blob: ff8fbfdd76ecc8ec669971ce7bf24d5d2f64d0c3 [file] [log] [blame]
Nick Lewycky97756402014-09-01 05:17:15 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
Misha Brukman01808ca2005-04-21 21:13:18 +00002//
Chris Lattnerd934c702004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman01808ca2005-04-21 21:13:18 +00007//
Chris Lattnerd934c702004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanef2ae2c2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattnerd934c702004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman01808ca2005-04-21 21:13:18 +000030//
Chris Lattnerd934c702004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattnerd934c702004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chandler Carruthed0881b2012-12-03 16:50:05 +000061#include "llvm/Analysis/ScalarEvolution.h"
62#include "llvm/ADT/STLExtras.h"
63#include "llvm/ADT/SmallPtrSet.h"
64#include "llvm/ADT/Statistic.h"
John Criswellfe5f33b2005-10-27 15:54:34 +000065#include "llvm/Analysis/ConstantFolding.h"
Duncan Sandsd06f50e2010-11-17 04:18:45 +000066#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnerd934c702004-04-02 20:23:17 +000067#include "llvm/Analysis/LoopInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000068#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Dan Gohman1ee696d2009-06-16 19:52:01 +000069#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000070#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000071#include "llvm/IR/Constants.h"
72#include "llvm/IR/DataLayout.h"
73#include "llvm/IR/DerivedTypes.h"
Chandler Carruth5ad5f152014-01-13 09:26:24 +000074#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000075#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000076#include "llvm/IR/GlobalAlias.h"
77#include "llvm/IR/GlobalVariable.h"
Chandler Carruth83948572014-03-04 10:30:26 +000078#include "llvm/IR/InstIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000079#include "llvm/IR/Instructions.h"
80#include "llvm/IR/LLVMContext.h"
81#include "llvm/IR/Operator.h"
Chris Lattner996795b2006-06-28 23:17:24 +000082#include "llvm/Support/CommandLine.h"
David Greene2330f782009-12-23 22:58:38 +000083#include "llvm/Support/Debug.h"
Torok Edwin56d06592009-07-11 20:10:48 +000084#include "llvm/Support/ErrorHandling.h"
Chris Lattner0a1e9932006-12-19 01:16:02 +000085#include "llvm/Support/MathExtras.h"
Dan Gohmane20f8242009-04-21 00:47:46 +000086#include "llvm/Support/raw_ostream.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000087#include "llvm/Target/TargetLibraryInfo.h"
Alkis Evlogimenosa5c04ee2004-09-03 18:19:51 +000088#include <algorithm>
Chris Lattnerd934c702004-04-02 20:23:17 +000089using namespace llvm;
90
Chandler Carruthf1221bd2014-04-22 02:48:03 +000091#define DEBUG_TYPE "scalar-evolution"
92
Chris Lattner57ef9422006-12-19 22:30:33 +000093STATISTIC(NumArrayLenItCounts,
94 "Number of trip counts computed with array length");
95STATISTIC(NumTripCountsComputed,
96 "Number of loops with predictable loop counts");
97STATISTIC(NumTripCountsNotComputed,
98 "Number of loops without predictable loop counts");
99STATISTIC(NumBruteForceTripCountsComputed,
100 "Number of loops with trip counts computed by force");
101
Dan Gohmand78c4002008-05-13 00:00:25 +0000102static cl::opt<unsigned>
Chris Lattner57ef9422006-12-19 22:30:33 +0000103MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
104 cl::desc("Maximum number of iterations SCEV will "
Dan Gohmance973df2009-06-24 04:48:43 +0000105 "symbolically execute a constant "
106 "derived loop"),
Chris Lattner57ef9422006-12-19 22:30:33 +0000107 cl::init(100));
108
Benjamin Kramer214935e2012-10-26 17:31:32 +0000109// FIXME: Enable this with XDEBUG when the test suite is clean.
110static cl::opt<bool>
111VerifySCEV("verify-scev",
112 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
113
Owen Anderson8ac477f2010-10-12 19:48:12 +0000114INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
115 "Scalar Evolution Analysis", false, true)
116INITIALIZE_PASS_DEPENDENCY(LoopInfo)
Chandler Carruth73523022014-01-13 13:07:17 +0000117INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Chad Rosierc24b86f2011-12-01 03:08:23 +0000118INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
Owen Anderson8ac477f2010-10-12 19:48:12 +0000119INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersondf7a4f22010-10-07 22:25:06 +0000120 "Scalar Evolution Analysis", false, true)
Devang Patel8c78a0b2007-05-03 01:11:54 +0000121char ScalarEvolution::ID = 0;
Chris Lattnerd934c702004-04-02 20:23:17 +0000122
123//===----------------------------------------------------------------------===//
124// SCEV class definitions
125//===----------------------------------------------------------------------===//
126
127//===----------------------------------------------------------------------===//
128// Implementation of the SCEV class.
129//
Dan Gohman3423e722009-06-30 20:13:32 +0000130
Manman Ren49d684e2012-09-12 05:06:18 +0000131#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chris Lattnerd934c702004-04-02 20:23:17 +0000132void SCEV::dump() const {
David Greenedf1c4972009-12-23 22:18:14 +0000133 print(dbgs());
134 dbgs() << '\n';
Dan Gohmane20f8242009-04-21 00:47:46 +0000135}
Manman Renc3366cc2012-09-06 19:55:56 +0000136#endif
Dan Gohmane20f8242009-04-21 00:47:46 +0000137
Dan Gohman534749b2010-11-17 22:27:42 +0000138void SCEV::print(raw_ostream &OS) const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000139 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000140 case scConstant:
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000141 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000142 return;
143 case scTruncate: {
144 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
145 const SCEV *Op = Trunc->getOperand();
146 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
147 << *Trunc->getType() << ")";
148 return;
149 }
150 case scZeroExtend: {
151 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
152 const SCEV *Op = ZExt->getOperand();
153 OS << "(zext " << *Op->getType() << " " << *Op << " to "
154 << *ZExt->getType() << ")";
155 return;
156 }
157 case scSignExtend: {
158 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
159 const SCEV *Op = SExt->getOperand();
160 OS << "(sext " << *Op->getType() << " " << *Op << " to "
161 << *SExt->getType() << ")";
162 return;
163 }
164 case scAddRecExpr: {
165 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
166 OS << "{" << *AR->getOperand(0);
167 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
168 OS << ",+," << *AR->getOperand(i);
169 OS << "}<";
Andrew Trick8b55b732011-03-14 16:50:06 +0000170 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000171 OS << "nuw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000172 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000173 OS << "nsw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000174 if (AR->getNoWrapFlags(FlagNW) &&
175 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
176 OS << "nw><";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000177 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohman534749b2010-11-17 22:27:42 +0000178 OS << ">";
179 return;
180 }
181 case scAddExpr:
182 case scMulExpr:
183 case scUMaxExpr:
184 case scSMaxExpr: {
185 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Craig Topper9f008862014-04-15 04:59:12 +0000186 const char *OpStr = nullptr;
Dan Gohman534749b2010-11-17 22:27:42 +0000187 switch (NAry->getSCEVType()) {
188 case scAddExpr: OpStr = " + "; break;
189 case scMulExpr: OpStr = " * "; break;
190 case scUMaxExpr: OpStr = " umax "; break;
191 case scSMaxExpr: OpStr = " smax "; break;
192 }
193 OS << "(";
194 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
195 I != E; ++I) {
196 OS << **I;
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000197 if (std::next(I) != E)
Dan Gohman534749b2010-11-17 22:27:42 +0000198 OS << OpStr;
199 }
200 OS << ")";
Andrew Trickd912a5b2011-11-29 02:06:35 +0000201 switch (NAry->getSCEVType()) {
202 case scAddExpr:
203 case scMulExpr:
204 if (NAry->getNoWrapFlags(FlagNUW))
205 OS << "<nuw>";
206 if (NAry->getNoWrapFlags(FlagNSW))
207 OS << "<nsw>";
208 }
Dan Gohman534749b2010-11-17 22:27:42 +0000209 return;
210 }
211 case scUDivExpr: {
212 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
213 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
214 return;
215 }
216 case scUnknown: {
217 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattner229907c2011-07-18 04:54:35 +0000218 Type *AllocTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000219 if (U->isSizeOf(AllocTy)) {
220 OS << "sizeof(" << *AllocTy << ")";
221 return;
222 }
223 if (U->isAlignOf(AllocTy)) {
224 OS << "alignof(" << *AllocTy << ")";
225 return;
226 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000227
Chris Lattner229907c2011-07-18 04:54:35 +0000228 Type *CTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000229 Constant *FieldNo;
230 if (U->isOffsetOf(CTy, FieldNo)) {
231 OS << "offsetof(" << *CTy << ", ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000232 FieldNo->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000233 OS << ")";
234 return;
235 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000236
Dan Gohman534749b2010-11-17 22:27:42 +0000237 // Otherwise just print it normally.
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000238 U->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000239 return;
240 }
241 case scCouldNotCompute:
242 OS << "***COULDNOTCOMPUTE***";
243 return;
Dan Gohman534749b2010-11-17 22:27:42 +0000244 }
245 llvm_unreachable("Unknown SCEV kind!");
246}
247
Chris Lattner229907c2011-07-18 04:54:35 +0000248Type *SCEV::getType() const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000249 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000250 case scConstant:
251 return cast<SCEVConstant>(this)->getType();
252 case scTruncate:
253 case scZeroExtend:
254 case scSignExtend:
255 return cast<SCEVCastExpr>(this)->getType();
256 case scAddRecExpr:
257 case scMulExpr:
258 case scUMaxExpr:
259 case scSMaxExpr:
260 return cast<SCEVNAryExpr>(this)->getType();
261 case scAddExpr:
262 return cast<SCEVAddExpr>(this)->getType();
263 case scUDivExpr:
264 return cast<SCEVUDivExpr>(this)->getType();
265 case scUnknown:
266 return cast<SCEVUnknown>(this)->getType();
267 case scCouldNotCompute:
268 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman534749b2010-11-17 22:27:42 +0000269 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000270 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman534749b2010-11-17 22:27:42 +0000271}
272
Dan Gohmanbe928e32008-06-18 16:23:07 +0000273bool SCEV::isZero() const {
274 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
275 return SC->getValue()->isZero();
276 return false;
277}
278
Dan Gohmanba7f6d82009-05-18 15:22:39 +0000279bool SCEV::isOne() const {
280 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
281 return SC->getValue()->isOne();
282 return false;
283}
Chris Lattnerd934c702004-04-02 20:23:17 +0000284
Dan Gohman18a96bb2009-06-24 00:30:26 +0000285bool SCEV::isAllOnesValue() const {
286 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
287 return SC->getValue()->isAllOnesValue();
288 return false;
289}
290
Andrew Trick881a7762012-01-07 00:27:31 +0000291/// isNonConstantNegative - Return true if the specified scev is negated, but
292/// not a constant.
293bool SCEV::isNonConstantNegative() const {
294 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
295 if (!Mul) return false;
296
297 // If there is a constant factor, it will be first.
298 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
299 if (!SC) return false;
300
301 // Return true if the value is negative, this matches things like (-42 * V).
302 return SC->getValue()->getValue().isNegative();
303}
304
Owen Anderson04052ec2009-06-22 21:57:23 +0000305SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman24ceda82010-06-18 19:54:20 +0000306 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000307
Chris Lattnerd934c702004-04-02 20:23:17 +0000308bool SCEVCouldNotCompute::classof(const SCEV *S) {
309 return S->getSCEVType() == scCouldNotCompute;
310}
311
Dan Gohmanaf752342009-07-07 17:06:11 +0000312const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000313 FoldingSetNodeID ID;
314 ID.AddInteger(scConstant);
315 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +0000316 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000317 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman24ceda82010-06-18 19:54:20 +0000318 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000319 UniqueSCEVs.InsertNode(S, IP);
320 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000321}
Chris Lattnerd934c702004-04-02 20:23:17 +0000322
Nick Lewycky31eaca52014-01-27 10:04:03 +0000323const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
Owen Andersonedb4a702009-07-24 23:12:02 +0000324 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman0a76e7f2007-07-09 15:25:17 +0000325}
326
Dan Gohmanaf752342009-07-07 17:06:11 +0000327const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +0000328ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
329 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana029cbe2010-04-21 16:04:04 +0000330 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000331}
332
Dan Gohman24ceda82010-06-18 19:54:20 +0000333SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000334 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000335 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000336
Dan Gohman24ceda82010-06-18 19:54:20 +0000337SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000338 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000339 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000340 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
341 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000342 "Cannot truncate non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000343}
Chris Lattnerd934c702004-04-02 20:23:17 +0000344
Dan Gohman24ceda82010-06-18 19:54:20 +0000345SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000346 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000347 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000348 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
349 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000350 "Cannot zero extend non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000351}
352
Dan Gohman24ceda82010-06-18 19:54:20 +0000353SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000354 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000355 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000356 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
357 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000358 "Cannot sign extend non-integer value!");
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000359}
360
Dan Gohman7cac9572010-08-02 23:49:30 +0000361void SCEVUnknown::deleted() {
Dan Gohman761065e2010-11-17 02:44:44 +0000362 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000363 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000364
365 // Remove this SCEVUnknown from the uniquing map.
366 SE->UniqueSCEVs.RemoveNode(this);
367
368 // Release the value.
Craig Topper9f008862014-04-15 04:59:12 +0000369 setValPtr(nullptr);
Dan Gohman7cac9572010-08-02 23:49:30 +0000370}
371
372void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman761065e2010-11-17 02:44:44 +0000373 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000374 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000375
376 // Remove this SCEVUnknown from the uniquing map.
377 SE->UniqueSCEVs.RemoveNode(this);
378
379 // Update this SCEVUnknown to point to the new value. This is needed
380 // because there may still be outstanding SCEVs which still point to
381 // this SCEVUnknown.
382 setValPtr(New);
383}
384
Chris Lattner229907c2011-07-18 04:54:35 +0000385bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000386 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000387 if (VCE->getOpcode() == Instruction::PtrToInt)
388 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000389 if (CE->getOpcode() == Instruction::GetElementPtr &&
390 CE->getOperand(0)->isNullValue() &&
391 CE->getNumOperands() == 2)
392 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
393 if (CI->isOne()) {
394 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
395 ->getElementType();
396 return true;
397 }
Dan Gohmancf913832010-01-28 02:15:55 +0000398
399 return false;
400}
401
Chris Lattner229907c2011-07-18 04:54:35 +0000402bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000403 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000404 if (VCE->getOpcode() == Instruction::PtrToInt)
405 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000406 if (CE->getOpcode() == Instruction::GetElementPtr &&
407 CE->getOperand(0)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000408 Type *Ty =
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000409 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattner229907c2011-07-18 04:54:35 +0000410 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000411 if (!STy->isPacked() &&
412 CE->getNumOperands() == 3 &&
413 CE->getOperand(1)->isNullValue()) {
414 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
415 if (CI->isOne() &&
416 STy->getNumElements() == 2 &&
Duncan Sands9dff9be2010-02-15 16:12:20 +0000417 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000418 AllocTy = STy->getElementType(1);
419 return true;
420 }
421 }
422 }
Dan Gohmancf913832010-01-28 02:15:55 +0000423
424 return false;
425}
426
Chris Lattner229907c2011-07-18 04:54:35 +0000427bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000428 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000429 if (VCE->getOpcode() == Instruction::PtrToInt)
430 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
431 if (CE->getOpcode() == Instruction::GetElementPtr &&
432 CE->getNumOperands() == 3 &&
433 CE->getOperand(0)->isNullValue() &&
434 CE->getOperand(1)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000435 Type *Ty =
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000436 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
437 // Ignore vector types here so that ScalarEvolutionExpander doesn't
438 // emit getelementptrs that index into vectors.
Duncan Sands19d0b472010-02-16 11:11:14 +0000439 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000440 CTy = Ty;
441 FieldNo = CE->getOperand(2);
442 return true;
443 }
444 }
445
446 return false;
447}
448
Chris Lattnereb3e8402004-06-20 06:23:15 +0000449//===----------------------------------------------------------------------===//
450// SCEV Utilities
451//===----------------------------------------------------------------------===//
452
453namespace {
454 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
455 /// than the complexity of the RHS. This comparator is used to canonicalize
456 /// expressions.
Nick Lewycky02d5f772009-10-25 06:33:48 +0000457 class SCEVComplexityCompare {
Dan Gohman3324b9e2010-08-13 20:17:27 +0000458 const LoopInfo *const LI;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000459 public:
Dan Gohman992db002010-07-23 21:18:55 +0000460 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman9ba542c2009-05-07 14:39:04 +0000461
Dan Gohman27065672010-08-27 15:26:01 +0000462 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohman5e6ce7b2008-04-14 18:23:56 +0000463 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman27065672010-08-27 15:26:01 +0000464 return compare(LHS, RHS) < 0;
465 }
466
467 // Return negative, zero, or positive, if LHS is less than, equal to, or
468 // greater than RHS, respectively. A three-way result allows recursive
469 // comparisons to be more efficient.
470 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000471 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
472 if (LHS == RHS)
Dan Gohman27065672010-08-27 15:26:01 +0000473 return 0;
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000474
Dan Gohman9ba542c2009-05-07 14:39:04 +0000475 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman5ae31022010-07-23 21:20:52 +0000476 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
477 if (LType != RType)
Dan Gohman27065672010-08-27 15:26:01 +0000478 return (int)LType - (int)RType;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000479
Dan Gohman24ceda82010-06-18 19:54:20 +0000480 // Aside from the getSCEVType() ordering, the particular ordering
481 // isn't very important except that it's beneficial to be consistent,
482 // so that (a + b) and (b + a) don't end up as different expressions.
Benjamin Kramer987b8502014-02-11 19:02:55 +0000483 switch (static_cast<SCEVTypes>(LType)) {
Dan Gohman27065672010-08-27 15:26:01 +0000484 case scUnknown: {
485 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000486 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000487
488 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
489 // not as complete as it could be.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000490 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman24ceda82010-06-18 19:54:20 +0000491
492 // Order pointer values after integer values. This helps SCEVExpander
493 // form GEPs.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000494 bool LIsPointer = LV->getType()->isPointerTy(),
495 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman5ae31022010-07-23 21:20:52 +0000496 if (LIsPointer != RIsPointer)
Dan Gohman27065672010-08-27 15:26:01 +0000497 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman24ceda82010-06-18 19:54:20 +0000498
499 // Compare getValueID values.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000500 unsigned LID = LV->getValueID(),
501 RID = RV->getValueID();
Dan Gohman5ae31022010-07-23 21:20:52 +0000502 if (LID != RID)
Dan Gohman27065672010-08-27 15:26:01 +0000503 return (int)LID - (int)RID;
Dan Gohman24ceda82010-06-18 19:54:20 +0000504
505 // Sort arguments by their position.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000506 if (const Argument *LA = dyn_cast<Argument>(LV)) {
507 const Argument *RA = cast<Argument>(RV);
Dan Gohman27065672010-08-27 15:26:01 +0000508 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
509 return (int)LArgNo - (int)RArgNo;
Dan Gohman24ceda82010-06-18 19:54:20 +0000510 }
511
Dan Gohman27065672010-08-27 15:26:01 +0000512 // For instructions, compare their loop depth, and their operand
513 // count. This is pretty loose.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000514 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
515 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman24ceda82010-06-18 19:54:20 +0000516
517 // Compare loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000518 const BasicBlock *LParent = LInst->getParent(),
519 *RParent = RInst->getParent();
520 if (LParent != RParent) {
521 unsigned LDepth = LI->getLoopDepth(LParent),
522 RDepth = LI->getLoopDepth(RParent);
523 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000524 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000525 }
Dan Gohman24ceda82010-06-18 19:54:20 +0000526
527 // Compare the number of operands.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000528 unsigned LNumOps = LInst->getNumOperands(),
529 RNumOps = RInst->getNumOperands();
Dan Gohman27065672010-08-27 15:26:01 +0000530 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000531 }
532
Dan Gohman27065672010-08-27 15:26:01 +0000533 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000534 }
535
Dan Gohman27065672010-08-27 15:26:01 +0000536 case scConstant: {
537 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000538 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000539
540 // Compare constant values.
Dan Gohmanf2961822010-08-16 16:25:35 +0000541 const APInt &LA = LC->getValue()->getValue();
542 const APInt &RA = RC->getValue()->getValue();
543 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman5ae31022010-07-23 21:20:52 +0000544 if (LBitWidth != RBitWidth)
Dan Gohman27065672010-08-27 15:26:01 +0000545 return (int)LBitWidth - (int)RBitWidth;
546 return LA.ult(RA) ? -1 : 1;
Dan Gohman24ceda82010-06-18 19:54:20 +0000547 }
548
Dan Gohman27065672010-08-27 15:26:01 +0000549 case scAddRecExpr: {
550 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000551 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000552
553 // Compare addrec loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000554 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
555 if (LLoop != RLoop) {
556 unsigned LDepth = LLoop->getLoopDepth(),
557 RDepth = RLoop->getLoopDepth();
558 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000559 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000560 }
Dan Gohman27065672010-08-27 15:26:01 +0000561
562 // Addrec complexity grows with operand count.
563 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
564 if (LNumOps != RNumOps)
565 return (int)LNumOps - (int)RNumOps;
566
567 // Lexicographically compare.
568 for (unsigned i = 0; i != LNumOps; ++i) {
569 long X = compare(LA->getOperand(i), RA->getOperand(i));
570 if (X != 0)
571 return X;
572 }
573
574 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000575 }
576
Dan Gohman27065672010-08-27 15:26:01 +0000577 case scAddExpr:
578 case scMulExpr:
579 case scSMaxExpr:
580 case scUMaxExpr: {
581 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000582 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000583
584 // Lexicographically compare n-ary expressions.
Dan Gohman5ae31022010-07-23 21:20:52 +0000585 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
Andrew Trickc3bc8b82013-07-31 02:43:40 +0000586 if (LNumOps != RNumOps)
587 return (int)LNumOps - (int)RNumOps;
588
Dan Gohman5ae31022010-07-23 21:20:52 +0000589 for (unsigned i = 0; i != LNumOps; ++i) {
590 if (i >= RNumOps)
Dan Gohman27065672010-08-27 15:26:01 +0000591 return 1;
592 long X = compare(LC->getOperand(i), RC->getOperand(i));
593 if (X != 0)
594 return X;
Dan Gohman24ceda82010-06-18 19:54:20 +0000595 }
Dan Gohman27065672010-08-27 15:26:01 +0000596 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000597 }
598
Dan Gohman27065672010-08-27 15:26:01 +0000599 case scUDivExpr: {
600 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000601 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000602
603 // Lexicographically compare udiv expressions.
604 long X = compare(LC->getLHS(), RC->getLHS());
605 if (X != 0)
606 return X;
607 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman24ceda82010-06-18 19:54:20 +0000608 }
609
Dan Gohman27065672010-08-27 15:26:01 +0000610 case scTruncate:
611 case scZeroExtend:
612 case scSignExtend: {
613 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000614 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000615
616 // Compare cast expressions by operand.
617 return compare(LC->getOperand(), RC->getOperand());
618 }
619
Benjamin Kramer987b8502014-02-11 19:02:55 +0000620 case scCouldNotCompute:
621 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman24ceda82010-06-18 19:54:20 +0000622 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000623 llvm_unreachable("Unknown SCEV kind!");
Chris Lattnereb3e8402004-06-20 06:23:15 +0000624 }
625 };
626}
627
628/// GroupByComplexity - Given a list of SCEV objects, order them by their
629/// complexity, and group objects of the same complexity together by value.
630/// When this routine is finished, we know that any duplicates in the vector are
631/// consecutive and that complexity is monotonically increasing.
632///
Dan Gohman8b0a4192010-03-01 17:49:51 +0000633/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattnereb3e8402004-06-20 06:23:15 +0000634/// results from this routine. In other words, we don't want the results of
635/// this to depend on where the addresses of various SCEV objects happened to
636/// land in memory.
637///
Dan Gohmanaf752342009-07-07 17:06:11 +0000638static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman9ba542c2009-05-07 14:39:04 +0000639 LoopInfo *LI) {
Chris Lattnereb3e8402004-06-20 06:23:15 +0000640 if (Ops.size() < 2) return; // Noop
641 if (Ops.size() == 2) {
642 // This is the common case, which also happens to be trivially simple.
643 // Special case it.
Dan Gohman7712d292010-08-29 15:07:13 +0000644 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
645 if (SCEVComplexityCompare(LI)(RHS, LHS))
646 std::swap(LHS, RHS);
Chris Lattnereb3e8402004-06-20 06:23:15 +0000647 return;
648 }
649
Dan Gohman24ceda82010-06-18 19:54:20 +0000650 // Do the rough sort by complexity.
651 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
652
653 // Now that we are sorted by complexity, group elements of the same
654 // complexity. Note that this is, at worst, N^2, but the vector is likely to
655 // be extremely short in practice. Note that we take this approach because we
656 // do not want to depend on the addresses of the objects we are grouping.
657 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
658 const SCEV *S = Ops[i];
659 unsigned Complexity = S->getSCEVType();
660
661 // If there are any objects of the same complexity and same value as this
662 // one, group them.
663 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
664 if (Ops[j] == S) { // Found a duplicate.
665 // Move it to immediately after i'th element.
666 std::swap(Ops[i+1], Ops[j]);
667 ++i; // no need to rescan it.
668 if (i == e-2) return; // Done!
669 }
670 }
671 }
Chris Lattnereb3e8402004-06-20 06:23:15 +0000672}
673
Chris Lattnerd934c702004-04-02 20:23:17 +0000674
Chris Lattnerd934c702004-04-02 20:23:17 +0000675
676//===----------------------------------------------------------------------===//
677// Simple SCEV method implementations
678//===----------------------------------------------------------------------===//
679
Eli Friedman61f67622008-08-04 23:49:06 +0000680/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman4d5435d2009-05-24 23:45:28 +0000681/// Assume, K > 0.
Dan Gohmanaf752342009-07-07 17:06:11 +0000682static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohman32291b12009-07-21 00:38:55 +0000683 ScalarEvolution &SE,
Nick Lewycky702cf1e2011-09-06 06:39:54 +0000684 Type *ResultTy) {
Eli Friedman61f67622008-08-04 23:49:06 +0000685 // Handle the simplest case efficiently.
686 if (K == 1)
687 return SE.getTruncateOrZeroExtend(It, ResultTy);
688
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000689 // We are using the following formula for BC(It, K):
690 //
691 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
692 //
Eli Friedman61f67622008-08-04 23:49:06 +0000693 // Suppose, W is the bitwidth of the return value. We must be prepared for
694 // overflow. Hence, we must assure that the result of our computation is
695 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
696 // safe in modular arithmetic.
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000697 //
Eli Friedman61f67622008-08-04 23:49:06 +0000698 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohmance973df2009-06-24 04:48:43 +0000699 // is something like the following, where T is the number of factors of 2 in
Eli Friedman61f67622008-08-04 23:49:06 +0000700 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
701 // exponentiation:
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000702 //
Eli Friedman61f67622008-08-04 23:49:06 +0000703 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000704 //
Eli Friedman61f67622008-08-04 23:49:06 +0000705 // This formula is trivially equivalent to the previous formula. However,
706 // this formula can be implemented much more efficiently. The trick is that
707 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
708 // arithmetic. To do exact division in modular arithmetic, all we have
709 // to do is multiply by the inverse. Therefore, this step can be done at
710 // width W.
Dan Gohmance973df2009-06-24 04:48:43 +0000711 //
Eli Friedman61f67622008-08-04 23:49:06 +0000712 // The next issue is how to safely do the division by 2^T. The way this
713 // is done is by doing the multiplication step at a width of at least W + T
714 // bits. This way, the bottom W+T bits of the product are accurate. Then,
715 // when we perform the division by 2^T (which is equivalent to a right shift
716 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
717 // truncated out after the division by 2^T.
718 //
719 // In comparison to just directly using the first formula, this technique
720 // is much more efficient; using the first formula requires W * K bits,
721 // but this formula less than W + K bits. Also, the first formula requires
722 // a division step, whereas this formula only requires multiplies and shifts.
723 //
724 // It doesn't matter whether the subtraction step is done in the calculation
725 // width or the input iteration count's width; if the subtraction overflows,
726 // the result must be zero anyway. We prefer here to do it in the width of
727 // the induction variable because it helps a lot for certain cases; CodeGen
728 // isn't smart enough to ignore the overflow, which leads to much less
729 // efficient code if the width of the subtraction is wider than the native
730 // register width.
731 //
732 // (It's possible to not widen at all by pulling out factors of 2 before
733 // the multiplication; for example, K=2 can be calculated as
734 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
735 // extra arithmetic, so it's not an obvious win, and it gets
736 // much more complicated for K > 3.)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000737
Eli Friedman61f67622008-08-04 23:49:06 +0000738 // Protection from insane SCEVs; this bound is conservative,
739 // but it probably doesn't matter.
740 if (K > 1000)
Dan Gohman31efa302009-04-18 17:58:19 +0000741 return SE.getCouldNotCompute();
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000742
Dan Gohmanb397e1a2009-04-21 01:07:12 +0000743 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000744
Eli Friedman61f67622008-08-04 23:49:06 +0000745 // Calculate K! / 2^T and T; we divide out the factors of two before
746 // multiplying for calculating K! / 2^T to avoid overflow.
747 // Other overflow doesn't matter because we only care about the bottom
748 // W bits of the result.
749 APInt OddFactorial(W, 1);
750 unsigned T = 1;
751 for (unsigned i = 3; i <= K; ++i) {
752 APInt Mult(W, i);
753 unsigned TwoFactors = Mult.countTrailingZeros();
754 T += TwoFactors;
755 Mult = Mult.lshr(TwoFactors);
756 OddFactorial *= Mult;
Chris Lattnerd934c702004-04-02 20:23:17 +0000757 }
Nick Lewyckyed169d52008-06-13 04:38:55 +0000758
Eli Friedman61f67622008-08-04 23:49:06 +0000759 // We need at least W + T bits for the multiplication step
Nick Lewycky21add8f2009-01-25 08:16:27 +0000760 unsigned CalculationBits = W + T;
Eli Friedman61f67622008-08-04 23:49:06 +0000761
Dan Gohman8b0a4192010-03-01 17:49:51 +0000762 // Calculate 2^T, at width T+W.
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +0000763 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
Eli Friedman61f67622008-08-04 23:49:06 +0000764
765 // Calculate the multiplicative inverse of K! / 2^T;
766 // this multiplication factor will perform the exact division by
767 // K! / 2^T.
768 APInt Mod = APInt::getSignedMinValue(W+1);
769 APInt MultiplyFactor = OddFactorial.zext(W+1);
770 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
771 MultiplyFactor = MultiplyFactor.trunc(W);
772
773 // Calculate the product, at width T+W
Chris Lattner229907c2011-07-18 04:54:35 +0000774 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson55f1c092009-08-13 21:58:54 +0000775 CalculationBits);
Dan Gohmanaf752342009-07-07 17:06:11 +0000776 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedman61f67622008-08-04 23:49:06 +0000777 for (unsigned i = 1; i != K; ++i) {
Dan Gohman1d2ded72010-05-03 22:09:21 +0000778 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedman61f67622008-08-04 23:49:06 +0000779 Dividend = SE.getMulExpr(Dividend,
780 SE.getTruncateOrZeroExtend(S, CalculationTy));
781 }
782
783 // Divide by 2^T
Dan Gohmanaf752342009-07-07 17:06:11 +0000784 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedman61f67622008-08-04 23:49:06 +0000785
786 // Truncate the result, and divide by K! / 2^T.
787
788 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
789 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattnerd934c702004-04-02 20:23:17 +0000790}
791
Chris Lattnerd934c702004-04-02 20:23:17 +0000792/// evaluateAtIteration - Return the value of this chain of recurrences at
793/// the specified iteration number. We can evaluate this recurrence by
794/// multiplying each element in the chain by the binomial coefficient
795/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
796///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000797/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattnerd934c702004-04-02 20:23:17 +0000798///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000799/// where BC(It, k) stands for binomial coefficient.
Chris Lattnerd934c702004-04-02 20:23:17 +0000800///
Dan Gohmanaf752342009-07-07 17:06:11 +0000801const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohman32291b12009-07-21 00:38:55 +0000802 ScalarEvolution &SE) const {
Dan Gohmanaf752342009-07-07 17:06:11 +0000803 const SCEV *Result = getStart();
Chris Lattnerd934c702004-04-02 20:23:17 +0000804 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000805 // The computation is correct in the face of overflow provided that the
806 // multiplication is performed _after_ the evaluation of the binomial
807 // coefficient.
Dan Gohmanaf752342009-07-07 17:06:11 +0000808 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewycky707663e2008-10-13 03:58:02 +0000809 if (isa<SCEVCouldNotCompute>(Coeff))
810 return Coeff;
811
812 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattnerd934c702004-04-02 20:23:17 +0000813 }
814 return Result;
815}
816
Chris Lattnerd934c702004-04-02 20:23:17 +0000817//===----------------------------------------------------------------------===//
818// SCEV Expression folder implementations
819//===----------------------------------------------------------------------===//
820
Dan Gohmanaf752342009-07-07 17:06:11 +0000821const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +0000822 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +0000823 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +0000824 "This is not a truncating conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +0000825 assert(isSCEVable(Ty) &&
826 "This is not a conversion to a SCEVable type!");
827 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +0000828
Dan Gohman3a302cb2009-07-13 20:50:19 +0000829 FoldingSetNodeID ID;
830 ID.AddInteger(scTruncate);
831 ID.AddPointer(Op);
832 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +0000833 void *IP = nullptr;
Dan Gohman3a302cb2009-07-13 20:50:19 +0000834 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
835
Dan Gohman3423e722009-06-30 20:13:32 +0000836 // Fold if the operand is constant.
Dan Gohmana30370b2009-05-04 22:02:23 +0000837 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman8d7576e2009-06-24 00:38:39 +0000838 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +0000839 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +0000840
Dan Gohman79af8542009-04-22 16:20:48 +0000841 // trunc(trunc(x)) --> trunc(x)
Dan Gohmana30370b2009-05-04 22:02:23 +0000842 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +0000843 return getTruncateExpr(ST->getOperand(), Ty);
844
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +0000845 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +0000846 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +0000847 return getTruncateOrSignExtend(SS->getOperand(), Ty);
848
849 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +0000850 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +0000851 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
852
Nick Lewycky5143f0f2011-01-19 16:59:46 +0000853 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
854 // eliminate all the truncates.
855 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
856 SmallVector<const SCEV *, 4> Operands;
857 bool hasTrunc = false;
858 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
859 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
860 hasTrunc = isa<SCEVTruncateExpr>(S);
861 Operands.push_back(S);
862 }
863 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +0000864 return getAddExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +0000865 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5143f0f2011-01-19 16:59:46 +0000866 }
867
Nick Lewycky5c901f32011-01-19 18:56:00 +0000868 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
869 // eliminate all the truncates.
