blob: e6141ade92b8e175d263ba93d68c4f315efc9be9 [file] [log] [blame]
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the various pseudo instructions used by the compiler,
11// as well as Pat patterns used during instruction selection.
12//
13//===----------------------------------------------------------------------===//
14
15//===----------------------------------------------------------------------===//
16// Pattern Matching Support
17
18def GetLo32XForm : SDNodeXForm<imm, [{
19 // Transformation function: get the low 32 bits.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +000020 return getI32Imm((unsigned)N->getZExtValue(), SDLoc(N));
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000021}]>;
22
23def GetLo8XForm : SDNodeXForm<imm, [{
24 // Transformation function: get the low 8 bits.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +000025 return getI8Imm((uint8_t)N->getZExtValue(), SDLoc(N));
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000026}]>;
27
28
29//===----------------------------------------------------------------------===//
30// Random Pseudo Instructions.
31
32// PIC base construction. This expands to code that looks like this:
33// call $next_inst
34// popl %destreg"
35let hasSideEffects = 0, isNotDuplicable = 1, Uses = [ESP] in
36 def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
37 "", []>;
38
39
40// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
41// a stack adjustment and the codegen must know that they may modify the stack
42// pointer before prolog-epilog rewriting occurs.
43// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
44// sub / add which can clobber EFLAGS.
45let Defs = [ESP, EFLAGS], Uses = [ESP] in {
Michael Kuperstein13fbd452015-02-01 16:56:04 +000046def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000047 "#ADJCALLSTACKDOWN",
Michael Kuperstein13fbd452015-02-01 16:56:04 +000048 []>,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000049 Requires<[NotLP64]>;
50def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
51 "#ADJCALLSTACKUP",
52 [(X86callseq_end timm:$amt1, timm:$amt2)]>,
53 Requires<[NotLP64]>;
54}
Michael Kuperstein13fbd452015-02-01 16:56:04 +000055def : Pat<(X86callseq_start timm:$amt1),
56 (ADJCALLSTACKDOWN32 i32imm:$amt1, 0)>, Requires<[NotLP64]>;
57
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000058
59// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
60// a stack adjustment and the codegen must know that they may modify the stack
61// pointer before prolog-epilog rewriting occurs.
62// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
63// sub / add which can clobber EFLAGS.
64let Defs = [RSP, EFLAGS], Uses = [RSP] in {
Michael Kuperstein13fbd452015-02-01 16:56:04 +000065def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000066 "#ADJCALLSTACKDOWN",
Michael Kuperstein13fbd452015-02-01 16:56:04 +000067 []>,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000068 Requires<[IsLP64]>;
69def ADJCALLSTACKUP64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
70 "#ADJCALLSTACKUP",
71 [(X86callseq_end timm:$amt1, timm:$amt2)]>,
72 Requires<[IsLP64]>;
73}
Michael Kuperstein13fbd452015-02-01 16:56:04 +000074def : Pat<(X86callseq_start timm:$amt1),
75 (ADJCALLSTACKDOWN64 i32imm:$amt1, 0)>, Requires<[IsLP64]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000076
77
78// x86-64 va_start lowering magic.
79let usesCustomInserter = 1, Defs = [EFLAGS] in {
80def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
81 (outs),
82 (ins GR8:$al,
83 i64imm:$regsavefi, i64imm:$offset,
84 variable_ops),
85 "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
86 [(X86vastart_save_xmm_regs GR8:$al,
87 imm:$regsavefi,
88 imm:$offset),
89 (implicit EFLAGS)]>;
90
91// The VAARG_64 pseudo-instruction takes the address of the va_list,
92// and places the address of the next argument into a register.
93let Defs = [EFLAGS] in
94def VAARG_64 : I<0, Pseudo,
95 (outs GR64:$dst),
96 (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
97 "#VAARG_64 $dst, $ap, $size, $mode, $align",
98 [(set GR64:$dst,
99 (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)),
100 (implicit EFLAGS)]>;
101
102// Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
103// targets. These calls are needed to probe the stack when allocating more than
104// 4k bytes in one go. Touching the stack at 4K increments is necessary to
105// ensure that the guard pages used by the OS virtual memory manager are
106// allocated in correct sequence.
107// The main point of having separate instruction are extra unmodelled effects
108// (compared to ordinary calls) like stack pointer change.
109
110let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
111 def WIN_ALLOCA : I<0, Pseudo, (outs), (ins),
112 "# dynamic stack allocation",
113 [(X86WinAlloca)]>;
114
115// When using segmented stacks these are lowered into instructions which first
116// check if the current stacklet has enough free memory. If it does, memory is
117// allocated by bumping the stack pointer. Otherwise memory is allocated from
118// the heap.
119
120let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
121def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
122 "# variable sized alloca for segmented stacks",
123 [(set GR32:$dst,
124 (X86SegAlloca GR32:$size))]>,
125 Requires<[NotLP64]>;
126
127let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
128def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
129 "# variable sized alloca for segmented stacks",
130 [(set GR64:$dst,
131 (X86SegAlloca GR64:$size))]>,
132 Requires<[In64BitMode]>;
133}
134
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000135//===----------------------------------------------------------------------===//
136// EH Pseudo Instructions
137//
138let SchedRW = [WriteSystem] in {
139let isTerminator = 1, isReturn = 1, isBarrier = 1,
140 hasCtrlDep = 1, isCodeGenOnly = 1 in {
141def EH_RETURN : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
142 "ret\t#eh_return, addr: $addr",
143 [(X86ehret GR32:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
144
145}
146
147let isTerminator = 1, isReturn = 1, isBarrier = 1,
148 hasCtrlDep = 1, isCodeGenOnly = 1 in {
149def EH_RETURN64 : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
150 "ret\t#eh_return, addr: $addr",
151 [(X86ehret GR64:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
152
153}
154
Reid Kleckner51460c12015-11-06 01:49:05 +0000155let isTerminator = 1, hasSideEffects = 1, isBarrier = 1, hasCtrlDep = 1,
156 isCodeGenOnly = 1, isReturn = 1 in {
157 def CLEANUPRET : I<0, Pseudo, (outs), (ins), "# CLEANUPRET", [(cleanupret)]>;
158
David Majnemer2652b752015-11-09 23:07:48 +0000159 // CATCHRET needs a custom inserter for SEH.
Reid Kleckner51460c12015-11-06 01:49:05 +0000160 let usesCustomInserter = 1 in
161 def CATCHRET : I<0, Pseudo, (outs), (ins brtarget32:$dst, brtarget32:$from),
162 "# CATCHRET",
163 [(catchret bb:$dst, bb:$from)]>;
Reid Kleckner0e288232015-08-27 23:27:47 +0000164}
165
David Majnemer2652b752015-11-09 23:07:48 +0000166let hasSideEffects = 1, isBarrier = 1, hasCtrlDep = 1, isCodeGenOnly = 1,
167 usesCustomInserter = 1 in
168def CATCHPAD : I<0, Pseudo, (outs), (ins), "# CATCHPAD", [(catchpad)]>;
169
Reid Kleckner51460c12015-11-06 01:49:05 +0000170// This instruction is responsible for re-establishing stack pointers after an
171// exception has been caught and we are rejoining normal control flow in the
172// parent function or funclet. It generally sets ESP and EBP, and optionally
173// ESI. It is only needed for 32-bit WinEH, as the runtime restores CSRs for us
174// elsewhere.
175let hasSideEffects = 1, isBarrier = 1, hasCtrlDep = 1, isCodeGenOnly = 1 in
176def EH_RESTORE : I<0, Pseudo, (outs), (ins), "# EH_RESTORE", []>;
177
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000178let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
179 usesCustomInserter = 1 in {
180 def EH_SjLj_SetJmp32 : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf),
181 "#EH_SJLJ_SETJMP32",
182 [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
183 Requires<[Not64BitMode]>;
184 def EH_SjLj_SetJmp64 : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf),
185 "#EH_SJLJ_SETJMP64",
186 [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
187 Requires<[In64BitMode]>;
188 let isTerminator = 1 in {
189 def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf),
190 "#EH_SJLJ_LONGJMP32",
191 [(X86eh_sjlj_longjmp addr:$buf)]>,
192 Requires<[Not64BitMode]>;
193 def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf),
194 "#EH_SJLJ_LONGJMP64",
195 [(X86eh_sjlj_longjmp addr:$buf)]>,
196 Requires<[In64BitMode]>;
197 }
198}
199} // SchedRW
200
201let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in {
202 def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst),
203 "#EH_SjLj_Setup\t$dst", []>;
204}
205
206//===----------------------------------------------------------------------===//
207// Pseudo instructions used by unwind info.
208//
209let isPseudo = 1 in {
210 def SEH_PushReg : I<0, Pseudo, (outs), (ins i32imm:$reg),
211 "#SEH_PushReg $reg", []>;
212 def SEH_SaveReg : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
213 "#SEH_SaveReg $reg, $dst", []>;
214 def SEH_SaveXMM : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
215 "#SEH_SaveXMM $reg, $dst", []>;
216 def SEH_StackAlloc : I<0, Pseudo, (outs), (ins i32imm:$size),
217 "#SEH_StackAlloc $size", []>;
218 def SEH_SetFrame : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$offset),
219 "#SEH_SetFrame $reg, $offset", []>;
220 def SEH_PushFrame : I<0, Pseudo, (outs), (ins i1imm:$mode),
221 "#SEH_PushFrame $mode", []>;
222 def SEH_EndPrologue : I<0, Pseudo, (outs), (ins),
223 "#SEH_EndPrologue", []>;
224 def SEH_Epilogue : I<0, Pseudo, (outs), (ins),
225 "#SEH_Epilogue", []>;
226}
227
228//===----------------------------------------------------------------------===//
229// Pseudo instructions used by segmented stacks.
