blob: d1274d78a30575aad9e8d2acbffc5c1262e6c66b [file] [log] [blame]
Nick Lewycky97756402014-09-01 05:17:15 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
Misha Brukman01808ca2005-04-21 21:13:18 +00002//
Chris Lattnerd934c702004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman01808ca2005-04-21 21:13:18 +00007//
Chris Lattnerd934c702004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanef2ae2c2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattnerd934c702004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman01808ca2005-04-21 21:13:18 +000030//
Chris Lattnerd934c702004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattnerd934c702004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chandler Carruthed0881b2012-12-03 16:50:05 +000061#include "llvm/Analysis/ScalarEvolution.h"
62#include "llvm/ADT/STLExtras.h"
63#include "llvm/ADT/SmallPtrSet.h"
64#include "llvm/ADT/Statistic.h"
Hal Finkel60db0582014-09-07 18:57:58 +000065#include "llvm/Analysis/AssumptionTracker.h"
John Criswellfe5f33b2005-10-27 15:54:34 +000066#include "llvm/Analysis/ConstantFolding.h"
Duncan Sandsd06f50e2010-11-17 04:18:45 +000067#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnerd934c702004-04-02 20:23:17 +000068#include "llvm/Analysis/LoopInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000069#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Dan Gohman1ee696d2009-06-16 19:52:01 +000070#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000071#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000072#include "llvm/IR/Constants.h"
73#include "llvm/IR/DataLayout.h"
74#include "llvm/IR/DerivedTypes.h"
Chandler Carruth5ad5f152014-01-13 09:26:24 +000075#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000076#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000077#include "llvm/IR/GlobalAlias.h"
78#include "llvm/IR/GlobalVariable.h"
Chandler Carruth83948572014-03-04 10:30:26 +000079#include "llvm/IR/InstIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000080#include "llvm/IR/Instructions.h"
81#include "llvm/IR/LLVMContext.h"
82#include "llvm/IR/Operator.h"
Chris Lattner996795b2006-06-28 23:17:24 +000083#include "llvm/Support/CommandLine.h"
David Greene2330f782009-12-23 22:58:38 +000084#include "llvm/Support/Debug.h"
Torok Edwin56d06592009-07-11 20:10:48 +000085#include "llvm/Support/ErrorHandling.h"
Chris Lattner0a1e9932006-12-19 01:16:02 +000086#include "llvm/Support/MathExtras.h"
Dan Gohmane20f8242009-04-21 00:47:46 +000087#include "llvm/Support/raw_ostream.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000088#include "llvm/Target/TargetLibraryInfo.h"
Alkis Evlogimenosa5c04ee2004-09-03 18:19:51 +000089#include <algorithm>
Chris Lattnerd934c702004-04-02 20:23:17 +000090using namespace llvm;
91
Chandler Carruthf1221bd2014-04-22 02:48:03 +000092#define DEBUG_TYPE "scalar-evolution"
93
Chris Lattner57ef9422006-12-19 22:30:33 +000094STATISTIC(NumArrayLenItCounts,
95 "Number of trip counts computed with array length");
96STATISTIC(NumTripCountsComputed,
97 "Number of loops with predictable loop counts");
98STATISTIC(NumTripCountsNotComputed,
99 "Number of loops without predictable loop counts");
100STATISTIC(NumBruteForceTripCountsComputed,
101 "Number of loops with trip counts computed by force");
102
Dan Gohmand78c4002008-05-13 00:00:25 +0000103static cl::opt<unsigned>
Chris Lattner57ef9422006-12-19 22:30:33 +0000104MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
105 cl::desc("Maximum number of iterations SCEV will "
Dan Gohmance973df2009-06-24 04:48:43 +0000106 "symbolically execute a constant "
107 "derived loop"),
Chris Lattner57ef9422006-12-19 22:30:33 +0000108 cl::init(100));
109
Benjamin Kramer214935e2012-10-26 17:31:32 +0000110// FIXME: Enable this with XDEBUG when the test suite is clean.
111static cl::opt<bool>
112VerifySCEV("verify-scev",
113 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
114
Owen Anderson8ac477f2010-10-12 19:48:12 +0000115INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
116 "Scalar Evolution Analysis", false, true)
Hal Finkel60db0582014-09-07 18:57:58 +0000117INITIALIZE_PASS_DEPENDENCY(AssumptionTracker)
Owen Anderson8ac477f2010-10-12 19:48:12 +0000118INITIALIZE_PASS_DEPENDENCY(LoopInfo)
Chandler Carruth73523022014-01-13 13:07:17 +0000119INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Chad Rosierc24b86f2011-12-01 03:08:23 +0000120INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
Owen Anderson8ac477f2010-10-12 19:48:12 +0000121INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersondf7a4f22010-10-07 22:25:06 +0000122 "Scalar Evolution Analysis", false, true)
Devang Patel8c78a0b2007-05-03 01:11:54 +0000123char ScalarEvolution::ID = 0;
Chris Lattnerd934c702004-04-02 20:23:17 +0000124
125//===----------------------------------------------------------------------===//
126// SCEV class definitions
127//===----------------------------------------------------------------------===//
128
129//===----------------------------------------------------------------------===//
130// Implementation of the SCEV class.
131//
Dan Gohman3423e722009-06-30 20:13:32 +0000132
Manman Ren49d684e2012-09-12 05:06:18 +0000133#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chris Lattnerd934c702004-04-02 20:23:17 +0000134void SCEV::dump() const {
David Greenedf1c4972009-12-23 22:18:14 +0000135 print(dbgs());
136 dbgs() << '\n';
Dan Gohmane20f8242009-04-21 00:47:46 +0000137}
Manman Renc3366cc2012-09-06 19:55:56 +0000138#endif
Dan Gohmane20f8242009-04-21 00:47:46 +0000139
Dan Gohman534749b2010-11-17 22:27:42 +0000140void SCEV::print(raw_ostream &OS) const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000141 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000142 case scConstant:
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000143 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000144 return;
145 case scTruncate: {
146 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
147 const SCEV *Op = Trunc->getOperand();
148 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
149 << *Trunc->getType() << ")";
150 return;
151 }
152 case scZeroExtend: {
153 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
154 const SCEV *Op = ZExt->getOperand();
155 OS << "(zext " << *Op->getType() << " " << *Op << " to "
156 << *ZExt->getType() << ")";
157 return;
158 }
159 case scSignExtend: {
160 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
161 const SCEV *Op = SExt->getOperand();
162 OS << "(sext " << *Op->getType() << " " << *Op << " to "
163 << *SExt->getType() << ")";
164 return;
165 }
166 case scAddRecExpr: {
167 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
168 OS << "{" << *AR->getOperand(0);
169 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
170 OS << ",+," << *AR->getOperand(i);
171 OS << "}<";
Andrew Trick8b55b732011-03-14 16:50:06 +0000172 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000173 OS << "nuw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000174 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000175 OS << "nsw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000176 if (AR->getNoWrapFlags(FlagNW) &&
177 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
178 OS << "nw><";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000179 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohman534749b2010-11-17 22:27:42 +0000180 OS << ">";
181 return;
182 }
183 case scAddExpr:
184 case scMulExpr:
185 case scUMaxExpr:
186 case scSMaxExpr: {
187 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Craig Topper9f008862014-04-15 04:59:12 +0000188 const char *OpStr = nullptr;
Dan Gohman534749b2010-11-17 22:27:42 +0000189 switch (NAry->getSCEVType()) {
190 case scAddExpr: OpStr = " + "; break;
191 case scMulExpr: OpStr = " * "; break;
192 case scUMaxExpr: OpStr = " umax "; break;
193 case scSMaxExpr: OpStr = " smax "; break;
194 }
195 OS << "(";
196 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
197 I != E; ++I) {
198 OS << **I;
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000199 if (std::next(I) != E)
Dan Gohman534749b2010-11-17 22:27:42 +0000200 OS << OpStr;
201 }
202 OS << ")";
Andrew Trickd912a5b2011-11-29 02:06:35 +0000203 switch (NAry->getSCEVType()) {
204 case scAddExpr:
205 case scMulExpr:
206 if (NAry->getNoWrapFlags(FlagNUW))
207 OS << "<nuw>";
208 if (NAry->getNoWrapFlags(FlagNSW))
209 OS << "<nsw>";
210 }
Dan Gohman534749b2010-11-17 22:27:42 +0000211 return;
212 }
213 case scUDivExpr: {
214 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
215 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
216 return;
217 }
218 case scUnknown: {
219 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattner229907c2011-07-18 04:54:35 +0000220 Type *AllocTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000221 if (U->isSizeOf(AllocTy)) {
222 OS << "sizeof(" << *AllocTy << ")";
223 return;
224 }
225 if (U->isAlignOf(AllocTy)) {
226 OS << "alignof(" << *AllocTy << ")";
227 return;
228 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000229
Chris Lattner229907c2011-07-18 04:54:35 +0000230 Type *CTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000231 Constant *FieldNo;
232 if (U->isOffsetOf(CTy, FieldNo)) {
233 OS << "offsetof(" << *CTy << ", ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000234 FieldNo->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000235 OS << ")";
236 return;
237 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000238
Dan Gohman534749b2010-11-17 22:27:42 +0000239 // Otherwise just print it normally.
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000240 U->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000241 return;
242 }
243 case scCouldNotCompute:
244 OS << "***COULDNOTCOMPUTE***";
245 return;
Dan Gohman534749b2010-11-17 22:27:42 +0000246 }
247 llvm_unreachable("Unknown SCEV kind!");
248}
249
Chris Lattner229907c2011-07-18 04:54:35 +0000250Type *SCEV::getType() const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000251 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000252 case scConstant:
253 return cast<SCEVConstant>(this)->getType();
254 case scTruncate:
255 case scZeroExtend:
256 case scSignExtend:
257 return cast<SCEVCastExpr>(this)->getType();
258 case scAddRecExpr:
259 case scMulExpr:
260 case scUMaxExpr:
261 case scSMaxExpr:
262 return cast<SCEVNAryExpr>(this)->getType();
263 case scAddExpr:
264 return cast<SCEVAddExpr>(this)->getType();
265 case scUDivExpr:
266 return cast<SCEVUDivExpr>(this)->getType();
267 case scUnknown:
268 return cast<SCEVUnknown>(this)->getType();
269 case scCouldNotCompute:
270 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman534749b2010-11-17 22:27:42 +0000271 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000272 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman534749b2010-11-17 22:27:42 +0000273}
274
Dan Gohmanbe928e32008-06-18 16:23:07 +0000275bool SCEV::isZero() const {
276 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
277 return SC->getValue()->isZero();
278 return false;
279}
280
Dan Gohmanba7f6d82009-05-18 15:22:39 +0000281bool SCEV::isOne() const {
282 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
283 return SC->getValue()->isOne();
284 return false;
285}
Chris Lattnerd934c702004-04-02 20:23:17 +0000286
Dan Gohman18a96bb2009-06-24 00:30:26 +0000287bool SCEV::isAllOnesValue() const {
288 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
289 return SC->getValue()->isAllOnesValue();
290 return false;
291}
292
Andrew Trick881a7762012-01-07 00:27:31 +0000293/// isNonConstantNegative - Return true if the specified scev is negated, but
294/// not a constant.
295bool SCEV::isNonConstantNegative() const {
296 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
297 if (!Mul) return false;
298
299 // If there is a constant factor, it will be first.
300 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
301 if (!SC) return false;
302
303 // Return true if the value is negative, this matches things like (-42 * V).
304 return SC->getValue()->getValue().isNegative();
305}
306
Owen Anderson04052ec2009-06-22 21:57:23 +0000307SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman24ceda82010-06-18 19:54:20 +0000308 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000309
Chris Lattnerd934c702004-04-02 20:23:17 +0000310bool SCEVCouldNotCompute::classof(const SCEV *S) {
311 return S->getSCEVType() == scCouldNotCompute;
312}
313
Dan Gohmanaf752342009-07-07 17:06:11 +0000314const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000315 FoldingSetNodeID ID;
316 ID.AddInteger(scConstant);
317 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +0000318 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000319 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman24ceda82010-06-18 19:54:20 +0000320 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000321 UniqueSCEVs.InsertNode(S, IP);
322 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000323}
Chris Lattnerd934c702004-04-02 20:23:17 +0000324
Nick Lewycky31eaca52014-01-27 10:04:03 +0000325const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
Owen Andersonedb4a702009-07-24 23:12:02 +0000326 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman0a76e7f2007-07-09 15:25:17 +0000327}
328
Dan Gohmanaf752342009-07-07 17:06:11 +0000329const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +0000330ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
331 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana029cbe2010-04-21 16:04:04 +0000332 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000333}
334
Dan Gohman24ceda82010-06-18 19:54:20 +0000335SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000336 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000337 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000338
Dan Gohman24ceda82010-06-18 19:54:20 +0000339SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000340 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000341 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000342 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
343 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000344 "Cannot truncate non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000345}
Chris Lattnerd934c702004-04-02 20:23:17 +0000346
Dan Gohman24ceda82010-06-18 19:54:20 +0000347SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000348 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000349 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000350 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
351 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000352 "Cannot zero extend non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000353}
354
Dan Gohman24ceda82010-06-18 19:54:20 +0000355SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000356 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000357 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000358 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
359 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000360 "Cannot sign extend non-integer value!");
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000361}
362
Dan Gohman7cac9572010-08-02 23:49:30 +0000363void SCEVUnknown::deleted() {
Dan Gohman761065e2010-11-17 02:44:44 +0000364 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000365 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000366
367 // Remove this SCEVUnknown from the uniquing map.
368 SE->UniqueSCEVs.RemoveNode(this);
369
370 // Release the value.
Craig Topper9f008862014-04-15 04:59:12 +0000371 setValPtr(nullptr);
Dan Gohman7cac9572010-08-02 23:49:30 +0000372}
373
374void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman761065e2010-11-17 02:44:44 +0000375 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000376 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000377
378 // Remove this SCEVUnknown from the uniquing map.
379 SE->UniqueSCEVs.RemoveNode(this);
380
381 // Update this SCEVUnknown to point to the new value. This is needed
382 // because there may still be outstanding SCEVs which still point to
383 // this SCEVUnknown.
384 setValPtr(New);
385}
386
Chris Lattner229907c2011-07-18 04:54:35 +0000387bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000388 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000389 if (VCE->getOpcode() == Instruction::PtrToInt)
390 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000391 if (CE->getOpcode() == Instruction::GetElementPtr &&
392 CE->getOperand(0)->isNullValue() &&
393 CE->getNumOperands() == 2)
394 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
395 if (CI->isOne()) {
396 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
397 ->getElementType();
398 return true;
399 }
Dan Gohmancf913832010-01-28 02:15:55 +0000400
401 return false;
402}
403
Chris Lattner229907c2011-07-18 04:54:35 +0000404bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000405 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000406 if (VCE->getOpcode() == Instruction::PtrToInt)
407 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000408 if (CE->getOpcode() == Instruction::GetElementPtr &&
409 CE->getOperand(0)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000410 Type *Ty =
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000411 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattner229907c2011-07-18 04:54:35 +0000412 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000413 if (!STy->isPacked() &&
414 CE->getNumOperands() == 3 &&
415 CE->getOperand(1)->isNullValue()) {
416 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
417 if (CI->isOne() &&
418 STy->getNumElements() == 2 &&
Duncan Sands9dff9be2010-02-15 16:12:20 +0000419 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000420 AllocTy = STy->getElementType(1);
421 return true;
422 }
423 }
424 }
Dan Gohmancf913832010-01-28 02:15:55 +0000425
426 return false;
427}
428
Chris Lattner229907c2011-07-18 04:54:35 +0000429bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000430 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000431 if (VCE->getOpcode() == Instruction::PtrToInt)
432 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
433 if (CE->getOpcode() == Instruction::GetElementPtr &&
434 CE->getNumOperands() == 3 &&
435 CE->getOperand(0)->isNullValue() &&
436 CE->getOperand(1)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000437 Type *Ty =
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000438 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
439 // Ignore vector types here so that ScalarEvolutionExpander doesn't
440 // emit getelementptrs that index into vectors.
Duncan Sands19d0b472010-02-16 11:11:14 +0000441 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000442 CTy = Ty;
443 FieldNo = CE->getOperand(2);
444 return true;
445 }
446 }
447
448 return false;
449}
450
Chris Lattnereb3e8402004-06-20 06:23:15 +0000451//===----------------------------------------------------------------------===//
452// SCEV Utilities
453//===----------------------------------------------------------------------===//
454
455namespace {
456 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
457 /// than the complexity of the RHS. This comparator is used to canonicalize
458 /// expressions.
Nick Lewycky02d5f772009-10-25 06:33:48 +0000459 class SCEVComplexityCompare {
Dan Gohman3324b9e2010-08-13 20:17:27 +0000460 const LoopInfo *const LI;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000461 public:
Dan Gohman992db002010-07-23 21:18:55 +0000462 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman9ba542c2009-05-07 14:39:04 +0000463
Dan Gohman27065672010-08-27 15:26:01 +0000464 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohman5e6ce7b2008-04-14 18:23:56 +0000465 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman27065672010-08-27 15:26:01 +0000466 return compare(LHS, RHS) < 0;
467 }
468
469 // Return negative, zero, or positive, if LHS is less than, equal to, or
470 // greater than RHS, respectively. A three-way result allows recursive
471 // comparisons to be more efficient.
472 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000473 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
474 if (LHS == RHS)
Dan Gohman27065672010-08-27 15:26:01 +0000475 return 0;
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000476
Dan Gohman9ba542c2009-05-07 14:39:04 +0000477 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman5ae31022010-07-23 21:20:52 +0000478 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
479 if (LType != RType)
Dan Gohman27065672010-08-27 15:26:01 +0000480 return (int)LType - (int)RType;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000481
Dan Gohman24ceda82010-06-18 19:54:20 +0000482 // Aside from the getSCEVType() ordering, the particular ordering
483 // isn't very important except that it's beneficial to be consistent,
484 // so that (a + b) and (b + a) don't end up as different expressions.
Benjamin Kramer987b8502014-02-11 19:02:55 +0000485 switch (static_cast<SCEVTypes>(LType)) {
Dan Gohman27065672010-08-27 15:26:01 +0000486 case scUnknown: {
487 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000488 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000489
490 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
491 // not as complete as it could be.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000492 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman24ceda82010-06-18 19:54:20 +0000493
494 // Order pointer values after integer values. This helps SCEVExpander
495 // form GEPs.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000496 bool LIsPointer = LV->getType()->isPointerTy(),
497 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman5ae31022010-07-23 21:20:52 +0000498 if (LIsPointer != RIsPointer)
Dan Gohman27065672010-08-27 15:26:01 +0000499 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman24ceda82010-06-18 19:54:20 +0000500
501 // Compare getValueID values.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000502 unsigned LID = LV->getValueID(),
503 RID = RV->getValueID();
Dan Gohman5ae31022010-07-23 21:20:52 +0000504 if (LID != RID)
Dan Gohman27065672010-08-27 15:26:01 +0000505 return (int)LID - (int)RID;
Dan Gohman24ceda82010-06-18 19:54:20 +0000506
507 // Sort arguments by their position.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000508 if (const Argument *LA = dyn_cast<Argument>(LV)) {
509 const Argument *RA = cast<Argument>(RV);
Dan Gohman27065672010-08-27 15:26:01 +0000510 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
511 return (int)LArgNo - (int)RArgNo;
Dan Gohman24ceda82010-06-18 19:54:20 +0000512 }
513
Dan Gohman27065672010-08-27 15:26:01 +0000514 // For instructions, compare their loop depth, and their operand
515 // count. This is pretty loose.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000516 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
517 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman24ceda82010-06-18 19:54:20 +0000518
519 // Compare loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000520 const BasicBlock *LParent = LInst->getParent(),
521 *RParent = RInst->getParent();
522 if (LParent != RParent) {
523 unsigned LDepth = LI->getLoopDepth(LParent),
524 RDepth = LI->getLoopDepth(RParent);
525 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000526 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000527 }
Dan Gohman24ceda82010-06-18 19:54:20 +0000528
529 // Compare the number of operands.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000530 unsigned LNumOps = LInst->getNumOperands(),
531 RNumOps = RInst->getNumOperands();
Dan Gohman27065672010-08-27 15:26:01 +0000532 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000533 }
534
Dan Gohman27065672010-08-27 15:26:01 +0000535 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000536 }
537
Dan Gohman27065672010-08-27 15:26:01 +0000538 case scConstant: {
539 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000540 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000541
542 // Compare constant values.
Dan Gohmanf2961822010-08-16 16:25:35 +0000543 const APInt &LA = LC->getValue()->getValue();
544 const APInt &RA = RC->getValue()->getValue();
545 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman5ae31022010-07-23 21:20:52 +0000546 if (LBitWidth != RBitWidth)
Dan Gohman27065672010-08-27 15:26:01 +0000547 return (int)LBitWidth - (int)RBitWidth;
548 return LA.ult(RA) ? -1 : 1;
Dan Gohman24ceda82010-06-18 19:54:20 +0000549 }
550
Dan Gohman27065672010-08-27 15:26:01 +0000551 case scAddRecExpr: {
552 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000553 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000554
555 // Compare addrec loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000556 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
557 if (LLoop != RLoop) {
558 unsigned LDepth = LLoop->getLoopDepth(),
559 RDepth = RLoop->getLoopDepth();
560 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000561 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000562 }
Dan Gohman27065672010-08-27 15:26:01 +0000563
564 // Addrec complexity grows with operand count.
565 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
566 if (LNumOps != RNumOps)
567 return (int)LNumOps - (int)RNumOps;
568
569 // Lexicographically compare.
570 for (unsigned i = 0; i != LNumOps; ++i) {
571 long X = compare(LA->getOperand(i), RA->getOperand(i));
572 if (X != 0)
573 return X;
574 }
575
576 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000577 }
578
Dan Gohman27065672010-08-27 15:26:01 +0000579 case scAddExpr:
580 case scMulExpr:
581 case scSMaxExpr:
582 case scUMaxExpr: {
583 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000584 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000585
586 // Lexicographically compare n-ary expressions.
Dan Gohman5ae31022010-07-23 21:20:52 +0000587 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
Andrew Trickc3bc8b82013-07-31 02:43:40 +0000588 if (LNumOps != RNumOps)
589 return (int)LNumOps - (int)RNumOps;
590
Dan Gohman5ae31022010-07-23 21:20:52 +0000591 for (unsigned i = 0; i != LNumOps; ++i) {
592 if (i >= RNumOps)
Dan Gohman27065672010-08-27 15:26:01 +0000593 return 1;
594 long X = compare(LC->getOperand(i), RC->getOperand(i));
595 if (X != 0)
596 return X;
Dan Gohman24ceda82010-06-18 19:54:20 +0000597 }
Dan Gohman27065672010-08-27 15:26:01 +0000598 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000599 }
600
Dan Gohman27065672010-08-27 15:26:01 +0000601 case scUDivExpr: {
602 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000603 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000604
605 // Lexicographically compare udiv expressions.
606 long X = compare(LC->getLHS(), RC->getLHS());
607 if (X != 0)
608 return X;
609 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman24ceda82010-06-18 19:54:20 +0000610 }
611
Dan Gohman27065672010-08-27 15:26:01 +0000612 case scTruncate:
613 case scZeroExtend:
614 case scSignExtend: {
615 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000616 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000617
618 // Compare cast expressions by operand.
619 return compare(LC->getOperand(), RC->getOperand());
620 }
621
Benjamin Kramer987b8502014-02-11 19:02:55 +0000622 case scCouldNotCompute:
623 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman24ceda82010-06-18 19:54:20 +0000624 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000625 llvm_unreachable("Unknown SCEV kind!");
Chris Lattnereb3e8402004-06-20 06:23:15 +0000626 }
627 };
628}
629
630/// GroupByComplexity - Given a list of SCEV objects, order them by their
631/// complexity, and group objects of the same complexity together by value.
632/// When this routine is finished, we know that any duplicates in the vector are
633/// consecutive and that complexity is monotonically increasing.
634///
Dan Gohman8b0a4192010-03-01 17:49:51 +0000635/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattnereb3e8402004-06-20 06:23:15 +0000636/// results from this routine. In other words, we don't want the results of
637/// this to depend on where the addresses of various SCEV objects happened to
638/// land in memory.
639///
Dan Gohmanaf752342009-07-07 17:06:11 +0000640static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman9ba542c2009-05-07 14:39:04 +0000641 LoopInfo *LI) {
Chris Lattnereb3e8402004-06-20 06:23:15 +0000642 if (Ops.size() < 2) return; // Noop
643 if (Ops.size() == 2) {
644 // This is the common case, which also happens to be trivially simple.
645 // Special case it.
Dan Gohman7712d292010-08-29 15:07:13 +0000646 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
647 if (SCEVComplexityCompare(LI)(RHS, LHS))
648 std::swap(LHS, RHS);
Chris Lattnereb3e8402004-06-20 06:23:15 +0000649 return;
650 }
651
Dan Gohman24ceda82010-06-18 19:54:20 +0000652 // Do the rough sort by complexity.
653 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
654
655 // Now that we are sorted by complexity, group elements of the same
656 // complexity. Note that this is, at worst, N^2, but the vector is likely to
657 // be extremely short in practice. Note that we take this approach because we
658 // do not want to depend on the addresses of the objects we are grouping.
659 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
660 const SCEV *S = Ops[i];
661 unsigned Complexity = S->getSCEVType();
662
663 // If there are any objects of the same complexity and same value as this
664 // one, group them.
665 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
666 if (Ops[j] == S) { // Found a duplicate.
667 // Move it to immediately after i'th element.
668 std::swap(Ops[i+1], Ops[j]);
669 ++i; // no need to rescan it.
670 if (i == e-2) return; // Done!
671 }
672 }
673 }
Chris Lattnereb3e8402004-06-20 06:23:15 +0000674}
675
Chris Lattnerd934c702004-04-02 20:23:17 +0000676
Chris Lattnerd934c702004-04-02 20:23:17 +0000677
678//===----------------------------------------------------------------------===//
679// Simple SCEV method implementations
680//===----------------------------------------------------------------------===//
681
Eli Friedman61f67622008-08-04 23:49:06 +0000682/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman4d5435d2009-05-24 23:45:28 +0000683/// Assume, K > 0.
Dan Gohmanaf752342009-07-07 17:06:11 +0000684static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohman32291b12009-07-21 00:38:55 +0000685 ScalarEvolution &SE,
Nick Lewycky702cf1e2011-09-06 06:39:54 +0000686 Type *ResultTy) {
Eli Friedman61f67622008-08-04 23:49:06 +0000687 // Handle the simplest case efficiently.
688 if (K == 1)
689 return SE.getTruncateOrZeroExtend(It, ResultTy);
690
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000691 // We are using the following formula for BC(It, K):
692 //
693 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
694 //
Eli Friedman61f67622008-08-04 23:49:06 +0000695 // Suppose, W is the bitwidth of the return value. We must be prepared for
696 // overflow. Hence, we must assure that the result of our computation is
697 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
698 // safe in modular arithmetic.
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000699 //
Eli Friedman61f67622008-08-04 23:49:06 +0000700 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohmance973df2009-06-24 04:48:43 +0000701 // is something like the following, where T is the number of factors of 2 in
Eli Friedman61f67622008-08-04 23:49:06 +0000702 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
703 // exponentiation:
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000704 //
Eli Friedman61f67622008-08-04 23:49:06 +0000705 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000706 //
Eli Friedman61f67622008-08-04 23:49:06 +0000707 // This formula is trivially equivalent to the previous formula. However,
708 // this formula can be implemented much more efficiently. The trick is that
709 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
710 // arithmetic. To do exact division in modular arithmetic, all we have
711 // to do is multiply by the inverse. Therefore, this step can be done at
712 // width W.
Dan Gohmance973df2009-06-24 04:48:43 +0000713 //
Eli Friedman61f67622008-08-04 23:49:06 +0000714 // The next issue is how to safely do the division by 2^T. The way this
715 // is done is by doing the multiplication step at a width of at least W + T
716 // bits. This way, the bottom W+T bits of the product are accurate. Then,
717 // when we perform the division by 2^T (which is equivalent to a right shift
718 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
719 // truncated out after the division by 2^T.
720 //
721 // In comparison to just directly using the first formula, this technique
722 // is much more efficient; using the first formula requires W * K bits,
723 // but this formula less than W + K bits. Also, the first formula requires
724 // a division step, whereas this formula only requires multiplies and shifts.
725 //
726 // It doesn't matter whether the subtraction step is done in the calculation
727 // width or the input iteration count's width; if the subtraction overflows,
728 // the result must be zero anyway. We prefer here to do it in the width of
729 // the induction variable because it helps a lot for certain cases; CodeGen
730 // isn't smart enough to ignore the overflow, which leads to much less
731 // efficient code if the width of the subtraction is wider than the native
732 // register width.
733 //
734 // (It's possible to not widen at all by pulling out factors of 2 before
735 // the multiplication; for example, K=2 can be calculated as
736 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
737 // extra arithmetic, so it's not an obvious win, and it gets
738 // much more complicated for K > 3.)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000739
Eli Friedman61f67622008-08-04 23:49:06 +0000740 // Protection from insane SCEVs; this bound is conservative,
741 // but it probably doesn't matter.
742 if (K > 1000)
Dan Gohman31efa302009-04-18 17:58:19 +0000743 return SE.getCouldNotCompute();
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000744
Dan Gohmanb397e1a2009-04-21 01:07:12 +0000745 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000746
Eli Friedman61f67622008-08-04 23:49:06 +0000747 // Calculate K! / 2^T and T; we divide out the factors of two before
748 // multiplying for calculating K! / 2^T to avoid overflow.
749 // Other overflow doesn't matter because we only care about the bottom
750 // W bits of the result.
751 APInt OddFactorial(W, 1);
752 unsigned T = 1;
753 for (unsigned i = 3; i <= K; ++i) {
754 APInt Mult(W, i);
755 unsigned TwoFactors = Mult.countTrailingZeros();
756 T += TwoFactors;
757 Mult = Mult.lshr(TwoFactors);
758 OddFactorial *= Mult;
Chris Lattnerd934c702004-04-02 20:23:17 +0000759 }
Nick Lewyckyed169d52008-06-13 04:38:55 +0000760
Eli Friedman61f67622008-08-04 23:49:06 +0000761 // We need at least W + T bits for the multiplication step
Nick Lewycky21add8f2009-01-25 08:16:27 +0000762 unsigned CalculationBits = W + T;
Eli Friedman61f67622008-08-04 23:49:06 +0000763
Dan Gohman8b0a4192010-03-01 17:49:51 +0000764 // Calculate 2^T, at width T+W.
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +0000765 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
Eli Friedman61f67622008-08-04 23:49:06 +0000766
767 // Calculate the multiplicative inverse of K! / 2^T;
768 // this multiplication factor will perform the exact division by
769 // K! / 2^T.
770 APInt Mod = APInt::getSignedMinValue(W+1);
771 APInt MultiplyFactor = OddFactorial.zext(W+1);
772 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
773 MultiplyFactor = MultiplyFactor.trunc(W);
774
775 // Calculate the product, at width T+W
Chris Lattner229907c2011-07-18 04:54:35 +0000776 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson55f1c092009-08-13 21:58:54 +0000777 CalculationBits);
Dan Gohmanaf752342009-07-07 17:06:11 +0000778 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedman61f67622008-08-04 23:49:06 +0000779 for (unsigned i = 1; i != K; ++i) {
Dan Gohman1d2ded72010-05-03 22:09:21 +0000780 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedman61f67622008-08-04 23:49:06 +0000781 Dividend = SE.getMulExpr(Dividend,
782 SE.getTruncateOrZeroExtend(S, CalculationTy));
783 }
784
785 // Divide by 2^T
Dan Gohmanaf752342009-07-07 17:06:11 +0000786 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedman61f67622008-08-04 23:49:06 +0000787
788 // Truncate the result, and divide by K! / 2^T.
789
790 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
791 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattnerd934c702004-04-02 20:23:17 +0000792}
793
Chris Lattnerd934c702004-04-02 20:23:17 +0000794/// evaluateAtIteration - Return the value of this chain of recurrences at
795/// the specified iteration number. We can evaluate this recurrence by
796/// multiplying each element in the chain by the binomial coefficient
797/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
798///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000799/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattnerd934c702004-04-02 20:23:17 +0000800///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000801/// where BC(It, k) stands for binomial coefficient.
Chris Lattnerd934c702004-04-02 20:23:17 +0000802///
Dan Gohmanaf752342009-07-07 17:06:11 +0000803const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohman32291b12009-07-21 00:38:55 +0000804 ScalarEvolution &SE) const {
Dan Gohmanaf752342009-07-07 17:06:11 +0000805 const SCEV *Result = getStart();
Chris Lattnerd934c702004-04-02 20:23:17 +0000806 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000807 // The computation is correct in the face of overflow provided that the
808 // multiplication is performed _after_ the evaluation of the binomial
809 // coefficient.
Dan Gohmanaf752342009-07-07 17:06:11 +0000810 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewycky707663e2008-10-13 03:58:02 +0000811 if (isa<SCEVCouldNotCompute>(Coeff))
812 return Coeff;
813
814 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattnerd934c702004-04-02 20:23:17 +0000815 }
816 return Result;
817}
818
Chris Lattnerd934c702004-04-02 20:23:17 +0000819//===----------------------------------------------------------------------===//
820// SCEV Expression folder implementations
821//===----------------------------------------------------------------------===//
822
Dan Gohmanaf752342009-07-07 17:06:11 +0000823const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +0000824 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +0000825 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +0000826 "This is not a truncating conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +0000827 assert(isSCEVable(Ty) &&
828 "This is not a conversion to a SCEVable type!");
829 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +0000830
Dan Gohman3a302cb2009-07-13 20:50:19 +0000831 FoldingSetNodeID ID;
832 ID.AddInteger(scTruncate);
833 ID.AddPointer(Op);
834 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +0000835 void *IP = nullptr;
Dan Gohman3a302cb2009-07-13 20:50:19 +0000836 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
837
Dan Gohman3423e722009-06-30 20:13:32 +0000838 // Fold if the operand is constant.
Dan Gohmana30370b2009-05-04 22:02:23 +0000839 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman8d7576e2009-06-24 00:38:39 +0000840 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +0000841 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +0000842
Dan Gohman79af8542009-04-22 16:20:48 +0000843 // trunc(trunc(x)) --> trunc(x)
Dan Gohmana30370b2009-05-04 22:02:23 +0000844 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +0000845 return getTruncateExpr(ST->getOperand(), Ty);
846
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +0000847 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +0000848 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +0000849 return getTruncateOrSignExtend(SS->getOperand(), Ty);
850
851 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +0000852 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +0000853 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
854
Nick Lewycky5143f0f2011-01-19 16:59:46 +0000855 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
856 // eliminate all the truncates.
857 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
858 SmallVector<const SCEV *, 4> Operands;
859 bool hasTrunc = false;
860 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
861 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
862 hasTrunc = isa<SCEVTruncateExpr>(S);
863 Operands.push_back(S);
864 }
865 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +0000866 return getAddExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +0000867 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5143f0f2011-01-19 16:59:46 +0000868 }
869
Nick Lewycky5c901f32011-01-19 18:56:00 +0000870 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
871 // eliminate all the truncates.
872 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
873 SmallVector<const SCEV *, 4> Operands;
874 bool hasTrunc = false;
875 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
876 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
877 hasTrunc = isa<SCEVTruncateExpr>(S);
878 Operands.push_back(S);
879 }
880 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +0000881 return getMulExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +0000882 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c901f32011-01-19 18:56:00 +0000883 }
884
Dan Gohman5a728c92009-06-18 16:24:47 +0000885 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohmana30370b2009-05-04 22:02:23 +0000886 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +0000887 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +0000888 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman2e55cc52009-05-08 21:03:19 +0000889 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Andrew Trick8b55b732011-03-14 16:50:06 +0000890 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +0000891 }
892
Dan Gohman89dd42a2010-06-25 18:47:08 +0000893 // The cast wasn't folded; create an explicit cast node. We can reuse
894 // the existing insert position since if we get here, we won't have
895 // made any changes which would invalidate it.
Dan Gohman01c65a22010-03-18 18:49:47 +0000896 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
897 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000898 UniqueSCEVs.InsertNode(S, IP);
899 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +0000900}
901
Dan Gohmanaf752342009-07-07 17:06:11 +0000902const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +0000903 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +0000904 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanc1c2ba72009-04-16 19:25:55 +0000905 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +0000906 assert(isSCEVable(Ty) &&
907 "This is not a conversion to a SCEVable type!");
908 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanc1c2ba72009-04-16 19:25:55 +0000909
Dan Gohman3423e722009-06-30 20:13:32 +0000910 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +0000911 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
912 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +0000913 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +0000914
Dan Gohman79af8542009-04-22 16:20:48 +0000915 // zext(zext(x)) --> zext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +0000916 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +0000917 return getZeroExtendExpr(SZ->getOperand(), Ty);
918
Dan Gohman74a0ba12009-07-13 20:55:53 +0000919 // Before doing any expensive analysis, check to see if we've already
920 // computed a SCEV for this Op and Ty.
921 FoldingSetNodeID ID;
922 ID.AddInteger(scZeroExtend);
923 ID.AddPointer(Op);
924 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +0000925 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +0000926 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
927
Nick Lewyckybc98f5b2011-01-23 06:20:19 +0000928 // zext(trunc(x)) --> zext(x) or x or trunc(x)
929 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
930 // It's possible the bits taken off by the truncate were all zero bits. If
931 // so, we should be able to simplify this further.
932 const SCEV *X = ST->getOperand();
933 ConstantRange CR = getUnsignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +0000934 unsigned TruncBits = getTypeSizeInBits(ST->getType());
935 unsigned NewBits = getTypeSizeInBits(Ty);
936 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +0000937 CR.zextOrTrunc(NewBits)))
938 return getTruncateOrZeroExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +0000939 }
940
Dan Gohman76466372009-04-27 20:16:15 +0000941 // If the input value is a chrec scev, and we can prove that the value
Chris Lattnerd934c702004-04-02 20:23:17 +0000942 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman76466372009-04-27 20:16:15 +0000943 // operands (often constants). This allows analysis of something like
Chris Lattnerd934c702004-04-02 20:23:17 +0000944 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +0000945 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +0000946 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +0000947 const SCEV *Start = AR->getStart();
948 const SCEV *Step = AR->getStepRecurrence(*this);
949 unsigned BitWidth = getTypeSizeInBits(AR->getType());
950 const Loop *L = AR->getLoop();
951
Dan Gohman62ef6a72009-07-25 01:22:26 +0000952 // If we have special knowledge that this addrec won't overflow,
953 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +0000954 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohman62ef6a72009-07-25 01:22:26 +0000955 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
956 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +0000957 L, AR->getNoWrapFlags());
Dan Gohman62ef6a72009-07-25 01:22:26 +0000958
Dan Gohman76466372009-04-27 20:16:15 +0000959 // Check whether the backedge-taken count is SCEVCouldNotCompute.
960 // Note that this serves two purposes: It filters out loops that are
961 // simply not analyzable, and it covers the case where this code is
962 // being called from within backedge-taken count analysis, such that
963 // attempting to ask for the backedge-taken count would likely result
964 // in infinite recursion. In the later case, the analysis code will
965 // cope with a conservative value, and it will take care to purge
966 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +0000967 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +0000968 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +0000969 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +0000970 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +0000971
972 // Check whether the backedge-taken count can be losslessly casted to
973 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +0000974 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +0000975 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +0000976 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +0000977 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
978 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +0000979 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +0000980 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman007f5042010-02-24 19:31:06 +0000981 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +0000982 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
983 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
984 const SCEV *WideMaxBECount =
985 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +0000986 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +0000987 getAddExpr(WideStart,
988 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +0000989 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +0000990 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +0000991 // Cache knowledge of AR NUW, which is propagated to this AddRec.
992 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman494dac32009-04-29 22:28:28 +0000993 // Return the expression with the addrec on the outside.
994 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
995 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +0000996 L, AR->getNoWrapFlags());
997 }
Dan Gohman76466372009-04-27 20:16:15 +0000998 // Similar to above, only this time treat the step value as signed.
999 // This covers loops that count down.
Dan Gohman4fc36682009-05-18 15:58:39 +00001000 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001001 getAddExpr(WideStart,
1002 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001003 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001004 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001005 // Cache knowledge of AR NW, which is propagated to this AddRec.
1006 // Negative step causes unsigned wrap, but it still can't self-wrap.
1007 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohman494dac32009-04-29 22:28:28 +00001008 // Return the expression with the addrec on the outside.
1009 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1010 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001011 L, AR->getNoWrapFlags());
1012 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001013 }
1014
1015 // If the backedge is guarded by a comparison with the pre-inc value
1016 // the addrec is safe. Also, if the entry is guarded by a comparison
1017 // with the start value and the backedge is guarded by a comparison
1018 // with the post-inc value, the addrec is safe.
1019 if (isKnownPositive(Step)) {
1020 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1021 getUnsignedRange(Step).getUnsignedMax());
1022 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohmanb50349a2010-04-11 19:27:13 +00001023 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001024 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001025 AR->getPostIncExpr(*this), N))) {
1026 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1027 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmane65c9172009-07-13 21:35:55 +00001028 // Return the expression with the addrec on the outside.
1029 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1030 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001031 L, AR->getNoWrapFlags());
1032 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001033 } else if (isKnownNegative(Step)) {
1034 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1035 getSignedRange(Step).getSignedMin());
Dan Gohman5f18c542010-05-04 01:11:15 +00001036 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1037 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001038 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001039 AR->getPostIncExpr(*this), N))) {
1040 // Cache knowledge of AR NW, which is propagated to this AddRec.
1041 // Negative step causes unsigned wrap, but it still can't self-wrap.
1042 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1043 // Return the expression with the addrec on the outside.
Dan Gohmane65c9172009-07-13 21:35:55 +00001044 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1045 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001046 L, AR->getNoWrapFlags());
1047 }
Dan Gohman76466372009-04-27 20:16:15 +00001048 }
1049 }
1050 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001051
Dan Gohman74a0ba12009-07-13 20:55:53 +00001052 // The cast wasn't folded; create an explicit cast node.