870 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
871 SmallVector<const SCEV *, 4> Operands;
872 bool hasTrunc = false;
873 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
874 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
875 hasTrunc = isa<SCEVTruncateExpr>(S);
876 Operands.push_back(S);
877 }
878 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +0000879 return getMulExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +0000880 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c901f32011-01-19 18:56:00 +0000881 }
882
Dan Gohman5a728c92009-06-18 16:24:47 +0000883 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohmana30370b2009-05-04 22:02:23 +0000884 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +0000885 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +0000886 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman2e55cc52009-05-08 21:03:19 +0000887 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Andrew Trick8b55b732011-03-14 16:50:06 +0000888 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +0000889 }
890
Dan Gohman89dd42a2010-06-25 18:47:08 +0000891 // The cast wasn't folded; create an explicit cast node. We can reuse
892 // the existing insert position since if we get here, we won't have
893 // made any changes which would invalidate it.
Dan Gohman01c65a22010-03-18 18:49:47 +0000894 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
895 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000896 UniqueSCEVs.InsertNode(S, IP);
897 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +0000898}
899
Dan Gohmanaf752342009-07-07 17:06:11 +0000900const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +0000901 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +0000902 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanc1c2ba72009-04-16 19:25:55 +0000903 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +0000904 assert(isSCEVable(Ty) &&
905 "This is not a conversion to a SCEVable type!");
906 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanc1c2ba72009-04-16 19:25:55 +0000907
Dan Gohman3423e722009-06-30 20:13:32 +0000908 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +0000909 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
910 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +0000911 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +0000912
Dan Gohman79af8542009-04-22 16:20:48 +0000913 // zext(zext(x)) --> zext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +0000914 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +0000915 return getZeroExtendExpr(SZ->getOperand(), Ty);
916
Dan Gohman74a0ba12009-07-13 20:55:53 +0000917 // Before doing any expensive analysis, check to see if we've already
918 // computed a SCEV for this Op and Ty.
919 FoldingSetNodeID ID;
920 ID.AddInteger(scZeroExtend);
921 ID.AddPointer(Op);
922 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +0000923 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +0000924 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
925
Nick Lewyckybc98f5b2011-01-23 06:20:19 +0000926 // zext(trunc(x)) --> zext(x) or x or trunc(x)
927 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
928 // It's possible the bits taken off by the truncate were all zero bits. If
929 // so, we should be able to simplify this further.
930 const SCEV *X = ST->getOperand();
931 ConstantRange CR = getUnsignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +0000932 unsigned TruncBits = getTypeSizeInBits(ST->getType());
933 unsigned NewBits = getTypeSizeInBits(Ty);
934 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +0000935 CR.zextOrTrunc(NewBits)))
936 return getTruncateOrZeroExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +0000937 }
938
Dan Gohman76466372009-04-27 20:16:15 +0000939 // If the input value is a chrec scev, and we can prove that the value
Chris Lattnerd934c702004-04-02 20:23:17 +0000940 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman76466372009-04-27 20:16:15 +0000941 // operands (often constants). This allows analysis of something like
Chris Lattnerd934c702004-04-02 20:23:17 +0000942 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +0000943 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +0000944 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +0000945 const SCEV *Start = AR->getStart();
946 const SCEV *Step = AR->getStepRecurrence(*this);
947 unsigned BitWidth = getTypeSizeInBits(AR->getType());
948 const Loop *L = AR->getLoop();
949
Dan Gohman62ef6a72009-07-25 01:22:26 +0000950 // If we have special knowledge that this addrec won't overflow,
951 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +0000952 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohman62ef6a72009-07-25 01:22:26 +0000953 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
954 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +0000955 L, AR->getNoWrapFlags());
Dan Gohman62ef6a72009-07-25 01:22:26 +0000956
Dan Gohman76466372009-04-27 20:16:15 +0000957 // Check whether the backedge-taken count is SCEVCouldNotCompute.
958 // Note that this serves two purposes: It filters out loops that are
959 // simply not analyzable, and it covers the case where this code is
960 // being called from within backedge-taken count analysis, such that
961 // attempting to ask for the backedge-taken count would likely result
962 // in infinite recursion. In the later case, the analysis code will
963 // cope with a conservative value, and it will take care to purge
964 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +0000965 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +0000966 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +0000967 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +0000968 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +0000969
970 // Check whether the backedge-taken count can be losslessly casted to
971 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +0000972 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +0000973 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +0000974 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +0000975 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
976 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +0000977 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +0000978 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman007f5042010-02-24 19:31:06 +0000979 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +0000980 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
981 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
982 const SCEV *WideMaxBECount =
983 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +0000984 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +0000985 getAddExpr(WideStart,
986 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +0000987 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +0000988 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +0000989 // Cache knowledge of AR NUW, which is propagated to this AddRec.
990 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman494dac32009-04-29 22:28:28 +0000991 // Return the expression with the addrec on the outside.
992 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
993 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +0000994 L, AR->getNoWrapFlags());
995 }
Dan Gohman76466372009-04-27 20:16:15 +0000996 // Similar to above, only this time treat the step value as signed.
997 // This covers loops that count down.
Dan Gohman4fc36682009-05-18 15:58:39 +0000998 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +0000999 getAddExpr(WideStart,
1000 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001001 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001002 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001003 // Cache knowledge of AR NW, which is propagated to this AddRec.
1004 // Negative step causes unsigned wrap, but it still can't self-wrap.
1005 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohman494dac32009-04-29 22:28:28 +00001006 // Return the expression with the addrec on the outside.
1007 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1008 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001009 L, AR->getNoWrapFlags());
1010 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001011 }
1012
1013 // If the backedge is guarded by a comparison with the pre-inc value
1014 // the addrec is safe. Also, if the entry is guarded by a comparison
1015 // with the start value and the backedge is guarded by a comparison
1016 // with the post-inc value, the addrec is safe.
1017 if (isKnownPositive(Step)) {
1018 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1019 getUnsignedRange(Step).getUnsignedMax());
1020 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohmanb50349a2010-04-11 19:27:13 +00001021 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001022 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001023 AR->getPostIncExpr(*this), N))) {
1024 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1025 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmane65c9172009-07-13 21:35:55 +00001026 // Return the expression with the addrec on the outside.
1027 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1028 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001029 L, AR->getNoWrapFlags());
1030 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001031 } else if (isKnownNegative(Step)) {
1032 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1033 getSignedRange(Step).getSignedMin());
Dan Gohman5f18c542010-05-04 01:11:15 +00001034 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1035 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001036 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001037 AR->getPostIncExpr(*this), N))) {
1038 // Cache knowledge of AR NW, which is propagated to this AddRec.
1039 // Negative step causes unsigned wrap, but it still can't self-wrap.
1040 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1041 // Return the expression with the addrec on the outside.
Dan Gohmane65c9172009-07-13 21:35:55 +00001042 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1043 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001044 L, AR->getNoWrapFlags());
1045 }
Dan Gohman76466372009-04-27 20:16:15 +00001046 }
1047 }
1048 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001049
Dan Gohman74a0ba12009-07-13 20:55:53 +00001050 // The cast wasn't folded; create an explicit cast node.
1051 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001052 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001053 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1054 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001055 UniqueSCEVs.InsertNode(S, IP);
1056 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001057}
1058
Andrew Trick812276e2011-05-31 21:17:47 +00001059// Get the limit of a recurrence such that incrementing by Step cannot cause
1060// signed overflow as long as the value of the recurrence within the loop does
1061// not exceed this limit before incrementing.
1062static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1063 ICmpInst::Predicate *Pred,
1064 ScalarEvolution *SE) {
1065 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1066 if (SE->isKnownPositive(Step)) {
1067 *Pred = ICmpInst::ICMP_SLT;
1068 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1069 SE->getSignedRange(Step).getSignedMax());
1070 }
1071 if (SE->isKnownNegative(Step)) {
1072 *Pred = ICmpInst::ICMP_SGT;
1073 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1074 SE->getSignedRange(Step).getSignedMin());
1075 }
Craig Topper9f008862014-04-15 04:59:12 +00001076 return nullptr;
Andrew Trick812276e2011-05-31 21:17:47 +00001077}
1078
1079// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1080// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1081// or postincrement sibling. This allows normalizing a sign extended AddRec as
1082// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1083// result, the expression "Step + sext(PreIncAR)" is congruent with
1084// "sext(PostIncAR)"
1085static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
Chris Lattner229907c2011-07-18 04:54:35 +00001086 Type *Ty,
Andrew Trick812276e2011-05-31 21:17:47 +00001087 ScalarEvolution *SE) {
1088 const Loop *L = AR->getLoop();
1089 const SCEV *Start = AR->getStart();
1090 const SCEV *Step = AR->getStepRecurrence(*SE);
1091
1092 // Check for a simple looking step prior to loop entry.
1093 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001094 if (!SA)
Craig Topper9f008862014-04-15 04:59:12 +00001095 return nullptr;
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001096
1097 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1098 // subtraction is expensive. For this purpose, perform a quick and dirty
1099 // difference, by checking for Step in the operand list.
1100 SmallVector<const SCEV *, 4> DiffOps;
Tobias Grosser924221c2014-05-07 06:07:47 +00001101 for (const SCEV *Op : SA->operands())
1102 if (Op != Step)
1103 DiffOps.push_back(Op);
1104
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001105 if (DiffOps.size() == SA->getNumOperands())
Craig Topper9f008862014-04-15 04:59:12 +00001106 return nullptr;
Andrew Trick812276e2011-05-31 21:17:47 +00001107
1108 // This is a postinc AR. Check for overflow on the preinc recurrence using the
1109 // same three conditions that getSignExtendedExpr checks.
1110
1111 // 1. NSW flags on the step increment.
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001112 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
Andrew Trick812276e2011-05-31 21:17:47 +00001113 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1114 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1115
Andrew Trick8ef3ad02011-06-01 19:14:56 +00001116 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trick812276e2011-05-31 21:17:47 +00001117 return PreStart;
Andrew Trick812276e2011-05-31 21:17:47 +00001118
1119 // 2. Direct overflow check on the step operation's expression.
1120 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
Chris Lattner229907c2011-07-18 04:54:35 +00001121 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
Andrew Trick812276e2011-05-31 21:17:47 +00001122 const SCEV *OperandExtendedStart =
1123 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1124 SE->getSignExtendExpr(Step, WideTy));
1125 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1126 // Cache knowledge of PreAR NSW.
1127 if (PreAR)
1128 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1129 // FIXME: this optimization needs a unit test
1130 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1131 return PreStart;
1132 }
1133
1134 // 3. Loop precondition.
1135 ICmpInst::Predicate Pred;
1136 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1137
Andrew Trick8ef3ad02011-06-01 19:14:56 +00001138 if (OverflowLimit &&
1139 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
Andrew Trick812276e2011-05-31 21:17:47 +00001140 return PreStart;
1141 }
Craig Topper9f008862014-04-15 04:59:12 +00001142 return nullptr;
Andrew Trick812276e2011-05-31 21:17:47 +00001143}
1144
1145// Get the normalized sign-extended expression for this AddRec's Start.
1146static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
Chris Lattner229907c2011-07-18 04:54:35 +00001147 Type *Ty,
Andrew Trick812276e2011-05-31 21:17:47 +00001148 ScalarEvolution *SE) {
1149 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1150 if (!PreStart)
1151 return SE->getSignExtendExpr(AR->getStart(), Ty);
1152
1153 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1154 SE->getSignExtendExpr(PreStart, Ty));
1155}
1156
Dan Gohmanaf752342009-07-07 17:06:11 +00001157const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001158 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001159 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001160 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001161 assert(isSCEVable(Ty) &&
1162 "This is not a conversion to a SCEVable type!");
1163 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001164
Dan Gohman3423e722009-06-30 20:13:32 +00001165 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001166 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1167 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001168 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001169
Dan Gohman79af8542009-04-22 16:20:48 +00001170 // sext(sext(x)) --> sext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001171 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001172 return getSignExtendExpr(SS->getOperand(), Ty);
1173
Nick Lewyckye9ea75e2011-01-19 15:56:12 +00001174 // sext(zext(x)) --> zext(x)
1175 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1176 return getZeroExtendExpr(SZ->getOperand(), Ty);
1177
Dan Gohman74a0ba12009-07-13 20:55:53 +00001178 // Before doing any expensive analysis, check to see if we've already
1179 // computed a SCEV for this Op and Ty.
1180 FoldingSetNodeID ID;
1181 ID.AddInteger(scSignExtend);
1182 ID.AddPointer(Op);
1183 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001184 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001185 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1186
Nick Lewyckyb32c8942011-01-22 22:06:21 +00001187 // If the input value is provably positive, build a zext instead.
1188 if (isKnownNonNegative(Op))
1189 return getZeroExtendExpr(Op, Ty);
1190
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001191 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1192 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1193 // It's possible the bits taken off by the truncate were all sign bits. If
1194 // so, we should be able to simplify this further.
1195 const SCEV *X = ST->getOperand();
1196 ConstantRange CR = getSignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001197 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1198 unsigned NewBits = getTypeSizeInBits(Ty);
1199 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001200 CR.sextOrTrunc(NewBits)))
1201 return getTruncateOrSignExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001202 }
1203
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001204 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1205 if (auto SA = dyn_cast<SCEVAddExpr>(Op)) {
1206 if (SA->getNumOperands() == 2) {
1207 auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1208 auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1209 if (SMul && SC1) {
1210 if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001211 const APInt &C1 = SC1->getValue()->getValue();
1212 const APInt &C2 = SC2->getValue()->getValue();
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001213 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001214 C2.ugt(C1) && C2.isPowerOf2())
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001215 return getAddExpr(getSignExtendExpr(SC1, Ty),
1216 getSignExtendExpr(SMul, Ty));
1217 }
1218 }
1219 }
1220 }
Dan Gohman76466372009-04-27 20:16:15 +00001221 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001222 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001223 // operands (often constants). This allows analysis of something like
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001224 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001225 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001226 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001227 const SCEV *Start = AR->getStart();
1228 const SCEV *Step = AR->getStepRecurrence(*this);
1229 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1230 const Loop *L = AR->getLoop();
1231
Dan Gohman62ef6a72009-07-25 01:22:26 +00001232 // If we have special knowledge that this addrec won't overflow,
1233 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001234 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trick812276e2011-05-31 21:17:47 +00001235 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman62ef6a72009-07-25 01:22:26 +00001236 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001237 L, SCEV::FlagNSW);
Dan Gohman62ef6a72009-07-25 01:22:26 +00001238
Dan Gohman76466372009-04-27 20:16:15 +00001239 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1240 // Note that this serves two purposes: It filters out loops that are
1241 // simply not analyzable, and it covers the case where this code is
1242 // being called from within backedge-taken count analysis, such that
1243 // attempting to ask for the backedge-taken count would likely result
1244 // in infinite recursion. In the later case, the analysis code will
1245 // cope with a conservative value, and it will take care to purge
1246 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001247 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001248 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001249 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001250 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001251
1252 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohman494dac32009-04-29 22:28:28 +00001253 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001254 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001255 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001256 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001257 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1258 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001259 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001260 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001261 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001262 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1263 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1264 const SCEV *WideMaxBECount =
1265 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001266 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001267 getAddExpr(WideStart,
1268 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001269 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001270 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001271 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1272 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman494dac32009-04-29 22:28:28 +00001273 // Return the expression with the addrec on the outside.
Andrew Trick812276e2011-05-31 21:17:47 +00001274 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman494dac32009-04-29 22:28:28 +00001275 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001276 L, AR->getNoWrapFlags());
1277 }
Dan Gohman8c129d72009-07-16 17:34:36 +00001278 // Similar to above, only this time treat the step value as unsigned.
1279 // This covers loops that count up with an unsigned step.
Dan Gohman8c129d72009-07-16 17:34:36 +00001280 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001281 getAddExpr(WideStart,
1282 getMulExpr(WideMaxBECount,
Dan Gohman8c129d72009-07-16 17:34:36 +00001283 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001284 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001285 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1286 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman8c129d72009-07-16 17:34:36 +00001287 // Return the expression with the addrec on the outside.
Andrew Trick812276e2011-05-31 21:17:47 +00001288 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman8c129d72009-07-16 17:34:36 +00001289 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001290 L, AR->getNoWrapFlags());
1291 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001292 }
1293
1294 // If the backedge is guarded by a comparison with the pre-inc value
1295 // the addrec is safe. Also, if the entry is guarded by a comparison
1296 // with the start value and the backedge is guarded by a comparison
1297 // with the post-inc value, the addrec is safe.
Andrew Trick812276e2011-05-31 21:17:47 +00001298 ICmpInst::Predicate Pred;
1299 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1300 if (OverflowLimit &&
1301 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1302 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1303 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1304 OverflowLimit)))) {
1305 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1306 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1307 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1308 getSignExtendExpr(Step, Ty),
1309 L, AR->getNoWrapFlags());
Dan Gohman76466372009-04-27 20:16:15 +00001310 }
1311 }
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001312 // If Start and Step are constants, check if we can apply this
1313 // transformation:
1314 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1315 auto SC1 = dyn_cast<SCEVConstant>(Start);
1316 auto SC2 = dyn_cast<SCEVConstant>(Step);
1317 if (SC1 && SC2) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001318 const APInt &C1 = SC1->getValue()->getValue();
1319 const APInt &C2 = SC2->getValue()->getValue();
1320 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1321 C2.isPowerOf2()) {
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001322 Start = getSignExtendExpr(Start, Ty);
1323 const SCEV *NewAR = getAddRecExpr(getConstant(AR->getType(), 0), Step,
1324 L, AR->getNoWrapFlags());
1325 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1326 }
1327 }
Dan Gohman76466372009-04-27 20:16:15 +00001328 }
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001329
Dan Gohman74a0ba12009-07-13 20:55:53 +00001330 // The cast wasn't folded; create an explicit cast node.
1331 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001332 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001333 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1334 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001335 UniqueSCEVs.InsertNode(S, IP);
1336 return S;
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001337}
1338
Dan Gohman8db2edc2009-06-13 15:56:47 +00001339/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1340/// unspecified bits out to the given type.
1341///
Dan Gohmanaf752342009-07-07 17:06:11 +00001342const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001343 Type *Ty) {
Dan Gohman8db2edc2009-06-13 15:56:47 +00001344 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1345 "This is not an extending conversion!");
1346 assert(isSCEVable(Ty) &&
1347 "This is not a conversion to a SCEVable type!");
1348 Ty = getEffectiveSCEVType(Ty);
1349
1350 // Sign-extend negative constants.
1351 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1352 if (SC->getValue()->getValue().isNegative())
1353 return getSignExtendExpr(Op, Ty);
1354
1355 // Peel off a truncate cast.
1356 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001357 const SCEV *NewOp = T->getOperand();
Dan Gohman8db2edc2009-06-13 15:56:47 +00001358 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1359 return getAnyExtendExpr(NewOp, Ty);
1360 return getTruncateOrNoop(NewOp, Ty);
1361 }
1362
1363 // Next try a zext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001364 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001365 if (!isa<SCEVZeroExtendExpr>(ZExt))
1366 return ZExt;
1367
1368 // Next try a sext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001369 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001370 if (!isa<SCEVSignExtendExpr>(SExt))
1371 return SExt;
1372
Dan Gohman51ad99d2010-01-21 02:09:26 +00001373 // Force the cast to be folded into the operands of an addrec.
1374 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1375 SmallVector<const SCEV *, 4> Ops;
Tobias Grosser924221c2014-05-07 06:07:47 +00001376 for (const SCEV *Op : AR->operands())
1377 Ops.push_back(getAnyExtendExpr(Op, Ty));
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001378 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001379 }
1380
Dan Gohman8db2edc2009-06-13 15:56:47 +00001381 // If the expression is obviously signed, use the sext cast value.
1382 if (isa<SCEVSMaxExpr>(Op))
1383 return SExt;
1384
1385 // Absent any other information, use the zext cast value.
1386 return ZExt;
1387}
1388
Dan Gohman038d02e2009-06-14 22:58:51 +00001389/// CollectAddOperandsWithScales - Process the given Ops list, which is
1390/// a list of operands to be added under the given scale, update the given
1391/// map. This is a helper function for getAddRecExpr. As an example of
1392/// what it does, given a sequence of operands that would form an add
1393/// expression like this:
1394///
Tobias Grosserba49e422014-03-05 10:37:17 +00001395/// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
Dan Gohman038d02e2009-06-14 22:58:51 +00001396///
1397/// where A and B are constants, update the map with these values:
1398///
1399/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1400///
1401/// and add 13 + A*B*29 to AccumulatedConstant.
1402/// This will allow getAddRecExpr to produce this:
1403///
1404/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1405///
1406/// This form often exposes folding opportunities that are hidden in
1407/// the original operand list.
1408///
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001409/// Return true iff it appears that any interesting folding opportunities
Dan Gohman038d02e2009-06-14 22:58:51 +00001410/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1411/// the common case where no interesting opportunities are present, and
1412/// is also used as a check to avoid infinite recursion.
1413///
1414static bool
Dan Gohmanaf752342009-07-07 17:06:11 +00001415CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
Craig Topper2cd5ff82013-07-11 16:22:38 +00001416 SmallVectorImpl<const SCEV *> &NewOps,
Dan Gohman038d02e2009-06-14 22:58:51 +00001417 APInt &AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001418 const SCEV *const *Ops, size_t NumOperands,
Dan Gohman038d02e2009-06-14 22:58:51 +00001419 const APInt &Scale,
1420 ScalarEvolution &SE) {
1421 bool Interesting = false;
1422
Dan Gohman45073042010-06-18 19:12:32 +00001423 // Iterate over the add operands. They are sorted, with constants first.
1424 unsigned i = 0;
1425 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1426 ++i;
1427 // Pull a buried constant out to the outside.
1428 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1429 Interesting = true;
1430 AccumulatedConstant += Scale * C->getValue()->getValue();
1431 }
1432
1433 // Next comes everything else. We're especially interested in multiplies
1434 // here, but they're in the middle, so just visit the rest with one loop.
1435 for (; i != NumOperands; ++i) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001436 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1437 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1438 APInt NewScale =
1439 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1440 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1441 // A multiplication of a constant with another add; recurse.
Dan Gohman00524492010-03-18 01:17:13 +00001442 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohman038d02e2009-06-14 22:58:51 +00001443 Interesting |=
1444 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001445 Add->op_begin(), Add->getNumOperands(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001446 NewScale, SE);
1447 } else {
1448 // A multiplication of a constant with some other value. Update
1449 // the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001450 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1451 const SCEV *Key = SE.getMulExpr(MulOps);
1452 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001453 M.insert(std::make_pair(Key, NewScale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001454 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001455 NewOps.push_back(Pair.first->first);
1456 } else {
1457 Pair.first->second += NewScale;
1458 // The map already had an entry for this value, which may indicate
1459 // a folding opportunity.
1460 Interesting = true;
1461 }
1462 }
Dan Gohman038d02e2009-06-14 22:58:51 +00001463 } else {
1464 // An ordinary operand. Update the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001465 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001466 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001467 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001468 NewOps.push_back(Pair.first->first);
1469 } else {
1470 Pair.first->second += Scale;
1471 // The map already had an entry for this value, which may indicate
1472 // a folding opportunity.
1473 Interesting = true;
1474 }
1475 }
1476 }
1477
1478 return Interesting;
1479}
1480
1481namespace {
1482 struct APIntCompare {
1483 bool operator()(const APInt &LHS, const APInt &RHS) const {
1484 return LHS.ult(RHS);
1485 }
1486 };
1487}
1488
Dan Gohman4d5435d2009-05-24 23:45:28 +00001489/// getAddExpr - Get a canonical add expression, or something simpler if
1490/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00001491const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00001492 SCEV::NoWrapFlags Flags) {
1493 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1494 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00001495 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner74498e12004-04-07 16:16:11 +00001496 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00001497#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00001498 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00001499 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohman9136d9f2010-06-18 19:09:27 +00001500 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00001501 "SCEVAddExpr operand types don't match!");
1502#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00001503
Andrew Trick8b55b732011-03-14 16:50:06 +00001504 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001505 // And vice-versa.
1506 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1507 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1508 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001509 bool All = true;
Dan Gohman74c61502010-08-16 16:27:53 +00001510 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1511 E = Ops.end(); I != E; ++I)
1512 if (!isKnownNonNegative(*I)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001513 All = false;
1514 break;
1515 }
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001516 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001517 }
1518
Chris Lattnerd934c702004-04-02 20:23:17 +00001519 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00001520 GroupByComplexity(Ops, LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00001521
1522 // If there are any constants, fold them together.
1523 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00001524 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001525 ++Idx;
Chris Lattner74498e12004-04-07 16:16:11 +00001526 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00001527 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001528 // We found two constants, fold them together!
Dan Gohman0652fd52009-06-14 22:47:23 +00001529 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1530 RHSC->getValue()->getValue());
Dan Gohman011cf682009-06-14 22:53:57 +00001531 if (Ops.size() == 2) return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001532 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001533 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001534 }
1535
1536 // If we are left with a constant zero being added, strip it off.
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001537 if (LHSC->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001538 Ops.erase(Ops.begin());
1539 --Idx;
1540 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001541
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001542 if (Ops.size() == 1) return Ops[0];
1543 }
Misha Brukman01808ca2005-04-21 21:13:18 +00001544
Dan Gohman15871f22010-08-27 21:39:59 +00001545 // Okay, check to see if the same value occurs in the operand list more than
1546 // once. If so, merge them together into an multiply expression. Since we
1547 // sorted the list, these values are required to be adjacent.
Chris Lattner229907c2011-07-18 04:54:35 +00001548 Type *Ty = Ops[0]->getType();
Dan Gohmane67b2872010-08-12 14:46:54 +00001549 bool FoundMatch = false;
Dan Gohman15871f22010-08-27 21:39:59 +00001550 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattnerd934c702004-04-02 20:23:17 +00001551 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman15871f22010-08-27 21:39:59 +00001552 // Scan ahead to count how many equal operands there are.
1553 unsigned Count = 2;
1554 while (i+Count != e && Ops[i+Count] == Ops[i])
1555 ++Count;
1556 // Merge the values into a multiply.
1557 const SCEV *Scale = getConstant(Ty, Count);
1558 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1559 if (Ops.size() == Count)
Chris Lattnerd934c702004-04-02 20:23:17 +00001560 return Mul;
Dan Gohmane67b2872010-08-12 14:46:54 +00001561 Ops[i] = Mul;
Dan Gohman15871f22010-08-27 21:39:59 +00001562 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohmanfe22f1d2010-08-28 00:39:27 +00001563 --i; e -= Count - 1;
Dan Gohmane67b2872010-08-12 14:46:54 +00001564 FoundMatch = true;
Chris Lattnerd934c702004-04-02 20:23:17 +00001565 }
Dan Gohmane67b2872010-08-12 14:46:54 +00001566 if (FoundMatch)
Andrew Trick8b55b732011-03-14 16:50:06 +00001567 return getAddExpr(Ops, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00001568
Dan Gohman2e55cc52009-05-08 21:03:19 +00001569 // Check for truncates. If all the operands are truncated from the same
1570 // type, see if factoring out the truncate would permit the result to be
1571 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1572 // if the contents of the resulting outer trunc fold to something simple.
1573 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1574 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattner229907c2011-07-18 04:54:35 +00001575 Type *DstType = Trunc->getType();
1576 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00001577 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00001578 bool Ok = true;
1579 // Check all the operands to see if they can be represented in the
1580 // source type of the truncate.
1581 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1582 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1583 if (T->getOperand()->getType() != SrcType) {
1584 Ok = false;
1585 break;
1586 }
1587 LargeOps.push_back(T->getOperand());
1588 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00001589 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00001590 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001591 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00001592 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1593 if (const SCEVTruncateExpr *T =
1594 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1595 if (T->getOperand()->getType() != SrcType) {
1596 Ok = false;
1597 break;
1598 }
1599 LargeMulOps.push_back(T->getOperand());
1600 } else if (const SCEVConstant *C =
1601 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00001602 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00001603 } else {
1604 Ok = false;
1605 break;
1606 }
1607 }
1608 if (Ok)
1609 LargeOps.push_back(getMulExpr(LargeMulOps));
1610 } else {
1611 Ok = false;
1612 break;
1613 }
1614 }
1615 if (Ok) {
1616 // Evaluate the expression in the larger type.
Andrew Trick8b55b732011-03-14 16:50:06 +00001617 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman2e55cc52009-05-08 21:03:19 +00001618 // If it folds to something simple, use it. Otherwise, don't.
1619 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1620 return getTruncateExpr(Fold, DstType);
1621 }
1622 }
1623
1624 // Skip past any other cast SCEVs.
Dan Gohmaneed125f2007-06-18 19:30:09 +00001625 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1626 ++Idx;
1627
1628 // If there are add operands they would be next.
Chris Lattnerd934c702004-04-02 20:23:17 +00001629 if (Idx < Ops.size()) {
1630 bool DeletedAdd = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00001631 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001632 // If we have an add, expand the add operands onto the end of the operands
1633 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00001634 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00001635 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00001636 DeletedAdd = true;
1637 }
1638
1639 // If we deleted at least one add, we added operands to the end of the list,
1640 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00001641 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00001642 if (DeletedAdd)
Dan Gohmana37eaf22007-10-22 18:31:58 +00001643 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001644 }
1645
1646 // Skip over the add expression until we get to a multiply.
1647 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1648 ++Idx;
1649
Dan Gohman038d02e2009-06-14 22:58:51 +00001650 // Check to see if there are any folding opportunities present with
1651 // operands multiplied by constant values.
1652 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1653 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohmanaf752342009-07-07 17:06:11 +00001654 DenseMap<const SCEV *, APInt> M;
1655 SmallVector<const SCEV *, 8> NewOps;
Dan Gohman038d02e2009-06-14 22:58:51 +00001656 APInt AccumulatedConstant(BitWidth, 0);
1657 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001658 Ops.data(), Ops.size(),
1659 APInt(BitWidth, 1), *this)) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001660 // Some interesting folding opportunity is present, so its worthwhile to
1661 // re-generate the operands list. Group the operands by constant scale,
1662 // to avoid multiplying by the same constant scale multiple times.
Dan Gohmanaf752342009-07-07 17:06:11 +00001663 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Craig Topper31ee5862013-07-03 15:07:05 +00001664 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001665 E = NewOps.end(); I != E; ++I)
1666 MulOpLists[M.find(*I)->second].push_back(*I);
1667 // Re-generate the operands list.
1668 Ops.clear();
1669 if (AccumulatedConstant != 0)
1670 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohmance973df2009-06-24 04:48:43 +00001671 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1672 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohman038d02e2009-06-14 22:58:51 +00001673 if (I->first != 0)
Dan Gohmance973df2009-06-24 04:48:43 +00001674 Ops.push_back(getMulExpr(getConstant(I->first),
1675 getAddExpr(I->second)));
Dan Gohman038d02e2009-06-14 22:58:51 +00001676 if (Ops.empty())
Dan Gohman1d2ded72010-05-03 22:09:21 +00001677 return getConstant(Ty, 0);
Dan Gohman038d02e2009-06-14 22:58:51 +00001678 if (Ops.size() == 1)
1679 return Ops[0];
1680 return getAddExpr(Ops);
1681 }
1682 }
1683
Chris Lattnerd934c702004-04-02 20:23:17 +00001684 // If we are adding something to a multiply expression, make sure the
1685 // something is not already an operand of the multiply. If so, merge it into
1686 // the multiply.
1687 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman48f82222009-05-04 22:30:44 +00001688 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001689 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman48f82222009-05-04 22:30:44 +00001690 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman157847f2010-08-12 14:52:55 +00001691 if (isa<SCEVConstant>(MulOpSCEV))
1692 continue;
Chris Lattnerd934c702004-04-02 20:23:17 +00001693 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman157847f2010-08-12 14:52:55 +00001694 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001695 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohmanaf752342009-07-07 17:06:11 +00001696 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00001697 if (Mul->getNumOperands() != 2) {
1698 // If the multiply has more than two operands, we must get the
1699 // Y*Z term.
Dan Gohman797a1db2010-08-16 16:57:24 +00001700 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1701 Mul->op_begin()+MulOp);
1702 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00001703 InnerMul = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00001704 }
Dan Gohman1d2ded72010-05-03 22:09:21 +00001705 const SCEV *One = getConstant(Ty, 1);
Dan Gohmancf32f2b2010-08-13 20:17:14 +00001706 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman157847f2010-08-12 14:52:55 +00001707 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattnerd934c702004-04-02 20:23:17 +00001708 if (Ops.size() == 2) return OuterMul;
1709 if (AddOp < Idx) {
1710 Ops.erase(Ops.begin()+AddOp);
1711 Ops.erase(Ops.begin()+Idx-1);
1712 } else {
1713 Ops.erase(Ops.begin()+Idx);
1714 Ops.erase(Ops.begin()+AddOp-1);
1715 }
1716 Ops.push_back(OuterMul);
Dan Gohmana37eaf22007-10-22 18:31:58 +00001717 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001718 }
Misha Brukman01808ca2005-04-21 21:13:18 +00001719
Chris Lattnerd934c702004-04-02 20:23:17 +00001720 // Check this multiply against other multiplies being added together.
1721 for (unsigned OtherMulIdx = Idx+1;
1722 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1723 ++OtherMulIdx) {
Dan Gohman48f82222009-05-04 22:30:44 +00001724 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001725 // If MulOp occurs in OtherMul, we can fold the two multiplies
1726 // together.
1727 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1728 OMulOp != e; ++OMulOp)
1729 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1730 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohmanaf752342009-07-07 17:06:11 +00001731 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00001732 if (Mul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00001733 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00001734 Mul->op_begin()+MulOp);
1735 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00001736 InnerMul1 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00001737 }
Dan Gohmanaf752342009-07-07 17:06:11 +00001738 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00001739 if (OtherMul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00001740 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00001741 OtherMul->op_begin()+OMulOp);
1742 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00001743 InnerMul2 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00001744 }
Dan Gohmanaf752342009-07-07 17:06:11 +00001745 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1746 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattnerd934c702004-04-02 20:23:17 +00001747 if (Ops.size() == 2) return OuterMul;
Dan Gohmanaabfc522010-08-31 22:50:31 +00001748 Ops.erase(Ops.begin()+Idx);
1749 Ops.erase(Ops.begin()+OtherMulIdx-1);
1750 Ops.push_back(OuterMul);
1751 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001752 }
1753 }
1754 }
1755 }
1756
1757 // If there are any add recurrences in the operands list, see if any other
1758 // added values are loop invariant. If so, we can fold them into the
1759 // recurrence.
1760 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1761 ++Idx;
1762
1763 // Scan over all recurrences, trying to fold loop invariants into them.
