exits; we can analyze
882 // this phi if it has a unique entry value and a unique backedge value.
883 if (Phi->getNumIncomingValues() != 2)
884 return false;
885 Value *BEValue = nullptr, *StartValue = nullptr;
886 if (TheLoop->contains(Phi->getIncomingBlock(0))) {
887 BEValue = Phi->getIncomingValue(0);
888 StartValue = Phi->getIncomingValue(1);
889 } else {
890 assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
Dorit Nuzman4750c782017-12-14 07:56:31 +0000891 "Unexpected Phi node in the loop");
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000892 BEValue = Phi->getIncomingValue(1);
893 StartValue = Phi->getIncomingValue(0);
894 }
895
896 BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
897 if (!BOp)
898 return false;
899
900 Value *Addend = nullptr;
901 if (BOp->getOpcode() == Instruction::FAdd) {
902 if (BOp->getOperand(0) == Phi)
903 Addend = BOp->getOperand(1);
904 else if (BOp->getOperand(1) == Phi)
905 Addend = BOp->getOperand(0);
906 } else if (BOp->getOpcode() == Instruction::FSub)
907 if (BOp->getOperand(0) == Phi)
908 Addend = BOp->getOperand(1);
909
910 if (!Addend)
911 return false;
912
913 // The addend should be loop invariant
914 if (auto *I = dyn_cast<Instruction>(Addend))
915 if (TheLoop->contains(I))
916 return false;
917
918 // FP Step has unknown SCEV
919 const SCEV *Step = SE->getUnknown(Addend);
920 D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
921 return true;
922}
923
Dorit Nuzman4750c782017-12-14 07:56:31 +0000924/// This function is called when we suspect that the update-chain of a phi node
925/// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts,
926/// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime
927/// predicate P under which the SCEV expression for the phi can be the
928/// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the
929/// cast instructions that are involved in the update-chain of this induction.
930/// A caller that adds the required runtime predicate can be free to drop these
931/// cast instructions, and compute the phi using \p AR (instead of some scev
932/// expression with casts).
933///
934/// For example, without a predicate the scev expression can take the following
935/// form:
936/// (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy)
937///
938/// It corresponds to the following IR sequence:
939/// %for.body:
940/// %x = phi i64 [ 0, %ph ], [ %add, %for.body ]
941/// %casted_phi = "ExtTrunc i64 %x"
942/// %add = add i64 %casted_phi, %step
943///
944/// where %x is given in \p PN,
945/// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate,
946/// and the IR sequence that "ExtTrunc i64 %x" represents can take one of
947/// several forms, for example, such as:
948/// ExtTrunc1: %casted_phi = and %x, 2^n-1
949/// or:
950/// ExtTrunc2: %t = shl %x, m
951/// %casted_phi = ashr %t, m
952///
953/// If we are able to find such sequence, we return the instructions
954/// we found, namely %casted_phi and the instructions on its use-def chain up
955/// to the phi (not including the phi).
Benjamin Kramer802e6252017-12-24 12:46:22 +0000956static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE,
957 const SCEVUnknown *PhiScev,
958 const SCEVAddRecExpr *AR,
959 SmallVectorImpl<Instruction *> &CastInsts) {
Dorit Nuzman4750c782017-12-14 07:56:31 +0000960
961 assert(CastInsts.empty() && "CastInsts is expected to be empty.");
962 auto *PN = cast<PHINode>(PhiScev->getValue());
963 assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression");
964 const Loop *L = AR->getLoop();
965
966 // Find any cast instructions that participate in the def-use chain of
967 // PhiScev in the loop.
968 // FORNOW/TODO: We currently expect the def-use chain to include only
969 // two-operand instructions, where one of the operands is an invariant.
970 // createAddRecFromPHIWithCasts() currently does not support anything more
971 // involved than that, so we keep the search simple. This can be
972 // extended/generalized as needed.
973
974 auto getDef = [&](const Value *Val) -> Value * {
975 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val);
976 if (!BinOp)
977 return nullptr;
978 Value *Op0 = BinOp->getOperand(0);
979 Value *Op1 = BinOp->getOperand(1);
980 Value *Def = nullptr;
981 if (L->isLoopInvariant(Op0))
982 Def = Op1;
983 else if (L->isLoopInvariant(Op1))
984 Def = Op0;
985 return Def;
986 };
987
988 // Look for the instruction that defines the induction via the
989 // loop backedge.
990 BasicBlock *Latch = L->getLoopLatch();
991 if (!Latch)
992 return false;
993 Value *Val = PN->getIncomingValueForBlock(Latch);
994 if (!Val)
995 return false;
996
997 // Follow the def-use chain until the induction phi is reached.
998 // If on the way we encounter a Value that has the same SCEV Expr as the
999 // phi node, we can consider the instructions we visit from that point
1000 // as part of the cast-sequence that can be ignored.
1001 bool InCastSequence = false;
1002 auto *Inst = dyn_cast<Instruction>(Val);
1003 while (Val != PN) {
1004 // If we encountered a phi node other than PN, or if we left the loop,
1005 // we bail out.
1006 if (!Inst || !L->contains(Inst)) {
1007 return false;
1008 }
1009 auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val));
1010 if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR))
1011 InCastSequence = true;
1012 if (InCastSequence) {
1013 // Only the last instruction in the cast sequence is expected to have
1014 // uses outside the induction def-use chain.
1015 if (!CastInsts.empty())
1016 if (!Inst->hasOneUse())
1017 return false;
1018 CastInsts.push_back(Inst);
1019 }
1020 Val = getDef(Val);
1021 if (!Val)
1022 return false;
1023 Inst = dyn_cast<Instruction>(Val);
1024 }
1025
1026 return InCastSequence;
1027}
1028
Elena Demikhovsky376a18b2016-07-24 07:24:54 +00001029bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
Silviu Barangac05bab82016-05-05 15:20:39 +00001030 PredicatedScalarEvolution &PSE,
1031 InductionDescriptor &D,
1032 bool Assume) {
1033 Type *PhiTy = Phi->getType();
Elena Demikhovsky376a18b2016-07-24 07:24:54 +00001034
1035 // Handle integer and pointer inductions variables.