1053 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001054 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001055 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1056 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001057 UniqueSCEVs.InsertNode(S, IP);
1058 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001059}
1060
Andrew Trick812276e2011-05-31 21:17:47 +00001061// Get the limit of a recurrence such that incrementing by Step cannot cause
1062// signed overflow as long as the value of the recurrence within the loop does
1063// not exceed this limit before incrementing.
1064static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1065 ICmpInst::Predicate *Pred,
1066 ScalarEvolution *SE) {
1067 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1068 if (SE->isKnownPositive(Step)) {
1069 *Pred = ICmpInst::ICMP_SLT;
1070 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1071 SE->getSignedRange(Step).getSignedMax());
1072 }
1073 if (SE->isKnownNegative(Step)) {
1074 *Pred = ICmpInst::ICMP_SGT;
1075 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1076 SE->getSignedRange(Step).getSignedMin());
1077 }
Craig Topper9f008862014-04-15 04:59:12 +00001078 return nullptr;
Andrew Trick812276e2011-05-31 21:17:47 +00001079}
1080
1081// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1082// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1083// or postincrement sibling. This allows normalizing a sign extended AddRec as
1084// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1085// result, the expression "Step + sext(PreIncAR)" is congruent with
1086// "sext(PostIncAR)"
1087static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
Chris Lattner229907c2011-07-18 04:54:35 +00001088 Type *Ty,
Andrew Trick812276e2011-05-31 21:17:47 +00001089 ScalarEvolution *SE) {
1090 const Loop *L = AR->getLoop();
1091 const SCEV *Start = AR->getStart();
1092 const SCEV *Step = AR->getStepRecurrence(*SE);
1093
1094 // Check for a simple looking step prior to loop entry.
1095 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001096 if (!SA)
Craig Topper9f008862014-04-15 04:59:12 +00001097 return nullptr;
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001098
1099 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1100 // subtraction is expensive. For this purpose, perform a quick and dirty
1101 // difference, by checking for Step in the operand list.
1102 SmallVector<const SCEV *, 4> DiffOps;
Tobias Grosser924221c2014-05-07 06:07:47 +00001103 for (const SCEV *Op : SA->operands())
1104 if (Op != Step)
1105 DiffOps.push_back(Op);
1106
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001107 if (DiffOps.size() == SA->getNumOperands())
Craig Topper9f008862014-04-15 04:59:12 +00001108 return nullptr;
Andrew Trick812276e2011-05-31 21:17:47 +00001109
1110 // This is a postinc AR. Check for overflow on the preinc recurrence using the
1111 // same three conditions that getSignExtendedExpr checks.
1112
1113 // 1. NSW flags on the step increment.
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001114 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
Andrew Trick812276e2011-05-31 21:17:47 +00001115 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1116 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1117
Andrew Trick8ef3ad02011-06-01 19:14:56 +00001118 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trick812276e2011-05-31 21:17:47 +00001119 return PreStart;
Andrew Trick812276e2011-05-31 21:17:47 +00001120
1121 // 2. Direct overflow check on the step operation's expression.
1122 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
Chris Lattner229907c2011-07-18 04:54:35 +00001123 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
Andrew Trick812276e2011-05-31 21:17:47 +00001124 const SCEV *OperandExtendedStart =
1125 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1126 SE->getSignExtendExpr(Step, WideTy));
1127 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1128 // Cache knowledge of PreAR NSW.
1129 if (PreAR)
1130 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1131 // FIXME: this optimization needs a unit test
1132 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1133 return PreStart;
1134 }
1135
1136 // 3. Loop precondition.
1137 ICmpInst::Predicate Pred;
1138 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1139
Andrew Trick8ef3ad02011-06-01 19:14:56 +00001140 if (OverflowLimit &&
1141 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
Andrew Trick812276e2011-05-31 21:17:47 +00001142 return PreStart;
1143 }
Craig Topper9f008862014-04-15 04:59:12 +00001144 return nullptr;
Andrew Trick812276e2011-05-31 21:17:47 +00001145}
1146
1147// Get the normalized sign-extended expression for this AddRec's Start.
1148static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
Chris Lattner229907c2011-07-18 04:54:35 +00001149 Type *Ty,
Andrew Trick812276e2011-05-31 21:17:47 +00001150 ScalarEvolution *SE) {
1151 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1152 if (!PreStart)
1153 return SE->getSignExtendExpr(AR->getStart(), Ty);
1154
1155 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1156 SE->getSignExtendExpr(PreStart, Ty));
1157}
1158
Dan Gohmanaf752342009-07-07 17:06:11 +00001159const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001160 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001161 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001162 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001163 assert(isSCEVable(Ty) &&
1164 "This is not a conversion to a SCEVable type!");
1165 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001166
Dan Gohman3423e722009-06-30 20:13:32 +00001167 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001168 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1169 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001170 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001171
Dan Gohman79af8542009-04-22 16:20:48 +00001172 // sext(sext(x)) --> sext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001173 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001174 return getSignExtendExpr(SS->getOperand(), Ty);
1175
Nick Lewyckye9ea75e2011-01-19 15:56:12 +00001176 // sext(zext(x)) --> zext(x)
1177 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1178 return getZeroExtendExpr(SZ->getOperand(), Ty);
1179
Dan Gohman74a0ba12009-07-13 20:55:53 +00001180 // Before doing any expensive analysis, check to see if we've already
1181 // computed a SCEV for this Op and Ty.
1182 FoldingSetNodeID ID;
1183 ID.AddInteger(scSignExtend);
1184 ID.AddPointer(Op);
1185 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001186 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001187 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1188
Nick Lewyckyb32c8942011-01-22 22:06:21 +00001189 // If the input value is provably positive, build a zext instead.
1190 if (isKnownNonNegative(Op))
1191 return getZeroExtendExpr(Op, Ty);
1192
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001193 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1194 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1195 // It's possible the bits taken off by the truncate were all sign bits. If
1196 // so, we should be able to simplify this further.
1197 const SCEV *X = ST->getOperand();
1198 ConstantRange CR = getSignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001199 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1200 unsigned NewBits = getTypeSizeInBits(Ty);
1201 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001202 CR.sextOrTrunc(NewBits)))
1203 return getTruncateOrSignExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001204 }
1205
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001206 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1207 if (auto SA = dyn_cast<SCEVAddExpr>(Op)) {
1208 if (SA->getNumOperands() == 2) {
1209 auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1210 auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1211 if (SMul && SC1) {
1212 if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001213 const APInt &C1 = SC1->getValue()->getValue();
1214 const APInt &C2 = SC2->getValue()->getValue();
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001215 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001216 C2.ugt(C1) && C2.isPowerOf2())
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001217 return getAddExpr(getSignExtendExpr(SC1, Ty),
1218 getSignExtendExpr(SMul, Ty));
1219 }
1220 }
1221 }
1222 }
Dan Gohman76466372009-04-27 20:16:15 +00001223 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001224 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001225 // operands (often constants). This allows analysis of something like
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001226 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001227 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001228 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001229 const SCEV *Start = AR->getStart();
1230 const SCEV *Step = AR->getStepRecurrence(*this);
1231 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1232 const Loop *L = AR->getLoop();
1233
Dan Gohman62ef6a72009-07-25 01:22:26 +00001234 // If we have special knowledge that this addrec won't overflow,
1235 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001236 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trick812276e2011-05-31 21:17:47 +00001237 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman62ef6a72009-07-25 01:22:26 +00001238 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001239 L, SCEV::FlagNSW);
Dan Gohman62ef6a72009-07-25 01:22:26 +00001240
Dan Gohman76466372009-04-27 20:16:15 +00001241 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1242 // Note that this serves two purposes: It filters out loops that are
1243 // simply not analyzable, and it covers the case where this code is
1244 // being called from within backedge-taken count analysis, such that
1245 // attempting to ask for the backedge-taken count would likely result
1246 // in infinite recursion. In the later case, the analysis code will
1247 // cope with a conservative value, and it will take care to purge
1248 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001249 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001250 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001251 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001252 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001253
1254 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohman494dac32009-04-29 22:28:28 +00001255 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001256 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001257 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001258 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001259 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1260 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001261 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001262 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001263 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001264 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1265 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1266 const SCEV *WideMaxBECount =
1267 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001268 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001269 getAddExpr(WideStart,
1270 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001271 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001272 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001273 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1274 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman494dac32009-04-29 22:28:28 +00001275 // Return the expression with the addrec on the outside.
Andrew Trick812276e2011-05-31 21:17:47 +00001276 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman494dac32009-04-29 22:28:28 +00001277 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001278 L, AR->getNoWrapFlags());
1279 }
Dan Gohman8c129d72009-07-16 17:34:36 +00001280 // Similar to above, only this time treat the step value as unsigned.
1281 // This covers loops that count up with an unsigned step.
Dan Gohman8c129d72009-07-16 17:34:36 +00001282 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001283 getAddExpr(WideStart,
1284 getMulExpr(WideMaxBECount,
Dan Gohman8c129d72009-07-16 17:34:36 +00001285 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001286 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001287 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1288 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman8c129d72009-07-16 17:34:36 +00001289 // Return the expression with the addrec on the outside.
Andrew Trick812276e2011-05-31 21:17:47 +00001290 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman8c129d72009-07-16 17:34:36 +00001291 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001292 L, AR->getNoWrapFlags());
1293 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001294 }
1295
1296 // If the backedge is guarded by a comparison with the pre-inc value
1297 // the addrec is safe. Also, if the entry is guarded by a comparison
1298 // with the start value and the backedge is guarded by a comparison
1299 // with the post-inc value, the addrec is safe.
Andrew Trick812276e2011-05-31 21:17:47 +00001300 ICmpInst::Predicate Pred;
1301 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1302 if (OverflowLimit &&
1303 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1304 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1305 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1306 OverflowLimit)))) {
1307 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1308 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1309 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1310 getSignExtendExpr(Step, Ty),
1311 L, AR->getNoWrapFlags());
Dan Gohman76466372009-04-27 20:16:15 +00001312 }
1313 }
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001314 // If Start and Step are constants, check if we can apply this
1315 // transformation:
1316 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1317 auto SC1 = dyn_cast<SCEVConstant>(Start);
1318 auto SC2 = dyn_cast<SCEVConstant>(Step);
1319 if (SC1 && SC2) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001320 const APInt &C1 = SC1->getValue()->getValue();
1321 const APInt &C2 = SC2->getValue()->getValue();
1322 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1323 C2.isPowerOf2()) {
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001324 Start = getSignExtendExpr(Start, Ty);
1325 const SCEV *NewAR = getAddRecExpr(getConstant(AR->getType(), 0), Step,
1326 L, AR->getNoWrapFlags());
1327 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1328 }
1329 }
Dan Gohman76466372009-04-27 20:16:15 +00001330 }
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001331
Dan Gohman74a0ba12009-07-13 20:55:53 +00001332 // The cast wasn't folded; create an explicit cast node.
1333 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001334 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001335 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1336 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001337 UniqueSCEVs.InsertNode(S, IP);
1338 return S;
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001339}
1340
Dan Gohman8db2edc2009-06-13 15:56:47 +00001341/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1342/// unspecified bits out to the given type.
1343///
Dan Gohmanaf752342009-07-07 17:06:11 +00001344const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001345 Type *Ty) {
Dan Gohman8db2edc2009-06-13 15:56:47 +00001346 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1347 "This is not an extending conversion!");
1348 assert(isSCEVable(Ty) &&
1349 "This is not a conversion to a SCEVable type!");
1350 Ty = getEffectiveSCEVType(Ty);
1351
1352 // Sign-extend negative constants.
1353 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1354 if (SC->getValue()->getValue().isNegative())
1355 return getSignExtendExpr(Op, Ty);
1356
1357 // Peel off a truncate cast.
1358 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001359 const SCEV *NewOp = T->getOperand();
Dan Gohman8db2edc2009-06-13 15:56:47 +00001360 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1361 return getAnyExtendExpr(NewOp, Ty);
1362 return getTruncateOrNoop(NewOp, Ty);
1363 }
1364
1365 // Next try a zext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001366 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001367 if (!isa<SCEVZeroExtendExpr>(ZExt))
1368 return ZExt;
1369
1370 // Next try a sext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001371 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001372 if (!isa<SCEVSignExtendExpr>(SExt))
1373 return SExt;
1374
Dan Gohman51ad99d2010-01-21 02:09:26 +00001375 // Force the cast to be folded into the operands of an addrec.
1376 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1377 SmallVector<const SCEV *, 4> Ops;
Tobias Grosser924221c2014-05-07 06:07:47 +00001378 for (const SCEV *Op : AR->operands())
1379 Ops.push_back(getAnyExtendExpr(Op, Ty));
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001380 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001381 }
1382
Dan Gohman8db2edc2009-06-13 15:56:47 +00001383 // If the expression is obviously signed, use the sext cast value.
1384 if (isa<SCEVSMaxExpr>(Op))
1385 return SExt;
1386
1387 // Absent any other information, use the zext cast value.
1388 return ZExt;
1389}
1390
Dan Gohman038d02e2009-06-14 22:58:51 +00001391/// CollectAddOperandsWithScales - Process the given Ops list, which is
1392/// a list of operands to be added under the given scale, update the given
1393/// map. This is a helper function for getAddRecExpr. As an example of
1394/// what it does, given a sequence of operands that would form an add
1395/// expression like this:
1396///
Tobias Grosserba49e422014-03-05 10:37:17 +00001397/// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
Dan Gohman038d02e2009-06-14 22:58:51 +00001398///
1399/// where A and B are constants, update the map with these values:
1400///
1401/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1402///
1403/// and add 13 + A*B*29 to AccumulatedConstant.
1404/// This will allow getAddRecExpr to produce this:
1405///
1406/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1407///
1408/// This form often exposes folding opportunities that are hidden in
1409/// the original operand list.
1410///
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001411/// Return true iff it appears that any interesting folding opportunities
Dan Gohman038d02e2009-06-14 22:58:51 +00001412/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1413/// the common case where no interesting opportunities are present, and
1414/// is also used as a check to avoid infinite recursion.
1415///
1416static bool
Dan Gohmanaf752342009-07-07 17:06:11 +00001417CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
Craig Topper2cd5ff82013-07-11 16:22:38 +00001418 SmallVectorImpl<const SCEV *> &NewOps,
Dan Gohman038d02e2009-06-14 22:58:51 +00001419 APInt &AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001420 const SCEV *const *Ops, size_t NumOperands,
Dan Gohman038d02e2009-06-14 22:58:51 +00001421 const APInt &Scale,
1422 ScalarEvolution &SE) {
1423 bool Interesting = false;
1424
Dan Gohman45073042010-06-18 19:12:32 +00001425 // Iterate over the add operands. They are sorted, with constants first.
1426 unsigned i = 0;
1427 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1428 ++i;
1429 // Pull a buried constant out to the outside.
1430 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1431 Interesting = true;
1432 AccumulatedConstant += Scale * C->getValue()->getValue();
1433 }
1434
1435 // Next comes everything else. We're especially interested in multiplies
1436 // here, but they're in the middle, so just visit the rest with one loop.
1437 for (; i != NumOperands; ++i) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001438 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1439 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1440 APInt NewScale =
1441 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1442 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1443 // A multiplication of a constant with another add; recurse.
Dan Gohman00524492010-03-18 01:17:13 +00001444 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohman038d02e2009-06-14 22:58:51 +00001445 Interesting |=
1446 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001447 Add->op_begin(), Add->getNumOperands(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001448 NewScale, SE);
1449 } else {
1450 // A multiplication of a constant with some other value. Update
1451 // the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001452 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1453 const SCEV *Key = SE.getMulExpr(MulOps);
1454 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001455 M.insert(std::make_pair(Key, NewScale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001456 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001457 NewOps.push_back(Pair.first->first);
1458 } else {
1459 Pair.first->second += NewScale;
1460 // The map already had an entry for this value, which may indicate
1461 // a folding opportunity.
1462 Interesting = true;
1463 }
1464 }
Dan Gohman038d02e2009-06-14 22:58:51 +00001465 } else {
1466 // An ordinary operand. Update the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001467 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001468 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001469 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001470 NewOps.push_back(Pair.first->first);
1471 } else {
1472 Pair.first->second += Scale;
1473 // The map already had an entry for this value, which may indicate
1474 // a folding opportunity.
1475 Interesting = true;
1476 }
1477 }
1478 }
1479
1480 return Interesting;
1481}
1482
1483namespace {
1484 struct APIntCompare {
1485 bool operator()(const APInt &LHS, const APInt &RHS) const {
1486 return LHS.ult(RHS);
1487 }
1488 };
1489}
1490
Dan Gohman4d5435d2009-05-24 23:45:28 +00001491/// getAddExpr - Get a canonical add expression, or something simpler if
1492/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00001493const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00001494 SCEV::NoWrapFlags Flags) {
1495 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1496 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00001497 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner74498e12004-04-07 16:16:11 +00001498 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00001499#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00001500 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00001501 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohman9136d9f2010-06-18 19:09:27 +00001502 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00001503 "SCEVAddExpr operand types don't match!");
1504#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00001505
Andrew Trick8b55b732011-03-14 16:50:06 +00001506 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001507 // And vice-versa.
1508 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1509 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1510 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001511 bool All = true;
Dan Gohman74c61502010-08-16 16:27:53 +00001512 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1513 E = Ops.end(); I != E; ++I)
1514 if (!isKnownNonNegative(*I)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001515 All = false;
1516 break;
1517 }
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001518 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001519 }
1520
Chris Lattnerd934c702004-04-02 20:23:17 +00001521 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00001522 GroupByComplexity(Ops, LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00001523
1524 // If there are any constants, fold them together.
1525 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00001526 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001527 ++Idx;
Chris Lattner74498e12004-04-07 16:16:11 +00001528 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00001529 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001530 // We found two constants, fold them together!
Dan Gohman0652fd52009-06-14 22:47:23 +00001531 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1532 RHSC->getValue()->getValue());
Dan Gohman011cf682009-06-14 22:53:57 +00001533 if (Ops.size() == 2) return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001534 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001535 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001536 }
1537
1538 // If we are left with a constant zero being added, strip it off.
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001539 if (LHSC->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001540 Ops.erase(Ops.begin());
1541 --Idx;
1542 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001543
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001544 if (Ops.size() == 1) return Ops[0];
1545 }
Misha Brukman01808ca2005-04-21 21:13:18 +00001546
Dan Gohman15871f22010-08-27 21:39:59 +00001547 // Okay, check to see if the same value occurs in the operand list more than
1548 // once. If so, merge them together into an multiply expression. Since we
1549 // sorted the list, these values are required to be adjacent.
Chris Lattner229907c2011-07-18 04:54:35 +00001550 Type *Ty = Ops[0]->getType();
Dan Gohmane67b2872010-08-12 14:46:54 +00001551 bool FoundMatch = false;
Dan Gohman15871f22010-08-27 21:39:59 +00001552 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattnerd934c702004-04-02 20:23:17 +00001553 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman15871f22010-08-27 21:39:59 +00001554 // Scan ahead to count how many equal operands there are.
1555 unsigned Count = 2;
1556 while (i+Count != e && Ops[i+Count] == Ops[i])
1557 ++Count;
1558 // Merge the values into a multiply.
1559 const SCEV *Scale = getConstant(Ty, Count);
1560 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1561 if (Ops.size() == Count)
Chris Lattnerd934c702004-04-02 20:23:17 +00001562 return Mul;
Dan Gohmane67b2872010-08-12 14:46:54 +00001563 Ops[i] = Mul;
Dan Gohman15871f22010-08-27 21:39:59 +00001564 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohmanfe22f1d2010-08-28 00:39:27 +00001565 --i; e -= Count - 1;
Dan Gohmane67b2872010-08-12 14:46:54 +00001566 FoundMatch = true;
Chris Lattnerd934c702004-04-02 20:23:17 +00001567 }
Dan Gohmane67b2872010-08-12 14:46:54 +00001568 if (FoundMatch)
Andrew Trick8b55b732011-03-14 16:50:06 +00001569 return getAddExpr(Ops, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00001570
Dan Gohman2e55cc52009-05-08 21:03:19 +00001571 // Check for truncates. If all the operands are truncated from the same
1572 // type, see if factoring out the truncate would permit the result to be
1573 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1574 // if the contents of the resulting outer trunc fold to something simple.
1575 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1576 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattner229907c2011-07-18 04:54:35 +00001577 Type *DstType = Trunc->getType();
1578 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00001579 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00001580 bool Ok = true;
1581 // Check all the operands to see if they can be represented in the
1582 // source type of the truncate.
1583 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1584 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1585 if (T->getOperand()->getType() != SrcType) {
1586 Ok = false;
1587 break;
1588 }
1589 LargeOps.push_back(T->getOperand());
1590 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00001591 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00001592 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001593 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00001594 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1595 if (const SCEVTruncateExpr *T =
1596 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1597 if (T->getOperand()->getType() != SrcType) {
1598 Ok = false;
1599 break;
1600 }
1601 LargeMulOps.push_back(T->getOperand());
1602 } else if (const SCEVConstant *C =
1603 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00001604 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00001605 } else {
1606 Ok = false;
1607 break;
1608 }
1609 }
1610 if (Ok)
1611 LargeOps.push_back(getMulExpr(LargeMulOps));
1612 } else {
1613 Ok = false;
1614 break;
1615 }
1616 }
1617 if (Ok) {
1618 // Evaluate the expression in the larger type.
Andrew Trick8b55b732011-03-14 16:50:06 +00001619 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman2e55cc52009-05-08 21:03:19 +00001620 // If it folds to something simple, use it. Otherwise, don't.
1621 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1622 return getTruncateExpr(Fold, DstType);
1623 }
1624 }
1625
1626 // Skip past any other cast SCEVs.
Dan Gohmaneed125f2007-06-18 19:30:09 +00001627 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1628 ++Idx;
1629
1630 // If there are add operands they would be next.
Chris Lattnerd934c702004-04-02 20:23:17 +00001631 if (Idx < Ops.size()) {
1632 bool DeletedAdd = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00001633 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001634 // If we have an add, expand the add operands onto the end of the operands
1635 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00001636 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00001637 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00001638 DeletedAdd = true;
1639 }
1640
1641 // If we deleted at least one add, we added operands to the end of the list,
1642 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00001643 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00001644 if (DeletedAdd)
Dan Gohmana37eaf22007-10-22 18:31:58 +00001645 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001646 }
1647
1648 // Skip over the add expression until we get to a multiply.
1649 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1650 ++Idx;
1651
Dan Gohman038d02e2009-06-14 22:58:51 +00001652 // Check to see if there are any folding opportunities present with
1653 // operands multiplied by constant values.
1654 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1655 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohmanaf752342009-07-07 17:06:11 +00001656 DenseMap<const SCEV *, APInt> M;
1657 SmallVector<const SCEV *, 8> NewOps;
Dan Gohman038d02e2009-06-14 22:58:51 +00001658 APInt AccumulatedConstant(BitWidth, 0);
1659 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001660 Ops.data(), Ops.size(),
1661 APInt(BitWidth, 1), *this)) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001662 // Some interesting folding opportunity is present, so its worthwhile to
1663 // re-generate the operands list. Group the operands by constant scale,
1664 // to avoid multiplying by the same constant scale multiple times.
Dan Gohmanaf752342009-07-07 17:06:11 +00001665 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Craig Topper31ee5862013-07-03 15:07:05 +00001666 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001667 E = NewOps.end(); I != E; ++I)
1668 MulOpLists[M.find(*I)->second].push_back(*I);
1669 // Re-generate the operands list.
1670 Ops.clear();
1671 if (AccumulatedConstant != 0)
1672 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohmance973df2009-06-24 04:48:43 +00001673 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1674 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohman038d02e2009-06-14 22:58:51 +00001675 if (I->first != 0)
Dan Gohmance973df2009-06-24 04:48:43 +00001676 Ops.push_back(getMulExpr(getConstant(I->first),
1677 getAddExpr(I->second)));
Dan Gohman038d02e2009-06-14 22:58:51 +00001678 if (Ops.empty())
Dan Gohman1d2ded72010-05-03 22:09:21 +00001679 return getConstant(Ty, 0);
Dan Gohman038d02e2009-06-14 22:58:51 +00001680 if (Ops.size() == 1)
1681 return Ops[0];
1682 return getAddExpr(Ops);
1683 }
1684 }
1685
Chris Lattnerd934c702004-04-02 20:23:17 +00001686 // If we are adding something to a multiply expression, make sure the
1687 // something is not already an operand of the multiply. If so, merge it into
1688 // the multiply.
1689 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman48f82222009-05-04 22:30:44 +00001690 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001691 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman48f82222009-05-04 22:30:44 +00001692 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman157847f2010-08-12 14:52:55 +00001693 if (isa<SCEVConstant>(MulOpSCEV))
1694 continue;
Chris Lattnerd934c702004-04-02 20:23:17 +00001695 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman157847f2010-08-12 14:52:55 +00001696 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001697 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohmanaf752342009-07-07 17:06:11 +00001698 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00001699 if (Mul->getNumOperands() != 2) {
1700 // If the multiply has more than two operands, we must get the
1701 // Y*Z term.
Dan Gohman797a1db2010-08-16 16:57:24 +00001702 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1703 Mul->op_begin()+MulOp);
1704 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00001705 InnerMul = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00001706 }
Dan Gohman1d2ded72010-05-03 22:09:21 +00001707 const SCEV *One = getConstant(Ty, 1);
Dan Gohmancf32f2b2010-08-13 20:17:14 +00001708 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman157847f2010-08-12 14:52:55 +00001709 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattnerd934c702004-04-02 20:23:17 +00001710 if (Ops.size() == 2) return OuterMul;
1711 if (AddOp < Idx) {
1712 Ops.erase(Ops.begin()+AddOp);
1713 Ops.erase(Ops.begin()+Idx-1);
1714 } else {
1715 Ops.erase(Ops.begin()+Idx);
1716 Ops.erase(Ops.begin()+AddOp-1);
1717 }
1718 Ops.push_back(OuterMul);
Dan Gohmana37eaf22007-10-22 18:31:58 +00001719 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001720 }
Misha Brukman01808ca2005-04-21 21:13:18 +00001721
Chris Lattnerd934c702004-04-02 20:23:17 +00001722 // Check this multiply against other multiplies being added together.
1723 for (unsigned OtherMulIdx = Idx+1;
1724 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1725 ++OtherMulIdx) {
Dan Gohman48f82222009-05-04 22:30:44 +00001726 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001727 // If MulOp occurs in OtherMul, we can fold the two multiplies
1728 // together.
1729 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1730 OMulOp != e; ++OMulOp)
1731 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1732 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohmanaf752342009-07-07 17:06:11 +00001733 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00001734 if (Mul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00001735 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00001736 Mul->op_begin()+MulOp);
1737 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00001738 InnerMul1 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00001739 }
Dan Gohmanaf752342009-07-07 17:06:11 +00001740 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00001741 if (OtherMul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00001742 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00001743 OtherMul->op_begin()+OMulOp);
1744 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00001745 InnerMul2 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00001746 }
Dan Gohmanaf752342009-07-07 17:06:11 +00001747 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1748 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattnerd934c702004-04-02 20:23:17 +00001749 if (Ops.size() == 2) return OuterMul;
Dan Gohmanaabfc522010-08-31 22:50:31 +00001750 Ops.erase(Ops.begin()+Idx);
1751 Ops.erase(Ops.begin()+OtherMulIdx-1);
1752 Ops.push_back(OuterMul);
1753 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001754 }
1755 }
1756 }
1757 }
1758
1759 // If there are any add recurrences in the operands list, see if any other
1760 // added values are loop invariant. If so, we can fold them into the
1761 // recurrence.
1762 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1763 ++Idx;
1764
1765 // Scan over all recurrences, trying to fold loop invariants into them.
1766 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1767 // Scan all of the other operands to this add and add them to the vector if
1768 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00001769 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00001770 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001771 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00001772 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00001773 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001774 LIOps.push_back(Ops[i]);
1775 Ops.erase(Ops.begin()+i);
1776 --i; --e;
1777 }
1778
1779 // If we found some loop invariants, fold them into the recurrence.
1780 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00001781 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattnerd934c702004-04-02 20:23:17 +00001782 LIOps.push_back(AddRec->getStart());
1783
Dan Gohmanaf752342009-07-07 17:06:11 +00001784 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman7a2dab82009-12-18 03:57:04 +00001785 AddRec->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00001786 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00001787
Dan Gohman16206132010-06-30 07:16:37 +00001788 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher23bf3ba2011-01-11 09:02:09 +00001789 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001790 // Always propagate NW.
1791 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick8b55b732011-03-14 16:50:06 +00001792 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman51f13052009-12-18 18:45:31 +00001793
Chris Lattnerd934c702004-04-02 20:23:17 +00001794 // If all of the other operands were loop invariant, we are done.
1795 if (Ops.size() == 1) return NewRec;
1796
Nick Lewyckydb66b822011-09-06 05:08:09 +00001797 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00001798 for (unsigned i = 0;; ++i)
1799 if (Ops[i] == AddRec) {
1800 Ops[i] = NewRec;
1801 break;
1802 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00001803 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001804 }
1805
1806 // Okay, if there weren't any loop invariants to be folded, check to see if
1807 // there are multiple AddRec's with the same loop induction variable being
1808 // added together. If so, we can fold them.
1809 for (unsigned OtherIdx = Idx+1;
Dan Gohmanc866bf42010-08-27 20:45:56 +00001810 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1811 ++OtherIdx)
1812 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1813 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1814 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1815 AddRec->op_end());
1816 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1817 ++OtherIdx)
Dan Gohman028c1812010-08-29 14:53:34 +00001818 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohmanc866bf42010-08-27 20:45:56 +00001819 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman028c1812010-08-29 14:53:34 +00001820 if (OtherAddRec->getLoop() == AddRecLoop) {
1821 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1822 i != e; ++i) {
Dan Gohmanc866bf42010-08-27 20:45:56 +00001823 if (i >= AddRecOps.size()) {
Dan Gohman028c1812010-08-29 14:53:34 +00001824 AddRecOps.append(OtherAddRec->op_begin()+i,
1825 OtherAddRec->op_end());
Dan Gohmanc866bf42010-08-27 20:45:56 +00001826 break;
1827 }
Dan Gohman028c1812010-08-29 14:53:34 +00001828 AddRecOps[i] = getAddExpr(AddRecOps[i],
1829 OtherAddRec->getOperand(i));
Dan Gohmanc866bf42010-08-27 20:45:56 +00001830 }
1831 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattnerd934c702004-04-02 20:23:17 +00001832 }
Andrew Trick8b55b732011-03-14 16:50:06 +00001833 // Step size has changed, so we cannot guarantee no self-wraparound.
1834 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohmanc866bf42010-08-27 20:45:56 +00001835 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001836 }
1837
1838 // Otherwise couldn't fold anything into this recurrence. Move onto the
1839 // next one.
1840 }
1841
1842 // Okay, it looks like we really DO need an add expr. Check to see if we
1843 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001844 FoldingSetNodeID ID;
1845 ID.AddInteger(scAddExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001846 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1847 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00001848 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00001849 SCEVAddExpr *S =
1850 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1851 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00001852 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1853 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00001854 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1855 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00001856 UniqueSCEVs.InsertNode(S, IP);
1857 }
Andrew Trick8b55b732011-03-14 16:50:06 +00001858 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001859 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001860}
1861
Nick Lewycky287682e2011-10-04 06:51:26 +00001862static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
1863 uint64_t k = i*j;
1864 if (j > 1 && k / j != i) Overflow = true;
1865 return k;
1866}
1867
1868/// Compute the result of "n choose k", the binomial coefficient. If an
1869/// intermediate computation overflows, Overflow will be set and the return will
Benjamin Kramerbde91762012-06-02 10:20:22 +00001870/// be garbage. Overflow is not cleared on absence of overflow.
Nick Lewycky287682e2011-10-04 06:51:26 +00001871static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
1872 // We use the multiplicative formula:
1873 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
1874 // At each iteration, we take the n-th term of the numeral and divide by the
1875 // (k-n)th term of the denominator. This division will always produce an
1876 // integral result, and helps reduce the chance of overflow in the
1877 // intermediate computations. However, we can still overflow even when the
1878 // final result would fit.
1879
1880 if (n == 0 || n == k) return 1;
1881 if (k > n) return 0;
1882
1883 if (k > n/2)
1884 k = n-k;
1885
1886 uint64_t r = 1;
1887 for (uint64_t i = 1; i <= k; ++i) {
1888 r = umul_ov(r, n-(i-1), Overflow);
1889 r /= i;
1890 }
1891 return r;
1892}
1893
Dan Gohman4d5435d2009-05-24 23:45:28 +00001894/// getMulExpr - Get a canonical multiply expression, or something simpler if
1895/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00001896const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00001897 SCEV::NoWrapFlags Flags) {
1898 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
1899 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00001900 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohman51ad99d2010-01-21 02:09:26 +00001901 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00001902#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00001903 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00001904 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00001905 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00001906 "SCEVMulExpr operand types don't match!");
1907#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00001908
Andrew Trick8b55b732011-03-14 16:50:06 +00001909 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001910 // And vice-versa.
1911 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1912 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1913 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001914 bool All = true;
Dan Gohman74c61502010-08-16 16:27:53 +00001915 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1916 E = Ops.end(); I != E; ++I)
1917 if (!isKnownNonNegative(*I)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001918 All = false;
1919 break;
1920 }
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001921 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001922 }
1923
Chris Lattnerd934c702004-04-02 20:23:17 +00001924 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00001925 GroupByComplexity(Ops, LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00001926
1927 // If there are any constants, fold them together.
1928 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00001929 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001930
1931 // C1*(C2+V) -> C1*C2 + C1*V
1932 if (Ops.size() == 2)
Dan Gohmana30370b2009-05-04 22:02:23 +00001933 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattnerd934c702004-04-02 20:23:17 +00001934 if (Add->getNumOperands() == 2 &&
1935 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohmana37eaf22007-10-22 18:31:58 +00001936 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1937 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001938
Chris Lattnerd934c702004-04-02 20:23:17 +00001939 ++Idx;
Dan Gohmana30370b2009-05-04 22:02:23 +00001940 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001941 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00001942 ConstantInt *Fold = ConstantInt::get(getContext(),
1943 LHSC->getValue()->getValue() *
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001944 RHSC->getValue()->getValue());
1945 Ops[0] = getConstant(Fold);
1946 Ops.erase(Ops.begin()+1); // Erase the folded element
1947 if (Ops.size() == 1) return Ops[0];
1948 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001949 }
1950
1951 // If we are left with a constant one being multiplied, strip it off.
1952 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1953 Ops.erase(Ops.begin());
1954 --Idx;
Reid Spencer2e54a152007-03-02 00:28:52 +00001955 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001956 // If we have a multiply of zero, it will always be zero.
1957 return Ops[0];
Dan Gohman51ad99d2010-01-21 02:09:26 +00001958 } else if (Ops[0]->isAllOnesValue()) {
1959 // If we have a mul by -1 of an add, try distributing the -1 among the
1960 // add operands.
Andrew Trick8b55b732011-03-14 16:50:06 +00001961 if (Ops.size() == 2) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001962 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1963 SmallVector<const SCEV *, 4> NewOps;
1964 bool AnyFolded = false;
Andrew Trick8b55b732011-03-14 16:50:06 +00001965 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
1966 E = Add->op_end(); I != E; ++I) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001967 const SCEV *Mul = getMulExpr(Ops[0], *I);
1968 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1969 NewOps.push_back(Mul);
1970 }
1971 if (AnyFolded)
1972 return getAddExpr(NewOps);
1973 }
Andrew Tricke92dcce2011-03-14 17:38:54 +00001974 else if (const SCEVAddRecExpr *
1975 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
1976 // Negation preserves a recurrence's no self-wrap property.
1977 SmallVector<const SCEV *, 4> Operands;
1978 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
1979 E = AddRec->op_end(); I != E; ++I) {
1980 Operands.push_back(getMulExpr(Ops[0], *I));
1981 }
1982 return getAddRecExpr(Operands, AddRec->getLoop(),
1983 AddRec->getNoWrapFlags(SCEV::FlagNW));
1984 }
Andrew Trick8b55b732011-03-14 16:50:06 +00001985 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001986 }
Dan Gohmanfe4b2912010-04-13 16:49:23 +00001987
1988 if (Ops.size() == 1)
1989 return Ops[0];
Chris Lattnerd934c702004-04-02 20:23:17 +00001990 }
1991
1992 // Skip over the add expression until we get to a multiply.
1993 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1994 ++Idx;
1995
Chris Lattnerd934c702004-04-02 20:23:17 +00001996 // If there are mul operands inline them all into this expression.
1997 if (Idx < Ops.size()) {
1998 bool DeletedMul = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00001999 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002000 // If we have an mul, expand the mul operands onto the end of the operands
2001 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002002 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002003 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002004 DeletedMul = true;
2005 }
2006
2007 // If we deleted at least one mul, we added operands to the end of the list,
2008 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002009 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002010 if (DeletedMul)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002011 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002012 }
2013
2014 // If there are any add recurrences in the operands list, see if any other
2015 // added values are loop invariant. If so, we can fold them into the
2016 // recurrence.
2017 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2018 ++Idx;
2019
2020 // Scan over all recurrences, trying to fold loop invariants into them.
2021 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2022 // Scan all of the other operands to this mul and add them to the vector if
2023 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002024 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002025 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f2de012010-08-29 14:55:19 +00002026 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002027 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002028 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002029 LIOps.push_back(Ops[i]);
2030 Ops.erase(Ops.begin()+i);
2031 --i; --e;
2032 }
2033
2034 // If we found some loop invariants, fold them into the recurrence.
2035 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002036 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohmanaf752342009-07-07 17:06:11 +00002037 SmallVector<const SCEV *, 4> NewOps;
Chris Lattnerd934c702004-04-02 20:23:17 +00002038 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman8f5954f2010-06-17 23:34:09 +00002039 const SCEV *Scale = getMulExpr(LIOps);
2040 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2041 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002042
Dan Gohman16206132010-06-30 07:16:37 +00002043 // Build the new addrec. Propagate the NUW and NSW flags if both the
2044 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick8b55b732011-03-14 16:50:06 +00002045 //
2046 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002047 // will be inferred if either NUW or NSW is true.
Andrew Trick8b55b732011-03-14 16:50:06 +00002048 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2049 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002050
2051 // If all of the other operands were loop invariant, we are done.
2052 if (Ops.size() == 1) return NewRec;
2053
Nick Lewyckydb66b822011-09-06 05:08:09 +00002054 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002055 for (unsigned i = 0;; ++i)
2056 if (Ops[i] == AddRec) {
2057 Ops[i] = NewRec;
2058 break;
2059 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002060 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002061 }
2062
2063 // Okay, if there weren't any loop invariants to be folded, check to see if
2064 // there are multiple AddRec's with the same loop induction variable being
2065 // multiplied together. If so, we can fold them.
Nick Lewycky97756402014-09-01 05:17:15 +00002066
2067 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2068 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2069 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2070 // ]]],+,...up to x=2n}.
2071 // Note that the arguments to choose() are always integers with values
2072 // known at compile time, never SCEV objects.
2073 //
2074 // The implementation avoids pointless extra computations when the two
2075 // addrec's are of different length (mathematically, it's equivalent to
2076 // an infinite stream of zeros on the right).
2077 bool OpsModified = false;
Chris Lattnerd934c702004-04-02 20:23:17 +00002078 for (unsigned OtherIdx = Idx+1;
Nick Lewycky97756402014-09-01 05:17:15 +00002079 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002080 ++OtherIdx) {
Nick Lewycky97756402014-09-01 05:17:15 +00002081 const SCEVAddRecExpr *OtherAddRec =
2082 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2083 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
Andrew Trick946f76b2012-05-30 03:35:17 +00002084 continue;
2085
Nick Lewycky97756402014-09-01 05:17:15 +00002086 bool Overflow = false;
2087 Type *Ty = AddRec->getType();
2088 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2089 SmallVector<const SCEV*, 7> AddRecOps;
2090 for (int x = 0, xe = AddRec->getNumOperands() +
2091 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2092 const SCEV *Term = getConstant(Ty, 0);
2093 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2094 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2095 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2096 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2097 z < ze && !Overflow; ++z) {
2098 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2099 uint64_t Coeff;
2100 if (LargerThan64Bits)
2101 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2102 else
2103 Coeff = Coeff1*Coeff2;
2104 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2105 const SCEV *Term1 = AddRec->getOperand(y-z);
2106 const SCEV *Term2 = OtherAddRec->getOperand(z);
2107 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
Andrew Trick946f76b2012-05-30 03:35:17 +00002108 }
Andrew Trick946f76b2012-05-30 03:35:17 +00002109 }
Nick Lewycky97756402014-09-01 05:17:15 +00002110 AddRecOps.push_back(Term);
Chris Lattnerd934c702004-04-02 20:23:17 +00002111 }
Nick Lewycky97756402014-09-01 05:17:15 +00002112 if (!Overflow) {
2113 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2114 SCEV::FlagAnyWrap);
2115 if (Ops.size() == 2) return NewAddRec;
2116 Ops[Idx] = NewAddRec;
2117 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2118 OpsModified = true;
2119 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2120 if (!AddRec)
2121 break;
2122 }
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002123 }
Nick Lewycky97756402014-09-01 05:17:15 +00002124 if (OpsModified)
2125 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002126
2127 // Otherwise couldn't fold anything into this recurrence. Move onto the
2128 // next one.
2129 }
2130
2131 // Okay, it looks like we really DO need an mul expr. Check to see if we
2132 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002133 FoldingSetNodeID ID;
2134 ID.AddInteger(scMulExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002135 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2136 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002137 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002138 SCEVMulExpr *S =
2139 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2140 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002141 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2142 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002143 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2144 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002145 UniqueSCEVs.InsertNode(S, IP);
2146 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002147 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002148 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002149}
2150
Andreas Bolka7a5c8db2009-08-07 22:55:26 +00002151/// getUDivExpr - Get a canonical unsigned division expression, or something
2152/// simpler if possible.