1764 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1765 // Scan all of the other operands to this add and add them to the vector if
1766 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00001767 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00001768 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001769 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00001770 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00001771 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001772 LIOps.push_back(Ops[i]);
1773 Ops.erase(Ops.begin()+i);
1774 --i; --e;
1775 }
1776
1777 // If we found some loop invariants, fold them into the recurrence.
1778 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00001779 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattnerd934c702004-04-02 20:23:17 +00001780 LIOps.push_back(AddRec->getStart());
1781
Dan Gohmanaf752342009-07-07 17:06:11 +00001782 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman7a2dab82009-12-18 03:57:04 +00001783 AddRec->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00001784 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00001785
Dan Gohman16206132010-06-30 07:16:37 +00001786 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher23bf3ba2011-01-11 09:02:09 +00001787 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001788 // Always propagate NW.
1789 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick8b55b732011-03-14 16:50:06 +00001790 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman51f13052009-12-18 18:45:31 +00001791
Chris Lattnerd934c702004-04-02 20:23:17 +00001792 // If all of the other operands were loop invariant, we are done.
1793 if (Ops.size() == 1) return NewRec;
1794
Nick Lewyckydb66b822011-09-06 05:08:09 +00001795 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00001796 for (unsigned i = 0;; ++i)
1797 if (Ops[i] == AddRec) {
1798 Ops[i] = NewRec;
1799 break;
1800 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00001801 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001802 }
1803
1804 // Okay, if there weren't any loop invariants to be folded, check to see if
1805 // there are multiple AddRec's with the same loop induction variable being
1806 // added together. If so, we can fold them.
1807 for (unsigned OtherIdx = Idx+1;
Dan Gohmanc866bf42010-08-27 20:45:56 +00001808 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1809 ++OtherIdx)
1810 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1811 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1812 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1813 AddRec->op_end());
1814 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1815 ++OtherIdx)
Dan Gohman028c1812010-08-29 14:53:34 +00001816 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohmanc866bf42010-08-27 20:45:56 +00001817 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman028c1812010-08-29 14:53:34 +00001818 if (OtherAddRec->getLoop() == AddRecLoop) {
1819 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1820 i != e; ++i) {
Dan Gohmanc866bf42010-08-27 20:45:56 +00001821 if (i >= AddRecOps.size()) {
Dan Gohman028c1812010-08-29 14:53:34 +00001822 AddRecOps.append(OtherAddRec->op_begin()+i,
1823 OtherAddRec->op_end());
Dan Gohmanc866bf42010-08-27 20:45:56 +00001824 break;
1825 }
Dan Gohman028c1812010-08-29 14:53:34 +00001826 AddRecOps[i] = getAddExpr(AddRecOps[i],
1827 OtherAddRec->getOperand(i));
Dan Gohmanc866bf42010-08-27 20:45:56 +00001828 }
1829 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattnerd934c702004-04-02 20:23:17 +00001830 }
Andrew Trick8b55b732011-03-14 16:50:06 +00001831 // Step size has changed, so we cannot guarantee no self-wraparound.
1832 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohmanc866bf42010-08-27 20:45:56 +00001833 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001834 }
1835
1836 // Otherwise couldn't fold anything into this recurrence. Move onto the
1837 // next one.
1838 }
1839
1840 // Okay, it looks like we really DO need an add expr. Check to see if we
1841 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001842 FoldingSetNodeID ID;
1843 ID.AddInteger(scAddExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001844 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1845 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00001846 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00001847 SCEVAddExpr *S =
1848 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1849 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00001850 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1851 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00001852 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1853 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00001854 UniqueSCEVs.InsertNode(S, IP);
1855 }
Andrew Trick8b55b732011-03-14 16:50:06 +00001856 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001857 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001858}
1859
Nick Lewycky287682e2011-10-04 06:51:26 +00001860static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
1861 uint64_t k = i*j;
1862 if (j > 1 && k / j != i) Overflow = true;
1863 return k;
1864}
1865
1866/// Compute the result of "n choose k", the binomial coefficient. If an
1867/// intermediate computation overflows, Overflow will be set and the return will
Benjamin Kramerbde91762012-06-02 10:20:22 +00001868/// be garbage. Overflow is not cleared on absence of overflow.
Nick Lewycky287682e2011-10-04 06:51:26 +00001869static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
1870 // We use the multiplicative formula:
1871 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
1872 // At each iteration, we take the n-th term of the numeral and divide by the
1873 // (k-n)th term of the denominator. This division will always produce an
1874 // integral result, and helps reduce the chance of overflow in the
1875 // intermediate computations. However, we can still overflow even when the
1876 // final result would fit.
1877
1878 if (n == 0 || n == k) return 1;
1879 if (k > n) return 0;
1880
1881 if (k > n/2)
1882 k = n-k;
1883
1884 uint64_t r = 1;
1885 for (uint64_t i = 1; i <= k; ++i) {
1886 r = umul_ov(r, n-(i-1), Overflow);
1887 r /= i;
1888 }
1889 return r;
1890}
1891
Dan Gohman4d5435d2009-05-24 23:45:28 +00001892/// getMulExpr - Get a canonical multiply expression, or something simpler if
1893/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00001894const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00001895 SCEV::NoWrapFlags Flags) {
1896 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
1897 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00001898 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohman51ad99d2010-01-21 02:09:26 +00001899 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00001900#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00001901 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00001902 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00001903 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00001904 "SCEVMulExpr operand types don't match!");
1905#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00001906
Andrew Trick8b55b732011-03-14 16:50:06 +00001907 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001908 // And vice-versa.
1909 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1910 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1911 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001912 bool All = true;
Dan Gohman74c61502010-08-16 16:27:53 +00001913 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1914 E = Ops.end(); I != E; ++I)
1915 if (!isKnownNonNegative(*I)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001916 All = false;
1917 break;
1918 }
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001919 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001920 }
1921
Chris Lattnerd934c702004-04-02 20:23:17 +00001922 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00001923 GroupByComplexity(Ops, LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00001924
1925 // If there are any constants, fold them together.
1926 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00001927 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001928
1929 // C1*(C2+V) -> C1*C2 + C1*V
1930 if (Ops.size() == 2)
Dan Gohmana30370b2009-05-04 22:02:23 +00001931 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattnerd934c702004-04-02 20:23:17 +00001932 if (Add->getNumOperands() == 2 &&
1933 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohmana37eaf22007-10-22 18:31:58 +00001934 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1935 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001936
Chris Lattnerd934c702004-04-02 20:23:17 +00001937 ++Idx;
Dan Gohmana30370b2009-05-04 22:02:23 +00001938 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001939 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00001940 ConstantInt *Fold = ConstantInt::get(getContext(),
1941 LHSC->getValue()->getValue() *
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001942 RHSC->getValue()->getValue());
1943 Ops[0] = getConstant(Fold);
1944 Ops.erase(Ops.begin()+1); // Erase the folded element
1945 if (Ops.size() == 1) return Ops[0];
1946 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001947 }
1948
1949 // If we are left with a constant one being multiplied, strip it off.
1950 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1951 Ops.erase(Ops.begin());
1952 --Idx;
Reid Spencer2e54a152007-03-02 00:28:52 +00001953 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001954 // If we have a multiply of zero, it will always be zero.
1955 return Ops[0];
Dan Gohman51ad99d2010-01-21 02:09:26 +00001956 } else if (Ops[0]->isAllOnesValue()) {
1957 // If we have a mul by -1 of an add, try distributing the -1 among the
1958 // add operands.
Andrew Trick8b55b732011-03-14 16:50:06 +00001959 if (Ops.size() == 2) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001960 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1961 SmallVector<const SCEV *, 4> NewOps;
1962 bool AnyFolded = false;
Andrew Trick8b55b732011-03-14 16:50:06 +00001963 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
1964 E = Add->op_end(); I != E; ++I) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001965 const SCEV *Mul = getMulExpr(Ops[0], *I);
1966 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1967 NewOps.push_back(Mul);
1968 }
1969 if (AnyFolded)
1970 return getAddExpr(NewOps);
1971 }
Andrew Tricke92dcce2011-03-14 17:38:54 +00001972 else if (const SCEVAddRecExpr *
1973 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
1974 // Negation preserves a recurrence's no self-wrap property.
1975 SmallVector<const SCEV *, 4> Operands;
1976 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
1977 E = AddRec->op_end(); I != E; ++I) {
1978 Operands.push_back(getMulExpr(Ops[0], *I));
1979 }
1980 return getAddRecExpr(Operands, AddRec->getLoop(),
1981 AddRec->getNoWrapFlags(SCEV::FlagNW));
1982 }
Andrew Trick8b55b732011-03-14 16:50:06 +00001983 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001984 }
Dan Gohmanfe4b2912010-04-13 16:49:23 +00001985
1986 if (Ops.size() == 1)
1987 return Ops[0];
Chris Lattnerd934c702004-04-02 20:23:17 +00001988 }
1989
1990 // Skip over the add expression until we get to a multiply.
1991 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1992 ++Idx;
1993
Chris Lattnerd934c702004-04-02 20:23:17 +00001994 // If there are mul operands inline them all into this expression.
1995 if (Idx < Ops.size()) {
1996 bool DeletedMul = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00001997 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001998 // If we have an mul, expand the mul operands onto the end of the operands
1999 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002000 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002001 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002002 DeletedMul = true;
2003 }
2004
2005 // If we deleted at least one mul, we added operands to the end of the list,
2006 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002007 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002008 if (DeletedMul)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002009 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002010 }
2011
2012 // If there are any add recurrences in the operands list, see if any other
2013 // added values are loop invariant. If so, we can fold them into the
2014 // recurrence.
2015 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2016 ++Idx;
2017
2018 // Scan over all recurrences, trying to fold loop invariants into them.
2019 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2020 // Scan all of the other operands to this mul and add them to the vector if
2021 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002022 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002023 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f2de012010-08-29 14:55:19 +00002024 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002025 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002026 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002027 LIOps.push_back(Ops[i]);
2028 Ops.erase(Ops.begin()+i);
2029 --i; --e;
2030 }
2031
2032 // If we found some loop invariants, fold them into the recurrence.
2033 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002034 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohmanaf752342009-07-07 17:06:11 +00002035 SmallVector<const SCEV *, 4> NewOps;
Chris Lattnerd934c702004-04-02 20:23:17 +00002036 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman8f5954f2010-06-17 23:34:09 +00002037 const SCEV *Scale = getMulExpr(LIOps);
2038 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2039 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002040
Dan Gohman16206132010-06-30 07:16:37 +00002041 // Build the new addrec. Propagate the NUW and NSW flags if both the
2042 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick8b55b732011-03-14 16:50:06 +00002043 //
2044 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002045 // will be inferred if either NUW or NSW is true.
Andrew Trick8b55b732011-03-14 16:50:06 +00002046 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2047 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002048
2049 // If all of the other operands were loop invariant, we are done.
2050 if (Ops.size() == 1) return NewRec;
2051
Nick Lewyckydb66b822011-09-06 05:08:09 +00002052 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002053 for (unsigned i = 0;; ++i)
2054 if (Ops[i] == AddRec) {
2055 Ops[i] = NewRec;
2056 break;
2057 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002058 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002059 }
2060
2061 // Okay, if there weren't any loop invariants to be folded, check to see if
2062 // there are multiple AddRec's with the same loop induction variable being
2063 // multiplied together. If so, we can fold them.
Nick Lewycky97756402014-09-01 05:17:15 +00002064
2065 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2066 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2067 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2068 // ]]],+,...up to x=2n}.
2069 // Note that the arguments to choose() are always integers with values
2070 // known at compile time, never SCEV objects.
2071 //
2072 // The implementation avoids pointless extra computations when the two
2073 // addrec's are of different length (mathematically, it's equivalent to
2074 // an infinite stream of zeros on the right).
2075 bool OpsModified = false;
Chris Lattnerd934c702004-04-02 20:23:17 +00002076 for (unsigned OtherIdx = Idx+1;
Nick Lewycky97756402014-09-01 05:17:15 +00002077 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002078 ++OtherIdx) {
Nick Lewycky97756402014-09-01 05:17:15 +00002079 const SCEVAddRecExpr *OtherAddRec =
2080 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2081 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
Andrew Trick946f76b2012-05-30 03:35:17 +00002082 continue;
2083
Nick Lewycky97756402014-09-01 05:17:15 +00002084 bool Overflow = false;
2085 Type *Ty = AddRec->getType();
2086 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2087 SmallVector<const SCEV*, 7> AddRecOps;
2088 for (int x = 0, xe = AddRec->getNumOperands() +
2089 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2090 const SCEV *Term = getConstant(Ty, 0);
2091 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2092 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2093 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2094 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2095 z < ze && !Overflow; ++z) {
2096 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2097 uint64_t Coeff;
2098 if (LargerThan64Bits)
2099 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2100 else
2101 Coeff = Coeff1*Coeff2;
2102 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2103 const SCEV *Term1 = AddRec->getOperand(y-z);
2104 const SCEV *Term2 = OtherAddRec->getOperand(z);
2105 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
Andrew Trick946f76b2012-05-30 03:35:17 +00002106 }
Andrew Trick946f76b2012-05-30 03:35:17 +00002107 }
Nick Lewycky97756402014-09-01 05:17:15 +00002108 AddRecOps.push_back(Term);
Chris Lattnerd934c702004-04-02 20:23:17 +00002109 }
Nick Lewycky97756402014-09-01 05:17:15 +00002110 if (!Overflow) {
2111 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2112 SCEV::FlagAnyWrap);
2113 if (Ops.size() == 2) return NewAddRec;
2114 Ops[Idx] = NewAddRec;
2115 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2116 OpsModified = true;
2117 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2118 if (!AddRec)
2119 break;
2120 }
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002121 }
Nick Lewycky97756402014-09-01 05:17:15 +00002122 if (OpsModified)
2123 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002124
2125 // Otherwise couldn't fold anything into this recurrence. Move onto the
2126 // next one.
2127 }
2128
2129 // Okay, it looks like we really DO need an mul expr. Check to see if we
2130 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002131 FoldingSetNodeID ID;
2132 ID.AddInteger(scMulExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002133 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2134 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002135 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002136 SCEVMulExpr *S =
2137 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2138 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002139 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2140 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002141 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2142 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002143 UniqueSCEVs.InsertNode(S, IP);
2144 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002145 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002146 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002147}
2148
Andreas Bolka7a5c8db2009-08-07 22:55:26 +00002149/// getUDivExpr - Get a canonical unsigned division expression, or something
2150/// simpler if possible.
Dan Gohmanabd17092009-06-24 14:49:00 +00002151const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2152 const SCEV *RHS) {
Dan Gohmand33f36e2009-05-18 15:44:58 +00002153 assert(getEffectiveSCEVType(LHS->getType()) ==
2154 getEffectiveSCEVType(RHS->getType()) &&
2155 "SCEVUDivExpr operand types don't match!");
2156
Dan Gohmana30370b2009-05-04 22:02:23 +00002157 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002158 if (RHSC->getValue()->equalsInt(1))
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00002159 return LHS; // X udiv 1 --> x
Dan Gohmanacd700a2010-04-22 01:35:11 +00002160 // If the denominator is zero, the result of the udiv is undefined. Don't
2161 // try to analyze it, because the resolution chosen here may differ from
2162 // the resolution chosen in other parts of the compiler.
2163 if (!RHSC->getValue()->isZero()) {
2164 // Determine if the division can be folded into the operands of
2165 // its operands.
2166 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattner229907c2011-07-18 04:54:35 +00002167 Type *Ty = LHS->getType();
Dan Gohmanacd700a2010-04-22 01:35:11 +00002168 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmandb764c62010-08-04 19:52:50 +00002169 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanacd700a2010-04-22 01:35:11 +00002170 // For non-power-of-two values, effectively round the value up to the
2171 // nearest power of two.
2172 if (!RHSC->getValue()->getValue().isPowerOf2())
2173 ++MaxShiftAmt;
Chris Lattner229907c2011-07-18 04:54:35 +00002174 IntegerType *ExtTy =
Dan Gohmanacd700a2010-04-22 01:35:11 +00002175 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanacd700a2010-04-22 01:35:11 +00002176 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2177 if (const SCEVConstant *Step =
Andrew Trick6d45a012011-08-06 07:00:37 +00002178 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2179 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2180 const APInt &StepInt = Step->getValue()->getValue();
2181 const APInt &DivInt = RHSC->getValue()->getValue();
2182 if (!StepInt.urem(DivInt) &&
Dan Gohmanacd700a2010-04-22 01:35:11 +00002183 getZeroExtendExpr(AR, ExtTy) ==
2184 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2185 getZeroExtendExpr(Step, ExtTy),
Andrew Trick8b55b732011-03-14 16:50:06 +00002186 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002187 SmallVector<const SCEV *, 4> Operands;
2188 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2189 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
Andrew Trick8b55b732011-03-14 16:50:06 +00002190 return getAddRecExpr(Operands, AR->getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002191 SCEV::FlagNW);
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002192 }
Andrew Trick6d45a012011-08-06 07:00:37 +00002193 /// Get a canonical UDivExpr for a recurrence.
2194 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2195 // We can currently only fold X%N if X is constant.
2196 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2197 if (StartC && !DivInt.urem(StepInt) &&
2198 getZeroExtendExpr(AR, ExtTy) ==
2199 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2200 getZeroExtendExpr(Step, ExtTy),
2201 AR->getLoop(), SCEV::FlagAnyWrap)) {
2202 const APInt &StartInt = StartC->getValue()->getValue();
2203 const APInt &StartRem = StartInt.urem(StepInt);
2204 if (StartRem != 0)
2205 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2206 AR->getLoop(), SCEV::FlagNW);
2207 }
2208 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002209 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2210 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2211 SmallVector<const SCEV *, 4> Operands;
2212 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2213 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2214 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2215 // Find an operand that's safely divisible.
2216 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2217 const SCEV *Op = M->getOperand(i);
2218 const SCEV *Div = getUDivExpr(Op, RHSC);
2219 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2220 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2221 M->op_end());
2222 Operands[i] = Div;
2223 return getMulExpr(Operands);
2224 }
2225 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002226 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002227 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Trick7d1eea82011-04-27 18:17:36 +00002228 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002229 SmallVector<const SCEV *, 4> Operands;
2230 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2231 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2232 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2233 Operands.clear();
2234 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2235 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2236 if (isa<SCEVUDivExpr>(Op) ||
2237 getMulExpr(Op, RHS) != A->getOperand(i))
2238 break;
2239 Operands.push_back(Op);
2240 }
2241 if (Operands.size() == A->getNumOperands())
2242 return getAddExpr(Operands);
2243 }
2244 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002245
Dan Gohmanacd700a2010-04-22 01:35:11 +00002246 // Fold if both operands are constant.
2247 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2248 Constant *LHSCV = LHSC->getValue();
2249 Constant *RHSCV = RHSC->getValue();
2250 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2251 RHSCV)));
2252 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002253 }
2254 }
2255
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002256 FoldingSetNodeID ID;
2257 ID.AddInteger(scUDivExpr);
2258 ID.AddPointer(LHS);
2259 ID.AddPointer(RHS);
Craig Topper9f008862014-04-15 04:59:12 +00002260 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002261 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00002262 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2263 LHS, RHS);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002264 UniqueSCEVs.InsertNode(S, IP);
2265 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002266}
2267
Nick Lewycky31eaca52014-01-27 10:04:03 +00002268static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2269 APInt A = C1->getValue()->getValue().abs();
2270 APInt B = C2->getValue()->getValue().abs();
2271 uint32_t ABW = A.getBitWidth();
2272 uint32_t BBW = B.getBitWidth();
2273
2274 if (ABW > BBW)
2275 B = B.zext(ABW);
2276 else if (ABW < BBW)
2277 A = A.zext(BBW);
2278
2279 return APIntOps::GreatestCommonDivisor(A, B);
2280}
2281
2282/// getUDivExactExpr - Get a canonical unsigned division expression, or
2283/// something simpler if possible. There is no representation for an exact udiv
2284/// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2285/// We can't do this when it's not exact because the udiv may be clearing bits.
2286const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2287 const SCEV *RHS) {
2288 // TODO: we could try to find factors in all sorts of things, but for now we
2289 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2290 // end of this file for inspiration.
2291
2292 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2293 if (!Mul)
2294 return getUDivExpr(LHS, RHS);
2295
2296 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2297 // If the mulexpr multiplies by a constant, then that constant must be the
2298 // first element of the mulexpr.
2299 if (const SCEVConstant *LHSCst =
2300 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2301 if (LHSCst == RHSCst) {
2302 SmallVector<const SCEV *, 2> Operands;
2303 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2304 return getMulExpr(Operands);
2305 }
2306
2307 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2308 // that there's a factor provided by one of the other terms. We need to
2309 // check.
2310 APInt Factor = gcd(LHSCst, RHSCst);
2311 if (!Factor.isIntN(1)) {
2312 LHSCst = cast<SCEVConstant>(
2313 getConstant(LHSCst->getValue()->getValue().udiv(Factor)));
2314 RHSCst = cast<SCEVConstant>(
2315 getConstant(RHSCst->getValue()->getValue().udiv(Factor)));
2316 SmallVector<const SCEV *, 2> Operands;
2317 Operands.push_back(LHSCst);
2318 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2319 LHS = getMulExpr(Operands);
2320 RHS = RHSCst;
Nick Lewycky629199c2014-01-27 10:47:44 +00002321 Mul = dyn_cast<SCEVMulExpr>(LHS);
2322 if (!Mul)
2323 return getUDivExactExpr(LHS, RHS);
Nick Lewycky31eaca52014-01-27 10:04:03 +00002324 }
2325 }
2326 }
2327
2328 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2329 if (Mul->getOperand(i) == RHS) {
2330 SmallVector<const SCEV *, 2> Operands;
2331 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2332 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2333 return getMulExpr(Operands);
2334 }
2335 }
2336
2337 return getUDivExpr(LHS, RHS);
2338}
Chris Lattnerd934c702004-04-02 20:23:17 +00002339
Dan Gohman4d5435d2009-05-24 23:45:28 +00002340/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2341/// Simplify the expression as much as possible.
Andrew Trick8b55b732011-03-14 16:50:06 +00002342const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2343 const Loop *L,
2344 SCEV::NoWrapFlags Flags) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002345 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00002346 Operands.push_back(Start);
Dan Gohmana30370b2009-05-04 22:02:23 +00002347 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattnerd934c702004-04-02 20:23:17 +00002348 if (StepChrec->getLoop() == L) {
Dan Gohmandd41bba2010-06-21 19:47:52 +00002349 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002350 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattnerd934c702004-04-02 20:23:17 +00002351 }
2352
2353 Operands.push_back(Step);
Andrew Trick8b55b732011-03-14 16:50:06 +00002354 return getAddRecExpr(Operands, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002355}
2356
Dan Gohman4d5435d2009-05-24 23:45:28 +00002357/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2358/// Simplify the expression as much as possible.
Dan Gohmance973df2009-06-24 04:48:43 +00002359const SCEV *
Dan Gohmanaf752342009-07-07 17:06:11 +00002360ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick8b55b732011-03-14 16:50:06 +00002361 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002362 if (Operands.size() == 1) return Operands[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002363#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002364 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002365 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002366 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002367 "SCEVAddRecExpr operand types don't match!");
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002368 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002369 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002370 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmand33f36e2009-05-18 15:44:58 +00002371#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002372
Dan Gohmanbe928e32008-06-18 16:23:07 +00002373 if (Operands.back()->isZero()) {
2374 Operands.pop_back();
Andrew Trick8b55b732011-03-14 16:50:06 +00002375 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmanbe928e32008-06-18 16:23:07 +00002376 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002377
Dan Gohmancf9c64e2010-02-19 18:49:22 +00002378 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2379 // use that information to infer NUW and NSW flags. However, computing a
2380 // BE count requires calling getAddRecExpr, so we may not yet have a
2381 // meaningful BE count at this point (and if we don't, we'd be stuck
2382 // with a SCEVCouldNotCompute as the cached BE count).
2383
Andrew Trick8b55b732011-03-14 16:50:06 +00002384 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002385 // And vice-versa.
2386 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2387 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2388 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002389 bool All = true;
Dan Gohman74c61502010-08-16 16:27:53 +00002390 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2391 E = Operands.end(); I != E; ++I)
2392 if (!isKnownNonNegative(*I)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002393 All = false;
2394 break;
2395 }
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002396 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002397 }
2398
Dan Gohman223a5d22008-08-08 18:33:12 +00002399 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohmana30370b2009-05-04 22:02:23 +00002400 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00002401 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman63c020a2010-08-13 20:23:25 +00002402 if (L->contains(NestedLoop) ?
Dan Gohman51ad99d2010-01-21 02:09:26 +00002403 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman63c020a2010-08-13 20:23:25 +00002404 (!NestedLoop->contains(L) &&
Dan Gohman51ad99d2010-01-21 02:09:26 +00002405 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002406 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohmancb0efec2009-12-18 01:14:11 +00002407 NestedAR->op_end());
Dan Gohman223a5d22008-08-08 18:33:12 +00002408 Operands[0] = NestedAR->getStart();
Dan Gohmancc030b72009-06-26 22:36:20 +00002409 // AddRecs require their operands be loop-invariant with respect to their
2410 // loops. Don't perform this transformation if it would break this
2411 // requirement.
2412 bool AllInvariant = true;
2413 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002414 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002415 AllInvariant = false;
2416 break;
2417 }
2418 if (AllInvariant) {
Andrew Trick8b55b732011-03-14 16:50:06 +00002419 // Create a recurrence for the outer loop with the same step size.
2420 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002421 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2422 // inner recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002423 SCEV::NoWrapFlags OuterFlags =
2424 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick8b55b732011-03-14 16:50:06 +00002425
2426 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Dan Gohmancc030b72009-06-26 22:36:20 +00002427 AllInvariant = true;
2428 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002429 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002430 AllInvariant = false;
2431 break;
2432 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002433 if (AllInvariant) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002434 // Ok, both add recurrences are valid after the transformation.
Andrew Trick8b55b732011-03-14 16:50:06 +00002435 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002436 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2437 // the outer recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002438 SCEV::NoWrapFlags InnerFlags =
2439 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick8b55b732011-03-14 16:50:06 +00002440 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2441 }
Dan Gohmancc030b72009-06-26 22:36:20 +00002442 }
2443 // Reset Operands to its original state.
2444 Operands[0] = NestedAR;
Dan Gohman223a5d22008-08-08 18:33:12 +00002445 }
2446 }
2447
Dan Gohman8d67d2f2010-01-19 22:27:22 +00002448 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2449 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002450 FoldingSetNodeID ID;
2451 ID.AddInteger(scAddRecExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002452 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2453 ID.AddPointer(Operands[i]);
2454 ID.AddPointer(L);
Craig Topper9f008862014-04-15 04:59:12 +00002455 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002456 SCEVAddRecExpr *S =
2457 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2458 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002459 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2460 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002461 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2462 O, Operands.size(), L);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002463 UniqueSCEVs.InsertNode(S, IP);
2464 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002465 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002466 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002467}
2468
Dan Gohmanabd17092009-06-24 14:49:00 +00002469const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2470 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002471 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002472 Ops.push_back(LHS);
2473 Ops.push_back(RHS);
2474 return getSMaxExpr(Ops);
2475}
2476
Dan Gohmanaf752342009-07-07 17:06:11 +00002477const SCEV *
2478ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002479 assert(!Ops.empty() && "Cannot get empty smax!");
2480 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002481#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002482 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002483 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002484 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002485 "SCEVSMaxExpr operand types don't match!");
2486#endif
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002487
2488 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00002489 GroupByComplexity(Ops, LI);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002490
2491 // If there are any constants, fold them together.
2492 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002493 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002494 ++Idx;
2495 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002496 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002497 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002498 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002499 APIntOps::smax(LHSC->getValue()->getValue(),
2500 RHSC->getValue()->getValue()));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002501 Ops[0] = getConstant(Fold);
2502 Ops.erase(Ops.begin()+1); // Erase the folded element
2503 if (Ops.size() == 1) return Ops[0];
2504 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002505 }
2506
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002507 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002508 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2509 Ops.erase(Ops.begin());
2510 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002511 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2512 // If we have an smax with a constant maximum-int, it will always be
2513 // maximum-int.
2514 return Ops[0];
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002515 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002516
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002517 if (Ops.size() == 1) return Ops[0];
2518 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002519
2520 // Find the first SMax
2521 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2522 ++Idx;
2523
2524 // Check to see if one of the operands is an SMax. If so, expand its operands
2525 // onto our operand list, and recurse to simplify.
2526 if (Idx < Ops.size()) {
2527 bool DeletedSMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002528 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002529 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002530 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002531 DeletedSMax = true;
2532 }
2533
2534 if (DeletedSMax)
2535 return getSMaxExpr(Ops);
2536 }
2537
2538 // Okay, check to see if the same value occurs in the operand list twice. If
2539 // so, delete one. Since we sorted the list, these values are required to
2540 // be adjacent.
2541 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00002542 // X smax Y smax Y --> X smax Y
2543 // X smax Y --> X, if X is always greater than Y
2544 if (Ops[i] == Ops[i+1] ||
2545 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2546 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2547 --i; --e;
2548 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002549 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2550 --i; --e;
2551 }
2552
2553 if (Ops.size() == 1) return Ops[0];
2554
2555 assert(!Ops.empty() && "Reduced smax down to nothing!");
2556
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002557 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002558 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002559 FoldingSetNodeID ID;
2560 ID.AddInteger(scSMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002561 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2562 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002563 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002564 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00002565 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2566 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002567 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2568 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002569 UniqueSCEVs.InsertNode(S, IP);
2570 return S;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002571}
2572
Dan Gohmanabd17092009-06-24 14:49:00 +00002573const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2574 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002575 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002576 Ops.push_back(LHS);
2577 Ops.push_back(RHS);
2578 return getUMaxExpr(Ops);
2579}
2580
Dan Gohmanaf752342009-07-07 17:06:11 +00002581const SCEV *
2582ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002583 assert(!Ops.empty() && "Cannot get empty umax!");
2584 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002585#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002586 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002587 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002588 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002589 "SCEVUMaxExpr operand types don't match!");
2590#endif
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002591
2592 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00002593 GroupByComplexity(Ops, LI);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002594
2595 // If there are any constants, fold them together.
2596 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002597 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002598 ++Idx;
2599 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002600 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002601 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002602 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002603 APIntOps::umax(LHSC->getValue()->getValue(),
2604 RHSC->getValue()->getValue()));
2605 Ops[0] = getConstant(Fold);
2606 Ops.erase(Ops.begin()+1); // Erase the folded element
2607 if (Ops.size() == 1) return Ops[0];
2608 LHSC = cast<SCEVConstant>(Ops[0]);
2609 }
2610
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002611 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002612 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2613 Ops.erase(Ops.begin());
2614 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002615 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2616 // If we have an umax with a constant maximum-int, it will always be
2617 // maximum-int.
2618 return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002619 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002620
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002621 if (Ops.size() == 1) return Ops[0];
2622 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002623
2624 // Find the first UMax
2625 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2626 ++Idx;
2627
2628 // Check to see if one of the operands is a UMax. If so, expand its operands
2629 // onto our operand list, and recurse to simplify.
2630 if (Idx < Ops.size()) {
2631 bool DeletedUMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002632 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002633 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002634 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002635 DeletedUMax = true;
2636 }
2637
2638 if (DeletedUMax)
2639 return getUMaxExpr(Ops);
2640 }
2641
2642 // Okay, check to see if the same value occurs in the operand list twice. If
2643 // so, delete one. Since we sorted the list, these values are required to
2644 // be adjacent.
2645 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00002646 // X umax Y umax Y --> X umax Y
2647 // X umax Y --> X, if X is always greater than Y
2648 if (Ops[i] == Ops[i+1] ||
2649 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2650 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2651 --i; --e;
2652 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002653 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2654 --i; --e;
2655 }
2656
2657 if (Ops.size() == 1) return Ops[0];
2658
2659 assert(!Ops.empty() && "Reduced umax down to nothing!");
2660
2661 // Okay, it looks like we really DO need a umax expr. Check to see if we
2662 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002663 FoldingSetNodeID ID;
2664 ID.AddInteger(scUMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002665 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2666 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002667 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002668 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00002669 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2670 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002671 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2672 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002673 UniqueSCEVs.InsertNode(S, IP);
2674 return S;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002675}
2676
Dan Gohmanabd17092009-06-24 14:49:00 +00002677const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2678 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00002679 // ~smax(~x, ~y) == smin(x, y).
2680 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2681}
2682
Dan Gohmanabd17092009-06-24 14:49:00 +00002683const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2684 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00002685 // ~umax(~x, ~y) == umin(x, y)
2686 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2687}
2688
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002689const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002690 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00002691 // constant expression and then folding it back into a ConstantInt.
2692 // This is just a compile-time optimization.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002693 if (DL)
2694 return getConstant(IntTy, DL->getTypeAllocSize(AllocTy));
Dan Gohman11862a62010-04-12 23:03:26 +00002695
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00002696 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2697 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002698 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
Dan Gohmana3b6c4b2010-05-28 16:12:08 +00002699 C = Folded;
Chris Lattner229907c2011-07-18 04:54:35 +00002700 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002701 assert(Ty == IntTy && "Effective SCEV type doesn't match");
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00002702 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2703}
2704
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002705const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
2706 StructType *STy,
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00002707 unsigned FieldNo) {
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002708 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00002709 // constant expression and then folding it back into a ConstantInt.
2710 // This is just a compile-time optimization.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002711 if (DL) {
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002712 return getConstant(IntTy,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002713 DL->getStructLayout(STy)->getElementOffset(FieldNo));
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002714 }
Dan Gohman11862a62010-04-12 23:03:26 +00002715
Dan Gohmancf913832010-01-28 02:15:55 +00002716 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2717 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002718 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
Dan Gohmana3b6c4b2010-05-28 16:12:08 +00002719 C = Folded;
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002720
Matt Arsenault4ed49b52013-10-21 18:08:09 +00002721 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohmancf913832010-01-28 02:15:55 +00002722 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002723}
2724
Dan Gohmanaf752342009-07-07 17:06:11 +00002725const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohmanf436bac2009-06-24 00:54:57 +00002726 // Don't attempt to do anything other than create a SCEVUnknown object
2727 // here. createSCEV only calls getUnknown after checking for all other
2728 // interesting possibilities, and any other code that calls getUnknown
2729 // is doing so in order to hide a value from SCEV canonicalization.
2730
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002731 FoldingSetNodeID ID;
2732 ID.AddInteger(scUnknown);
2733 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +00002734 void *IP = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00002735 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2736 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2737 "Stale SCEVUnknown in uniquing map!");
2738 return S;
2739 }
2740 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2741 FirstUnknown);
2742 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002743 UniqueSCEVs.InsertNode(S, IP);
2744 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +00002745}
2746
Chris Lattnerd934c702004-04-02 20:23:17 +00002747//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00002748// Basic SCEV Analysis and PHI Idiom Recognition Code
2749//
2750
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002751/// isSCEVable - Test if values of the given type are analyzable within
2752/// the SCEV framework. This primarily includes integer types, and it
2753/// can optionally include pointer types if the ScalarEvolution class
2754/// has access to target-specific information.