1036 // Now we handle also FP induction but not trying to make a
1037 // recurrent expression from the PHI node in-place.
1038
1039 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() &&
1040 !PhiTy->isFloatTy() && !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
Silviu Barangac05bab82016-05-05 15:20:39 +00001041 return false;
1042
Elena Demikhovsky376a18b2016-07-24 07:24:54 +00001043 if (PhiTy->isFloatingPointTy())
1044 return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
1045
Silviu Barangac05bab82016-05-05 15:20:39 +00001046 const SCEV *PhiScev = PSE.getSCEV(Phi);
1047 const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1048
1049 // We need this expression to be an AddRecExpr.
1050 if (Assume && !AR)
1051 AR = PSE.getAsAddRec(Phi);
1052
1053 if (!AR) {
1054 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1055 return false;
1056 }
1057
Dorit Nuzman4750c782017-12-14 07:56:31 +00001058 // Record any Cast instructions that participate in the induction update
1059 const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev);
1060 // If we started from an UnknownSCEV, and managed to build an addRecurrence
1061 // only after enabling Assume with PSCEV, this means we may have encountered
1062 // cast instructions that required adding a runtime check in order to
1063 // guarantee the correctness of the AddRecurence respresentation of the
1064 // induction.
1065 if (PhiScev != AR && SymbolicPhi) {
1066 SmallVector<Instruction *, 2> Casts;
1067 if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts))
1068 return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts);
1069 }
1070
Elena Demikhovsky376a18b2016-07-24 07:24:54 +00001071 return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
Silviu Barangac05bab82016-05-05 15:20:39 +00001072}
1073
Dorit Nuzman4750c782017-12-14 07:56:31 +00001074bool InductionDescriptor::isInductionPHI(
1075 PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE,
1076 InductionDescriptor &D, const SCEV *Expr,
1077 SmallVectorImpl<Instruction *> *CastsToIgnore) {
Karthik Bhat24e6cc22015-04-23 08:29:20 +00001078 Type *PhiTy = Phi->getType();
1079 // We only handle integer and pointer inductions variables.
1080 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
1081 return false;
1082
1083 // Check that the PHI is consecutive.
Silviu Barangac05bab82016-05-05 15:20:39 +00001084 const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
Karthik Bhat24e6cc22015-04-23 08:29:20 +00001085 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
Silviu Barangac05bab82016-05-05 15:20:39 +00001086
Karthik Bhat24e6cc22015-04-23 08:29:20 +00001087 if (!AR) {
1088 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1089 return false;
1090 }
1091
Michael Kupersteinee31cbe2017-01-10 19:32:30 +00001092 if (AR->getLoop() != TheLoop) {
1093 // FIXME: We should treat this as a uniform. Unfortunately, we
1094 // don't currently know how to handled uniform PHIs.
1095 DEBUG(dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
Dorit Nuzman4750c782017-12-14 07:56:31 +00001096 return false;
Michael Kupersteinee31cbe2017-01-10 19:32:30 +00001097 }
1098
James Molloy1bbf15c2015-08-27 09:53:00 +00001099 Value *StartValue =
1100 Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
Karthik Bhat24e6cc22015-04-23 08:29:20 +00001101 const SCEV *Step = AR->getStepRecurrence(*SE);
1102 // Calculate the pointer stride and check if it is consecutive.
Elena Demikhovskyc434d092016-05-10 07:33:35 +00001103 // The stride may be a constant or a loop invariant integer value.
1104 const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
Elena Demikhovsky376a18b2016-07-24 07:24:54 +00001105 if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
Karthik Bhat24e6cc22015-04-23 08:29:20 +00001106 return false;
1107
Karthik Bhat24e6cc22015-04-23 08:29:20 +00001108 if (PhiTy->isIntegerTy()) {
Dorit Nuzman4750c782017-12-14 07:56:31 +00001109 D = InductionDescriptor(StartValue, IK_IntInduction, Step, /*BOp=*/ nullptr,
1110 CastsToIgnore);
Karthik Bhat24e6cc22015-04-23 08:29:20 +00001111 return true;
1112 }
1113
1114 assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
Elena Demikhovskyc434d092016-05-10 07:33:35 +00001115 // Pointer induction should be a constant.
1116 if (!ConstStep)
1117 return false;
1118
1119 ConstantInt *CV = ConstStep->getValue();
Karthik Bhat24e6cc22015-04-23 08:29:20 +00001120 Type *PointerElementType = PhiTy->getPointerElementType();
1121 // The pointer stride cannot be determined if the pointer element type is not
1122 // sized.
1123 if (!PointerElementType->isSized())
1124 return false;
1125
1126 const DataLayout &DL = Phi->getModule()->getDataLayout();
1127 int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
David Majnemerb58f32f2015-06-05 10:52:40 +00001128 if (!Size)
1129 return false;
1130
Karthik Bhat24e6cc22015-04-23 08:29:20 +00001131 int64_t CVSize = CV->getSExtValue();
1132 if (CVSize % Size)
1133 return false;
Elena Demikhovskyc434d092016-05-10 07:33:35 +00001134 auto *StepValue = SE->getConstant(CV->getType(), CVSize / Size,
1135 true /* signed */);
James Molloy1bbf15c2015-08-27 09:53:00 +00001136 D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue);
Karthik Bhat24e6cc22015-04-23 08:29:20 +00001137 return true;
1138}
Ashutosh Nemac5b7b552015-08-19 05:40:42 +00001139
Chandler Carruth4a000882017-06-25 22:45:31 +00001140bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
1141 bool PreserveLCSSA) {
1142 bool Changed = false;
1143
1144 // We re-use a vector for the in-loop predecesosrs.