230//
231
232// This is lowered into a RET instruction by MCInstLower. We need
233// this so that we don't have to have a MachineBasicBlock which ends
234// with a RET and also has successors.
235let isPseudo = 1 in {
236def MORESTACK_RET: I<0, Pseudo, (outs), (ins),
237 "", []>;
238
239// This instruction is lowered to a RET followed by a MOV. The two
240// instructions are not generated on a higher level since then the
241// verifier sees a MachineBasicBlock ending with a non-terminator.
242def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins),
243 "", []>;
244}
245
246//===----------------------------------------------------------------------===//
247// Alias Instructions
248//===----------------------------------------------------------------------===//
249
250// Alias instruction mapping movr0 to xor.
251// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
252let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
253 isPseudo = 1 in
254def MOV32r0 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
255 [(set GR32:$dst, 0)], IIC_ALU_NONMEM>, Sched<[WriteZero]>;
256
257// Other widths can also make use of the 32-bit xor, which may have a smaller
258// encoding and avoid partial register updates.
259def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>;
260def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>;
261def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)> {
262 let AddedComplexity = 20;
263}
264
265// Materialize i64 constant where top 32-bits are zero. This could theoretically
266// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
267// that would make it more difficult to rematerialize.
268let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1,
269 isCodeGenOnly = 1, hasSideEffects = 0 in
270def MOV32ri64 : Ii32<0xb8, AddRegFrm, (outs GR32:$dst), (ins i64i32imm:$src),
271 "", [], IIC_ALU_NONMEM>, Sched<[WriteALU]>;
272
273// This 64-bit pseudo-move can be used for both a 64-bit constant that is
Sanjay Patel85030aa2015-10-13 16:23:00 +0000274// actually the zero-extension of a 32-bit constant and for labels in the
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000275// x86-64 small code model.
Sanjay Patel85030aa2015-10-13 16:23:00 +0000276def mov64imm32 : ComplexPattern<i64, 1, "selectMOV64Imm32", [imm, X86Wrapper]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000277
278let AddedComplexity = 1 in
279def : Pat<(i64 mov64imm32:$src),
280 (SUBREG_TO_REG (i64 0), (MOV32ri64 mov64imm32:$src), sub_32bit)>;
281
282// Use sbb to materialize carry bit.
283let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteALU] in {
284// FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
285// However, Pat<> can't replicate the destination reg into the inputs of the
286// result.
287def SETB_C8r : I<0, Pseudo, (outs GR8:$dst), (ins), "",
288 [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
289def SETB_C16r : I<0, Pseudo, (outs GR16:$dst), (ins), "",
290 [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
291def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "",
292 [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
293def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "",
294 [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
295} // isCodeGenOnly
296
297
298def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
299 (SETB_C16r)>;
300def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
301 (SETB_C32r)>;
302def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
303 (SETB_C64r)>;
304
305def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
306 (SETB_C16r)>;
307def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
308 (SETB_C32r)>;
309def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
310 (SETB_C64r)>;
311
312// We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and
313// will be eliminated and that the sbb can be extended up to a wider type. When
314// this happens, it is great. However, if we are left with an 8-bit sbb and an
315// and, we might as well just match it as a setb.
316def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1),
317 (SETBr)>;
318
319// (add OP, SETB) -> (adc OP, 0)
320def : Pat<(add (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR8:$op),
321 (ADC8ri GR8:$op, 0)>;
322def : Pat<(add (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR32:$op),
323 (ADC32ri8 GR32:$op, 0)>;
324def : Pat<(add (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR64:$op),
325 (ADC64ri8 GR64:$op, 0)>;
326
327// (sub OP, SETB) -> (sbb OP, 0)
328def : Pat<(sub GR8:$op, (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
329 (SBB8ri GR8:$op, 0)>;
330def : Pat<(sub GR32:$op, (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
331 (SBB32ri8 GR32:$op, 0)>;
332def : Pat<(sub GR64:$op, (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
333 (SBB64ri8 GR64:$op, 0)>;
334
335// (sub OP, SETCC_CARRY) -> (adc OP, 0)
336def : Pat<(sub GR8:$op, (i8 (X86setcc_c X86_COND_B, EFLAGS))),
337 (ADC8ri GR8:$op, 0)>;
338def : Pat<(sub GR32:$op, (i32 (X86setcc_c X86_COND_B, EFLAGS))),
339 (ADC32ri8 GR32:$op, 0)>;
340def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))),
341 (ADC64ri8 GR64:$op, 0)>;
342
343//===----------------------------------------------------------------------===//
344// String Pseudo Instructions
345//
346let SchedRW = [WriteMicrocoded] in {
347let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
348def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
349 [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
350 Requires<[Not64BitMode]>;
351def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
352 [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
353 Requires<[Not64BitMode]>;
354def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
355 [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
356 Requires<[Not64BitMode]>;
357}
358
359let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in {
360def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
361 [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
362 Requires<[In64BitMode]>;
363def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
364 [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
365 Requires<[In64BitMode]>;
366def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
367 [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
368 Requires<[In64BitMode]>;
369def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
370 [(X86rep_movs i64)], IIC_REP_MOVS>, REP,
371 Requires<[In64BitMode]>;
372}
373
374// FIXME: Should use "(X86rep_stos AL)" as the pattern.
375let Defs = [ECX,EDI], isCodeGenOnly = 1 in {
376 let Uses = [AL,ECX,EDI] in
377 def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
378 [(X86rep_stos i8)], IIC_REP_STOS>, REP,
379 Requires<[Not64BitMode]>;
380 let Uses = [AX,ECX,EDI] in
381 def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
382 [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
383 Requires<[Not64BitMode]>;
384 let Uses = [EAX,ECX,EDI] in
385 def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
386 [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
387 Requires<[Not64BitMode]>;
388}
389
390let Defs = [RCX,RDI], isCodeGenOnly = 1 in {
391 let Uses = [AL,RCX,RDI] in
392 def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
393 [(X86rep_stos i8)], IIC_REP_STOS>, REP,
394 Requires<[In64BitMode]>;
395 let Uses = [AX,RCX,RDI] in
396 def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
397 [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
398 Requires<[In64BitMode]>;
399 let Uses = [RAX,RCX,RDI] in
400 def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
401 [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
402 Requires<[In64BitMode]>;
403
404 let Uses = [RAX,RCX,RDI] in
405 def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
406 [(X86rep_stos i64)], IIC_REP_STOS>, REP,
407 Requires<[In64BitMode]>;
408}
409} // SchedRW
410
411//===----------------------------------------------------------------------===//
412// Thread Local Storage Instructions
413//
414
415// ELF TLS Support
416// All calls clobber the non-callee saved registers. ESP is marked as
417// a use to prevent stack-pointer assignments that appear immediately
418// before calls from potentially appearing dead.
419let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
420 ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
421 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
422 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
423 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
424 Uses = [ESP] in {
425def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
426 "# TLS_addr32",
427 [(X86tlsaddr tls32addr:$sym)]>,
428 Requires<[Not64BitMode]>;
429def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
430 "# TLS_base_addr32",
431 [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
432 Requires<[Not64BitMode]>;
433}
434
435// All calls clobber the non-callee saved registers. RSP is marked as
436// a use to prevent stack-pointer assignments that appear immediately
437// before calls from potentially appearing dead.
438let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
439 FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
440 ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
441 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
442 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
443 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
444 Uses = [RSP] in {
445def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
446 "# TLS_addr64",
447 [(X86tlsaddr tls64addr:$sym)]>,
448 Requires<[In64BitMode]>;
449def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
450 "# TLS_base_addr64",
451 [(X86tlsbaseaddr tls64baseaddr:$sym)]>,
452 Requires<[In64BitMode]>;
453}
454
455// Darwin TLS Support
456// For i386, the address of the thunk is passed on the stack, on return the
457// address of the variable is in %eax. %ecx is trashed during the function
458// call. All other registers are preserved.
459let Defs = [EAX, ECX, EFLAGS],
460 Uses = [ESP],
461 usesCustomInserter = 1 in
462def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
463 "# TLSCall_32",
464 [(X86TLSCall addr:$sym)]>,
465 Requires<[Not64BitMode]>;
466
467// For x86_64, the address of the thunk is passed in %rdi, on return
468// the address of the variable is in %rax. All other registers are preserved.
469let Defs = [RAX, EFLAGS],
470 Uses = [RSP, RDI],
471 usesCustomInserter = 1 in
472def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
473 "# TLSCall_64",
474 [(X86TLSCall addr:$sym)]>,
475 Requires<[In64BitMode]>;
476
477
478//===----------------------------------------------------------------------===//
479// Conditional Move Pseudo Instructions
480
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000481// CMOV* - Used to implement the SELECT DAG operation. Expanded after
482// instruction selection into a branch sequence.
483multiclass CMOVrr_PSEUDO<RegisterClass RC, ValueType VT> {
484 def CMOV#NAME : I<0, Pseudo,
485 (outs RC:$dst), (ins RC:$t, RC:$f, i8imm:$cond),
486 "#CMOV_"#NAME#" PSEUDO!",
487 [(set RC:$dst, (VT (X86cmov RC:$t, RC:$f, imm:$cond,
488 EFLAGS)))]>;
489}
490
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000491let usesCustomInserter = 1, Uses = [EFLAGS] in {
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000492 // X86 doesn't have 8-bit conditional moves. Use a customInserter to
493 // emit control flow. An alternative to this is to mark i8 SELECT as Promote,
494 // however that requires promoting the operands, and can induce additional
495 // i8 register pressure.