Dan Gohmanabd17092009-06-24 14:49:00 +00002153const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2154 const SCEV *RHS) {
Dan Gohmand33f36e2009-05-18 15:44:58 +00002155 assert(getEffectiveSCEVType(LHS->getType()) ==
2156 getEffectiveSCEVType(RHS->getType()) &&
2157 "SCEVUDivExpr operand types don't match!");
2158
Dan Gohmana30370b2009-05-04 22:02:23 +00002159 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002160 if (RHSC->getValue()->equalsInt(1))
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00002161 return LHS; // X udiv 1 --> x
Dan Gohmanacd700a2010-04-22 01:35:11 +00002162 // If the denominator is zero, the result of the udiv is undefined. Don't
2163 // try to analyze it, because the resolution chosen here may differ from
2164 // the resolution chosen in other parts of the compiler.
2165 if (!RHSC->getValue()->isZero()) {
2166 // Determine if the division can be folded into the operands of
2167 // its operands.
2168 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattner229907c2011-07-18 04:54:35 +00002169 Type *Ty = LHS->getType();
Dan Gohmanacd700a2010-04-22 01:35:11 +00002170 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmandb764c62010-08-04 19:52:50 +00002171 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanacd700a2010-04-22 01:35:11 +00002172 // For non-power-of-two values, effectively round the value up to the
2173 // nearest power of two.
2174 if (!RHSC->getValue()->getValue().isPowerOf2())
2175 ++MaxShiftAmt;
Chris Lattner229907c2011-07-18 04:54:35 +00002176 IntegerType *ExtTy =
Dan Gohmanacd700a2010-04-22 01:35:11 +00002177 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanacd700a2010-04-22 01:35:11 +00002178 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2179 if (const SCEVConstant *Step =
Andrew Trick6d45a012011-08-06 07:00:37 +00002180 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2181 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2182 const APInt &StepInt = Step->getValue()->getValue();
2183 const APInt &DivInt = RHSC->getValue()->getValue();
2184 if (!StepInt.urem(DivInt) &&
Dan Gohmanacd700a2010-04-22 01:35:11 +00002185 getZeroExtendExpr(AR, ExtTy) ==
2186 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2187 getZeroExtendExpr(Step, ExtTy),
Andrew Trick8b55b732011-03-14 16:50:06 +00002188 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002189 SmallVector<const SCEV *, 4> Operands;
2190 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2191 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
Andrew Trick8b55b732011-03-14 16:50:06 +00002192 return getAddRecExpr(Operands, AR->getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002193 SCEV::FlagNW);
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002194 }
Andrew Trick6d45a012011-08-06 07:00:37 +00002195 /// Get a canonical UDivExpr for a recurrence.
2196 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2197 // We can currently only fold X%N if X is constant.
2198 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2199 if (StartC && !DivInt.urem(StepInt) &&
2200 getZeroExtendExpr(AR, ExtTy) ==
2201 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2202 getZeroExtendExpr(Step, ExtTy),
2203 AR->getLoop(), SCEV::FlagAnyWrap)) {
2204 const APInt &StartInt = StartC->getValue()->getValue();
2205 const APInt &StartRem = StartInt.urem(StepInt);
2206 if (StartRem != 0)
2207 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2208 AR->getLoop(), SCEV::FlagNW);
2209 }
2210 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002211 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2212 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2213 SmallVector<const SCEV *, 4> Operands;
2214 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2215 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2216 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2217 // Find an operand that's safely divisible.
2218 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2219 const SCEV *Op = M->getOperand(i);
2220 const SCEV *Div = getUDivExpr(Op, RHSC);
2221 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2222 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2223 M->op_end());
2224 Operands[i] = Div;
2225 return getMulExpr(Operands);
2226 }
2227 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002228 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002229 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Trick7d1eea82011-04-27 18:17:36 +00002230 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002231 SmallVector<const SCEV *, 4> Operands;
2232 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2233 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2234 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2235 Operands.clear();
2236 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2237 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2238 if (isa<SCEVUDivExpr>(Op) ||
2239 getMulExpr(Op, RHS) != A->getOperand(i))
2240 break;
2241 Operands.push_back(Op);
2242 }
2243 if (Operands.size() == A->getNumOperands())
2244 return getAddExpr(Operands);
2245 }
2246 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002247
Dan Gohmanacd700a2010-04-22 01:35:11 +00002248 // Fold if both operands are constant.
2249 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2250 Constant *LHSCV = LHSC->getValue();
2251 Constant *RHSCV = RHSC->getValue();
2252 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2253 RHSCV)));
2254 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002255 }
2256 }
2257
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002258 FoldingSetNodeID ID;
2259 ID.AddInteger(scUDivExpr);
2260 ID.AddPointer(LHS);
2261 ID.AddPointer(RHS);
Craig Topper9f008862014-04-15 04:59:12 +00002262 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002263 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00002264 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2265 LHS, RHS);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002266 UniqueSCEVs.InsertNode(S, IP);
2267 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002268}
2269
Nick Lewycky31eaca52014-01-27 10:04:03 +00002270static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2271 APInt A = C1->getValue()->getValue().abs();
2272 APInt B = C2->getValue()->getValue().abs();
2273 uint32_t ABW = A.getBitWidth();
2274 uint32_t BBW = B.getBitWidth();
2275
2276 if (ABW > BBW)
2277 B = B.zext(ABW);
2278 else if (ABW < BBW)
2279 A = A.zext(BBW);
2280
2281 return APIntOps::GreatestCommonDivisor(A, B);
2282}
2283
2284/// getUDivExactExpr - Get a canonical unsigned division expression, or
2285/// something simpler if possible. There is no representation for an exact udiv
2286/// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2287/// We can't do this when it's not exact because the udiv may be clearing bits.
2288const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2289 const SCEV *RHS) {
2290 // TODO: we could try to find factors in all sorts of things, but for now we
2291 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2292 // end of this file for inspiration.
2293
2294 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2295 if (!Mul)
2296 return getUDivExpr(LHS, RHS);
2297
2298 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2299 // If the mulexpr multiplies by a constant, then that constant must be the
2300 // first element of the mulexpr.
2301 if (const SCEVConstant *LHSCst =
2302 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2303 if (LHSCst == RHSCst) {
2304 SmallVector<const SCEV *, 2> Operands;
2305 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2306 return getMulExpr(Operands);
2307 }
2308
2309 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2310 // that there's a factor provided by one of the other terms. We need to
2311 // check.
2312 APInt Factor = gcd(LHSCst, RHSCst);
2313 if (!Factor.isIntN(1)) {
2314 LHSCst = cast<SCEVConstant>(
2315 getConstant(LHSCst->getValue()->getValue().udiv(Factor)));
2316 RHSCst = cast<SCEVConstant>(
2317 getConstant(RHSCst->getValue()->getValue().udiv(Factor)));
2318 SmallVector<const SCEV *, 2> Operands;
2319 Operands.push_back(LHSCst);
2320 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2321 LHS = getMulExpr(Operands);
2322 RHS = RHSCst;
Nick Lewycky629199c2014-01-27 10:47:44 +00002323 Mul = dyn_cast<SCEVMulExpr>(LHS);
2324 if (!Mul)
2325 return getUDivExactExpr(LHS, RHS);
Nick Lewycky31eaca52014-01-27 10:04:03 +00002326 }
2327 }
2328 }
2329
2330 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2331 if (Mul->getOperand(i) == RHS) {
2332 SmallVector<const SCEV *, 2> Operands;
2333 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2334 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2335 return getMulExpr(Operands);
2336 }
2337 }
2338
2339 return getUDivExpr(LHS, RHS);
2340}
Chris Lattnerd934c702004-04-02 20:23:17 +00002341
Dan Gohman4d5435d2009-05-24 23:45:28 +00002342/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2343/// Simplify the expression as much as possible.
Andrew Trick8b55b732011-03-14 16:50:06 +00002344const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2345 const Loop *L,
2346 SCEV::NoWrapFlags Flags) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002347 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00002348 Operands.push_back(Start);
Dan Gohmana30370b2009-05-04 22:02:23 +00002349 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattnerd934c702004-04-02 20:23:17 +00002350 if (StepChrec->getLoop() == L) {
Dan Gohmandd41bba2010-06-21 19:47:52 +00002351 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002352 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattnerd934c702004-04-02 20:23:17 +00002353 }
2354
2355 Operands.push_back(Step);
Andrew Trick8b55b732011-03-14 16:50:06 +00002356 return getAddRecExpr(Operands, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002357}
2358
Dan Gohman4d5435d2009-05-24 23:45:28 +00002359/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2360/// Simplify the expression as much as possible.
Dan Gohmance973df2009-06-24 04:48:43 +00002361const SCEV *
Dan Gohmanaf752342009-07-07 17:06:11 +00002362ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick8b55b732011-03-14 16:50:06 +00002363 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002364 if (Operands.size() == 1) return Operands[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002365#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002366 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002367 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002368 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002369 "SCEVAddRecExpr operand types don't match!");
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002370 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002371 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002372 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmand33f36e2009-05-18 15:44:58 +00002373#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002374
Dan Gohmanbe928e32008-06-18 16:23:07 +00002375 if (Operands.back()->isZero()) {
2376 Operands.pop_back();
Andrew Trick8b55b732011-03-14 16:50:06 +00002377 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmanbe928e32008-06-18 16:23:07 +00002378 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002379
Dan Gohmancf9c64e2010-02-19 18:49:22 +00002380 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2381 // use that information to infer NUW and NSW flags. However, computing a
2382 // BE count requires calling getAddRecExpr, so we may not yet have a
2383 // meaningful BE count at this point (and if we don't, we'd be stuck
2384 // with a SCEVCouldNotCompute as the cached BE count).
2385
Andrew Trick8b55b732011-03-14 16:50:06 +00002386 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002387 // And vice-versa.
2388 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2389 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2390 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002391 bool All = true;
Dan Gohman74c61502010-08-16 16:27:53 +00002392 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2393 E = Operands.end(); I != E; ++I)
2394 if (!isKnownNonNegative(*I)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002395 All = false;
2396 break;
2397 }
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002398 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002399 }
2400
Dan Gohman223a5d22008-08-08 18:33:12 +00002401 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohmana30370b2009-05-04 22:02:23 +00002402 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00002403 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman63c020a2010-08-13 20:23:25 +00002404 if (L->contains(NestedLoop) ?
Dan Gohman51ad99d2010-01-21 02:09:26 +00002405 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman63c020a2010-08-13 20:23:25 +00002406 (!NestedLoop->contains(L) &&
Dan Gohman51ad99d2010-01-21 02:09:26 +00002407 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002408 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohmancb0efec2009-12-18 01:14:11 +00002409 NestedAR->op_end());
Dan Gohman223a5d22008-08-08 18:33:12 +00002410 Operands[0] = NestedAR->getStart();
Dan Gohmancc030b72009-06-26 22:36:20 +00002411 // AddRecs require their operands be loop-invariant with respect to their
2412 // loops. Don't perform this transformation if it would break this
2413 // requirement.
2414 bool AllInvariant = true;
2415 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002416 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002417 AllInvariant = false;
2418 break;
2419 }
2420 if (AllInvariant) {
Andrew Trick8b55b732011-03-14 16:50:06 +00002421 // Create a recurrence for the outer loop with the same step size.
2422 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002423 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2424 // inner recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002425 SCEV::NoWrapFlags OuterFlags =
2426 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick8b55b732011-03-14 16:50:06 +00002427
2428 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Dan Gohmancc030b72009-06-26 22:36:20 +00002429 AllInvariant = true;
2430 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002431 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002432 AllInvariant = false;
2433 break;
2434 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002435 if (AllInvariant) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002436 // Ok, both add recurrences are valid after the transformation.
Andrew Trick8b55b732011-03-14 16:50:06 +00002437 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002438 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2439 // the outer recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002440 SCEV::NoWrapFlags InnerFlags =
2441 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick8b55b732011-03-14 16:50:06 +00002442 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2443 }
Dan Gohmancc030b72009-06-26 22:36:20 +00002444 }
2445 // Reset Operands to its original state.
2446 Operands[0] = NestedAR;
Dan Gohman223a5d22008-08-08 18:33:12 +00002447 }
2448 }
2449
Dan Gohman8d67d2f2010-01-19 22:27:22 +00002450 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2451 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002452 FoldingSetNodeID ID;
2453 ID.AddInteger(scAddRecExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002454 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2455 ID.AddPointer(Operands[i]);
2456 ID.AddPointer(L);
Craig Topper9f008862014-04-15 04:59:12 +00002457 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002458 SCEVAddRecExpr *S =
2459 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2460 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002461 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2462 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002463 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2464 O, Operands.size(), L);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002465 UniqueSCEVs.InsertNode(S, IP);
2466 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002467 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002468 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002469}
2470
Dan Gohmanabd17092009-06-24 14:49:00 +00002471const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2472 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002473 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002474 Ops.push_back(LHS);
2475 Ops.push_back(RHS);
2476 return getSMaxExpr(Ops);
2477}
2478
Dan Gohmanaf752342009-07-07 17:06:11 +00002479const SCEV *
2480ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002481 assert(!Ops.empty() && "Cannot get empty smax!");
2482 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002483#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002484 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002485 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002486 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002487 "SCEVSMaxExpr operand types don't match!");
2488#endif
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002489
2490 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00002491 GroupByComplexity(Ops, LI);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002492
2493 // If there are any constants, fold them together.
2494 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002495 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002496 ++Idx;
2497 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002498 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002499 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002500 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002501 APIntOps::smax(LHSC->getValue()->getValue(),
2502 RHSC->getValue()->getValue()));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002503 Ops[0] = getConstant(Fold);
2504 Ops.erase(Ops.begin()+1); // Erase the folded element
2505 if (Ops.size() == 1) return Ops[0];
2506 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002507 }
2508
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002509 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002510 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2511 Ops.erase(Ops.begin());
2512 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002513 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2514 // If we have an smax with a constant maximum-int, it will always be
2515 // maximum-int.
2516 return Ops[0];
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002517 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002518
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002519 if (Ops.size() == 1) return Ops[0];
2520 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002521
2522 // Find the first SMax
2523 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2524 ++Idx;
2525
2526 // Check to see if one of the operands is an SMax. If so, expand its operands
2527 // onto our operand list, and recurse to simplify.
2528 if (Idx < Ops.size()) {
2529 bool DeletedSMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002530 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002531 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002532 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002533 DeletedSMax = true;
2534 }
2535
2536 if (DeletedSMax)
2537 return getSMaxExpr(Ops);
2538 }
2539
2540 // Okay, check to see if the same value occurs in the operand list twice. If
2541 // so, delete one. Since we sorted the list, these values are required to
2542 // be adjacent.
2543 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00002544 // X smax Y smax Y --> X smax Y
2545 // X smax Y --> X, if X is always greater than Y
2546 if (Ops[i] == Ops[i+1] ||
2547 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2548 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2549 --i; --e;
2550 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002551 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2552 --i; --e;
2553 }
2554
2555 if (Ops.size() == 1) return Ops[0];
2556
2557 assert(!Ops.empty() && "Reduced smax down to nothing!");
2558
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002559 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002560 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002561 FoldingSetNodeID ID;
2562 ID.AddInteger(scSMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002563 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2564 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002565 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002566 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00002567 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2568 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002569 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2570 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002571 UniqueSCEVs.InsertNode(S, IP);
2572 return S;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002573}
2574
Dan Gohmanabd17092009-06-24 14:49:00 +00002575const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2576 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002577 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002578 Ops.push_back(LHS);
2579 Ops.push_back(RHS);
2580 return getUMaxExpr(Ops);
2581}
2582
Dan Gohmanaf752342009-07-07 17:06:11 +00002583const SCEV *
2584ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002585 assert(!Ops.empty() && "Cannot get empty umax!");
2586 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002587#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002588 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002589 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002590 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002591 "SCEVUMaxExpr operand types don't match!");
2592#endif
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002593
2594 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00002595 GroupByComplexity(Ops, LI);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002596
2597 // If there are any constants, fold them together.
2598 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002599 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002600 ++Idx;
2601 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002602 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002603 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002604 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002605 APIntOps::umax(LHSC->getValue()->getValue(),
2606 RHSC->getValue()->getValue()));
2607 Ops[0] = getConstant(Fold);
2608 Ops.erase(Ops.begin()+1); // Erase the folded element
2609 if (Ops.size() == 1) return Ops[0];
2610 LHSC = cast<SCEVConstant>(Ops[0]);
2611 }
2612
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002613 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002614 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2615 Ops.erase(Ops.begin());
2616 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002617 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2618 // If we have an umax with a constant maximum-int, it will always be
2619 // maximum-int.
2620 return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002621 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002622
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002623 if (Ops.size() == 1) return Ops[0];
2624 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002625
2626 // Find the first UMax
2627 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2628 ++Idx;
2629
2630 // Check to see if one of the operands is a UMax. If so, expand its operands
2631 // onto our operand list, and recurse to simplify.
2632 if (Idx < Ops.size()) {
2633 bool DeletedUMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002634 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002635 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002636 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002637 DeletedUMax = true;
2638 }
2639
2640 if (DeletedUMax)
2641 return getUMaxExpr(Ops);
2642 }
2643
2644 // Okay, check to see if the same value occurs in the operand list twice. If
2645 // so, delete one. Since we sorted the list, these values are required to
2646 // be adjacent.
2647 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00002648 // X umax Y umax Y --> X umax Y
2649 // X umax Y --> X, if X is always greater than Y
2650 if (Ops[i] == Ops[i+1] ||
2651 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2652 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2653 --i; --e;
2654 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002655 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2656 --i; --e;
2657 }
2658
2659 if (Ops.size() == 1) return Ops[0];
2660
2661 assert(!Ops.empty() && "Reduced umax down to nothing!");
2662
2663 // Okay, it looks like we really DO need a umax expr. Check to see if we
2664 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002665 FoldingSetNodeID ID;
2666 ID.AddInteger(scUMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002667 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2668 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002669 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002670 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00002671 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2672 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002673 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2674 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002675 UniqueSCEVs.InsertNode(S, IP);
2676 return S;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002677}
2678
Dan Gohmanabd17092009-06-24 14:49:00 +00002679const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2680 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00002681 // ~smax(~x, ~y) == smin(x, y).
2682 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2683}
2684
Dan Gohmanabd17092009-06-24 14:49:00 +00002685const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2686 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00002687 // ~umax(~x, ~y) == umin(x, y)
2688 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2689}
2690
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002691const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002692 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00002693 // constant expression and then folding it back into a ConstantInt.
2694 // This is just a compile-time optimization.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002695 if (DL)
2696 return getConstant(IntTy, DL->getTypeAllocSize(AllocTy));
Dan Gohman11862a62010-04-12 23:03:26 +00002697
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00002698 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2699 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002700 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
Dan Gohmana3b6c4b2010-05-28 16:12:08 +00002701 C = Folded;
Chris Lattner229907c2011-07-18 04:54:35 +00002702 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002703 assert(Ty == IntTy && "Effective SCEV type doesn't match");
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00002704 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2705}
2706
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002707const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
2708 StructType *STy,
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00002709 unsigned FieldNo) {
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002710 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00002711 // constant expression and then folding it back into a ConstantInt.
2712 // This is just a compile-time optimization.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002713 if (DL) {
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002714 return getConstant(IntTy,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002715 DL->getStructLayout(STy)->getElementOffset(FieldNo));
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002716 }
Dan Gohman11862a62010-04-12 23:03:26 +00002717
Dan Gohmancf913832010-01-28 02:15:55 +00002718 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2719 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002720 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
Dan Gohmana3b6c4b2010-05-28 16:12:08 +00002721 C = Folded;
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002722
Matt Arsenault4ed49b52013-10-21 18:08:09 +00002723 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohmancf913832010-01-28 02:15:55 +00002724 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002725}
2726
Dan Gohmanaf752342009-07-07 17:06:11 +00002727const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohmanf436bac2009-06-24 00:54:57 +00002728 // Don't attempt to do anything other than create a SCEVUnknown object
2729 // here. createSCEV only calls getUnknown after checking for all other
2730 // interesting possibilities, and any other code that calls getUnknown
2731 // is doing so in order to hide a value from SCEV canonicalization.
2732
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002733 FoldingSetNodeID ID;
2734 ID.AddInteger(scUnknown);
2735 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +00002736 void *IP = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00002737 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2738 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2739 "Stale SCEVUnknown in uniquing map!");
2740 return S;
2741 }
2742 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2743 FirstUnknown);
2744 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002745 UniqueSCEVs.InsertNode(S, IP);
2746 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +00002747}
2748
Chris Lattnerd934c702004-04-02 20:23:17 +00002749//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00002750// Basic SCEV Analysis and PHI Idiom Recognition Code
2751//
2752
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002753/// isSCEVable - Test if values of the given type are analyzable within
2754/// the SCEV framework. This primarily includes integer types, and it
2755/// can optionally include pointer types if the ScalarEvolution class
2756/// has access to target-specific information.
Chris Lattner229907c2011-07-18 04:54:35 +00002757bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002758 // Integers and pointers are always SCEVable.
Duncan Sands19d0b472010-02-16 11:11:14 +00002759 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002760}
2761
2762/// getTypeSizeInBits - Return the size in bits of the specified type,
2763/// for which isSCEVable must return true.
Chris Lattner229907c2011-07-18 04:54:35 +00002764uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002765 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2766
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002767 // If we have a DataLayout, use it!
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002768 if (DL)
2769 return DL->getTypeSizeInBits(Ty);
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002770
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002771 // Integer types have fixed sizes.
Duncan Sands9dff9be2010-02-15 16:12:20 +00002772 if (Ty->isIntegerTy())
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002773 return Ty->getPrimitiveSizeInBits();
2774
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002775 // The only other support type is pointer. Without DataLayout, conservatively
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002776 // assume pointers are 64-bit.
Duncan Sands19d0b472010-02-16 11:11:14 +00002777 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002778 return 64;
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002779}
2780
2781/// getEffectiveSCEVType - Return a type with the same bitwidth as
2782/// the given type and which represents how SCEV will treat the given
2783/// type, for which isSCEVable must return true. For pointer types,
2784/// this is the pointer-sized integer type.
Chris Lattner229907c2011-07-18 04:54:35 +00002785Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002786 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2787
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002788 if (Ty->isIntegerTy()) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002789 return Ty;
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002790 }
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002791
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002792 // The only other support type is pointer.
Duncan Sands19d0b472010-02-16 11:11:14 +00002793 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002794
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002795 if (DL)
2796 return DL->getIntPtrType(Ty);
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002797
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002798 // Without DataLayout, conservatively assume pointers are 64-bit.
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002799 return Type::getInt64Ty(getContext());
Dan Gohman0a40ad92009-04-16 03:18:22 +00002800}
Chris Lattnerd934c702004-04-02 20:23:17 +00002801
Dan Gohmanaf752342009-07-07 17:06:11 +00002802const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002803 return &CouldNotCompute;
Dan Gohman31efa302009-04-18 17:58:19 +00002804}
2805
Shuxin Yangefc4c012013-07-08 17:33:13 +00002806namespace {
2807 // Helper class working with SCEVTraversal to figure out if a SCEV contains
2808 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
2809 // is set iff if find such SCEVUnknown.
2810 //
2811 struct FindInvalidSCEVUnknown {
2812 bool FindOne;
2813 FindInvalidSCEVUnknown() { FindOne = false; }
2814 bool follow(const SCEV *S) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00002815 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Shuxin Yangefc4c012013-07-08 17:33:13 +00002816 case scConstant:
2817 return false;
2818 case scUnknown:
Shuxin Yang23773b32013-07-12 07:25:38 +00002819 if (!cast<SCEVUnknown>(S)->getValue())
Shuxin Yangefc4c012013-07-08 17:33:13 +00002820 FindOne = true;
2821 return false;
2822 default:
2823 return true;
2824 }
2825 }
2826 bool isDone() const { return FindOne; }
2827 };
2828}
2829
2830bool ScalarEvolution::checkValidity(const SCEV *S) const {
2831 FindInvalidSCEVUnknown F;
2832 SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
2833 ST.visitAll(S);
2834
2835 return !F.FindOne;
2836}
2837
Chris Lattnerd934c702004-04-02 20:23:17 +00002838/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2839/// expression and create a new one.
Dan Gohmanaf752342009-07-07 17:06:11 +00002840const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002841 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattnerd934c702004-04-02 20:23:17 +00002842
Shuxin Yangefc4c012013-07-08 17:33:13 +00002843 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
2844 if (I != ValueExprMap.end()) {
2845 const SCEV *S = I->second;
Shuxin Yang23773b32013-07-12 07:25:38 +00002846 if (checkValidity(S))
Shuxin Yangefc4c012013-07-08 17:33:13 +00002847 return S;
2848 else
2849 ValueExprMap.erase(I);
2850 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002851 const SCEV *S = createSCEV(V);
Dan Gohmanc29eeae2010-08-16 16:31:39 +00002852
2853 // The process of creating a SCEV for V may have caused other SCEVs
2854 // to have been created, so it's necessary to insert the new entry
2855 // from scratch, rather than trying to remember the insert position
2856 // above.
Dan Gohman9bad2fb2010-08-27 18:55:03 +00002857 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattnerd934c702004-04-02 20:23:17 +00002858 return S;
2859}
2860
Dan Gohman0a40ad92009-04-16 03:18:22 +00002861/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2862///
Dan Gohmanaf752342009-07-07 17:06:11 +00002863const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00002864 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson53a52212009-07-13 04:09:18 +00002865 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00002866 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00002867
Chris Lattner229907c2011-07-18 04:54:35 +00002868 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00002869 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00002870 return getMulExpr(V,
Owen Anderson5a1acd92009-07-31 20:28:14 +00002871 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman0a40ad92009-04-16 03:18:22 +00002872}
2873
2874/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohmanaf752342009-07-07 17:06:11 +00002875const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00002876 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson542619e2009-07-13 20:58:05 +00002877 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00002878 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00002879
Chris Lattner229907c2011-07-18 04:54:35 +00002880 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00002881 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00002882 const SCEV *AllOnes =
Owen Anderson5a1acd92009-07-31 20:28:14 +00002883 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman0a40ad92009-04-16 03:18:22 +00002884 return getMinusSCEV(AllOnes, V);
2885}
2886
Andrew Trick8b55b732011-03-14 16:50:06 +00002887/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattnerfc877522011-01-09 22:26:35 +00002888const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00002889 SCEV::NoWrapFlags Flags) {
Andrew Tricka34f1b12011-03-15 01:16:14 +00002890 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
2891
Dan Gohman46f00a22010-07-20 16:53:00 +00002892 // Fast path: X - X --> 0.
2893 if (LHS == RHS)
2894 return getConstant(LHS->getType(), 0);
2895
Dan Gohman0a40ad92009-04-16 03:18:22 +00002896 // X - Y --> X + -Y
Andrew Trick8b55b732011-03-14 16:50:06 +00002897 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
Dan Gohman0a40ad92009-04-16 03:18:22 +00002898}
2899
2900/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2901/// input value to the specified type. If the type must be extended, it is zero
2902/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00002903const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00002904ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
2905 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00002906 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2907 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00002908 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002909 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00002910 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002911 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00002912 return getTruncateExpr(V, Ty);
2913 return getZeroExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00002914}
2915
2916/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2917/// input value to the specified type. If the type must be extended, it is sign
2918/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00002919const SCEV *
2920ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattner229907c2011-07-18 04:54:35 +00002921 Type *Ty) {
2922 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00002923 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2924 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00002925 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002926 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00002927 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002928 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00002929 return getTruncateExpr(V, Ty);
2930 return getSignExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00002931}
2932
Dan Gohmane712a2f2009-05-13 03:46:30 +00002933/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2934/// input value to the specified type. If the type must be extended, it is zero
2935/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00002936const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00002937ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
2938 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00002939 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2940 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00002941 "Cannot noop or zero extend with non-integer arguments!");
2942 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2943 "getNoopOrZeroExtend cannot truncate!");
2944 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2945 return V; // No conversion
2946 return getZeroExtendExpr(V, Ty);
2947}
2948
2949/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2950/// input value to the specified type. If the type must be extended, it is sign
2951/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00002952const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00002953ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
2954 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00002955 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2956 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00002957 "Cannot noop or sign extend with non-integer arguments!");
2958 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2959 "getNoopOrSignExtend cannot truncate!");
2960 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2961 return V; // No conversion
2962 return getSignExtendExpr(V, Ty);
2963}
2964
Dan Gohman8db2edc2009-06-13 15:56:47 +00002965/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2966/// the input value to the specified type. If the type must be extended,
2967/// it is extended with unspecified bits. The conversion must not be
2968/// narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00002969const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00002970ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
2971 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00002972 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2973 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman8db2edc2009-06-13 15:56:47 +00002974 "Cannot noop or any extend with non-integer arguments!");
2975 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2976 "getNoopOrAnyExtend cannot truncate!");
2977 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2978 return V; // No conversion
2979 return getAnyExtendExpr(V, Ty);
2980}
2981
Dan Gohmane712a2f2009-05-13 03:46:30 +00002982/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2983/// input value to the specified type. The conversion must not be widening.
Dan Gohmanaf752342009-07-07 17:06:11 +00002984const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00002985ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
2986 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00002987 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2988 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00002989 "Cannot truncate or noop with non-integer arguments!");
2990 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2991 "getTruncateOrNoop cannot extend!");
2992 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2993 return V; // No conversion
2994 return getTruncateExpr(V, Ty);
2995}
2996
Dan Gohman96212b62009-06-22 00:31:57 +00002997/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2998/// the types using zero-extension, and then perform a umax operation
2999/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003000const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3001 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003002 const SCEV *PromotedLHS = LHS;
3003 const SCEV *PromotedRHS = RHS;
Dan Gohman96212b62009-06-22 00:31:57 +00003004
3005 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3006 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3007 else
3008 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3009
3010 return getUMaxExpr(PromotedLHS, PromotedRHS);
3011}
3012
Dan Gohman2bc22302009-06-22 15:03:27 +00003013/// getUMinFromMismatchedTypes - Promote the operands to the wider of
3014/// the types using zero-extension, and then perform a umin operation
3015/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003016const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3017 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003018 const SCEV *PromotedLHS = LHS;
3019 const SCEV *PromotedRHS = RHS;
Dan Gohman2bc22302009-06-22 15:03:27 +00003020
3021 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3022 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3023 else
3024 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3025
3026 return getUMinExpr(PromotedLHS, PromotedRHS);
3027}
3028
Andrew Trick87716c92011-03-17 23:51:11 +00003029/// getPointerBase - Transitively follow the chain of pointer-type operands
3030/// until reaching a SCEV that does not have a single pointer operand. This
3031/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3032/// but corner cases do exist.
3033const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3034 // A pointer operand may evaluate to a nonpointer expression, such as null.
3035 if (!V->getType()->isPointerTy())
3036 return V;
3037
3038 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3039 return getPointerBase(Cast->getOperand());
3040 }
3041 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
Craig Topper9f008862014-04-15 04:59:12 +00003042 const SCEV *PtrOp = nullptr;
Andrew Trick87716c92011-03-17 23:51:11 +00003043 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
3044 I != E; ++I) {
3045 if ((*I)->getType()->isPointerTy()) {
3046 // Cannot find the base of an expression with multiple pointer operands.
3047 if (PtrOp)
3048 return V;
3049 PtrOp = *I;
3050 }
3051 }
3052 if (!PtrOp)
3053 return V;
3054 return getPointerBase(PtrOp);
3055 }
3056 return V;
3057}
3058
Dan Gohman0b89dff2009-07-25 01:13:03 +00003059/// PushDefUseChildren - Push users of the given Instruction
3060/// onto the given Worklist.
3061static void
3062PushDefUseChildren(Instruction *I,
3063 SmallVectorImpl<Instruction *> &Worklist) {
3064 // Push the def-use children onto the Worklist stack.
Chandler Carruthcdf47882014-03-09 03:16:01 +00003065 for (User *U : I->users())
3066 Worklist.push_back(cast<Instruction>(U));
Dan Gohman0b89dff2009-07-25 01:13:03 +00003067}
3068
3069/// ForgetSymbolicValue - This looks up computed SCEV values for all
3070/// instructions that depend on the given instruction and removes them from
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003071/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003072/// resolution.
Dan Gohmance973df2009-06-24 04:48:43 +00003073void
Dan Gohmana9c205c2010-02-25 06:57:05 +00003074ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohman0b89dff2009-07-25 01:13:03 +00003075 SmallVector<Instruction *, 16> Worklist;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003076 PushDefUseChildren(PN, Worklist);
Chris Lattnerd934c702004-04-02 20:23:17 +00003077
Dan Gohman0b89dff2009-07-25 01:13:03 +00003078 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003079 Visited.insert(PN);
Dan Gohman0b89dff2009-07-25 01:13:03 +00003080 while (!Worklist.empty()) {
Dan Gohmana9c205c2010-02-25 06:57:05 +00003081 Instruction *I = Worklist.pop_back_val();
Dan Gohman0b89dff2009-07-25 01:13:03 +00003082 if (!Visited.insert(I)) continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003083
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003084 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00003085 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003086 if (It != ValueExprMap.end()) {
Dan Gohman761065e2010-11-17 02:44:44 +00003087 const SCEV *Old = It->second;
3088
Dan Gohman0b89dff2009-07-25 01:13:03 +00003089 // Short-circuit the def-use traversal if the symbolic name
3090 // ceases to appear in expressions.
Dan Gohman534749b2010-11-17 22:27:42 +00003091 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohman0b89dff2009-07-25 01:13:03 +00003092 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003093
Dan Gohman0b89dff2009-07-25 01:13:03 +00003094 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohmana9c205c2010-02-25 06:57:05 +00003095 // structure, it's a PHI that's in the progress of being computed
3096 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3097 // additional loop trip count information isn't going to change anything.
3098 // In the second case, createNodeForPHI will perform the necessary
3099 // updates on its own when it gets to that point. In the third, we do
3100 // want to forget the SCEVUnknown.
3101 if (!isa<PHINode>(I) ||
Dan Gohman761065e2010-11-17 02:44:44 +00003102 !isa<SCEVUnknown>(Old) ||
3103 (I != PN && Old == SymName)) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00003104 forgetMemoizedResults(Old);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003105 ValueExprMap.erase(It);
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00003106 }
Dan Gohman0b89dff2009-07-25 01:13:03 +00003107 }
3108
3109 PushDefUseChildren(I, Worklist);
3110 }
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003111}
Chris Lattnerd934c702004-04-02 20:23:17 +00003112
3113/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
3114/// a loop header, making it a potential recurrence, or it doesn't.
3115///
Dan Gohmanaf752342009-07-07 17:06:11 +00003116const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman6635bb22010-04-12 07:49:36 +00003117 if (const Loop *L = LI->getLoopFor(PN->getParent()))
3118 if (L->getHeader() == PN->getParent()) {
3119 // The loop may have multiple entrances or multiple exits; we can analyze
3120 // this phi as an addrec if it has a unique entry value and a unique
3121 // backedge value.
Craig Topper9f008862014-04-15 04:59:12 +00003122 Value *BEValueV = nullptr, *StartValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003123 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3124 Value *V = PN->getIncomingValue(i);
3125 if (L->contains(PN->getIncomingBlock(i))) {
3126 if (!BEValueV) {
3127 BEValueV = V;
3128 } else if (BEValueV != V) {
Craig Topper9f008862014-04-15 04:59:12 +00003129 BEValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003130 break;
3131 }
3132 } else if (!StartValueV) {
3133 StartValueV = V;
3134 } else if (StartValueV != V) {
Craig Topper9f008862014-04-15 04:59:12 +00003135 StartValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003136 break;
3137 }
3138 }
3139 if (BEValueV && StartValueV) {
Chris Lattnerd934c702004-04-02 20:23:17 +00003140 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohmanaf752342009-07-07 17:06:11 +00003141 const SCEV *SymbolicName = getUnknown(PN);
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00003142 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
Chris Lattnerd934c702004-04-02 20:23:17 +00003143 "PHI node already processed?");
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003144 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattnerd934c702004-04-02 20:23:17 +00003145
3146 // Using this symbolic name for the PHI, analyze the value coming around
3147 // the back-edge.
Dan Gohman0b89dff2009-07-25 01:13:03 +00003148 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattnerd934c702004-04-02 20:23:17 +00003149
3150 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3151 // has a special value for the first iteration of the loop.
3152
3153 // If the value coming around the backedge is an add with the symbolic
3154 // value we just inserted, then we found a simple induction variable!
Dan Gohmana30370b2009-05-04 22:02:23 +00003155 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00003156 // If there is a single occurrence of the symbolic value, replace it
3157 // with a recurrence.
3158 unsigned FoundIndex = Add->getNumOperands();
3159 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3160 if (Add->getOperand(i) == SymbolicName)
3161 if (FoundIndex == e) {
3162 FoundIndex = i;
3163 break;
3164 }
3165
3166 if (FoundIndex != Add->getNumOperands()) {
3167 // Create an add with everything but the specified operand.
Dan Gohmanaf752342009-07-07 17:06:11 +00003168 SmallVector<const SCEV *, 8> Ops;
Chris Lattnerd934c702004-04-02 20:23:17 +00003169 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3170 if (i != FoundIndex)
3171 Ops.push_back(Add->getOperand(i));
Dan Gohmanaf752342009-07-07 17:06:11 +00003172 const SCEV *Accum = getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00003173
3174 // This is not a valid addrec if the step amount is varying each
3175 // loop iteration, but is not itself an addrec in this loop.
Dan Gohmanafd6db92010-11-17 21:23:15 +00003176 if (isLoopInvariant(Accum, L) ||
Chris Lattnerd934c702004-04-02 20:23:17 +00003177 (isa<SCEVAddRecExpr>(Accum) &&
3178 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003179 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
Dan Gohman51ad99d2010-01-21 02:09:26 +00003180
3181 // If the increment doesn't overflow, then neither the addrec nor
3182 // the post-increment will overflow.
3183 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3184 if (OBO->hasNoUnsignedWrap())
Andrew Trick8b55b732011-03-14 16:50:06 +00003185 Flags = setFlags(Flags, SCEV::FlagNUW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00003186 if (OBO->hasNoSignedWrap())
Andrew Trick8b55b732011-03-14 16:50:06 +00003187 Flags = setFlags(Flags, SCEV::FlagNSW);
Benjamin Kramer6094f302013-10-28 07:30:06 +00003188 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003189 // If the increment is an inbounds GEP, then we know the address
3190 // space cannot be wrapped around. We cannot make any guarantee
3191 // about signed or unsigned overflow because pointers are
3192 // unsigned but we may have a negative index from the base
Benjamin Kramer6094f302013-10-28 07:30:06 +00003193 // pointer. We can guarantee that no unsigned wrap occurs if the
3194 // indices form a positive value.
3195 if (GEP->isInBounds()) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00003196 Flags = setFlags(Flags, SCEV::FlagNW);
Benjamin Kramer6094f302013-10-28 07:30:06 +00003197
3198 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3199 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3200 Flags = setFlags(Flags, SCEV::FlagNUW);
3201 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00003202 } else if (const SubOperator *OBO =
3203 dyn_cast<SubOperator>(BEValueV)) {
3204 if (OBO->hasNoUnsignedWrap())
3205 Flags = setFlags(Flags, SCEV::FlagNUW);
3206 if (OBO->hasNoSignedWrap())
3207 Flags = setFlags(Flags, SCEV::FlagNSW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00003208 }
3209
Dan Gohman6635bb22010-04-12 07:49:36 +00003210 const SCEV *StartVal = getSCEV(StartValueV);
Andrew Trick8b55b732011-03-14 16:50:06 +00003211 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
Dan Gohman62ef6a72009-07-25 01:22:26 +00003212
Dan Gohman51ad99d2010-01-21 02:09:26 +00003213 // Since the no-wrap flags are on the increment, they apply to the
3214 // post-incremented value as well.
Dan Gohmanafd6db92010-11-17 21:23:15 +00003215 if (isLoopInvariant(Accum, L))
Dan Gohman51ad99d2010-01-21 02:09:26 +00003216 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
Andrew Trick8b55b732011-03-14 16:50:06 +00003217 Accum, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00003218
3219 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003220 // to be symbolic. We now need to go back and purge all of the
3221 // entries for the scalars that use the symbolic expression.
3222 ForgetSymbolicName(PN, SymbolicName);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003223 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattnerd934c702004-04-02 20:23:17 +00003224 return PHISCEV;
3225 }
3226 }
Dan Gohmana30370b2009-05-04 22:02:23 +00003227 } else if (const SCEVAddRecExpr *AddRec =
3228 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003229 // Otherwise, this could be a loop like this:
3230 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3231 // In this case, j = {1,+,1} and BEValue is j.
3232 // Because the other in-value of i (0) fits the evolution of BEValue
3233 // i really is an addrec evolution.
3234 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman6635bb22010-04-12 07:49:36 +00003235 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003236
3237 // If StartVal = j.start - j.stride, we can use StartVal as the
3238 // initial step of the addrec evolution.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003239 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman068b7932010-04-11 23:44:58 +00003240 AddRec->getOperand(1))) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003241 // FIXME: For constant StartVal, we should be able to infer
3242 // no-wrap flags.
Dan Gohmanaf752342009-07-07 17:06:11 +00003243 const SCEV *PHISCEV =
Andrew Trick8b55b732011-03-14 16:50:06 +00003244 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3245 SCEV::FlagAnyWrap);
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003246
3247 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003248 // to be symbolic. We now need to go back and purge all of the
3249 // entries for the scalars that use the symbolic expression.
3250 ForgetSymbolicName(PN, SymbolicName);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003251 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003252 return PHISCEV;
3253 }
3254 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003255 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003256 }
Dan Gohman6635bb22010-04-12 07:49:36 +00003257 }
Misha Brukman01808ca2005-04-21 21:13:18 +00003258
Dan Gohmana9c205c2010-02-25 06:57:05 +00003259 // If the PHI has a single incoming value, follow that value, unless the
3260 // PHI's incoming blocks are in a different loop, in which case doing so
3261 // risks breaking LCSSA form. Instcombine would normally zap these, but
3262 // it doesn't have DominatorTree information, so it may miss cases.