1145 SmallVector<BasicBlock *, 4> InLoopPredecessors;
1146
1147 auto RewriteExit = [&](BasicBlock *BB) {
1148 assert(InLoopPredecessors.empty() &&
1149 "Must start with an empty predecessors list!");
1150 auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
1151
1152 // See if there are any non-loop predecessors of this exit block and
1153 // keep track of the in-loop predecessors.
1154 bool IsDedicatedExit = true;
1155 for (auto *PredBB : predecessors(BB))
1156 if (L->contains(PredBB)) {
1157 if (isa<IndirectBrInst>(PredBB->getTerminator()))
1158 // We cannot rewrite exiting edges from an indirectbr.
1159 return false;
1160
1161 InLoopPredecessors.push_back(PredBB);
1162 } else {
1163 IsDedicatedExit = false;
1164 }
1165
1166 assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
1167
1168 // Nothing to do if this is already a dedicated exit.
1169 if (IsDedicatedExit)
1170 return false;
1171
1172 auto *NewExitBB = SplitBlockPredecessors(
1173 BB, InLoopPredecessors, ".loopexit", DT, LI, PreserveLCSSA);
1174
1175 if (!NewExitBB)
1176 DEBUG(dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
1177 << *L << "\n");
1178 else
1179 DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
1180 << NewExitBB->getName() << "\n");
1181 return true;
1182 };
1183
1184 // Walk the exit blocks directly rather than building up a data structure for
1185 // them, but only visit each one once.
1186 SmallPtrSet<BasicBlock *, 4> Visited;
1187 for (auto *BB : L->blocks())
1188 for (auto *SuccBB : successors(BB)) {
1189 // We're looking for exit blocks so skip in-loop successors.
1190 if (L->contains(SuccBB))
1191 continue;
1192
1193 // Visit each exit block exactly once.
1194 if (!Visited.insert(SuccBB).second)
1195 continue;
1196
1197 Changed |= RewriteExit(SuccBB);
1198 }
1199
1200 return Changed;
1201}
1202
Ashutosh Nemac5b7b552015-08-19 05:40:42 +00001203/// \brief Returns the instructions that use values defined in the loop.
1204SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
1205 SmallVector<Instruction *, 8> UsedOutside;
1206
1207 for (auto *Block : L->getBlocks())
1208 // FIXME: I believe that this could use copy_if if the Inst reference could
1209 // be adapted into a pointer.
1210 for (auto &Inst : *Block) {
1211 auto Users = Inst.users();
David Majnemer0a16c222016-08-11 21:15:00 +00001212 if (any_of(Users, [&](User *U) {
Ashutosh Nemac5b7b552015-08-19 05:40:42 +00001213 auto *Use = cast<Instruction>(U);
1214 return !L->contains(Use->getParent());
1215 }))
1216 UsedOutside.push_back(&Inst);
1217 }
1218
1219 return UsedOutside;
1220}
Chandler Carruth31088a92016-02-19 10:45:18 +00001221
1222void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
1223 // By definition, all loop passes need the LoopInfo analysis and the
1224 // Dominator tree it depends on. Because they all participate in the loop
1225 // pass manager, they must also preserve these.
1226 AU.addRequired<DominatorTreeWrapperPass>();
1227 AU.addPreserved<DominatorTreeWrapperPass>();
1228 AU.addRequired<LoopInfoWrapperPass>();
1229 AU.addPreserved<LoopInfoWrapperPass>();
1230
1231 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
1232 // here because users shouldn't directly get them from this header.
1233 extern char &LoopSimplifyID;
1234 extern char &LCSSAID;
1235 AU.addRequiredID(LoopSimplifyID);
1236 AU.addPreservedID(LoopSimplifyID);
1237 AU.addRequiredID(LCSSAID);
1238 AU.addPreservedID(LCSSAID);
Igor Laevskyc3ccf5d2016-10-28 12:57:20 +00001239 // This is used in the LPPassManager to perform LCSSA verification on passes
1240 // which preserve lcssa form
1241 AU.addRequired<LCSSAVerificationPass>();
1242 AU.addPreserved<LCSSAVerificationPass>();
Chandler Carruth31088a92016-02-19 10:45:18 +00001243
1244 // Loop passes are designed to run inside of a loop pass manager which means
1245 // that any function analyses they require must be required by the first loop
1246 // pass in the manager (so that it is computed before the loop pass manager
1247 // runs) and preserved by all loop pasess in the manager. To make this
1248 // reasonably robust, the set needed for most loop passes is maintained here.
1249 // If your loop pass requires an analysis not listed here, you will need to
1250 // carefully audit the loop pass manager nesting structure that results.
1251 AU.addRequired<AAResultsWrapperPass>();
1252 AU.addPreserved<AAResultsWrapperPass>();
1253 AU.addPreserved<BasicAAWrapperPass>();
1254 AU.addPreserved<GlobalsAAWrapperPass>();
1255 AU.addPreserved<SCEVAAWrapperPass>();
1256 AU.addRequired<ScalarEvolutionWrapperPass>();
1257 AU.addPreserved<ScalarEvolutionWrapperPass>();
1258}
1259
1260/// Manually defined generic "LoopPass" dependency initialization. This is used
1261/// to initialize the exact set of passes from above in \c
1262/// getLoopAnalysisUsage. It can be used within a loop pass's initialization
1263/// with:
1264///
1265/// INITIALIZE_PASS_DEPENDENCY(LoopPass)
1266///
1267/// As-if "LoopPass" were a pass.
1268void llvm::initializeLoopPassPass(PassRegistry &Registry) {
1269 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1270 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1271 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
Easwaran Ramane12c4872016-06-09 19:44:46 +00001272 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
Chandler Carruth31088a92016-02-19 10:45:18 +00001273 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1274 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
1275 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
1276 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
1277 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1278}
Adam Nemet963341c2016-04-21 17:33:17 +00001279
Adam Nemetfe3def72016-04-22 19:10:05 +00001280/// \brief Find string metadata for loop
1281///
1282/// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
1283/// operand or null otherwise. If the string metadata is not found return
1284/// Optional's not-a-value.