496 defm _GR8 : CMOVrr_PSEUDO<GR8, i8>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000497
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000498 let Predicates = [NoCMov] in {
499 defm _GR32 : CMOVrr_PSEUDO<GR32, i32>;
500 defm _GR16 : CMOVrr_PSEUDO<GR16, i16>;
501 } // Predicates = [NoCMov]
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000502
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000503 // fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
504 // SSE1/SSE2.
505 let Predicates = [FPStackf32] in
506 defm _RFP32 : CMOVrr_PSEUDO<RFP32, f32>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000507
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000508 let Predicates = [FPStackf64] in
509 defm _RFP64 : CMOVrr_PSEUDO<RFP64, f64>;
510
511 defm _RFP80 : CMOVrr_PSEUDO<RFP80, f80>;
512
513 defm _FR32 : CMOVrr_PSEUDO<FR32, f32>;
514 defm _FR64 : CMOVrr_PSEUDO<FR64, f64>;
515 defm _V4F32 : CMOVrr_PSEUDO<VR128, v4f32>;
516 defm _V2F64 : CMOVrr_PSEUDO<VR128, v2f64>;
517 defm _V2I64 : CMOVrr_PSEUDO<VR128, v2i64>;
518 defm _V8F32 : CMOVrr_PSEUDO<VR256, v8f32>;
519 defm _V4F64 : CMOVrr_PSEUDO<VR256, v4f64>;
520 defm _V4I64 : CMOVrr_PSEUDO<VR256, v4i64>;
521 defm _V8I64 : CMOVrr_PSEUDO<VR512, v8i64>;
522 defm _V8F64 : CMOVrr_PSEUDO<VR512, v8f64>;
523 defm _V16F32 : CMOVrr_PSEUDO<VR512, v16f32>;
Elena Demikhovskyc1ac5d72015-05-12 09:36:52 +0000524 defm _V8I1 : CMOVrr_PSEUDO<VK8, v8i1>;
525 defm _V16I1 : CMOVrr_PSEUDO<VK16, v16i1>;
526 defm _V32I1 : CMOVrr_PSEUDO<VK32, v32i1>;
527 defm _V64I1 : CMOVrr_PSEUDO<VK64, v64i1>;
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000528} // usesCustomInserter = 1, Uses = [EFLAGS]
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000529
530//===----------------------------------------------------------------------===//
531// Normal-Instructions-With-Lock-Prefix Pseudo Instructions
532//===----------------------------------------------------------------------===//
533
534// FIXME: Use normal instructions and add lock prefix dynamically.
535
536// Memory barriers
537
538// TODO: Get this to fold the constant into the instruction.
539let isCodeGenOnly = 1, Defs = [EFLAGS] in
540def OR32mrLocked : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero),
541 "or{l}\t{$zero, $dst|$dst, $zero}",
542 [], IIC_ALU_MEM>, Requires<[Not64BitMode]>, LOCK,
543 Sched<[WriteALULd, WriteRMW]>;
544
545let hasSideEffects = 1 in
546def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
547 "#MEMBARRIER",
548 [(X86MemBarrier)]>, Sched<[WriteLoad]>;
549
550// RegOpc corresponds to the mr version of the instruction
551// ImmOpc corresponds to the mi version of the instruction
552// ImmOpc8 corresponds to the mi8 version of the instruction
553// ImmMod corresponds to the instruction format of the mi and mi8 versions
554multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8,
555 Format ImmMod, string mnemonic> {
556let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
557 SchedRW = [WriteALULd, WriteRMW] in {
558
559def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
560 RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 },
561 MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
562 !strconcat(mnemonic, "{b}\t",
563 "{$src2, $dst|$dst, $src2}"),
564 [], IIC_ALU_NONMEM>, LOCK;
565def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
566 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
567 MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
568 !strconcat(mnemonic, "{w}\t",
569 "{$src2, $dst|$dst, $src2}"),
570 [], IIC_ALU_NONMEM>, OpSize16, LOCK;
571def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
572 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
573 MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
574 !strconcat(mnemonic, "{l}\t",
575 "{$src2, $dst|$dst, $src2}"),
576 [], IIC_ALU_NONMEM>, OpSize32, LOCK;
577def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
578 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
579 MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
580 !strconcat(mnemonic, "{q}\t",
581 "{$src2, $dst|$dst, $src2}"),
582 [], IIC_ALU_NONMEM>, LOCK;
583
584def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
585 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 },
586 ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2),
587 !strconcat(mnemonic, "{b}\t",
588 "{$src2, $dst|$dst, $src2}"),
589 [], IIC_ALU_MEM>, LOCK;
590
591def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
592 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
593 ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2),
594 !strconcat(mnemonic, "{w}\t",
595 "{$src2, $dst|$dst, $src2}"),
596 [], IIC_ALU_MEM>, OpSize16, LOCK;
597
598def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
599 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
600 ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2),
601 !strconcat(mnemonic, "{l}\t",
602 "{$src2, $dst|$dst, $src2}"),
603 [], IIC_ALU_MEM>, OpSize32, LOCK;
604
605def NAME#64mi32 : RIi32S<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
606 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
607 ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
608 !strconcat(mnemonic, "{q}\t",
609 "{$src2, $dst|$dst, $src2}"),
610 [], IIC_ALU_MEM>, LOCK;
611
612def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
613 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
614 ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2),
615 !strconcat(mnemonic, "{w}\t",
616 "{$src2, $dst|$dst, $src2}"),
617 [], IIC_ALU_MEM>, OpSize16, LOCK;
618def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
619 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
620 ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2),
621 !strconcat(mnemonic, "{l}\t",
622 "{$src2, $dst|$dst, $src2}"),
623 [], IIC_ALU_MEM>, OpSize32, LOCK;
624def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
625 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
626 ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2),
627 !strconcat(mnemonic, "{q}\t",
628 "{$src2, $dst|$dst, $src2}"),
629 [], IIC_ALU_MEM>, LOCK;
630
631}
632
633}
634
635defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, "add">;
636defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, "sub">;
637defm LOCK_OR : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, "or">;
638defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, "and">;
639defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, "xor">;
640
641// Optimized codegen when the non-memory output is not used.
642multiclass LOCK_ArithUnOp<bits<8> Opc8, bits<8> Opc, Format Form,
643 string mnemonic> {
644let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
645 SchedRW = [WriteALULd, WriteRMW] in {
646
647def NAME#8m : I<Opc8, Form, (outs), (ins i8mem :$dst),
648 !strconcat(mnemonic, "{b}\t$dst"),
649 [], IIC_UNARY_MEM>, LOCK;
650def NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst),
651 !strconcat(mnemonic, "{w}\t$dst"),
652 [], IIC_UNARY_MEM>, OpSize16, LOCK;
653def NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst),
654 !strconcat(mnemonic, "{l}\t$dst"),
655 [], IIC_UNARY_MEM>, OpSize32, LOCK;
656def NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst),
657 !strconcat(mnemonic, "{q}\t$dst"),
658 [], IIC_UNARY_MEM>, LOCK;
659}
660}
661
662defm LOCK_INC : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m, "inc">;
663defm LOCK_DEC : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, "dec">;
664
665// Atomic compare and swap.
666multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic,
667 SDPatternOperator frag, X86MemOperand x86memop,
668 InstrItinClass itin> {
669let isCodeGenOnly = 1 in {
670 def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr),
671 !strconcat(mnemonic, "\t$ptr"),
672 [(frag addr:$ptr)], itin>, TB, LOCK;
673}
674}
675
676multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form,
677 string mnemonic, SDPatternOperator frag,
678 InstrItinClass itin8, InstrItinClass itin> {
679let isCodeGenOnly = 1, SchedRW = [WriteALULd, WriteRMW] in {
680 let Defs = [AL, EFLAGS], Uses = [AL] in
681 def NAME#8 : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap),
682 !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"),
683 [(frag addr:$ptr, GR8:$swap, 1)], itin8>, TB, LOCK;
684 let Defs = [AX, EFLAGS], Uses = [AX] in
685 def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap),
686 !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"),
687 [(frag addr:$ptr, GR16:$swap, 2)], itin>, TB, OpSize16, LOCK;
688 let Defs = [EAX, EFLAGS], Uses = [EAX] in
689 def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap),
690 !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"),
691 [(frag addr:$ptr, GR32:$swap, 4)], itin>, TB, OpSize32, LOCK;
692 let Defs = [RAX, EFLAGS], Uses = [RAX] in
693 def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap),
694 !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"),
695 [(frag addr:$ptr, GR64:$swap, 8)], itin>, TB, LOCK;
696}
697}
698
699let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX],
700 SchedRW = [WriteALULd, WriteRMW] in {
701defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b",
702 X86cas8, i64mem,
703 IIC_CMPX_LOCK_8B>;
704}
705
706let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX],
707 Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW] in {
708defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b",
709 X86cas16, i128mem,
710 IIC_CMPX_LOCK_16B>, REX_W;
711}
712
713defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg",
714 X86cas, IIC_CMPX_LOCK_8, IIC_CMPX_LOCK>;
715
716// Atomic exchange and add
717multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic,
718 string frag,
719 InstrItinClass itin8, InstrItinClass itin> {
720 let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1,
721 SchedRW = [WriteALULd, WriteRMW] in {
722 def NAME#8 : I<opc8, MRMSrcMem, (outs GR8:$dst),
723 (ins GR8:$val, i8mem:$ptr),
724 !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"),
725 [(set GR8:$dst,
726 (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))],
727 itin8>;
728 def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst),
729 (ins GR16:$val, i16mem:$ptr),
730 !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"),
731 [(set
732 GR16:$dst,
733 (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))],
734 itin>, OpSize16;
735 def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst),
736 (ins GR32:$val, i32mem:$ptr),
737 !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"),
738 [(set
739 GR32:$dst,
740 (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))],
741 itin>, OpSize32;
742 def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst),
743 (ins GR64:$val, i64mem:$ptr),
744 !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"),
745 [(set
746 GR64:$dst,
747 (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))],
748 itin>;
749 }
750}
751
752defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add",
753 IIC_XADD_LOCK_MEM8, IIC_XADD_LOCK_MEM>,
754 TB, LOCK;
755
756/* The following multiclass tries to make sure that in code like
757 * x.store (immediate op x.load(acquire), release)
JF Bastien86620832015-08-05 21:04:59 +0000758 * and
759 * x.store (register op x.load(acquire), release)
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000760 * an operation directly on memory is generated instead of wasting a register.