Hal Finkel60db0582014-09-07 18:57:58 +00003263 if (Value *V = SimplifyInstruction(PN, DL, TLI, DT, AT))
Duncan Sandsaef146b2010-11-18 19:59:41 +00003264 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohmana9c205c2010-02-25 06:57:05 +00003265 return getSCEV(V);
Duncan Sands39d771312010-11-17 20:49:12 +00003266
Chris Lattnerd934c702004-04-02 20:23:17 +00003267 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003268 return getUnknown(PN);
Chris Lattnerd934c702004-04-02 20:23:17 +00003269}
3270
Dan Gohmanee750d12009-05-08 20:26:55 +00003271/// createNodeForGEP - Expand GEP instructions into add and multiply
3272/// operations. This allows them to be analyzed by regular SCEV code.
3273///
Dan Gohmanb256ccf2009-12-18 02:09:29 +00003274const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Chris Lattner229907c2011-07-18 04:54:35 +00003275 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohman2173bd32009-05-08 20:36:47 +00003276 Value *Base = GEP->getOperand(0);
Dan Gohman30f24fe2009-05-09 00:14:52 +00003277 // Don't attempt to analyze GEPs over unsized objects.
Matt Arsenault404c60a2013-10-21 19:43:56 +00003278 if (!Base->getType()->getPointerElementType()->isSized())
Dan Gohman30f24fe2009-05-09 00:14:52 +00003279 return getUnknown(GEP);
Matt Arsenault4c265902013-09-27 22:38:23 +00003280
3281 // Don't blindly transfer the inbounds flag from the GEP instruction to the
3282 // Add expression, because the Instruction may be guarded by control flow
3283 // and the no-overflow bits may not be valid for the expression in any
3284 // context.
3285 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3286
Dan Gohman1d2ded72010-05-03 22:09:21 +00003287 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohman2173bd32009-05-08 20:36:47 +00003288 gep_type_iterator GTI = gep_type_begin(GEP);
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +00003289 for (GetElementPtrInst::op_iterator I = std::next(GEP->op_begin()),
Dan Gohman2173bd32009-05-08 20:36:47 +00003290 E = GEP->op_end();
Dan Gohmanee750d12009-05-08 20:26:55 +00003291 I != E; ++I) {
3292 Value *Index = *I;
3293 // Compute the (potentially symbolic) offset in bytes for this index.
Chris Lattner229907c2011-07-18 04:54:35 +00003294 if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
Dan Gohmanee750d12009-05-08 20:26:55 +00003295 // For a struct, add the member offset.
Dan Gohmanee750d12009-05-08 20:26:55 +00003296 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003297 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
Dan Gohman16206132010-06-30 07:16:37 +00003298
Dan Gohman16206132010-06-30 07:16:37 +00003299 // Add the field offset to the running total offset.
Dan Gohmanc0cca7f2010-06-30 17:27:11 +00003300 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohmanee750d12009-05-08 20:26:55 +00003301 } else {
3302 // For an array, add the element offset, explicitly scaled.
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003303 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, *GTI);
Dan Gohman16206132010-06-30 07:16:37 +00003304 const SCEV *IndexS = getSCEV(Index);
Dan Gohman8b0a4192010-03-01 17:49:51 +00003305 // Getelementptr indices are signed.
Dan Gohman16206132010-06-30 07:16:37 +00003306 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3307
Dan Gohman16206132010-06-30 07:16:37 +00003308 // Multiply the index by the element size to compute the element offset.
Matt Arsenault4c265902013-09-27 22:38:23 +00003309 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, Wrap);
Dan Gohman16206132010-06-30 07:16:37 +00003310
3311 // Add the element offset to the running total offset.
Dan Gohmanc0cca7f2010-06-30 17:27:11 +00003312 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohmanee750d12009-05-08 20:26:55 +00003313 }
3314 }
Dan Gohman16206132010-06-30 07:16:37 +00003315
3316 // Get the SCEV for the GEP base.
3317 const SCEV *BaseS = getSCEV(Base);
3318
Dan Gohman16206132010-06-30 07:16:37 +00003319 // Add the total offset from all the GEP indices to the base.
Matt Arsenault4c265902013-09-27 22:38:23 +00003320 return getAddExpr(BaseS, TotalOffset, Wrap);
Dan Gohmanee750d12009-05-08 20:26:55 +00003321}
3322
Nick Lewycky3783b462007-11-22 07:59:40 +00003323/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3324/// guaranteed to end in (at every loop iteration). It is, at the same time,
3325/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3326/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003327uint32_t
Dan Gohmanaf752342009-07-07 17:06:11 +00003328ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003329 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner69ec1ec2007-11-23 22:36:49 +00003330 return C->getValue()->getValue().countTrailingZeros();
Chris Lattner49b090e2006-12-12 02:26:09 +00003331
Dan Gohmana30370b2009-05-04 22:02:23 +00003332 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohmanc702fc02009-06-19 23:29:04 +00003333 return std::min(GetMinTrailingZeros(T->getOperand()),
3334 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky3783b462007-11-22 07:59:40 +00003335
Dan Gohmana30370b2009-05-04 22:02:23 +00003336 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00003337 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3338 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3339 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00003340 }
3341
Dan Gohmana30370b2009-05-04 22:02:23 +00003342 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00003343 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3344 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3345 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00003346 }
3347
Dan Gohmana30370b2009-05-04 22:02:23 +00003348 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003349 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003350 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00003351 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003352 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00003353 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003354 }
3355
Dan Gohmana30370b2009-05-04 22:02:23 +00003356 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003357 // The result is the sum of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003358 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3359 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky3783b462007-11-22 07:59:40 +00003360 for (unsigned i = 1, e = M->getNumOperands();
3361 SumOpRes != BitWidth && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003362 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky3783b462007-11-22 07:59:40 +00003363 BitWidth);
3364 return SumOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003365 }
Nick Lewycky3783b462007-11-22 07:59:40 +00003366
Dan Gohmana30370b2009-05-04 22:02:23 +00003367 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003368 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003369 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00003370 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003371 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00003372 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003373 }
Nick Lewycky3783b462007-11-22 07:59:40 +00003374
Dan Gohmana30370b2009-05-04 22:02:23 +00003375 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003376 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003377 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003378 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003379 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003380 return MinOpRes;
3381 }
3382
Dan Gohmana30370b2009-05-04 22:02:23 +00003383 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003384 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003385 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003386 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003387 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003388 return MinOpRes;
3389 }
3390
Dan Gohmanc702fc02009-06-19 23:29:04 +00003391 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3392 // For a SCEVUnknown, ask ValueTracking.
3393 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohmanc702fc02009-06-19 23:29:04 +00003394 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00003395 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AT, nullptr, DT);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003396 return Zeros.countTrailingOnes();
3397 }
3398
3399 // SCEVUDivExpr
Nick Lewycky3783b462007-11-22 07:59:40 +00003400 return 0;
Chris Lattner49b090e2006-12-12 02:26:09 +00003401}
Chris Lattnerd934c702004-04-02 20:23:17 +00003402
Dan Gohmane65c9172009-07-13 21:35:55 +00003403/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3404///
3405ConstantRange
3406ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman761065e2010-11-17 02:44:44 +00003407 // See if we've computed this range already.
3408 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3409 if (I != UnsignedRanges.end())
3410 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00003411
3412 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohmaned756312010-11-17 20:23:08 +00003413 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003414
Dan Gohman85be4332010-01-26 19:19:05 +00003415 unsigned BitWidth = getTypeSizeInBits(S->getType());
3416 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3417
3418 // If the value has known zeros, the maximum unsigned value will have those
3419 // known zeros as well.
3420 uint32_t TZ = GetMinTrailingZeros(S);
3421 if (TZ != 0)
3422 ConservativeResult =
3423 ConstantRange(APInt::getMinValue(BitWidth),
3424 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3425
Dan Gohmane65c9172009-07-13 21:35:55 +00003426 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3427 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3428 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3429 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003430 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003431 }
3432
3433 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3434 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3435 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3436 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003437 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003438 }
3439
3440 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3441 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3442 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3443 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003444 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003445 }
3446
3447 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3448 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3449 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3450 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003451 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003452 }
3453
3454 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3455 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3456 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohmaned756312010-11-17 20:23:08 +00003457 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003458 }
3459
3460 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3461 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003462 return setUnsignedRange(ZExt,
3463 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003464 }
3465
3466 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3467 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003468 return setUnsignedRange(SExt,
3469 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003470 }
3471
3472 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3473 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003474 return setUnsignedRange(Trunc,
3475 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003476 }
3477
Dan Gohmane65c9172009-07-13 21:35:55 +00003478 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003479 // If there's no unsigned wrap, the value will never be less than its
3480 // initial value.
Andrew Trick8b55b732011-03-14 16:50:06 +00003481 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohman51ad99d2010-01-21 02:09:26 +00003482 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanebbd05f2010-04-12 23:08:18 +00003483 if (!C->getValue()->isZero())
Dan Gohmanae4a4142010-04-11 22:12:18 +00003484 ConservativeResult =
Dan Gohman9396b422010-06-30 06:58:35 +00003485 ConservativeResult.intersectWith(
3486 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003487
3488 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00003489 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00003490 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00003491 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00003492 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3493 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohmane65c9172009-07-13 21:35:55 +00003494 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3495
3496 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00003497 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmane65c9172009-07-13 21:35:55 +00003498
3499 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003500 ConstantRange StepRange = getSignedRange(Step);
3501 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3502 ConstantRange EndRange =
3503 StartRange.add(MaxBECountRange.multiply(StepRange));
3504
3505 // Check for overflow. This must be done with ConstantRange arithmetic
3506 // because we could be called from within the ScalarEvolution overflow
3507 // checking code.
3508 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3509 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3510 ConstantRange ExtMaxBECountRange =
3511 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3512 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3513 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3514 ExtEndRange)
Dan Gohmaned756312010-11-17 20:23:08 +00003515 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003516
Dan Gohmane65c9172009-07-13 21:35:55 +00003517 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3518 EndRange.getUnsignedMin());
3519 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3520 EndRange.getUnsignedMax());
3521 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohmaned756312010-11-17 20:23:08 +00003522 return setUnsignedRange(AddRec, ConservativeResult);
3523 return setUnsignedRange(AddRec,
3524 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003525 }
3526 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003527
Dan Gohmaned756312010-11-17 20:23:08 +00003528 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003529 }
3530
3531 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3532 // For a SCEVUnknown, ask ValueTracking.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003533 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00003534 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AT, nullptr, DT);
Dan Gohman1a7ab942009-07-20 22:34:18 +00003535 if (Ones == ~Zeros + 1)
Dan Gohmaned756312010-11-17 20:23:08 +00003536 return setUnsignedRange(U, ConservativeResult);
3537 return setUnsignedRange(U,
3538 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003539 }
3540
Dan Gohmaned756312010-11-17 20:23:08 +00003541 return setUnsignedRange(S, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003542}
3543
Dan Gohmane65c9172009-07-13 21:35:55 +00003544/// getSignedRange - Determine the signed range for a particular SCEV.
3545///
3546ConstantRange
3547ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman3ac8cd62011-01-24 17:54:18 +00003548 // See if we've computed this range already.
Dan Gohman761065e2010-11-17 02:44:44 +00003549 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3550 if (I != SignedRanges.end())
3551 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00003552
Dan Gohmane65c9172009-07-13 21:35:55 +00003553 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohmaned756312010-11-17 20:23:08 +00003554 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohmane65c9172009-07-13 21:35:55 +00003555
Dan Gohman51aaf022010-01-26 04:40:18 +00003556 unsigned BitWidth = getTypeSizeInBits(S->getType());
3557 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3558
3559 // If the value has known zeros, the maximum signed value will have those
3560 // known zeros as well.
3561 uint32_t TZ = GetMinTrailingZeros(S);
3562 if (TZ != 0)
3563 ConservativeResult =
3564 ConstantRange(APInt::getSignedMinValue(BitWidth),
3565 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3566
Dan Gohmane65c9172009-07-13 21:35:55 +00003567 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3568 ConstantRange X = getSignedRange(Add->getOperand(0));
3569 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3570 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003571 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003572 }
3573
Dan Gohmane65c9172009-07-13 21:35:55 +00003574 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3575 ConstantRange X = getSignedRange(Mul->getOperand(0));
3576 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3577 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003578 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003579 }
3580
Dan Gohmane65c9172009-07-13 21:35:55 +00003581 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3582 ConstantRange X = getSignedRange(SMax->getOperand(0));
3583 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3584 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003585 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003586 }
Dan Gohmand261d272009-06-24 01:05:09 +00003587
Dan Gohmane65c9172009-07-13 21:35:55 +00003588 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3589 ConstantRange X = getSignedRange(UMax->getOperand(0));
3590 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3591 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003592 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003593 }
Dan Gohmand261d272009-06-24 01:05:09 +00003594
Dan Gohmane65c9172009-07-13 21:35:55 +00003595 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3596 ConstantRange X = getSignedRange(UDiv->getLHS());
3597 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohmaned756312010-11-17 20:23:08 +00003598 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003599 }
Dan Gohmand261d272009-06-24 01:05:09 +00003600
Dan Gohmane65c9172009-07-13 21:35:55 +00003601 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3602 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003603 return setSignedRange(ZExt,
3604 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003605 }
3606
3607 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3608 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003609 return setSignedRange(SExt,
3610 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003611 }
3612
3613 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3614 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003615 return setSignedRange(Trunc,
3616 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003617 }
3618
Dan Gohmane65c9172009-07-13 21:35:55 +00003619 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003620 // If there's no signed wrap, and all the operands have the same sign or
3621 // zero, the value won't ever change sign.
Andrew Trick8b55b732011-03-14 16:50:06 +00003622 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003623 bool AllNonNeg = true;
3624 bool AllNonPos = true;
3625 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3626 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3627 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3628 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003629 if (AllNonNeg)
Dan Gohman51aaf022010-01-26 04:40:18 +00003630 ConservativeResult = ConservativeResult.intersectWith(
3631 ConstantRange(APInt(BitWidth, 0),
3632 APInt::getSignedMinValue(BitWidth)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00003633 else if (AllNonPos)
Dan Gohman51aaf022010-01-26 04:40:18 +00003634 ConservativeResult = ConservativeResult.intersectWith(
3635 ConstantRange(APInt::getSignedMinValue(BitWidth),
3636 APInt(BitWidth, 1)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00003637 }
Dan Gohmane65c9172009-07-13 21:35:55 +00003638
3639 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00003640 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00003641 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00003642 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00003643 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3644 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohmane65c9172009-07-13 21:35:55 +00003645 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3646
3647 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00003648 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmane65c9172009-07-13 21:35:55 +00003649
3650 ConstantRange StartRange = getSignedRange(Start);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003651 ConstantRange StepRange = getSignedRange(Step);
3652 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3653 ConstantRange EndRange =
3654 StartRange.add(MaxBECountRange.multiply(StepRange));
3655
3656 // Check for overflow. This must be done with ConstantRange arithmetic
3657 // because we could be called from within the ScalarEvolution overflow
3658 // checking code.
3659 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3660 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3661 ConstantRange ExtMaxBECountRange =
3662 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3663 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3664 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3665 ExtEndRange)
Dan Gohmaned756312010-11-17 20:23:08 +00003666 return setSignedRange(AddRec, ConservativeResult);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003667
Dan Gohmane65c9172009-07-13 21:35:55 +00003668 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3669 EndRange.getSignedMin());
3670 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3671 EndRange.getSignedMax());
3672 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohmaned756312010-11-17 20:23:08 +00003673 return setSignedRange(AddRec, ConservativeResult);
3674 return setSignedRange(AddRec,
3675 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohmand261d272009-06-24 01:05:09 +00003676 }
Dan Gohmand261d272009-06-24 01:05:09 +00003677 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003678
Dan Gohmaned756312010-11-17 20:23:08 +00003679 return setSignedRange(AddRec, ConservativeResult);
Dan Gohmand261d272009-06-24 01:05:09 +00003680 }
3681
Dan Gohmanc702fc02009-06-19 23:29:04 +00003682 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3683 // For a SCEVUnknown, ask ValueTracking.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003684 if (!U->getValue()->getType()->isIntegerTy() && !DL)
Dan Gohmaned756312010-11-17 20:23:08 +00003685 return setSignedRange(U, ConservativeResult);
Hal Finkel60db0582014-09-07 18:57:58 +00003686 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, AT, nullptr, DT);
Hal Finkelff666bd2013-07-09 18:16:16 +00003687 if (NS <= 1)
Dan Gohmaned756312010-11-17 20:23:08 +00003688 return setSignedRange(U, ConservativeResult);
3689 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohmane65c9172009-07-13 21:35:55 +00003690 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohmaned756312010-11-17 20:23:08 +00003691 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003692 }
3693
Dan Gohmaned756312010-11-17 20:23:08 +00003694 return setSignedRange(S, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003695}
3696
Chris Lattnerd934c702004-04-02 20:23:17 +00003697/// createSCEV - We know that there is no SCEV for the specified value.
3698/// Analyze the expression.
3699///
Dan Gohmanaf752342009-07-07 17:06:11 +00003700const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003701 if (!isSCEVable(V->getType()))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003702 return getUnknown(V);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003703
Dan Gohman05e89732008-06-22 19:56:46 +00003704 unsigned Opcode = Instruction::UserOp1;
Dan Gohman69451a02010-03-09 23:46:50 +00003705 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman05e89732008-06-22 19:56:46 +00003706 Opcode = I->getOpcode();
Dan Gohman69451a02010-03-09 23:46:50 +00003707
3708 // Don't attempt to analyze instructions in blocks that aren't
3709 // reachable. Such instructions don't matter, and they aren't required
3710 // to obey basic rules for definitions dominating uses which this
3711 // analysis depends on.
3712 if (!DT->isReachableFromEntry(I->getParent()))
3713 return getUnknown(V);
3714 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman05e89732008-06-22 19:56:46 +00003715 Opcode = CE->getOpcode();
Dan Gohmanf436bac2009-06-24 00:54:57 +00003716 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3717 return getConstant(CI);
3718 else if (isa<ConstantPointerNull>(V))
Dan Gohman1d2ded72010-05-03 22:09:21 +00003719 return getConstant(V->getType(), 0);
Dan Gohmanf161e06e2009-08-25 17:49:57 +00003720 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3721 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman05e89732008-06-22 19:56:46 +00003722 else
Dan Gohmanc8e23622009-04-21 23:15:49 +00003723 return getUnknown(V);
Chris Lattnera3e0bb42007-04-02 05:41:38 +00003724
Dan Gohman80ca01c2009-07-17 20:47:02 +00003725 Operator *U = cast<Operator>(V);
Dan Gohman05e89732008-06-22 19:56:46 +00003726 switch (Opcode) {
Dan Gohmane5fb1032010-08-16 16:03:49 +00003727 case Instruction::Add: {
3728 // The simple thing to do would be to just call getSCEV on both operands
3729 // and call getAddExpr with the result. However if we're looking at a
3730 // bunch of things all added together, this can be quite inefficient,
3731 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3732 // Instead, gather up all the operands and make a single getAddExpr call.
3733 // LLVM IR canonical form means we need only traverse the left operands.
Andrew Trickd25089f2011-11-29 02:16:38 +00003734 //
3735 // Don't apply this instruction's NSW or NUW flags to the new
3736 // expression. The instruction may be guarded by control flow that the
3737 // no-wrap behavior depends on. Non-control-equivalent instructions can be
3738 // mapped to the same SCEV expression, and it would be incorrect to transfer
3739 // NSW/NUW semantics to those operations.
Dan Gohmane5fb1032010-08-16 16:03:49 +00003740 SmallVector<const SCEV *, 4> AddOps;
3741 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman47308d52010-08-31 22:53:17 +00003742 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3743 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3744 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3745 break;
Dan Gohmane5fb1032010-08-16 16:03:49 +00003746 U = cast<Operator>(Op);
Dan Gohman47308d52010-08-31 22:53:17 +00003747 const SCEV *Op1 = getSCEV(U->getOperand(1));
3748 if (Opcode == Instruction::Sub)
3749 AddOps.push_back(getNegativeSCEV(Op1));
3750 else
3751 AddOps.push_back(Op1);
Dan Gohmane5fb1032010-08-16 16:03:49 +00003752 }
3753 AddOps.push_back(getSCEV(U->getOperand(0)));
Andrew Trickd25089f2011-11-29 02:16:38 +00003754 return getAddExpr(AddOps);
Dan Gohmane5fb1032010-08-16 16:03:49 +00003755 }
3756 case Instruction::Mul: {
Andrew Trickd25089f2011-11-29 02:16:38 +00003757 // Don't transfer NSW/NUW for the same reason as AddExpr.
Dan Gohmane5fb1032010-08-16 16:03:49 +00003758 SmallVector<const SCEV *, 4> MulOps;
3759 MulOps.push_back(getSCEV(U->getOperand(1)));
3760 for (Value *Op = U->getOperand(0);
Andrew Trick2a3b7162011-03-09 17:23:39 +00003761 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
Dan Gohmane5fb1032010-08-16 16:03:49 +00003762 Op = U->getOperand(0)) {
3763 U = cast<Operator>(Op);
3764 MulOps.push_back(getSCEV(U->getOperand(1)));
3765 }
3766 MulOps.push_back(getSCEV(U->getOperand(0)));
3767 return getMulExpr(MulOps);
3768 }
Dan Gohman05e89732008-06-22 19:56:46 +00003769 case Instruction::UDiv:
Dan Gohmanc8e23622009-04-21 23:15:49 +00003770 return getUDivExpr(getSCEV(U->getOperand(0)),
3771 getSCEV(U->getOperand(1)));
Dan Gohman05e89732008-06-22 19:56:46 +00003772 case Instruction::Sub:
Dan Gohmanc8e23622009-04-21 23:15:49 +00003773 return getMinusSCEV(getSCEV(U->getOperand(0)),
3774 getSCEV(U->getOperand(1)));
Dan Gohman0ec05372009-04-21 02:26:00 +00003775 case Instruction::And:
3776 // For an expression like x&255 that merely masks off the high bits,
3777 // use zext(trunc(x)) as the SCEV expression.
3778 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmandf199482009-04-25 17:05:40 +00003779 if (CI->isNullValue())
3780 return getSCEV(U->getOperand(1));
Dan Gohman05c1d372009-04-27 01:41:10 +00003781 if (CI->isAllOnesValue())
3782 return getSCEV(U->getOperand(0));
Dan Gohman0ec05372009-04-21 02:26:00 +00003783 const APInt &A = CI->getValue();
Dan Gohman1ee696d2009-06-16 19:52:01 +00003784
3785 // Instcombine's ShrinkDemandedConstant may strip bits out of
3786 // constants, obscuring what would otherwise be a low-bits mask.
Jay Foada0653a32014-05-14 21:14:37 +00003787 // Use computeKnownBits to compute what ShrinkDemandedConstant
Dan Gohman1ee696d2009-06-16 19:52:01 +00003788 // knew about to reconstruct a low-bits mask value.
3789 unsigned LZ = A.countLeadingZeros();
Nick Lewycky31eaca52014-01-27 10:04:03 +00003790 unsigned TZ = A.countTrailingZeros();
Dan Gohman1ee696d2009-06-16 19:52:01 +00003791 unsigned BitWidth = A.getBitWidth();
Dan Gohman1ee696d2009-06-16 19:52:01 +00003792 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00003793 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL,
3794 0, AT, nullptr, DT);
Dan Gohman1ee696d2009-06-16 19:52:01 +00003795
Nick Lewycky31eaca52014-01-27 10:04:03 +00003796 APInt EffectiveMask =
3797 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
3798 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
3799 const SCEV *MulCount = getConstant(
3800 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
3801 return getMulExpr(
3802 getZeroExtendExpr(
3803 getTruncateExpr(
3804 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
3805 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
3806 U->getType()),
3807 MulCount);
3808 }
Dan Gohman0ec05372009-04-21 02:26:00 +00003809 }
3810 break;
Dan Gohman1ee696d2009-06-16 19:52:01 +00003811
Dan Gohman05e89732008-06-22 19:56:46 +00003812 case Instruction::Or:
3813 // If the RHS of the Or is a constant, we may have something like:
3814 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3815 // optimizations will transparently handle this case.
3816 //
3817 // In order for this transformation to be safe, the LHS must be of the
3818 // form X*(2^n) and the Or constant must be less than 2^n.
3819 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003820 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman05e89732008-06-22 19:56:46 +00003821 const APInt &CIVal = CI->getValue();
Dan Gohmanc702fc02009-06-19 23:29:04 +00003822 if (GetMinTrailingZeros(LHS) >=
Dan Gohman36bad002009-09-17 18:05:20 +00003823 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3824 // Build a plain add SCEV.
3825 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3826 // If the LHS of the add was an addrec and it has no-wrap flags,
3827 // transfer the no-wrap flags, since an or won't introduce a wrap.
3828 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3829 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick8b55b732011-03-14 16:50:06 +00003830 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
3831 OldAR->getNoWrapFlags());
Dan Gohman36bad002009-09-17 18:05:20 +00003832 }
3833 return S;
3834 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003835 }
Dan Gohman05e89732008-06-22 19:56:46 +00003836 break;
3837 case Instruction::Xor:
Dan Gohman05e89732008-06-22 19:56:46 +00003838 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00003839 // If the RHS of the xor is a signbit, then this is just an add.
3840 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman05e89732008-06-22 19:56:46 +00003841 if (CI->getValue().isSignBit())
Dan Gohmanc8e23622009-04-21 23:15:49 +00003842 return getAddExpr(getSCEV(U->getOperand(0)),
3843 getSCEV(U->getOperand(1)));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00003844
3845 // If the RHS of xor is -1, then this is a not operation.
Dan Gohmand277a1e2009-05-18 16:17:44 +00003846 if (CI->isAllOnesValue())
Dan Gohmanc8e23622009-04-21 23:15:49 +00003847 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman6350296e2009-05-18 16:29:04 +00003848
3849 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3850 // This is a variant of the check for xor with -1, and it handles
3851 // the case where instcombine has trimmed non-demanded bits out
3852 // of an xor with -1.
3853 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3854 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3855 if (BO->getOpcode() == Instruction::And &&
3856 LCI->getValue() == CI->getValue())
3857 if (const SCEVZeroExtendExpr *Z =
Dan Gohmanb50f5a42009-06-17 01:22:39 +00003858 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattner229907c2011-07-18 04:54:35 +00003859 Type *UTy = U->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00003860 const SCEV *Z0 = Z->getOperand();
Chris Lattner229907c2011-07-18 04:54:35 +00003861 Type *Z0Ty = Z0->getType();
Dan Gohmaneddf7712009-06-18 00:00:20 +00003862 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3863
Dan Gohman8b0a4192010-03-01 17:49:51 +00003864 // If C is a low-bits mask, the zero extend is serving to
Dan Gohmaneddf7712009-06-18 00:00:20 +00003865 // mask off the high bits. Complement the operand and
3866 // re-apply the zext.
3867 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3868 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3869
3870 // If C is a single bit, it may be in the sign-bit position
3871 // before the zero-extend. In this case, represent the xor
3872 // using an add, which is equivalent, and re-apply the zext.
Jay Foad583abbc2010-12-07 08:25:19 +00003873 APInt Trunc = CI->getValue().trunc(Z0TySize);
3874 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohmaneddf7712009-06-18 00:00:20 +00003875 Trunc.isSignBit())
3876 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3877 UTy);
Dan Gohmanb50f5a42009-06-17 01:22:39 +00003878 }
Dan Gohman05e89732008-06-22 19:56:46 +00003879 }
3880 break;
3881
3882 case Instruction::Shl:
3883 // Turn shift left of a constant amount into a multiply.
3884 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003885 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00003886
3887 // If the shift count is not less than the bitwidth, the result of
3888 // the shift is undefined. Don't try to analyze it, because the
3889 // resolution chosen here may differ from the resolution chosen in
3890 // other parts of the compiler.
3891 if (SA->getValue().uge(BitWidth))
3892 break;
3893
Owen Andersonedb4a702009-07-24 23:12:02 +00003894 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00003895 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00003896 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman05e89732008-06-22 19:56:46 +00003897 }
3898 break;
3899
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00003900 case Instruction::LShr:
Nick Lewycky52348302009-01-13 09:18:58 +00003901 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00003902 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003903 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00003904
3905 // If the shift count is not less than the bitwidth, the result of
3906 // the shift is undefined. Don't try to analyze it, because the
3907 // resolution chosen here may differ from the resolution chosen in
3908 // other parts of the compiler.
3909 if (SA->getValue().uge(BitWidth))
3910 break;
3911
Owen Andersonedb4a702009-07-24 23:12:02 +00003912 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00003913 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00003914 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00003915 }
3916 break;
3917
Dan Gohman0ec05372009-04-21 02:26:00 +00003918 case Instruction::AShr:
3919 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3920 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanacd700a2010-04-22 01:35:11 +00003921 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman0ec05372009-04-21 02:26:00 +00003922 if (L->getOpcode() == Instruction::Shl &&
3923 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00003924 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3925
3926 // If the shift count is not less than the bitwidth, the result of
3927 // the shift is undefined. Don't try to analyze it, because the
3928 // resolution chosen here may differ from the resolution chosen in
3929 // other parts of the compiler.
3930 if (CI->getValue().uge(BitWidth))
3931 break;
3932
Dan Gohmandf199482009-04-25 17:05:40 +00003933 uint64_t Amt = BitWidth - CI->getZExtValue();
3934 if (Amt == BitWidth)
3935 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman0ec05372009-04-21 02:26:00 +00003936 return
Dan Gohmanc8e23622009-04-21 23:15:49 +00003937 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanacd700a2010-04-22 01:35:11 +00003938 IntegerType::get(getContext(),
3939 Amt)),
3940 U->getType());
Dan Gohman0ec05372009-04-21 02:26:00 +00003941 }
3942 break;
3943
Dan Gohman05e89732008-06-22 19:56:46 +00003944 case Instruction::Trunc:
Dan Gohmanc8e23622009-04-21 23:15:49 +00003945 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00003946
3947 case Instruction::ZExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00003948 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00003949
3950 case Instruction::SExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00003951 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00003952
3953 case Instruction::BitCast:
3954 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003955 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman05e89732008-06-22 19:56:46 +00003956 return getSCEV(U->getOperand(0));
3957 break;
3958
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003959 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3960 // lead to pointer expressions which cannot safely be expanded to GEPs,
3961 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3962 // simplifying integer expressions.
Dan Gohman0a40ad92009-04-16 03:18:22 +00003963
Dan Gohmanee750d12009-05-08 20:26:55 +00003964 case Instruction::GetElementPtr:
Dan Gohmanb256ccf2009-12-18 02:09:29 +00003965 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003966
Dan Gohman05e89732008-06-22 19:56:46 +00003967 case Instruction::PHI:
3968 return createNodeForPHI(cast<PHINode>(U));
3969
3970 case Instruction::Select:
3971 // This could be a smax or umax that was lowered earlier.
3972 // Try to recover it.
3973 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3974 Value *LHS = ICI->getOperand(0);
3975 Value *RHS = ICI->getOperand(1);
3976 switch (ICI->getPredicate()) {
3977 case ICmpInst::ICMP_SLT:
3978 case ICmpInst::ICMP_SLE:
3979 std::swap(LHS, RHS);
3980 // fall through
3981 case ICmpInst::ICMP_SGT:
3982 case ICmpInst::ICMP_SGE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00003983 // a >s b ? a+x : b+x -> smax(a, b)+x
3984 // a >s b ? b+x : a+x -> smin(a, b)+x
3985 if (LHS->getType() == U->getType()) {
3986 const SCEV *LS = getSCEV(LHS);
3987 const SCEV *RS = getSCEV(RHS);
3988 const SCEV *LA = getSCEV(U->getOperand(1));
3989 const SCEV *RA = getSCEV(U->getOperand(2));
3990 const SCEV *LDiff = getMinusSCEV(LA, LS);
3991 const SCEV *RDiff = getMinusSCEV(RA, RS);
3992 if (LDiff == RDiff)
3993 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3994 LDiff = getMinusSCEV(LA, RS);
3995 RDiff = getMinusSCEV(RA, LS);
3996 if (LDiff == RDiff)
3997 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3998 }
Dan Gohman05e89732008-06-22 19:56:46 +00003999 break;
4000 case ICmpInst::ICMP_ULT:
4001 case ICmpInst::ICMP_ULE:
4002 std::swap(LHS, RHS);
4003 // fall through
4004 case ICmpInst::ICMP_UGT:
4005 case ICmpInst::ICMP_UGE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004006 // a >u b ? a+x : b+x -> umax(a, b)+x
4007 // a >u b ? b+x : a+x -> umin(a, b)+x
4008 if (LHS->getType() == U->getType()) {
4009 const SCEV *LS = getSCEV(LHS);
4010 const SCEV *RS = getSCEV(RHS);
4011 const SCEV *LA = getSCEV(U->getOperand(1));
4012 const SCEV *RA = getSCEV(U->getOperand(2));
4013 const SCEV *LDiff = getMinusSCEV(LA, LS);
4014 const SCEV *RDiff = getMinusSCEV(RA, RS);
4015 if (LDiff == RDiff)
4016 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4017 LDiff = getMinusSCEV(LA, RS);
4018 RDiff = getMinusSCEV(RA, LS);
4019 if (LDiff == RDiff)
4020 return getAddExpr(getUMinExpr(LS, RS), LDiff);
4021 }
Dan Gohman05e89732008-06-22 19:56:46 +00004022 break;
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004023 case ICmpInst::ICMP_NE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004024 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
4025 if (LHS->getType() == U->getType() &&
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004026 isa<ConstantInt>(RHS) &&
Dan Gohmanf33bac32010-04-24 03:09:42 +00004027 cast<ConstantInt>(RHS)->isZero()) {
4028 const SCEV *One = getConstant(LHS->getType(), 1);
4029 const SCEV *LS = getSCEV(LHS);
4030 const SCEV *LA = getSCEV(U->getOperand(1));
4031 const SCEV *RA = getSCEV(U->getOperand(2));
4032 const SCEV *LDiff = getMinusSCEV(LA, LS);
4033 const SCEV *RDiff = getMinusSCEV(RA, One);
4034 if (LDiff == RDiff)
Dan Gohmancf32f2b2010-08-13 20:17:14 +00004035 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohmanf33bac32010-04-24 03:09:42 +00004036 }
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004037 break;
4038 case ICmpInst::ICMP_EQ:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004039 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
4040 if (LHS->getType() == U->getType() &&
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004041 isa<ConstantInt>(RHS) &&
Dan Gohmanf33bac32010-04-24 03:09:42 +00004042 cast<ConstantInt>(RHS)->isZero()) {
4043 const SCEV *One = getConstant(LHS->getType(), 1);
4044 const SCEV *LS = getSCEV(LHS);
4045 const SCEV *LA = getSCEV(U->getOperand(1));
4046 const SCEV *RA = getSCEV(U->getOperand(2));
4047 const SCEV *LDiff = getMinusSCEV(LA, One);
4048 const SCEV *RDiff = getMinusSCEV(RA, LS);
4049 if (LDiff == RDiff)
Dan Gohmancf32f2b2010-08-13 20:17:14 +00004050 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohmanf33bac32010-04-24 03:09:42 +00004051 }
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004052 break;
Dan Gohman05e89732008-06-22 19:56:46 +00004053 default:
4054 break;
4055 }
4056 }
4057
4058 default: // We cannot analyze this expression.
4059 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00004060 }
4061
Dan Gohmanc8e23622009-04-21 23:15:49 +00004062 return getUnknown(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00004063}
4064
4065
4066
4067//===----------------------------------------------------------------------===//
4068// Iteration Count Computation Code
4069//
4070
Andrew Trick2b6860f2011-08-11 23:36:16 +00004071/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Tricke81211f2012-01-11 06:52:55 +00004072/// normal unsigned value. Returns 0 if the trip count is unknown or not
4073/// constant. Will also return 0 if the maximum trip count is very large (>=
4074/// 2^32).
4075///
4076/// This "trip count" assumes that control exits via ExitingBlock. More
4077/// precisely, it is the number of times that control may reach ExitingBlock
4078/// before taking the branch. For loops with multiple exits, it may not be the
4079/// number times that the loop header executes because the loop may exit
4080/// prematurely via another branch.
Andrew Trickee9143a2013-05-31 23:34:46 +00004081///
4082/// FIXME: We conservatively call getBackedgeTakenCount(L) instead of
4083/// getExitCount(L, ExitingBlock) to compute a safe trip count considering all
4084/// loop exits. getExitCount() may return an exact count for this branch
4085/// assuming no-signed-wrap. The number of well-defined iterations may actually
4086/// be higher than this trip count if this exit test is skipped and the loop
4087/// exits via a different branch. Ideally, getExitCount() would know whether it
4088/// depends on a NSW assumption, and we would only fall back to a conservative
4089/// trip count in that case.
Andrew Tricke81211f2012-01-11 06:52:55 +00004090unsigned ScalarEvolution::
Aaron Ballmand07f5512013-06-04 01:01:56 +00004091getSmallConstantTripCount(Loop *L, BasicBlock * /*ExitingBlock*/) {
Andrew Trick2b6860f2011-08-11 23:36:16 +00004092 const SCEVConstant *ExitCount =
Andrew Trickee9143a2013-05-31 23:34:46 +00004093 dyn_cast<SCEVConstant>(getBackedgeTakenCount(L));
Andrew Trick2b6860f2011-08-11 23:36:16 +00004094 if (!ExitCount)
4095 return 0;
4096
4097 ConstantInt *ExitConst = ExitCount->getValue();
4098
4099 // Guard against huge trip counts.
4100 if (ExitConst->getValue().getActiveBits() > 32)
4101 return 0;
4102
4103 // In case of integer overflow, this returns 0, which is correct.
4104 return ((unsigned)ExitConst->getZExtValue()) + 1;
4105}
4106
4107/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4108/// trip count of this loop as a normal unsigned value, if possible. This
4109/// means that the actual trip count is always a multiple of the returned
4110/// value (don't forget the trip count could very well be zero as well!).
4111///
4112/// Returns 1 if the trip count is unknown or not guaranteed to be the
4113/// multiple of a constant (which is also the case if the trip count is simply
4114/// constant, use getSmallConstantTripCount for that case), Will also return 1
4115/// if the trip count is very large (>= 2^32).
Andrew Tricke81211f2012-01-11 06:52:55 +00004116///
4117/// As explained in the comments for getSmallConstantTripCount, this assumes
4118/// that control exits the loop via ExitingBlock.
4119unsigned ScalarEvolution::
Aaron Ballmand07f5512013-06-04 01:01:56 +00004120getSmallConstantTripMultiple(Loop *L, BasicBlock * /*ExitingBlock*/) {
Andrew Trickee9143a2013-05-31 23:34:46 +00004121 const SCEV *ExitCount = getBackedgeTakenCount(L);
Andrew Trick2b6860f2011-08-11 23:36:16 +00004122 if (ExitCount == getCouldNotCompute())
4123 return 1;
4124
4125 // Get the trip count from the BE count by adding 1.
4126 const SCEV *TCMul = getAddExpr(ExitCount,
4127 getConstant(ExitCount->getType(), 1));
4128 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4129 // to factor simple cases.
4130 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4131 TCMul = Mul->getOperand(0);
4132
4133 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4134 if (!MulC)
4135 return 1;
4136
4137 ConstantInt *Result = MulC->getValue();
4138
Hal Finkel30bd9342012-10-24 19:46:44 +00004139 // Guard against huge trip counts (this requires checking
4140 // for zero to handle the case where the trip count == -1 and the
4141 // addition wraps).
4142 if (!Result || Result->getValue().getActiveBits() > 32 ||
4143 Result->getValue().getActiveBits() == 0)
Andrew Trick2b6860f2011-08-11 23:36:16 +00004144 return 1;
4145
4146 return (unsigned)Result->getZExtValue();
4147}
4148
Andrew Trick3ca3f982011-07-26 17:19:55 +00004149// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickee9143a2013-05-31 23:34:46 +00004150// this loop is guaranteed not to exit via ExitingBlock. Otherwise return
Andrew Trick3ca3f982011-07-26 17:19:55 +00004151// SCEVCouldNotCompute.
Andrew Trick77c55422011-08-02 04:23:35 +00004152const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4153 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004154}
4155
Dan Gohman0bddac12009-02-24 18:55:53 +00004156/// getBackedgeTakenCount - If the specified loop has a predictable
4157/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4158/// object. The backedge-taken count is the number of times the loop header
4159/// will be branched to from within the loop. This is one less than the
4160/// trip count of the loop, since it doesn't count the first iteration,
4161/// when the header is branched to from outside the loop.
4162///
4163/// Note that it is not valid to call this method on a loop without a
4164/// loop-invariant backedge-taken count (see
4165/// hasLoopInvariantBackedgeTakenCount).
4166///
Dan Gohmanaf752342009-07-07 17:06:11 +00004167const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004168 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004169}
4170
4171/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4172/// return the least SCEV value that is known never to be less than the
4173/// actual backedge taken count.
Dan Gohmanaf752342009-07-07 17:06:11 +00004174const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004175 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004176}
4177
Dan Gohmandc191042009-07-08 19:23:34 +00004178/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4179/// onto the given Worklist.
4180static void
4181PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4182 BasicBlock *Header = L->getHeader();
4183
4184 // Push all Loop-header PHIs onto the Worklist stack.
4185 for (BasicBlock::iterator I = Header->begin();
4186 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4187 Worklist.push_back(PN);
4188}
4189
Dan Gohman2b8da352009-04-30 20:47:05 +00004190const ScalarEvolution::BackedgeTakenInfo &
4191ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004192 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman8b0a4192010-03-01 17:49:51 +00004193 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman76466372009-04-27 20:16:15 +00004194 // update the value. The temporary CouldNotCompute value tells SCEV
4195 // code elsewhere that it shouldn't attempt to request a new
4196 // backedge-taken count, which could result in infinite recursion.
Dan Gohman0daf6872011-05-09 18:44:09 +00004197 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick3ca3f982011-07-26 17:19:55 +00004198 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004199 if (!Pair.second)
4200 return Pair.first->second;
Dan Gohman76466372009-04-27 20:16:15 +00004201
Andrew Trick3ca3f982011-07-26 17:19:55 +00004202 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4203 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4204 // must be cleared in this scope.