1285Optional<const MDOperand *> llvm::findStringMetadataForLoop(Loop *TheLoop,
1286 StringRef Name) {
Adam Nemet963341c2016-04-21 17:33:17 +00001287 MDNode *LoopID = TheLoop->getLoopID();
Adam Nemetfe3def72016-04-22 19:10:05 +00001288 // Return none if LoopID is false.
Adam Nemet963341c2016-04-21 17:33:17 +00001289 if (!LoopID)
Adam Nemetfe3def72016-04-22 19:10:05 +00001290 return None;
Adam Nemet293be662016-04-21 17:33:20 +00001291
1292 // First operand should refer to the loop id itself.
1293 assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
1294 assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
1295
Adam Nemet963341c2016-04-21 17:33:17 +00001296 // Iterate over LoopID operands and look for MDString Metadata
1297 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
1298 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
1299 if (!MD)
1300 continue;
1301 MDString *S = dyn_cast<MDString>(MD->getOperand(0));
1302 if (!S)
1303 continue;
1304 // Return true if MDString holds expected MetaData.
1305 if (Name.equals(S->getString()))
Adam Nemetfe3def72016-04-22 19:10:05 +00001306 switch (MD->getNumOperands()) {
1307 case 1:
1308 return nullptr;
1309 case 2:
1310 return &MD->getOperand(1);
1311 default:
1312 llvm_unreachable("loop metadata has 0 or 1 operand");
1313 }
Adam Nemet963341c2016-04-21 17:33:17 +00001314 }
Adam Nemetfe3def72016-04-22 19:10:05 +00001315 return None;
Adam Nemet963341c2016-04-21 17:33:17 +00001316}
Evgeniy Stepanov122f9842016-06-10 20:03:17 +00001317
Alina Sbirlea7ed58562017-09-15 00:04:16 +00001318/// Does a BFS from a given node to all of its children inside a given loop.
1319/// The returned vector of nodes includes the starting point.
1320SmallVector<DomTreeNode *, 16>
1321llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
1322 SmallVector<DomTreeNode *, 16> Worklist;
1323 auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
1324 // Only include subregions in the top level loop.
1325 BasicBlock *BB = DTN->getBlock();
1326 if (CurLoop->contains(BB))
1327 Worklist.push_back(DTN);
1328 };
1329
1330 AddRegionToWorklist(N);
1331
1332 for (size_t I = 0; I < Worklist.size(); I++)
1333 for (DomTreeNode *Child : Worklist[I]->getChildren())
1334 AddRegionToWorklist(Child);
1335
1336 return Worklist;
1337}
1338
Marcello Maggionidf3e71e2017-10-04 20:42:46 +00001339void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr,
1340 ScalarEvolution *SE = nullptr,
1341 LoopInfo *LI = nullptr) {
Hans Wennborg899809d2017-10-04 21:14:07 +00001342 assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
Marcello Maggionidf3e71e2017-10-04 20:42:46 +00001343 auto *Preheader = L->getLoopPreheader();
1344 assert(Preheader && "Preheader should exist!");
1345
1346 // Now that we know the removal is safe, remove the loop by changing the
1347 // branch from the preheader to go to the single exit block.
1348 //
1349 // Because we're deleting a large chunk of code at once, the sequence in which
1350 // we remove things is very important to avoid invalidation issues.
1351
1352 // Tell ScalarEvolution that the loop is deleted. Do this before
1353 // deleting the loop so that ScalarEvolution can look at the loop
1354 // to determine what it needs to clean up.
1355 if (SE)
1356 SE->forgetLoop(L);
1357
1358 auto *ExitBlock = L->getUniqueExitBlock();
1359 assert(ExitBlock && "Should have a unique exit block!");
1360 assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
1361
1362 auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
1363 assert(OldBr && "Preheader must end with a branch");
1364 assert(OldBr->isUnconditional() && "Preheader must have a single successor");
1365 // Connect the preheader to the exit block. Keep the old edge to the header
1366 // around to perform the dominator tree update in two separate steps
1367 // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
1368 // preheader -> header.
1369 //
1370 //
1371 // 0. Preheader 1. Preheader 2. Preheader
1372 // | | | |
1373 // V | V |
1374 // Header <--\ | Header <--\ | Header <--\
1375 // | | | | | | | | | | |
1376 // | V | | | V | | | V |
1377 // | Body --/ | | Body --/ | | Body --/
1378 // V V V V V
1379 // Exit Exit Exit
1380 //
1381 // By doing this is two separate steps we can perform the dominator tree
1382 // update without using the batch update API.
1383 //
1384 // Even when the loop is never executed, we cannot remove the edge from the
1385 // source block to the exit block. Consider the case where the unexecuted loop
1386 // branches back to an outer loop. If we deleted the loop and removed the edge
1387 // coming to this inner loop, this will break the outer loop structure (by
1388 // deleting the backedge of the outer loop). If the outer loop is indeed a
1389 // non-loop, it will be deleted in a future iteration of loop deletion pass.
1390 IRBuilder<> Builder(OldBr);
1391 Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
1392 // Remove the old branch. The conditional branch becomes a new terminator.
1393 OldBr->eraseFromParent();
1394
1395 // Rewrite phis in the exit block to get their inputs from the Preheader
1396 // instead of the exiting block.
Benjamin Kramerc7fc81e2017-12-30 15:27:33 +00001397 for (PHINode &P : ExitBlock->phis()) {
Marcello Maggionidf3e71e2017-10-04 20:42:46 +00001398 // Set the zero'th element of Phi to be from the preheader and remove all
1399 // other incoming values. Given the loop has dedicated exits, all other
1400 // incoming values must be from the exiting blocks.