761 * It is not automatic as atomic_store/load are only lowered to MOV instructions
762 * extremely late to prevent them from being accidentally reordered in the backend
763 * (see below the RELEASE_MOV* / ACQUIRE_MOV* pseudo-instructions)
764 */
JF Bastien0f8a99b2015-08-05 23:15:37 +0000765multiclass RELEASE_BINOP_MI<SDNode op> {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000766 def NAME#8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000767 "#BINOP "#NAME#"8mi PSEUDO!",
JF Bastien0f8a99b2015-08-05 23:15:37 +0000768 [(atomic_store_8 addr:$dst, (op
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000769 (atomic_load_8 addr:$dst), (i8 imm:$src)))]>;
JF Bastien86620832015-08-05 21:04:59 +0000770 def NAME#8mr : I<0, Pseudo, (outs), (ins i8mem:$dst, GR8:$src),
771 "#BINOP "#NAME#"8mr PSEUDO!",
JF Bastien0f8a99b2015-08-05 23:15:37 +0000772 [(atomic_store_8 addr:$dst, (op
JF Bastien86620832015-08-05 21:04:59 +0000773 (atomic_load_8 addr:$dst), GR8:$src))]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000774 // NAME#16 is not generated as 16-bit arithmetic instructions are considered
775 // costly and avoided as far as possible by this backend anyway
776 def NAME#32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000777 "#BINOP "#NAME#"32mi PSEUDO!",
JF Bastien0f8a99b2015-08-05 23:15:37 +0000778 [(atomic_store_32 addr:$dst, (op
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000779 (atomic_load_32 addr:$dst), (i32 imm:$src)))]>;
JF Bastien86620832015-08-05 21:04:59 +0000780 def NAME#32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
781 "#BINOP "#NAME#"32mr PSEUDO!",
JF Bastien0f8a99b2015-08-05 23:15:37 +0000782 [(atomic_store_32 addr:$dst, (op
JF Bastien86620832015-08-05 21:04:59 +0000783 (atomic_load_32 addr:$dst), GR32:$src))]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000784 def NAME#64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000785 "#BINOP "#NAME#"64mi32 PSEUDO!",
JF Bastien0f8a99b2015-08-05 23:15:37 +0000786 [(atomic_store_64 addr:$dst, (op
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000787 (atomic_load_64 addr:$dst), (i64immSExt32:$src)))]>;
JF Bastien86620832015-08-05 21:04:59 +0000788 def NAME#64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
789 "#BINOP "#NAME#"64mr PSEUDO!",
JF Bastien0f8a99b2015-08-05 23:15:37 +0000790 [(atomic_store_64 addr:$dst, (op
JF Bastien86620832015-08-05 21:04:59 +0000791 (atomic_load_64 addr:$dst), GR64:$src))]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000792}
JF Bastien986ed682015-10-13 00:28:47 +0000793let Defs = [EFLAGS] in {
794 defm RELEASE_ADD : RELEASE_BINOP_MI<add>;
795 defm RELEASE_AND : RELEASE_BINOP_MI<and>;
796 defm RELEASE_OR : RELEASE_BINOP_MI<or>;
797 defm RELEASE_XOR : RELEASE_BINOP_MI<xor>;
798 // Note: we don't deal with sub, because substractions of constants are
799 // optimized into additions before this code can run.
800}
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000801
JF Bastien86620832015-08-05 21:04:59 +0000802// Same as above, but for floating-point.
803// FIXME: imm version.
804// FIXME: Version that doesn't clobber $src, using AVX's VADDSS.
805// FIXME: This could also handle SIMD operations with *ps and *pd instructions.
806let usesCustomInserter = 1 in {
JF Bastien0f8a99b2015-08-05 23:15:37 +0000807multiclass RELEASE_FP_BINOP_MI<SDNode op> {
JF Bastien86620832015-08-05 21:04:59 +0000808 def NAME#32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, FR32:$src),
809 "#BINOP "#NAME#"32mr PSEUDO!",
810 [(atomic_store_32 addr:$dst,
JF Bastien0f8a99b2015-08-05 23:15:37 +0000811 (i32 (bitconvert (op
JF Bastien86620832015-08-05 21:04:59 +0000812 (f32 (bitconvert (i32 (atomic_load_32 addr:$dst)))),
813 FR32:$src))))]>, Requires<[HasSSE1]>;
814 def NAME#64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, FR64:$src),
815 "#BINOP "#NAME#"64mr PSEUDO!",
816 [(atomic_store_64 addr:$dst,
JF Bastien0f8a99b2015-08-05 23:15:37 +0000817 (i64 (bitconvert (op
JF Bastien86620832015-08-05 21:04:59 +0000818 (f64 (bitconvert (i64 (atomic_load_64 addr:$dst)))),
819 FR64:$src))))]>, Requires<[HasSSE2]>;
820}
JF Bastien0f8a99b2015-08-05 23:15:37 +0000821defm RELEASE_FADD : RELEASE_FP_BINOP_MI<fadd>;
JF Bastien86620832015-08-05 21:04:59 +0000822// FIXME: Add fsub, fmul, fdiv, ...
823}
824
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000825multiclass RELEASE_UNOP<dag dag8, dag dag16, dag dag32, dag dag64> {
826 def NAME#8m : I<0, Pseudo, (outs), (ins i8mem:$dst),
JF Bastien86620832015-08-05 21:04:59 +0000827 "#UNOP "#NAME#"8m PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000828 [(atomic_store_8 addr:$dst, dag8)]>;
829 def NAME#16m : I<0, Pseudo, (outs), (ins i16mem:$dst),
JF Bastien86620832015-08-05 21:04:59 +0000830 "#UNOP "#NAME#"16m PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000831 [(atomic_store_16 addr:$dst, dag16)]>;
832 def NAME#32m : I<0, Pseudo, (outs), (ins i32mem:$dst),
JF Bastien86620832015-08-05 21:04:59 +0000833 "#UNOP "#NAME#"32m PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000834 [(atomic_store_32 addr:$dst, dag32)]>;
835 def NAME#64m : I<0, Pseudo, (outs), (ins i64mem:$dst),
JF Bastien86620832015-08-05 21:04:59 +0000836 "#UNOP "#NAME#"64m PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000837 [(atomic_store_64 addr:$dst, dag64)]>;
838}
839
JF Bastien2cdd5e42015-10-15 18:24:52 +0000840let Defs = [EFLAGS] in {
841 defm RELEASE_INC : RELEASE_UNOP<
842 (add (atomic_load_8 addr:$dst), (i8 1)),
843 (add (atomic_load_16 addr:$dst), (i16 1)),
844 (add (atomic_load_32 addr:$dst), (i32 1)),
845 (add (atomic_load_64 addr:$dst), (i64 1))>, Requires<[NotSlowIncDec]>;
846 defm RELEASE_DEC : RELEASE_UNOP<
847 (add (atomic_load_8 addr:$dst), (i8 -1)),
848 (add (atomic_load_16 addr:$dst), (i16 -1)),
849 (add (atomic_load_32 addr:$dst), (i32 -1)),
850 (add (atomic_load_64 addr:$dst), (i64 -1))>, Requires<[NotSlowIncDec]>;
851}
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000852/*
853TODO: These don't work because the type inference of TableGen fails.
854TODO: find a way to fix it.