4205 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4206
4207 if (Result.getExact(this) != getCouldNotCompute()) {
4208 assert(isLoopInvariant(Result.getExact(this), L) &&
4209 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnera337f5e2011-01-09 02:16:18 +00004210 "Computed backedge-taken count isn't loop invariant for loop!");
4211 ++NumTripCountsComputed;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004212 }
4213 else if (Result.getMax(this) == getCouldNotCompute() &&
4214 isa<PHINode>(L->getHeader()->begin())) {
4215 // Only count loops that have phi nodes as not being computable.
4216 ++NumTripCountsNotComputed;
Chris Lattnera337f5e2011-01-09 02:16:18 +00004217 }
Dan Gohman2b8da352009-04-30 20:47:05 +00004218
Chris Lattnera337f5e2011-01-09 02:16:18 +00004219 // Now that we know more about the trip count for this loop, forget any
4220 // existing SCEV values for PHI nodes in this loop since they are only
4221 // conservative estimates made without the benefit of trip count
4222 // information. This is similar to the code in forgetLoop, except that
4223 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004224 if (Result.hasAnyInfo()) {
Chris Lattnera337f5e2011-01-09 02:16:18 +00004225 SmallVector<Instruction *, 16> Worklist;
4226 PushLoopPHIs(L, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004227
Chris Lattnera337f5e2011-01-09 02:16:18 +00004228 SmallPtrSet<Instruction *, 8> Visited;
4229 while (!Worklist.empty()) {
4230 Instruction *I = Worklist.pop_back_val();
4231 if (!Visited.insert(I)) continue;
Dan Gohmandc191042009-07-08 19:23:34 +00004232
Chris Lattnera337f5e2011-01-09 02:16:18 +00004233 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004234 ValueExprMap.find_as(static_cast<Value *>(I));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004235 if (It != ValueExprMap.end()) {
4236 const SCEV *Old = It->second;
Dan Gohman761065e2010-11-17 02:44:44 +00004237
Chris Lattnera337f5e2011-01-09 02:16:18 +00004238 // SCEVUnknown for a PHI either means that it has an unrecognized
4239 // structure, or it's a PHI that's in the progress of being computed
4240 // by createNodeForPHI. In the former case, additional loop trip
4241 // count information isn't going to change anything. In the later
4242 // case, createNodeForPHI will perform the necessary updates on its
4243 // own when it gets to that point.
4244 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4245 forgetMemoizedResults(Old);
4246 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004247 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004248 if (PHINode *PN = dyn_cast<PHINode>(I))
4249 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmandc191042009-07-08 19:23:34 +00004250 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004251
4252 PushDefUseChildren(I, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004253 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004254 }
Dan Gohman6acd95b2011-04-25 22:48:29 +00004255
4256 // Re-lookup the insert position, since the call to
4257 // ComputeBackedgeTakenCount above could result in a
4258 // recusive call to getBackedgeTakenInfo (on a different
4259 // loop), which would invalidate the iterator computed
4260 // earlier.
4261 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattnerd934c702004-04-02 20:23:17 +00004262}
4263
Dan Gohman880c92a2009-10-31 15:04:55 +00004264/// forgetLoop - This method should be called by the client when it has
4265/// changed a loop in a way that may effect ScalarEvolution's ability to
4266/// compute a trip count, or if the loop is deleted.
4267void ScalarEvolution::forgetLoop(const Loop *L) {
4268 // Drop any stored trip count value.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004269 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4270 BackedgeTakenCounts.find(L);
4271 if (BTCPos != BackedgeTakenCounts.end()) {
4272 BTCPos->second.clear();
4273 BackedgeTakenCounts.erase(BTCPos);
4274 }
Dan Gohmanf1505722009-05-02 17:43:35 +00004275
Dan Gohman880c92a2009-10-31 15:04:55 +00004276 // Drop information about expressions based on loop-header PHIs.
Dan Gohman48f82222009-05-04 22:30:44 +00004277 SmallVector<Instruction *, 16> Worklist;
Dan Gohmandc191042009-07-08 19:23:34 +00004278 PushLoopPHIs(L, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004279
Dan Gohmandc191042009-07-08 19:23:34 +00004280 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00004281 while (!Worklist.empty()) {
4282 Instruction *I = Worklist.pop_back_val();
Dan Gohmandc191042009-07-08 19:23:34 +00004283 if (!Visited.insert(I)) continue;
4284
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004285 ValueExprMapType::iterator It =
4286 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004287 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004288 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004289 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004290 if (PHINode *PN = dyn_cast<PHINode>(I))
4291 ConstantEvolutionLoopExitValue.erase(PN);
4292 }
4293
4294 PushDefUseChildren(I, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004295 }
Dan Gohmandcb354b2010-10-29 20:16:10 +00004296
4297 // Forget all contained loops too, to avoid dangling entries in the
4298 // ValuesAtScopes map.
4299 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4300 forgetLoop(*I);
Dan Gohman43300342009-02-17 20:49:49 +00004301}
4302
Eric Christopheref6d5932010-07-29 01:25:38 +00004303/// forgetValue - This method should be called by the client when it has
4304/// changed a value in a way that may effect its value, or which may
4305/// disconnect it from a def-use chain linking it to a loop.
4306void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004307 Instruction *I = dyn_cast<Instruction>(V);
4308 if (!I) return;
4309
4310 // Drop information about expressions based on loop-header PHIs.
4311 SmallVector<Instruction *, 16> Worklist;
4312 Worklist.push_back(I);
4313
4314 SmallPtrSet<Instruction *, 8> Visited;
4315 while (!Worklist.empty()) {
4316 I = Worklist.pop_back_val();
4317 if (!Visited.insert(I)) continue;
4318
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004319 ValueExprMapType::iterator It =
4320 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004321 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004322 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004323 ValueExprMap.erase(It);
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004324 if (PHINode *PN = dyn_cast<PHINode>(I))
4325 ConstantEvolutionLoopExitValue.erase(PN);
4326 }
4327
4328 PushDefUseChildren(I, Worklist);
4329 }
4330}
4331
Andrew Trick3ca3f982011-07-26 17:19:55 +00004332/// getExact - Get the exact loop backedge taken count considering all loop
Andrew Trick90c7a102011-11-16 00:52:40 +00004333/// exits. A computable result can only be return for loops with a single exit.
4334/// Returning the minimum taken count among all exits is incorrect because one
4335/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4336/// the limit of each loop test is never skipped. This is a valid assumption as
4337/// long as the loop exits via that test. For precise results, it is the
4338/// caller's responsibility to specify the relevant loop exit using
4339/// getExact(ExitingBlock, SE).
Andrew Trick3ca3f982011-07-26 17:19:55 +00004340const SCEV *
4341ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4342 // If any exits were not computable, the loop is not computable.
4343 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4344
Andrew Trick90c7a102011-11-16 00:52:40 +00004345 // We need exactly one computable exit.
Andrew Trick77c55422011-08-02 04:23:35 +00004346 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00004347 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4348
Craig Topper9f008862014-04-15 04:59:12 +00004349 const SCEV *BECount = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004350 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004351 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004352
4353 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4354
4355 if (!BECount)
4356 BECount = ENT->ExactNotTaken;
Andrew Trick90c7a102011-11-16 00:52:40 +00004357 else if (BECount != ENT->ExactNotTaken)
4358 return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00004359 }
Andrew Trickbbb226a2011-09-02 21:20:46 +00004360 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004361 return BECount;
4362}
4363
4364/// getExact - Get the exact not taken count for this loop exit.
4365const SCEV *
Andrew Trick77c55422011-08-02 04:23:35 +00004366ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick3ca3f982011-07-26 17:19:55 +00004367 ScalarEvolution *SE) const {
4368 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004369 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004370
Andrew Trick77c55422011-08-02 04:23:35 +00004371 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick3ca3f982011-07-26 17:19:55 +00004372 return ENT->ExactNotTaken;
4373 }
4374 return SE->getCouldNotCompute();
4375}
4376
4377/// getMax - Get the max backedge taken count for the loop.
4378const SCEV *
4379ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4380 return Max ? Max : SE->getCouldNotCompute();
4381}
4382
Andrew Trick9093e152013-03-26 03:14:53 +00004383bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
4384 ScalarEvolution *SE) const {
4385 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
4386 return true;
4387
4388 if (!ExitNotTaken.ExitingBlock)
4389 return false;
4390
4391 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004392 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick9093e152013-03-26 03:14:53 +00004393
4394 if (ENT->ExactNotTaken != SE->getCouldNotCompute()
4395 && SE->hasOperand(ENT->ExactNotTaken, S)) {
4396 return true;
4397 }
4398 }
4399 return false;
4400}
4401
Andrew Trick3ca3f982011-07-26 17:19:55 +00004402/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4403/// computable exit into a persistent ExitNotTakenInfo array.
4404ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4405 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4406 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4407
4408 if (!Complete)
4409 ExitNotTaken.setIncomplete();
4410
4411 unsigned NumExits = ExitCounts.size();
4412 if (NumExits == 0) return;
4413
Andrew Trick77c55422011-08-02 04:23:35 +00004414 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004415 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4416 if (NumExits == 1) return;
4417
4418 // Handle the rare case of multiple computable exits.
4419 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4420
4421 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4422 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4423 PrevENT->setNextExit(ENT);
Andrew Trick77c55422011-08-02 04:23:35 +00004424 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004425 ENT->ExactNotTaken = ExitCounts[i].second;
4426 }
4427}
4428
4429/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4430void ScalarEvolution::BackedgeTakenInfo::clear() {
Craig Topper9f008862014-04-15 04:59:12 +00004431 ExitNotTaken.ExitingBlock = nullptr;
4432 ExitNotTaken.ExactNotTaken = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004433 delete[] ExitNotTaken.getNextExit();
4434}
4435
Dan Gohman0bddac12009-02-24 18:55:53 +00004436/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4437/// of the specified loop will execute.
Dan Gohman2b8da352009-04-30 20:47:05 +00004438ScalarEvolution::BackedgeTakenInfo
4439ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00004440 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohman96212b62009-06-22 00:31:57 +00004441 L->getExitingBlocks(ExitingBlocks);
Chris Lattnerd934c702004-04-02 20:23:17 +00004442
Andrew Trick839e30b2014-05-23 19:47:13 +00004443 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004444 bool CouldComputeBECount = true;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004445 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
Andrew Trick839e30b2014-05-23 19:47:13 +00004446 const SCEV *MustExitMaxBECount = nullptr;
4447 const SCEV *MayExitMaxBECount = nullptr;
4448
4449 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
4450 // and compute maxBECount.
Dan Gohman96212b62009-06-22 00:31:57 +00004451 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick839e30b2014-05-23 19:47:13 +00004452 BasicBlock *ExitBB = ExitingBlocks[i];
4453 ExitLimit EL = ComputeExitLimit(L, ExitBB);
4454
4455 // 1. For each exit that can be computed, add an entry to ExitCounts.
4456 // CouldComputeBECount is true only if all exits can be computed.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004457 if (EL.Exact == getCouldNotCompute())
Dan Gohman96212b62009-06-22 00:31:57 +00004458 // We couldn't compute an exact value for this exit, so
Dan Gohman8885b372009-06-22 21:10:22 +00004459 // we won't be able to compute an exact value for the loop.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004460 CouldComputeBECount = false;
4461 else
Andrew Trick839e30b2014-05-23 19:47:13 +00004462 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact));
Andrew Trick3ca3f982011-07-26 17:19:55 +00004463
Andrew Trick839e30b2014-05-23 19:47:13 +00004464 // 2. Derive the loop's MaxBECount from each exit's max number of
4465 // non-exiting iterations. Partition the loop exits into two kinds:
4466 // LoopMustExits and LoopMayExits.
4467 //
4468 // A LoopMustExit meets two requirements:
4469 //
4470 // (a) Its ExitLimit.MustExit flag must be set which indicates that the exit
4471 // test condition cannot be skipped (the tested variable has unit stride or
4472 // the test is less-than or greater-than, rather than a strict inequality).
4473 //
4474 // (b) It must dominate the loop latch, hence must be tested on every loop
4475 // iteration.
4476 //
4477 // If any computable LoopMustExit is found, then MaxBECount is the minimum
4478 // EL.Max of computable LoopMustExits. Otherwise, MaxBECount is
4479 // conservatively the maximum EL.Max, where CouldNotCompute is considered
4480 // greater than any computable EL.Max.
4481 if (EL.MustExit && EL.Max != getCouldNotCompute() && Latch &&
4482 DT->dominates(ExitBB, Latch)) {
4483 if (!MustExitMaxBECount)
4484 MustExitMaxBECount = EL.Max;
4485 else {
4486 MustExitMaxBECount =
4487 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
Andrew Tricke2553592014-05-22 00:37:03 +00004488 }
Andrew Trick839e30b2014-05-23 19:47:13 +00004489 } else if (MayExitMaxBECount != getCouldNotCompute()) {
4490 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
4491 MayExitMaxBECount = EL.Max;
4492 else {
4493 MayExitMaxBECount =
4494 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
4495 }
Andrew Trick90c7a102011-11-16 00:52:40 +00004496 }
Dan Gohman96212b62009-06-22 00:31:57 +00004497 }
Andrew Trick839e30b2014-05-23 19:47:13 +00004498 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
4499 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
Andrew Trick3ca3f982011-07-26 17:19:55 +00004500 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00004501}
4502
Andrew Trick3ca3f982011-07-26 17:19:55 +00004503/// ComputeExitLimit - Compute the number of times the backedge of the specified
4504/// loop will execute if it exits via the specified block.
4505ScalarEvolution::ExitLimit
4506ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohman96212b62009-06-22 00:31:57 +00004507
4508 // Okay, we've chosen an exiting block. See what condition causes us to
Benjamin Kramer5a188542014-02-11 15:44:32 +00004509 // exit at this block and remember the exit block and whether all other targets
4510 // lead to the loop header.
4511 bool MustExecuteLoopHeader = true;
Craig Topper9f008862014-04-15 04:59:12 +00004512 BasicBlock *Exit = nullptr;
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00004513 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock);
4514 SI != SE; ++SI)
4515 if (!L->contains(*SI)) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00004516 if (Exit) // Multiple exit successors.
4517 return getCouldNotCompute();
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00004518 Exit = *SI;
4519 } else if (*SI != L->getHeader()) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00004520 MustExecuteLoopHeader = false;
4521 }
Dan Gohmance973df2009-06-24 04:48:43 +00004522
Chris Lattner18954852007-01-07 02:24:26 +00004523 // At this point, we know we have a conditional branch that determines whether
4524 // the loop is exited. However, we don't know if the branch is executed each
4525 // time through the loop. If not, then the execution count of the branch will
4526 // not be equal to the trip count of the loop.
4527 //
4528 // Currently we check for this by checking to see if the Exit branch goes to
4529 // the loop header. If so, we know it will always execute the same number of
Chris Lattner5a554762007-01-14 01:24:47 +00004530 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohman96212b62009-06-22 00:31:57 +00004531 // loop header. This is common for un-rotated loops.
4532 //
4533 // If both of those tests fail, walk up the unique predecessor chain to the
4534 // header, stopping if there is an edge that doesn't exit the loop. If the
4535 // header is reached, the execution count of the branch will be equal to the
4536 // trip count of the loop.
4537 //
4538 // More extensive analysis could be done to handle more cases here.
4539 //
Benjamin Kramer5a188542014-02-11 15:44:32 +00004540 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
Dan Gohman96212b62009-06-22 00:31:57 +00004541 // The simple checks failed, try climbing the unique predecessor chain
4542 // up to the header.
4543 bool Ok = false;
Benjamin Kramer5a188542014-02-11 15:44:32 +00004544 for (BasicBlock *BB = ExitingBlock; BB; ) {
Dan Gohman96212b62009-06-22 00:31:57 +00004545 BasicBlock *Pred = BB->getUniquePredecessor();
4546 if (!Pred)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004547 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004548 TerminatorInst *PredTerm = Pred->getTerminator();
4549 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4550 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4551 if (PredSucc == BB)
4552 continue;
4553 // If the predecessor has a successor that isn't BB and isn't
4554 // outside the loop, assume the worst.
4555 if (L->contains(PredSucc))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004556 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004557 }
4558 if (Pred == L->getHeader()) {
4559 Ok = true;
4560 break;
4561 }
4562 BB = Pred;
4563 }
4564 if (!Ok)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004565 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004566 }
4567
Benjamin Kramer5a188542014-02-11 15:44:32 +00004568 TerminatorInst *Term = ExitingBlock->getTerminator();
4569 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
4570 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
4571 // Proceed to the next level to examine the exit condition expression.
4572 return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
4573 BI->getSuccessor(1),
4574 /*IsSubExpr=*/false);
4575 }
4576
4577 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
4578 return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit,
4579 /*IsSubExpr=*/false);
4580
4581 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004582}
4583
Andrew Trick3ca3f982011-07-26 17:19:55 +00004584/// ComputeExitLimitFromCond - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00004585/// backedge of the specified loop will execute if its exit condition
4586/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5b245a12013-05-31 06:43:25 +00004587///
4588/// @param IsSubExpr is true if ExitCond does not directly control the exit
4589/// branch. In this case, we cannot assume that the loop only exits when the
4590/// condition is true and cannot infer that failing to meet the condition prior
4591/// to integer wraparound results in undefined behavior.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004592ScalarEvolution::ExitLimit
4593ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4594 Value *ExitCond,
4595 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00004596 BasicBlock *FBB,
4597 bool IsSubExpr) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00004598 // Check if the controlling expression for this loop is an And or Or.
Dan Gohman96212b62009-06-22 00:31:57 +00004599 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4600 if (BO->getOpcode() == Instruction::And) {
4601 // Recurse on the operands of the and.
Andrew Trick5b245a12013-05-31 06:43:25 +00004602 bool EitherMayExit = L->contains(TBB);
4603 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
4604 IsSubExpr || EitherMayExit);
4605 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
4606 IsSubExpr || EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00004607 const SCEV *BECount = getCouldNotCompute();
4608 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004609 bool MustExit = false;
Andrew Trick5b245a12013-05-31 06:43:25 +00004610 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00004611 // Both conditions must be true for the loop to continue executing.
4612 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004613 if (EL0.Exact == getCouldNotCompute() ||
4614 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004615 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00004616 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004617 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4618 if (EL0.Max == getCouldNotCompute())
4619 MaxBECount = EL1.Max;
4620 else if (EL1.Max == getCouldNotCompute())
4621 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00004622 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004623 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004624 MustExit = EL0.MustExit || EL1.MustExit;
Dan Gohman96212b62009-06-22 00:31:57 +00004625 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00004626 // Both conditions must be true at the same time for the loop to exit.
4627 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00004628 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004629 if (EL0.Max == EL1.Max)
4630 MaxBECount = EL0.Max;
4631 if (EL0.Exact == EL1.Exact)
4632 BECount = EL0.Exact;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004633 MustExit = EL0.MustExit && EL1.MustExit;
Dan Gohman96212b62009-06-22 00:31:57 +00004634 }
4635
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004636 return ExitLimit(BECount, MaxBECount, MustExit);
Dan Gohman96212b62009-06-22 00:31:57 +00004637 }
4638 if (BO->getOpcode() == Instruction::Or) {
4639 // Recurse on the operands of the or.
Andrew Trick5b245a12013-05-31 06:43:25 +00004640 bool EitherMayExit = L->contains(FBB);
4641 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
4642 IsSubExpr || EitherMayExit);
4643 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
4644 IsSubExpr || EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00004645 const SCEV *BECount = getCouldNotCompute();
4646 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004647 bool MustExit = false;
Andrew Trick5b245a12013-05-31 06:43:25 +00004648 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00004649 // Both conditions must be false for the loop to continue executing.
4650 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004651 if (EL0.Exact == getCouldNotCompute() ||
4652 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004653 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00004654 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004655 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4656 if (EL0.Max == getCouldNotCompute())
4657 MaxBECount = EL1.Max;
4658 else if (EL1.Max == getCouldNotCompute())
4659 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00004660 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004661 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004662 MustExit = EL0.MustExit || EL1.MustExit;
Dan Gohman96212b62009-06-22 00:31:57 +00004663 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00004664 // Both conditions must be false at the same time for the loop to exit.
4665 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00004666 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004667 if (EL0.Max == EL1.Max)
4668 MaxBECount = EL0.Max;
4669 if (EL0.Exact == EL1.Exact)
4670 BECount = EL0.Exact;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004671 MustExit = EL0.MustExit && EL1.MustExit;
Dan Gohman96212b62009-06-22 00:31:57 +00004672 }
4673
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004674 return ExitLimit(BECount, MaxBECount, MustExit);
Dan Gohman96212b62009-06-22 00:31:57 +00004675 }
4676 }
4677
4678 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman8b0a4192010-03-01 17:49:51 +00004679 // Proceed to the next level to examine the icmp.
Dan Gohman96212b62009-06-22 00:31:57 +00004680 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Andrew Trick5b245a12013-05-31 06:43:25 +00004681 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, IsSubExpr);
Reid Spencer266e42b2006-12-23 06:05:41 +00004682
Dan Gohman6b1e2a82010-02-19 18:12:07 +00004683 // Check for a constant condition. These are normally stripped out by
4684 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4685 // preserve the CFG and is temporarily leaving constant conditions
4686 // in place.
4687 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4688 if (L->contains(FBB) == !CI->getZExtValue())
4689 // The backedge is always taken.
4690 return getCouldNotCompute();
4691 else
4692 // The backedge is never taken.
Dan Gohman1d2ded72010-05-03 22:09:21 +00004693 return getConstant(CI->getType(), 0);
Dan Gohman6b1e2a82010-02-19 18:12:07 +00004694 }
4695
Eli Friedmanebf98b02009-05-09 12:32:42 +00004696 // If it's not an integer or pointer comparison then compute it the hard way.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004697 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohman96212b62009-06-22 00:31:57 +00004698}
4699
Andrew Trick3ca3f982011-07-26 17:19:55 +00004700/// ComputeExitLimitFromICmp - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00004701/// backedge of the specified loop will execute if its exit condition
4702/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004703ScalarEvolution::ExitLimit
4704ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
4705 ICmpInst *ExitCond,
4706 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00004707 BasicBlock *FBB,
4708 bool IsSubExpr) {
Chris Lattnerd934c702004-04-02 20:23:17 +00004709
Reid Spencer266e42b2006-12-23 06:05:41 +00004710 // If the condition was exit on true, convert the condition to exit on false
4711 ICmpInst::Predicate Cond;
Dan Gohman96212b62009-06-22 00:31:57 +00004712 if (!L->contains(FBB))
Reid Spencer266e42b2006-12-23 06:05:41 +00004713 Cond = ExitCond->getPredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004714 else
Reid Spencer266e42b2006-12-23 06:05:41 +00004715 Cond = ExitCond->getInversePredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004716
4717 // Handle common loops like: for (X = "string"; *X; ++X)
4718 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4719 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004720 ExitLimit ItCnt =
4721 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanba820342010-02-24 17:31:30 +00004722 if (ItCnt.hasAnyInfo())
4723 return ItCnt;
Chris Lattnerec901cc2004-10-12 01:49:27 +00004724 }
4725
Dan Gohmanaf752342009-07-07 17:06:11 +00004726 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4727 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattnerd934c702004-04-02 20:23:17 +00004728
4729 // Try to evaluate any dependencies out of the loop.
Dan Gohman8ca08852009-05-24 23:25:42 +00004730 LHS = getSCEVAtScope(LHS, L);
4731 RHS = getSCEVAtScope(RHS, L);
Chris Lattnerd934c702004-04-02 20:23:17 +00004732
Dan Gohmance973df2009-06-24 04:48:43 +00004733 // At this point, we would like to compute how many iterations of the
Reid Spencer266e42b2006-12-23 06:05:41 +00004734 // loop the predicate will return true for these inputs.
Dan Gohmanafd6db92010-11-17 21:23:15 +00004735 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohmandc5f5cb2008-09-16 18:52:57 +00004736 // If there is a loop-invariant, force it into the RHS.
Chris Lattnerd934c702004-04-02 20:23:17 +00004737 std::swap(LHS, RHS);
Reid Spencer266e42b2006-12-23 06:05:41 +00004738 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattnerd934c702004-04-02 20:23:17 +00004739 }
4740
Dan Gohman81585c12010-05-03 16:35:17 +00004741 // Simplify the operands before analyzing them.
4742 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4743
Chris Lattnerd934c702004-04-02 20:23:17 +00004744 // If we have a comparison of a chrec against a constant, try to use value
4745 // ranges to answer this query.
Dan Gohmana30370b2009-05-04 22:02:23 +00004746 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4747 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattnerd934c702004-04-02 20:23:17 +00004748 if (AddRec->getLoop() == L) {
Eli Friedmanebf98b02009-05-09 12:32:42 +00004749 // Form the constant range.
4750 ConstantRange CompRange(
4751 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman01808ca2005-04-21 21:13:18 +00004752
Dan Gohmanaf752342009-07-07 17:06:11 +00004753 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedmanebf98b02009-05-09 12:32:42 +00004754 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattnerd934c702004-04-02 20:23:17 +00004755 }
Misha Brukman01808ca2005-04-21 21:13:18 +00004756
Chris Lattnerd934c702004-04-02 20:23:17 +00004757 switch (Cond) {
Reid Spencer266e42b2006-12-23 06:05:41 +00004758 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattnerd934c702004-04-02 20:23:17 +00004759 // Convert to: while (X-Y != 0)
Andrew Trick5b245a12013-05-31 06:43:25 +00004760 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004761 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00004762 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00004763 }
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00004764 case ICmpInst::ICMP_EQ: { // while (X == Y)
4765 // Convert to: while (X-Y == 0)
Andrew Trick3ca3f982011-07-26 17:19:55 +00004766 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4767 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00004768 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00004769 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00004770 case ICmpInst::ICMP_SLT:
4771 case ICmpInst::ICMP_ULT: { // while (X < Y)
4772 bool IsSigned = Cond == ICmpInst::ICMP_SLT;
4773 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, IsSubExpr);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004774 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00004775 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00004776 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00004777 case ICmpInst::ICMP_SGT:
4778 case ICmpInst::ICMP_UGT: { // while (X > Y)
4779 bool IsSigned = Cond == ICmpInst::ICMP_SGT;
4780 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, IsSubExpr);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004781 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00004782 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00004783 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004784 default:
Chris Lattner09169212004-04-02 20:26:46 +00004785#if 0
David Greenedf1c4972009-12-23 22:18:14 +00004786 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattnerd934c702004-04-02 20:23:17 +00004787 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greenedf1c4972009-12-23 22:18:14 +00004788 dbgs() << "[unsigned] ";
4789 dbgs() << *LHS << " "
Dan Gohmance973df2009-06-24 04:48:43 +00004790 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencer266e42b2006-12-23 06:05:41 +00004791 << " " << *RHS << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00004792#endif
Chris Lattner0defaa12004-04-03 00:43:03 +00004793 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00004794 }
Andrew Trick3ca3f982011-07-26 17:19:55 +00004795 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner4021d1a2004-04-17 18:36:24 +00004796}
4797
Benjamin Kramer5a188542014-02-11 15:44:32 +00004798ScalarEvolution::ExitLimit
4799ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L,
4800 SwitchInst *Switch,
4801 BasicBlock *ExitingBlock,
4802 bool IsSubExpr) {
4803 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
4804
4805 // Give up if the exit is the default dest of a switch.
4806 if (Switch->getDefaultDest() == ExitingBlock)
4807 return getCouldNotCompute();
4808
4809 assert(L->contains(Switch->getDefaultDest()) &&
4810 "Default case must not exit the loop!");
4811 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
4812 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
4813
4814 // while (X != Y) --> while (X-Y != 0)
4815 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr);
4816 if (EL.hasAnyInfo())
4817 return EL;
4818
4819 return getCouldNotCompute();
4820}
4821
Chris Lattnerec901cc2004-10-12 01:49:27 +00004822static ConstantInt *
Dan Gohmana37eaf22007-10-22 18:31:58 +00004823EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4824 ScalarEvolution &SE) {
Dan Gohmanaf752342009-07-07 17:06:11 +00004825 const SCEV *InVal = SE.getConstant(C);
4826 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattnerec901cc2004-10-12 01:49:27 +00004827 assert(isa<SCEVConstant>(Val) &&
4828 "Evaluation of SCEV at constant didn't fold correctly?");
4829 return cast<SCEVConstant>(Val)->getValue();
4830}
4831
Andrew Trick3ca3f982011-07-26 17:19:55 +00004832/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman0bddac12009-02-24 18:55:53 +00004833/// 'icmp op load X, cst', try to see if we can compute the backedge
4834/// execution count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004835ScalarEvolution::ExitLimit
4836ScalarEvolution::ComputeLoadConstantCompareExitLimit(
4837 LoadInst *LI,
4838 Constant *RHS,
4839 const Loop *L,
4840 ICmpInst::Predicate predicate) {
4841
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004842 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004843
4844 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanba820342010-02-24 17:31:30 +00004845 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattnerec901cc2004-10-12 01:49:27 +00004846 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004847 if (!GEP) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004848
4849 // Make sure that it is really a constant global we are gepping, with an
4850 // initializer, and make sure the first IDX is really 0.
4851 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00004852 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00004853 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4854 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004855 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004856
4857 // Okay, we allow one non-constant index into the GEP instruction.
Craig Topper9f008862014-04-15 04:59:12 +00004858 Value *VarIdx = nullptr;
Chris Lattnere166a852012-01-24 05:49:24 +00004859 std::vector<Constant*> Indexes;
Chris Lattnerec901cc2004-10-12 01:49:27 +00004860 unsigned VarIdxNum = 0;
4861 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4862 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4863 Indexes.push_back(CI);
4864 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004865 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattnerec901cc2004-10-12 01:49:27 +00004866 VarIdx = GEP->getOperand(i);
4867 VarIdxNum = i-2;
Craig Topper9f008862014-04-15 04:59:12 +00004868 Indexes.push_back(nullptr);
Chris Lattnerec901cc2004-10-12 01:49:27 +00004869 }
4870
Andrew Trick7004e4b2012-03-26 22:33:59 +00004871 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
4872 if (!VarIdx)
4873 return getCouldNotCompute();
4874
Chris Lattnerec901cc2004-10-12 01:49:27 +00004875 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4876 // Check to see if X is a loop variant variable value now.
Dan Gohmanaf752342009-07-07 17:06:11 +00004877 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohman8ca08852009-05-24 23:25:42 +00004878 Idx = getSCEVAtScope(Idx, L);
Chris Lattnerec901cc2004-10-12 01:49:27 +00004879
4880 // We can only recognize very limited forms of loop index expressions, in
4881 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman48f82222009-05-04 22:30:44 +00004882 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohmanafd6db92010-11-17 21:23:15 +00004883 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00004884 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4885 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004886 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004887
4888 unsigned MaxSteps = MaxBruteForceIterations;
4889 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersonedb4a702009-07-24 23:12:02 +00004890 ConstantInt *ItCst = ConstantInt::get(
Owen Andersonb6b25302009-07-14 23:09:55 +00004891 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanc8e23622009-04-21 23:15:49 +00004892 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattnerec901cc2004-10-12 01:49:27 +00004893
4894 // Form the GEP offset.
4895 Indexes[VarIdxNum] = Val;
4896
Chris Lattnere166a852012-01-24 05:49:24 +00004897 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
4898 Indexes);
Craig Topper9f008862014-04-15 04:59:12 +00004899 if (!Result) break; // Cannot compute!
Chris Lattnerec901cc2004-10-12 01:49:27 +00004900
4901 // Evaluate the condition for this iteration.
Reid Spencer266e42b2006-12-23 06:05:41 +00004902 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng75b871f2007-01-11 12:24:14 +00004903 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencer983e3b32007-03-01 07:25:48 +00004904 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattnerec901cc2004-10-12 01:49:27 +00004905#if 0
David Greenedf1c4972009-12-23 22:18:14 +00004906 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmane20f8242009-04-21 00:47:46 +00004907 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4908 << "***\n";
Chris Lattnerec901cc2004-10-12 01:49:27 +00004909#endif
4910 ++NumArrayLenItCounts;
Dan Gohmanc8e23622009-04-21 23:15:49 +00004911 return getConstant(ItCst); // Found terminating iteration!
Chris Lattnerec901cc2004-10-12 01:49:27 +00004912 }
4913 }
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004914 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004915}
4916
4917
Chris Lattnerdd730472004-04-17 22:58:41 +00004918/// CanConstantFold - Return true if we can constant fold an instruction of the
4919/// specified type, assuming that all operands were constants.
4920static bool CanConstantFold(const Instruction *I) {
Reid Spencer2341c222007-02-02 02:16:23 +00004921 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewyckya6674c72011-10-22 19:58:20 +00004922 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
4923 isa<LoadInst>(I))
Chris Lattnerdd730472004-04-17 22:58:41 +00004924 return true;
Misha Brukman01808ca2005-04-21 21:13:18 +00004925
Chris Lattnerdd730472004-04-17 22:58:41 +00004926 if (const CallInst *CI = dyn_cast<CallInst>(I))
4927 if (const Function *F = CI->getCalledFunction())
Dan Gohmana65951f2008-01-31 01:05:10 +00004928 return canConstantFoldCallTo(F);
Chris Lattnerdd730472004-04-17 22:58:41 +00004929 return false;
Chris Lattner4021d1a2004-04-17 18:36:24 +00004930}
4931
Andrew Trick3a86ba72011-10-05 03:25:31 +00004932/// Determine whether this instruction can constant evolve within this loop
4933/// assuming its operands can all constant evolve.
4934static bool canConstantEvolve(Instruction *I, const Loop *L) {
4935 // An instruction outside of the loop can't be derived from a loop PHI.
4936 if (!L->contains(I)) return false;
4937
4938 if (isa<PHINode>(I)) {
4939 if (L->getHeader() == I->getParent())
4940 return true;
4941 else
4942 // We don't currently keep track of the control flow needed to evaluate
4943 // PHIs, so we cannot handle PHIs inside of loops.
4944 return false;
4945 }
4946
4947 // If we won't be able to constant fold this expression even if the operands
4948 // are constants, bail early.
4949 return CanConstantFold(I);
4950}
4951
4952/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
4953/// recursing through each instruction operand until reaching a loop header phi.
4954static PHINode *
4955getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Tricke9162f12011-10-05 05:58:49 +00004956 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00004957
4958 // Otherwise, we can evaluate this instruction if all of its operands are
4959 // constant or derived from a PHI node themselves.
Craig Topper9f008862014-04-15 04:59:12 +00004960 PHINode *PHI = nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00004961 for (Instruction::op_iterator OpI = UseInst->op_begin(),
4962 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
4963
4964 if (isa<Constant>(*OpI)) continue;
4965
4966 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
Craig Topper9f008862014-04-15 04:59:12 +00004967 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00004968
4969 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trick3e8a5762011-10-05 22:06:53 +00004970 if (!P)
4971 // If this operand is already visited, reuse the prior result.
4972 // We may have P != PHI if this is the deepest point at which the
4973 // inconsistent paths meet.
4974 P = PHIMap.lookup(OpInst);
4975 if (!P) {
4976 // Recurse and memoize the results, whether a phi is found or not.
4977 // This recursive call invalidates pointers into PHIMap.
4978 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
4979 PHIMap[OpInst] = P;
Andrew Tricke9162f12011-10-05 05:58:49 +00004980 }
Craig Topper9f008862014-04-15 04:59:12 +00004981 if (!P)
4982 return nullptr; // Not evolving from PHI
4983 if (PHI && PHI != P)
4984 return nullptr; // Evolving from multiple different PHIs.
Andrew Tricke9162f12011-10-05 05:58:49 +00004985 PHI = P;
Andrew Trick3a86ba72011-10-05 03:25:31 +00004986 }
4987 // This is a expression evolving from a constant PHI!
4988 return PHI;
4989}
4990
Chris Lattnerdd730472004-04-17 22:58:41 +00004991/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4992/// in the loop that V is derived from. We allow arbitrary operations along the
4993/// way, but the operands of an operation must either be constants or a value
4994/// derived from a constant PHI. If this expression does not fit with these
4995/// constraints, return null.
4996static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00004997 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00004998 if (!I || !canConstantEvolve(I, L)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00004999
Anton Korobeynikov579f0712008-02-20 11:08:44 +00005000 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00005001 return PN;
Anton Korobeynikov579f0712008-02-20 11:08:44 +00005002 }
Chris Lattnerdd730472004-04-17 22:58:41 +00005003
Andrew Trick3a86ba72011-10-05 03:25:31 +00005004 // Record non-constant instructions contained by the loop.
Andrew Tricke9162f12011-10-05 05:58:49 +00005005 DenseMap<Instruction *, PHINode *> PHIMap;
5006 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattnerdd730472004-04-17 22:58:41 +00005007}
5008
5009/// EvaluateExpression - Given an expression that passes the
5010/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
5011/// in the loop has the value PHIVal. If we can't fold this expression for some
5012/// reason, return null.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005013static Constant *EvaluateExpression(Value *V, const Loop *L,
5014 DenseMap<Instruction *, Constant *> &Vals,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005015 const DataLayout *DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005016 const TargetLibraryInfo *TLI) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005017 // Convenient constant check, but redundant for recursive calls.
Reid Spencer30d69a52004-07-18 00:18:30 +00005018 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005019 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005020 if (!I) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005021
Andrew Trick3a86ba72011-10-05 03:25:31 +00005022 if (Constant *C = Vals.lookup(I)) return C;
5023
Nick Lewyckya6674c72011-10-22 19:58:20 +00005024 // An instruction inside the loop depends on a value outside the loop that we
5025 // weren't given a mapping for, or a value such as a call inside the loop.
Craig Topper9f008862014-04-15 04:59:12 +00005026 if (!canConstantEvolve(I, L)) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005027
5028 // An unmapped PHI can be due to a branch or another loop inside this loop,
5029 // or due to this not being the initial iteration through a loop where we
5030 // couldn't compute the evolution of this particular PHI last time.
Craig Topper9f008862014-04-15 04:59:12 +00005031 if (isa<PHINode>(I)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005032
Dan Gohmanf820bd32010-06-22 13:15:46 +00005033 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattnerdd730472004-04-17 22:58:41 +00005034
5035 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005036 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
5037 if (!Operand) {
Nick Lewyckya447e0f32011-10-14 09:38:46 +00005038 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005039 if (!Operands[i]) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005040 continue;
5041 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005042 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
Andrew Tricke9162f12011-10-05 05:58:49 +00005043 Vals[Operand] = C;
Craig Topper9f008862014-04-15 04:59:12 +00005044 if (!C) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005045 Operands[i] = C;
Chris Lattnerdd730472004-04-17 22:58:41 +00005046 }
5047
Nick Lewyckya6674c72011-10-22 19:58:20 +00005048 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattnercdfb80d2009-11-09 23:06:58 +00005049 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005050 Operands[1], DL, TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005051 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
5052 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005053 return ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005054 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005055 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005056 TLI);
Chris Lattnerdd730472004-04-17 22:58:41 +00005057}
5058
5059/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
5060/// in the header of its containing loop, we know the loop executes a
5061/// constant number of times, and the PHI node is just a recurrence
5062/// involving constants, fold it.
Dan Gohmance973df2009-06-24 04:48:43 +00005063Constant *
5064ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohmancb0efec2009-12-18 01:14:11 +00005065 const APInt &BEs,
Dan Gohmance973df2009-06-24 04:48:43 +00005066 const Loop *L) {
Dan Gohman0daf6872011-05-09 18:44:09 +00005067 DenseMap<PHINode*, Constant*>::const_iterator I =
Chris Lattnerdd730472004-04-17 22:58:41 +00005068 ConstantEvolutionLoopExitValue.find(PN);
5069 if (I != ConstantEvolutionLoopExitValue.end())
5070 return I->second;
5071
Dan Gohman4ce1fb12010-04-08 23:03:40 +00005072 if (BEs.ugt(MaxBruteForceIterations))
Craig Topper9f008862014-04-15 04:59:12 +00005073 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
Chris Lattnerdd730472004-04-17 22:58:41 +00005074
5075 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
5076
Andrew Trick3a86ba72011-10-05 03:25:31 +00005077 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005078 BasicBlock *Header = L->getHeader();
5079 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick3a86ba72011-10-05 03:25:31 +00005080
Chris Lattnerdd730472004-04-17 22:58:41 +00005081 // Since the loop is canonicalized, the PHI node must have two entries. One
5082 // entry must be a constant (coming in from outside of the loop), and the
5083 // second must be derived from the same PHI.
5084 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Craig Topper9f008862014-04-15 04:59:12 +00005085 PHINode *PHI = nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005086 for (BasicBlock::iterator I = Header->begin();
5087 (PHI = dyn_cast<PHINode>(I)); ++I) {
5088 Constant *StartCST =
5089 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
Craig Topper9f008862014-04-15 04:59:12 +00005090 if (!StartCST) continue;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005091 CurrentIterVals[PHI] = StartCST;
5092 }
5093 if (!CurrentIterVals.count(PN))
Craig Topper9f008862014-04-15 04:59:12 +00005094 return RetVal = nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005095
5096 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Chris Lattnerdd730472004-04-17 22:58:41 +00005097
5098 // Execute the loop symbolically to determine the exit value.
Dan Gohman0bddac12009-02-24 18:55:53 +00005099 if (BEs.getActiveBits() >= 32)
Craig Topper9f008862014-04-15 04:59:12 +00005100 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
Chris Lattnerdd730472004-04-17 22:58:41 +00005101
Dan Gohman0bddac12009-02-24 18:55:53 +00005102 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencer983e3b32007-03-01 07:25:48 +00005103 unsigned IterationNum = 0;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005104 for (; ; ++IterationNum) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005105 if (IterationNum == NumIterations)
Andrew Trick3a86ba72011-10-05 03:25:31 +00005106 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattnerdd730472004-04-17 22:58:41 +00005107
Nick Lewyckya6674c72011-10-22 19:58:20 +00005108 // Compute the value of the PHIs for the next iteration.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005109 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005110 DenseMap<Instruction *, Constant *> NextIterVals;
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005111 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005112 TLI);
Craig Topper9f008862014-04-15 04:59:12 +00005113 if (!NextPHI)
5114 return nullptr; // Couldn't evaluate!