Chris Lattner229907c2011-07-18 04:54:35 +00002755bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002756 // Integers and pointers are always SCEVable.
Duncan Sands19d0b472010-02-16 11:11:14 +00002757 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002758}
2759
2760/// getTypeSizeInBits - Return the size in bits of the specified type,
2761/// for which isSCEVable must return true.
Chris Lattner229907c2011-07-18 04:54:35 +00002762uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002763 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2764
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002765 // If we have a DataLayout, use it!
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002766 if (DL)
2767 return DL->getTypeSizeInBits(Ty);
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002768
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002769 // Integer types have fixed sizes.
Duncan Sands9dff9be2010-02-15 16:12:20 +00002770 if (Ty->isIntegerTy())
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002771 return Ty->getPrimitiveSizeInBits();
2772
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002773 // The only other support type is pointer. Without DataLayout, conservatively
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002774 // assume pointers are 64-bit.
Duncan Sands19d0b472010-02-16 11:11:14 +00002775 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002776 return 64;
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002777}
2778
2779/// getEffectiveSCEVType - Return a type with the same bitwidth as
2780/// the given type and which represents how SCEV will treat the given
2781/// type, for which isSCEVable must return true. For pointer types,
2782/// this is the pointer-sized integer type.
Chris Lattner229907c2011-07-18 04:54:35 +00002783Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002784 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2785
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002786 if (Ty->isIntegerTy()) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002787 return Ty;
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002788 }
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002789
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002790 // The only other support type is pointer.
Duncan Sands19d0b472010-02-16 11:11:14 +00002791 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002792
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002793 if (DL)
2794 return DL->getIntPtrType(Ty);
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002795
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002796 // Without DataLayout, conservatively assume pointers are 64-bit.
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002797 return Type::getInt64Ty(getContext());
Dan Gohman0a40ad92009-04-16 03:18:22 +00002798}
Chris Lattnerd934c702004-04-02 20:23:17 +00002799
Dan Gohmanaf752342009-07-07 17:06:11 +00002800const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002801 return &CouldNotCompute;
Dan Gohman31efa302009-04-18 17:58:19 +00002802}
2803
Shuxin Yangefc4c012013-07-08 17:33:13 +00002804namespace {
2805 // Helper class working with SCEVTraversal to figure out if a SCEV contains
2806 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
2807 // is set iff if find such SCEVUnknown.
2808 //
2809 struct FindInvalidSCEVUnknown {
2810 bool FindOne;
2811 FindInvalidSCEVUnknown() { FindOne = false; }
2812 bool follow(const SCEV *S) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00002813 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Shuxin Yangefc4c012013-07-08 17:33:13 +00002814 case scConstant:
2815 return false;
2816 case scUnknown:
Shuxin Yang23773b32013-07-12 07:25:38 +00002817 if (!cast<SCEVUnknown>(S)->getValue())
Shuxin Yangefc4c012013-07-08 17:33:13 +00002818 FindOne = true;
2819 return false;
2820 default:
2821 return true;
2822 }
2823 }
2824 bool isDone() const { return FindOne; }
2825 };
2826}
2827
2828bool ScalarEvolution::checkValidity(const SCEV *S) const {
2829 FindInvalidSCEVUnknown F;
2830 SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
2831 ST.visitAll(S);
2832
2833 return !F.FindOne;
2834}
2835
Chris Lattnerd934c702004-04-02 20:23:17 +00002836/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2837/// expression and create a new one.
Dan Gohmanaf752342009-07-07 17:06:11 +00002838const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002839 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattnerd934c702004-04-02 20:23:17 +00002840
Shuxin Yangefc4c012013-07-08 17:33:13 +00002841 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
2842 if (I != ValueExprMap.end()) {
2843 const SCEV *S = I->second;
Shuxin Yang23773b32013-07-12 07:25:38 +00002844 if (checkValidity(S))
Shuxin Yangefc4c012013-07-08 17:33:13 +00002845 return S;
2846 else
2847 ValueExprMap.erase(I);
2848 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002849 const SCEV *S = createSCEV(V);
Dan Gohmanc29eeae2010-08-16 16:31:39 +00002850
2851 // The process of creating a SCEV for V may have caused other SCEVs
2852 // to have been created, so it's necessary to insert the new entry
2853 // from scratch, rather than trying to remember the insert position
2854 // above.
Dan Gohman9bad2fb2010-08-27 18:55:03 +00002855 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattnerd934c702004-04-02 20:23:17 +00002856 return S;
2857}
2858
Dan Gohman0a40ad92009-04-16 03:18:22 +00002859/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2860///
Dan Gohmanaf752342009-07-07 17:06:11 +00002861const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00002862 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson53a52212009-07-13 04:09:18 +00002863 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00002864 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00002865
Chris Lattner229907c2011-07-18 04:54:35 +00002866 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00002867 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00002868 return getMulExpr(V,
Owen Anderson5a1acd92009-07-31 20:28:14 +00002869 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman0a40ad92009-04-16 03:18:22 +00002870}
2871
2872/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohmanaf752342009-07-07 17:06:11 +00002873const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00002874 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson542619e2009-07-13 20:58:05 +00002875 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00002876 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00002877
Chris Lattner229907c2011-07-18 04:54:35 +00002878 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00002879 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00002880 const SCEV *AllOnes =
Owen Anderson5a1acd92009-07-31 20:28:14 +00002881 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman0a40ad92009-04-16 03:18:22 +00002882 return getMinusSCEV(AllOnes, V);
2883}
2884
Andrew Trick8b55b732011-03-14 16:50:06 +00002885/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattnerfc877522011-01-09 22:26:35 +00002886const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00002887 SCEV::NoWrapFlags Flags) {
Andrew Tricka34f1b12011-03-15 01:16:14 +00002888 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
2889
Dan Gohman46f00a22010-07-20 16:53:00 +00002890 // Fast path: X - X --> 0.
2891 if (LHS == RHS)
2892 return getConstant(LHS->getType(), 0);
2893
Dan Gohman0a40ad92009-04-16 03:18:22 +00002894 // X - Y --> X + -Y
Andrew Trick8b55b732011-03-14 16:50:06 +00002895 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
Dan Gohman0a40ad92009-04-16 03:18:22 +00002896}
2897
2898/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2899/// input value to the specified type. If the type must be extended, it is zero
2900/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00002901const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00002902ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
2903 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00002904 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2905 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00002906 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002907 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00002908 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002909 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00002910 return getTruncateExpr(V, Ty);
2911 return getZeroExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00002912}
2913
2914/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2915/// input value to the specified type. If the type must be extended, it is sign
2916/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00002917const SCEV *
2918ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattner229907c2011-07-18 04:54:35 +00002919 Type *Ty) {
2920 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00002921 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2922 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00002923 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002924 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00002925 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002926 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00002927 return getTruncateExpr(V, Ty);
2928 return getSignExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00002929}
2930
Dan Gohmane712a2f2009-05-13 03:46:30 +00002931/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2932/// input value to the specified type. If the type must be extended, it is zero
2933/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00002934const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00002935ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
2936 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00002937 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2938 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00002939 "Cannot noop or zero extend with non-integer arguments!");
2940 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2941 "getNoopOrZeroExtend cannot truncate!");
2942 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2943 return V; // No conversion
2944 return getZeroExtendExpr(V, Ty);
2945}
2946
2947/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2948/// input value to the specified type. If the type must be extended, it is sign
2949/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00002950const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00002951ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
2952 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00002953 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2954 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00002955 "Cannot noop or sign extend with non-integer arguments!");
2956 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2957 "getNoopOrSignExtend cannot truncate!");
2958 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2959 return V; // No conversion
2960 return getSignExtendExpr(V, Ty);
2961}
2962
Dan Gohman8db2edc2009-06-13 15:56:47 +00002963/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2964/// the input value to the specified type. If the type must be extended,
2965/// it is extended with unspecified bits. The conversion must not be
2966/// narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00002967const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00002968ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
2969 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00002970 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2971 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman8db2edc2009-06-13 15:56:47 +00002972 "Cannot noop or any extend with non-integer arguments!");
2973 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2974 "getNoopOrAnyExtend cannot truncate!");
2975 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2976 return V; // No conversion
2977 return getAnyExtendExpr(V, Ty);
2978}
2979
Dan Gohmane712a2f2009-05-13 03:46:30 +00002980/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2981/// input value to the specified type. The conversion must not be widening.
Dan Gohmanaf752342009-07-07 17:06:11 +00002982const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00002983ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
2984 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00002985 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2986 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00002987 "Cannot truncate or noop with non-integer arguments!");
2988 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2989 "getTruncateOrNoop cannot extend!");
2990 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2991 return V; // No conversion
2992 return getTruncateExpr(V, Ty);
2993}
2994
Dan Gohman96212b62009-06-22 00:31:57 +00002995/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2996/// the types using zero-extension, and then perform a umax operation
2997/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00002998const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2999 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003000 const SCEV *PromotedLHS = LHS;
3001 const SCEV *PromotedRHS = RHS;
Dan Gohman96212b62009-06-22 00:31:57 +00003002
3003 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3004 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3005 else
3006 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3007
3008 return getUMaxExpr(PromotedLHS, PromotedRHS);
3009}
3010
Dan Gohman2bc22302009-06-22 15:03:27 +00003011/// getUMinFromMismatchedTypes - Promote the operands to the wider of
3012/// the types using zero-extension, and then perform a umin operation
3013/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003014const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3015 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003016 const SCEV *PromotedLHS = LHS;
3017 const SCEV *PromotedRHS = RHS;
Dan Gohman2bc22302009-06-22 15:03:27 +00003018
3019 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3020 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3021 else
3022 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3023
3024 return getUMinExpr(PromotedLHS, PromotedRHS);
3025}
3026
Andrew Trick87716c92011-03-17 23:51:11 +00003027/// getPointerBase - Transitively follow the chain of pointer-type operands
3028/// until reaching a SCEV that does not have a single pointer operand. This
3029/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3030/// but corner cases do exist.
3031const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3032 // A pointer operand may evaluate to a nonpointer expression, such as null.
3033 if (!V->getType()->isPointerTy())
3034 return V;
3035
3036 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3037 return getPointerBase(Cast->getOperand());
3038 }
3039 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
Craig Topper9f008862014-04-15 04:59:12 +00003040 const SCEV *PtrOp = nullptr;
Andrew Trick87716c92011-03-17 23:51:11 +00003041 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
3042 I != E; ++I) {
3043 if ((*I)->getType()->isPointerTy()) {
3044 // Cannot find the base of an expression with multiple pointer operands.
3045 if (PtrOp)
3046 return V;
3047 PtrOp = *I;
3048 }
3049 }
3050 if (!PtrOp)
3051 return V;
3052 return getPointerBase(PtrOp);
3053 }
3054 return V;
3055}
3056
Dan Gohman0b89dff2009-07-25 01:13:03 +00003057/// PushDefUseChildren - Push users of the given Instruction
3058/// onto the given Worklist.
3059static void
3060PushDefUseChildren(Instruction *I,
3061 SmallVectorImpl<Instruction *> &Worklist) {
3062 // Push the def-use children onto the Worklist stack.
Chandler Carruthcdf47882014-03-09 03:16:01 +00003063 for (User *U : I->users())
3064 Worklist.push_back(cast<Instruction>(U));
Dan Gohman0b89dff2009-07-25 01:13:03 +00003065}
3066
3067/// ForgetSymbolicValue - This looks up computed SCEV values for all
3068/// instructions that depend on the given instruction and removes them from
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003069/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003070/// resolution.
Dan Gohmance973df2009-06-24 04:48:43 +00003071void
Dan Gohmana9c205c2010-02-25 06:57:05 +00003072ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohman0b89dff2009-07-25 01:13:03 +00003073 SmallVector<Instruction *, 16> Worklist;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003074 PushDefUseChildren(PN, Worklist);
Chris Lattnerd934c702004-04-02 20:23:17 +00003075
Dan Gohman0b89dff2009-07-25 01:13:03 +00003076 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003077 Visited.insert(PN);
Dan Gohman0b89dff2009-07-25 01:13:03 +00003078 while (!Worklist.empty()) {
Dan Gohmana9c205c2010-02-25 06:57:05 +00003079 Instruction *I = Worklist.pop_back_val();
Dan Gohman0b89dff2009-07-25 01:13:03 +00003080 if (!Visited.insert(I)) continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003081
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003082 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00003083 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003084 if (It != ValueExprMap.end()) {
Dan Gohman761065e2010-11-17 02:44:44 +00003085 const SCEV *Old = It->second;
3086
Dan Gohman0b89dff2009-07-25 01:13:03 +00003087 // Short-circuit the def-use traversal if the symbolic name
3088 // ceases to appear in expressions.
Dan Gohman534749b2010-11-17 22:27:42 +00003089 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohman0b89dff2009-07-25 01:13:03 +00003090 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003091
Dan Gohman0b89dff2009-07-25 01:13:03 +00003092 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohmana9c205c2010-02-25 06:57:05 +00003093 // structure, it's a PHI that's in the progress of being computed
3094 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3095 // additional loop trip count information isn't going to change anything.
3096 // In the second case, createNodeForPHI will perform the necessary
3097 // updates on its own when it gets to that point. In the third, we do
3098 // want to forget the SCEVUnknown.
3099 if (!isa<PHINode>(I) ||
Dan Gohman761065e2010-11-17 02:44:44 +00003100 !isa<SCEVUnknown>(Old) ||
3101 (I != PN && Old == SymName)) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00003102 forgetMemoizedResults(Old);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003103 ValueExprMap.erase(It);
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00003104 }
Dan Gohman0b89dff2009-07-25 01:13:03 +00003105 }
3106
3107 PushDefUseChildren(I, Worklist);
3108 }
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003109}
Chris Lattnerd934c702004-04-02 20:23:17 +00003110
3111/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
3112/// a loop header, making it a potential recurrence, or it doesn't.
3113///
Dan Gohmanaf752342009-07-07 17:06:11 +00003114const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman6635bb22010-04-12 07:49:36 +00003115 if (const Loop *L = LI->getLoopFor(PN->getParent()))
3116 if (L->getHeader() == PN->getParent()) {
3117 // The loop may have multiple entrances or multiple exits; we can analyze
3118 // this phi as an addrec if it has a unique entry value and a unique
3119 // backedge value.
Craig Topper9f008862014-04-15 04:59:12 +00003120 Value *BEValueV = nullptr, *StartValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003121 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3122 Value *V = PN->getIncomingValue(i);
3123 if (L->contains(PN->getIncomingBlock(i))) {
3124 if (!BEValueV) {
3125 BEValueV = V;
3126 } else if (BEValueV != V) {
Craig Topper9f008862014-04-15 04:59:12 +00003127 BEValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003128 break;
3129 }
3130 } else if (!StartValueV) {
3131 StartValueV = V;
3132 } else if (StartValueV != V) {
Craig Topper9f008862014-04-15 04:59:12 +00003133 StartValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003134 break;
3135 }
3136 }
3137 if (BEValueV && StartValueV) {
Chris Lattnerd934c702004-04-02 20:23:17 +00003138 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohmanaf752342009-07-07 17:06:11 +00003139 const SCEV *SymbolicName = getUnknown(PN);
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00003140 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
Chris Lattnerd934c702004-04-02 20:23:17 +00003141 "PHI node already processed?");
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003142 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattnerd934c702004-04-02 20:23:17 +00003143
3144 // Using this symbolic name for the PHI, analyze the value coming around
3145 // the back-edge.
Dan Gohman0b89dff2009-07-25 01:13:03 +00003146 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattnerd934c702004-04-02 20:23:17 +00003147
3148 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3149 // has a special value for the first iteration of the loop.
3150
3151 // If the value coming around the backedge is an add with the symbolic
3152 // value we just inserted, then we found a simple induction variable!
Dan Gohmana30370b2009-05-04 22:02:23 +00003153 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00003154 // If there is a single occurrence of the symbolic value, replace it
3155 // with a recurrence.
3156 unsigned FoundIndex = Add->getNumOperands();
3157 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3158 if (Add->getOperand(i) == SymbolicName)
3159 if (FoundIndex == e) {
3160 FoundIndex = i;
3161 break;
3162 }
3163
3164 if (FoundIndex != Add->getNumOperands()) {
3165 // Create an add with everything but the specified operand.
Dan Gohmanaf752342009-07-07 17:06:11 +00003166 SmallVector<const SCEV *, 8> Ops;
Chris Lattnerd934c702004-04-02 20:23:17 +00003167 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3168 if (i != FoundIndex)
3169 Ops.push_back(Add->getOperand(i));
Dan Gohmanaf752342009-07-07 17:06:11 +00003170 const SCEV *Accum = getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00003171
3172 // This is not a valid addrec if the step amount is varying each
3173 // loop iteration, but is not itself an addrec in this loop.
Dan Gohmanafd6db92010-11-17 21:23:15 +00003174 if (isLoopInvariant(Accum, L) ||
Chris Lattnerd934c702004-04-02 20:23:17 +00003175 (isa<SCEVAddRecExpr>(Accum) &&
3176 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003177 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
Dan Gohman51ad99d2010-01-21 02:09:26 +00003178
3179 // If the increment doesn't overflow, then neither the addrec nor
3180 // the post-increment will overflow.
3181 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3182 if (OBO->hasNoUnsignedWrap())
Andrew Trick8b55b732011-03-14 16:50:06 +00003183 Flags = setFlags(Flags, SCEV::FlagNUW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00003184 if (OBO->hasNoSignedWrap())
Andrew Trick8b55b732011-03-14 16:50:06 +00003185 Flags = setFlags(Flags, SCEV::FlagNSW);
Benjamin Kramer6094f302013-10-28 07:30:06 +00003186 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003187 // If the increment is an inbounds GEP, then we know the address
3188 // space cannot be wrapped around. We cannot make any guarantee
3189 // about signed or unsigned overflow because pointers are
3190 // unsigned but we may have a negative index from the base
Benjamin Kramer6094f302013-10-28 07:30:06 +00003191 // pointer. We can guarantee that no unsigned wrap occurs if the
3192 // indices form a positive value.
3193 if (GEP->isInBounds()) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00003194 Flags = setFlags(Flags, SCEV::FlagNW);
Benjamin Kramer6094f302013-10-28 07:30:06 +00003195
3196 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3197 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3198 Flags = setFlags(Flags, SCEV::FlagNUW);
3199 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00003200 } else if (const SubOperator *OBO =
3201 dyn_cast<SubOperator>(BEValueV)) {
3202 if (OBO->hasNoUnsignedWrap())
3203 Flags = setFlags(Flags, SCEV::FlagNUW);
3204 if (OBO->hasNoSignedWrap())
3205 Flags = setFlags(Flags, SCEV::FlagNSW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00003206 }
3207
Dan Gohman6635bb22010-04-12 07:49:36 +00003208 const SCEV *StartVal = getSCEV(StartValueV);
Andrew Trick8b55b732011-03-14 16:50:06 +00003209 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
Dan Gohman62ef6a72009-07-25 01:22:26 +00003210
Dan Gohman51ad99d2010-01-21 02:09:26 +00003211 // Since the no-wrap flags are on the increment, they apply to the
3212 // post-incremented value as well.
Dan Gohmanafd6db92010-11-17 21:23:15 +00003213 if (isLoopInvariant(Accum, L))
Dan Gohman51ad99d2010-01-21 02:09:26 +00003214 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
Andrew Trick8b55b732011-03-14 16:50:06 +00003215 Accum, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00003216
3217 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003218 // to be symbolic. We now need to go back and purge all of the
3219 // entries for the scalars that use the symbolic expression.
3220 ForgetSymbolicName(PN, SymbolicName);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003221 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattnerd934c702004-04-02 20:23:17 +00003222 return PHISCEV;
3223 }
3224 }
Dan Gohmana30370b2009-05-04 22:02:23 +00003225 } else if (const SCEVAddRecExpr *AddRec =
3226 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003227 // Otherwise, this could be a loop like this:
3228 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3229 // In this case, j = {1,+,1} and BEValue is j.
3230 // Because the other in-value of i (0) fits the evolution of BEValue
3231 // i really is an addrec evolution.
3232 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman6635bb22010-04-12 07:49:36 +00003233 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003234
3235 // If StartVal = j.start - j.stride, we can use StartVal as the
3236 // initial step of the addrec evolution.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003237 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman068b7932010-04-11 23:44:58 +00003238 AddRec->getOperand(1))) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003239 // FIXME: For constant StartVal, we should be able to infer
3240 // no-wrap flags.
Dan Gohmanaf752342009-07-07 17:06:11 +00003241 const SCEV *PHISCEV =
Andrew Trick8b55b732011-03-14 16:50:06 +00003242 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3243 SCEV::FlagAnyWrap);
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003244
3245 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003246 // to be symbolic. We now need to go back and purge all of the
3247 // entries for the scalars that use the symbolic expression.
3248 ForgetSymbolicName(PN, SymbolicName);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003249 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003250 return PHISCEV;
3251 }
3252 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003253 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003254 }
Dan Gohman6635bb22010-04-12 07:49:36 +00003255 }
Misha Brukman01808ca2005-04-21 21:13:18 +00003256
Dan Gohmana9c205c2010-02-25 06:57:05 +00003257 // If the PHI has a single incoming value, follow that value, unless the
3258 // PHI's incoming blocks are in a different loop, in which case doing so
3259 // risks breaking LCSSA form. Instcombine would normally zap these, but
3260 // it doesn't have DominatorTree information, so it may miss cases.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003261 if (Value *V = SimplifyInstruction(PN, DL, TLI, DT))
Duncan Sandsaef146b2010-11-18 19:59:41 +00003262 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohmana9c205c2010-02-25 06:57:05 +00003263 return getSCEV(V);
Duncan Sands39d771312010-11-17 20:49:12 +00003264
Chris Lattnerd934c702004-04-02 20:23:17 +00003265 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003266 return getUnknown(PN);
Chris Lattnerd934c702004-04-02 20:23:17 +00003267}
3268
Dan Gohmanee750d12009-05-08 20:26:55 +00003269/// createNodeForGEP - Expand GEP instructions into add and multiply
3270/// operations. This allows them to be analyzed by regular SCEV code.
3271///
Dan Gohmanb256ccf2009-12-18 02:09:29 +00003272const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Chris Lattner229907c2011-07-18 04:54:35 +00003273 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohman2173bd32009-05-08 20:36:47 +00003274 Value *Base = GEP->getOperand(0);
Dan Gohman30f24fe2009-05-09 00:14:52 +00003275 // Don't attempt to analyze GEPs over unsized objects.
Matt Arsenault404c60a2013-10-21 19:43:56 +00003276 if (!Base->getType()->getPointerElementType()->isSized())
Dan Gohman30f24fe2009-05-09 00:14:52 +00003277 return getUnknown(GEP);
Matt Arsenault4c265902013-09-27 22:38:23 +00003278
3279 // Don't blindly transfer the inbounds flag from the GEP instruction to the
3280 // Add expression, because the Instruction may be guarded by control flow
3281 // and the no-overflow bits may not be valid for the expression in any
3282 // context.
3283 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3284
Dan Gohman1d2ded72010-05-03 22:09:21 +00003285 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohman2173bd32009-05-08 20:36:47 +00003286 gep_type_iterator GTI = gep_type_begin(GEP);
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +00003287 for (GetElementPtrInst::op_iterator I = std::next(GEP->op_begin()),
Dan Gohman2173bd32009-05-08 20:36:47 +00003288 E = GEP->op_end();
Dan Gohmanee750d12009-05-08 20:26:55 +00003289 I != E; ++I) {
3290 Value *Index = *I;
3291 // Compute the (potentially symbolic) offset in bytes for this index.
Chris Lattner229907c2011-07-18 04:54:35 +00003292 if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
Dan Gohmanee750d12009-05-08 20:26:55 +00003293 // For a struct, add the member offset.
Dan Gohmanee750d12009-05-08 20:26:55 +00003294 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003295 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
Dan Gohman16206132010-06-30 07:16:37 +00003296
Dan Gohman16206132010-06-30 07:16:37 +00003297 // Add the field offset to the running total offset.
Dan Gohmanc0cca7f2010-06-30 17:27:11 +00003298 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohmanee750d12009-05-08 20:26:55 +00003299 } else {
3300 // For an array, add the element offset, explicitly scaled.
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003301 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, *GTI);
Dan Gohman16206132010-06-30 07:16:37 +00003302 const SCEV *IndexS = getSCEV(Index);
Dan Gohman8b0a4192010-03-01 17:49:51 +00003303 // Getelementptr indices are signed.
Dan Gohman16206132010-06-30 07:16:37 +00003304 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3305
Dan Gohman16206132010-06-30 07:16:37 +00003306 // Multiply the index by the element size to compute the element offset.
Matt Arsenault4c265902013-09-27 22:38:23 +00003307 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, Wrap);
Dan Gohman16206132010-06-30 07:16:37 +00003308
3309 // Add the element offset to the running total offset.
Dan Gohmanc0cca7f2010-06-30 17:27:11 +00003310 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohmanee750d12009-05-08 20:26:55 +00003311 }
3312 }
Dan Gohman16206132010-06-30 07:16:37 +00003313
3314 // Get the SCEV for the GEP base.
3315 const SCEV *BaseS = getSCEV(Base);
3316
Dan Gohman16206132010-06-30 07:16:37 +00003317 // Add the total offset from all the GEP indices to the base.
Matt Arsenault4c265902013-09-27 22:38:23 +00003318 return getAddExpr(BaseS, TotalOffset, Wrap);
Dan Gohmanee750d12009-05-08 20:26:55 +00003319}
3320
Nick Lewycky3783b462007-11-22 07:59:40 +00003321/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3322/// guaranteed to end in (at every loop iteration). It is, at the same time,
3323/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3324/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003325uint32_t
Dan Gohmanaf752342009-07-07 17:06:11 +00003326ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003327 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner69ec1ec2007-11-23 22:36:49 +00003328 return C->getValue()->getValue().countTrailingZeros();
Chris Lattner49b090e2006-12-12 02:26:09 +00003329
Dan Gohmana30370b2009-05-04 22:02:23 +00003330 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohmanc702fc02009-06-19 23:29:04 +00003331 return std::min(GetMinTrailingZeros(T->getOperand()),
3332 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky3783b462007-11-22 07:59:40 +00003333
Dan Gohmana30370b2009-05-04 22:02:23 +00003334 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00003335 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3336 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3337 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00003338 }
3339
Dan Gohmana30370b2009-05-04 22:02:23 +00003340 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00003341 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3342 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3343 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00003344 }
3345
Dan Gohmana30370b2009-05-04 22:02:23 +00003346 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003347 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003348 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00003349 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003350 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00003351 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003352 }
3353
Dan Gohmana30370b2009-05-04 22:02:23 +00003354 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003355 // The result is the sum of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003356 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3357 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky3783b462007-11-22 07:59:40 +00003358 for (unsigned i = 1, e = M->getNumOperands();
3359 SumOpRes != BitWidth && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003360 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky3783b462007-11-22 07:59:40 +00003361 BitWidth);
3362 return SumOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003363 }
Nick Lewycky3783b462007-11-22 07:59:40 +00003364
Dan Gohmana30370b2009-05-04 22:02:23 +00003365 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003366 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003367 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00003368 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003369 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00003370 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003371 }
Nick Lewycky3783b462007-11-22 07:59:40 +00003372
Dan Gohmana30370b2009-05-04 22:02:23 +00003373 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003374 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003375 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003376 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003377 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003378 return MinOpRes;
3379 }
3380
Dan Gohmana30370b2009-05-04 22:02:23 +00003381 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003382 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003383 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003384 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003385 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003386 return MinOpRes;
3387 }
3388
Dan Gohmanc702fc02009-06-19 23:29:04 +00003389 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3390 // For a SCEVUnknown, ask ValueTracking.
3391 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohmanc702fc02009-06-19 23:29:04 +00003392 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Jay Foada0653a32014-05-14 21:14:37 +00003393 computeKnownBits(U->getValue(), Zeros, Ones);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003394 return Zeros.countTrailingOnes();
3395 }
3396
3397 // SCEVUDivExpr
Nick Lewycky3783b462007-11-22 07:59:40 +00003398 return 0;
Chris Lattner49b090e2006-12-12 02:26:09 +00003399}
Chris Lattnerd934c702004-04-02 20:23:17 +00003400
Dan Gohmane65c9172009-07-13 21:35:55 +00003401/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3402///
3403ConstantRange
3404ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman761065e2010-11-17 02:44:44 +00003405 // See if we've computed this range already.
3406 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3407 if (I != UnsignedRanges.end())
3408 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00003409
3410 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohmaned756312010-11-17 20:23:08 +00003411 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003412
Dan Gohman85be4332010-01-26 19:19:05 +00003413 unsigned BitWidth = getTypeSizeInBits(S->getType());
3414 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3415
3416 // If the value has known zeros, the maximum unsigned value will have those
3417 // known zeros as well.
3418 uint32_t TZ = GetMinTrailingZeros(S);
3419 if (TZ != 0)
3420 ConservativeResult =
3421 ConstantRange(APInt::getMinValue(BitWidth),
3422 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3423
Dan Gohmane65c9172009-07-13 21:35:55 +00003424 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3425 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3426 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3427 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003428 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003429 }
3430
3431 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3432 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3433 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3434 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003435 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003436 }
3437
3438 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3439 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3440 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3441 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003442 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003443 }
3444
3445 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3446 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3447 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3448 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003449 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003450 }
3451
3452 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3453 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3454 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohmaned756312010-11-17 20:23:08 +00003455 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003456 }
3457
3458 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3459 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003460 return setUnsignedRange(ZExt,
3461 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003462 }
3463
3464 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3465 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003466 return setUnsignedRange(SExt,
3467 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003468 }
3469
3470 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3471 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003472 return setUnsignedRange(Trunc,
3473 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003474 }
3475
Dan Gohmane65c9172009-07-13 21:35:55 +00003476 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003477 // If there's no unsigned wrap, the value will never be less than its
3478 // initial value.
Andrew Trick8b55b732011-03-14 16:50:06 +00003479 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohman51ad99d2010-01-21 02:09:26 +00003480 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanebbd05f2010-04-12 23:08:18 +00003481 if (!C->getValue()->isZero())
Dan Gohmanae4a4142010-04-11 22:12:18 +00003482 ConservativeResult =
Dan Gohman9396b422010-06-30 06:58:35 +00003483 ConservativeResult.intersectWith(
3484 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003485
3486 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00003487 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00003488 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00003489 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00003490 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3491 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohmane65c9172009-07-13 21:35:55 +00003492 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3493
3494 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00003495 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmane65c9172009-07-13 21:35:55 +00003496
3497 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003498 ConstantRange StepRange = getSignedRange(Step);
3499 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3500 ConstantRange EndRange =
3501 StartRange.add(MaxBECountRange.multiply(StepRange));
3502
3503 // Check for overflow. This must be done with ConstantRange arithmetic
3504 // because we could be called from within the ScalarEvolution overflow
3505 // checking code.
3506 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3507 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3508 ConstantRange ExtMaxBECountRange =
3509 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3510 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3511 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3512 ExtEndRange)
Dan Gohmaned756312010-11-17 20:23:08 +00003513 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003514
Dan Gohmane65c9172009-07-13 21:35:55 +00003515 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3516 EndRange.getUnsignedMin());
3517 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3518 EndRange.getUnsignedMax());
3519 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohmaned756312010-11-17 20:23:08 +00003520 return setUnsignedRange(AddRec, ConservativeResult);
3521 return setUnsignedRange(AddRec,
3522 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003523 }
3524 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003525
Dan Gohmaned756312010-11-17 20:23:08 +00003526 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003527 }
3528
3529 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3530 // For a SCEVUnknown, ask ValueTracking.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003531 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Jay Foada0653a32014-05-14 21:14:37 +00003532 computeKnownBits(U->getValue(), Zeros, Ones, DL);
Dan Gohman1a7ab942009-07-20 22:34:18 +00003533 if (Ones == ~Zeros + 1)
Dan Gohmaned756312010-11-17 20:23:08 +00003534 return setUnsignedRange(U, ConservativeResult);
3535 return setUnsignedRange(U,
3536 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003537 }
3538
Dan Gohmaned756312010-11-17 20:23:08 +00003539 return setUnsignedRange(S, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003540}
3541
Dan Gohmane65c9172009-07-13 21:35:55 +00003542/// getSignedRange - Determine the signed range for a particular SCEV.
3543///
3544ConstantRange
3545ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman3ac8cd62011-01-24 17:54:18 +00003546 // See if we've computed this range already.
Dan Gohman761065e2010-11-17 02:44:44 +00003547 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3548 if (I != SignedRanges.end())
3549 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00003550
Dan Gohmane65c9172009-07-13 21:35:55 +00003551 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohmaned756312010-11-17 20:23:08 +00003552 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohmane65c9172009-07-13 21:35:55 +00003553
Dan Gohman51aaf022010-01-26 04:40:18 +00003554 unsigned BitWidth = getTypeSizeInBits(S->getType());
3555 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3556
3557 // If the value has known zeros, the maximum signed value will have those
3558 // known zeros as well.
3559 uint32_t TZ = GetMinTrailingZeros(S);
3560 if (TZ != 0)
3561 ConservativeResult =
3562 ConstantRange(APInt::getSignedMinValue(BitWidth),
3563 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3564
Dan Gohmane65c9172009-07-13 21:35:55 +00003565 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3566 ConstantRange X = getSignedRange(Add->getOperand(0));
3567 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3568 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003569 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003570 }
3571
Dan Gohmane65c9172009-07-13 21:35:55 +00003572 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3573 ConstantRange X = getSignedRange(Mul->getOperand(0));
3574 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3575 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003576 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003577 }
3578
Dan Gohmane65c9172009-07-13 21:35:55 +00003579 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3580 ConstantRange X = getSignedRange(SMax->getOperand(0));
3581 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3582 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003583 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003584 }
Dan Gohmand261d272009-06-24 01:05:09 +00003585
Dan Gohmane65c9172009-07-13 21:35:55 +00003586 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3587 ConstantRange X = getSignedRange(UMax->getOperand(0));
3588 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3589 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003590 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003591 }
Dan Gohmand261d272009-06-24 01:05:09 +00003592
Dan Gohmane65c9172009-07-13 21:35:55 +00003593 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3594 ConstantRange X = getSignedRange(UDiv->getLHS());
3595 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohmaned756312010-11-17 20:23:08 +00003596 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003597 }
Dan Gohmand261d272009-06-24 01:05:09 +00003598
Dan Gohmane65c9172009-07-13 21:35:55 +00003599 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3600 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003601 return setSignedRange(ZExt,
3602 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003603 }
3604
3605 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3606 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003607 return setSignedRange(SExt,
3608 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003609 }
3610
3611 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3612 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003613 return setSignedRange(Trunc,
3614 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003615 }
3616
Dan Gohmane65c9172009-07-13 21:35:55 +00003617 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003618 // If there's no signed wrap, and all the operands have the same sign or
3619 // zero, the value won't ever change sign.