1401 int PredIndex = 0;
Benjamin Kramerc7fc81e2017-12-30 15:27:33 +00001402 P.setIncomingBlock(PredIndex, Preheader);
Marcello Maggionidf3e71e2017-10-04 20:42:46 +00001403 // Removes all incoming values from all other exiting blocks (including
1404 // duplicate values from an exiting block).
1405 // Nuke all entries except the zero'th entry which is the preheader entry.
1406 // NOTE! We need to remove Incoming Values in the reverse order as done
1407 // below, to keep the indices valid for deletion (removeIncomingValues
1408 // updates getNumIncomingValues and shifts all values down into the operand
1409 // being deleted).
Benjamin Kramerc7fc81e2017-12-30 15:27:33 +00001410 for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
1411 P.removeIncomingValue(e - i, false);
Marcello Maggionidf3e71e2017-10-04 20:42:46 +00001412
Benjamin Kramerc7fc81e2017-12-30 15:27:33 +00001413 assert((P.getNumIncomingValues() == 1 &&
1414 P.getIncomingBlock(PredIndex) == Preheader) &&
Marcello Maggionidf3e71e2017-10-04 20:42:46 +00001415 "Should have exactly one value and that's from the preheader!");
Marcello Maggionidf3e71e2017-10-04 20:42:46 +00001416 }
1417
1418 // Disconnect the loop body by branching directly to its exit.
1419 Builder.SetInsertPoint(Preheader->getTerminator());
1420 Builder.CreateBr(ExitBlock);
1421 // Remove the old branch.
1422 Preheader->getTerminator()->eraseFromParent();
1423
1424 if (DT) {
1425 // Update the dominator tree by informing it about the new edge from the
1426 // preheader to the exit.
1427 DT->insertEdge(Preheader, ExitBlock);
1428 // Inform the dominator tree about the removed edge.
1429 DT->deleteEdge(Preheader, L->getHeader());
1430 }
1431
Serguei Katkova757d652018-01-12 07:24:43 +00001432 // Given LCSSA form is satisfied, we should not have users of instructions
1433 // within the dead loop outside of the loop. However, LCSSA doesn't take
1434 // unreachable uses into account. We handle them here.
1435 // We could do it after drop all references (in this case all users in the
1436 // loop will be already eliminated and we have less work to do but according
1437 // to API doc of User::dropAllReferences only valid operation after dropping
1438 // references, is deletion. So let's substitute all usages of
1439 // instruction from the loop with undef value of corresponding type first.
1440 for (auto *Block : L->blocks())
1441 for (Instruction &I : *Block) {
1442 auto *Undef = UndefValue::get(I.getType());
1443 for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) {
1444 Use &U = *UI;
1445 ++UI;
1446 if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
1447 if (L->contains(Usr->getParent()))
1448 continue;
1449 // If we have a DT then we can check that uses outside a loop only in
1450 // unreachable block.
1451 if (DT)
1452 assert(!DT->isReachableFromEntry(U) &&
1453 "Unexpected user in reachable block");
1454 U.set(Undef);
1455 }
1456 }
1457
Marcello Maggionidf3e71e2017-10-04 20:42:46 +00001458 // Remove the block from the reference counting scheme, so that we can
1459 // delete it freely later.
1460 for (auto *Block : L->blocks())
1461 Block->dropAllReferences();
1462
1463 if (LI) {
1464 // Erase the instructions and the blocks without having to worry
1465 // about ordering because we already dropped the references.
1466 // NOTE: This iteration is safe because erasing the block does not remove
1467 // its entry from the loop's block list. We do that in the next section.
1468 for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
1469 LpI != LpE; ++LpI)
1470 (*LpI)->eraseFromParent();
1471
1472 // Finally, the blocks from loopinfo. This has to happen late because
1473 // otherwise our loop iterators won't work.
1474
1475 SmallPtrSet<BasicBlock *, 8> blocks;
1476 blocks.insert(L->block_begin(), L->block_end());
1477 for (BasicBlock *BB : blocks)
1478 LI->removeBlock(BB);
1479
1480 // The last step is to update LoopInfo now that we've eliminated this loop.
1481 LI->erase(L);
1482 }
1483}
1484
David Green0d5f9652018-02-14 18:34:53 +00001485/// Computes loop safety information, checks loop body & header
1486/// for the possibility of may throw exception.
1487///
1488void llvm::computeLoopSafetyInfo(LoopSafetyInfo *SafetyInfo, Loop *CurLoop) {
1489 assert(CurLoop != nullptr && "CurLoop cant be null");
1490 BasicBlock *Header = CurLoop->getHeader();
1491 // Setting default safety values.
1492 SafetyInfo->MayThrow = false;
1493 SafetyInfo->HeaderMayThrow = false;
1494 // Iterate over header and compute safety info.
Philip Reamesfbffd122018-03-08 21:25:30 +00001495 SafetyInfo->HeaderMayThrow =
1496 !isGuaranteedToTransferExecutionToSuccessor(Header);
David Green0d5f9652018-02-14 18:34:53 +00001497
1498 SafetyInfo->MayThrow = SafetyInfo->HeaderMayThrow;
1499 // Iterate over loop instructions and compute safety info.
1500 // Skip header as it has been computed and stored in HeaderMayThrow.
1501 // The first block in loopinfo.Blocks is guaranteed to be the header.
1502 assert(Header == *CurLoop->getBlocks().begin() &&
1503 "First block must be header");
1504 for (Loop::block_iterator BB = std::next(CurLoop->block_begin()),
1505 BBE = CurLoop->block_end();
1506 (BB != BBE) && !SafetyInfo->MayThrow; ++BB)
Philip Reamesfbffd122018-03-08 21:25:30 +00001507 SafetyInfo->MayThrow |=
1508 !isGuaranteedToTransferExecutionToSuccessor(*BB);
David Green0d5f9652018-02-14 18:34:53 +00001509
1510 // Compute funclet colors if we might sink/hoist in a function with a funclet
1511 // personality routine.