JF Bastien2cdd5e42015-10-15 18:24:52 +0000855let Defs = [EFLAGS] in {
856 defm RELEASE_NEG : RELEASE_UNOP<
857 (ineg (atomic_load_8 addr:$dst)),
858 (ineg (atomic_load_16 addr:$dst)),
859 (ineg (atomic_load_32 addr:$dst)),
860 (ineg (atomic_load_64 addr:$dst))>;
861}
862// NOT doesn't set flags.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000863defm RELEASE_NOT : RELEASE_UNOP<
864 (not (atomic_load_8 addr:$dst)),
865 (not (atomic_load_16 addr:$dst)),
866 (not (atomic_load_32 addr:$dst)),
867 (not (atomic_load_64 addr:$dst))>;
868*/
869
870def RELEASE_MOV8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000871 "#RELEASE_MOV8mi PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000872 [(atomic_store_8 addr:$dst, (i8 imm:$src))]>;
873def RELEASE_MOV16mi : I<0, Pseudo, (outs), (ins i16mem:$dst, i16imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000874 "#RELEASE_MOV16mi PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000875 [(atomic_store_16 addr:$dst, (i16 imm:$src))]>;
876def RELEASE_MOV32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000877 "#RELEASE_MOV32mi PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000878 [(atomic_store_32 addr:$dst, (i32 imm:$src))]>;
879def RELEASE_MOV64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000880 "#RELEASE_MOV64mi32 PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000881 [(atomic_store_64 addr:$dst, i64immSExt32:$src)]>;
882
883def RELEASE_MOV8mr : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src),
JF Bastien86620832015-08-05 21:04:59 +0000884 "#RELEASE_MOV8mr PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000885 [(atomic_store_8 addr:$dst, GR8 :$src)]>;
886def RELEASE_MOV16mr : I<0, Pseudo, (outs), (ins i16mem:$dst, GR16:$src),
JF Bastien86620832015-08-05 21:04:59 +0000887 "#RELEASE_MOV16mr PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000888 [(atomic_store_16 addr:$dst, GR16:$src)]>;
889def RELEASE_MOV32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
JF Bastien86620832015-08-05 21:04:59 +0000890 "#RELEASE_MOV32mr PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000891 [(atomic_store_32 addr:$dst, GR32:$src)]>;
892def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
JF Bastien86620832015-08-05 21:04:59 +0000893 "#RELEASE_MOV64mr PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000894 [(atomic_store_64 addr:$dst, GR64:$src)]>;
895
896def ACQUIRE_MOV8rm : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src),
JF Bastien86620832015-08-05 21:04:59 +0000897 "#ACQUIRE_MOV8rm PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000898 [(set GR8:$dst, (atomic_load_8 addr:$src))]>;
899def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src),
JF Bastien86620832015-08-05 21:04:59 +0000900 "#ACQUIRE_MOV16rm PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000901 [(set GR16:$dst, (atomic_load_16 addr:$src))]>;
902def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src),
JF Bastien86620832015-08-05 21:04:59 +0000903 "#ACQUIRE_MOV32rm PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000904 [(set GR32:$dst, (atomic_load_32 addr:$src))]>;
905def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src),
JF Bastien86620832015-08-05 21:04:59 +0000906 "#ACQUIRE_MOV64rm PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000907 [(set GR64:$dst, (atomic_load_64 addr:$src))]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000908
909//===----------------------------------------------------------------------===//
910// DAG Pattern Matching Rules
911//===----------------------------------------------------------------------===//
912
913// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
914def : Pat<(i32 (X86Wrapper tconstpool :$dst)), (MOV32ri tconstpool :$dst)>;
915def : Pat<(i32 (X86Wrapper tjumptable :$dst)), (MOV32ri tjumptable :$dst)>;
916def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>;
917def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>;
918def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
Rafael Espindola36b718f2015-06-22 17:46:53 +0000919def : Pat<(i32 (X86Wrapper mcsym:$dst)), (MOV32ri mcsym:$dst)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000920def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>;
921
922def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)),
923 (ADD32ri GR32:$src1, tconstpool:$src2)>;
924def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)),
925 (ADD32ri GR32:$src1, tjumptable:$src2)>;
926def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)),
927 (ADD32ri GR32:$src1, tglobaladdr:$src2)>;
928def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)),
929 (ADD32ri GR32:$src1, texternalsym:$src2)>;
Rafael Espindola36b718f2015-06-22 17:46:53 +0000930def : Pat<(add GR32:$src1, (X86Wrapper mcsym:$src2)),
931 (ADD32ri GR32:$src1, mcsym:$src2)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000932def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)),
933 (ADD32ri GR32:$src1, tblockaddress:$src2)>;
934
935def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst),
936 (MOV32mi addr:$dst, tglobaladdr:$src)>;
937def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst),
938 (MOV32mi addr:$dst, texternalsym:$src)>;
Rafael Espindola36b718f2015-06-22 17:46:53 +0000939def : Pat<(store (i32 (X86Wrapper mcsym:$src)), addr:$dst),
940 (MOV32mi addr:$dst, mcsym:$src)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000941def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst),
942 (MOV32mi addr:$dst, tblockaddress:$src)>;
943
944// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small
945// code model mode, should use 'movabs'. FIXME: This is really a hack, the
946// 'movabs' predicate should handle this sort of thing.
947def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
948 (MOV64ri tconstpool :$dst)>, Requires<[FarData]>;
949def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
950 (MOV64ri tjumptable :$dst)>, Requires<[FarData]>;
951def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
952 (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>;
953def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
954 (MOV64ri texternalsym:$dst)>, Requires<[FarData]>;
Rafael Espindola36b718f2015-06-22 17:46:53 +0000955def : Pat<(i64 (X86Wrapper mcsym:$dst)),
956 (MOV64ri mcsym:$dst)>, Requires<[FarData]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000957def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
958 (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>;
959
960// In kernel code model, we can get the address of a label
961// into a register with 'movq'. FIXME: This is a hack, the 'imm' predicate of
962// the MOV64ri32 should accept these.
963def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
964 (MOV64ri32 tconstpool :$dst)>, Requires<[KernelCode]>;
965def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
966 (MOV64ri32 tjumptable :$dst)>, Requires<[KernelCode]>;
967def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
968 (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
969def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
970 (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
Rafael Espindola36b718f2015-06-22 17:46:53 +0000971def : Pat<(i64 (X86Wrapper mcsym:$dst)),
972 (MOV64ri32 mcsym:$dst)>, Requires<[KernelCode]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000973def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
974 (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
975
976// If we have small model and -static mode, it is safe to store global addresses
977// directly as immediates. FIXME: This is really a hack, the 'imm' predicate
978// for MOV64mi32 should handle this sort of thing.
979def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
980 (MOV64mi32 addr:$dst, tconstpool:$src)>,
981 Requires<[NearData, IsStatic]>;
982def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
983 (MOV64mi32 addr:$dst, tjumptable:$src)>,
984 Requires<[NearData, IsStatic]>;
985def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
986 (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
987 Requires<[NearData, IsStatic]>;
988def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
989 (MOV64mi32 addr:$dst, texternalsym:$src)>,
990 Requires<[NearData, IsStatic]>;
Rafael Espindola36b718f2015-06-22 17:46:53 +0000991def : Pat<(store (i64 (X86Wrapper mcsym:$src)), addr:$dst),
992 (MOV64mi32 addr:$dst, mcsym:$src)>,
993 Requires<[NearData, IsStatic]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000994def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
995 (MOV64mi32 addr:$dst, tblockaddress:$src)>,
996 Requires<[NearData, IsStatic]>;
997
Rafael Espindola36b718f2015-06-22 17:46:53 +0000998def : Pat<(i32 (X86RecoverFrameAlloc mcsym:$dst)), (MOV32ri mcsym:$dst)>;
999def : Pat<(i64 (X86RecoverFrameAlloc mcsym:$dst)), (MOV64ri mcsym:$dst)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001000
1001// Calls
1002
1003// tls has some funny stuff here...
1004// This corresponds to movabs $foo@tpoff, %rax
1005def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
1006 (MOV64ri32 tglobaltlsaddr :$dst)>;
1007// This corresponds to add $foo@tpoff, %rax
1008def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
1009 (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
1010
1011
1012// Direct PC relative function call for small code model. 32-bit displacement
1013// sign extended to 64-bit.
1014def : Pat<(X86call (i64 tglobaladdr:$dst)),
1015 (CALL64pcrel32 tglobaladdr:$dst)>;
1016def : Pat<(X86call (i64 texternalsym:$dst)),
1017 (CALL64pcrel32 texternalsym:$dst)>;
1018
1019// Tailcall stuff. The TCRETURN instructions execute after the epilog, so they
1020// can never use callee-saved registers. That is the purpose of the GR64_TC
1021// register classes.
1022//
1023// The only volatile register that is never used by the calling convention is
1024// %r11. This happens when calling a vararg function with 6 arguments.
1025//
1026// Match an X86tcret that uses less than 7 volatile registers.
1027def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off),
1028 (X86tcret node:$ptr, node:$off), [{
1029 // X86tcret args: (*chain, ptr, imm, regs..., glue)
1030 unsigned NumRegs = 0;
1031 for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i)
1032 if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6)
1033 return false;
1034 return true;
1035}]>;
1036
1037def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1038 (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>,
1039 Requires<[Not64BitMode]>;
1040
1041// FIXME: This is disabled for 32-bit PIC mode because the global base
1042// register which is part of the address mode may be assigned a
1043// callee-saved register.
1044def : Pat<(X86tcret (load addr:$dst), imm:$off),
1045 (TCRETURNmi addr:$dst, imm:$off)>,
1046 Requires<[Not64BitMode, IsNotPIC]>;
1047
1048def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
1049 (TCRETURNdi tglobaladdr:$dst, imm:$off)>,
1050 Requires<[NotLP64]>;
1051
1052def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
1053 (TCRETURNdi texternalsym:$dst, imm:$off)>,
1054 Requires<[NotLP64]>;
1055
1056def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1057 (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>,
1058 Requires<[In64BitMode]>;
1059
1060// Don't fold loads into X86tcret requiring more than 6 regs.
1061// There wouldn't be enough scratch registers for base+index.
1062def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off),
1063 (TCRETURNmi64 addr:$dst, imm:$off)>,
1064 Requires<[In64BitMode]>;
1065
1066def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
1067 (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
1068 Requires<[IsLP64]>;
1069
1070def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
1071 (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
1072 Requires<[IsLP64]>;
1073
1074// Normal calls, with various flavors of addresses.
1075def : Pat<(X86call (i32 tglobaladdr:$dst)),
1076 (CALLpcrel32 tglobaladdr:$dst)>;
1077def : Pat<(X86call (i32 texternalsym:$dst)),
1078 (CALLpcrel32 texternalsym:$dst)>;
1079def : Pat<(X86call (i32 imm:$dst)),
1080 (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
1081
1082// Comparisons.
1083
1084// TEST R,R is smaller than CMP R,0
1085def : Pat<(X86cmp GR8:$src1, 0),
1086 (TEST8rr GR8:$src1, GR8:$src1)>;
1087def : Pat<(X86cmp GR16:$src1, 0),
1088 (TEST16rr GR16:$src1, GR16:$src1)>;
1089def : Pat<(X86cmp GR32:$src1, 0),
1090 (TEST32rr GR32:$src1, GR32:$src1)>;
1091def : Pat<(X86cmp GR64:$src1, 0),
1092 (TEST64rr GR64:$src1, GR64:$src1)>;
1093
1094// Conditional moves with folded loads with operands swapped and conditions
1095// inverted.