Andrew Trick8b55b732011-03-14 16:50:06 +00003620 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003621 bool AllNonNeg = true;
3622 bool AllNonPos = true;
3623 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3624 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3625 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3626 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003627 if (AllNonNeg)
Dan Gohman51aaf022010-01-26 04:40:18 +00003628 ConservativeResult = ConservativeResult.intersectWith(
3629 ConstantRange(APInt(BitWidth, 0),
3630 APInt::getSignedMinValue(BitWidth)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00003631 else if (AllNonPos)
Dan Gohman51aaf022010-01-26 04:40:18 +00003632 ConservativeResult = ConservativeResult.intersectWith(
3633 ConstantRange(APInt::getSignedMinValue(BitWidth),
3634 APInt(BitWidth, 1)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00003635 }
Dan Gohmane65c9172009-07-13 21:35:55 +00003636
3637 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00003638 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00003639 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00003640 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00003641 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3642 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohmane65c9172009-07-13 21:35:55 +00003643 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3644
3645 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00003646 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmane65c9172009-07-13 21:35:55 +00003647
3648 ConstantRange StartRange = getSignedRange(Start);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003649 ConstantRange StepRange = getSignedRange(Step);
3650 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3651 ConstantRange EndRange =
3652 StartRange.add(MaxBECountRange.multiply(StepRange));
3653
3654 // Check for overflow. This must be done with ConstantRange arithmetic
3655 // because we could be called from within the ScalarEvolution overflow
3656 // checking code.
3657 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3658 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3659 ConstantRange ExtMaxBECountRange =
3660 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3661 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3662 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3663 ExtEndRange)
Dan Gohmaned756312010-11-17 20:23:08 +00003664 return setSignedRange(AddRec, ConservativeResult);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003665
Dan Gohmane65c9172009-07-13 21:35:55 +00003666 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3667 EndRange.getSignedMin());
3668 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3669 EndRange.getSignedMax());
3670 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohmaned756312010-11-17 20:23:08 +00003671 return setSignedRange(AddRec, ConservativeResult);
3672 return setSignedRange(AddRec,
3673 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohmand261d272009-06-24 01:05:09 +00003674 }
Dan Gohmand261d272009-06-24 01:05:09 +00003675 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003676
Dan Gohmaned756312010-11-17 20:23:08 +00003677 return setSignedRange(AddRec, ConservativeResult);
Dan Gohmand261d272009-06-24 01:05:09 +00003678 }
3679
Dan Gohmanc702fc02009-06-19 23:29:04 +00003680 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3681 // For a SCEVUnknown, ask ValueTracking.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003682 if (!U->getValue()->getType()->isIntegerTy() && !DL)
Dan Gohmaned756312010-11-17 20:23:08 +00003683 return setSignedRange(U, ConservativeResult);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003684 unsigned NS = ComputeNumSignBits(U->getValue(), DL);
Hal Finkelff666bd2013-07-09 18:16:16 +00003685 if (NS <= 1)
Dan Gohmaned756312010-11-17 20:23:08 +00003686 return setSignedRange(U, ConservativeResult);
3687 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohmane65c9172009-07-13 21:35:55 +00003688 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohmaned756312010-11-17 20:23:08 +00003689 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003690 }
3691
Dan Gohmaned756312010-11-17 20:23:08 +00003692 return setSignedRange(S, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003693}
3694
Chris Lattnerd934c702004-04-02 20:23:17 +00003695/// createSCEV - We know that there is no SCEV for the specified value.
3696/// Analyze the expression.
3697///
Dan Gohmanaf752342009-07-07 17:06:11 +00003698const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003699 if (!isSCEVable(V->getType()))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003700 return getUnknown(V);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003701
Dan Gohman05e89732008-06-22 19:56:46 +00003702 unsigned Opcode = Instruction::UserOp1;
Dan Gohman69451a02010-03-09 23:46:50 +00003703 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman05e89732008-06-22 19:56:46 +00003704 Opcode = I->getOpcode();
Dan Gohman69451a02010-03-09 23:46:50 +00003705
3706 // Don't attempt to analyze instructions in blocks that aren't
3707 // reachable. Such instructions don't matter, and they aren't required
3708 // to obey basic rules for definitions dominating uses which this
3709 // analysis depends on.
3710 if (!DT->isReachableFromEntry(I->getParent()))
3711 return getUnknown(V);
3712 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman05e89732008-06-22 19:56:46 +00003713 Opcode = CE->getOpcode();
Dan Gohmanf436bac2009-06-24 00:54:57 +00003714 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3715 return getConstant(CI);
3716 else if (isa<ConstantPointerNull>(V))
Dan Gohman1d2ded72010-05-03 22:09:21 +00003717 return getConstant(V->getType(), 0);
Dan Gohmanf161e06e2009-08-25 17:49:57 +00003718 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3719 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman05e89732008-06-22 19:56:46 +00003720 else
Dan Gohmanc8e23622009-04-21 23:15:49 +00003721 return getUnknown(V);
Chris Lattnera3e0bb42007-04-02 05:41:38 +00003722
Dan Gohman80ca01c2009-07-17 20:47:02 +00003723 Operator *U = cast<Operator>(V);
Dan Gohman05e89732008-06-22 19:56:46 +00003724 switch (Opcode) {
Dan Gohmane5fb1032010-08-16 16:03:49 +00003725 case Instruction::Add: {
3726 // The simple thing to do would be to just call getSCEV on both operands
3727 // and call getAddExpr with the result. However if we're looking at a
3728 // bunch of things all added together, this can be quite inefficient,
3729 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3730 // Instead, gather up all the operands and make a single getAddExpr call.
3731 // LLVM IR canonical form means we need only traverse the left operands.
Andrew Trickd25089f2011-11-29 02:16:38 +00003732 //
3733 // Don't apply this instruction's NSW or NUW flags to the new
3734 // expression. The instruction may be guarded by control flow that the
3735 // no-wrap behavior depends on. Non-control-equivalent instructions can be
3736 // mapped to the same SCEV expression, and it would be incorrect to transfer
3737 // NSW/NUW semantics to those operations.
Dan Gohmane5fb1032010-08-16 16:03:49 +00003738 SmallVector<const SCEV *, 4> AddOps;
3739 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman47308d52010-08-31 22:53:17 +00003740 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3741 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3742 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3743 break;
Dan Gohmane5fb1032010-08-16 16:03:49 +00003744 U = cast<Operator>(Op);
Dan Gohman47308d52010-08-31 22:53:17 +00003745 const SCEV *Op1 = getSCEV(U->getOperand(1));
3746 if (Opcode == Instruction::Sub)
3747 AddOps.push_back(getNegativeSCEV(Op1));
3748 else
3749 AddOps.push_back(Op1);
Dan Gohmane5fb1032010-08-16 16:03:49 +00003750 }
3751 AddOps.push_back(getSCEV(U->getOperand(0)));
Andrew Trickd25089f2011-11-29 02:16:38 +00003752 return getAddExpr(AddOps);
Dan Gohmane5fb1032010-08-16 16:03:49 +00003753 }
3754 case Instruction::Mul: {
Andrew Trickd25089f2011-11-29 02:16:38 +00003755 // Don't transfer NSW/NUW for the same reason as AddExpr.
Dan Gohmane5fb1032010-08-16 16:03:49 +00003756 SmallVector<const SCEV *, 4> MulOps;
3757 MulOps.push_back(getSCEV(U->getOperand(1)));
3758 for (Value *Op = U->getOperand(0);
Andrew Trick2a3b7162011-03-09 17:23:39 +00003759 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
Dan Gohmane5fb1032010-08-16 16:03:49 +00003760 Op = U->getOperand(0)) {
3761 U = cast<Operator>(Op);
3762 MulOps.push_back(getSCEV(U->getOperand(1)));
3763 }
3764 MulOps.push_back(getSCEV(U->getOperand(0)));
3765 return getMulExpr(MulOps);
3766 }
Dan Gohman05e89732008-06-22 19:56:46 +00003767 case Instruction::UDiv:
Dan Gohmanc8e23622009-04-21 23:15:49 +00003768 return getUDivExpr(getSCEV(U->getOperand(0)),
3769 getSCEV(U->getOperand(1)));
Dan Gohman05e89732008-06-22 19:56:46 +00003770 case Instruction::Sub:
Dan Gohmanc8e23622009-04-21 23:15:49 +00003771 return getMinusSCEV(getSCEV(U->getOperand(0)),
3772 getSCEV(U->getOperand(1)));
Dan Gohman0ec05372009-04-21 02:26:00 +00003773 case Instruction::And:
3774 // For an expression like x&255 that merely masks off the high bits,
3775 // use zext(trunc(x)) as the SCEV expression.
3776 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmandf199482009-04-25 17:05:40 +00003777 if (CI->isNullValue())
3778 return getSCEV(U->getOperand(1));
Dan Gohman05c1d372009-04-27 01:41:10 +00003779 if (CI->isAllOnesValue())
3780 return getSCEV(U->getOperand(0));
Dan Gohman0ec05372009-04-21 02:26:00 +00003781 const APInt &A = CI->getValue();
Dan Gohman1ee696d2009-06-16 19:52:01 +00003782
3783 // Instcombine's ShrinkDemandedConstant may strip bits out of
3784 // constants, obscuring what would otherwise be a low-bits mask.
Jay Foada0653a32014-05-14 21:14:37 +00003785 // Use computeKnownBits to compute what ShrinkDemandedConstant
Dan Gohman1ee696d2009-06-16 19:52:01 +00003786 // knew about to reconstruct a low-bits mask value.
3787 unsigned LZ = A.countLeadingZeros();
Nick Lewycky31eaca52014-01-27 10:04:03 +00003788 unsigned TZ = A.countTrailingZeros();
Dan Gohman1ee696d2009-06-16 19:52:01 +00003789 unsigned BitWidth = A.getBitWidth();
Dan Gohman1ee696d2009-06-16 19:52:01 +00003790 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Jay Foada0653a32014-05-14 21:14:37 +00003791 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL);
Dan Gohman1ee696d2009-06-16 19:52:01 +00003792
Nick Lewycky31eaca52014-01-27 10:04:03 +00003793 APInt EffectiveMask =
3794 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
3795 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
3796 const SCEV *MulCount = getConstant(
3797 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
3798 return getMulExpr(
3799 getZeroExtendExpr(
3800 getTruncateExpr(
3801 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
3802 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
3803 U->getType()),
3804 MulCount);
3805 }
Dan Gohman0ec05372009-04-21 02:26:00 +00003806 }
3807 break;
Dan Gohman1ee696d2009-06-16 19:52:01 +00003808
Dan Gohman05e89732008-06-22 19:56:46 +00003809 case Instruction::Or:
3810 // If the RHS of the Or is a constant, we may have something like:
3811 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3812 // optimizations will transparently handle this case.
3813 //
3814 // In order for this transformation to be safe, the LHS must be of the
3815 // form X*(2^n) and the Or constant must be less than 2^n.
3816 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003817 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman05e89732008-06-22 19:56:46 +00003818 const APInt &CIVal = CI->getValue();
Dan Gohmanc702fc02009-06-19 23:29:04 +00003819 if (GetMinTrailingZeros(LHS) >=
Dan Gohman36bad002009-09-17 18:05:20 +00003820 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3821 // Build a plain add SCEV.
3822 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3823 // If the LHS of the add was an addrec and it has no-wrap flags,
3824 // transfer the no-wrap flags, since an or won't introduce a wrap.
3825 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3826 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick8b55b732011-03-14 16:50:06 +00003827 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
3828 OldAR->getNoWrapFlags());
Dan Gohman36bad002009-09-17 18:05:20 +00003829 }
3830 return S;
3831 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003832 }
Dan Gohman05e89732008-06-22 19:56:46 +00003833 break;
3834 case Instruction::Xor:
Dan Gohman05e89732008-06-22 19:56:46 +00003835 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00003836 // If the RHS of the xor is a signbit, then this is just an add.
3837 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman05e89732008-06-22 19:56:46 +00003838 if (CI->getValue().isSignBit())
Dan Gohmanc8e23622009-04-21 23:15:49 +00003839 return getAddExpr(getSCEV(U->getOperand(0)),
3840 getSCEV(U->getOperand(1)));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00003841
3842 // If the RHS of xor is -1, then this is a not operation.
Dan Gohmand277a1e2009-05-18 16:17:44 +00003843 if (CI->isAllOnesValue())
Dan Gohmanc8e23622009-04-21 23:15:49 +00003844 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman6350296e2009-05-18 16:29:04 +00003845
3846 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3847 // This is a variant of the check for xor with -1, and it handles
3848 // the case where instcombine has trimmed non-demanded bits out
3849 // of an xor with -1.
3850 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3851 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3852 if (BO->getOpcode() == Instruction::And &&
3853 LCI->getValue() == CI->getValue())
3854 if (const SCEVZeroExtendExpr *Z =
Dan Gohmanb50f5a42009-06-17 01:22:39 +00003855 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattner229907c2011-07-18 04:54:35 +00003856 Type *UTy = U->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00003857 const SCEV *Z0 = Z->getOperand();
Chris Lattner229907c2011-07-18 04:54:35 +00003858 Type *Z0Ty = Z0->getType();
Dan Gohmaneddf7712009-06-18 00:00:20 +00003859 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3860
Dan Gohman8b0a4192010-03-01 17:49:51 +00003861 // If C is a low-bits mask, the zero extend is serving to
Dan Gohmaneddf7712009-06-18 00:00:20 +00003862 // mask off the high bits. Complement the operand and
3863 // re-apply the zext.
3864 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3865 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3866
3867 // If C is a single bit, it may be in the sign-bit position
3868 // before the zero-extend. In this case, represent the xor
3869 // using an add, which is equivalent, and re-apply the zext.
Jay Foad583abbc2010-12-07 08:25:19 +00003870 APInt Trunc = CI->getValue().trunc(Z0TySize);
3871 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohmaneddf7712009-06-18 00:00:20 +00003872 Trunc.isSignBit())
3873 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3874 UTy);
Dan Gohmanb50f5a42009-06-17 01:22:39 +00003875 }
Dan Gohman05e89732008-06-22 19:56:46 +00003876 }
3877 break;
3878
3879 case Instruction::Shl:
3880 // Turn shift left of a constant amount into a multiply.
3881 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003882 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00003883
3884 // If the shift count is not less than the bitwidth, the result of
3885 // the shift is undefined. Don't try to analyze it, because the
3886 // resolution chosen here may differ from the resolution chosen in
3887 // other parts of the compiler.
3888 if (SA->getValue().uge(BitWidth))
3889 break;
3890
Owen Andersonedb4a702009-07-24 23:12:02 +00003891 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00003892 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00003893 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman05e89732008-06-22 19:56:46 +00003894 }
3895 break;
3896
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00003897 case Instruction::LShr:
Nick Lewycky52348302009-01-13 09:18:58 +00003898 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00003899 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003900 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00003901
3902 // If the shift count is not less than the bitwidth, the result of
3903 // the shift is undefined. Don't try to analyze it, because the
3904 // resolution chosen here may differ from the resolution chosen in
3905 // other parts of the compiler.
3906 if (SA->getValue().uge(BitWidth))
3907 break;
3908
Owen Andersonedb4a702009-07-24 23:12:02 +00003909 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00003910 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00003911 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00003912 }
3913 break;
3914
Dan Gohman0ec05372009-04-21 02:26:00 +00003915 case Instruction::AShr:
3916 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3917 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanacd700a2010-04-22 01:35:11 +00003918 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman0ec05372009-04-21 02:26:00 +00003919 if (L->getOpcode() == Instruction::Shl &&
3920 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00003921 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3922
3923 // If the shift count is not less than the bitwidth, the result of
3924 // the shift is undefined. Don't try to analyze it, because the
3925 // resolution chosen here may differ from the resolution chosen in
3926 // other parts of the compiler.
3927 if (CI->getValue().uge(BitWidth))
3928 break;
3929
Dan Gohmandf199482009-04-25 17:05:40 +00003930 uint64_t Amt = BitWidth - CI->getZExtValue();
3931 if (Amt == BitWidth)
3932 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman0ec05372009-04-21 02:26:00 +00003933 return
Dan Gohmanc8e23622009-04-21 23:15:49 +00003934 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanacd700a2010-04-22 01:35:11 +00003935 IntegerType::get(getContext(),
3936 Amt)),
3937 U->getType());
Dan Gohman0ec05372009-04-21 02:26:00 +00003938 }
3939 break;
3940
Dan Gohman05e89732008-06-22 19:56:46 +00003941 case Instruction::Trunc:
Dan Gohmanc8e23622009-04-21 23:15:49 +00003942 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00003943
3944 case Instruction::ZExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00003945 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00003946
3947 case Instruction::SExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00003948 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00003949
3950 case Instruction::BitCast:
3951 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003952 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman05e89732008-06-22 19:56:46 +00003953 return getSCEV(U->getOperand(0));
3954 break;
3955
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003956 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3957 // lead to pointer expressions which cannot safely be expanded to GEPs,
3958 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3959 // simplifying integer expressions.
Dan Gohman0a40ad92009-04-16 03:18:22 +00003960
Dan Gohmanee750d12009-05-08 20:26:55 +00003961 case Instruction::GetElementPtr:
Dan Gohmanb256ccf2009-12-18 02:09:29 +00003962 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003963
Dan Gohman05e89732008-06-22 19:56:46 +00003964 case Instruction::PHI:
3965 return createNodeForPHI(cast<PHINode>(U));
3966
3967 case Instruction::Select:
3968 // This could be a smax or umax that was lowered earlier.
3969 // Try to recover it.
3970 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3971 Value *LHS = ICI->getOperand(0);
3972 Value *RHS = ICI->getOperand(1);
3973 switch (ICI->getPredicate()) {
3974 case ICmpInst::ICMP_SLT:
3975 case ICmpInst::ICMP_SLE:
3976 std::swap(LHS, RHS);
3977 // fall through
3978 case ICmpInst::ICMP_SGT:
3979 case ICmpInst::ICMP_SGE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00003980 // a >s b ? a+x : b+x -> smax(a, b)+x
3981 // a >s b ? b+x : a+x -> smin(a, b)+x
3982 if (LHS->getType() == U->getType()) {
3983 const SCEV *LS = getSCEV(LHS);
3984 const SCEV *RS = getSCEV(RHS);
3985 const SCEV *LA = getSCEV(U->getOperand(1));
3986 const SCEV *RA = getSCEV(U->getOperand(2));
3987 const SCEV *LDiff = getMinusSCEV(LA, LS);
3988 const SCEV *RDiff = getMinusSCEV(RA, RS);
3989 if (LDiff == RDiff)
3990 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3991 LDiff = getMinusSCEV(LA, RS);
3992 RDiff = getMinusSCEV(RA, LS);
3993 if (LDiff == RDiff)
3994 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3995 }
Dan Gohman05e89732008-06-22 19:56:46 +00003996 break;
3997 case ICmpInst::ICMP_ULT:
3998 case ICmpInst::ICMP_ULE:
3999 std::swap(LHS, RHS);
4000 // fall through
4001 case ICmpInst::ICMP_UGT:
4002 case ICmpInst::ICMP_UGE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004003 // a >u b ? a+x : b+x -> umax(a, b)+x
4004 // a >u b ? b+x : a+x -> umin(a, b)+x
4005 if (LHS->getType() == U->getType()) {
4006 const SCEV *LS = getSCEV(LHS);
4007 const SCEV *RS = getSCEV(RHS);
4008 const SCEV *LA = getSCEV(U->getOperand(1));
4009 const SCEV *RA = getSCEV(U->getOperand(2));
4010 const SCEV *LDiff = getMinusSCEV(LA, LS);
4011 const SCEV *RDiff = getMinusSCEV(RA, RS);
4012 if (LDiff == RDiff)
4013 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4014 LDiff = getMinusSCEV(LA, RS);
4015 RDiff = getMinusSCEV(RA, LS);
4016 if (LDiff == RDiff)
4017 return getAddExpr(getUMinExpr(LS, RS), LDiff);
4018 }
Dan Gohman05e89732008-06-22 19:56:46 +00004019 break;
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004020 case ICmpInst::ICMP_NE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004021 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
4022 if (LHS->getType() == U->getType() &&
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004023 isa<ConstantInt>(RHS) &&
Dan Gohmanf33bac32010-04-24 03:09:42 +00004024 cast<ConstantInt>(RHS)->isZero()) {
4025 const SCEV *One = getConstant(LHS->getType(), 1);
4026 const SCEV *LS = getSCEV(LHS);
4027 const SCEV *LA = getSCEV(U->getOperand(1));
4028 const SCEV *RA = getSCEV(U->getOperand(2));
4029 const SCEV *LDiff = getMinusSCEV(LA, LS);
4030 const SCEV *RDiff = getMinusSCEV(RA, One);
4031 if (LDiff == RDiff)
Dan Gohmancf32f2b2010-08-13 20:17:14 +00004032 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohmanf33bac32010-04-24 03:09:42 +00004033 }
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004034 break;
4035 case ICmpInst::ICMP_EQ:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004036 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
4037 if (LHS->getType() == U->getType() &&
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004038 isa<ConstantInt>(RHS) &&
Dan Gohmanf33bac32010-04-24 03:09:42 +00004039 cast<ConstantInt>(RHS)->isZero()) {
4040 const SCEV *One = getConstant(LHS->getType(), 1);
4041 const SCEV *LS = getSCEV(LHS);
4042 const SCEV *LA = getSCEV(U->getOperand(1));
4043 const SCEV *RA = getSCEV(U->getOperand(2));
4044 const SCEV *LDiff = getMinusSCEV(LA, One);
4045 const SCEV *RDiff = getMinusSCEV(RA, LS);
4046 if (LDiff == RDiff)
Dan Gohmancf32f2b2010-08-13 20:17:14 +00004047 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohmanf33bac32010-04-24 03:09:42 +00004048 }
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004049 break;
Dan Gohman05e89732008-06-22 19:56:46 +00004050 default:
4051 break;
4052 }
4053 }
4054
4055 default: // We cannot analyze this expression.
4056 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00004057 }
4058
Dan Gohmanc8e23622009-04-21 23:15:49 +00004059 return getUnknown(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00004060}
4061
4062
4063
4064//===----------------------------------------------------------------------===//
4065// Iteration Count Computation Code
4066//
4067
Andrew Trick2b6860f2011-08-11 23:36:16 +00004068/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Tricke81211f2012-01-11 06:52:55 +00004069/// normal unsigned value. Returns 0 if the trip count is unknown or not
4070/// constant. Will also return 0 if the maximum trip count is very large (>=
4071/// 2^32).
4072///
4073/// This "trip count" assumes that control exits via ExitingBlock. More
4074/// precisely, it is the number of times that control may reach ExitingBlock
4075/// before taking the branch. For loops with multiple exits, it may not be the
4076/// number times that the loop header executes because the loop may exit
4077/// prematurely via another branch.
Andrew Trickee9143a2013-05-31 23:34:46 +00004078///
4079/// FIXME: We conservatively call getBackedgeTakenCount(L) instead of
4080/// getExitCount(L, ExitingBlock) to compute a safe trip count considering all
4081/// loop exits. getExitCount() may return an exact count for this branch
4082/// assuming no-signed-wrap. The number of well-defined iterations may actually
4083/// be higher than this trip count if this exit test is skipped and the loop
4084/// exits via a different branch. Ideally, getExitCount() would know whether it
4085/// depends on a NSW assumption, and we would only fall back to a conservative
4086/// trip count in that case.
Andrew Tricke81211f2012-01-11 06:52:55 +00004087unsigned ScalarEvolution::
Aaron Ballmand07f5512013-06-04 01:01:56 +00004088getSmallConstantTripCount(Loop *L, BasicBlock * /*ExitingBlock*/) {
Andrew Trick2b6860f2011-08-11 23:36:16 +00004089 const SCEVConstant *ExitCount =
Andrew Trickee9143a2013-05-31 23:34:46 +00004090 dyn_cast<SCEVConstant>(getBackedgeTakenCount(L));
Andrew Trick2b6860f2011-08-11 23:36:16 +00004091 if (!ExitCount)
4092 return 0;
4093
4094 ConstantInt *ExitConst = ExitCount->getValue();
4095
4096 // Guard against huge trip counts.
4097 if (ExitConst->getValue().getActiveBits() > 32)
4098 return 0;
4099
4100 // In case of integer overflow, this returns 0, which is correct.
4101 return ((unsigned)ExitConst->getZExtValue()) + 1;
4102}
4103
4104/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4105/// trip count of this loop as a normal unsigned value, if possible. This
4106/// means that the actual trip count is always a multiple of the returned
4107/// value (don't forget the trip count could very well be zero as well!).
4108///
4109/// Returns 1 if the trip count is unknown or not guaranteed to be the
4110/// multiple of a constant (which is also the case if the trip count is simply
4111/// constant, use getSmallConstantTripCount for that case), Will also return 1
4112/// if the trip count is very large (>= 2^32).
Andrew Tricke81211f2012-01-11 06:52:55 +00004113///
4114/// As explained in the comments for getSmallConstantTripCount, this assumes
4115/// that control exits the loop via ExitingBlock.
4116unsigned ScalarEvolution::
Aaron Ballmand07f5512013-06-04 01:01:56 +00004117getSmallConstantTripMultiple(Loop *L, BasicBlock * /*ExitingBlock*/) {
Andrew Trickee9143a2013-05-31 23:34:46 +00004118 const SCEV *ExitCount = getBackedgeTakenCount(L);
Andrew Trick2b6860f2011-08-11 23:36:16 +00004119 if (ExitCount == getCouldNotCompute())
4120 return 1;
4121
4122 // Get the trip count from the BE count by adding 1.
4123 const SCEV *TCMul = getAddExpr(ExitCount,
4124 getConstant(ExitCount->getType(), 1));
4125 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4126 // to factor simple cases.
4127 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4128 TCMul = Mul->getOperand(0);
4129
4130 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4131 if (!MulC)
4132 return 1;
4133
4134 ConstantInt *Result = MulC->getValue();
4135
Hal Finkel30bd9342012-10-24 19:46:44 +00004136 // Guard against huge trip counts (this requires checking
4137 // for zero to handle the case where the trip count == -1 and the
4138 // addition wraps).
4139 if (!Result || Result->getValue().getActiveBits() > 32 ||
4140 Result->getValue().getActiveBits() == 0)
Andrew Trick2b6860f2011-08-11 23:36:16 +00004141 return 1;
4142
4143 return (unsigned)Result->getZExtValue();
4144}
4145
Andrew Trick3ca3f982011-07-26 17:19:55 +00004146// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickee9143a2013-05-31 23:34:46 +00004147// this loop is guaranteed not to exit via ExitingBlock. Otherwise return
Andrew Trick3ca3f982011-07-26 17:19:55 +00004148// SCEVCouldNotCompute.
Andrew Trick77c55422011-08-02 04:23:35 +00004149const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4150 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004151}
4152
Dan Gohman0bddac12009-02-24 18:55:53 +00004153/// getBackedgeTakenCount - If the specified loop has a predictable
4154/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4155/// object. The backedge-taken count is the number of times the loop header
4156/// will be branched to from within the loop. This is one less than the
4157/// trip count of the loop, since it doesn't count the first iteration,
4158/// when the header is branched to from outside the loop.
4159///
4160/// Note that it is not valid to call this method on a loop without a
4161/// loop-invariant backedge-taken count (see
4162/// hasLoopInvariantBackedgeTakenCount).
4163///
Dan Gohmanaf752342009-07-07 17:06:11 +00004164const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004165 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004166}
4167
4168/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4169/// return the least SCEV value that is known never to be less than the
4170/// actual backedge taken count.
Dan Gohmanaf752342009-07-07 17:06:11 +00004171const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004172 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004173}
4174
Dan Gohmandc191042009-07-08 19:23:34 +00004175/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4176/// onto the given Worklist.
4177static void
4178PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4179 BasicBlock *Header = L->getHeader();
4180
4181 // Push all Loop-header PHIs onto the Worklist stack.
4182 for (BasicBlock::iterator I = Header->begin();
4183 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4184 Worklist.push_back(PN);
4185}
4186
Dan Gohman2b8da352009-04-30 20:47:05 +00004187const ScalarEvolution::BackedgeTakenInfo &
4188ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004189 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman8b0a4192010-03-01 17:49:51 +00004190 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman76466372009-04-27 20:16:15 +00004191 // update the value. The temporary CouldNotCompute value tells SCEV
4192 // code elsewhere that it shouldn't attempt to request a new
4193 // backedge-taken count, which could result in infinite recursion.
Dan Gohman0daf6872011-05-09 18:44:09 +00004194 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick3ca3f982011-07-26 17:19:55 +00004195 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004196 if (!Pair.second)
4197 return Pair.first->second;
Dan Gohman76466372009-04-27 20:16:15 +00004198
Andrew Trick3ca3f982011-07-26 17:19:55 +00004199 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4200 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4201 // must be cleared in this scope.
4202 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4203
4204 if (Result.getExact(this) != getCouldNotCompute()) {
4205 assert(isLoopInvariant(Result.getExact(this), L) &&
4206 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnera337f5e2011-01-09 02:16:18 +00004207 "Computed backedge-taken count isn't loop invariant for loop!");
4208 ++NumTripCountsComputed;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004209 }
4210 else if (Result.getMax(this) == getCouldNotCompute() &&
4211 isa<PHINode>(L->getHeader()->begin())) {
4212 // Only count loops that have phi nodes as not being computable.
4213 ++NumTripCountsNotComputed;
Chris Lattnera337f5e2011-01-09 02:16:18 +00004214 }
Dan Gohman2b8da352009-04-30 20:47:05 +00004215
Chris Lattnera337f5e2011-01-09 02:16:18 +00004216 // Now that we know more about the trip count for this loop, forget any
4217 // existing SCEV values for PHI nodes in this loop since they are only
4218 // conservative estimates made without the benefit of trip count
4219 // information. This is similar to the code in forgetLoop, except that
4220 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004221 if (Result.hasAnyInfo()) {
Chris Lattnera337f5e2011-01-09 02:16:18 +00004222 SmallVector<Instruction *, 16> Worklist;
4223 PushLoopPHIs(L, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004224
Chris Lattnera337f5e2011-01-09 02:16:18 +00004225 SmallPtrSet<Instruction *, 8> Visited;
4226 while (!Worklist.empty()) {
4227 Instruction *I = Worklist.pop_back_val();
4228 if (!Visited.insert(I)) continue;
Dan Gohmandc191042009-07-08 19:23:34 +00004229
Chris Lattnera337f5e2011-01-09 02:16:18 +00004230 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004231 ValueExprMap.find_as(static_cast<Value *>(I));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004232 if (It != ValueExprMap.end()) {
4233 const SCEV *Old = It->second;
Dan Gohman761065e2010-11-17 02:44:44 +00004234
Chris Lattnera337f5e2011-01-09 02:16:18 +00004235 // SCEVUnknown for a PHI either means that it has an unrecognized
4236 // structure, or it's a PHI that's in the progress of being computed
4237 // by createNodeForPHI. In the former case, additional loop trip
4238 // count information isn't going to change anything. In the later
4239 // case, createNodeForPHI will perform the necessary updates on its
4240 // own when it gets to that point.
4241 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4242 forgetMemoizedResults(Old);
4243 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004244 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004245 if (PHINode *PN = dyn_cast<PHINode>(I))
4246 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmandc191042009-07-08 19:23:34 +00004247 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004248
4249 PushDefUseChildren(I, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004250 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004251 }
Dan Gohman6acd95b2011-04-25 22:48:29 +00004252
4253 // Re-lookup the insert position, since the call to
4254 // ComputeBackedgeTakenCount above could result in a
4255 // recusive call to getBackedgeTakenInfo (on a different
4256 // loop), which would invalidate the iterator computed
4257 // earlier.
4258 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattnerd934c702004-04-02 20:23:17 +00004259}
4260
Dan Gohman880c92a2009-10-31 15:04:55 +00004261/// forgetLoop - This method should be called by the client when it has
4262/// changed a loop in a way that may effect ScalarEvolution's ability to
4263/// compute a trip count, or if the loop is deleted.
4264void ScalarEvolution::forgetLoop(const Loop *L) {
4265 // Drop any stored trip count value.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004266 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4267 BackedgeTakenCounts.find(L);
4268 if (BTCPos != BackedgeTakenCounts.end()) {
4269 BTCPos->second.clear();
4270 BackedgeTakenCounts.erase(BTCPos);
4271 }
Dan Gohmanf1505722009-05-02 17:43:35 +00004272
Dan Gohman880c92a2009-10-31 15:04:55 +00004273 // Drop information about expressions based on loop-header PHIs.
Dan Gohman48f82222009-05-04 22:30:44 +00004274 SmallVector<Instruction *, 16> Worklist;
Dan Gohmandc191042009-07-08 19:23:34 +00004275 PushLoopPHIs(L, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004276
Dan Gohmandc191042009-07-08 19:23:34 +00004277 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00004278 while (!Worklist.empty()) {
4279 Instruction *I = Worklist.pop_back_val();
Dan Gohmandc191042009-07-08 19:23:34 +00004280 if (!Visited.insert(I)) continue;
4281
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004282 ValueExprMapType::iterator It =
4283 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004284 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004285 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004286 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004287 if (PHINode *PN = dyn_cast<PHINode>(I))
4288 ConstantEvolutionLoopExitValue.erase(PN);
4289 }
4290
4291 PushDefUseChildren(I, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004292 }
Dan Gohmandcb354b2010-10-29 20:16:10 +00004293
4294 // Forget all contained loops too, to avoid dangling entries in the
4295 // ValuesAtScopes map.
4296 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4297 forgetLoop(*I);
Dan Gohman43300342009-02-17 20:49:49 +00004298}
4299
Eric Christopheref6d5932010-07-29 01:25:38 +00004300/// forgetValue - This method should be called by the client when it has
4301/// changed a value in a way that may effect its value, or which may
4302/// disconnect it from a def-use chain linking it to a loop.
4303void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004304 Instruction *I = dyn_cast<Instruction>(V);
4305 if (!I) return;
4306
4307 // Drop information about expressions based on loop-header PHIs.