1512 Function *Fn = CurLoop->getHeader()->getParent();
1513 if (Fn->hasPersonalityFn())
1514 if (Constant *PersonalityFn = Fn->getPersonalityFn())
1515 if (isFuncletEHPersonality(classifyEHPersonality(PersonalityFn)))
1516 SafetyInfo->BlockColors = colorEHFunclets(*Fn);
1517}
1518
Philip Reamesa21d5f12018-03-15 21:04:28 +00001519/// Return true if we can prove that the given ExitBlock is not reached on the
1520/// first iteration of the given loop. That is, the backedge of the loop must
1521/// be executed before the ExitBlock is executed in any dynamic execution trace.
1522static bool CanProveNotTakenFirstIteration(BasicBlock *ExitBlock,
1523 const DominatorTree *DT,
1524 const Loop *CurLoop) {
1525 auto *CondExitBlock = ExitBlock->getSinglePredecessor();
1526 if (!CondExitBlock)
1527 // expect unique exits
1528 return false;
1529 assert(CurLoop->contains(CondExitBlock) && "meaning of exit block");
1530 auto *BI = dyn_cast<BranchInst>(CondExitBlock->getTerminator());
1531 if (!BI || !BI->isConditional())
1532 return false;
Philip Reames8a106272018-03-16 16:33:49 +00001533 auto *Cond = dyn_cast<CmpInst>(BI->getCondition());
1534 if (!Cond)
1535 return false;
Philip Reamesa21d5f12018-03-15 21:04:28 +00001536 // todo: this would be a lot more powerful if we used scev, but all the
1537 // plumbing is currently missing to pass a pointer in from the pass
Philip Reamesa21d5f12018-03-15 21:04:28 +00001538 // Check for cmp (phi [x, preheader] ...), y where (pred x, y is known
Philip Reames8a106272018-03-16 16:33:49 +00001539 auto *LHS = dyn_cast<PHINode>(Cond->getOperand(0));
1540 auto *RHS = Cond->getOperand(1);
Philip Reamesa21d5f12018-03-15 21:04:28 +00001541 if (!LHS || LHS->getParent() != CurLoop->getHeader())
1542 return false;
1543 auto DL = ExitBlock->getModule()->getDataLayout();
1544 auto *IVStart = LHS->getIncomingValueForBlock(CurLoop->getLoopPreheader());
Philip Reames8a106272018-03-16 16:33:49 +00001545 auto *SimpleValOrNull = SimplifyCmpInst(Cond->getPredicate(),
1546 IVStart, RHS,
1547 {DL, /*TLI*/ nullptr,
1548 DT, /*AC*/ nullptr, BI});
Philip Reamesa21d5f12018-03-15 21:04:28 +00001549 auto *SimpleCst = dyn_cast_or_null<Constant>(SimpleValOrNull);
1550 if (!SimpleCst)
1551 return false;
1552 if (ExitBlock == BI->getSuccessor(0))
1553 return SimpleCst->isZeroValue();
1554 assert(ExitBlock == BI->getSuccessor(1) && "implied by above");
1555 return SimpleCst->isAllOnesValue();
1556}
1557
Evgeniy Stepanov122f9842016-06-10 20:03:17 +00001558/// Returns true if the instruction in a loop is guaranteed to execute at least
1559/// once.
1560bool llvm::isGuaranteedToExecute(const Instruction &Inst,
1561 const DominatorTree *DT, const Loop *CurLoop,
1562 const LoopSafetyInfo *SafetyInfo) {
1563 // We have to check to make sure that the instruction dominates all
Evgeniy Stepanov58ccc092017-04-24 18:25:07 +00001564 // of the exit blocks. If it doesn't, then there is a path out of the loop
1565 // which does not execute this instruction, so we can't hoist it.
1566
1567 // If the instruction is in the header block for the loop (which is very
1568 // common), it is always guaranteed to dominate the exit blocks. Since this
1569 // is a common case, and can save some work, check it now.
1570 if (Inst.getParent() == CurLoop->getHeader())
1571 // If there's a throw in the header block, we can't guarantee we'll reach
1572 // Inst.
1573 return !SafetyInfo->HeaderMayThrow;
1574
1575 // Somewhere in this loop there is an instruction which may throw and make us
1576 // exit the loop.
1577 if (SafetyInfo->MayThrow)
1578 return false;
Evgeniy Stepanov122f9842016-06-10 20:03:17 +00001579
Philip Reamesa21d5f12018-03-15 21:04:28 +00001580 // Note: There are two styles of reasoning intermixed below for
1581 // implementation efficiency reasons. They are:
1582 // 1) If we can prove that the instruction dominates all exit blocks, then we
1583 // know the instruction must have executed on *some* iteration before we
1584 // exit. We do not prove *which* iteration the instruction must execute on.
1585 // 2) If we can prove that the instruction dominates the latch and all exits
1586 // which might be taken on the first iteration, we know the instruction must
1587 // execute on the first iteration. This second style allows a conditional
1588 // exit before the instruction of interest which is provably not taken on the
1589 // first iteration. This is a quite common case for range check like
1590 // patterns. TODO: support loops with multiple latches.
1591
1592 const bool InstDominatesLatch =
1593 CurLoop->getLoopLatch() != nullptr &&
1594 DT->dominates(Inst.getParent(), CurLoop->getLoopLatch());
1595
Evgeniy Stepanov122f9842016-06-10 20:03:17 +00001596 // Get the exit blocks for the current loop.
1597 SmallVector<BasicBlock *, 8> ExitBlocks;
1598 CurLoop->getExitBlocks(ExitBlocks);
1599
1600 // Verify that the block dominates each of the exit blocks of the loop.