1096multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32,
1097 Instruction Inst64> {
1098 let Predicates = [HasCMov] in {
1099 def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS),
1100 (Inst16 GR16:$src2, addr:$src1)>;
1101 def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS),
1102 (Inst32 GR32:$src2, addr:$src1)>;
1103 def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS),
1104 (Inst64 GR64:$src2, addr:$src1)>;
1105 }
1106}
1107
1108defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>;
1109defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>;
1110defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>;
1111defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>;
1112defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>;
1113defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>;
1114defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>;
1115defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>;
1116defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>;
1117defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>;
1118defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>;
1119defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>;
1120defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>;
1121defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>;
1122defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>;
1123defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>;
1124
1125// zextload bool -> zextload byte
Elena Demikhovskyf61727d2015-05-20 14:32:03 +00001126def : Pat<(zextloadi8i1 addr:$src), (AND8ri (MOV8rm addr:$src), (i8 1))>;
Rafael Espindola494a3812015-07-17 00:57:52 +00001127def : Pat<(zextloadi16i1 addr:$src), (AND16ri8 (MOVZX16rm8 addr:$src), (i16 1))>;
1128def : Pat<(zextloadi32i1 addr:$src), (AND32ri8 (MOVZX32rm8 addr:$src), (i32 1))>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001129def : Pat<(zextloadi64i1 addr:$src),
Elena Demikhovskyf61727d2015-05-20 14:32:03 +00001130 (SUBREG_TO_REG (i64 0),
Rafael Espindola494a3812015-07-17 00:57:52 +00001131 (AND32ri8 (MOVZX32rm8 addr:$src), (i32 1)), sub_32bit)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001132
1133// extload bool -> extload byte
1134// When extloading from 16-bit and smaller memory locations into 64-bit
1135// registers, use zero-extending loads so that the entire 64-bit register is
1136// defined, avoiding partial-register updates.
1137
1138def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>;
1139def : Pat<(extloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
1140def : Pat<(extloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
1141def : Pat<(extloadi16i8 addr:$src), (MOVZX16rm8 addr:$src)>;
1142def : Pat<(extloadi32i8 addr:$src), (MOVZX32rm8 addr:$src)>;
1143def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
1144
1145// For other extloads, use subregs, since the high contents of the register are
1146// defined after an extload.
1147def : Pat<(extloadi64i1 addr:$src),
1148 (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1149def : Pat<(extloadi64i8 addr:$src),
1150 (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1151def : Pat<(extloadi64i16 addr:$src),
1152 (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>;
1153def : Pat<(extloadi64i32 addr:$src),
1154 (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>;
1155
1156// anyext. Define these to do an explicit zero-extend to
1157// avoid partial-register updates.
1158def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG
1159 (MOVZX32rr8 GR8 :$src), sub_16bit)>;
1160def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8 GR8 :$src)>;
1161
1162// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
1163def : Pat<(i32 (anyext GR16:$src)),
1164 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
1165
1166def : Pat<(i64 (anyext GR8 :$src)),
1167 (SUBREG_TO_REG (i64 0), (MOVZX32rr8 GR8 :$src), sub_32bit)>;
1168def : Pat<(i64 (anyext GR16:$src)),
1169 (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>;
1170def : Pat<(i64 (anyext GR32:$src)),
1171 (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1172
1173
1174// Any instruction that defines a 32-bit result leaves the high half of the
1175// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
1176// be copying from a truncate. And x86's cmov doesn't do anything if the
1177// condition is false. But any other 32-bit operation will zero-extend
1178// up to 64 bits.
1179def def32 : PatLeaf<(i32 GR32:$src), [{
1180 return N->getOpcode() != ISD::TRUNCATE &&
1181 N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
1182 N->getOpcode() != ISD::CopyFromReg &&
1183 N->getOpcode() != ISD::AssertSext &&
1184 N->getOpcode() != X86ISD::CMOV;
1185}]>;
1186
1187// In the case of a 32-bit def that is known to implicitly zero-extend,
1188// we can use a SUBREG_TO_REG.
1189def : Pat<(i64 (zext def32:$src)),
1190 (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1191
1192//===----------------------------------------------------------------------===//
1193// Pattern match OR as ADD
1194//===----------------------------------------------------------------------===//
1195
1196// If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
1197// 3-addressified into an LEA instruction to avoid copies. However, we also
1198// want to finally emit these instructions as an or at the end of the code
1199// generator to make the generated code easier to read. To do this, we select
1200// into "disjoint bits" pseudo ops.
1201
1202// Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
1203def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
1204 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1205 return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
1206
1207 APInt KnownZero0, KnownOne0;
1208 CurDAG->computeKnownBits(N->getOperand(0), KnownZero0, KnownOne0, 0);
1209 APInt KnownZero1, KnownOne1;
1210 CurDAG->computeKnownBits(N->getOperand(1), KnownZero1, KnownOne1, 0);
1211 return (~KnownZero0 & ~KnownZero1) == 0;
1212}]>;
1213
1214
1215// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
1216// Try this before the selecting to OR.
1217let AddedComplexity = 5, SchedRW = [WriteALU] in {
1218
1219let isConvertibleToThreeAddress = 1,
1220 Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
1221let isCommutable = 1 in {
1222def ADD16rr_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
1223 "", // orw/addw REG, REG
1224 [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
1225def ADD32rr_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
1226 "", // orl/addl REG, REG
1227 [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
1228def ADD64rr_DB : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1229 "", // orq/addq REG, REG
1230 [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
1231} // isCommutable
1232
1233// NOTE: These are order specific, we want the ri8 forms to be listed
1234// first so that they are slightly preferred to the ri forms.
1235
1236def ADD16ri8_DB : I<0, Pseudo,
1237 (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
1238 "", // orw/addw REG, imm8
1239 [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
1240def ADD16ri_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
1241 "", // orw/addw REG, imm
1242 [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;
1243
1244def ADD32ri8_DB : I<0, Pseudo,
1245 (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
1246 "", // orl/addl REG, imm8
1247 [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
1248def ADD32ri_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
1249 "", // orl/addl REG, imm
1250 [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;
1251
1252
1253def ADD64ri8_DB : I<0, Pseudo,
1254 (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
1255 "", // orq/addq REG, imm8
1256 [(set GR64:$dst, (or_is_add GR64:$src1,
1257 i64immSExt8:$src2))]>;
1258def ADD64ri32_DB : I<0, Pseudo,
1259 (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
1260 "", // orq/addq REG, imm
1261 [(set GR64:$dst, (or_is_add GR64:$src1,
1262 i64immSExt32:$src2))]>;
1263}
1264} // AddedComplexity, SchedRW
1265
1266
1267//===----------------------------------------------------------------------===//
1268// Some peepholes
1269//===----------------------------------------------------------------------===//
1270
1271// Odd encoding trick: -128 fits into an 8-bit immediate field while
1272// +128 doesn't, so in this special case use a sub instead of an add.
1273def : Pat<(add GR16:$src1, 128),
1274 (SUB16ri8 GR16:$src1, -128)>;
1275def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
1276 (SUB16mi8 addr:$dst, -128)>;
1277
1278def : Pat<(add GR32:$src1, 128),
1279 (SUB32ri8 GR32:$src1, -128)>;
1280def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
1281 (SUB32mi8 addr:$dst, -128)>;
1282
1283def : Pat<(add GR64:$src1, 128),
1284 (SUB64ri8 GR64:$src1, -128)>;
1285def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
1286 (SUB64mi8 addr:$dst, -128)>;
1287
1288// The same trick applies for 32-bit immediate fields in 64-bit
1289// instructions.
1290def : Pat<(add GR64:$src1, 0x0000000080000000),
1291 (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
1292def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst),
1293 (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
1294
1295// To avoid needing to materialize an immediate in a register, use a 32-bit and
1296// with implicit zero-extension instead of a 64-bit and if the immediate has at
1297// least 32 bits of leading zeros. If in addition the last 32 bits can be
1298// represented with a sign extension of a 8 bit constant, use that.
Craig Topper3d441782015-04-04 02:31:43 +00001299// This can also reduce instruction size by eliminating the need for the REX
1300// prefix.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001301
Craig Topper7ea899a2015-04-04 04:22:12 +00001302// AddedComplexity is needed to give priority over i64immSExt8 and i64immSExt32.
1303let AddedComplexity = 1 in {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001304def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm),
1305 (SUBREG_TO_REG
1306 (i64 0),
1307 (AND32ri8
1308 (EXTRACT_SUBREG GR64:$src, sub_32bit),
1309 (i32 (GetLo8XForm imm:$imm))),
1310 sub_32bit)>;
1311
1312def : Pat<(and GR64:$src, i64immZExt32:$imm),
1313 (SUBREG_TO_REG
1314 (i64 0),
1315 (AND32ri
1316 (EXTRACT_SUBREG GR64:$src, sub_32bit),
1317 (i32 (GetLo32XForm imm:$imm))),
1318 sub_32bit)>;
Craig Topper7ea899a2015-04-04 04:22:12 +00001319} // AddedComplexity = 1
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001320
1321
Craig Topper7ea899a2015-04-04 04:22:12 +00001322// AddedComplexity is needed due to the increased complexity on the
1323// i64immZExt32SExt8 and i64immZExt32 patterns above. Applying this to all
1324// the MOVZX patterns keeps thems together in DAGIsel tables.