4308 SmallVector<Instruction *, 16> Worklist;
4309 Worklist.push_back(I);
4310
4311 SmallPtrSet<Instruction *, 8> Visited;
4312 while (!Worklist.empty()) {
4313 I = Worklist.pop_back_val();
4314 if (!Visited.insert(I)) continue;
4315
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004316 ValueExprMapType::iterator It =
4317 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004318 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004319 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004320 ValueExprMap.erase(It);
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004321 if (PHINode *PN = dyn_cast<PHINode>(I))
4322 ConstantEvolutionLoopExitValue.erase(PN);
4323 }
4324
4325 PushDefUseChildren(I, Worklist);
4326 }
4327}
4328
Andrew Trick3ca3f982011-07-26 17:19:55 +00004329/// getExact - Get the exact loop backedge taken count considering all loop
Andrew Trick90c7a102011-11-16 00:52:40 +00004330/// exits. A computable result can only be return for loops with a single exit.
4331/// Returning the minimum taken count among all exits is incorrect because one
4332/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4333/// the limit of each loop test is never skipped. This is a valid assumption as
4334/// long as the loop exits via that test. For precise results, it is the
4335/// caller's responsibility to specify the relevant loop exit using
4336/// getExact(ExitingBlock, SE).
Andrew Trick3ca3f982011-07-26 17:19:55 +00004337const SCEV *
4338ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4339 // If any exits were not computable, the loop is not computable.
4340 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4341
Andrew Trick90c7a102011-11-16 00:52:40 +00004342 // We need exactly one computable exit.
Andrew Trick77c55422011-08-02 04:23:35 +00004343 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00004344 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4345
Craig Topper9f008862014-04-15 04:59:12 +00004346 const SCEV *BECount = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004347 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004348 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004349
4350 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4351
4352 if (!BECount)
4353 BECount = ENT->ExactNotTaken;
Andrew Trick90c7a102011-11-16 00:52:40 +00004354 else if (BECount != ENT->ExactNotTaken)
4355 return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00004356 }
Andrew Trickbbb226a2011-09-02 21:20:46 +00004357 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004358 return BECount;
4359}
4360
4361/// getExact - Get the exact not taken count for this loop exit.
4362const SCEV *
Andrew Trick77c55422011-08-02 04:23:35 +00004363ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick3ca3f982011-07-26 17:19:55 +00004364 ScalarEvolution *SE) const {
4365 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004366 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004367
Andrew Trick77c55422011-08-02 04:23:35 +00004368 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick3ca3f982011-07-26 17:19:55 +00004369 return ENT->ExactNotTaken;
4370 }
4371 return SE->getCouldNotCompute();
4372}
4373
4374/// getMax - Get the max backedge taken count for the loop.
4375const SCEV *
4376ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4377 return Max ? Max : SE->getCouldNotCompute();
4378}
4379
Andrew Trick9093e152013-03-26 03:14:53 +00004380bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
4381 ScalarEvolution *SE) const {
4382 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
4383 return true;
4384
4385 if (!ExitNotTaken.ExitingBlock)
4386 return false;
4387
4388 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004389 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick9093e152013-03-26 03:14:53 +00004390
4391 if (ENT->ExactNotTaken != SE->getCouldNotCompute()
4392 && SE->hasOperand(ENT->ExactNotTaken, S)) {
4393 return true;
4394 }
4395 }
4396 return false;
4397}
4398
Andrew Trick3ca3f982011-07-26 17:19:55 +00004399/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4400/// computable exit into a persistent ExitNotTakenInfo array.
4401ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4402 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4403 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4404
4405 if (!Complete)
4406 ExitNotTaken.setIncomplete();
4407
4408 unsigned NumExits = ExitCounts.size();
4409 if (NumExits == 0) return;
4410
Andrew Trick77c55422011-08-02 04:23:35 +00004411 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004412 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4413 if (NumExits == 1) return;
4414
4415 // Handle the rare case of multiple computable exits.
4416 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4417
4418 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4419 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4420 PrevENT->setNextExit(ENT);
Andrew Trick77c55422011-08-02 04:23:35 +00004421 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004422 ENT->ExactNotTaken = ExitCounts[i].second;
4423 }
4424}
4425
4426/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4427void ScalarEvolution::BackedgeTakenInfo::clear() {
Craig Topper9f008862014-04-15 04:59:12 +00004428 ExitNotTaken.ExitingBlock = nullptr;
4429 ExitNotTaken.ExactNotTaken = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004430 delete[] ExitNotTaken.getNextExit();
4431}
4432
Dan Gohman0bddac12009-02-24 18:55:53 +00004433/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4434/// of the specified loop will execute.
Dan Gohman2b8da352009-04-30 20:47:05 +00004435ScalarEvolution::BackedgeTakenInfo
4436ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00004437 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohman96212b62009-06-22 00:31:57 +00004438 L->getExitingBlocks(ExitingBlocks);
Chris Lattnerd934c702004-04-02 20:23:17 +00004439
Andrew Trick839e30b2014-05-23 19:47:13 +00004440 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004441 bool CouldComputeBECount = true;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004442 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
Andrew Trick839e30b2014-05-23 19:47:13 +00004443 const SCEV *MustExitMaxBECount = nullptr;
4444 const SCEV *MayExitMaxBECount = nullptr;
4445
4446 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
4447 // and compute maxBECount.
Dan Gohman96212b62009-06-22 00:31:57 +00004448 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick839e30b2014-05-23 19:47:13 +00004449 BasicBlock *ExitBB = ExitingBlocks[i];
4450 ExitLimit EL = ComputeExitLimit(L, ExitBB);
4451
4452 // 1. For each exit that can be computed, add an entry to ExitCounts.
4453 // CouldComputeBECount is true only if all exits can be computed.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004454 if (EL.Exact == getCouldNotCompute())
Dan Gohman96212b62009-06-22 00:31:57 +00004455 // We couldn't compute an exact value for this exit, so
Dan Gohman8885b372009-06-22 21:10:22 +00004456 // we won't be able to compute an exact value for the loop.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004457 CouldComputeBECount = false;
4458 else
Andrew Trick839e30b2014-05-23 19:47:13 +00004459 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact));
Andrew Trick3ca3f982011-07-26 17:19:55 +00004460
Andrew Trick839e30b2014-05-23 19:47:13 +00004461 // 2. Derive the loop's MaxBECount from each exit's max number of
4462 // non-exiting iterations. Partition the loop exits into two kinds:
4463 // LoopMustExits and LoopMayExits.
4464 //
4465 // A LoopMustExit meets two requirements:
4466 //
4467 // (a) Its ExitLimit.MustExit flag must be set which indicates that the exit
4468 // test condition cannot be skipped (the tested variable has unit stride or
4469 // the test is less-than or greater-than, rather than a strict inequality).
4470 //
4471 // (b) It must dominate the loop latch, hence must be tested on every loop
4472 // iteration.
4473 //
4474 // If any computable LoopMustExit is found, then MaxBECount is the minimum
4475 // EL.Max of computable LoopMustExits. Otherwise, MaxBECount is
4476 // conservatively the maximum EL.Max, where CouldNotCompute is considered
4477 // greater than any computable EL.Max.
4478 if (EL.MustExit && EL.Max != getCouldNotCompute() && Latch &&
4479 DT->dominates(ExitBB, Latch)) {
4480 if (!MustExitMaxBECount)
4481 MustExitMaxBECount = EL.Max;
4482 else {
4483 MustExitMaxBECount =
4484 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
Andrew Tricke2553592014-05-22 00:37:03 +00004485 }
Andrew Trick839e30b2014-05-23 19:47:13 +00004486 } else if (MayExitMaxBECount != getCouldNotCompute()) {
4487 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
4488 MayExitMaxBECount = EL.Max;
4489 else {
4490 MayExitMaxBECount =
4491 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
4492 }
Andrew Trick90c7a102011-11-16 00:52:40 +00004493 }
Dan Gohman96212b62009-06-22 00:31:57 +00004494 }
Andrew Trick839e30b2014-05-23 19:47:13 +00004495 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
4496 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
Andrew Trick3ca3f982011-07-26 17:19:55 +00004497 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00004498}
4499
Andrew Trick3ca3f982011-07-26 17:19:55 +00004500/// ComputeExitLimit - Compute the number of times the backedge of the specified
4501/// loop will execute if it exits via the specified block.
4502ScalarEvolution::ExitLimit
4503ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohman96212b62009-06-22 00:31:57 +00004504
4505 // Okay, we've chosen an exiting block. See what condition causes us to
Benjamin Kramer5a188542014-02-11 15:44:32 +00004506 // exit at this block and remember the exit block and whether all other targets
4507 // lead to the loop header.
4508 bool MustExecuteLoopHeader = true;
Craig Topper9f008862014-04-15 04:59:12 +00004509 BasicBlock *Exit = nullptr;
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00004510 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock);
4511 SI != SE; ++SI)
4512 if (!L->contains(*SI)) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00004513 if (Exit) // Multiple exit successors.
4514 return getCouldNotCompute();
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00004515 Exit = *SI;
4516 } else if (*SI != L->getHeader()) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00004517 MustExecuteLoopHeader = false;
4518 }
Dan Gohmance973df2009-06-24 04:48:43 +00004519
Chris Lattner18954852007-01-07 02:24:26 +00004520 // At this point, we know we have a conditional branch that determines whether
4521 // the loop is exited. However, we don't know if the branch is executed each
4522 // time through the loop. If not, then the execution count of the branch will
4523 // not be equal to the trip count of the loop.
4524 //
4525 // Currently we check for this by checking to see if the Exit branch goes to
4526 // the loop header. If so, we know it will always execute the same number of
Chris Lattner5a554762007-01-14 01:24:47 +00004527 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohman96212b62009-06-22 00:31:57 +00004528 // loop header. This is common for un-rotated loops.
4529 //
4530 // If both of those tests fail, walk up the unique predecessor chain to the
4531 // header, stopping if there is an edge that doesn't exit the loop. If the
4532 // header is reached, the execution count of the branch will be equal to the
4533 // trip count of the loop.
4534 //
4535 // More extensive analysis could be done to handle more cases here.
4536 //
Benjamin Kramer5a188542014-02-11 15:44:32 +00004537 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
Dan Gohman96212b62009-06-22 00:31:57 +00004538 // The simple checks failed, try climbing the unique predecessor chain
4539 // up to the header.
4540 bool Ok = false;
Benjamin Kramer5a188542014-02-11 15:44:32 +00004541 for (BasicBlock *BB = ExitingBlock; BB; ) {
Dan Gohman96212b62009-06-22 00:31:57 +00004542 BasicBlock *Pred = BB->getUniquePredecessor();
4543 if (!Pred)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004544 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004545 TerminatorInst *PredTerm = Pred->getTerminator();
4546 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4547 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4548 if (PredSucc == BB)
4549 continue;
4550 // If the predecessor has a successor that isn't BB and isn't
4551 // outside the loop, assume the worst.
4552 if (L->contains(PredSucc))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004553 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004554 }
4555 if (Pred == L->getHeader()) {
4556 Ok = true;
4557 break;
4558 }
4559 BB = Pred;
4560 }
4561 if (!Ok)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004562 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004563 }
4564
Benjamin Kramer5a188542014-02-11 15:44:32 +00004565 TerminatorInst *Term = ExitingBlock->getTerminator();
4566 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
4567 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
4568 // Proceed to the next level to examine the exit condition expression.
4569 return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
4570 BI->getSuccessor(1),
4571 /*IsSubExpr=*/false);
4572 }
4573
4574 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
4575 return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit,
4576 /*IsSubExpr=*/false);
4577
4578 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004579}
4580
Andrew Trick3ca3f982011-07-26 17:19:55 +00004581/// ComputeExitLimitFromCond - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00004582/// backedge of the specified loop will execute if its exit condition
4583/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5b245a12013-05-31 06:43:25 +00004584///
4585/// @param IsSubExpr is true if ExitCond does not directly control the exit
4586/// branch. In this case, we cannot assume that the loop only exits when the
4587/// condition is true and cannot infer that failing to meet the condition prior
4588/// to integer wraparound results in undefined behavior.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004589ScalarEvolution::ExitLimit
4590ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4591 Value *ExitCond,
4592 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00004593 BasicBlock *FBB,
4594 bool IsSubExpr) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00004595 // Check if the controlling expression for this loop is an And or Or.
Dan Gohman96212b62009-06-22 00:31:57 +00004596 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4597 if (BO->getOpcode() == Instruction::And) {
4598 // Recurse on the operands of the and.
Andrew Trick5b245a12013-05-31 06:43:25 +00004599 bool EitherMayExit = L->contains(TBB);
4600 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
4601 IsSubExpr || EitherMayExit);
4602 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
4603 IsSubExpr || EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00004604 const SCEV *BECount = getCouldNotCompute();
4605 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004606 bool MustExit = false;
Andrew Trick5b245a12013-05-31 06:43:25 +00004607 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00004608 // Both conditions must be true for the loop to continue executing.
4609 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004610 if (EL0.Exact == getCouldNotCompute() ||
4611 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004612 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00004613 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004614 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4615 if (EL0.Max == getCouldNotCompute())
4616 MaxBECount = EL1.Max;
4617 else if (EL1.Max == getCouldNotCompute())
4618 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00004619 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004620 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004621 MustExit = EL0.MustExit || EL1.MustExit;
Dan Gohman96212b62009-06-22 00:31:57 +00004622 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00004623 // Both conditions must be true at the same time for the loop to exit.
4624 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00004625 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004626 if (EL0.Max == EL1.Max)
4627 MaxBECount = EL0.Max;
4628 if (EL0.Exact == EL1.Exact)
4629 BECount = EL0.Exact;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004630 MustExit = EL0.MustExit && EL1.MustExit;
Dan Gohman96212b62009-06-22 00:31:57 +00004631 }
4632
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004633 return ExitLimit(BECount, MaxBECount, MustExit);
Dan Gohman96212b62009-06-22 00:31:57 +00004634 }
4635 if (BO->getOpcode() == Instruction::Or) {
4636 // Recurse on the operands of the or.
Andrew Trick5b245a12013-05-31 06:43:25 +00004637 bool EitherMayExit = L->contains(FBB);
4638 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
4639 IsSubExpr || EitherMayExit);
4640 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
4641 IsSubExpr || EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00004642 const SCEV *BECount = getCouldNotCompute();
4643 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004644 bool MustExit = false;
Andrew Trick5b245a12013-05-31 06:43:25 +00004645 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00004646 // Both conditions must be false for the loop to continue executing.
4647 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004648 if (EL0.Exact == getCouldNotCompute() ||
4649 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004650 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00004651 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004652 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4653 if (EL0.Max == getCouldNotCompute())
4654 MaxBECount = EL1.Max;
4655 else if (EL1.Max == getCouldNotCompute())
4656 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00004657 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004658 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004659 MustExit = EL0.MustExit || EL1.MustExit;
Dan Gohman96212b62009-06-22 00:31:57 +00004660 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00004661 // Both conditions must be false at the same time for the loop to exit.
4662 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00004663 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004664 if (EL0.Max == EL1.Max)
4665 MaxBECount = EL0.Max;
4666 if (EL0.Exact == EL1.Exact)
4667 BECount = EL0.Exact;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004668 MustExit = EL0.MustExit && EL1.MustExit;
Dan Gohman96212b62009-06-22 00:31:57 +00004669 }
4670
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004671 return ExitLimit(BECount, MaxBECount, MustExit);
Dan Gohman96212b62009-06-22 00:31:57 +00004672 }
4673 }
4674
4675 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman8b0a4192010-03-01 17:49:51 +00004676 // Proceed to the next level to examine the icmp.
Dan Gohman96212b62009-06-22 00:31:57 +00004677 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Andrew Trick5b245a12013-05-31 06:43:25 +00004678 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, IsSubExpr);
Reid Spencer266e42b2006-12-23 06:05:41 +00004679
Dan Gohman6b1e2a82010-02-19 18:12:07 +00004680 // Check for a constant condition. These are normally stripped out by
4681 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4682 // preserve the CFG and is temporarily leaving constant conditions
4683 // in place.
4684 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4685 if (L->contains(FBB) == !CI->getZExtValue())
4686 // The backedge is always taken.
4687 return getCouldNotCompute();
4688 else
4689 // The backedge is never taken.
Dan Gohman1d2ded72010-05-03 22:09:21 +00004690 return getConstant(CI->getType(), 0);
Dan Gohman6b1e2a82010-02-19 18:12:07 +00004691 }
4692
Eli Friedmanebf98b02009-05-09 12:32:42 +00004693 // If it's not an integer or pointer comparison then compute it the hard way.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004694 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohman96212b62009-06-22 00:31:57 +00004695}
4696
Andrew Trick3ca3f982011-07-26 17:19:55 +00004697/// ComputeExitLimitFromICmp - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00004698/// backedge of the specified loop will execute if its exit condition
4699/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004700ScalarEvolution::ExitLimit
4701ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
4702 ICmpInst *ExitCond,
4703 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00004704 BasicBlock *FBB,
4705 bool IsSubExpr) {
Chris Lattnerd934c702004-04-02 20:23:17 +00004706
Reid Spencer266e42b2006-12-23 06:05:41 +00004707 // If the condition was exit on true, convert the condition to exit on false
4708 ICmpInst::Predicate Cond;
Dan Gohman96212b62009-06-22 00:31:57 +00004709 if (!L->contains(FBB))
Reid Spencer266e42b2006-12-23 06:05:41 +00004710 Cond = ExitCond->getPredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004711 else
Reid Spencer266e42b2006-12-23 06:05:41 +00004712 Cond = ExitCond->getInversePredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004713
4714 // Handle common loops like: for (X = "string"; *X; ++X)
4715 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4716 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004717 ExitLimit ItCnt =
4718 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanba820342010-02-24 17:31:30 +00004719 if (ItCnt.hasAnyInfo())
4720 return ItCnt;
Chris Lattnerec901cc2004-10-12 01:49:27 +00004721 }
4722
Dan Gohmanaf752342009-07-07 17:06:11 +00004723 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4724 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattnerd934c702004-04-02 20:23:17 +00004725
4726 // Try to evaluate any dependencies out of the loop.
Dan Gohman8ca08852009-05-24 23:25:42 +00004727 LHS = getSCEVAtScope(LHS, L);
4728 RHS = getSCEVAtScope(RHS, L);
Chris Lattnerd934c702004-04-02 20:23:17 +00004729
Dan Gohmance973df2009-06-24 04:48:43 +00004730 // At this point, we would like to compute how many iterations of the
Reid Spencer266e42b2006-12-23 06:05:41 +00004731 // loop the predicate will return true for these inputs.
Dan Gohmanafd6db92010-11-17 21:23:15 +00004732 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohmandc5f5cb2008-09-16 18:52:57 +00004733 // If there is a loop-invariant, force it into the RHS.
Chris Lattnerd934c702004-04-02 20:23:17 +00004734 std::swap(LHS, RHS);
Reid Spencer266e42b2006-12-23 06:05:41 +00004735 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattnerd934c702004-04-02 20:23:17 +00004736 }
4737
Dan Gohman81585c12010-05-03 16:35:17 +00004738 // Simplify the operands before analyzing them.
4739 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4740
Chris Lattnerd934c702004-04-02 20:23:17 +00004741 // If we have a comparison of a chrec against a constant, try to use value
4742 // ranges to answer this query.
Dan Gohmana30370b2009-05-04 22:02:23 +00004743 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4744 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattnerd934c702004-04-02 20:23:17 +00004745 if (AddRec->getLoop() == L) {
Eli Friedmanebf98b02009-05-09 12:32:42 +00004746 // Form the constant range.
4747 ConstantRange CompRange(
4748 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman01808ca2005-04-21 21:13:18 +00004749
Dan Gohmanaf752342009-07-07 17:06:11 +00004750 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedmanebf98b02009-05-09 12:32:42 +00004751 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattnerd934c702004-04-02 20:23:17 +00004752 }
Misha Brukman01808ca2005-04-21 21:13:18 +00004753
Chris Lattnerd934c702004-04-02 20:23:17 +00004754 switch (Cond) {
Reid Spencer266e42b2006-12-23 06:05:41 +00004755 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattnerd934c702004-04-02 20:23:17 +00004756 // Convert to: while (X-Y != 0)
Andrew Trick5b245a12013-05-31 06:43:25 +00004757 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004758 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00004759 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00004760 }
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00004761 case ICmpInst::ICMP_EQ: { // while (X == Y)
4762 // Convert to: while (X-Y == 0)
Andrew Trick3ca3f982011-07-26 17:19:55 +00004763 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4764 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00004765 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00004766 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00004767 case ICmpInst::ICMP_SLT:
4768 case ICmpInst::ICMP_ULT: { // while (X < Y)
4769 bool IsSigned = Cond == ICmpInst::ICMP_SLT;
4770 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, IsSubExpr);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004771 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00004772 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00004773 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00004774 case ICmpInst::ICMP_SGT:
4775 case ICmpInst::ICMP_UGT: { // while (X > Y)
4776 bool IsSigned = Cond == ICmpInst::ICMP_SGT;
4777 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, IsSubExpr);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004778 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00004779 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00004780 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004781 default:
Chris Lattner09169212004-04-02 20:26:46 +00004782#if 0
David Greenedf1c4972009-12-23 22:18:14 +00004783 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattnerd934c702004-04-02 20:23:17 +00004784 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greenedf1c4972009-12-23 22:18:14 +00004785 dbgs() << "[unsigned] ";
4786 dbgs() << *LHS << " "
Dan Gohmance973df2009-06-24 04:48:43 +00004787 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencer266e42b2006-12-23 06:05:41 +00004788 << " " << *RHS << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00004789#endif
Chris Lattner0defaa12004-04-03 00:43:03 +00004790 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00004791 }
Andrew Trick3ca3f982011-07-26 17:19:55 +00004792 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner4021d1a2004-04-17 18:36:24 +00004793}
4794
Benjamin Kramer5a188542014-02-11 15:44:32 +00004795ScalarEvolution::ExitLimit
4796ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L,
4797 SwitchInst *Switch,
4798 BasicBlock *ExitingBlock,
4799 bool IsSubExpr) {
4800 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
4801
4802 // Give up if the exit is the default dest of a switch.
4803 if (Switch->getDefaultDest() == ExitingBlock)
4804 return getCouldNotCompute();
4805
4806 assert(L->contains(Switch->getDefaultDest()) &&
4807 "Default case must not exit the loop!");
4808 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
4809 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
4810
4811 // while (X != Y) --> while (X-Y != 0)
4812 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr);
4813 if (EL.hasAnyInfo())
4814 return EL;
4815
4816 return getCouldNotCompute();
4817}
4818
Chris Lattnerec901cc2004-10-12 01:49:27 +00004819static ConstantInt *
Dan Gohmana37eaf22007-10-22 18:31:58 +00004820EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4821 ScalarEvolution &SE) {
Dan Gohmanaf752342009-07-07 17:06:11 +00004822 const SCEV *InVal = SE.getConstant(C);
4823 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattnerec901cc2004-10-12 01:49:27 +00004824 assert(isa<SCEVConstant>(Val) &&
4825 "Evaluation of SCEV at constant didn't fold correctly?");
4826 return cast<SCEVConstant>(Val)->getValue();
4827}
4828
Andrew Trick3ca3f982011-07-26 17:19:55 +00004829/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman0bddac12009-02-24 18:55:53 +00004830/// 'icmp op load X, cst', try to see if we can compute the backedge
4831/// execution count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004832ScalarEvolution::ExitLimit
4833ScalarEvolution::ComputeLoadConstantCompareExitLimit(
4834 LoadInst *LI,
4835 Constant *RHS,
4836 const Loop *L,
4837 ICmpInst::Predicate predicate) {
4838
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004839 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004840
4841 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanba820342010-02-24 17:31:30 +00004842 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattnerec901cc2004-10-12 01:49:27 +00004843 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004844 if (!GEP) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004845
4846 // Make sure that it is really a constant global we are gepping, with an
4847 // initializer, and make sure the first IDX is really 0.
4848 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00004849 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00004850 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4851 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004852 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004853
4854 // Okay, we allow one non-constant index into the GEP instruction.
Craig Topper9f008862014-04-15 04:59:12 +00004855 Value *VarIdx = nullptr;
Chris Lattnere166a852012-01-24 05:49:24 +00004856 std::vector<Constant*> Indexes;
Chris Lattnerec901cc2004-10-12 01:49:27 +00004857 unsigned VarIdxNum = 0;
4858 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4859 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4860 Indexes.push_back(CI);
4861 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004862 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattnerec901cc2004-10-12 01:49:27 +00004863 VarIdx = GEP->getOperand(i);
4864 VarIdxNum = i-2;
Craig Topper9f008862014-04-15 04:59:12 +00004865 Indexes.push_back(nullptr);
Chris Lattnerec901cc2004-10-12 01:49:27 +00004866 }
4867
Andrew Trick7004e4b2012-03-26 22:33:59 +00004868 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
4869 if (!VarIdx)
4870 return getCouldNotCompute();
4871
Chris Lattnerec901cc2004-10-12 01:49:27 +00004872 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4873 // Check to see if X is a loop variant variable value now.
Dan Gohmanaf752342009-07-07 17:06:11 +00004874 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohman8ca08852009-05-24 23:25:42 +00004875 Idx = getSCEVAtScope(Idx, L);
Chris Lattnerec901cc2004-10-12 01:49:27 +00004876
4877 // We can only recognize very limited forms of loop index expressions, in
4878 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman48f82222009-05-04 22:30:44 +00004879 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohmanafd6db92010-11-17 21:23:15 +00004880 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00004881 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4882 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004883 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004884
4885 unsigned MaxSteps = MaxBruteForceIterations;
4886 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersonedb4a702009-07-24 23:12:02 +00004887 ConstantInt *ItCst = ConstantInt::get(
Owen Andersonb6b25302009-07-14 23:09:55 +00004888 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanc8e23622009-04-21 23:15:49 +00004889 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattnerec901cc2004-10-12 01:49:27 +00004890
4891 // Form the GEP offset.
4892 Indexes[VarIdxNum] = Val;
4893
Chris Lattnere166a852012-01-24 05:49:24 +00004894 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
4895 Indexes);
Craig Topper9f008862014-04-15 04:59:12 +00004896 if (!Result) break; // Cannot compute!
Chris Lattnerec901cc2004-10-12 01:49:27 +00004897
4898 // Evaluate the condition for this iteration.
Reid Spencer266e42b2006-12-23 06:05:41 +00004899 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng75b871f2007-01-11 12:24:14 +00004900 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencer983e3b32007-03-01 07:25:48 +00004901 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattnerec901cc2004-10-12 01:49:27 +00004902#if 0
David Greenedf1c4972009-12-23 22:18:14 +00004903 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmane20f8242009-04-21 00:47:46 +00004904 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4905 << "***\n";
Chris Lattnerec901cc2004-10-12 01:49:27 +00004906#endif
4907 ++NumArrayLenItCounts;
Dan Gohmanc8e23622009-04-21 23:15:49 +00004908 return getConstant(ItCst); // Found terminating iteration!
Chris Lattnerec901cc2004-10-12 01:49:27 +00004909 }
4910 }
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004911 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004912}
4913
4914
Chris Lattnerdd730472004-04-17 22:58:41 +00004915/// CanConstantFold - Return true if we can constant fold an instruction of the
4916/// specified type, assuming that all operands were constants.
4917static bool CanConstantFold(const Instruction *I) {
Reid Spencer2341c222007-02-02 02:16:23 +00004918 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewyckya6674c72011-10-22 19:58:20 +00004919 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
4920 isa<LoadInst>(I))
Chris Lattnerdd730472004-04-17 22:58:41 +00004921 return true;
Misha Brukman01808ca2005-04-21 21:13:18 +00004922
Chris Lattnerdd730472004-04-17 22:58:41 +00004923 if (const CallInst *CI = dyn_cast<CallInst>(I))
4924 if (const Function *F = CI->getCalledFunction())
Dan Gohmana65951f2008-01-31 01:05:10 +00004925 return canConstantFoldCallTo(F);
Chris Lattnerdd730472004-04-17 22:58:41 +00004926 return false;
Chris Lattner4021d1a2004-04-17 18:36:24 +00004927}
4928
Andrew Trick3a86ba72011-10-05 03:25:31 +00004929/// Determine whether this instruction can constant evolve within this loop
4930/// assuming its operands can all constant evolve.
4931static bool canConstantEvolve(Instruction *I, const Loop *L) {
4932 // An instruction outside of the loop can't be derived from a loop PHI.
4933 if (!L->contains(I)) return false;
4934
4935 if (isa<PHINode>(I)) {
4936 if (L->getHeader() == I->getParent())
4937 return true;
4938 else
4939 // We don't currently keep track of the control flow needed to evaluate
4940 // PHIs, so we cannot handle PHIs inside of loops.
4941 return false;
4942 }
4943
4944 // If we won't be able to constant fold this expression even if the operands
4945 // are constants, bail early.
4946 return CanConstantFold(I);
4947}
4948
4949/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
4950/// recursing through each instruction operand until reaching a loop header phi.
4951static PHINode *
4952getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Tricke9162f12011-10-05 05:58:49 +00004953 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00004954
4955 // Otherwise, we can evaluate this instruction if all of its operands are
4956 // constant or derived from a PHI node themselves.
Craig Topper9f008862014-04-15 04:59:12 +00004957 PHINode *PHI = nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00004958 for (Instruction::op_iterator OpI = UseInst->op_begin(),
4959 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
4960
4961 if (isa<Constant>(*OpI)) continue;
4962
4963 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
Craig Topper9f008862014-04-15 04:59:12 +00004964 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00004965
4966 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trick3e8a5762011-10-05 22:06:53 +00004967 if (!P)
4968 // If this operand is already visited, reuse the prior result.
4969 // We may have P != PHI if this is the deepest point at which the
4970 // inconsistent paths meet.
4971 P = PHIMap.lookup(OpInst);
4972 if (!P) {
4973 // Recurse and memoize the results, whether a phi is found or not.
4974 // This recursive call invalidates pointers into PHIMap.
4975 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
4976 PHIMap[OpInst] = P;
Andrew Tricke9162f12011-10-05 05:58:49 +00004977 }
Craig Topper9f008862014-04-15 04:59:12 +00004978 if (!P)
4979 return nullptr; // Not evolving from PHI
4980 if (PHI && PHI != P)
4981 return nullptr; // Evolving from multiple different PHIs.
Andrew Tricke9162f12011-10-05 05:58:49 +00004982 PHI = P;
Andrew Trick3a86ba72011-10-05 03:25:31 +00004983 }
4984 // This is a expression evolving from a constant PHI!
4985 return PHI;
4986}
4987
Chris Lattnerdd730472004-04-17 22:58:41 +00004988/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4989/// in the loop that V is derived from. We allow arbitrary operations along the
4990/// way, but the operands of an operation must either be constants or a value
4991/// derived from a constant PHI. If this expression does not fit with these
4992/// constraints, return null.
4993static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00004994 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00004995 if (!I || !canConstantEvolve(I, L)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00004996
Anton Korobeynikov579f0712008-02-20 11:08:44 +00004997 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00004998 return PN;
Anton Korobeynikov579f0712008-02-20 11:08:44 +00004999 }
Chris Lattnerdd730472004-04-17 22:58:41 +00005000
Andrew Trick3a86ba72011-10-05 03:25:31 +00005001 // Record non-constant instructions contained by the loop.
Andrew Tricke9162f12011-10-05 05:58:49 +00005002 DenseMap<Instruction *, PHINode *> PHIMap;
5003 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattnerdd730472004-04-17 22:58:41 +00005004}
5005
5006/// EvaluateExpression - Given an expression that passes the
5007/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
5008/// in the loop has the value PHIVal. If we can't fold this expression for some
5009/// reason, return null.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005010static Constant *EvaluateExpression(Value *V, const Loop *L,
5011 DenseMap<Instruction *, Constant *> &Vals,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005012 const DataLayout *DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005013 const TargetLibraryInfo *TLI) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005014 // Convenient constant check, but redundant for recursive calls.
Reid Spencer30d69a52004-07-18 00:18:30 +00005015 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005016 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005017 if (!I) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005018
Andrew Trick3a86ba72011-10-05 03:25:31 +00005019 if (Constant *C = Vals.lookup(I)) return C;
5020
Nick Lewyckya6674c72011-10-22 19:58:20 +00005021 // An instruction inside the loop depends on a value outside the loop that we
5022 // weren't given a mapping for, or a value such as a call inside the loop.
Craig Topper9f008862014-04-15 04:59:12 +00005023 if (!canConstantEvolve(I, L)) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005024
5025 // An unmapped PHI can be due to a branch or another loop inside this loop,
5026 // or due to this not being the initial iteration through a loop where we
5027 // couldn't compute the evolution of this particular PHI last time.
Craig Topper9f008862014-04-15 04:59:12 +00005028 if (isa<PHINode>(I)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005029
Dan Gohmanf820bd32010-06-22 13:15:46 +00005030 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattnerdd730472004-04-17 22:58:41 +00005031
5032 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005033 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
5034 if (!Operand) {
Nick Lewyckya447e0f32011-10-14 09:38:46 +00005035 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005036 if (!Operands[i]) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005037 continue;
5038 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005039 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
Andrew Tricke9162f12011-10-05 05:58:49 +00005040 Vals[Operand] = C;
Craig Topper9f008862014-04-15 04:59:12 +00005041 if (!C) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005042 Operands[i] = C;
Chris Lattnerdd730472004-04-17 22:58:41 +00005043 }
5044
Nick Lewyckya6674c72011-10-22 19:58:20 +00005045 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattnercdfb80d2009-11-09 23:06:58 +00005046 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005047 Operands[1], DL, TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005048 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
5049 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005050 return ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005051 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005052 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005053 TLI);
Chris Lattnerdd730472004-04-17 22:58:41 +00005054}
5055
5056/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
5057/// in the header of its containing loop, we know the loop executes a
5058/// constant number of times, and the PHI node is just a recurrence
5059/// involving constants, fold it.
Dan Gohmance973df2009-06-24 04:48:43 +00005060Constant *
5061ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohmancb0efec2009-12-18 01:14:11 +00005062 const APInt &BEs,
Dan Gohmance973df2009-06-24 04:48:43 +00005063 const Loop *L) {
Dan Gohman0daf6872011-05-09 18:44:09 +00005064 DenseMap<PHINode*, Constant*>::const_iterator I =
Chris Lattnerdd730472004-04-17 22:58:41 +00005065 ConstantEvolutionLoopExitValue.find(PN);
5066 if (I != ConstantEvolutionLoopExitValue.end())
5067 return I->second;
5068
Dan Gohman4ce1fb12010-04-08 23:03:40 +00005069 if (BEs.ugt(MaxBruteForceIterations))
Craig Topper9f008862014-04-15 04:59:12 +00005070 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
Chris Lattnerdd730472004-04-17 22:58:41 +00005071
5072 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
5073
Andrew Trick3a86ba72011-10-05 03:25:31 +00005074 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005075 BasicBlock *Header = L->getHeader();
5076 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick3a86ba72011-10-05 03:25:31 +00005077
Chris Lattnerdd730472004-04-17 22:58:41 +00005078 // Since the loop is canonicalized, the PHI node must have two entries. One
5079 // entry must be a constant (coming in from outside of the loop), and the
5080 // second must be derived from the same PHI.