1601 for (BasicBlock *ExitBlock : ExitBlocks)
1602 if (!DT->dominates(Inst.getParent(), ExitBlock))
Philip Reamesa21d5f12018-03-15 21:04:28 +00001603 if (!InstDominatesLatch ||
1604 !CanProveNotTakenFirstIteration(ExitBlock, DT, CurLoop))
1605 return false;
Evgeniy Stepanov122f9842016-06-10 20:03:17 +00001606
1607 // As a degenerate case, if the loop is statically infinite then we haven't
1608 // proven anything since there are no exit blocks.
Evgeniy Stepanov58ccc092017-04-24 18:25:07 +00001609 if (ExitBlocks.empty())
Evgeniy Stepanov122f9842016-06-10 20:03:17 +00001610 return false;
1611
Eli Friedmanf1da33e2016-06-11 21:48:25 +00001612 // FIXME: In general, we have to prove that the loop isn't an infinite loop.
1613 // See http::llvm.org/PR24078 . (The "ExitBlocks.empty()" check above is
1614 // just a special case of this.)
Evgeniy Stepanov122f9842016-06-10 20:03:17 +00001615 return true;
1616}
Dehao Chen41d72a82016-11-17 01:17:02 +00001617
1618Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) {
1619 // Only support loops with a unique exiting block, and a latch.
1620 if (!L->getExitingBlock())
1621 return None;
1622
Hiroshi Inoued24ddcd2018-01-19 10:55:29 +00001623 // Get the branch weights for the loop's backedge.
Dehao Chen41d72a82016-11-17 01:17:02 +00001624 BranchInst *LatchBR =
1625 dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator());
1626 if (!LatchBR || LatchBR->getNumSuccessors() != 2)
1627 return None;
1628
1629 assert((LatchBR->getSuccessor(0) == L->getHeader() ||
1630 LatchBR->getSuccessor(1) == L->getHeader()) &&
1631 "At least one edge out of the latch must go to the header");
1632
1633 // To estimate the number of times the loop body was executed, we want to
1634 // know the number of times the backedge was taken, vs. the number of times
1635 // we exited the loop.
Dehao Chen41d72a82016-11-17 01:17:02 +00001636 uint64_t TrueVal, FalseVal;
Michael Kupersteinb151a642016-11-30 21:13:57 +00001637 if (!LatchBR->extractProfMetadata(TrueVal, FalseVal))
Dehao Chen41d72a82016-11-17 01:17:02 +00001638 return None;
1639
Michael Kupersteinb151a642016-11-30 21:13:57 +00001640 if (!TrueVal || !FalseVal)
1641 return 0;
Dehao Chen41d72a82016-11-17 01:17:02 +00001642
Michael Kupersteinb151a642016-11-30 21:13:57 +00001643 // Divide the count of the backedge by the count of the edge exiting the loop,
1644 // rounding to nearest.
Dehao Chen41d72a82016-11-17 01:17:02 +00001645 if (LatchBR->getSuccessor(0) == L->getHeader())
Michael Kupersteinb151a642016-11-30 21:13:57 +00001646 return (TrueVal + (FalseVal / 2)) / FalseVal;
Dehao Chen41d72a82016-11-17 01:17:02 +00001647 else
Michael Kupersteinb151a642016-11-30 21:13:57 +00001648 return (FalseVal + (TrueVal / 2)) / TrueVal;
Dehao Chen41d72a82016-11-17 01:17:02 +00001649}
Amara Emersoncf9daa32017-05-09 10:43:25 +00001650
1651/// \brief Adds a 'fast' flag to floating point operations.
1652static Value *addFastMathFlag(Value *V) {
1653 if (isa<FPMathOperator>(V)) {
1654 FastMathFlags Flags;
Sanjay Patel629c4112017-11-06 16:27:15 +00001655 Flags.setFast();
Amara Emersoncf9daa32017-05-09 10:43:25 +00001656 cast<Instruction>(V)->setFastMathFlags(Flags);
1657 }
1658 return V;
1659}
1660
1661// Helper to generate a log2 shuffle reduction.
Amara Emerson836b0f42017-05-10 09:42:49 +00001662Value *
1663llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op,
1664 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
1665 ArrayRef<Value *> RedOps) {
Amara Emersoncf9daa32017-05-09 10:43:25 +00001666 unsigned VF = Src->getType()->getVectorNumElements();
1667 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
1668 // and vector ops, reducing the set of values being computed by half each
1669 // round.
1670 assert(isPowerOf2_32(VF) &&
1671 "Reduction emission only supported for pow2 vectors!");
1672 Value *TmpVec = Src;
1673 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr);
1674 for (unsigned i = VF; i != 1; i >>= 1) {
1675 // Move the upper half of the vector to the lower half.
1676 for (unsigned j = 0; j != i / 2; ++j)
1677 ShuffleMask[j] = Builder.getInt32(i / 2 + j);
1678
1679 // Fill the rest of the mask with undef.
1680 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(),
1681 UndefValue::get(Builder.getInt32Ty()));
1682
1683 Value *Shuf = Builder.CreateShuffleVector(
1684 TmpVec, UndefValue::get(TmpVec->getType()),
1685 ConstantVector::get(ShuffleMask), "rdx.shuf");
1686
1687 if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
1688 // Floating point operations had to be 'fast' to enable the reduction.
1689 TmpVec = addFastMathFlag(Builder.CreateBinOp((Instruction::BinaryOps)Op,
1690 TmpVec, Shuf, "bin.rdx"));
1691 } else {
1692 assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
1693 "Invalid min/max");
1694 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, TmpVec,
1695 Shuf);
1696 }
1697 if (!RedOps.empty())
1698 propagateIRFlags(TmpVec, RedOps);
1699 }
1700 // The result is in the first element of the vector.
1701 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
1702}
1703
1704/// Create a simple vector reduction specified by an opcode and some
1705/// flags (if generating min/max reductions).