Andrew Trick3a86ba72011-10-05 03:25:31 +00005115 NextIterVals[PN] = NextPHI;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005116
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005117 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
5118
Nick Lewyckya6674c72011-10-22 19:58:20 +00005119 // Also evaluate the other PHI nodes. However, we don't get to stop if we
5120 // cease to be able to evaluate one of them or if they stop evolving,
5121 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005122 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005123 for (DenseMap<Instruction *, Constant *>::const_iterator
5124 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5125 PHINode *PHI = dyn_cast<PHINode>(I->first);
Nick Lewycky8e904de2011-10-24 05:51:01 +00005126 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005127 PHIsToCompute.push_back(std::make_pair(PHI, I->second));
5128 }
5129 // We use two distinct loops because EvaluateExpression may invalidate any
5130 // iterators into CurrentIterVals.
5131 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
5132 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
5133 PHINode *PHI = I->first;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005134 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005135 if (!NextPHI) { // Not already computed.
5136 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005137 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005138 }
5139 if (NextPHI != I->second)
5140 StoppedEvolving = false;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005141 }
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005142
5143 // If all entries in CurrentIterVals == NextIterVals then we can stop
5144 // iterating, the loop can't continue to change.
5145 if (StoppedEvolving)
5146 return RetVal = CurrentIterVals[PN];
5147
Andrew Trick3a86ba72011-10-05 03:25:31 +00005148 CurrentIterVals.swap(NextIterVals);
Chris Lattnerdd730472004-04-17 22:58:41 +00005149 }
5150}
5151
Andrew Trick3ca3f982011-07-26 17:19:55 +00005152/// ComputeExitCountExhaustively - If the loop is known to execute a
Chris Lattner4021d1a2004-04-17 18:36:24 +00005153/// constant number of times (the condition evolves only from constants),
5154/// try to evaluate a few iterations of the loop until we get the exit
5155/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005156/// evaluate the trip count of the loop, return getCouldNotCompute().
Nick Lewyckya6674c72011-10-22 19:58:20 +00005157const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
5158 Value *Cond,
5159 bool ExitWhen) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005160 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Craig Topper9f008862014-04-15 04:59:12 +00005161 if (!PN) return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005162
Dan Gohman866971e2010-06-19 14:17:24 +00005163 // If the loop is canonicalized, the PHI will have exactly two entries.
5164 // That's the only form we support here.
5165 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
5166
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005167 DenseMap<Instruction *, Constant *> CurrentIterVals;
5168 BasicBlock *Header = L->getHeader();
5169 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
5170
Dan Gohman866971e2010-06-19 14:17:24 +00005171 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner4021d1a2004-04-17 18:36:24 +00005172 // second must be derived from the same PHI.
5173 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Craig Topper9f008862014-04-15 04:59:12 +00005174 PHINode *PHI = nullptr;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005175 for (BasicBlock::iterator I = Header->begin();
5176 (PHI = dyn_cast<PHINode>(I)); ++I) {
5177 Constant *StartCST =
5178 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
Craig Topper9f008862014-04-15 04:59:12 +00005179 if (!StartCST) continue;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005180 CurrentIterVals[PHI] = StartCST;
5181 }
5182 if (!CurrentIterVals.count(PN))
5183 return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005184
5185 // Okay, we find a PHI node that defines the trip count of this loop. Execute
5186 // the loop symbolically to determine when the condition gets a value of
5187 // "ExitWhen".
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005188
Andrew Trick90c7a102011-11-16 00:52:40 +00005189 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005190 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Zhou Sheng75b871f2007-01-11 12:24:14 +00005191 ConstantInt *CondVal =
Chad Rosiere6de63d2011-12-01 21:29:16 +00005192 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005193 DL, TLI));
Chris Lattnerdd730472004-04-17 22:58:41 +00005194
Zhou Sheng75b871f2007-01-11 12:24:14 +00005195 // Couldn't symbolically evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005196 if (!CondVal) return getCouldNotCompute();
Zhou Sheng75b871f2007-01-11 12:24:14 +00005197
Reid Spencer983e3b32007-03-01 07:25:48 +00005198 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005199 ++NumBruteForceTripCountsComputed;
Owen Anderson55f1c092009-08-13 21:58:54 +00005200 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005201 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005202
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005203 // Update all the PHI nodes for the next iteration.
5204 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005205
5206 // Create a list of which PHIs we need to compute. We want to do this before
5207 // calling EvaluateExpression on them because that may invalidate iterators
5208 // into CurrentIterVals.
5209 SmallVector<PHINode *, 8> PHIsToCompute;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005210 for (DenseMap<Instruction *, Constant *>::const_iterator
5211 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5212 PHINode *PHI = dyn_cast<PHINode>(I->first);
5213 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005214 PHIsToCompute.push_back(PHI);
5215 }
5216 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
5217 E = PHIsToCompute.end(); I != E; ++I) {
5218 PHINode *PHI = *I;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005219 Constant *&NextPHI = NextIterVals[PHI];
5220 if (NextPHI) continue; // Already computed!
5221
5222 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005223 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005224 }
5225 CurrentIterVals.swap(NextIterVals);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005226 }
5227
5228 // Too many iterations were needed to evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005229 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005230}
5231
Dan Gohman237d9e52009-09-03 15:00:26 +00005232/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohmanb81f47d2009-05-08 20:38:54 +00005233/// at the specified scope in the program. The L value specifies a loop
5234/// nest to evaluate the expression at, where null is the top-level or a
5235/// specified loop is immediately inside of the loop.
5236///
5237/// This method can be used to compute the exit value for a variable defined
5238/// in a loop by querying what the value will hold in the parent loop.
5239///
Dan Gohman8ca08852009-05-24 23:25:42 +00005240/// In the case that a relevant loop exit value cannot be computed, the
5241/// original value V is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00005242const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005243 // Check to see if we've folded this expression at this loop before.
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005244 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V];
5245 for (unsigned u = 0; u < Values.size(); u++) {
5246 if (Values[u].first == L)
5247 return Values[u].second ? Values[u].second : V;
5248 }
Craig Topper9f008862014-04-15 04:59:12 +00005249 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr)));
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005250 // Otherwise compute it.
5251 const SCEV *C = computeSCEVAtScope(V, L);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005252 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V];
5253 for (unsigned u = Values2.size(); u > 0; u--) {
5254 if (Values2[u - 1].first == L) {
5255 Values2[u - 1].second = C;
5256 break;
5257 }
5258 }
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005259 return C;
5260}
5261
Nick Lewyckya6674c72011-10-22 19:58:20 +00005262/// This builds up a Constant using the ConstantExpr interface. That way, we
5263/// will return Constants for objects which aren't represented by a
5264/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5265/// Returns NULL if the SCEV isn't representable as a Constant.
5266static Constant *BuildConstantFromSCEV(const SCEV *V) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00005267 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
Nick Lewyckya6674c72011-10-22 19:58:20 +00005268 case scCouldNotCompute:
5269 case scAddRecExpr:
5270 break;
5271 case scConstant:
5272 return cast<SCEVConstant>(V)->getValue();
5273 case scUnknown:
5274 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5275 case scSignExtend: {
5276 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5277 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5278 return ConstantExpr::getSExt(CastOp, SS->getType());
5279 break;
5280 }
5281 case scZeroExtend: {
5282 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5283 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5284 return ConstantExpr::getZExt(CastOp, SZ->getType());
5285 break;
5286 }
5287 case scTruncate: {
5288 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5289 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5290 return ConstantExpr::getTrunc(CastOp, ST->getType());
5291 break;
5292 }
5293 case scAddExpr: {
5294 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5295 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005296 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5297 unsigned AS = PTy->getAddressSpace();
5298 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5299 C = ConstantExpr::getBitCast(C, DestPtrTy);
5300 }
Nick Lewyckya6674c72011-10-22 19:58:20 +00005301 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5302 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005303 if (!C2) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005304
5305 // First pointer!
5306 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005307 unsigned AS = C2->getType()->getPointerAddressSpace();
Nick Lewyckya6674c72011-10-22 19:58:20 +00005308 std::swap(C, C2);
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005309 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005310 // The offsets have been converted to bytes. We can add bytes to an
5311 // i8* by GEP with the byte count in the first index.
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005312 C = ConstantExpr::getBitCast(C, DestPtrTy);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005313 }
5314
5315 // Don't bother trying to sum two pointers. We probably can't
5316 // statically compute a load that results from it anyway.
5317 if (C2->getType()->isPointerTy())
Craig Topper9f008862014-04-15 04:59:12 +00005318 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005319
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005320 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5321 if (PTy->getElementType()->isStructTy())
Nick Lewyckya6674c72011-10-22 19:58:20 +00005322 C2 = ConstantExpr::getIntegerCast(
5323 C2, Type::getInt32Ty(C->getContext()), true);
5324 C = ConstantExpr::getGetElementPtr(C, C2);
5325 } else
5326 C = ConstantExpr::getAdd(C, C2);
5327 }
5328 return C;
5329 }
5330 break;
5331 }
5332 case scMulExpr: {
5333 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5334 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5335 // Don't bother with pointers at all.
Craig Topper9f008862014-04-15 04:59:12 +00005336 if (C->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005337 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5338 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005339 if (!C2 || C2->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005340 C = ConstantExpr::getMul(C, C2);
5341 }
5342 return C;
5343 }
5344 break;
5345 }
5346 case scUDivExpr: {
5347 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5348 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5349 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5350 if (LHS->getType() == RHS->getType())
5351 return ConstantExpr::getUDiv(LHS, RHS);
5352 break;
5353 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00005354 case scSMaxExpr:
5355 case scUMaxExpr:
5356 break; // TODO: smax, umax.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005357 }
Craig Topper9f008862014-04-15 04:59:12 +00005358 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005359}
5360
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005361const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005362 if (isa<SCEVConstant>(V)) return V;
Misha Brukman01808ca2005-04-21 21:13:18 +00005363
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00005364 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattnerdd730472004-04-17 22:58:41 +00005365 // exit value from the loop without using SCEVs.
Dan Gohmana30370b2009-05-04 22:02:23 +00005366 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005367 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00005368 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattnerdd730472004-04-17 22:58:41 +00005369 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
5370 if (PHINode *PN = dyn_cast<PHINode>(I))
5371 if (PN->getParent() == LI->getHeader()) {
5372 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman0bddac12009-02-24 18:55:53 +00005373 // to see if the loop that contains it has a known backedge-taken
5374 // count. If so, we may be able to force computation of the exit
5375 // value.
Dan Gohmanaf752342009-07-07 17:06:11 +00005376 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohmana30370b2009-05-04 22:02:23 +00005377 if (const SCEVConstant *BTCC =
Dan Gohman0bddac12009-02-24 18:55:53 +00005378 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005379 // Okay, we know how many times the containing loop executes. If
5380 // this is a constant evolving PHI node, get the final value at
5381 // the specified iteration number.
5382 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman0bddac12009-02-24 18:55:53 +00005383 BTCC->getValue()->getValue(),
Chris Lattnerdd730472004-04-17 22:58:41 +00005384 LI);
Dan Gohman9d203c62009-06-29 21:31:18 +00005385 if (RV) return getSCEV(RV);
Chris Lattnerdd730472004-04-17 22:58:41 +00005386 }
5387 }
5388
Reid Spencere6328ca2006-12-04 21:33:23 +00005389 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattnerdd730472004-04-17 22:58:41 +00005390 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencere6328ca2006-12-04 21:33:23 +00005391 // the arguments into constants, and if so, try to constant propagate the
Chris Lattnerdd730472004-04-17 22:58:41 +00005392 // result. This is particularly useful for computing loop exit values.
5393 if (CanConstantFold(I)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005394 SmallVector<Constant *, 4> Operands;
5395 bool MadeImprovement = false;
Chris Lattnerdd730472004-04-17 22:58:41 +00005396 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5397 Value *Op = I->getOperand(i);
5398 if (Constant *C = dyn_cast<Constant>(Op)) {
5399 Operands.push_back(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005400 continue;
Chris Lattnerdd730472004-04-17 22:58:41 +00005401 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005402
5403 // If any of the operands is non-constant and if they are
5404 // non-integer and non-pointer, don't even try to analyze them
5405 // with scev techniques.
5406 if (!isSCEVable(Op->getType()))
5407 return V;
5408
5409 const SCEV *OrigV = getSCEV(Op);
5410 const SCEV *OpV = getSCEVAtScope(OrigV, L);
5411 MadeImprovement |= OrigV != OpV;
5412
Nick Lewyckya6674c72011-10-22 19:58:20 +00005413 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005414 if (!C) return V;
5415 if (C->getType() != Op->getType())
5416 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5417 Op->getType(),
5418 false),
5419 C, Op->getType());
5420 Operands.push_back(C);
Chris Lattnerdd730472004-04-17 22:58:41 +00005421 }
Dan Gohmance973df2009-06-24 04:48:43 +00005422
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005423 // Check to see if getSCEVAtScope actually made an improvement.
5424 if (MadeImprovement) {
Craig Topper9f008862014-04-15 04:59:12 +00005425 Constant *C = nullptr;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005426 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5427 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005428 Operands[0], Operands[1], DL,
Chad Rosier43a33062011-12-02 01:26:24 +00005429 TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005430 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5431 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005432 C = ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005433 } else
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005434 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005435 Operands, DL, TLI);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005436 if (!C) return V;
Dan Gohman4aad7502010-02-24 19:31:47 +00005437 return getSCEV(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005438 }
Chris Lattnerdd730472004-04-17 22:58:41 +00005439 }
5440 }
5441
5442 // This is some other type of SCEVUnknown, just return it.
5443 return V;
5444 }
5445
Dan Gohmana30370b2009-05-04 22:02:23 +00005446 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005447 // Avoid performing the look-up in the common case where the specified
5448 // expression has no loop-variant portions.
5449 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005450 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005451 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005452 // Okay, at least one of these operands is loop variant but might be
5453 // foldable. Build a new instance of the folded commutative expression.
Dan Gohmance973df2009-06-24 04:48:43 +00005454 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5455 Comm->op_begin()+i);
Chris Lattnerd934c702004-04-02 20:23:17 +00005456 NewOps.push_back(OpAtScope);
5457
5458 for (++i; i != e; ++i) {
5459 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005460 NewOps.push_back(OpAtScope);
5461 }
5462 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005463 return getAddExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00005464 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005465 return getMulExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00005466 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005467 return getSMaxExpr(NewOps);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00005468 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005469 return getUMaxExpr(NewOps);
Torok Edwinfbcc6632009-07-14 16:55:14 +00005470 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00005471 }
5472 }
5473 // If we got here, all operands are loop invariant.
5474 return Comm;
5475 }
5476
Dan Gohmana30370b2009-05-04 22:02:23 +00005477 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005478 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5479 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky52348302009-01-13 09:18:58 +00005480 if (LHS == Div->getLHS() && RHS == Div->getRHS())
5481 return Div; // must be loop invariant
Dan Gohmanc8e23622009-04-21 23:15:49 +00005482 return getUDivExpr(LHS, RHS);
Chris Lattnerd934c702004-04-02 20:23:17 +00005483 }
5484
5485 // If this is a loop recurrence for a loop that does not contain L, then we
5486 // are dealing with the final value computed by the loop.
Dan Gohmana30370b2009-05-04 22:02:23 +00005487 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005488 // First, attempt to evaluate each operand.
5489 // Avoid performing the look-up in the common case where the specified
5490 // expression has no loop-variant portions.
5491 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5492 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5493 if (OpAtScope == AddRec->getOperand(i))
5494 continue;
5495
5496 // Okay, at least one of these operands is loop variant but might be
5497 // foldable. Build a new instance of the folded commutative expression.
5498 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5499 AddRec->op_begin()+i);
5500 NewOps.push_back(OpAtScope);
5501 for (++i; i != e; ++i)
5502 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5503
Andrew Trick759ba082011-04-27 01:21:25 +00005504 const SCEV *FoldedRec =
Andrew Trick8b55b732011-03-14 16:50:06 +00005505 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick759ba082011-04-27 01:21:25 +00005506 AddRec->getNoWrapFlags(SCEV::FlagNW));
5507 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick01eff822011-04-27 05:42:17 +00005508 // The addrec may be folded to a nonrecurrence, for example, if the
5509 // induction variable is multiplied by zero after constant folding. Go
5510 // ahead and return the folded value.
Andrew Trick759ba082011-04-27 01:21:25 +00005511 if (!AddRec)
5512 return FoldedRec;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005513 break;
5514 }
5515
5516 // If the scope is outside the addrec's loop, evaluate it by using the
5517 // loop exit value of the addrec.
5518 if (!AddRec->getLoop()->contains(L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005519 // To evaluate this recurrence, we need to know how many times the AddRec
5520 // loop iterates. Compute this now.
Dan Gohmanaf752342009-07-07 17:06:11 +00005521 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005522 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman01808ca2005-04-21 21:13:18 +00005523
Eli Friedman61f67622008-08-04 23:49:06 +00005524 // Then, evaluate the AddRec.
Dan Gohmanc8e23622009-04-21 23:15:49 +00005525 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattnerd934c702004-04-02 20:23:17 +00005526 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005527
Dan Gohman8ca08852009-05-24 23:25:42 +00005528 return AddRec;
Chris Lattnerd934c702004-04-02 20:23:17 +00005529 }
5530
Dan Gohmana30370b2009-05-04 22:02:23 +00005531 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005532 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005533 if (Op == Cast->getOperand())
5534 return Cast; // must be loop invariant
5535 return getZeroExtendExpr(Op, Cast->getType());
5536 }
5537
Dan Gohmana30370b2009-05-04 22:02:23 +00005538 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005539 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005540 if (Op == Cast->getOperand())
5541 return Cast; // must be loop invariant
5542 return getSignExtendExpr(Op, Cast->getType());
5543 }
5544
Dan Gohmana30370b2009-05-04 22:02:23 +00005545 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005546 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005547 if (Op == Cast->getOperand())
5548 return Cast; // must be loop invariant
5549 return getTruncateExpr(Op, Cast->getType());
5550 }
5551
Torok Edwinfbcc6632009-07-14 16:55:14 +00005552 llvm_unreachable("Unknown SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00005553}
5554
Dan Gohmanb81f47d2009-05-08 20:38:54 +00005555/// getSCEVAtScope - This is a convenience function which does
5556/// getSCEVAtScope(getSCEV(V), L).
Dan Gohmanaf752342009-07-07 17:06:11 +00005557const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00005558 return getSCEVAtScope(getSCEV(V), L);
5559}
5560
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005561/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5562/// following equation:
5563///
5564/// A * X = B (mod N)
5565///
5566/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5567/// A and B isn't important.
5568///
5569/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00005570static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005571 ScalarEvolution &SE) {
5572 uint32_t BW = A.getBitWidth();
5573 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5574 assert(A != 0 && "A must be non-zero.");
5575
5576 // 1. D = gcd(A, N)
5577 //
5578 // The gcd of A and N may have only one prime factor: 2. The number of
5579 // trailing zeros in A is its multiplicity
5580 uint32_t Mult2 = A.countTrailingZeros();
5581 // D = 2^Mult2
5582
5583 // 2. Check if B is divisible by D.
5584 //
5585 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5586 // is not less than multiplicity of this prime factor for D.
5587 if (B.countTrailingZeros() < Mult2)
Dan Gohman31efa302009-04-18 17:58:19 +00005588 return SE.getCouldNotCompute();
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005589
5590 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5591 // modulo (N / D).
5592 //
5593 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
5594 // bit width during computations.
5595 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
5596 APInt Mod(BW + 1, 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00005597 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005598 APInt I = AD.multiplicativeInverse(Mod);
5599
5600 // 4. Compute the minimum unsigned root of the equation:
5601 // I * (B / D) mod (N / D)
5602 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5603
5604 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5605 // bits.
5606 return SE.getConstant(Result.trunc(BW));
5607}
Chris Lattnerd934c702004-04-02 20:23:17 +00005608
5609/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5610/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
5611/// might be the same) or two SCEVCouldNotCompute objects.
5612///
Dan Gohmanaf752342009-07-07 17:06:11 +00005613static std::pair<const SCEV *,const SCEV *>
Dan Gohmana37eaf22007-10-22 18:31:58 +00005614SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005615 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman48f82222009-05-04 22:30:44 +00005616 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5617 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5618 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman01808ca2005-04-21 21:13:18 +00005619
Chris Lattnerd934c702004-04-02 20:23:17 +00005620 // We currently can only solve this if the coefficients are constants.
Reid Spencer983e3b32007-03-01 07:25:48 +00005621 if (!LC || !MC || !NC) {
Dan Gohman48f82222009-05-04 22:30:44 +00005622 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005623 return std::make_pair(CNC, CNC);
5624 }
5625
Reid Spencer983e3b32007-03-01 07:25:48 +00005626 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnercad61e82007-04-15 19:52:49 +00005627 const APInt &L = LC->getValue()->getValue();
5628 const APInt &M = MC->getValue()->getValue();
5629 const APInt &N = NC->getValue()->getValue();
Reid Spencer983e3b32007-03-01 07:25:48 +00005630 APInt Two(BitWidth, 2);
5631 APInt Four(BitWidth, 4);
Misha Brukman01808ca2005-04-21 21:13:18 +00005632
Dan Gohmance973df2009-06-24 04:48:43 +00005633 {
Reid Spencer983e3b32007-03-01 07:25:48 +00005634 using namespace APIntOps;
Zhou Sheng2852d992007-04-07 17:48:27 +00005635 const APInt& C = L;
Reid Spencer983e3b32007-03-01 07:25:48 +00005636 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5637 // The B coefficient is M-N/2
5638 APInt B(M);
5639 B -= sdiv(N,Two);
Misha Brukman01808ca2005-04-21 21:13:18 +00005640
Reid Spencer983e3b32007-03-01 07:25:48 +00005641 // The A coefficient is N/2
Zhou Sheng2852d992007-04-07 17:48:27 +00005642 APInt A(N.sdiv(Two));
Chris Lattnerd934c702004-04-02 20:23:17 +00005643
Reid Spencer983e3b32007-03-01 07:25:48 +00005644 // Compute the B^2-4ac term.
5645 APInt SqrtTerm(B);
5646 SqrtTerm *= B;
5647 SqrtTerm -= Four * (A * C);
Chris Lattnerd934c702004-04-02 20:23:17 +00005648
Nick Lewyckyfb780832012-08-01 09:14:36 +00005649 if (SqrtTerm.isNegative()) {
5650 // The loop is provably infinite.
5651 const SCEV *CNC = SE.getCouldNotCompute();
5652 return std::make_pair(CNC, CNC);
5653 }
5654
Reid Spencer983e3b32007-03-01 07:25:48 +00005655 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5656 // integer value or else APInt::sqrt() will assert.
5657 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman01808ca2005-04-21 21:13:18 +00005658
Dan Gohmance973df2009-06-24 04:48:43 +00005659 // Compute the two solutions for the quadratic formula.
Reid Spencer983e3b32007-03-01 07:25:48 +00005660 // The divisions must be performed as signed divisions.
5661 APInt NegB(-B);
Nick Lewycky31555522011-10-03 07:10:45 +00005662 APInt TwoA(A << 1);
Nick Lewycky7b14e202008-11-03 02:43:49 +00005663 if (TwoA.isMinValue()) {
Dan Gohman48f82222009-05-04 22:30:44 +00005664 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky7b14e202008-11-03 02:43:49 +00005665 return std::make_pair(CNC, CNC);
5666 }
5667
Owen Anderson47db9412009-07-22 00:24:57 +00005668 LLVMContext &Context = SE.getContext();
Owen Andersonf1f17432009-07-06 22:37:39 +00005669
5670 ConstantInt *Solution1 =
Owen Andersonedb4a702009-07-24 23:12:02 +00005671 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Andersonf1f17432009-07-06 22:37:39 +00005672 ConstantInt *Solution2 =
Owen Andersonedb4a702009-07-24 23:12:02 +00005673 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman01808ca2005-04-21 21:13:18 +00005674
Dan Gohmance973df2009-06-24 04:48:43 +00005675 return std::make_pair(SE.getConstant(Solution1),
Dan Gohmana37eaf22007-10-22 18:31:58 +00005676 SE.getConstant(Solution2));
Nick Lewycky31555522011-10-03 07:10:45 +00005677 } // end APIntOps namespace
Chris Lattnerd934c702004-04-02 20:23:17 +00005678}
5679
5680/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman4c720c02009-06-06 14:37:11 +00005681/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick8b55b732011-03-14 16:50:06 +00005682///
5683/// This is only used for loops with a "x != y" exit test. The exit condition is
5684/// now expressed as a single expression, V = x-y. So the exit test is
5685/// effectively V != 0. We know and take advantage of the fact that this
5686/// expression only being used in a comparison by zero context.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005687ScalarEvolution::ExitLimit
Andrew Trick5b245a12013-05-31 06:43:25 +00005688ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005689 // If the value is a constant
Dan Gohmana30370b2009-05-04 22:02:23 +00005690 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005691 // If the value is already zero, the branch will execute zero times.
Reid Spencer2e54a152007-03-02 00:28:52 +00005692 if (C->getValue()->isZero()) return C;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005693 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00005694 }
5695
Dan Gohman48f82222009-05-04 22:30:44 +00005696 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00005697 if (!AddRec || AddRec->getLoop() != L)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005698 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005699
Chris Lattnerdff679f2011-01-09 22:39:48 +00005700 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
5701 // the quadratic equation to solve it.
5702 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
5703 std::pair<const SCEV *,const SCEV *> Roots =
5704 SolveQuadraticEquation(AddRec, *this);
Dan Gohman48f82222009-05-04 22:30:44 +00005705 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5706 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerdff679f2011-01-09 22:39:48 +00005707 if (R1 && R2) {
Chris Lattner09169212004-04-02 20:26:46 +00005708#if 0
David Greenedf1c4972009-12-23 22:18:14 +00005709 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmane20f8242009-04-21 00:47:46 +00005710 << " sol#2: " << *R2 << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00005711#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00005712 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00005713 if (ConstantInt *CB =
Chris Lattner28f140a2011-01-09 22:58:47 +00005714 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
5715 R1->getValue(),
5716 R2->getValue()))) {
Reid Spencercddc9df2007-01-12 04:24:46 +00005717 if (CB->getZExtValue() == false)
Chris Lattnerd934c702004-04-02 20:23:17 +00005718 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick2a3b7162011-03-09 17:23:39 +00005719
Chris Lattnerd934c702004-04-02 20:23:17 +00005720 // We can only use this value if the chrec ends up with an exact zero
5721 // value at this index. When solving for "X*X != 5", for example, we
5722 // should not accept a root of 2.
Dan Gohmanaf752342009-07-07 17:06:11 +00005723 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmanbe928e32008-06-18 16:23:07 +00005724 if (Val->isZero())
5725 return R1; // We found a quadratic root!
Chris Lattnerd934c702004-04-02 20:23:17 +00005726 }
5727 }
Chris Lattnerdff679f2011-01-09 22:39:48 +00005728 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005729 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005730
Chris Lattnerdff679f2011-01-09 22:39:48 +00005731 // Otherwise we can only handle this if it is affine.
5732 if (!AddRec->isAffine())
5733 return getCouldNotCompute();
5734
5735 // If this is an affine expression, the execution count of this branch is
5736 // the minimum unsigned root of the following equation:
5737 //
5738 // Start + Step*N = 0 (mod 2^BW)
5739 //
5740 // equivalent to:
5741 //
5742 // Step*N = -Start (mod 2^BW)
5743 //
5744 // where BW is the common bit width of Start and Step.
5745
5746 // Get the initial value for the loop.
5747 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
5748 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
5749
5750 // For now we handle only constant steps.
Andrew Trick8b55b732011-03-14 16:50:06 +00005751 //
5752 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5753 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5754 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5755 // We have not yet seen any such cases.
Chris Lattnerdff679f2011-01-09 22:39:48 +00005756 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
Craig Topper9f008862014-04-15 04:59:12 +00005757 if (!StepC || StepC->getValue()->equalsInt(0))
Chris Lattnerdff679f2011-01-09 22:39:48 +00005758 return getCouldNotCompute();
5759
Andrew Trick8b55b732011-03-14 16:50:06 +00005760 // For positive steps (counting up until unsigned overflow):
5761 // N = -Start/Step (as unsigned)
5762 // For negative steps (counting down to zero):
5763 // N = Start/-Step
5764 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickf1781db2011-03-14 17:28:02 +00005765 bool CountDown = StepC->getValue()->getValue().isNegative();
5766 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick8b55b732011-03-14 16:50:06 +00005767
5768 // Handle unitary steps, which cannot wraparound.
Andrew Trickf1781db2011-03-14 17:28:02 +00005769 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
5770 // N = Distance (as unsigned)
Nick Lewycky31555522011-10-03 07:10:45 +00005771 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
5772 ConstantRange CR = getUnsignedRange(Start);
5773 const SCEV *MaxBECount;
5774 if (!CountDown && CR.getUnsignedMin().isMinValue())
5775 // When counting up, the worst starting value is 1, not 0.
5776 MaxBECount = CR.getUnsignedMax().isMinValue()
5777 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
5778 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
5779 else
5780 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
5781 : -CR.getUnsignedMin());
Andrew Trickee5aa7f2014-01-15 06:42:11 +00005782 return ExitLimit(Distance, MaxBECount, /*MustExit=*/true);
Nick Lewycky31555522011-10-03 07:10:45 +00005783 }
Andrew Trick2a3b7162011-03-09 17:23:39 +00005784
Andrew Trickf1781db2011-03-14 17:28:02 +00005785 // If the recurrence is known not to wraparound, unsigned divide computes the
Andrew Trick5b245a12013-05-31 06:43:25 +00005786 // back edge count. (Ideally we would have an "isexact" bit for udiv). We know
5787 // that the value will either become zero (and thus the loop terminates), that
5788 // the loop will terminate through some other exit condition first, or that
5789 // the loop has undefined behavior. This means we can't "miss" the exit
Andrew Trickee5aa7f2014-01-15 06:42:11 +00005790 // value, even with nonunit stride, and exit later via the same branch. Note
5791 // that we can skip this exit if loop later exits via a different
5792 // branch. Hence MustExit=false.
Andrew Trickf1781db2011-03-14 17:28:02 +00005793 //
Andrew Trick5b245a12013-05-31 06:43:25 +00005794 // This is only valid for expressions that directly compute the loop exit. It
5795 // is invalid for subexpressions in which the loop may exit through this
5796 // branch even if this subexpression is false. In that case, the trip count
5797 // computed by this udiv could be smaller than the number of well-defined
5798 // iterations.
Andrew Trickee5aa7f2014-01-15 06:42:11 +00005799 if (!IsSubExpr && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
5800 const SCEV *Exact =
5801 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
5802 return ExitLimit(Exact, Exact, /*MustExit=*/false);
5803 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00005804
5805 // If Step is a power of two that evenly divides Start we know that the loop
5806 // will always terminate. Start may not be a constant so we just have the
5807 // number of trailing zeros available. This is safe even in presence of
5808 // overflow as the recurrence will overflow to exactly 0.
5809 const APInt &StepV = StepC->getValue()->getValue();
5810 if (StepV.isPowerOf2() &&
5811 GetMinTrailingZeros(getNegativeSCEV(Start)) >= StepV.countTrailingZeros())
5812 return getUDivExactExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
5813
Chris Lattnerdff679f2011-01-09 22:39:48 +00005814 // Then, try to solve the above equation provided that Start is constant.
5815 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
5816 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
5817 -StartC->getValue()->getValue(),
5818 *this);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005819 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005820}
5821
5822/// HowFarToNonZero - Return the number of times a backedge checking the
5823/// specified value for nonzero will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00005824/// CouldNotCompute
Andrew Trick3ca3f982011-07-26 17:19:55 +00005825ScalarEvolution::ExitLimit
Dan Gohmanba820342010-02-24 17:31:30 +00005826ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005827 // Loops that look like: while (X == 0) are very strange indeed. We don't
5828 // handle them yet except for the trivial case. This could be expanded in the
5829 // future as needed.
Misha Brukman01808ca2005-04-21 21:13:18 +00005830
Chris Lattnerd934c702004-04-02 20:23:17 +00005831 // If the value is a constant, check to see if it is known to be non-zero
5832 // already. If so, the backedge will execute zero times.
Dan Gohmana30370b2009-05-04 22:02:23 +00005833 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky5a3db142008-02-21 09:14:53 +00005834 if (!C->getValue()->isNullValue())
Dan Gohman1d2ded72010-05-03 22:09:21 +00005835 return getConstant(C->getType(), 0);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005836 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00005837 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005838
Chris Lattnerd934c702004-04-02 20:23:17 +00005839 // We could implement others, but I really doubt anyone writes loops like
5840 // this, and if they did, they would already be constant folded.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005841 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005842}
5843
Dan Gohmanf9081a22008-09-15 22:18:04 +00005844/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5845/// (which may not be an immediate predecessor) which has exactly one
5846/// successor from which BB is reachable, or null if no such block is
5847/// found.
5848///
Dan Gohman4e3c1132010-04-15 16:19:08 +00005849std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanc8e23622009-04-21 23:15:49 +00005850ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohmanfa066ef2009-04-30 20:48:53 +00005851 // If the block has a unique predecessor, then there is no path from the
5852 // predecessor to the block that does not go through the direct edge
5853 // from the predecessor to the block.
Dan Gohmanf9081a22008-09-15 22:18:04 +00005854 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman4e3c1132010-04-15 16:19:08 +00005855 return std::make_pair(Pred, BB);
Dan Gohmanf9081a22008-09-15 22:18:04 +00005856
5857 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman8c77f1a2009-05-18 15:36:09 +00005858 // If the header has a unique predecessor outside the loop, it must be
5859 // a block that has exactly one successor that can reach the loop.
Dan Gohmanc8e23622009-04-21 23:15:49 +00005860 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman75c6b0b2010-06-22 23:43:28 +00005861 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanf9081a22008-09-15 22:18:04 +00005862
Dan Gohman4e3c1132010-04-15 16:19:08 +00005863 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanf9081a22008-09-15 22:18:04 +00005864}
5865
Dan Gohman450f4e02009-06-20 00:35:32 +00005866/// HasSameValue - SCEV structural equivalence is usually sufficient for
5867/// testing whether two expressions are equal, however for the purposes of
5868/// looking for a condition guarding a loop, it can be useful to be a little
5869/// more general, since a front-end may have replicated the controlling
5870/// expression.
5871///
Dan Gohmanaf752342009-07-07 17:06:11 +00005872static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman450f4e02009-06-20 00:35:32 +00005873 // Quick check to see if they are the same SCEV.
5874 if (A == B) return true;
5875
5876 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5877 // two different instructions with the same value. Check for this case.
5878 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5879 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5880 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5881 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman2d085562009-08-25 17:56:57 +00005882 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman450f4e02009-06-20 00:35:32 +00005883 return true;
5884
5885 // Otherwise assume they may have a different value.
5886 return false;
5887}
5888
Dan Gohman48ff3cf2010-04-24 01:28:42 +00005889/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00005890/// predicate Pred. Return true iff any changes were made.
Dan Gohman48ff3cf2010-04-24 01:28:42 +00005891///
5892bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00005893 const SCEV *&LHS, const SCEV *&RHS,
5894 unsigned Depth) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00005895 bool Changed = false;
5896
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00005897 // If we hit the max recursion limit bail out.
5898 if (Depth >= 3)
5899 return false;
5900
Dan Gohman48ff3cf2010-04-24 01:28:42 +00005901 // Canonicalize a constant to the right side.
5902 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5903 // Check for both operands constant.
5904 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5905 if (ConstantExpr::getICmp(Pred,
5906 LHSC->getValue(),
5907 RHSC->getValue())->isNullValue())
5908 goto trivially_false;
5909 else
5910 goto trivially_true;
5911 }
5912 // Otherwise swap the operands to put the constant on the right.
5913 std::swap(LHS, RHS);
5914 Pred = ICmpInst::getSwappedPredicate(Pred);
5915 Changed = true;
5916 }
5917
5918 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohmandf564ca2010-05-03 17:00:11 +00005919 // addrec's loop, put the addrec on the left. Also make a dominance check,
5920 // as both operands could be addrecs loop-invariant in each other's loop.
5921 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5922 const Loop *L = AR->getLoop();
Dan Gohman20d9ce22010-11-17 21:41:58 +00005923 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00005924 std::swap(LHS, RHS);
5925 Pred = ICmpInst::getSwappedPredicate(Pred);
5926 Changed = true;
5927 }
Dan Gohmandf564ca2010-05-03 17:00:11 +00005928 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00005929
5930 // If there's a constant operand, canonicalize comparisons with boundary
5931 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5932 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5933 const APInt &RA = RC->getValue()->getValue();
5934 switch (Pred) {
5935 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5936 case ICmpInst::ICMP_EQ:
5937 case ICmpInst::ICMP_NE:
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00005938 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
5939 if (!RA)
5940 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
5941 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
Benjamin Kramer406a2db2012-05-30 18:42:43 +00005942 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
5943 ME->getOperand(0)->isAllOnesValue()) {
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00005944 RHS = AE->getOperand(1);
5945 LHS = ME->getOperand(1);
5946 Changed = true;
5947 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00005948 break;
5949 case ICmpInst::ICMP_UGE:
5950 if ((RA - 1).isMinValue()) {
5951 Pred = ICmpInst::ICMP_NE;
5952 RHS = getConstant(RA - 1);
5953 Changed = true;
5954 break;
5955 }
5956 if (RA.isMaxValue()) {
5957 Pred = ICmpInst::ICMP_EQ;
5958 Changed = true;
5959 break;
5960 }
5961 if (RA.isMinValue()) goto trivially_true;
5962
5963 Pred = ICmpInst::ICMP_UGT;
5964 RHS = getConstant(RA - 1);
5965 Changed = true;
5966 break;
5967 case ICmpInst::ICMP_ULE:
5968 if ((RA + 1).isMaxValue()) {
5969 Pred = ICmpInst::ICMP_NE;
5970 RHS = getConstant(RA + 1);
5971 Changed = true;
5972 break;
5973 }
5974 if (RA.isMinValue()) {
5975 Pred = ICmpInst::ICMP_EQ;
5976 Changed = true;
5977 break;
5978 }
5979 if (RA.isMaxValue()) goto trivially_true;
5980
5981 Pred = ICmpInst::ICMP_ULT;
5982 RHS = getConstant(RA + 1);
5983 Changed = true;
5984 break;
5985 case ICmpInst::ICMP_SGE:
5986 if ((RA - 1).isMinSignedValue()) {
5987 Pred = ICmpInst::ICMP_NE;
5988 RHS = getConstant(RA - 1);
5989 Changed = true;
5990 break;
5991 }
5992 if (RA.isMaxSignedValue()) {
5993 Pred = ICmpInst::ICMP_EQ;
5994 Changed = true;
5995 break;
5996 }
5997 if (RA.isMinSignedValue()) goto trivially_true;
5998
5999 Pred = ICmpInst::ICMP_SGT;
6000 RHS = getConstant(RA - 1);
6001 Changed = true;
6002 break;
6003 case ICmpInst::ICMP_SLE:
6004 if ((RA + 1).isMaxSignedValue()) {
6005 Pred = ICmpInst::ICMP_NE;
6006 RHS = getConstant(RA + 1);
6007 Changed = true;
6008 break;
6009 }
6010 if (RA.isMinSignedValue()) {
6011 Pred = ICmpInst::ICMP_EQ;
6012 Changed = true;
6013 break;
6014 }
6015 if (RA.isMaxSignedValue()) goto trivially_true;
6016
6017 Pred = ICmpInst::ICMP_SLT;
6018 RHS = getConstant(RA + 1);
6019 Changed = true;
6020 break;
6021 case ICmpInst::ICMP_UGT:
6022 if (RA.isMinValue()) {
6023 Pred = ICmpInst::ICMP_NE;
6024 Changed = true;
6025 break;
6026 }
6027 if ((RA + 1).isMaxValue()) {
6028 Pred = ICmpInst::ICMP_EQ;
6029 RHS = getConstant(RA + 1);
6030 Changed = true;
6031 break;
6032 }
6033 if (RA.isMaxValue()) goto trivially_false;
6034 break;
6035 case ICmpInst::ICMP_ULT:
6036 if (RA.isMaxValue()) {
6037 Pred = ICmpInst::ICMP_NE;
6038 Changed = true;
6039 break;
6040 }
6041 if ((RA - 1).isMinValue()) {
6042 Pred = ICmpInst::ICMP_EQ;
6043 RHS = getConstant(RA - 1);
6044 Changed = true;
6045 break;
6046 }
6047 if (RA.isMinValue()) goto trivially_false;
6048 break;
6049 case ICmpInst::ICMP_SGT:
6050 if (RA.isMinSignedValue()) {
6051 Pred = ICmpInst::ICMP_NE;
6052 Changed = true;
6053 break;
6054 }
6055 if ((RA + 1).isMaxSignedValue()) {
6056 Pred = ICmpInst::ICMP_EQ;
6057 RHS = getConstant(RA + 1);
6058 Changed = true;
6059 break;
6060 }
6061 if (RA.isMaxSignedValue()) goto trivially_false;
6062 break;
6063 case ICmpInst::ICMP_SLT:
6064 if (RA.isMaxSignedValue()) {
6065 Pred = ICmpInst::ICMP_NE;
6066 Changed = true;
6067 break;
6068 }
6069 if ((RA - 1).isMinSignedValue()) {
6070 Pred = ICmpInst::ICMP_EQ;
6071 RHS = getConstant(RA - 1);
6072 Changed = true;
6073 break;
6074 }
6075 if (RA.isMinSignedValue()) goto trivially_false;
6076 break;
6077 }
6078 }
6079
6080 // Check for obvious equality.
6081 if (HasSameValue(LHS, RHS)) {
6082 if (ICmpInst::isTrueWhenEqual(Pred))
6083 goto trivially_true;
6084 if (ICmpInst::isFalseWhenEqual(Pred))
6085 goto trivially_false;
6086 }
6087
Dan Gohman81585c12010-05-03 16:35:17 +00006088 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
6089 // adding or subtracting 1 from one of the operands.