5081 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Craig Topper9f008862014-04-15 04:59:12 +00005082 PHINode *PHI = nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005083 for (BasicBlock::iterator I = Header->begin();
5084 (PHI = dyn_cast<PHINode>(I)); ++I) {
5085 Constant *StartCST =
5086 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
Craig Topper9f008862014-04-15 04:59:12 +00005087 if (!StartCST) continue;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005088 CurrentIterVals[PHI] = StartCST;
5089 }
5090 if (!CurrentIterVals.count(PN))
Craig Topper9f008862014-04-15 04:59:12 +00005091 return RetVal = nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005092
5093 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Chris Lattnerdd730472004-04-17 22:58:41 +00005094
5095 // Execute the loop symbolically to determine the exit value.
Dan Gohman0bddac12009-02-24 18:55:53 +00005096 if (BEs.getActiveBits() >= 32)
Craig Topper9f008862014-04-15 04:59:12 +00005097 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
Chris Lattnerdd730472004-04-17 22:58:41 +00005098
Dan Gohman0bddac12009-02-24 18:55:53 +00005099 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencer983e3b32007-03-01 07:25:48 +00005100 unsigned IterationNum = 0;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005101 for (; ; ++IterationNum) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005102 if (IterationNum == NumIterations)
Andrew Trick3a86ba72011-10-05 03:25:31 +00005103 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattnerdd730472004-04-17 22:58:41 +00005104
Nick Lewyckya6674c72011-10-22 19:58:20 +00005105 // Compute the value of the PHIs for the next iteration.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005106 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005107 DenseMap<Instruction *, Constant *> NextIterVals;
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005108 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005109 TLI);
Craig Topper9f008862014-04-15 04:59:12 +00005110 if (!NextPHI)
5111 return nullptr; // Couldn't evaluate!
Andrew Trick3a86ba72011-10-05 03:25:31 +00005112 NextIterVals[PN] = NextPHI;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005113
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005114 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
5115
Nick Lewyckya6674c72011-10-22 19:58:20 +00005116 // Also evaluate the other PHI nodes. However, we don't get to stop if we
5117 // cease to be able to evaluate one of them or if they stop evolving,
5118 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005119 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005120 for (DenseMap<Instruction *, Constant *>::const_iterator
5121 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5122 PHINode *PHI = dyn_cast<PHINode>(I->first);
Nick Lewycky8e904de2011-10-24 05:51:01 +00005123 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005124 PHIsToCompute.push_back(std::make_pair(PHI, I->second));
5125 }
5126 // We use two distinct loops because EvaluateExpression may invalidate any
5127 // iterators into CurrentIterVals.
5128 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
5129 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
5130 PHINode *PHI = I->first;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005131 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005132 if (!NextPHI) { // Not already computed.
5133 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005134 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005135 }
5136 if (NextPHI != I->second)
5137 StoppedEvolving = false;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005138 }
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005139
5140 // If all entries in CurrentIterVals == NextIterVals then we can stop
5141 // iterating, the loop can't continue to change.
5142 if (StoppedEvolving)
5143 return RetVal = CurrentIterVals[PN];
5144
Andrew Trick3a86ba72011-10-05 03:25:31 +00005145 CurrentIterVals.swap(NextIterVals);
Chris Lattnerdd730472004-04-17 22:58:41 +00005146 }
5147}
5148
Andrew Trick3ca3f982011-07-26 17:19:55 +00005149/// ComputeExitCountExhaustively - If the loop is known to execute a
Chris Lattner4021d1a2004-04-17 18:36:24 +00005150/// constant number of times (the condition evolves only from constants),
5151/// try to evaluate a few iterations of the loop until we get the exit
5152/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005153/// evaluate the trip count of the loop, return getCouldNotCompute().
Nick Lewyckya6674c72011-10-22 19:58:20 +00005154const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
5155 Value *Cond,
5156 bool ExitWhen) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005157 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Craig Topper9f008862014-04-15 04:59:12 +00005158 if (!PN) return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005159
Dan Gohman866971e2010-06-19 14:17:24 +00005160 // If the loop is canonicalized, the PHI will have exactly two entries.
5161 // That's the only form we support here.
5162 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
5163
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005164 DenseMap<Instruction *, Constant *> CurrentIterVals;
5165 BasicBlock *Header = L->getHeader();
5166 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
5167
Dan Gohman866971e2010-06-19 14:17:24 +00005168 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner4021d1a2004-04-17 18:36:24 +00005169 // second must be derived from the same PHI.
5170 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Craig Topper9f008862014-04-15 04:59:12 +00005171 PHINode *PHI = nullptr;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005172 for (BasicBlock::iterator I = Header->begin();
5173 (PHI = dyn_cast<PHINode>(I)); ++I) {
5174 Constant *StartCST =
5175 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
Craig Topper9f008862014-04-15 04:59:12 +00005176 if (!StartCST) continue;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005177 CurrentIterVals[PHI] = StartCST;
5178 }
5179 if (!CurrentIterVals.count(PN))
5180 return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005181
5182 // Okay, we find a PHI node that defines the trip count of this loop. Execute
5183 // the loop symbolically to determine when the condition gets a value of
5184 // "ExitWhen".
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005185
Andrew Trick90c7a102011-11-16 00:52:40 +00005186 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005187 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Zhou Sheng75b871f2007-01-11 12:24:14 +00005188 ConstantInt *CondVal =
Chad Rosiere6de63d2011-12-01 21:29:16 +00005189 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005190 DL, TLI));
Chris Lattnerdd730472004-04-17 22:58:41 +00005191
Zhou Sheng75b871f2007-01-11 12:24:14 +00005192 // Couldn't symbolically evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005193 if (!CondVal) return getCouldNotCompute();
Zhou Sheng75b871f2007-01-11 12:24:14 +00005194
Reid Spencer983e3b32007-03-01 07:25:48 +00005195 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005196 ++NumBruteForceTripCountsComputed;
Owen Anderson55f1c092009-08-13 21:58:54 +00005197 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005198 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005199
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005200 // Update all the PHI nodes for the next iteration.
5201 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005202
5203 // Create a list of which PHIs we need to compute. We want to do this before
5204 // calling EvaluateExpression on them because that may invalidate iterators
5205 // into CurrentIterVals.
5206 SmallVector<PHINode *, 8> PHIsToCompute;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005207 for (DenseMap<Instruction *, Constant *>::const_iterator
5208 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5209 PHINode *PHI = dyn_cast<PHINode>(I->first);
5210 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005211 PHIsToCompute.push_back(PHI);
5212 }
5213 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
5214 E = PHIsToCompute.end(); I != E; ++I) {
5215 PHINode *PHI = *I;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005216 Constant *&NextPHI = NextIterVals[PHI];
5217 if (NextPHI) continue; // Already computed!
5218
5219 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005220 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005221 }
5222 CurrentIterVals.swap(NextIterVals);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005223 }
5224
5225 // Too many iterations were needed to evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005226 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005227}
5228
Dan Gohman237d9e52009-09-03 15:00:26 +00005229/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohmanb81f47d2009-05-08 20:38:54 +00005230/// at the specified scope in the program. The L value specifies a loop
5231/// nest to evaluate the expression at, where null is the top-level or a
5232/// specified loop is immediately inside of the loop.
5233///
5234/// This method can be used to compute the exit value for a variable defined
5235/// in a loop by querying what the value will hold in the parent loop.
5236///
Dan Gohman8ca08852009-05-24 23:25:42 +00005237/// In the case that a relevant loop exit value cannot be computed, the
5238/// original value V is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00005239const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005240 // Check to see if we've folded this expression at this loop before.
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005241 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V];
5242 for (unsigned u = 0; u < Values.size(); u++) {
5243 if (Values[u].first == L)
5244 return Values[u].second ? Values[u].second : V;
5245 }
Craig Topper9f008862014-04-15 04:59:12 +00005246 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr)));
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005247 // Otherwise compute it.
5248 const SCEV *C = computeSCEVAtScope(V, L);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005249 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V];
5250 for (unsigned u = Values2.size(); u > 0; u--) {
5251 if (Values2[u - 1].first == L) {
5252 Values2[u - 1].second = C;
5253 break;
5254 }
5255 }
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005256 return C;
5257}
5258
Nick Lewyckya6674c72011-10-22 19:58:20 +00005259/// This builds up a Constant using the ConstantExpr interface. That way, we
5260/// will return Constants for objects which aren't represented by a
5261/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5262/// Returns NULL if the SCEV isn't representable as a Constant.
5263static Constant *BuildConstantFromSCEV(const SCEV *V) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00005264 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
Nick Lewyckya6674c72011-10-22 19:58:20 +00005265 case scCouldNotCompute:
5266 case scAddRecExpr:
5267 break;
5268 case scConstant:
5269 return cast<SCEVConstant>(V)->getValue();
5270 case scUnknown:
5271 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5272 case scSignExtend: {
5273 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5274 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5275 return ConstantExpr::getSExt(CastOp, SS->getType());
5276 break;
5277 }
5278 case scZeroExtend: {
5279 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5280 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5281 return ConstantExpr::getZExt(CastOp, SZ->getType());
5282 break;
5283 }
5284 case scTruncate: {
5285 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5286 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5287 return ConstantExpr::getTrunc(CastOp, ST->getType());
5288 break;
5289 }
5290 case scAddExpr: {
5291 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5292 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005293 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5294 unsigned AS = PTy->getAddressSpace();
5295 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5296 C = ConstantExpr::getBitCast(C, DestPtrTy);
5297 }
Nick Lewyckya6674c72011-10-22 19:58:20 +00005298 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5299 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005300 if (!C2) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005301
5302 // First pointer!
5303 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005304 unsigned AS = C2->getType()->getPointerAddressSpace();
Nick Lewyckya6674c72011-10-22 19:58:20 +00005305 std::swap(C, C2);
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005306 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005307 // The offsets have been converted to bytes. We can add bytes to an
5308 // i8* by GEP with the byte count in the first index.
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005309 C = ConstantExpr::getBitCast(C, DestPtrTy);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005310 }
5311
5312 // Don't bother trying to sum two pointers. We probably can't
5313 // statically compute a load that results from it anyway.
5314 if (C2->getType()->isPointerTy())
Craig Topper9f008862014-04-15 04:59:12 +00005315 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005316
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005317 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5318 if (PTy->getElementType()->isStructTy())
Nick Lewyckya6674c72011-10-22 19:58:20 +00005319 C2 = ConstantExpr::getIntegerCast(
5320 C2, Type::getInt32Ty(C->getContext()), true);
5321 C = ConstantExpr::getGetElementPtr(C, C2);
5322 } else
5323 C = ConstantExpr::getAdd(C, C2);
5324 }
5325 return C;
5326 }
5327 break;
5328 }
5329 case scMulExpr: {
5330 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5331 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5332 // Don't bother with pointers at all.
Craig Topper9f008862014-04-15 04:59:12 +00005333 if (C->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005334 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5335 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005336 if (!C2 || C2->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005337 C = ConstantExpr::getMul(C, C2);
5338 }
5339 return C;
5340 }
5341 break;
5342 }
5343 case scUDivExpr: {
5344 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5345 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5346 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5347 if (LHS->getType() == RHS->getType())
5348 return ConstantExpr::getUDiv(LHS, RHS);
5349 break;
5350 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00005351 case scSMaxExpr:
5352 case scUMaxExpr:
5353 break; // TODO: smax, umax.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005354 }
Craig Topper9f008862014-04-15 04:59:12 +00005355 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005356}
5357
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005358const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005359 if (isa<SCEVConstant>(V)) return V;
Misha Brukman01808ca2005-04-21 21:13:18 +00005360
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00005361 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattnerdd730472004-04-17 22:58:41 +00005362 // exit value from the loop without using SCEVs.
Dan Gohmana30370b2009-05-04 22:02:23 +00005363 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005364 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00005365 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattnerdd730472004-04-17 22:58:41 +00005366 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
5367 if (PHINode *PN = dyn_cast<PHINode>(I))
5368 if (PN->getParent() == LI->getHeader()) {
5369 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman0bddac12009-02-24 18:55:53 +00005370 // to see if the loop that contains it has a known backedge-taken
5371 // count. If so, we may be able to force computation of the exit
5372 // value.
Dan Gohmanaf752342009-07-07 17:06:11 +00005373 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohmana30370b2009-05-04 22:02:23 +00005374 if (const SCEVConstant *BTCC =
Dan Gohman0bddac12009-02-24 18:55:53 +00005375 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005376 // Okay, we know how many times the containing loop executes. If
5377 // this is a constant evolving PHI node, get the final value at
5378 // the specified iteration number.
5379 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman0bddac12009-02-24 18:55:53 +00005380 BTCC->getValue()->getValue(),
Chris Lattnerdd730472004-04-17 22:58:41 +00005381 LI);
Dan Gohman9d203c62009-06-29 21:31:18 +00005382 if (RV) return getSCEV(RV);
Chris Lattnerdd730472004-04-17 22:58:41 +00005383 }
5384 }
5385
Reid Spencere6328ca2006-12-04 21:33:23 +00005386 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattnerdd730472004-04-17 22:58:41 +00005387 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencere6328ca2006-12-04 21:33:23 +00005388 // the arguments into constants, and if so, try to constant propagate the
Chris Lattnerdd730472004-04-17 22:58:41 +00005389 // result. This is particularly useful for computing loop exit values.
5390 if (CanConstantFold(I)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005391 SmallVector<Constant *, 4> Operands;
5392 bool MadeImprovement = false;
Chris Lattnerdd730472004-04-17 22:58:41 +00005393 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5394 Value *Op = I->getOperand(i);
5395 if (Constant *C = dyn_cast<Constant>(Op)) {
5396 Operands.push_back(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005397 continue;
Chris Lattnerdd730472004-04-17 22:58:41 +00005398 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005399
5400 // If any of the operands is non-constant and if they are
5401 // non-integer and non-pointer, don't even try to analyze them
5402 // with scev techniques.
5403 if (!isSCEVable(Op->getType()))
5404 return V;
5405
5406 const SCEV *OrigV = getSCEV(Op);
5407 const SCEV *OpV = getSCEVAtScope(OrigV, L);
5408 MadeImprovement |= OrigV != OpV;
5409
Nick Lewyckya6674c72011-10-22 19:58:20 +00005410 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005411 if (!C) return V;
5412 if (C->getType() != Op->getType())
5413 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5414 Op->getType(),
5415 false),
5416 C, Op->getType());
5417 Operands.push_back(C);
Chris Lattnerdd730472004-04-17 22:58:41 +00005418 }
Dan Gohmance973df2009-06-24 04:48:43 +00005419
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005420 // Check to see if getSCEVAtScope actually made an improvement.
5421 if (MadeImprovement) {
Craig Topper9f008862014-04-15 04:59:12 +00005422 Constant *C = nullptr;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005423 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5424 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005425 Operands[0], Operands[1], DL,
Chad Rosier43a33062011-12-02 01:26:24 +00005426 TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005427 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5428 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005429 C = ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005430 } else
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005431 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005432 Operands, DL, TLI);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005433 if (!C) return V;
Dan Gohman4aad7502010-02-24 19:31:47 +00005434 return getSCEV(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005435 }
Chris Lattnerdd730472004-04-17 22:58:41 +00005436 }
5437 }
5438
5439 // This is some other type of SCEVUnknown, just return it.
5440 return V;
5441 }
5442
Dan Gohmana30370b2009-05-04 22:02:23 +00005443 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005444 // Avoid performing the look-up in the common case where the specified
5445 // expression has no loop-variant portions.
5446 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005447 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005448 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005449 // Okay, at least one of these operands is loop variant but might be
5450 // foldable. Build a new instance of the folded commutative expression.
Dan Gohmance973df2009-06-24 04:48:43 +00005451 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5452 Comm->op_begin()+i);
Chris Lattnerd934c702004-04-02 20:23:17 +00005453 NewOps.push_back(OpAtScope);
5454
5455 for (++i; i != e; ++i) {
5456 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005457 NewOps.push_back(OpAtScope);
5458 }
5459 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005460 return getAddExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00005461 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005462 return getMulExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00005463 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005464 return getSMaxExpr(NewOps);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00005465 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005466 return getUMaxExpr(NewOps);
Torok Edwinfbcc6632009-07-14 16:55:14 +00005467 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00005468 }
5469 }
5470 // If we got here, all operands are loop invariant.
5471 return Comm;
5472 }
5473
Dan Gohmana30370b2009-05-04 22:02:23 +00005474 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005475 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5476 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky52348302009-01-13 09:18:58 +00005477 if (LHS == Div->getLHS() && RHS == Div->getRHS())
5478 return Div; // must be loop invariant
Dan Gohmanc8e23622009-04-21 23:15:49 +00005479 return getUDivExpr(LHS, RHS);
Chris Lattnerd934c702004-04-02 20:23:17 +00005480 }
5481
5482 // If this is a loop recurrence for a loop that does not contain L, then we
5483 // are dealing with the final value computed by the loop.
Dan Gohmana30370b2009-05-04 22:02:23 +00005484 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005485 // First, attempt to evaluate each operand.
5486 // Avoid performing the look-up in the common case where the specified
5487 // expression has no loop-variant portions.
5488 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5489 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5490 if (OpAtScope == AddRec->getOperand(i))
5491 continue;
5492
5493 // Okay, at least one of these operands is loop variant but might be
5494 // foldable. Build a new instance of the folded commutative expression.
5495 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5496 AddRec->op_begin()+i);
5497 NewOps.push_back(OpAtScope);
5498 for (++i; i != e; ++i)
5499 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5500
Andrew Trick759ba082011-04-27 01:21:25 +00005501 const SCEV *FoldedRec =
Andrew Trick8b55b732011-03-14 16:50:06 +00005502 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick759ba082011-04-27 01:21:25 +00005503 AddRec->getNoWrapFlags(SCEV::FlagNW));
5504 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick01eff822011-04-27 05:42:17 +00005505 // The addrec may be folded to a nonrecurrence, for example, if the
5506 // induction variable is multiplied by zero after constant folding. Go
5507 // ahead and return the folded value.
Andrew Trick759ba082011-04-27 01:21:25 +00005508 if (!AddRec)
5509 return FoldedRec;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005510 break;
5511 }
5512
5513 // If the scope is outside the addrec's loop, evaluate it by using the
5514 // loop exit value of the addrec.
5515 if (!AddRec->getLoop()->contains(L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005516 // To evaluate this recurrence, we need to know how many times the AddRec
5517 // loop iterates. Compute this now.
Dan Gohmanaf752342009-07-07 17:06:11 +00005518 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005519 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman01808ca2005-04-21 21:13:18 +00005520
Eli Friedman61f67622008-08-04 23:49:06 +00005521 // Then, evaluate the AddRec.
Dan Gohmanc8e23622009-04-21 23:15:49 +00005522 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattnerd934c702004-04-02 20:23:17 +00005523 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005524
Dan Gohman8ca08852009-05-24 23:25:42 +00005525 return AddRec;
Chris Lattnerd934c702004-04-02 20:23:17 +00005526 }
5527
Dan Gohmana30370b2009-05-04 22:02:23 +00005528 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005529 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005530 if (Op == Cast->getOperand())
5531 return Cast; // must be loop invariant
5532 return getZeroExtendExpr(Op, Cast->getType());
5533 }
5534
Dan Gohmana30370b2009-05-04 22:02:23 +00005535 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005536 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005537 if (Op == Cast->getOperand())
5538 return Cast; // must be loop invariant
5539 return getSignExtendExpr(Op, Cast->getType());
5540 }
5541
Dan Gohmana30370b2009-05-04 22:02:23 +00005542 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005543 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005544 if (Op == Cast->getOperand())
5545 return Cast; // must be loop invariant
5546 return getTruncateExpr(Op, Cast->getType());
5547 }
5548
Torok Edwinfbcc6632009-07-14 16:55:14 +00005549 llvm_unreachable("Unknown SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00005550}
5551
Dan Gohmanb81f47d2009-05-08 20:38:54 +00005552/// getSCEVAtScope - This is a convenience function which does
5553/// getSCEVAtScope(getSCEV(V), L).
Dan Gohmanaf752342009-07-07 17:06:11 +00005554const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00005555 return getSCEVAtScope(getSCEV(V), L);
5556}
5557
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005558/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5559/// following equation:
5560///
5561/// A * X = B (mod N)
5562///
5563/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5564/// A and B isn't important.
5565///
5566/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00005567static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005568 ScalarEvolution &SE) {
5569 uint32_t BW = A.getBitWidth();
5570 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5571 assert(A != 0 && "A must be non-zero.");
5572
5573 // 1. D = gcd(A, N)
5574 //
5575 // The gcd of A and N may have only one prime factor: 2. The number of
5576 // trailing zeros in A is its multiplicity
5577 uint32_t Mult2 = A.countTrailingZeros();
5578 // D = 2^Mult2
5579
5580 // 2. Check if B is divisible by D.
5581 //
5582 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5583 // is not less than multiplicity of this prime factor for D.
5584 if (B.countTrailingZeros() < Mult2)
Dan Gohman31efa302009-04-18 17:58:19 +00005585 return SE.getCouldNotCompute();
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005586
5587 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5588 // modulo (N / D).
5589 //
5590 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
5591 // bit width during computations.
5592 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
5593 APInt Mod(BW + 1, 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00005594 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005595 APInt I = AD.multiplicativeInverse(Mod);
5596
5597 // 4. Compute the minimum unsigned root of the equation:
5598 // I * (B / D) mod (N / D)
5599 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5600
5601 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5602 // bits.
5603 return SE.getConstant(Result.trunc(BW));
5604}
Chris Lattnerd934c702004-04-02 20:23:17 +00005605
5606/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5607/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
5608/// might be the same) or two SCEVCouldNotCompute objects.
5609///
Dan Gohmanaf752342009-07-07 17:06:11 +00005610static std::pair<const SCEV *,const SCEV *>
Dan Gohmana37eaf22007-10-22 18:31:58 +00005611SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005612 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman48f82222009-05-04 22:30:44 +00005613 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5614 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5615 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman01808ca2005-04-21 21:13:18 +00005616
Chris Lattnerd934c702004-04-02 20:23:17 +00005617 // We currently can only solve this if the coefficients are constants.
Reid Spencer983e3b32007-03-01 07:25:48 +00005618 if (!LC || !MC || !NC) {
Dan Gohman48f82222009-05-04 22:30:44 +00005619 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005620 return std::make_pair(CNC, CNC);
5621 }
5622
Reid Spencer983e3b32007-03-01 07:25:48 +00005623 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnercad61e82007-04-15 19:52:49 +00005624 const APInt &L = LC->getValue()->getValue();
5625 const APInt &M = MC->getValue()->getValue();
5626 const APInt &N = NC->getValue()->getValue();
Reid Spencer983e3b32007-03-01 07:25:48 +00005627 APInt Two(BitWidth, 2);
5628 APInt Four(BitWidth, 4);
Misha Brukman01808ca2005-04-21 21:13:18 +00005629
Dan Gohmance973df2009-06-24 04:48:43 +00005630 {
Reid Spencer983e3b32007-03-01 07:25:48 +00005631 using namespace APIntOps;
Zhou Sheng2852d992007-04-07 17:48:27 +00005632 const APInt& C = L;
Reid Spencer983e3b32007-03-01 07:25:48 +00005633 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5634 // The B coefficient is M-N/2
5635 APInt B(M);
5636 B -= sdiv(N,Two);
Misha Brukman01808ca2005-04-21 21:13:18 +00005637
Reid Spencer983e3b32007-03-01 07:25:48 +00005638 // The A coefficient is N/2
Zhou Sheng2852d992007-04-07 17:48:27 +00005639 APInt A(N.sdiv(Two));
Chris Lattnerd934c702004-04-02 20:23:17 +00005640
Reid Spencer983e3b32007-03-01 07:25:48 +00005641 // Compute the B^2-4ac term.
5642 APInt SqrtTerm(B);
5643 SqrtTerm *= B;
5644 SqrtTerm -= Four * (A * C);
Chris Lattnerd934c702004-04-02 20:23:17 +00005645
Nick Lewyckyfb780832012-08-01 09:14:36 +00005646 if (SqrtTerm.isNegative()) {
5647 // The loop is provably infinite.
5648 const SCEV *CNC = SE.getCouldNotCompute();
5649 return std::make_pair(CNC, CNC);
5650 }
5651
Reid Spencer983e3b32007-03-01 07:25:48 +00005652 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5653 // integer value or else APInt::sqrt() will assert.
5654 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman01808ca2005-04-21 21:13:18 +00005655
Dan Gohmance973df2009-06-24 04:48:43 +00005656 // Compute the two solutions for the quadratic formula.
Reid Spencer983e3b32007-03-01 07:25:48 +00005657 // The divisions must be performed as signed divisions.
5658 APInt NegB(-B);
Nick Lewycky31555522011-10-03 07:10:45 +00005659 APInt TwoA(A << 1);
Nick Lewycky7b14e202008-11-03 02:43:49 +00005660 if (TwoA.isMinValue()) {
Dan Gohman48f82222009-05-04 22:30:44 +00005661 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky7b14e202008-11-03 02:43:49 +00005662 return std::make_pair(CNC, CNC);
5663 }
5664
Owen Anderson47db9412009-07-22 00:24:57 +00005665 LLVMContext &Context = SE.getContext();
Owen Andersonf1f17432009-07-06 22:37:39 +00005666
5667 ConstantInt *Solution1 =
Owen Andersonedb4a702009-07-24 23:12:02 +00005668 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Andersonf1f17432009-07-06 22:37:39 +00005669 ConstantInt *Solution2 =
Owen Andersonedb4a702009-07-24 23:12:02 +00005670 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman01808ca2005-04-21 21:13:18 +00005671
Dan Gohmance973df2009-06-24 04:48:43 +00005672 return std::make_pair(SE.getConstant(Solution1),
Dan Gohmana37eaf22007-10-22 18:31:58 +00005673 SE.getConstant(Solution2));
Nick Lewycky31555522011-10-03 07:10:45 +00005674 } // end APIntOps namespace
Chris Lattnerd934c702004-04-02 20:23:17 +00005675}
5676
5677/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman4c720c02009-06-06 14:37:11 +00005678/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick8b55b732011-03-14 16:50:06 +00005679///
5680/// This is only used for loops with a "x != y" exit test. The exit condition is
5681/// now expressed as a single expression, V = x-y. So the exit test is
5682/// effectively V != 0. We know and take advantage of the fact that this
5683/// expression only being used in a comparison by zero context.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005684ScalarEvolution::ExitLimit
Andrew Trick5b245a12013-05-31 06:43:25 +00005685ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005686 // If the value is a constant
Dan Gohmana30370b2009-05-04 22:02:23 +00005687 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005688 // If the value is already zero, the branch will execute zero times.
Reid Spencer2e54a152007-03-02 00:28:52 +00005689 if (C->getValue()->isZero()) return C;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005690 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00005691 }
5692
Dan Gohman48f82222009-05-04 22:30:44 +00005693 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00005694 if (!AddRec || AddRec->getLoop() != L)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005695 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005696
Chris Lattnerdff679f2011-01-09 22:39:48 +00005697 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
5698 // the quadratic equation to solve it.
5699 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
5700 std::pair<const SCEV *,const SCEV *> Roots =
5701 SolveQuadraticEquation(AddRec, *this);
Dan Gohman48f82222009-05-04 22:30:44 +00005702 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5703 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerdff679f2011-01-09 22:39:48 +00005704 if (R1 && R2) {
Chris Lattner09169212004-04-02 20:26:46 +00005705#if 0
David Greenedf1c4972009-12-23 22:18:14 +00005706 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmane20f8242009-04-21 00:47:46 +00005707 << " sol#2: " << *R2 << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00005708#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00005709 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00005710 if (ConstantInt *CB =
Chris Lattner28f140a2011-01-09 22:58:47 +00005711 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
5712 R1->getValue(),
5713 R2->getValue()))) {
Reid Spencercddc9df2007-01-12 04:24:46 +00005714 if (CB->getZExtValue() == false)
Chris Lattnerd934c702004-04-02 20:23:17 +00005715 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick2a3b7162011-03-09 17:23:39 +00005716
Chris Lattnerd934c702004-04-02 20:23:17 +00005717 // We can only use this value if the chrec ends up with an exact zero
5718 // value at this index. When solving for "X*X != 5", for example, we
5719 // should not accept a root of 2.
Dan Gohmanaf752342009-07-07 17:06:11 +00005720 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmanbe928e32008-06-18 16:23:07 +00005721 if (Val->isZero())
5722 return R1; // We found a quadratic root!
Chris Lattnerd934c702004-04-02 20:23:17 +00005723 }
5724 }
Chris Lattnerdff679f2011-01-09 22:39:48 +00005725 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005726 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005727
Chris Lattnerdff679f2011-01-09 22:39:48 +00005728 // Otherwise we can only handle this if it is affine.
5729 if (!AddRec->isAffine())
5730 return getCouldNotCompute();
5731
5732 // If this is an affine expression, the execution count of this branch is
5733 // the minimum unsigned root of the following equation:
5734 //
5735 // Start + Step*N = 0 (mod 2^BW)
5736 //
5737 // equivalent to:
5738 //
5739 // Step*N = -Start (mod 2^BW)
5740 //
5741 // where BW is the common bit width of Start and Step.
5742
5743 // Get the initial value for the loop.
5744 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
5745 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
5746
5747 // For now we handle only constant steps.
Andrew Trick8b55b732011-03-14 16:50:06 +00005748 //
5749 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5750 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5751 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5752 // We have not yet seen any such cases.
Chris Lattnerdff679f2011-01-09 22:39:48 +00005753 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
Craig Topper9f008862014-04-15 04:59:12 +00005754 if (!StepC || StepC->getValue()->equalsInt(0))
Chris Lattnerdff679f2011-01-09 22:39:48 +00005755 return getCouldNotCompute();
5756
Andrew Trick8b55b732011-03-14 16:50:06 +00005757 // For positive steps (counting up until unsigned overflow):
5758 // N = -Start/Step (as unsigned)
5759 // For negative steps (counting down to zero):
5760 // N = Start/-Step
5761 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickf1781db2011-03-14 17:28:02 +00005762 bool CountDown = StepC->getValue()->getValue().isNegative();
5763 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick8b55b732011-03-14 16:50:06 +00005764
5765 // Handle unitary steps, which cannot wraparound.
Andrew Trickf1781db2011-03-14 17:28:02 +00005766 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
5767 // N = Distance (as unsigned)
Nick Lewycky31555522011-10-03 07:10:45 +00005768 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
5769 ConstantRange CR = getUnsignedRange(Start);
5770 const SCEV *MaxBECount;
5771 if (!CountDown && CR.getUnsignedMin().isMinValue())
5772 // When counting up, the worst starting value is 1, not 0.
5773 MaxBECount = CR.getUnsignedMax().isMinValue()
5774 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
5775 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
5776 else
5777 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
5778 : -CR.getUnsignedMin());
Andrew Trickee5aa7f2014-01-15 06:42:11 +00005779 return ExitLimit(Distance, MaxBECount, /*MustExit=*/true);
Nick Lewycky31555522011-10-03 07:10:45 +00005780 }
Andrew Trick2a3b7162011-03-09 17:23:39 +00005781
Andrew Trickf1781db2011-03-14 17:28:02 +00005782 // If the recurrence is known not to wraparound, unsigned divide computes the
Andrew Trick5b245a12013-05-31 06:43:25 +00005783 // back edge count. (Ideally we would have an "isexact" bit for udiv). We know
5784 // that the value will either become zero (and thus the loop terminates), that
5785 // the loop will terminate through some other exit condition first, or that
5786 // the loop has undefined behavior. This means we can't "miss" the exit
Andrew Trickee5aa7f2014-01-15 06:42:11 +00005787 // value, even with nonunit stride, and exit later via the same branch. Note
5788 // that we can skip this exit if loop later exits via a different
5789 // branch. Hence MustExit=false.
Andrew Trickf1781db2011-03-14 17:28:02 +00005790 //
Andrew Trick5b245a12013-05-31 06:43:25 +00005791 // This is only valid for expressions that directly compute the loop exit. It
5792 // is invalid for subexpressions in which the loop may exit through this
5793 // branch even if this subexpression is false. In that case, the trip count
5794 // computed by this udiv could be smaller than the number of well-defined
5795 // iterations.
Andrew Trickee5aa7f2014-01-15 06:42:11 +00005796 if (!IsSubExpr && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
5797 const SCEV *Exact =
5798 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
5799 return ExitLimit(Exact, Exact, /*MustExit=*/false);
5800 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00005801
5802 // If Step is a power of two that evenly divides Start we know that the loop
5803 // will always terminate. Start may not be a constant so we just have the
5804 // number of trailing zeros available. This is safe even in presence of
5805 // overflow as the recurrence will overflow to exactly 0.
5806 const APInt &StepV = StepC->getValue()->getValue();
5807 if (StepV.isPowerOf2() &&
5808 GetMinTrailingZeros(getNegativeSCEV(Start)) >= StepV.countTrailingZeros())
5809 return getUDivExactExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
5810
Chris Lattnerdff679f2011-01-09 22:39:48 +00005811 // Then, try to solve the above equation provided that Start is constant.
5812 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
5813 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
5814 -StartC->getValue()->getValue(),
5815 *this);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005816 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005817}
5818
5819/// HowFarToNonZero - Return the number of times a backedge checking the
5820/// specified value for nonzero will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00005821/// CouldNotCompute
Andrew Trick3ca3f982011-07-26 17:19:55 +00005822ScalarEvolution::ExitLimit
Dan Gohmanba820342010-02-24 17:31:30 +00005823ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005824 // Loops that look like: while (X == 0) are very strange indeed. We don't
5825 // handle them yet except for the trivial case. This could be expanded in the
5826 // future as needed.
Misha Brukman01808ca2005-04-21 21:13:18 +00005827
Chris Lattnerd934c702004-04-02 20:23:17 +00005828 // If the value is a constant, check to see if it is known to be non-zero
5829 // already. If so, the backedge will execute zero times.
Dan Gohmana30370b2009-05-04 22:02:23 +00005830 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky5a3db142008-02-21 09:14:53 +00005831 if (!C->getValue()->isNullValue())
Dan Gohman1d2ded72010-05-03 22:09:21 +00005832 return getConstant(C->getType(), 0);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005833 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00005834 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005835
Chris Lattnerd934c702004-04-02 20:23:17 +00005836 // We could implement others, but I really doubt anyone writes loops like
5837 // this, and if they did, they would already be constant folded.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005838 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005839}
5840
Dan Gohmanf9081a22008-09-15 22:18:04 +00005841/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5842/// (which may not be an immediate predecessor) which has exactly one
5843/// successor from which BB is reachable, or null if no such block is
5844/// found.