1706Value *llvm::createSimpleTargetReduction(
1707 IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode,
1708 Value *Src, TargetTransformInfo::ReductionFlags Flags,
1709 ArrayRef<Value *> RedOps) {
1710 assert(isa<VectorType>(Src->getType()) && "Type must be a vector");
1711
1712 Value *ScalarUdf = UndefValue::get(Src->getType()->getVectorElementType());
1713 std::function<Value*()> BuildFunc;
1714 using RD = RecurrenceDescriptor;
1715 RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid;
1716 // TODO: Support creating ordered reductions.
Sanjay Patel1ea7b6f2017-12-06 19:11:23 +00001717 FastMathFlags FMFFast;
1718 FMFFast.setFast();
Amara Emersoncf9daa32017-05-09 10:43:25 +00001719
1720 switch (Opcode) {
1721 case Instruction::Add:
1722 BuildFunc = [&]() { return Builder.CreateAddReduce(Src); };
1723 break;
1724 case Instruction::Mul:
1725 BuildFunc = [&]() { return Builder.CreateMulReduce(Src); };
1726 break;
1727 case Instruction::And:
1728 BuildFunc = [&]() { return Builder.CreateAndReduce(Src); };
1729 break;
1730 case Instruction::Or:
1731 BuildFunc = [&]() { return Builder.CreateOrReduce(Src); };
1732 break;
1733 case Instruction::Xor:
1734 BuildFunc = [&]() { return Builder.CreateXorReduce(Src); };
1735 break;
1736 case Instruction::FAdd:
1737 BuildFunc = [&]() {
1738 auto Rdx = Builder.CreateFAddReduce(ScalarUdf, Src);
Sanjay Patel1ea7b6f2017-12-06 19:11:23 +00001739 cast<CallInst>(Rdx)->setFastMathFlags(FMFFast);
Amara Emersoncf9daa32017-05-09 10:43:25 +00001740 return Rdx;
1741 };
1742 break;
1743 case Instruction::FMul:
1744 BuildFunc = [&]() {
1745 auto Rdx = Builder.CreateFMulReduce(ScalarUdf, Src);
Sanjay Patel1ea7b6f2017-12-06 19:11:23 +00001746 cast<CallInst>(Rdx)->setFastMathFlags(FMFFast);
Amara Emersoncf9daa32017-05-09 10:43:25 +00001747 return Rdx;
1748 };
1749 break;
1750 case Instruction::ICmp:
1751 if (Flags.IsMaxOp) {
1752 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax;
1753 BuildFunc = [&]() {
1754 return Builder.CreateIntMaxReduce(Src, Flags.IsSigned);
1755 };
1756 } else {
1757 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin;
1758 BuildFunc = [&]() {
1759 return Builder.CreateIntMinReduce(Src, Flags.IsSigned);
1760 };
1761 }
1762 break;
1763 case Instruction::FCmp:
1764 if (Flags.IsMaxOp) {
1765 MinMaxKind = RD::MRK_FloatMax;
1766 BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); };
1767 } else {
1768 MinMaxKind = RD::MRK_FloatMin;
1769 BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); };
1770 }
1771 break;
1772 default:
1773 llvm_unreachable("Unhandled opcode");
1774 break;
1775 }
1776 if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags))
1777 return BuildFunc();
1778 return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps);
1779}
1780
1781/// Create a vector reduction using a given recurrence descriptor.
Sanjay Patel3e069f52017-12-06 19:37:00 +00001782Value *llvm::createTargetReduction(IRBuilder<> &B,
Amara Emersoncf9daa32017-05-09 10:43:25 +00001783 const TargetTransformInfo *TTI,
1784 RecurrenceDescriptor &Desc, Value *Src,
1785 bool NoNaN) {
1786 // TODO: Support in-order reductions based on the recurrence descriptor.
Sanjay Patel3e069f52017-12-06 19:37:00 +00001787 using RD = RecurrenceDescriptor;
1788 RD::RecurrenceKind RecKind = Desc.getRecurrenceKind();
Amara Emersoncf9daa32017-05-09 10:43:25 +00001789 TargetTransformInfo::ReductionFlags Flags;
1790 Flags.NoNaN = NoNaN;
Amara Emersoncf9daa32017-05-09 10:43:25 +00001791 switch (RecKind) {
Sanjay Patel3e069f52017-12-06 19:37:00 +00001792 case RD::RK_FloatAdd:
1793 return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags);
1794 case RD::RK_FloatMult:
1795 return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags);
1796 case RD::RK_IntegerAdd:
1797 return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags);
1798 case RD::RK_IntegerMult:
1799 return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags);
1800 case RD::RK_IntegerAnd:
1801 return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags);
1802 case RD::RK_IntegerOr:
1803 return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags);
1804 case RD::RK_IntegerXor:
1805 return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags);
1806 case RD::RK_IntegerMinMax: {
1807 RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind();
1808 Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax);
1809 Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin);
1810 return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags);
Amara Emersoncf9daa32017-05-09 10:43:25 +00001811 }
Sanjay Patel3e069f52017-12-06 19:37:00 +00001812 case RD::RK_FloatMinMax: {
1813 Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax;
1814 return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags);
Amara Emersoncf9daa32017-05-09 10:43:25 +00001815 }
1816 default:
1817 llvm_unreachable("Unhandled RecKind");
1818 }
1819}
1820
Dinar Temirbulatova61f4b82017-07-19 10:02:07 +00001821void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
1822 auto *VecOp = dyn_cast<Instruction>(I);
1823 if (!VecOp)
1824 return;
1825 auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
1826 : dyn_cast<Instruction>(OpValue);
1827 if (!Intersection)
1828 return;
1829 const unsigned Opcode = Intersection->getOpcode();
1830 VecOp->copyIRFlags(Intersection);
1831 for (auto *V : VL) {
1832 auto *Instr = dyn_cast<Instruction>(V);
1833 if (!Instr)
1834 continue;
1835 if (OpValue == nullptr || Opcode == Instr->getOpcode())
1836 VecOp->andIRFlags(V);
Amara Emersoncf9daa32017-05-09 10:43:25 +00001837 }
1838}