6090 switch (Pred) {
6091 case ICmpInst::ICMP_SLE:
6092 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
6093 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006094 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006095 Pred = ICmpInst::ICMP_SLT;
6096 Changed = true;
6097 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006098 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006099 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006100 Pred = ICmpInst::ICMP_SLT;
6101 Changed = true;
6102 }
6103 break;
6104 case ICmpInst::ICMP_SGE:
6105 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006106 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006107 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006108 Pred = ICmpInst::ICMP_SGT;
6109 Changed = true;
6110 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
6111 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006112 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006113 Pred = ICmpInst::ICMP_SGT;
6114 Changed = true;
6115 }
6116 break;
6117 case ICmpInst::ICMP_ULE:
6118 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006119 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006120 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006121 Pred = ICmpInst::ICMP_ULT;
6122 Changed = true;
6123 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006124 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006125 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006126 Pred = ICmpInst::ICMP_ULT;
6127 Changed = true;
6128 }
6129 break;
6130 case ICmpInst::ICMP_UGE:
6131 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006132 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006133 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006134 Pred = ICmpInst::ICMP_UGT;
6135 Changed = true;
6136 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006137 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006138 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006139 Pred = ICmpInst::ICMP_UGT;
6140 Changed = true;
6141 }
6142 break;
6143 default:
6144 break;
6145 }
6146
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006147 // TODO: More simplifications are possible here.
6148
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006149 // Recursively simplify until we either hit a recursion limit or nothing
6150 // changes.
6151 if (Changed)
6152 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
6153
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006154 return Changed;
6155
6156trivially_true:
6157 // Return 0 == 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006158 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006159 Pred = ICmpInst::ICMP_EQ;
6160 return true;
6161
6162trivially_false:
6163 // Return 0 != 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006164 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006165 Pred = ICmpInst::ICMP_NE;
6166 return true;
6167}
6168
Dan Gohmane65c9172009-07-13 21:35:55 +00006169bool ScalarEvolution::isKnownNegative(const SCEV *S) {
6170 return getSignedRange(S).getSignedMax().isNegative();
6171}
6172
6173bool ScalarEvolution::isKnownPositive(const SCEV *S) {
6174 return getSignedRange(S).getSignedMin().isStrictlyPositive();
6175}
6176
6177bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
6178 return !getSignedRange(S).getSignedMin().isNegative();
6179}
6180
6181bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
6182 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
6183}
6184
6185bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
6186 return isKnownNegative(S) || isKnownPositive(S);
6187}
6188
6189bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
6190 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman36cce7e2010-04-24 01:38:36 +00006191 // Canonicalize the inputs first.
6192 (void)SimplifyICmpOperands(Pred, LHS, RHS);
6193
Dan Gohman07591692010-04-11 22:16:48 +00006194 // If LHS or RHS is an addrec, check to see if the condition is true in
6195 // every iteration of the loop.
Justin Bognercbb84382014-05-23 00:06:56 +00006196 // If LHS and RHS are both addrec, both conditions must be true in
6197 // every iteration of the loop.
6198 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
6199 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
6200 bool LeftGuarded = false;
6201 bool RightGuarded = false;
6202 if (LAR) {
6203 const Loop *L = LAR->getLoop();
6204 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
6205 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
6206 if (!RAR) return true;
6207 LeftGuarded = true;
6208 }
6209 }
6210 if (RAR) {
6211 const Loop *L = RAR->getLoop();
6212 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
6213 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
6214 if (!LAR) return true;
6215 RightGuarded = true;
6216 }
6217 }
6218 if (LeftGuarded && RightGuarded)
6219 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00006220
Dan Gohman07591692010-04-11 22:16:48 +00006221 // Otherwise see what can be done with known constant ranges.
6222 return isKnownPredicateWithRanges(Pred, LHS, RHS);
6223}
6224
6225bool
6226ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
6227 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006228 if (HasSameValue(LHS, RHS))
6229 return ICmpInst::isTrueWhenEqual(Pred);
6230
Dan Gohman07591692010-04-11 22:16:48 +00006231 // This code is split out from isKnownPredicate because it is called from
6232 // within isLoopEntryGuardedByCond.
Dan Gohmane65c9172009-07-13 21:35:55 +00006233 switch (Pred) {
6234 default:
Dan Gohman8c129d72009-07-16 17:34:36 +00006235 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohmane65c9172009-07-13 21:35:55 +00006236 case ICmpInst::ICMP_SGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00006237 std::swap(LHS, RHS);
6238 case ICmpInst::ICMP_SLT: {
6239 ConstantRange LHSRange = getSignedRange(LHS);
6240 ConstantRange RHSRange = getSignedRange(RHS);
6241 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
6242 return true;
6243 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
6244 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006245 break;
6246 }
6247 case ICmpInst::ICMP_SGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00006248 std::swap(LHS, RHS);
6249 case ICmpInst::ICMP_SLE: {
6250 ConstantRange LHSRange = getSignedRange(LHS);
6251 ConstantRange RHSRange = getSignedRange(RHS);
6252 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
6253 return true;
6254 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
6255 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006256 break;
6257 }
6258 case ICmpInst::ICMP_UGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00006259 std::swap(LHS, RHS);
6260 case ICmpInst::ICMP_ULT: {
6261 ConstantRange LHSRange = getUnsignedRange(LHS);
6262 ConstantRange RHSRange = getUnsignedRange(RHS);
6263 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
6264 return true;
6265 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
6266 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006267 break;
6268 }
6269 case ICmpInst::ICMP_UGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00006270 std::swap(LHS, RHS);
6271 case ICmpInst::ICMP_ULE: {
6272 ConstantRange LHSRange = getUnsignedRange(LHS);
6273 ConstantRange RHSRange = getUnsignedRange(RHS);
6274 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
6275 return true;
6276 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
6277 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006278 break;
6279 }
6280 case ICmpInst::ICMP_NE: {
6281 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
6282 return true;
6283 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
6284 return true;
6285
6286 const SCEV *Diff = getMinusSCEV(LHS, RHS);
6287 if (isKnownNonZero(Diff))
6288 return true;
6289 break;
6290 }
6291 case ICmpInst::ICMP_EQ:
Dan Gohman34392622009-07-20 23:54:43 +00006292 // The check at the top of the function catches the case where
6293 // the values are known to be equal.
Dan Gohmane65c9172009-07-13 21:35:55 +00006294 break;
6295 }
6296 return false;
6297}
6298
6299/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6300/// protected by a conditional between LHS and RHS. This is used to
6301/// to eliminate casts.
6302bool
6303ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6304 ICmpInst::Predicate Pred,
6305 const SCEV *LHS, const SCEV *RHS) {
6306 // Interpret a null as meaning no loop, where there is obviously no guard
6307 // (interprocedural conditions notwithstanding).
6308 if (!L) return true;
6309
6310 BasicBlock *Latch = L->getLoopLatch();
6311 if (!Latch)
6312 return false;
6313
6314 BranchInst *LoopContinuePredicate =
6315 dyn_cast<BranchInst>(Latch->getTerminator());
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006316 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
6317 isImpliedCond(Pred, LHS, RHS,
6318 LoopContinuePredicate->getCondition(),
6319 LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
6320 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00006321
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006322 // Check conditions due to any @llvm.assume intrinsics.
6323 for (auto &CI : AT->assumptions(F)) {
6324 if (!DT->dominates(CI, Latch->getTerminator()))
6325 continue;
6326
6327 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
6328 return true;
6329 }
6330
6331 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006332}
6333
Dan Gohmanb50349a2010-04-11 19:27:13 +00006334/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohmane65c9172009-07-13 21:35:55 +00006335/// by a conditional between LHS and RHS. This is used to help avoid max
6336/// expressions in loop trip counts, and to eliminate casts.
6337bool
Dan Gohmanb50349a2010-04-11 19:27:13 +00006338ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6339 ICmpInst::Predicate Pred,
6340 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman9cf09f82009-05-18 16:03:58 +00006341 // Interpret a null as meaning no loop, where there is obviously no guard
6342 // (interprocedural conditions notwithstanding).
6343 if (!L) return false;
6344
Dan Gohman8c77f1a2009-05-18 15:36:09 +00006345 // Starting at the loop predecessor, climb up the predecessor chain, as long
6346 // as there are predecessors that can be found that have unique successors
Dan Gohmanf9081a22008-09-15 22:18:04 +00006347 // leading to the original header.
Dan Gohman4e3c1132010-04-15 16:19:08 +00006348 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman75c6b0b2010-06-22 23:43:28 +00006349 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman4e3c1132010-04-15 16:19:08 +00006350 Pair.first;
6351 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman2a62fd92008-08-12 20:17:31 +00006352
6353 BranchInst *LoopEntryPredicate =
Dan Gohman4e3c1132010-04-15 16:19:08 +00006354 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman2a62fd92008-08-12 20:17:31 +00006355 if (!LoopEntryPredicate ||
6356 LoopEntryPredicate->isUnconditional())
6357 continue;
6358
Dan Gohmane18c2d62010-08-10 23:46:30 +00006359 if (isImpliedCond(Pred, LHS, RHS,
6360 LoopEntryPredicate->getCondition(),
Dan Gohman4e3c1132010-04-15 16:19:08 +00006361 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman2a62fd92008-08-12 20:17:31 +00006362 return true;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00006363 }
6364
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006365 // Check conditions due to any @llvm.assume intrinsics.
6366 for (auto &CI : AT->assumptions(F)) {
6367 if (!DT->dominates(CI, L->getHeader()))
6368 continue;
6369
6370 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
6371 return true;
6372 }
6373
Dan Gohman2a62fd92008-08-12 20:17:31 +00006374 return false;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00006375}
6376
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00006377/// RAII wrapper to prevent recursive application of isImpliedCond.
6378/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
6379/// currently evaluating isImpliedCond.
6380struct MarkPendingLoopPredicate {
6381 Value *Cond;
6382 DenseSet<Value*> &LoopPreds;
6383 bool Pending;
6384
6385 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
6386 : Cond(C), LoopPreds(LP) {
6387 Pending = !LoopPreds.insert(Cond).second;
6388 }
6389 ~MarkPendingLoopPredicate() {
6390 if (!Pending)
6391 LoopPreds.erase(Cond);
6392 }
6393};
6394
Dan Gohman430f0cc2009-07-21 23:03:19 +00006395/// isImpliedCond - Test whether the condition described by Pred, LHS,
6396/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmane18c2d62010-08-10 23:46:30 +00006397bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006398 const SCEV *LHS, const SCEV *RHS,
Dan Gohmane18c2d62010-08-10 23:46:30 +00006399 Value *FoundCondValue,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006400 bool Inverse) {
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00006401 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
6402 if (Mark.Pending)
6403 return false;
6404
Dan Gohman8b0a4192010-03-01 17:49:51 +00006405 // Recursively handle And and Or conditions.
Dan Gohmane18c2d62010-08-10 23:46:30 +00006406 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006407 if (BO->getOpcode() == Instruction::And) {
6408 if (!Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00006409 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6410 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006411 } else if (BO->getOpcode() == Instruction::Or) {
6412 if (Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00006413 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6414 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006415 }
6416 }
6417
Dan Gohmane18c2d62010-08-10 23:46:30 +00006418 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006419 if (!ICI) return false;
6420
Dan Gohmane65c9172009-07-13 21:35:55 +00006421 // Bail if the ICmp's operands' types are wider than the needed type
6422 // before attempting to call getSCEV on them. This avoids infinite
6423 // recursion, since the analysis of widening casts can require loop
6424 // exit condition information for overflow checking, which would
6425 // lead back here.
6426 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman430f0cc2009-07-21 23:03:19 +00006427 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohmane65c9172009-07-13 21:35:55 +00006428 return false;
6429
Andrew Trickfa594032012-11-29 18:35:13 +00006430 // Now that we found a conditional branch that dominates the loop or controls
6431 // the loop latch. Check to see if it is the comparison we are looking for.
Dan Gohman430f0cc2009-07-21 23:03:19 +00006432 ICmpInst::Predicate FoundPred;
6433 if (Inverse)
6434 FoundPred = ICI->getInversePredicate();
6435 else
6436 FoundPred = ICI->getPredicate();
6437
6438 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6439 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohmane65c9172009-07-13 21:35:55 +00006440
6441 // Balance the types. The case where FoundLHS' type is wider than
6442 // LHS' type is checked for above.
6443 if (getTypeSizeInBits(LHS->getType()) >
6444 getTypeSizeInBits(FoundLHS->getType())) {
Stepan Dyatkovskiy431993b2014-01-09 12:26:12 +00006445 if (CmpInst::isSigned(FoundPred)) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006446 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6447 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6448 } else {
6449 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6450 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6451 }
6452 }
6453
Dan Gohman430f0cc2009-07-21 23:03:19 +00006454 // Canonicalize the query to match the way instcombine will have
6455 // canonicalized the comparison.
Dan Gohman3673aa12010-04-24 01:34:53 +00006456 if (SimplifyICmpOperands(Pred, LHS, RHS))
6457 if (LHS == RHS)
Dan Gohmanb5025c72010-05-03 18:00:24 +00006458 return CmpInst::isTrueWhenEqual(Pred);
Benjamin Kramerba11a982012-11-29 19:07:57 +00006459 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6460 if (FoundLHS == FoundRHS)
6461 return CmpInst::isFalseWhenEqual(FoundPred);
Dan Gohman430f0cc2009-07-21 23:03:19 +00006462
6463 // Check to see if we can make the LHS or RHS match.
6464 if (LHS == FoundRHS || RHS == FoundLHS) {
6465 if (isa<SCEVConstant>(RHS)) {
6466 std::swap(FoundLHS, FoundRHS);
6467 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6468 } else {
6469 std::swap(LHS, RHS);
6470 Pred = ICmpInst::getSwappedPredicate(Pred);
6471 }
6472 }
6473
6474 // Check whether the found predicate is the same as the desired predicate.
6475 if (FoundPred == Pred)
6476 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6477
6478 // Check whether swapping the found predicate makes it the same as the
6479 // desired predicate.
6480 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6481 if (isa<SCEVConstant>(RHS))
6482 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6483 else
6484 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6485 RHS, LHS, FoundLHS, FoundRHS);
6486 }
6487
6488 // Check whether the actual condition is beyond sufficient.
6489 if (FoundPred == ICmpInst::ICMP_EQ)
6490 if (ICmpInst::isTrueWhenEqual(Pred))
6491 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6492 return true;
6493 if (Pred == ICmpInst::ICMP_NE)
6494 if (!ICmpInst::isTrueWhenEqual(FoundPred))
6495 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6496 return true;
6497
6498 // Otherwise assume the worst.
6499 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006500}
6501
Dan Gohman430f0cc2009-07-21 23:03:19 +00006502/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman8b0a4192010-03-01 17:49:51 +00006503/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006504/// and FoundRHS is true.
6505bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6506 const SCEV *LHS, const SCEV *RHS,
6507 const SCEV *FoundLHS,
6508 const SCEV *FoundRHS) {
6509 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6510 FoundLHS, FoundRHS) ||
6511 // ~x < ~y --> x > y
6512 isImpliedCondOperandsHelper(Pred, LHS, RHS,
6513 getNotSCEV(FoundRHS),
6514 getNotSCEV(FoundLHS));
6515}
6516
6517/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman8b0a4192010-03-01 17:49:51 +00006518/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006519/// FoundLHS, and FoundRHS is true.
Dan Gohmane65c9172009-07-13 21:35:55 +00006520bool
Dan Gohman430f0cc2009-07-21 23:03:19 +00006521ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
6522 const SCEV *LHS, const SCEV *RHS,
6523 const SCEV *FoundLHS,
6524 const SCEV *FoundRHS) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006525 switch (Pred) {
Dan Gohman8c129d72009-07-16 17:34:36 +00006526 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6527 case ICmpInst::ICMP_EQ:
6528 case ICmpInst::ICMP_NE:
6529 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
6530 return true;
6531 break;
Dan Gohmane65c9172009-07-13 21:35:55 +00006532 case ICmpInst::ICMP_SLT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006533 case ICmpInst::ICMP_SLE:
Dan Gohman07591692010-04-11 22:16:48 +00006534 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
6535 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006536 return true;
6537 break;
6538 case ICmpInst::ICMP_SGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006539 case ICmpInst::ICMP_SGE:
Dan Gohman07591692010-04-11 22:16:48 +00006540 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
6541 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006542 return true;
6543 break;
6544 case ICmpInst::ICMP_ULT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006545 case ICmpInst::ICMP_ULE:
Dan Gohman07591692010-04-11 22:16:48 +00006546 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
6547 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006548 return true;
6549 break;
6550 case ICmpInst::ICMP_UGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006551 case ICmpInst::ICMP_UGE:
Dan Gohman07591692010-04-11 22:16:48 +00006552 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
6553 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006554 return true;
6555 break;
6556 }
6557
6558 return false;
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006559}
6560
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006561// Verify if an linear IV with positive stride can overflow when in a
6562// less-than comparison, knowing the invariant term of the comparison, the
6563// stride and the knowledge of NSW/NUW flags on the recurrence.
6564bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
6565 bool IsSigned, bool NoWrap) {
6566 if (NoWrap) return false;
Dan Gohman51aaf022010-01-26 04:40:18 +00006567
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006568 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6569 const SCEV *One = getConstant(Stride->getType(), 1);
Andrew Trick2afa3252011-03-09 17:29:58 +00006570
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006571 if (IsSigned) {
6572 APInt MaxRHS = getSignedRange(RHS).getSignedMax();
6573 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
6574 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
6575 .getSignedMax();
Andrew Trick2afa3252011-03-09 17:29:58 +00006576
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006577 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
6578 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
Dan Gohman36bad002009-09-17 18:05:20 +00006579 }
Dan Gohman01048422009-06-21 23:46:38 +00006580
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006581 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
6582 APInt MaxValue = APInt::getMaxValue(BitWidth);
6583 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
6584 .getUnsignedMax();
6585
6586 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
6587 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
6588}
6589
6590// Verify if an linear IV with negative stride can overflow when in a
6591// greater-than comparison, knowing the invariant term of the comparison,
6592// the stride and the knowledge of NSW/NUW flags on the recurrence.
6593bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
6594 bool IsSigned, bool NoWrap) {
6595 if (NoWrap) return false;
6596
6597 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6598 const SCEV *One = getConstant(Stride->getType(), 1);
6599
6600 if (IsSigned) {
6601 APInt MinRHS = getSignedRange(RHS).getSignedMin();
6602 APInt MinValue = APInt::getSignedMinValue(BitWidth);
6603 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
6604 .getSignedMax();
6605
6606 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
6607 return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
6608 }
6609
6610 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
6611 APInt MinValue = APInt::getMinValue(BitWidth);
6612 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
6613 .getUnsignedMax();
6614
6615 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
6616 return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
6617}
6618
6619// Compute the backedge taken count knowing the interval difference, the
6620// stride and presence of the equality in the comparison.
6621const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
6622 bool Equality) {
6623 const SCEV *One = getConstant(Step->getType(), 1);
6624 Delta = Equality ? getAddExpr(Delta, Step)
6625 : getAddExpr(Delta, getMinusSCEV(Step, One));
6626 return getUDivExpr(Delta, Step);
Dan Gohman01048422009-06-21 23:46:38 +00006627}
6628
Chris Lattner587a75b2005-08-15 23:33:51 +00006629/// HowManyLessThans - Return the number of times a backedge containing the
6630/// specified less-than comparison will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00006631/// CouldNotCompute.
Andrew Trick5b245a12013-05-31 06:43:25 +00006632///
6633/// @param IsSubExpr is true when the LHS < RHS condition does not directly
6634/// control the branch. In this case, we can only compute an iteration count for
6635/// a subexpression that cannot overflow before evaluating true.
Andrew Trick3ca3f982011-07-26 17:19:55 +00006636ScalarEvolution::ExitLimit
Dan Gohmance973df2009-06-24 04:48:43 +00006637ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006638 const Loop *L, bool IsSigned,
Andrew Trick5b245a12013-05-31 06:43:25 +00006639 bool IsSubExpr) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006640 // We handle only IV < Invariant
6641 if (!isLoopInvariant(RHS, L))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006642 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00006643
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006644 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
Dan Gohman2b8da352009-04-30 20:47:05 +00006645
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006646 // Avoid weird loops
6647 if (!IV || IV->getLoop() != L || !IV->isAffine())
6648 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00006649
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006650 bool NoWrap = !IsSubExpr &&
6651 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00006652
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006653 const SCEV *Stride = IV->getStepRecurrence(*this);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00006654
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006655 // Avoid negative or zero stride values
6656 if (!isKnownPositive(Stride))
6657 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00006658
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006659 // Avoid proven overflow cases: this will ensure that the backedge taken count
6660 // will not generate any unsigned overflow. Relaxed no-overflow conditions
6661 // exploit NoWrapFlags, allowing to optimize in presence of undefined
6662 // behaviors like the case of C language.
6663 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
6664 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00006665
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006666 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
6667 : ICmpInst::ICMP_ULT;
6668 const SCEV *Start = IV->getStart();
6669 const SCEV *End = RHS;
6670 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
6671 End = IsSigned ? getSMaxExpr(RHS, Start)
6672 : getUMaxExpr(RHS, Start);
Dan Gohman51aaf022010-01-26 04:40:18 +00006673
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006674 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
Dan Gohman2b8da352009-04-30 20:47:05 +00006675
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006676 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
6677 : getUnsignedRange(Start).getUnsignedMin();
Andrew Trick2afa3252011-03-09 17:29:58 +00006678
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006679 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
6680 : getUnsignedRange(Stride).getUnsignedMin();
Dan Gohman2b8da352009-04-30 20:47:05 +00006681
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006682 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
6683 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
6684 : APInt::getMaxValue(BitWidth) - (MinStride - 1);
Chris Lattner587a75b2005-08-15 23:33:51 +00006685
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006686 // Although End can be a MAX expression we estimate MaxEnd considering only
6687 // the case End = RHS. This is safe because in the other case (End - Start)
6688 // is zero, leading to a zero maximum backedge taken count.
6689 APInt MaxEnd =
6690 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
6691 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
6692
Arnaud A. de Grandmaison75c9e6d2014-03-15 22:13:15 +00006693 const SCEV *MaxBECount;
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006694 if (isa<SCEVConstant>(BECount))
6695 MaxBECount = BECount;
6696 else
6697 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
6698 getConstant(MinStride), false);
6699
6700 if (isa<SCEVCouldNotCompute>(MaxBECount))
6701 MaxBECount = BECount;
6702
Andrew Trickee5aa7f2014-01-15 06:42:11 +00006703 return ExitLimit(BECount, MaxBECount, /*MustExit=*/true);
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006704}
6705
6706ScalarEvolution::ExitLimit
6707ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
6708 const Loop *L, bool IsSigned,
6709 bool IsSubExpr) {
6710 // We handle only IV > Invariant
6711 if (!isLoopInvariant(RHS, L))
6712 return getCouldNotCompute();
6713
6714 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
6715
6716 // Avoid weird loops
6717 if (!IV || IV->getLoop() != L || !IV->isAffine())
6718 return getCouldNotCompute();
6719
6720 bool NoWrap = !IsSubExpr &&
6721 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
6722
6723 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
6724
6725 // Avoid negative or zero stride values
6726 if (!isKnownPositive(Stride))
6727 return getCouldNotCompute();
6728
6729 // Avoid proven overflow cases: this will ensure that the backedge taken count
6730 // will not generate any unsigned overflow. Relaxed no-overflow conditions
6731 // exploit NoWrapFlags, allowing to optimize in presence of undefined
6732 // behaviors like the case of C language.
6733 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
6734 return getCouldNotCompute();
6735
6736 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
6737 : ICmpInst::ICMP_UGT;
6738
6739 const SCEV *Start = IV->getStart();
6740 const SCEV *End = RHS;
6741 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
6742 End = IsSigned ? getSMinExpr(RHS, Start)
6743 : getUMinExpr(RHS, Start);
6744
6745 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
6746
6747 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
6748 : getUnsignedRange(Start).getUnsignedMax();
6749
6750 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
6751 : getUnsignedRange(Stride).getUnsignedMin();
6752
6753 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
6754 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
6755 : APInt::getMinValue(BitWidth) + (MinStride - 1);
6756
6757 // Although End can be a MIN expression we estimate MinEnd considering only
6758 // the case End = RHS. This is safe because in the other case (Start - End)
6759 // is zero, leading to a zero maximum backedge taken count.
6760 APInt MinEnd =
6761 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
6762 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
6763
6764
6765 const SCEV *MaxBECount = getCouldNotCompute();
6766 if (isa<SCEVConstant>(BECount))
6767 MaxBECount = BECount;
6768 else
6769 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
6770 getConstant(MinStride), false);
6771
6772 if (isa<SCEVCouldNotCompute>(MaxBECount))
6773 MaxBECount = BECount;
6774
Andrew Trickee5aa7f2014-01-15 06:42:11 +00006775 return ExitLimit(BECount, MaxBECount, /*MustExit=*/true);
Chris Lattner587a75b2005-08-15 23:33:51 +00006776}
6777
Chris Lattnerd934c702004-04-02 20:23:17 +00006778/// getNumIterationsInRange - Return the number of iterations of this loop that
6779/// produce values in the specified constant range. Another way of looking at
6780/// this is that it returns the first iteration number where the value is not in
6781/// the condition, thus computing the exit count. If the iteration count can't
6782/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00006783const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohmance973df2009-06-24 04:48:43 +00006784 ScalarEvolution &SE) const {
Chris Lattnerd934c702004-04-02 20:23:17 +00006785 if (Range.isFullSet()) // Infinite loop.
Dan Gohman31efa302009-04-18 17:58:19 +00006786 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006787
6788 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohmana30370b2009-05-04 22:02:23 +00006789 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencer2e54a152007-03-02 00:28:52 +00006790 if (!SC->getValue()->isZero()) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006791 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohman1d2ded72010-05-03 22:09:21 +00006792 Operands[0] = SE.getConstant(SC->getType(), 0);
Andrew Trick8b55b732011-03-14 16:50:06 +00006793 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00006794 getNoWrapFlags(FlagNW));
Dan Gohmana30370b2009-05-04 22:02:23 +00006795 if (const SCEVAddRecExpr *ShiftedAddRec =
6796 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattnerd934c702004-04-02 20:23:17 +00006797 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohmana37eaf22007-10-22 18:31:58 +00006798 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattnerd934c702004-04-02 20:23:17 +00006799 // This is strange and shouldn't happen.
Dan Gohman31efa302009-04-18 17:58:19 +00006800 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006801 }
6802
6803 // The only time we can solve this is when we have all constant indices.
6804 // Otherwise, we cannot determine the overflow conditions.
6805 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6806 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohman31efa302009-04-18 17:58:19 +00006807 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006808
6809
6810 // Okay at this point we know that all elements of the chrec are constants and
6811 // that the start element is zero.
6812
6813 // First check to see if the range contains zero. If not, the first
6814 // iteration exits.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00006815 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman0a40ad92009-04-16 03:18:22 +00006816 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohman1d2ded72010-05-03 22:09:21 +00006817 return SE.getConstant(getType(), 0);
Misha Brukman01808ca2005-04-21 21:13:18 +00006818
Chris Lattnerd934c702004-04-02 20:23:17 +00006819 if (isAffine()) {
6820 // If this is an affine expression then we have this situation:
6821 // Solve {0,+,A} in Range === Ax in Range
6822
Nick Lewycky52460262007-07-16 02:08:00 +00006823 // We know that zero is in the range. If A is positive then we know that
6824 // the upper value of the range must be the first possible exit value.
6825 // If A is negative then the lower of the range is the last possible loop
6826 // value. Also note that we already checked for a full range.
Dan Gohman0a40ad92009-04-16 03:18:22 +00006827 APInt One(BitWidth,1);
Nick Lewycky52460262007-07-16 02:08:00 +00006828 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
6829 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattnerd934c702004-04-02 20:23:17 +00006830
Nick Lewycky52460262007-07-16 02:08:00 +00006831 // The exit value should be (End+A)/A.
Nick Lewycky39349612007-09-27 14:12:54 +00006832 APInt ExitVal = (End + A).udiv(A);
Owen Andersonedb4a702009-07-24 23:12:02 +00006833 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattnerd934c702004-04-02 20:23:17 +00006834
6835 // Evaluate at the exit value. If we really did fall out of the valid
6836 // range, then we computed our trip count, otherwise wrap around or other
6837 // things must have happened.
Dan Gohmana37eaf22007-10-22 18:31:58 +00006838 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00006839 if (Range.contains(Val->getValue()))
Dan Gohman31efa302009-04-18 17:58:19 +00006840 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00006841
6842 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer3a7e9d82007-02-28 19:57:34 +00006843 assert(Range.contains(
Dan Gohmance973df2009-06-24 04:48:43 +00006844 EvaluateConstantChrecAtConstant(this,
Owen Andersonedb4a702009-07-24 23:12:02 +00006845 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattnerd934c702004-04-02 20:23:17 +00006846 "Linear scev computation is off in a bad way!");
Dan Gohmana37eaf22007-10-22 18:31:58 +00006847 return SE.getConstant(ExitValue);
Chris Lattnerd934c702004-04-02 20:23:17 +00006848 } else if (isQuadratic()) {
6849 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
6850 // quadratic equation to solve it. To do this, we must frame our problem in
6851 // terms of figuring out when zero is crossed, instead of when
6852 // Range.getUpper() is crossed.
Dan Gohmanaf752342009-07-07 17:06:11 +00006853 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00006854 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick8b55b732011-03-14 16:50:06 +00006855 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
6856 // getNoWrapFlags(FlagNW)
6857 FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00006858
6859 // Next, solve the constructed addrec
Dan Gohmanaf752342009-07-07 17:06:11 +00006860 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohmana37eaf22007-10-22 18:31:58 +00006861 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman48f82222009-05-04 22:30:44 +00006862 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6863 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerd934c702004-04-02 20:23:17 +00006864 if (R1) {
6865 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00006866 if (ConstantInt *CB =
Owen Anderson487375e2009-07-29 18:55:55 +00006867 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Andersonf1f17432009-07-06 22:37:39 +00006868 R1->getValue(), R2->getValue()))) {
Reid Spencercddc9df2007-01-12 04:24:46 +00006869 if (CB->getZExtValue() == false)
Chris Lattnerd934c702004-04-02 20:23:17 +00006870 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman01808ca2005-04-21 21:13:18 +00006871
Chris Lattnerd934c702004-04-02 20:23:17 +00006872 // Make sure the root is not off by one. The returned iteration should
6873 // not be in the range, but the previous one should be. When solving
6874 // for "X*X < 5", for example, we should not return a root of 2.
6875 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohmana37eaf22007-10-22 18:31:58 +00006876 R1->getValue(),
6877 SE);
Reid Spencer6a440332007-03-01 07:54:15 +00006878 if (Range.contains(R1Val->getValue())) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006879 // The next iteration must be out of the range...
Owen Andersonf1f17432009-07-06 22:37:39 +00006880 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00006881 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman01808ca2005-04-21 21:13:18 +00006882
Dan Gohmana37eaf22007-10-22 18:31:58 +00006883 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00006884 if (!Range.contains(R1Val->getValue()))
Dan Gohmana37eaf22007-10-22 18:31:58 +00006885 return SE.getConstant(NextVal);
Dan Gohman31efa302009-04-18 17:58:19 +00006886 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00006887 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006888
Chris Lattnerd934c702004-04-02 20:23:17 +00006889 // If R1 was not in the range, then it is a good return value. Make
6890 // sure that R1-1 WAS in the range though, just in case.
Owen Andersonf1f17432009-07-06 22:37:39 +00006891 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00006892 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohmana37eaf22007-10-22 18:31:58 +00006893 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00006894 if (Range.contains(R1Val->getValue()))
Chris Lattnerd934c702004-04-02 20:23:17 +00006895 return R1;
Dan Gohman31efa302009-04-18 17:58:19 +00006896 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00006897 }
6898 }
6899 }
6900
Dan Gohman31efa302009-04-18 17:58:19 +00006901 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006902}
6903
Sebastian Pop448712b2014-05-07 18:01:20 +00006904namespace {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00006905struct FindUndefs {
6906 bool Found;
6907 FindUndefs() : Found(false) {}
6908
6909 bool follow(const SCEV *S) {
6910 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
6911 if (isa<UndefValue>(C->getValue()))
6912 Found = true;
6913 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
6914 if (isa<UndefValue>(C->getValue()))
6915 Found = true;
6916 }
6917
6918 // Keep looking if we haven't found it yet.
6919 return !Found;
6920 }
6921 bool isDone() const {
6922 // Stop recursion if we have found an undef.
6923 return Found;
6924 }
6925};
6926}
6927
6928// Return true when S contains at least an undef value.
6929static inline bool
6930containsUndefs(const SCEV *S) {
6931 FindUndefs F;
6932 SCEVTraversal<FindUndefs> ST(F);
6933 ST.visitAll(S);
6934
6935 return F.Found;
6936}
6937
6938namespace {
Sebastian Pop448712b2014-05-07 18:01:20 +00006939// Collect all steps of SCEV expressions.
6940struct SCEVCollectStrides {
6941 ScalarEvolution &SE;
6942 SmallVectorImpl<const SCEV *> &Strides;
6943
6944 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
6945 : SE(SE), Strides(S) {}
6946
6947 bool follow(const SCEV *S) {
6948 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
6949 Strides.push_back(AR->getStepRecurrence(SE));
6950 return true;
6951 }
6952 bool isDone() const { return false; }
6953};
6954
6955// Collect all SCEVUnknown and SCEVMulExpr expressions.
6956struct SCEVCollectTerms {
6957 SmallVectorImpl<const SCEV *> &Terms;
6958
6959 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
6960 : Terms(T) {}
6961
6962 bool follow(const SCEV *S) {
Sebastian Popa6e58602014-05-27 22:41:45 +00006963 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00006964 if (!containsUndefs(S))
6965 Terms.push_back(S);
Sebastian Pop448712b2014-05-07 18:01:20 +00006966
6967 // Stop recursion: once we collected a term, do not walk its operands.
6968 return false;
6969 }
6970
6971 // Keep looking.
6972 return true;
6973 }
6974 bool isDone() const { return false; }
6975};
6976}
6977
6978/// Find parametric terms in this SCEVAddRecExpr.
6979void SCEVAddRecExpr::collectParametricTerms(
6980 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Terms) const {
6981 SmallVector<const SCEV *, 4> Strides;
6982 SCEVCollectStrides StrideCollector(SE, Strides);
6983 visitAll(this, StrideCollector);
6984
6985 DEBUG({
6986 dbgs() << "Strides:\n";
6987 for (const SCEV *S : Strides)
6988 dbgs() << *S << "\n";
6989 });
6990
6991 for (const SCEV *S : Strides) {
6992 SCEVCollectTerms TermCollector(Terms);
6993 visitAll(S, TermCollector);
6994 }
6995
6996 DEBUG({
6997 dbgs() << "Terms:\n";
6998 for (const SCEV *T : Terms)
6999 dbgs() << *T << "\n";
7000 });
7001}
7002
Sebastian Popc62c6792013-11-12 22:47:20 +00007003static const APInt srem(const SCEVConstant *C1, const SCEVConstant *C2) {
7004 APInt A = C1->getValue()->getValue();
7005 APInt B = C2->getValue()->getValue();
7006 uint32_t ABW = A.getBitWidth();
7007 uint32_t BBW = B.getBitWidth();
7008
7009 if (ABW > BBW)
Benjamin Kramer5f2768c2013-11-16 16:25:41 +00007010 B = B.sext(ABW);
Sebastian Popc62c6792013-11-12 22:47:20 +00007011 else if (ABW < BBW)
Benjamin Kramer5f2768c2013-11-16 16:25:41 +00007012 A = A.sext(BBW);
Sebastian Popc62c6792013-11-12 22:47:20 +00007013
7014 return APIntOps::srem(A, B);
7015}
7016
7017static const APInt sdiv(const SCEVConstant *C1, const SCEVConstant *C2) {
7018 APInt A = C1->getValue()->getValue();
7019 APInt B = C2->getValue()->getValue();
7020 uint32_t ABW = A.getBitWidth();
7021 uint32_t BBW = B.getBitWidth();
7022
7023 if (ABW > BBW)
Benjamin Kramer5f2768c2013-11-16 16:25:41 +00007024 B = B.sext(ABW);
Sebastian Popc62c6792013-11-12 22:47:20 +00007025 else if (ABW < BBW)
Benjamin Kramer5f2768c2013-11-16 16:25:41 +00007026 A = A.sext(BBW);
Sebastian Popc62c6792013-11-12 22:47:20 +00007027
7028 return APIntOps::sdiv(A, B);
7029}
7030
7031namespace {
Sebastian Pop448712b2014-05-07 18:01:20 +00007032struct FindSCEVSize {
7033 int Size;
7034 FindSCEVSize() : Size(0) {}
7035
7036 bool follow(const SCEV *S) {
7037 ++Size;
7038 // Keep looking at all operands of S.
7039 return true;
7040 }
7041 bool isDone() const {
7042 return false;
7043 }
7044};
7045}
7046
7047// Returns the size of the SCEV S.
7048static inline int sizeOfSCEV(const SCEV *S) {
7049 FindSCEVSize F;
7050 SCEVTraversal<FindSCEVSize> ST(F);
7051 ST.visitAll(S);
7052 return F.Size;
7053}
7054
7055namespace {
7056
7057struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
Sebastian Popc62c6792013-11-12 22:47:20 +00007058public:
Sebastian Pop448712b2014-05-07 18:01:20 +00007059 // Computes the Quotient and Remainder of the division of Numerator by
7060 // Denominator.
7061 static void divide(ScalarEvolution &SE, const SCEV *Numerator,
7062 const SCEV *Denominator, const SCEV **Quotient,
7063 const SCEV **Remainder) {
Sebastian Popb8d56f42014-05-07 19:00:37 +00007064 assert(Numerator && Denominator && "Uninitialized SCEV");
Sebastian Popc62c6792013-11-12 22:47:20 +00007065
Sebastian Pop448712b2014-05-07 18:01:20 +00007066 SCEVDivision D(SE, Numerator, Denominator);
Sebastian Popc62c6792013-11-12 22:47:20 +00007067
Sebastian Pop448712b2014-05-07 18:01:20 +00007068 // Check for the trivial case here to avoid having to check for it in the
7069 // rest of the code.
7070 if (Numerator == Denominator) {
7071 *Quotient = D.One;
7072 *Remainder = D.Zero;
7073 return;
Sebastian Popc62c6792013-11-12 22:47:20 +00007074 }
7075
Sebastian Pop0e75c5c2014-05-12 19:01:49 +00007076 if (Numerator->isZero()) {
Sebastian Pop448712b2014-05-07 18:01:20 +00007077 *Quotient = D.Zero;
7078 *Remainder = D.Zero;
7079 return;
Sebastian Popc62c6792013-11-12 22:47:20 +00007080 }
7081
Sebastian Pop448712b2014-05-07 18:01:20 +00007082 // Split the Denominator when it is a product.
7083 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
7084 const SCEV *Q, *R;
7085 *Quotient = Numerator;
7086 for (const SCEV *Op : T->operands()) {
7087 divide(SE, *Quotient, Op, &Q, &R);
7088 *Quotient = Q;
Sebastian Popc62c6792013-11-12 22:47:20 +00007089
Sebastian Pop448712b2014-05-07 18:01:20 +00007090 // Bail out when the Numerator is not divisible by one of the terms of
7091 // the Denominator.
Sebastian Pop0e75c5c2014-05-12 19:01:49 +00007092 if (!R->isZero()) {
Sebastian Pop448712b2014-05-07 18:01:20 +00007093 *Quotient = D.Zero;
7094 *Remainder = Numerator;
7095 return;
7096 }
7097 }
7098 *Remainder = D.Zero;
7099 return;
Sebastian Popc62c6792013-11-12 22:47:20 +00007100 }
7101
Sebastian Pop448712b2014-05-07 18:01:20 +00007102 D.visit(Numerator);
7103 *Quotient = D.Quotient;
7104 *Remainder = D.Remainder;
Sebastian Popc62c6792013-11-12 22:47:20 +00007105 }
7106
Sebastian Pop448712b2014-05-07 18:01:20 +00007107 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, const SCEV *Denominator)
7108 : SE(S), Denominator(Denominator) {
7109 Zero = SE.getConstant(Denominator->getType(), 0);
7110 One = SE.getConstant(Denominator->getType(), 1);
Sebastian Popc62c6792013-11-12 22:47:20 +00007111
Sebastian Pop448712b2014-05-07 18:01:20 +00007112 // By default, we don't know how to divide Expr by Denominator.
7113 // Providing the default here simplifies the rest of the code.
7114 Quotient = Zero;
7115 Remainder = Numerator;
7116 }
7117
7118 // Except in the trivial case described above, we do not know how to divide
7119 // Expr by Denominator for the following functions with empty implementation.
7120 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
7121 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
7122 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
7123 void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
7124 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
7125 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
7126 void visitUnknown(const SCEVUnknown *Numerator) {}
7127 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
7128
7129 void visitConstant(const SCEVConstant *Numerator) {
7130 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
7131 Quotient = SE.getConstant(sdiv(Numerator, D));
7132 Remainder = SE.getConstant(srem(Numerator, D));
7133 return;
7134 }
7135 }
7136
7137 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
7138 const SCEV *StartQ, *StartR, *StepQ, *StepR;
7139 assert(Numerator->isAffine() && "Numerator should be affine");
7140 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
7141 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
7142 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
7143 Numerator->getNoWrapFlags());
7144 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
7145 Numerator->getNoWrapFlags());
7146 }
7147
7148 void visitAddExpr(const SCEVAddExpr *Numerator) {
7149 SmallVector<const SCEV *, 2> Qs, Rs;
Sebastian Popf93ef122014-05-27 22:42:00 +00007150 Type *Ty = Denominator->getType();
7151
Sebastian Pop448712b2014-05-07 18:01:20 +00007152 for (const SCEV *Op : Numerator->operands()) {
7153 const SCEV *Q, *R;
7154 divide(SE, Op, Denominator, &Q, &R);
Sebastian Popf93ef122014-05-27 22:42:00 +00007155
7156 // Bail out if types do not match.