1325let AddedComplexity = 1 in {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001326// r & (2^16-1) ==> movz
1327def : Pat<(and GR32:$src1, 0xffff),
1328 (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
1329// r & (2^8-1) ==> movz
1330def : Pat<(and GR32:$src1, 0xff),
1331 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1,
1332 GR32_ABCD)),
1333 sub_8bit))>,
1334 Requires<[Not64BitMode]>;
1335// r & (2^8-1) ==> movz
1336def : Pat<(and GR16:$src1, 0xff),
1337 (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG
1338 (i16 (COPY_TO_REGCLASS GR16:$src1, GR16_ABCD)), sub_8bit)),
1339 sub_16bit)>,
1340 Requires<[Not64BitMode]>;
1341
1342// r & (2^32-1) ==> movz
1343def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
1344 (SUBREG_TO_REG (i64 0),
1345 (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)),
1346 sub_32bit)>;
1347// r & (2^16-1) ==> movz
1348def : Pat<(and GR64:$src, 0xffff),
1349 (SUBREG_TO_REG (i64 0),
1350 (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))),
1351 sub_32bit)>;
1352// r & (2^8-1) ==> movz
1353def : Pat<(and GR64:$src, 0xff),
1354 (SUBREG_TO_REG (i64 0),
1355 (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))),
1356 sub_32bit)>;
1357// r & (2^8-1) ==> movz
1358def : Pat<(and GR32:$src1, 0xff),
1359 (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>,
1360 Requires<[In64BitMode]>;
1361// r & (2^8-1) ==> movz
1362def : Pat<(and GR16:$src1, 0xff),
1363 (EXTRACT_SUBREG (MOVZX32rr8 (i8
1364 (EXTRACT_SUBREG GR16:$src1, sub_8bit))), sub_16bit)>,
1365 Requires<[In64BitMode]>;
Craig Topper7ea899a2015-04-04 04:22:12 +00001366} // AddedComplexity = 1
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001367
1368
1369// sext_inreg patterns
1370def : Pat<(sext_inreg GR32:$src, i16),
1371 (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
1372def : Pat<(sext_inreg GR32:$src, i8),
1373 (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1374 GR32_ABCD)),
1375 sub_8bit))>,
1376 Requires<[Not64BitMode]>;
1377
1378def : Pat<(sext_inreg GR16:$src, i8),
1379 (EXTRACT_SUBREG (i32 (MOVSX32rr8 (EXTRACT_SUBREG
1380 (i32 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit))),
1381 sub_16bit)>,
1382 Requires<[Not64BitMode]>;
1383
1384def : Pat<(sext_inreg GR64:$src, i32),
1385 (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1386def : Pat<(sext_inreg GR64:$src, i16),
1387 (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
1388def : Pat<(sext_inreg GR64:$src, i8),
1389 (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
1390def : Pat<(sext_inreg GR32:$src, i8),
1391 (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>,
1392 Requires<[In64BitMode]>;
1393def : Pat<(sext_inreg GR16:$src, i8),
1394 (EXTRACT_SUBREG (MOVSX32rr8
1395 (EXTRACT_SUBREG GR16:$src, sub_8bit)), sub_16bit)>,
1396 Requires<[In64BitMode]>;
1397
1398// sext, sext_load, zext, zext_load
1399def: Pat<(i16 (sext GR8:$src)),
1400 (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>;
1401def: Pat<(sextloadi16i8 addr:$src),
1402 (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>;
1403def: Pat<(i16 (zext GR8:$src)),
1404 (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>;
1405def: Pat<(zextloadi16i8 addr:$src),
1406 (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
1407
1408// trunc patterns
1409def : Pat<(i16 (trunc GR32:$src)),
1410 (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
1411def : Pat<(i8 (trunc GR32:$src)),
1412 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1413 sub_8bit)>,
1414 Requires<[Not64BitMode]>;
1415def : Pat<(i8 (trunc GR16:$src)),
1416 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1417 sub_8bit)>,
1418 Requires<[Not64BitMode]>;
1419def : Pat<(i32 (trunc GR64:$src)),
1420 (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
1421def : Pat<(i16 (trunc GR64:$src)),
1422 (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
1423def : Pat<(i8 (trunc GR64:$src)),
1424 (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
1425def : Pat<(i8 (trunc GR32:$src)),
1426 (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
1427 Requires<[In64BitMode]>;
1428def : Pat<(i8 (trunc GR16:$src)),
1429 (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
1430 Requires<[In64BitMode]>;
1431
1432// h-register tricks
1433def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
1434 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1435 sub_8bit_hi)>,
1436 Requires<[Not64BitMode]>;
1437def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
1438 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1439 sub_8bit_hi)>,
1440 Requires<[Not64BitMode]>;
1441def : Pat<(srl GR16:$src, (i8 8)),
1442 (EXTRACT_SUBREG
1443 (MOVZX32rr8
1444 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1445 sub_8bit_hi)),
1446 sub_16bit)>,
1447 Requires<[Not64BitMode]>;
1448def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1449 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1450 GR16_ABCD)),
1451 sub_8bit_hi))>,
1452 Requires<[Not64BitMode]>;
1453def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1454 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1455 GR16_ABCD)),
1456 sub_8bit_hi))>,
1457 Requires<[Not64BitMode]>;
1458def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1459 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1460 GR32_ABCD)),
1461 sub_8bit_hi))>,
1462 Requires<[Not64BitMode]>;
1463def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1464 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1465 GR32_ABCD)),
1466 sub_8bit_hi))>,
1467 Requires<[Not64BitMode]>;
1468
1469// h-register tricks.
1470// For now, be conservative on x86-64 and use an h-register extract only if the
1471// value is immediately zero-extended or stored, which are somewhat common
1472// cases. This uses a bunch of code to prevent a register requiring a REX prefix
1473// from being allocated in the same instruction as the h register, as there's
1474// currently no way to describe this requirement to the register allocator.
1475
1476// h-register extract and zero-extend.
1477def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
1478 (SUBREG_TO_REG
1479 (i64 0),
1480 (MOVZX32_NOREXrr8
1481 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1482 sub_8bit_hi)),
1483 sub_32bit)>;
1484def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1485 (MOVZX32_NOREXrr8
1486 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1487 sub_8bit_hi))>,
1488 Requires<[In64BitMode]>;
1489def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1490 (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1491 GR32_ABCD)),
1492 sub_8bit_hi))>,
1493 Requires<[In64BitMode]>;
1494def : Pat<(srl GR16:$src, (i8 8)),
1495 (EXTRACT_SUBREG
1496 (MOVZX32_NOREXrr8
1497 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1498 sub_8bit_hi)),
1499 sub_16bit)>,
1500 Requires<[In64BitMode]>;
1501def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1502 (MOVZX32_NOREXrr8
1503 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1504 sub_8bit_hi))>,
1505 Requires<[In64BitMode]>;
1506def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1507 (MOVZX32_NOREXrr8
1508 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1509 sub_8bit_hi))>,
1510 Requires<[In64BitMode]>;
1511def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
1512 (SUBREG_TO_REG
1513 (i64 0),
1514 (MOVZX32_NOREXrr8
1515 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1516 sub_8bit_hi)),
1517 sub_32bit)>;
1518def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
1519 (SUBREG_TO_REG
1520 (i64 0),
1521 (MOVZX32_NOREXrr8
1522 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1523 sub_8bit_hi)),
1524 sub_32bit)>;
1525
1526// h-register extract and store.
1527def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
1528 (MOV8mr_NOREX
1529 addr:$dst,
1530 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1531 sub_8bit_hi))>;
1532def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
1533 (MOV8mr_NOREX
1534 addr:$dst,
1535 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1536 sub_8bit_hi))>,
1537 Requires<[In64BitMode]>;
1538def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
1539 (MOV8mr_NOREX
1540 addr:$dst,
1541 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1542 sub_8bit_hi))>,
1543 Requires<[In64BitMode]>;
1544
1545
1546// (shl x, 1) ==> (add x, x)
1547// Note that if x is undef (immediate or otherwise), we could theoretically
1548// end up with the two uses of x getting different values, producing a result
1549// where the least significant bit is not 0. However, the probability of this
1550// happening is considered low enough that this is officially not a
1551// "real problem".
1552def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr GR8 :$src1, GR8 :$src1)>;
1553def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
1554def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
1555def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
1556
1557// Helper imms that check if a mask doesn't change significant shift bits.
Benjamin Kramer5f6a9072015-02-12 15:35:40 +00001558def immShift32 : ImmLeaf<i8, [{
1559 return countTrailingOnes<uint64_t>(Imm) >= 5;
1560}]>;
1561def immShift64 : ImmLeaf<i8, [{
1562 return countTrailingOnes<uint64_t>(Imm) >= 6;
1563}]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001564
1565// Shift amount is implicitly masked.
1566multiclass MaskedShiftAmountPats<SDNode frag, string name> {
1567 // (shift x (and y, 31)) ==> (shift x, y)
1568 def : Pat<(frag GR8:$src1, (and CL, immShift32)),
1569 (!cast<Instruction>(name # "8rCL") GR8:$src1)>;
1570 def : Pat<(frag GR16:$src1, (and CL, immShift32)),
1571 (!cast<Instruction>(name # "16rCL") GR16:$src1)>;
1572 def : Pat<(frag GR32:$src1, (and CL, immShift32)),
1573 (!cast<Instruction>(name # "32rCL") GR32:$src1)>;
1574 def : Pat<(store (frag (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
1575 (!cast<Instruction>(name # "8mCL") addr:$dst)>;
1576 def : Pat<(store (frag (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
1577 (!cast<Instruction>(name # "16mCL") addr:$dst)>;
1578 def : Pat<(store (frag (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
1579 (!cast<Instruction>(name # "32mCL") addr:$dst)>;
1580
1581 // (shift x (and y, 63)) ==> (shift x, y)
1582 def : Pat<(frag GR64:$src1, (and CL, immShift64)),
1583 (!cast<Instruction>(name # "64rCL") GR64:$src1)>;
1584 def : Pat<(store (frag (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1585 (!cast<Instruction>(name # "64mCL") addr:$dst)>;
1586}
1587
1588defm : MaskedShiftAmountPats<shl, "SHL">;
1589defm : MaskedShiftAmountPats<srl, "SHR">;
1590defm : MaskedShiftAmountPats<sra, "SAR">;
1591defm : MaskedShiftAmountPats<rotl, "ROL">;
1592defm : MaskedShiftAmountPats<rotr, "ROR">;
1593
1594// (anyext (setcc_carry)) -> (setcc_carry)
1595def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1596 (SETB_C16r)>;
1597def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1598 (SETB_C32r)>;
1599def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
1600 (SETB_C32r)>;
1601
1602
1603
1604
1605//===----------------------------------------------------------------------===//
1606// EFLAGS-defining Patterns
1607//===----------------------------------------------------------------------===//
1608
1609// add reg, reg
1610def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr GR8 :$src1, GR8 :$src2)>;
1611def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
1612def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
1613
1614// add reg, mem
1615def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
1616 (ADD8rm GR8:$src1, addr:$src2)>;
1617def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
1618 (ADD16rm GR16:$src1, addr:$src2)>;
1619def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
1620 (ADD32rm GR32:$src1, addr:$src2)>;
1621
1622// add reg, imm
1623def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri GR8:$src1 , imm:$src2)>;
1624def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
1625def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
1626def : Pat<(add GR16:$src1, i16immSExt8:$src2),
1627 (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
1628def : Pat<(add GR32:$src1, i32immSExt8:$src2),
1629 (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
1630
1631// sub reg, reg
1632def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr GR8 :$src1, GR8 :$src2)>;
1633def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
1634def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
1635
1636// sub reg, mem
1637def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
1638 (SUB8rm GR8:$src1, addr:$src2)>;
1639def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
1640 (SUB16rm GR16:$src1, addr:$src2)>;
1641def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
1642 (SUB32rm GR32:$src1, addr:$src2)>;
1643
1644// sub reg, imm
1645def : Pat<(sub GR8:$src1, imm:$src2),
1646 (SUB8ri GR8:$src1, imm:$src2)>;
1647def : Pat<(sub GR16:$src1, imm:$src2),
1648 (SUB16ri GR16:$src1, imm:$src2)>;
1649def : Pat<(sub GR32:$src1, imm:$src2),
1650 (SUB32ri GR32:$src1, imm:$src2)>;
1651def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
1652 (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
1653def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
1654 (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
1655
1656// sub 0, reg
1657def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r GR8 :$src)>;
1658def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>;
1659def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
1660def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>;
1661
1662// mul reg, reg
1663def : Pat<(mul GR16:$src1, GR16:$src2),
1664 (IMUL16rr GR16:$src1, GR16:$src2)>;
1665def : Pat<(mul GR32:$src1, GR32:$src2),
1666 (IMUL32rr GR32:$src1, GR32:$src2)>;
1667
1668// mul reg, mem
1669def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
1670 (IMUL16rm GR16:$src1, addr:$src2)>;
1671def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
1672 (IMUL32rm GR32:$src1, addr:$src2)>;
1673
1674// mul reg, imm
1675def : Pat<(mul GR16:$src1, imm:$src2),
1676 (IMUL16rri GR16:$src1, imm:$src2)>;
1677def : Pat<(mul GR32:$src1, imm:$src2),
1678 (IMUL32rri GR32:$src1, imm:$src2)>;
1679def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
1680 (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
1681def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
1682 (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
1683
1684// reg = mul mem, imm
1685def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
1686 (IMUL16rmi addr:$src1, imm:$src2)>;
1687def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
1688 (IMUL32rmi addr:$src1, imm:$src2)>;
1689def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
1690 (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
1691def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
1692 (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
1693
1694// Patterns for nodes that do not produce flags, for instructions that do.
1695
1696// addition
1697def : Pat<(add GR64:$src1, GR64:$src2),
1698 (ADD64rr GR64:$src1, GR64:$src2)>;
1699def : Pat<(add GR64:$src1, i64immSExt8:$src2),
1700 (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
1701def : Pat<(add GR64:$src1, i64immSExt32:$src2),
1702 (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
1703def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
1704 (ADD64rm GR64:$src1, addr:$src2)>;
1705
1706// subtraction
1707def : Pat<(sub GR64:$src1, GR64:$src2),
1708 (SUB64rr GR64:$src1, GR64:$src2)>;
1709def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
1710 (SUB64rm GR64:$src1, addr:$src2)>;
1711def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
1712 (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
1713def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
1714 (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
1715
1716// Multiply
1717def : Pat<(mul GR64:$src1, GR64:$src2),
1718 (IMUL64rr GR64:$src1, GR64:$src2)>;
1719def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
1720 (IMUL64rm GR64:$src1, addr:$src2)>;
1721def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
1722 (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
1723def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
1724 (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
1725def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
1726 (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
1727def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
1728 (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
1729
1730// Increment/Decrement reg.
1731// Do not make INC/DEC if it is slow
1732let Predicates = [NotSlowIncDec] in {
1733 def : Pat<(add GR8:$src, 1), (INC8r GR8:$src)>;
1734 def : Pat<(add GR16:$src, 1), (INC16r GR16:$src)>;
1735 def : Pat<(add GR32:$src, 1), (INC32r GR32:$src)>;
1736 def : Pat<(add GR64:$src, 1), (INC64r GR64:$src)>;
1737 def : Pat<(add GR8:$src, -1), (DEC8r GR8:$src)>;
1738 def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>;
1739 def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>;
1740 def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>;
1741}
1742
1743// or reg/reg.
1744def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr GR8 :$src1, GR8 :$src2)>;
1745def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
1746def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
1747def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
1748
1749// or reg/mem
1750def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
1751 (OR8rm GR8:$src1, addr:$src2)>;
1752def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
1753 (OR16rm GR16:$src1, addr:$src2)>;
1754def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
1755 (OR32rm GR32:$src1, addr:$src2)>;
1756def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
1757 (OR64rm GR64:$src1, addr:$src2)>;
1758
1759// or reg/imm
1760def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri GR8 :$src1, imm:$src2)>;
1761def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
1762def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
1763def : Pat<(or GR16:$src1, i16immSExt8:$src2),
1764 (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1765def : Pat<(or GR32:$src1, i32immSExt8:$src2),
1766 (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1767def : Pat<(or GR64:$src1, i64immSExt8:$src2),
1768 (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1769def : Pat<(or GR64:$src1, i64immSExt32:$src2),
1770 (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1771
1772// xor reg/reg
1773def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr GR8 :$src1, GR8 :$src2)>;
1774def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
1775def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
1776def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
1777
1778// xor reg/mem
1779def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
1780 (XOR8rm GR8:$src1, addr:$src2)>;
1781def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
1782 (XOR16rm GR16:$src1, addr:$src2)>;
1783def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
1784 (XOR32rm GR32:$src1, addr:$src2)>;
1785def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
1786 (XOR64rm GR64:$src1, addr:$src2)>;
1787
1788// xor reg/imm
1789def : Pat<(xor GR8:$src1, imm:$src2),
1790 (XOR8ri GR8:$src1, imm:$src2)>;
1791def : Pat<(xor GR16:$src1, imm:$src2),
1792 (XOR16ri GR16:$src1, imm:$src2)>;
1793def : Pat<(xor GR32:$src1, imm:$src2),
1794 (XOR32ri GR32:$src1, imm:$src2)>;
1795def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
1796 (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1797def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
1798 (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1799def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
1800 (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1801def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
1802 (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1803
1804// and reg/reg
1805def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr GR8 :$src1, GR8 :$src2)>;
1806def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
1807def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
1808def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
1809
1810// and reg/mem
1811def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
1812 (AND8rm GR8:$src1, addr:$src2)>;
1813def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
1814 (AND16rm GR16:$src1, addr:$src2)>;
1815def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
1816 (AND32rm GR32:$src1, addr:$src2)>;
1817def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
1818 (AND64rm GR64:$src1, addr:$src2)>;
1819
1820// and reg/imm
1821def : Pat<(and GR8:$src1, imm:$src2),
1822 (AND8ri GR8:$src1, imm:$src2)>;
1823def : Pat<(and GR16:$src1, imm:$src2),
1824 (AND16ri GR16:$src1, imm:$src2)>;
1825def : Pat<(and GR32:$src1, imm:$src2),
1826 (AND32ri GR32:$src1, imm:$src2)>;
1827def : Pat<(and GR16:$src1, i16immSExt8:$src2),
1828 (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
1829def : Pat<(and GR32:$src1, i32immSExt8:$src2),
1830 (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
1831def : Pat<(and GR64:$src1, i64immSExt8:$src2),
1832 (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
1833def : Pat<(and GR64:$src1, i64immSExt32:$src2),
1834 (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
1835
1836// Bit scan instruction patterns to match explicit zero-undef behavior.
1837def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>;
1838def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>;
1839def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>;
1840def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>;
1841def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>;
1842def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>;
1843
1844// When HasMOVBE is enabled it is possible to get a non-legalized
1845// register-register 16 bit bswap. This maps it to a ROL instruction.
1846let Predicates = [HasMOVBE] in {
1847 def : Pat<(bswap GR16:$src), (ROL16ri GR16:$src, (i8 8))>;
1848}