7157 if (Ty != Q->getType() || Ty != R->getType()) {
7158 Quotient = Zero;
7159 Remainder = Numerator;
7160 return;
7161 }
7162
Sebastian Pop448712b2014-05-07 18:01:20 +00007163 Qs.push_back(Q);
7164 Rs.push_back(R);
Sebastian Popc62c6792013-11-12 22:47:20 +00007165 }
7166
Sebastian Pop448712b2014-05-07 18:01:20 +00007167 if (Qs.size() == 1) {
7168 Quotient = Qs[0];
7169 Remainder = Rs[0];
7170 return;
7171 }
7172
7173 Quotient = SE.getAddExpr(Qs);
7174 Remainder = SE.getAddExpr(Rs);
7175 }
7176
7177 void visitMulExpr(const SCEVMulExpr *Numerator) {
7178 SmallVector<const SCEV *, 2> Qs;
Sebastian Popf93ef122014-05-27 22:42:00 +00007179 Type *Ty = Denominator->getType();
Sebastian Pop448712b2014-05-07 18:01:20 +00007180
7181 bool FoundDenominatorTerm = false;
7182 for (const SCEV *Op : Numerator->operands()) {
Sebastian Popf93ef122014-05-27 22:42:00 +00007183 // Bail out if types do not match.
7184 if (Ty != Op->getType()) {
7185 Quotient = Zero;
7186 Remainder = Numerator;
7187 return;
7188 }
7189
Sebastian Pop448712b2014-05-07 18:01:20 +00007190 if (FoundDenominatorTerm) {
7191 Qs.push_back(Op);
Sebastian Popc62c6792013-11-12 22:47:20 +00007192 continue;
Sebastian Popc62c6792013-11-12 22:47:20 +00007193 }
Sebastian Pop448712b2014-05-07 18:01:20 +00007194
7195 // Check whether Denominator divides one of the product operands.
7196 const SCEV *Q, *R;
7197 divide(SE, Op, Denominator, &Q, &R);
Sebastian Pop0e75c5c2014-05-12 19:01:49 +00007198 if (!R->isZero()) {
Sebastian Pop448712b2014-05-07 18:01:20 +00007199 Qs.push_back(Op);
7200 continue;
7201 }
Sebastian Popf93ef122014-05-27 22:42:00 +00007202
7203 // Bail out if types do not match.
7204 if (Ty != Q->getType()) {
7205 Quotient = Zero;
7206 Remainder = Numerator;
7207 return;
7208 }
7209
Sebastian Pop448712b2014-05-07 18:01:20 +00007210 FoundDenominatorTerm = true;
7211 Qs.push_back(Q);
Sebastian Popc62c6792013-11-12 22:47:20 +00007212 }
7213
Sebastian Pop448712b2014-05-07 18:01:20 +00007214 if (FoundDenominatorTerm) {
7215 Remainder = Zero;
7216 if (Qs.size() == 1)
7217 Quotient = Qs[0];
7218 else
7219 Quotient = SE.getMulExpr(Qs);
7220 return;
Sebastian Popc62c6792013-11-12 22:47:20 +00007221 }
7222
Sebastian Pop448712b2014-05-07 18:01:20 +00007223 if (!isa<SCEVUnknown>(Denominator)) {
7224 Quotient = Zero;
7225 Remainder = Numerator;
7226 return;
Sebastian Pop9738e832014-04-08 21:21:10 +00007227 }
7228
Sebastian Pop448712b2014-05-07 18:01:20 +00007229 // The Remainder is obtained by replacing Denominator by 0 in Numerator.
7230 ValueToValueMap RewriteMap;
7231 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
7232 cast<SCEVConstant>(Zero)->getValue();
7233 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
Sebastian Popc62c6792013-11-12 22:47:20 +00007234
Sebastian Pop20daf322014-05-29 19:44:09 +00007235 if (Remainder->isZero()) {
7236 // The Quotient is obtained by replacing Denominator by 1 in Numerator.
7237 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
7238 cast<SCEVConstant>(One)->getValue();
7239 Quotient =
7240 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
7241 return;
7242 }
7243
Sebastian Pop448712b2014-05-07 18:01:20 +00007244 // Quotient is (Numerator - Remainder) divided by Denominator.
7245 const SCEV *Q, *R;
7246 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
7247 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) {
7248 // This SCEV does not seem to simplify: fail the division here.
7249 Quotient = Zero;
7250 Remainder = Numerator;
7251 return;
Sebastian Popc62c6792013-11-12 22:47:20 +00007252 }
Sebastian Pop448712b2014-05-07 18:01:20 +00007253 divide(SE, Diff, Denominator, &Q, &R);
7254 assert(R == Zero &&
7255 "(Numerator - Remainder) should evenly divide Denominator");
7256 Quotient = Q;
Sebastian Popc62c6792013-11-12 22:47:20 +00007257 }
7258
Sebastian Pop448712b2014-05-07 18:01:20 +00007259private:
7260 ScalarEvolution &SE;
7261 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
7262};
7263}
Sebastian Popc62c6792013-11-12 22:47:20 +00007264
Sebastian Popb1a548f2014-05-12 19:01:53 +00007265static bool findArrayDimensionsRec(ScalarEvolution &SE,
Sebastian Pop448712b2014-05-07 18:01:20 +00007266 SmallVectorImpl<const SCEV *> &Terms,
Sebastian Pop47fe7de2014-05-09 22:45:07 +00007267 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pope30bd352014-05-27 22:41:56 +00007268 int Last = Terms.size() - 1;
7269 const SCEV *Step = Terms[Last];
Sebastian Popc62c6792013-11-12 22:47:20 +00007270
Sebastian Pop448712b2014-05-07 18:01:20 +00007271 // End of recursion.
Sebastian Pope30bd352014-05-27 22:41:56 +00007272 if (Last == 0) {
7273 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
Sebastian Pop448712b2014-05-07 18:01:20 +00007274 SmallVector<const SCEV *, 2> Qs;
7275 for (const SCEV *Op : M->operands())
7276 if (!isa<SCEVConstant>(Op))
7277 Qs.push_back(Op);
Sebastian Popc62c6792013-11-12 22:47:20 +00007278
Sebastian Pope30bd352014-05-27 22:41:56 +00007279 Step = SE.getMulExpr(Qs);
Sebastian Popc62c6792013-11-12 22:47:20 +00007280 }
7281
Sebastian Pope30bd352014-05-27 22:41:56 +00007282 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007283 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00007284 }
7285
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00007286 for (const SCEV *&Term : Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00007287 // Normalize the terms before the next call to findArrayDimensionsRec.
7288 const SCEV *Q, *R;
Sebastian Pope30bd352014-05-27 22:41:56 +00007289 SCEVDivision::divide(SE, Term, Step, &Q, &R);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007290
7291 // Bail out when GCD does not evenly divide one of the terms.
7292 if (!R->isZero())
7293 return false;
7294
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00007295 Term = Q;
Sebastian Popc62c6792013-11-12 22:47:20 +00007296 }
7297
Tobias Grosser3080cf12014-05-08 07:55:34 +00007298 // Remove all SCEVConstants.
Tobias Grosser1e9db7e2014-05-08 21:43:19 +00007299 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
7300 return isa<SCEVConstant>(E);
7301 }),
7302 Terms.end());
Sebastian Popc62c6792013-11-12 22:47:20 +00007303
Sebastian Pop448712b2014-05-07 18:01:20 +00007304 if (Terms.size() > 0)
Sebastian Popb1a548f2014-05-12 19:01:53 +00007305 if (!findArrayDimensionsRec(SE, Terms, Sizes))
7306 return false;
7307
Sebastian Pope30bd352014-05-27 22:41:56 +00007308 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007309 return true;
Sebastian Pop448712b2014-05-07 18:01:20 +00007310}
Sebastian Popc62c6792013-11-12 22:47:20 +00007311
Sebastian Pop448712b2014-05-07 18:01:20 +00007312namespace {
7313struct FindParameter {
7314 bool FoundParameter;
7315 FindParameter() : FoundParameter(false) {}
Sebastian Popc62c6792013-11-12 22:47:20 +00007316
Sebastian Pop448712b2014-05-07 18:01:20 +00007317 bool follow(const SCEV *S) {
7318 if (isa<SCEVUnknown>(S)) {
7319 FoundParameter = true;
7320 // Stop recursion: we found a parameter.
7321 return false;
7322 }
7323 // Keep looking.
7324 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00007325 }
Sebastian Pop448712b2014-05-07 18:01:20 +00007326 bool isDone() const {
7327 // Stop recursion if we have found a parameter.
7328 return FoundParameter;
Sebastian Popc62c6792013-11-12 22:47:20 +00007329 }
Sebastian Popc62c6792013-11-12 22:47:20 +00007330};
7331}
7332
Sebastian Pop448712b2014-05-07 18:01:20 +00007333// Returns true when S contains at least a SCEVUnknown parameter.
7334static inline bool
7335containsParameters(const SCEV *S) {
7336 FindParameter F;
7337 SCEVTraversal<FindParameter> ST(F);
7338 ST.visitAll(S);
7339
7340 return F.FoundParameter;
7341}
7342
7343// Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
7344static inline bool
7345containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
7346 for (const SCEV *T : Terms)
7347 if (containsParameters(T))
7348 return true;
7349 return false;
7350}
7351
7352// Return the number of product terms in S.
7353static inline int numberOfTerms(const SCEV *S) {
7354 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
7355 return Expr->getNumOperands();
7356 return 1;
7357}
7358
Sebastian Popa6e58602014-05-27 22:41:45 +00007359static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
7360 if (isa<SCEVConstant>(T))
7361 return nullptr;
7362
7363 if (isa<SCEVUnknown>(T))
7364 return T;
7365
7366 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
7367 SmallVector<const SCEV *, 2> Factors;
7368 for (const SCEV *Op : M->operands())
7369 if (!isa<SCEVConstant>(Op))
7370 Factors.push_back(Op);
7371
7372 return SE.getMulExpr(Factors);
7373 }
7374
7375 return T;
7376}
7377
7378/// Return the size of an element read or written by Inst.
7379const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
7380 Type *Ty;
7381 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
7382 Ty = Store->getValueOperand()->getType();
7383 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
Tobias Grosser40ac1002014-06-08 19:21:20 +00007384 Ty = Load->getType();
Sebastian Popa6e58602014-05-27 22:41:45 +00007385 else
7386 return nullptr;
7387
7388 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
7389 return getSizeOfExpr(ETy, Ty);
7390}
7391
Sebastian Pop448712b2014-05-07 18:01:20 +00007392/// Second step of delinearization: compute the array dimensions Sizes from the
7393/// set of Terms extracted from the memory access function of this SCEVAddRec.
Sebastian Popa6e58602014-05-27 22:41:45 +00007394void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
7395 SmallVectorImpl<const SCEV *> &Sizes,
7396 const SCEV *ElementSize) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00007397
Sebastian Pop53524082014-05-29 19:44:05 +00007398 if (Terms.size() < 1 || !ElementSize)
Sebastian Pop448712b2014-05-07 18:01:20 +00007399 return;
7400
7401 // Early return when Terms do not contain parameters: we do not delinearize
7402 // non parametric SCEVs.
7403 if (!containsParameters(Terms))
7404 return;
7405
7406 DEBUG({
7407 dbgs() << "Terms:\n";
7408 for (const SCEV *T : Terms)
7409 dbgs() << *T << "\n";
7410 });
7411
7412 // Remove duplicates.
7413 std::sort(Terms.begin(), Terms.end());
7414 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
7415
7416 // Put larger terms first.
7417 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
7418 return numberOfTerms(LHS) > numberOfTerms(RHS);
7419 });
7420
Sebastian Popa6e58602014-05-27 22:41:45 +00007421 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
7422
7423 // Divide all terms by the element size.
7424 for (const SCEV *&Term : Terms) {
7425 const SCEV *Q, *R;
7426 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
7427 Term = Q;
7428 }
7429
7430 SmallVector<const SCEV *, 4> NewTerms;
7431
7432 // Remove constant factors.
7433 for (const SCEV *T : Terms)
7434 if (const SCEV *NewT = removeConstantFactors(SE, T))
7435 NewTerms.push_back(NewT);
7436
Sebastian Pop448712b2014-05-07 18:01:20 +00007437 DEBUG({
7438 dbgs() << "Terms after sorting:\n";
Sebastian Popa6e58602014-05-27 22:41:45 +00007439 for (const SCEV *T : NewTerms)
Sebastian Pop448712b2014-05-07 18:01:20 +00007440 dbgs() << *T << "\n";
7441 });
7442
Sebastian Popa6e58602014-05-27 22:41:45 +00007443 if (NewTerms.empty() ||
7444 !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
Sebastian Popb1a548f2014-05-12 19:01:53 +00007445 Sizes.clear();
7446 return;
7447 }
Sebastian Pop448712b2014-05-07 18:01:20 +00007448
Sebastian Popa6e58602014-05-27 22:41:45 +00007449 // The last element to be pushed into Sizes is the size of an element.
7450 Sizes.push_back(ElementSize);
7451
Sebastian Pop448712b2014-05-07 18:01:20 +00007452 DEBUG({
7453 dbgs() << "Sizes:\n";
7454 for (const SCEV *S : Sizes)
7455 dbgs() << *S << "\n";
7456 });
7457}
7458
7459/// Third step of delinearization: compute the access functions for the
7460/// Subscripts based on the dimensions in Sizes.
Sebastian Pop28e6b972014-05-27 22:41:51 +00007461void SCEVAddRecExpr::computeAccessFunctions(
Sebastian Pop448712b2014-05-07 18:01:20 +00007462 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Subscripts,
7463 SmallVectorImpl<const SCEV *> &Sizes) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00007464
Sebastian Popb1a548f2014-05-12 19:01:53 +00007465 // Early exit in case this SCEV is not an affine multivariate function.
7466 if (Sizes.empty() || !this->isAffine())
Sebastian Pop28e6b972014-05-27 22:41:51 +00007467 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007468
Sebastian Pop28e6b972014-05-27 22:41:51 +00007469 const SCEV *Res = this;
Sebastian Pop448712b2014-05-07 18:01:20 +00007470 int Last = Sizes.size() - 1;
7471 for (int i = Last; i >= 0; i--) {
7472 const SCEV *Q, *R;
7473 SCEVDivision::divide(SE, Res, Sizes[i], &Q, &R);
7474
7475 DEBUG({
7476 dbgs() << "Res: " << *Res << "\n";
7477 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
7478 dbgs() << "Res divided by Sizes[i]:\n";
7479 dbgs() << "Quotient: " << *Q << "\n";
7480 dbgs() << "Remainder: " << *R << "\n";
7481 });
7482
7483 Res = Q;
7484
Sebastian Popa6e58602014-05-27 22:41:45 +00007485 // Do not record the last subscript corresponding to the size of elements in
7486 // the array.
Sebastian Pop448712b2014-05-07 18:01:20 +00007487 if (i == Last) {
Sebastian Popa6e58602014-05-27 22:41:45 +00007488
7489 // Bail out if the remainder is too complex.
Sebastian Pop28e6b972014-05-27 22:41:51 +00007490 if (isa<SCEVAddRecExpr>(R)) {
7491 Subscripts.clear();
7492 Sizes.clear();
7493 return;
7494 }
Sebastian Popa6e58602014-05-27 22:41:45 +00007495
Sebastian Pop448712b2014-05-07 18:01:20 +00007496 continue;
7497 }
7498
7499 // Record the access function for the current subscript.
7500 Subscripts.push_back(R);
7501 }
7502
7503 // Also push in last position the remainder of the last division: it will be
7504 // the access function of the innermost dimension.
7505 Subscripts.push_back(Res);
7506
7507 std::reverse(Subscripts.begin(), Subscripts.end());
7508
7509 DEBUG({
7510 dbgs() << "Subscripts:\n";
7511 for (const SCEV *S : Subscripts)
7512 dbgs() << *S << "\n";
7513 });
Sebastian Pop448712b2014-05-07 18:01:20 +00007514}
7515
Sebastian Popc62c6792013-11-12 22:47:20 +00007516/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
7517/// sizes of an array access. Returns the remainder of the delinearization that
Sebastian Pop7ee14722013-11-13 22:37:58 +00007518/// is the offset start of the array. The SCEV->delinearize algorithm computes
7519/// the multiples of SCEV coefficients: that is a pattern matching of sub
7520/// expressions in the stride and base of a SCEV corresponding to the
7521/// computation of a GCD (greatest common divisor) of base and stride. When
7522/// SCEV->delinearize fails, it returns the SCEV unchanged.
7523///
7524/// For example: when analyzing the memory access A[i][j][k] in this loop nest
7525///
7526/// void foo(long n, long m, long o, double A[n][m][o]) {
7527///
7528/// for (long i = 0; i < n; i++)
7529/// for (long j = 0; j < m; j++)
7530/// for (long k = 0; k < o; k++)
7531/// A[i][j][k] = 1.0;
7532/// }
7533///
7534/// the delinearization input is the following AddRec SCEV:
7535///
7536/// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
7537///
7538/// From this SCEV, we are able to say that the base offset of the access is %A
7539/// because it appears as an offset that does not divide any of the strides in
7540/// the loops:
7541///
7542/// CHECK: Base offset: %A
7543///
7544/// and then SCEV->delinearize determines the size of some of the dimensions of
7545/// the array as these are the multiples by which the strides are happening:
7546///
7547/// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
7548///
7549/// Note that the outermost dimension remains of UnknownSize because there are
7550/// no strides that would help identifying the size of the last dimension: when
7551/// the array has been statically allocated, one could compute the size of that
7552/// dimension by dividing the overall size of the array by the size of the known
7553/// dimensions: %m * %o * 8.
7554///
7555/// Finally delinearize provides the access functions for the array reference
7556/// that does correspond to A[i][j][k] of the above C testcase:
7557///
7558/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
7559///
7560/// The testcases are checking the output of a function pass:
7561/// DelinearizationPass that walks through all loads and stores of a function
7562/// asking for the SCEV of the memory access with respect to all enclosing
7563/// loops, calling SCEV->delinearize on that and printing the results.
7564
Sebastian Pop28e6b972014-05-27 22:41:51 +00007565void SCEVAddRecExpr::delinearize(ScalarEvolution &SE,
7566 SmallVectorImpl<const SCEV *> &Subscripts,
7567 SmallVectorImpl<const SCEV *> &Sizes,
7568 const SCEV *ElementSize) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00007569 // First step: collect parametric terms.
7570 SmallVector<const SCEV *, 4> Terms;
7571 collectParametricTerms(SE, Terms);
Sebastian Popc62c6792013-11-12 22:47:20 +00007572
Sebastian Popb1a548f2014-05-12 19:01:53 +00007573 if (Terms.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00007574 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007575
Sebastian Pop448712b2014-05-07 18:01:20 +00007576 // Second step: find subscript sizes.
Sebastian Popa6e58602014-05-27 22:41:45 +00007577 SE.findArrayDimensions(Terms, Sizes, ElementSize);
Sebastian Pop7ee14722013-11-13 22:37:58 +00007578
Sebastian Popb1a548f2014-05-12 19:01:53 +00007579 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00007580 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007581
Sebastian Pop448712b2014-05-07 18:01:20 +00007582 // Third step: compute the access functions for each subscript.
Sebastian Pop28e6b972014-05-27 22:41:51 +00007583 computeAccessFunctions(SE, Subscripts, Sizes);
Sebastian Popc62c6792013-11-12 22:47:20 +00007584
Sebastian Pop28e6b972014-05-27 22:41:51 +00007585 if (Subscripts.empty())
7586 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007587
Sebastian Pop448712b2014-05-07 18:01:20 +00007588 DEBUG({
7589 dbgs() << "succeeded to delinearize " << *this << "\n";
7590 dbgs() << "ArrayDecl[UnknownSize]";
7591 for (const SCEV *S : Sizes)
7592 dbgs() << "[" << *S << "]";
Sebastian Popc62c6792013-11-12 22:47:20 +00007593
Sebastian Pop444621a2014-05-09 22:45:02 +00007594 dbgs() << "\nArrayRef";
7595 for (const SCEV *S : Subscripts)
Sebastian Pop448712b2014-05-07 18:01:20 +00007596 dbgs() << "[" << *S << "]";
7597 dbgs() << "\n";
7598 });
Sebastian Popc62c6792013-11-12 22:47:20 +00007599}
Chris Lattnerd934c702004-04-02 20:23:17 +00007600
7601//===----------------------------------------------------------------------===//
Dan Gohman48f82222009-05-04 22:30:44 +00007602// SCEVCallbackVH Class Implementation
7603//===----------------------------------------------------------------------===//
7604
Dan Gohmand33a0902009-05-19 19:22:47 +00007605void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmandd707af2009-07-13 22:20:53 +00007606 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman48f82222009-05-04 22:30:44 +00007607 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
7608 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007609 SE->ValueExprMap.erase(getValPtr());
Dan Gohman48f82222009-05-04 22:30:44 +00007610 // this now dangles!
7611}
7612
Dan Gohman7a066722010-07-28 01:09:07 +00007613void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmandd707af2009-07-13 22:20:53 +00007614 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christopheref6d5932010-07-29 01:25:38 +00007615
Dan Gohman48f82222009-05-04 22:30:44 +00007616 // Forget all the expressions associated with users of the old value,
7617 // so that future queries will recompute the expressions using the new
7618 // value.
Dan Gohman7cac9572010-08-02 23:49:30 +00007619 Value *Old = getValPtr();
Chandler Carruthcdf47882014-03-09 03:16:01 +00007620 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
Dan Gohmanf34f8632009-07-14 14:34:04 +00007621 SmallPtrSet<User *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00007622 while (!Worklist.empty()) {
7623 User *U = Worklist.pop_back_val();
7624 // Deleting the Old value will cause this to dangle. Postpone
7625 // that until everything else is done.
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007626 if (U == Old)
Dan Gohman48f82222009-05-04 22:30:44 +00007627 continue;
Dan Gohmanf34f8632009-07-14 14:34:04 +00007628 if (!Visited.insert(U))
7629 continue;
Dan Gohman48f82222009-05-04 22:30:44 +00007630 if (PHINode *PN = dyn_cast<PHINode>(U))
7631 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007632 SE->ValueExprMap.erase(U);
Chandler Carruthcdf47882014-03-09 03:16:01 +00007633 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
Dan Gohman48f82222009-05-04 22:30:44 +00007634 }
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007635 // Delete the Old value.
7636 if (PHINode *PN = dyn_cast<PHINode>(Old))
7637 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007638 SE->ValueExprMap.erase(Old);
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007639 // this now dangles!
Dan Gohman48f82222009-05-04 22:30:44 +00007640}
7641
Dan Gohmand33a0902009-05-19 19:22:47 +00007642ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman48f82222009-05-04 22:30:44 +00007643 : CallbackVH(V), SE(se) {}
7644
7645//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00007646// ScalarEvolution Class Implementation
7647//===----------------------------------------------------------------------===//
7648
Dan Gohmanc8e23622009-04-21 23:15:49 +00007649ScalarEvolution::ScalarEvolution()
Craig Topper9f008862014-04-15 04:59:12 +00007650 : FunctionPass(ID), ValuesAtScopes(64), LoopDispositions(64),
7651 BlockDispositions(64), FirstUnknown(nullptr) {
Owen Anderson6c18d1a2010-10-19 17:21:58 +00007652 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanc8e23622009-04-21 23:15:49 +00007653}
7654
Chris Lattnerd934c702004-04-02 20:23:17 +00007655bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00007656 this->F = &F;
Hal Finkel60db0582014-09-07 18:57:58 +00007657 AT = &getAnalysis<AssumptionTracker>();
Dan Gohmanc8e23622009-04-21 23:15:49 +00007658 LI = &getAnalysis<LoopInfo>();
Rafael Espindola93512512014-02-25 17:30:31 +00007659 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
Craig Topper9f008862014-04-15 04:59:12 +00007660 DL = DLP ? &DLP->getDataLayout() : nullptr;
Chad Rosierc24b86f2011-12-01 03:08:23 +00007661 TLI = &getAnalysis<TargetLibraryInfo>();
Chandler Carruth73523022014-01-13 13:07:17 +00007662 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
Chris Lattnerd934c702004-04-02 20:23:17 +00007663 return false;
7664}
7665
7666void ScalarEvolution::releaseMemory() {
Dan Gohman7cac9572010-08-02 23:49:30 +00007667 // Iterate through all the SCEVUnknown instances and call their
7668 // destructors, so that they release their references to their values.
7669 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
7670 U->~SCEVUnknown();
Craig Topper9f008862014-04-15 04:59:12 +00007671 FirstUnknown = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00007672
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007673 ValueExprMap.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00007674
7675 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
7676 // that a loop had multiple computable exits.
7677 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
7678 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
7679 I != E; ++I) {
7680 I->second.clear();
7681 }
7682
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007683 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
7684
Dan Gohmanc8e23622009-04-21 23:15:49 +00007685 BackedgeTakenCounts.clear();
7686 ConstantEvolutionLoopExitValue.clear();
Dan Gohman5122d612009-05-08 20:47:27 +00007687 ValuesAtScopes.clear();
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007688 LoopDispositions.clear();
Dan Gohman8ea83d82010-11-18 00:34:22 +00007689 BlockDispositions.clear();
Dan Gohman761065e2010-11-17 02:44:44 +00007690 UnsignedRanges.clear();
7691 SignedRanges.clear();
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007692 UniqueSCEVs.clear();
7693 SCEVAllocator.Reset();
Chris Lattnerd934c702004-04-02 20:23:17 +00007694}
7695
7696void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
7697 AU.setPreservesAll();
Hal Finkel60db0582014-09-07 18:57:58 +00007698 AU.addRequired<AssumptionTracker>();
Chris Lattnerd934c702004-04-02 20:23:17 +00007699 AU.addRequiredTransitive<LoopInfo>();
Chandler Carruth73523022014-01-13 13:07:17 +00007700 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
Chad Rosierc24b86f2011-12-01 03:08:23 +00007701 AU.addRequired<TargetLibraryInfo>();
Dan Gohman0a40ad92009-04-16 03:18:22 +00007702}
7703
Dan Gohmanc8e23622009-04-21 23:15:49 +00007704bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman0bddac12009-02-24 18:55:53 +00007705 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattnerd934c702004-04-02 20:23:17 +00007706}
7707
Dan Gohmanc8e23622009-04-21 23:15:49 +00007708static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattnerd934c702004-04-02 20:23:17 +00007709 const Loop *L) {
7710 // Print all inner loops first
7711 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
7712 PrintLoopInfo(OS, SE, *I);
Misha Brukman01808ca2005-04-21 21:13:18 +00007713
Dan Gohmanbc694912010-01-09 18:17:45 +00007714 OS << "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007715 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007716 OS << ": ";
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00007717
Dan Gohmancb0efec2009-12-18 01:14:11 +00007718 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00007719 L->getExitBlocks(ExitBlocks);
7720 if (ExitBlocks.size() != 1)
Nick Lewyckyd1200b02008-01-02 02:49:20 +00007721 OS << "<multiple exits> ";
Chris Lattnerd934c702004-04-02 20:23:17 +00007722
Dan Gohman0bddac12009-02-24 18:55:53 +00007723 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
7724 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattnerd934c702004-04-02 20:23:17 +00007725 } else {
Dan Gohman0bddac12009-02-24 18:55:53 +00007726 OS << "Unpredictable backedge-taken count. ";
Chris Lattnerd934c702004-04-02 20:23:17 +00007727 }
7728
Dan Gohmanbc694912010-01-09 18:17:45 +00007729 OS << "\n"
7730 "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007731 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007732 OS << ": ";
Dan Gohman69942932009-06-24 00:33:16 +00007733
7734 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
7735 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
7736 } else {
7737 OS << "Unpredictable max backedge-taken count. ";
7738 }
7739
7740 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00007741}
7742
Dan Gohmancb0efec2009-12-18 01:14:11 +00007743void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman8b0a4192010-03-01 17:49:51 +00007744 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanc8e23622009-04-21 23:15:49 +00007745 // out SCEV values of all instructions that are interesting. Doing
7746 // this potentially causes it to create new SCEV objects though,
7747 // which technically conflicts with the const qualifier. This isn't
Dan Gohman028e6152009-07-10 20:25:29 +00007748 // observable from outside the class though, so casting away the
7749 // const isn't dangerous.
Dan Gohmancb0efec2009-12-18 01:14:11 +00007750 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattnerd934c702004-04-02 20:23:17 +00007751
Dan Gohmanbc694912010-01-09 18:17:45 +00007752 OS << "Classifying expressions for: ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007753 F->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007754 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00007755 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmand18dc2c2010-05-03 17:03:23 +00007756 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanfda3c4a2009-07-13 23:03:05 +00007757 OS << *I << '\n';
Dan Gohman81313fd2008-09-14 17:21:12 +00007758 OS << " --> ";
Dan Gohmanaf752342009-07-07 17:06:11 +00007759 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattnerd934c702004-04-02 20:23:17 +00007760 SV->print(OS);
Misha Brukman01808ca2005-04-21 21:13:18 +00007761
Dan Gohmanb9063a82009-06-19 17:49:54 +00007762 const Loop *L = LI->getLoopFor((*I).getParent());
7763
Dan Gohmanaf752342009-07-07 17:06:11 +00007764 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohmanb9063a82009-06-19 17:49:54 +00007765 if (AtUse != SV) {
7766 OS << " --> ";
7767 AtUse->print(OS);
7768 }
7769
7770 if (L) {
Dan Gohman94c468f2009-06-18 00:37:45 +00007771 OS << "\t\t" "Exits: ";
Dan Gohmanaf752342009-07-07 17:06:11 +00007772 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmanafd6db92010-11-17 21:23:15 +00007773 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00007774 OS << "<<Unknown>>";
7775 } else {
7776 OS << *ExitValue;
7777 }
7778 }
7779
Chris Lattnerd934c702004-04-02 20:23:17 +00007780 OS << "\n";
7781 }
7782
Dan Gohmanbc694912010-01-09 18:17:45 +00007783 OS << "Determining loop execution counts for: ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007784 F->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007785 OS << "\n";
Dan Gohmanc8e23622009-04-21 23:15:49 +00007786 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
7787 PrintLoopInfo(OS, &SE, *I);
Chris Lattnerd934c702004-04-02 20:23:17 +00007788}
Dan Gohmane20f8242009-04-21 00:47:46 +00007789
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007790ScalarEvolution::LoopDisposition
7791ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00007792 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values = LoopDispositions[S];
7793 for (unsigned u = 0; u < Values.size(); u++) {
7794 if (Values[u].first == L)
7795 return Values[u].second;
7796 }
7797 Values.push_back(std::make_pair(L, LoopVariant));
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007798 LoopDisposition D = computeLoopDisposition(S, L);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00007799 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values2 = LoopDispositions[S];
7800 for (unsigned u = Values2.size(); u > 0; u--) {
7801 if (Values2[u - 1].first == L) {
7802 Values2[u - 1].second = D;
7803 break;
7804 }
7805 }
7806 return D;
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007807}
7808
7809ScalarEvolution::LoopDisposition
7810ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00007811 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohmanafd6db92010-11-17 21:23:15 +00007812 case scConstant:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007813 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007814 case scTruncate:
7815 case scZeroExtend:
7816 case scSignExtend:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007817 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohmanafd6db92010-11-17 21:23:15 +00007818 case scAddRecExpr: {
7819 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
7820
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007821 // If L is the addrec's loop, it's computable.
7822 if (AR->getLoop() == L)
7823 return LoopComputable;
7824
Dan Gohmanafd6db92010-11-17 21:23:15 +00007825 // Add recurrences are never invariant in the function-body (null loop).
7826 if (!L)
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007827 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007828
7829 // This recurrence is variant w.r.t. L if L contains AR's loop.
7830 if (L->contains(AR->getLoop()))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007831 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007832
7833 // This recurrence is invariant w.r.t. L if AR's loop contains L.
7834 if (AR->getLoop()->contains(L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007835 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007836
7837 // This recurrence is variant w.r.t. L if any of its operands
7838 // are variant.
7839 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
7840 I != E; ++I)
7841 if (!isLoopInvariant(*I, L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007842 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007843
7844 // Otherwise it's loop-invariant.
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007845 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007846 }
7847 case scAddExpr:
7848 case scMulExpr:
7849 case scUMaxExpr:
7850 case scSMaxExpr: {
7851 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohmanafd6db92010-11-17 21:23:15 +00007852 bool HasVarying = false;
7853 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
7854 I != E; ++I) {
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007855 LoopDisposition D = getLoopDisposition(*I, L);
7856 if (D == LoopVariant)
7857 return LoopVariant;
7858 if (D == LoopComputable)
7859 HasVarying = true;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007860 }
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007861 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007862 }
7863 case scUDivExpr: {
7864 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007865 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
7866 if (LD == LoopVariant)
7867 return LoopVariant;
7868 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
7869 if (RD == LoopVariant)
7870 return LoopVariant;
7871 return (LD == LoopInvariant && RD == LoopInvariant) ?
7872 LoopInvariant : LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007873 }
7874 case scUnknown:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007875 // All non-instruction values are loop invariant. All instructions are loop
7876 // invariant if they are not contained in the specified loop.
7877 // Instructions are never considered invariant in the function body
7878 // (null loop) because they are defined within the "loop".
7879 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
7880 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
7881 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007882 case scCouldNotCompute:
7883 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohmanafd6db92010-11-17 21:23:15 +00007884 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00007885 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007886}
7887
7888bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
7889 return getLoopDisposition(S, L) == LoopInvariant;
7890}
7891
7892bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
7893 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007894}
Dan Gohman20d9ce22010-11-17 21:41:58 +00007895
Dan Gohman8ea83d82010-11-18 00:34:22 +00007896ScalarEvolution::BlockDisposition
7897ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00007898 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values = BlockDispositions[S];
7899 for (unsigned u = 0; u < Values.size(); u++) {
7900 if (Values[u].first == BB)
7901 return Values[u].second;
7902 }
7903 Values.push_back(std::make_pair(BB, DoesNotDominateBlock));
Dan Gohman8ea83d82010-11-18 00:34:22 +00007904 BlockDisposition D = computeBlockDisposition(S, BB);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00007905 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values2 = BlockDispositions[S];
7906 for (unsigned u = Values2.size(); u > 0; u--) {
7907 if (Values2[u - 1].first == BB) {
7908 Values2[u - 1].second = D;
7909 break;
7910 }
7911 }
7912 return D;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007913}
7914
Dan Gohman8ea83d82010-11-18 00:34:22 +00007915ScalarEvolution::BlockDisposition
7916ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00007917 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohman20d9ce22010-11-17 21:41:58 +00007918 case scConstant:
Dan Gohman8ea83d82010-11-18 00:34:22 +00007919 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007920 case scTruncate:
7921 case scZeroExtend:
7922 case scSignExtend:
Dan Gohman8ea83d82010-11-18 00:34:22 +00007923 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohman20d9ce22010-11-17 21:41:58 +00007924 case scAddRecExpr: {
7925 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman8ea83d82010-11-18 00:34:22 +00007926 // to test for proper dominance too, because the instruction which
7927 // produces the addrec's value is a PHI, and a PHI effectively properly
7928 // dominates its entire containing block.
Dan Gohman20d9ce22010-11-17 21:41:58 +00007929 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
7930 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00007931 return DoesNotDominateBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007932 }
7933 // FALL THROUGH into SCEVNAryExpr handling.
7934 case scAddExpr:
7935 case scMulExpr:
7936 case scUMaxExpr:
7937 case scSMaxExpr: {
7938 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00007939 bool Proper = true;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007940 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman8ea83d82010-11-18 00:34:22 +00007941 I != E; ++I) {
7942 BlockDisposition D = getBlockDisposition(*I, BB);
7943 if (D == DoesNotDominateBlock)
7944 return DoesNotDominateBlock;
7945 if (D == DominatesBlock)
7946 Proper = false;
7947 }
7948 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007949 }
7950 case scUDivExpr: {
7951 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00007952 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
7953 BlockDisposition LD = getBlockDisposition(LHS, BB);
7954 if (LD == DoesNotDominateBlock)
7955 return DoesNotDominateBlock;
7956 BlockDisposition RD = getBlockDisposition(RHS, BB);
7957 if (RD == DoesNotDominateBlock)
7958 return DoesNotDominateBlock;
7959 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
7960 ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007961 }
7962 case scUnknown:
7963 if (Instruction *I =
Dan Gohman8ea83d82010-11-18 00:34:22 +00007964 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
7965 if (I->getParent() == BB)
7966 return DominatesBlock;
7967 if (DT->properlyDominates(I->getParent(), BB))
7968 return ProperlyDominatesBlock;
7969 return DoesNotDominateBlock;
7970 }
7971 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007972 case scCouldNotCompute:
7973 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman20d9ce22010-11-17 21:41:58 +00007974 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00007975 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman8ea83d82010-11-18 00:34:22 +00007976}
7977
7978bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
7979 return getBlockDisposition(S, BB) >= DominatesBlock;
7980}
7981
7982bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
7983 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007984}
Dan Gohman534749b2010-11-17 22:27:42 +00007985
Andrew Trick365e31c2012-07-13 23:33:03 +00007986namespace {
7987// Search for a SCEV expression node within an expression tree.
7988// Implements SCEVTraversal::Visitor.
7989struct SCEVSearch {
7990 const SCEV *Node;
7991 bool IsFound;
7992
7993 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
7994
7995 bool follow(const SCEV *S) {
7996 IsFound |= (S == Node);
7997 return !IsFound;
7998 }
7999 bool isDone() const { return IsFound; }
8000};
8001}
8002
Dan Gohman534749b2010-11-17 22:27:42 +00008003bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Andrew Trick365e31c2012-07-13 23:33:03 +00008004 SCEVSearch Search(Op);
8005 visitAll(S, Search);
8006 return Search.IsFound;
Dan Gohman534749b2010-11-17 22:27:42 +00008007}
Dan Gohman7e6b3932010-11-17 23:28:48 +00008008
8009void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
8010 ValuesAtScopes.erase(S);
8011 LoopDispositions.erase(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008012 BlockDispositions.erase(S);
Dan Gohman7e6b3932010-11-17 23:28:48 +00008013 UnsignedRanges.erase(S);
8014 SignedRanges.erase(S);
Andrew Trick9093e152013-03-26 03:14:53 +00008015
8016 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
8017 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
8018 BackedgeTakenInfo &BEInfo = I->second;
8019 if (BEInfo.hasOperand(S, this)) {
8020 BEInfo.clear();
8021 BackedgeTakenCounts.erase(I++);
8022 }
8023 else
8024 ++I;
8025 }
Dan Gohman7e6b3932010-11-17 23:28:48 +00008026}
Benjamin Kramer214935e2012-10-26 17:31:32 +00008027
8028typedef DenseMap<const Loop *, std::string> VerifyMap;
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008029
Alp Tokercb402912014-01-24 17:20:08 +00008030/// replaceSubString - Replaces all occurrences of From in Str with To.
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008031static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
8032 size_t Pos = 0;
8033 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
8034 Str.replace(Pos, From.size(), To.data(), To.size());
8035 Pos += To.size();
8036 }
8037}
8038
Benjamin Kramer214935e2012-10-26 17:31:32 +00008039/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
8040static void
8041getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
8042 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
8043 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
8044
8045 std::string &S = Map[L];
8046 if (S.empty()) {
8047 raw_string_ostream OS(S);
8048 SE.getBackedgeTakenCount(L)->print(OS);
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008049
8050 // false and 0 are semantically equivalent. This can happen in dead loops.
8051 replaceSubString(OS.str(), "false", "0");
8052 // Remove wrap flags, their use in SCEV is highly fragile.
8053 // FIXME: Remove this when SCEV gets smarter about them.
8054 replaceSubString(OS.str(), "<nw>", "");
8055 replaceSubString(OS.str(), "<nsw>", "");
8056 replaceSubString(OS.str(), "<nuw>", "");
Benjamin Kramer214935e2012-10-26 17:31:32 +00008057 }
8058 }
8059}
8060
8061void ScalarEvolution::verifyAnalysis() const {
8062 if (!VerifySCEV)
8063 return;
8064
8065 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8066
8067 // Gather stringified backedge taken counts for all loops using SCEV's caches.
8068 // FIXME: It would be much better to store actual values instead of strings,
8069 // but SCEV pointers will change if we drop the caches.
8070 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
8071 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8072 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
8073
8074 // Gather stringified backedge taken counts for all loops without using
8075 // SCEV's caches.
8076 SE.releaseMemory();
8077 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8078 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE);
8079
8080 // Now compare whether they're the same with and without caches. This allows
8081 // verifying that no pass changed the cache.
8082 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
8083 "New loops suddenly appeared!");
8084
8085 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
8086 OldE = BackedgeDumpsOld.end(),
8087 NewI = BackedgeDumpsNew.begin();
8088 OldI != OldE; ++OldI, ++NewI) {
8089 assert(OldI->first == NewI->first && "Loop order changed!");
8090
8091 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
8092 // changes.
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008093 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
Benjamin Kramer214935e2012-10-26 17:31:32 +00008094 // means that a pass is buggy or SCEV has to learn a new pattern but is
8095 // usually not harmful.
8096 if (OldI->second != NewI->second &&
8097 OldI->second.find("undef") == std::string::npos &&
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008098 NewI->second.find("undef") == std::string::npos &&
8099 OldI->second != "***COULDNOTCOMPUTE***" &&
Benjamin Kramer214935e2012-10-26 17:31:32 +00008100 NewI->second != "***COULDNOTCOMPUTE***") {
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008101 dbgs() << "SCEVValidator: SCEV for loop '"
Benjamin Kramer214935e2012-10-26 17:31:32 +00008102 << OldI->first->getHeader()->getName()
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008103 << "' changed from '" << OldI->second
8104 << "' to '" << NewI->second << "'!\n";
Benjamin Kramer214935e2012-10-26 17:31:32 +00008105 std::abort();
8106 }
8107 }
8108
8109 // TODO: Verify more things.
8110}