5845///
Dan Gohman4e3c1132010-04-15 16:19:08 +00005846std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanc8e23622009-04-21 23:15:49 +00005847ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohmanfa066ef2009-04-30 20:48:53 +00005848 // If the block has a unique predecessor, then there is no path from the
5849 // predecessor to the block that does not go through the direct edge
5850 // from the predecessor to the block.
Dan Gohmanf9081a22008-09-15 22:18:04 +00005851 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman4e3c1132010-04-15 16:19:08 +00005852 return std::make_pair(Pred, BB);
Dan Gohmanf9081a22008-09-15 22:18:04 +00005853
5854 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman8c77f1a2009-05-18 15:36:09 +00005855 // If the header has a unique predecessor outside the loop, it must be
5856 // a block that has exactly one successor that can reach the loop.
Dan Gohmanc8e23622009-04-21 23:15:49 +00005857 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman75c6b0b2010-06-22 23:43:28 +00005858 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanf9081a22008-09-15 22:18:04 +00005859
Dan Gohman4e3c1132010-04-15 16:19:08 +00005860 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanf9081a22008-09-15 22:18:04 +00005861}
5862
Dan Gohman450f4e02009-06-20 00:35:32 +00005863/// HasSameValue - SCEV structural equivalence is usually sufficient for
5864/// testing whether two expressions are equal, however for the purposes of
5865/// looking for a condition guarding a loop, it can be useful to be a little
5866/// more general, since a front-end may have replicated the controlling
5867/// expression.
5868///
Dan Gohmanaf752342009-07-07 17:06:11 +00005869static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman450f4e02009-06-20 00:35:32 +00005870 // Quick check to see if they are the same SCEV.
5871 if (A == B) return true;
5872
5873 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5874 // two different instructions with the same value. Check for this case.
5875 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5876 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5877 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5878 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman2d085562009-08-25 17:56:57 +00005879 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman450f4e02009-06-20 00:35:32 +00005880 return true;
5881
5882 // Otherwise assume they may have a different value.
5883 return false;
5884}
5885
Dan Gohman48ff3cf2010-04-24 01:28:42 +00005886/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00005887/// predicate Pred. Return true iff any changes were made.
Dan Gohman48ff3cf2010-04-24 01:28:42 +00005888///
5889bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00005890 const SCEV *&LHS, const SCEV *&RHS,
5891 unsigned Depth) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00005892 bool Changed = false;
5893
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00005894 // If we hit the max recursion limit bail out.
5895 if (Depth >= 3)
5896 return false;
5897
Dan Gohman48ff3cf2010-04-24 01:28:42 +00005898 // Canonicalize a constant to the right side.
5899 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5900 // Check for both operands constant.
5901 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5902 if (ConstantExpr::getICmp(Pred,
5903 LHSC->getValue(),
5904 RHSC->getValue())->isNullValue())
5905 goto trivially_false;
5906 else
5907 goto trivially_true;
5908 }
5909 // Otherwise swap the operands to put the constant on the right.
5910 std::swap(LHS, RHS);
5911 Pred = ICmpInst::getSwappedPredicate(Pred);
5912 Changed = true;
5913 }
5914
5915 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohmandf564ca2010-05-03 17:00:11 +00005916 // addrec's loop, put the addrec on the left. Also make a dominance check,
5917 // as both operands could be addrecs loop-invariant in each other's loop.
5918 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5919 const Loop *L = AR->getLoop();
Dan Gohman20d9ce22010-11-17 21:41:58 +00005920 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00005921 std::swap(LHS, RHS);
5922 Pred = ICmpInst::getSwappedPredicate(Pred);
5923 Changed = true;
5924 }
Dan Gohmandf564ca2010-05-03 17:00:11 +00005925 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00005926
5927 // If there's a constant operand, canonicalize comparisons with boundary
5928 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5929 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5930 const APInt &RA = RC->getValue()->getValue();
5931 switch (Pred) {
5932 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5933 case ICmpInst::ICMP_EQ:
5934 case ICmpInst::ICMP_NE:
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00005935 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
5936 if (!RA)
5937 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
5938 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
Benjamin Kramer406a2db2012-05-30 18:42:43 +00005939 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
5940 ME->getOperand(0)->isAllOnesValue()) {
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00005941 RHS = AE->getOperand(1);
5942 LHS = ME->getOperand(1);
5943 Changed = true;
5944 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00005945 break;
5946 case ICmpInst::ICMP_UGE:
5947 if ((RA - 1).isMinValue()) {
5948 Pred = ICmpInst::ICMP_NE;
5949 RHS = getConstant(RA - 1);
5950 Changed = true;
5951 break;
5952 }
5953 if (RA.isMaxValue()) {
5954 Pred = ICmpInst::ICMP_EQ;
5955 Changed = true;
5956 break;
5957 }
5958 if (RA.isMinValue()) goto trivially_true;
5959
5960 Pred = ICmpInst::ICMP_UGT;
5961 RHS = getConstant(RA - 1);
5962 Changed = true;
5963 break;
5964 case ICmpInst::ICMP_ULE:
5965 if ((RA + 1).isMaxValue()) {
5966 Pred = ICmpInst::ICMP_NE;
5967 RHS = getConstant(RA + 1);
5968 Changed = true;
5969 break;
5970 }
5971 if (RA.isMinValue()) {
5972 Pred = ICmpInst::ICMP_EQ;
5973 Changed = true;
5974 break;
5975 }
5976 if (RA.isMaxValue()) goto trivially_true;
5977
5978 Pred = ICmpInst::ICMP_ULT;
5979 RHS = getConstant(RA + 1);
5980 Changed = true;
5981 break;
5982 case ICmpInst::ICMP_SGE:
5983 if ((RA - 1).isMinSignedValue()) {
5984 Pred = ICmpInst::ICMP_NE;
5985 RHS = getConstant(RA - 1);
5986 Changed = true;
5987 break;
5988 }
5989 if (RA.isMaxSignedValue()) {
5990 Pred = ICmpInst::ICMP_EQ;
5991 Changed = true;
5992 break;
5993 }
5994 if (RA.isMinSignedValue()) goto trivially_true;
5995
5996 Pred = ICmpInst::ICMP_SGT;
5997 RHS = getConstant(RA - 1);
5998 Changed = true;
5999 break;
6000 case ICmpInst::ICMP_SLE:
6001 if ((RA + 1).isMaxSignedValue()) {
6002 Pred = ICmpInst::ICMP_NE;
6003 RHS = getConstant(RA + 1);
6004 Changed = true;
6005 break;
6006 }
6007 if (RA.isMinSignedValue()) {
6008 Pred = ICmpInst::ICMP_EQ;
6009 Changed = true;
6010 break;
6011 }
6012 if (RA.isMaxSignedValue()) goto trivially_true;
6013
6014 Pred = ICmpInst::ICMP_SLT;
6015 RHS = getConstant(RA + 1);
6016 Changed = true;
6017 break;
6018 case ICmpInst::ICMP_UGT:
6019 if (RA.isMinValue()) {
6020 Pred = ICmpInst::ICMP_NE;
6021 Changed = true;
6022 break;
6023 }
6024 if ((RA + 1).isMaxValue()) {
6025 Pred = ICmpInst::ICMP_EQ;
6026 RHS = getConstant(RA + 1);
6027 Changed = true;
6028 break;
6029 }
6030 if (RA.isMaxValue()) goto trivially_false;
6031 break;
6032 case ICmpInst::ICMP_ULT:
6033 if (RA.isMaxValue()) {
6034 Pred = ICmpInst::ICMP_NE;
6035 Changed = true;
6036 break;
6037 }
6038 if ((RA - 1).isMinValue()) {
6039 Pred = ICmpInst::ICMP_EQ;
6040 RHS = getConstant(RA - 1);
6041 Changed = true;
6042 break;
6043 }
6044 if (RA.isMinValue()) goto trivially_false;
6045 break;
6046 case ICmpInst::ICMP_SGT:
6047 if (RA.isMinSignedValue()) {
6048 Pred = ICmpInst::ICMP_NE;
6049 Changed = true;
6050 break;
6051 }
6052 if ((RA + 1).isMaxSignedValue()) {
6053 Pred = ICmpInst::ICMP_EQ;
6054 RHS = getConstant(RA + 1);
6055 Changed = true;
6056 break;
6057 }
6058 if (RA.isMaxSignedValue()) goto trivially_false;
6059 break;
6060 case ICmpInst::ICMP_SLT:
6061 if (RA.isMaxSignedValue()) {
6062 Pred = ICmpInst::ICMP_NE;
6063 Changed = true;
6064 break;
6065 }
6066 if ((RA - 1).isMinSignedValue()) {
6067 Pred = ICmpInst::ICMP_EQ;
6068 RHS = getConstant(RA - 1);
6069 Changed = true;
6070 break;
6071 }
6072 if (RA.isMinSignedValue()) goto trivially_false;
6073 break;
6074 }
6075 }
6076
6077 // Check for obvious equality.
6078 if (HasSameValue(LHS, RHS)) {
6079 if (ICmpInst::isTrueWhenEqual(Pred))
6080 goto trivially_true;
6081 if (ICmpInst::isFalseWhenEqual(Pred))
6082 goto trivially_false;
6083 }
6084
Dan Gohman81585c12010-05-03 16:35:17 +00006085 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
6086 // adding or subtracting 1 from one of the operands.
6087 switch (Pred) {
6088 case ICmpInst::ICMP_SLE:
6089 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
6090 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006091 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006092 Pred = ICmpInst::ICMP_SLT;
6093 Changed = true;
6094 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006095 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006096 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006097 Pred = ICmpInst::ICMP_SLT;
6098 Changed = true;
6099 }
6100 break;
6101 case ICmpInst::ICMP_SGE:
6102 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006103 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006104 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006105 Pred = ICmpInst::ICMP_SGT;
6106 Changed = true;
6107 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
6108 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006109 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006110 Pred = ICmpInst::ICMP_SGT;
6111 Changed = true;
6112 }
6113 break;
6114 case ICmpInst::ICMP_ULE:
6115 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006116 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006117 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006118 Pred = ICmpInst::ICMP_ULT;
6119 Changed = true;
6120 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006121 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006122 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006123 Pred = ICmpInst::ICMP_ULT;
6124 Changed = true;
6125 }
6126 break;
6127 case ICmpInst::ICMP_UGE:
6128 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006129 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006130 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006131 Pred = ICmpInst::ICMP_UGT;
6132 Changed = true;
6133 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006134 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006135 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006136 Pred = ICmpInst::ICMP_UGT;
6137 Changed = true;
6138 }
6139 break;
6140 default:
6141 break;
6142 }
6143
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006144 // TODO: More simplifications are possible here.
6145
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006146 // Recursively simplify until we either hit a recursion limit or nothing
6147 // changes.
6148 if (Changed)
6149 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
6150
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006151 return Changed;
6152
6153trivially_true:
6154 // Return 0 == 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006155 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006156 Pred = ICmpInst::ICMP_EQ;
6157 return true;
6158
6159trivially_false:
6160 // Return 0 != 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006161 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006162 Pred = ICmpInst::ICMP_NE;
6163 return true;
6164}
6165
Dan Gohmane65c9172009-07-13 21:35:55 +00006166bool ScalarEvolution::isKnownNegative(const SCEV *S) {
6167 return getSignedRange(S).getSignedMax().isNegative();
6168}
6169
6170bool ScalarEvolution::isKnownPositive(const SCEV *S) {
6171 return getSignedRange(S).getSignedMin().isStrictlyPositive();
6172}
6173
6174bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
6175 return !getSignedRange(S).getSignedMin().isNegative();
6176}
6177
6178bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
6179 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
6180}
6181
6182bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
6183 return isKnownNegative(S) || isKnownPositive(S);
6184}
6185
6186bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
6187 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman36cce7e2010-04-24 01:38:36 +00006188 // Canonicalize the inputs first.
6189 (void)SimplifyICmpOperands(Pred, LHS, RHS);
6190
Dan Gohman07591692010-04-11 22:16:48 +00006191 // If LHS or RHS is an addrec, check to see if the condition is true in
6192 // every iteration of the loop.
Justin Bognercbb84382014-05-23 00:06:56 +00006193 // If LHS and RHS are both addrec, both conditions must be true in
6194 // every iteration of the loop.
6195 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
6196 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
6197 bool LeftGuarded = false;
6198 bool RightGuarded = false;
6199 if (LAR) {
6200 const Loop *L = LAR->getLoop();
6201 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
6202 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
6203 if (!RAR) return true;
6204 LeftGuarded = true;
6205 }
6206 }
6207 if (RAR) {
6208 const Loop *L = RAR->getLoop();
6209 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
6210 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
6211 if (!LAR) return true;
6212 RightGuarded = true;
6213 }
6214 }
6215 if (LeftGuarded && RightGuarded)
6216 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00006217
Dan Gohman07591692010-04-11 22:16:48 +00006218 // Otherwise see what can be done with known constant ranges.
6219 return isKnownPredicateWithRanges(Pred, LHS, RHS);
6220}
6221
6222bool
6223ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
6224 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006225 if (HasSameValue(LHS, RHS))
6226 return ICmpInst::isTrueWhenEqual(Pred);
6227
Dan Gohman07591692010-04-11 22:16:48 +00006228 // This code is split out from isKnownPredicate because it is called from
6229 // within isLoopEntryGuardedByCond.
Dan Gohmane65c9172009-07-13 21:35:55 +00006230 switch (Pred) {
6231 default:
Dan Gohman8c129d72009-07-16 17:34:36 +00006232 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohmane65c9172009-07-13 21:35:55 +00006233 case ICmpInst::ICMP_SGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00006234 std::swap(LHS, RHS);
6235 case ICmpInst::ICMP_SLT: {
6236 ConstantRange LHSRange = getSignedRange(LHS);
6237 ConstantRange RHSRange = getSignedRange(RHS);
6238 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
6239 return true;
6240 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
6241 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006242 break;
6243 }
6244 case ICmpInst::ICMP_SGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00006245 std::swap(LHS, RHS);
6246 case ICmpInst::ICMP_SLE: {
6247 ConstantRange LHSRange = getSignedRange(LHS);
6248 ConstantRange RHSRange = getSignedRange(RHS);
6249 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
6250 return true;
6251 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
6252 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006253 break;
6254 }
6255 case ICmpInst::ICMP_UGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00006256 std::swap(LHS, RHS);
6257 case ICmpInst::ICMP_ULT: {
6258 ConstantRange LHSRange = getUnsignedRange(LHS);
6259 ConstantRange RHSRange = getUnsignedRange(RHS);
6260 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
6261 return true;
6262 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
6263 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006264 break;
6265 }
6266 case ICmpInst::ICMP_UGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00006267 std::swap(LHS, RHS);
6268 case ICmpInst::ICMP_ULE: {
6269 ConstantRange LHSRange = getUnsignedRange(LHS);
6270 ConstantRange RHSRange = getUnsignedRange(RHS);
6271 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
6272 return true;
6273 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
6274 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006275 break;
6276 }
6277 case ICmpInst::ICMP_NE: {
6278 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
6279 return true;
6280 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
6281 return true;
6282
6283 const SCEV *Diff = getMinusSCEV(LHS, RHS);
6284 if (isKnownNonZero(Diff))
6285 return true;
6286 break;
6287 }
6288 case ICmpInst::ICMP_EQ:
Dan Gohman34392622009-07-20 23:54:43 +00006289 // The check at the top of the function catches the case where
6290 // the values are known to be equal.
Dan Gohmane65c9172009-07-13 21:35:55 +00006291 break;
6292 }
6293 return false;
6294}
6295
6296/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6297/// protected by a conditional between LHS and RHS. This is used to
6298/// to eliminate casts.
6299bool
6300ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6301 ICmpInst::Predicate Pred,
6302 const SCEV *LHS, const SCEV *RHS) {
6303 // Interpret a null as meaning no loop, where there is obviously no guard
6304 // (interprocedural conditions notwithstanding).
6305 if (!L) return true;
6306
6307 BasicBlock *Latch = L->getLoopLatch();
6308 if (!Latch)
6309 return false;
6310
6311 BranchInst *LoopContinuePredicate =
6312 dyn_cast<BranchInst>(Latch->getTerminator());
6313 if (!LoopContinuePredicate ||
6314 LoopContinuePredicate->isUnconditional())
6315 return false;
6316
Dan Gohmane18c2d62010-08-10 23:46:30 +00006317 return isImpliedCond(Pred, LHS, RHS,
6318 LoopContinuePredicate->getCondition(),
Dan Gohman430f0cc2009-07-21 23:03:19 +00006319 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohmane65c9172009-07-13 21:35:55 +00006320}
6321
Dan Gohmanb50349a2010-04-11 19:27:13 +00006322/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohmane65c9172009-07-13 21:35:55 +00006323/// by a conditional between LHS and RHS. This is used to help avoid max
6324/// expressions in loop trip counts, and to eliminate casts.
6325bool
Dan Gohmanb50349a2010-04-11 19:27:13 +00006326ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6327 ICmpInst::Predicate Pred,
6328 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman9cf09f82009-05-18 16:03:58 +00006329 // Interpret a null as meaning no loop, where there is obviously no guard
6330 // (interprocedural conditions notwithstanding).
6331 if (!L) return false;
6332
Dan Gohman8c77f1a2009-05-18 15:36:09 +00006333 // Starting at the loop predecessor, climb up the predecessor chain, as long
6334 // as there are predecessors that can be found that have unique successors
Dan Gohmanf9081a22008-09-15 22:18:04 +00006335 // leading to the original header.
Dan Gohman4e3c1132010-04-15 16:19:08 +00006336 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman75c6b0b2010-06-22 23:43:28 +00006337 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman4e3c1132010-04-15 16:19:08 +00006338 Pair.first;
6339 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman2a62fd92008-08-12 20:17:31 +00006340
6341 BranchInst *LoopEntryPredicate =
Dan Gohman4e3c1132010-04-15 16:19:08 +00006342 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman2a62fd92008-08-12 20:17:31 +00006343 if (!LoopEntryPredicate ||
6344 LoopEntryPredicate->isUnconditional())
6345 continue;
6346
Dan Gohmane18c2d62010-08-10 23:46:30 +00006347 if (isImpliedCond(Pred, LHS, RHS,
6348 LoopEntryPredicate->getCondition(),
Dan Gohman4e3c1132010-04-15 16:19:08 +00006349 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman2a62fd92008-08-12 20:17:31 +00006350 return true;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00006351 }
6352
Dan Gohman2a62fd92008-08-12 20:17:31 +00006353 return false;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00006354}
6355
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00006356/// RAII wrapper to prevent recursive application of isImpliedCond.
6357/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
6358/// currently evaluating isImpliedCond.
6359struct MarkPendingLoopPredicate {
6360 Value *Cond;
6361 DenseSet<Value*> &LoopPreds;
6362 bool Pending;
6363
6364 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
6365 : Cond(C), LoopPreds(LP) {
6366 Pending = !LoopPreds.insert(Cond).second;
6367 }
6368 ~MarkPendingLoopPredicate() {
6369 if (!Pending)
6370 LoopPreds.erase(Cond);
6371 }
6372};
6373
Dan Gohman430f0cc2009-07-21 23:03:19 +00006374/// isImpliedCond - Test whether the condition described by Pred, LHS,
6375/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmane18c2d62010-08-10 23:46:30 +00006376bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006377 const SCEV *LHS, const SCEV *RHS,
Dan Gohmane18c2d62010-08-10 23:46:30 +00006378 Value *FoundCondValue,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006379 bool Inverse) {
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00006380 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
6381 if (Mark.Pending)
6382 return false;
6383
Dan Gohman8b0a4192010-03-01 17:49:51 +00006384 // Recursively handle And and Or conditions.
Dan Gohmane18c2d62010-08-10 23:46:30 +00006385 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006386 if (BO->getOpcode() == Instruction::And) {
6387 if (!Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00006388 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6389 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006390 } else if (BO->getOpcode() == Instruction::Or) {
6391 if (Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00006392 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6393 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006394 }
6395 }
6396
Dan Gohmane18c2d62010-08-10 23:46:30 +00006397 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006398 if (!ICI) return false;
6399
Dan Gohmane65c9172009-07-13 21:35:55 +00006400 // Bail if the ICmp's operands' types are wider than the needed type
6401 // before attempting to call getSCEV on them. This avoids infinite
6402 // recursion, since the analysis of widening casts can require loop
6403 // exit condition information for overflow checking, which would
6404 // lead back here.
6405 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman430f0cc2009-07-21 23:03:19 +00006406 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohmane65c9172009-07-13 21:35:55 +00006407 return false;
6408
Andrew Trickfa594032012-11-29 18:35:13 +00006409 // Now that we found a conditional branch that dominates the loop or controls
6410 // the loop latch. Check to see if it is the comparison we are looking for.
Dan Gohman430f0cc2009-07-21 23:03:19 +00006411 ICmpInst::Predicate FoundPred;
6412 if (Inverse)
6413 FoundPred = ICI->getInversePredicate();
6414 else
6415 FoundPred = ICI->getPredicate();
6416
6417 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6418 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohmane65c9172009-07-13 21:35:55 +00006419
6420 // Balance the types. The case where FoundLHS' type is wider than
6421 // LHS' type is checked for above.
6422 if (getTypeSizeInBits(LHS->getType()) >
6423 getTypeSizeInBits(FoundLHS->getType())) {
Stepan Dyatkovskiy431993b2014-01-09 12:26:12 +00006424 if (CmpInst::isSigned(FoundPred)) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006425 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6426 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6427 } else {
6428 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6429 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6430 }
6431 }
6432
Dan Gohman430f0cc2009-07-21 23:03:19 +00006433 // Canonicalize the query to match the way instcombine will have
6434 // canonicalized the comparison.
Dan Gohman3673aa12010-04-24 01:34:53 +00006435 if (SimplifyICmpOperands(Pred, LHS, RHS))
6436 if (LHS == RHS)
Dan Gohmanb5025c72010-05-03 18:00:24 +00006437 return CmpInst::isTrueWhenEqual(Pred);
Benjamin Kramerba11a982012-11-29 19:07:57 +00006438 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6439 if (FoundLHS == FoundRHS)
6440 return CmpInst::isFalseWhenEqual(FoundPred);
Dan Gohman430f0cc2009-07-21 23:03:19 +00006441
6442 // Check to see if we can make the LHS or RHS match.
6443 if (LHS == FoundRHS || RHS == FoundLHS) {
6444 if (isa<SCEVConstant>(RHS)) {
6445 std::swap(FoundLHS, FoundRHS);
6446 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6447 } else {
6448 std::swap(LHS, RHS);
6449 Pred = ICmpInst::getSwappedPredicate(Pred);
6450 }
6451 }
6452
6453 // Check whether the found predicate is the same as the desired predicate.
6454 if (FoundPred == Pred)
6455 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6456
6457 // Check whether swapping the found predicate makes it the same as the
6458 // desired predicate.
6459 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6460 if (isa<SCEVConstant>(RHS))
6461 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6462 else
6463 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6464 RHS, LHS, FoundLHS, FoundRHS);
6465 }
6466
6467 // Check whether the actual condition is beyond sufficient.
6468 if (FoundPred == ICmpInst::ICMP_EQ)
6469 if (ICmpInst::isTrueWhenEqual(Pred))
6470 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6471 return true;
6472 if (Pred == ICmpInst::ICMP_NE)
6473 if (!ICmpInst::isTrueWhenEqual(FoundPred))
6474 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6475 return true;
6476
6477 // Otherwise assume the worst.
6478 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006479}
6480
Dan Gohman430f0cc2009-07-21 23:03:19 +00006481/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman8b0a4192010-03-01 17:49:51 +00006482/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006483/// and FoundRHS is true.
6484bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6485 const SCEV *LHS, const SCEV *RHS,
6486 const SCEV *FoundLHS,
6487 const SCEV *FoundRHS) {
6488 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6489 FoundLHS, FoundRHS) ||
6490 // ~x < ~y --> x > y
6491 isImpliedCondOperandsHelper(Pred, LHS, RHS,
6492 getNotSCEV(FoundRHS),
6493 getNotSCEV(FoundLHS));
6494}
6495
6496/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman8b0a4192010-03-01 17:49:51 +00006497/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006498/// FoundLHS, and FoundRHS is true.
Dan Gohmane65c9172009-07-13 21:35:55 +00006499bool
Dan Gohman430f0cc2009-07-21 23:03:19 +00006500ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
6501 const SCEV *LHS, const SCEV *RHS,
6502 const SCEV *FoundLHS,
6503 const SCEV *FoundRHS) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006504 switch (Pred) {
Dan Gohman8c129d72009-07-16 17:34:36 +00006505 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6506 case ICmpInst::ICMP_EQ:
6507 case ICmpInst::ICMP_NE:
6508 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
6509 return true;
6510 break;
Dan Gohmane65c9172009-07-13 21:35:55 +00006511 case ICmpInst::ICMP_SLT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006512 case ICmpInst::ICMP_SLE:
Dan Gohman07591692010-04-11 22:16:48 +00006513 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
6514 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006515 return true;
6516 break;
6517 case ICmpInst::ICMP_SGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006518 case ICmpInst::ICMP_SGE:
Dan Gohman07591692010-04-11 22:16:48 +00006519 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
6520 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006521 return true;
6522 break;
6523 case ICmpInst::ICMP_ULT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006524 case ICmpInst::ICMP_ULE:
Dan Gohman07591692010-04-11 22:16:48 +00006525 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
6526 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006527 return true;
6528 break;
6529 case ICmpInst::ICMP_UGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006530 case ICmpInst::ICMP_UGE:
Dan Gohman07591692010-04-11 22:16:48 +00006531 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
6532 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006533 return true;
6534 break;
6535 }
6536
6537 return false;
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006538}
6539
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006540// Verify if an linear IV with positive stride can overflow when in a
6541// less-than comparison, knowing the invariant term of the comparison, the
6542// stride and the knowledge of NSW/NUW flags on the recurrence.
6543bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
6544 bool IsSigned, bool NoWrap) {
6545 if (NoWrap) return false;
Dan Gohman51aaf022010-01-26 04:40:18 +00006546
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006547 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6548 const SCEV *One = getConstant(Stride->getType(), 1);
Andrew Trick2afa3252011-03-09 17:29:58 +00006549
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006550 if (IsSigned) {
6551 APInt MaxRHS = getSignedRange(RHS).getSignedMax();
6552 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
6553 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
6554 .getSignedMax();
Andrew Trick2afa3252011-03-09 17:29:58 +00006555
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006556 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
6557 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
Dan Gohman36bad002009-09-17 18:05:20 +00006558 }
Dan Gohman01048422009-06-21 23:46:38 +00006559
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006560 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
6561 APInt MaxValue = APInt::getMaxValue(BitWidth);
6562 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
6563 .getUnsignedMax();
6564
6565 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
6566 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
6567}
6568
6569// Verify if an linear IV with negative stride can overflow when in a
6570// greater-than comparison, knowing the invariant term of the comparison,
6571// the stride and the knowledge of NSW/NUW flags on the recurrence.
6572bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
6573 bool IsSigned, bool NoWrap) {
6574 if (NoWrap) return false;
6575
6576 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6577 const SCEV *One = getConstant(Stride->getType(), 1);
6578
6579 if (IsSigned) {
6580 APInt MinRHS = getSignedRange(RHS).getSignedMin();
6581 APInt MinValue = APInt::getSignedMinValue(BitWidth);
6582 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
6583 .getSignedMax();
6584
6585 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
6586 return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
6587 }
6588
6589 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
6590 APInt MinValue = APInt::getMinValue(BitWidth);
6591 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
6592 .getUnsignedMax();
6593
6594 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
6595 return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
6596}
6597
6598// Compute the backedge taken count knowing the interval difference, the
6599// stride and presence of the equality in the comparison.
6600const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
6601 bool Equality) {
6602 const SCEV *One = getConstant(Step->getType(), 1);
6603 Delta = Equality ? getAddExpr(Delta, Step)
6604 : getAddExpr(Delta, getMinusSCEV(Step, One));
6605 return getUDivExpr(Delta, Step);
Dan Gohman01048422009-06-21 23:46:38 +00006606}
6607
Chris Lattner587a75b2005-08-15 23:33:51 +00006608/// HowManyLessThans - Return the number of times a backedge containing the
6609/// specified less-than comparison will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00006610/// CouldNotCompute.
Andrew Trick5b245a12013-05-31 06:43:25 +00006611///
6612/// @param IsSubExpr is true when the LHS < RHS condition does not directly
6613/// control the branch. In this case, we can only compute an iteration count for
6614/// a subexpression that cannot overflow before evaluating true.
Andrew Trick3ca3f982011-07-26 17:19:55 +00006615ScalarEvolution::ExitLimit
Dan Gohmance973df2009-06-24 04:48:43 +00006616ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006617 const Loop *L, bool IsSigned,
Andrew Trick5b245a12013-05-31 06:43:25 +00006618 bool IsSubExpr) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006619 // We handle only IV < Invariant
6620 if (!isLoopInvariant(RHS, L))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006621 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00006622
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006623 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
Dan Gohman2b8da352009-04-30 20:47:05 +00006624
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006625 // Avoid weird loops
6626 if (!IV || IV->getLoop() != L || !IV->isAffine())
6627 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00006628
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006629 bool NoWrap = !IsSubExpr &&
6630 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00006631
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006632 const SCEV *Stride = IV->getStepRecurrence(*this);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00006633
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006634 // Avoid negative or zero stride values
6635 if (!isKnownPositive(Stride))
6636 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00006637
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006638 // Avoid proven overflow cases: this will ensure that the backedge taken count
6639 // will not generate any unsigned overflow. Relaxed no-overflow conditions
6640 // exploit NoWrapFlags, allowing to optimize in presence of undefined
6641 // behaviors like the case of C language.
6642 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
6643 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00006644
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006645 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
6646 : ICmpInst::ICMP_ULT;
6647 const SCEV *Start = IV->getStart();
6648 const SCEV *End = RHS;
6649 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
6650 End = IsSigned ? getSMaxExpr(RHS, Start)
6651 : getUMaxExpr(RHS, Start);
Dan Gohman51aaf022010-01-26 04:40:18 +00006652
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006653 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
Dan Gohman2b8da352009-04-30 20:47:05 +00006654
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006655 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
6656 : getUnsignedRange(Start).getUnsignedMin();
Andrew Trick2afa3252011-03-09 17:29:58 +00006657
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006658 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
6659 : getUnsignedRange(Stride).getUnsignedMin();
Dan Gohman2b8da352009-04-30 20:47:05 +00006660
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006661 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
6662 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
6663 : APInt::getMaxValue(BitWidth) - (MinStride - 1);
Chris Lattner587a75b2005-08-15 23:33:51 +00006664
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006665 // Although End can be a MAX expression we estimate MaxEnd considering only
6666 // the case End = RHS. This is safe because in the other case (End - Start)
6667 // is zero, leading to a zero maximum backedge taken count.
6668 APInt MaxEnd =
6669 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
6670 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
6671
Arnaud A. de Grandmaison75c9e6d2014-03-15 22:13:15 +00006672 const SCEV *MaxBECount;
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006673 if (isa<SCEVConstant>(BECount))
6674 MaxBECount = BECount;
6675 else
6676 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
6677 getConstant(MinStride), false);
6678
6679 if (isa<SCEVCouldNotCompute>(MaxBECount))
6680 MaxBECount = BECount;
6681
Andrew Trickee5aa7f2014-01-15 06:42:11 +00006682 return ExitLimit(BECount, MaxBECount, /*MustExit=*/true);
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006683}
6684
6685ScalarEvolution::ExitLimit
6686ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
6687 const Loop *L, bool IsSigned,
6688 bool IsSubExpr) {
6689 // We handle only IV > Invariant
6690 if (!isLoopInvariant(RHS, L))
6691 return getCouldNotCompute();
6692
6693 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
6694
6695 // Avoid weird loops
6696 if (!IV || IV->getLoop() != L || !IV->isAffine())
6697 return getCouldNotCompute();
6698
6699 bool NoWrap = !IsSubExpr &&
6700 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
6701
6702 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
6703
6704 // Avoid negative or zero stride values
6705 if (!isKnownPositive(Stride))
6706 return getCouldNotCompute();
6707
6708 // Avoid proven overflow cases: this will ensure that the backedge taken count
6709 // will not generate any unsigned overflow. Relaxed no-overflow conditions
6710 // exploit NoWrapFlags, allowing to optimize in presence of undefined
6711 // behaviors like the case of C language.
6712 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
6713 return getCouldNotCompute();
6714
6715 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
6716 : ICmpInst::ICMP_UGT;
6717
6718 const SCEV *Start = IV->getStart();
6719 const SCEV *End = RHS;
6720 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
6721 End = IsSigned ? getSMinExpr(RHS, Start)
6722 : getUMinExpr(RHS, Start);
6723
6724 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
6725
6726 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
6727 : getUnsignedRange(Start).getUnsignedMax();
6728
6729 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
6730 : getUnsignedRange(Stride).getUnsignedMin();
6731
6732 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
6733 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
6734 : APInt::getMinValue(BitWidth) + (MinStride - 1);
6735
6736 // Although End can be a MIN expression we estimate MinEnd considering only
6737 // the case End = RHS. This is safe because in the other case (Start - End)
6738 // is zero, leading to a zero maximum backedge taken count.
6739 APInt MinEnd =
6740 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
6741 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
6742
6743
6744 const SCEV *MaxBECount = getCouldNotCompute();
6745 if (isa<SCEVConstant>(BECount))
6746 MaxBECount = BECount;
6747 else
6748 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
6749 getConstant(MinStride), false);
6750
6751 if (isa<SCEVCouldNotCompute>(MaxBECount))
6752 MaxBECount = BECount;
6753
Andrew Trickee5aa7f2014-01-15 06:42:11 +00006754 return ExitLimit(BECount, MaxBECount, /*MustExit=*/true);
Chris Lattner587a75b2005-08-15 23:33:51 +00006755}
6756
Chris Lattnerd934c702004-04-02 20:23:17 +00006757/// getNumIterationsInRange - Return the number of iterations of this loop that
6758/// produce values in the specified constant range. Another way of looking at
6759/// this is that it returns the first iteration number where the value is not in
6760/// the condition, thus computing the exit count. If the iteration count can't
6761/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00006762const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohmance973df2009-06-24 04:48:43 +00006763 ScalarEvolution &SE) const {
Chris Lattnerd934c702004-04-02 20:23:17 +00006764 if (Range.isFullSet()) // Infinite loop.
Dan Gohman31efa302009-04-18 17:58:19 +00006765 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006766
6767 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohmana30370b2009-05-04 22:02:23 +00006768 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencer2e54a152007-03-02 00:28:52 +00006769 if (!SC->getValue()->isZero()) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006770 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohman1d2ded72010-05-03 22:09:21 +00006771 Operands[0] = SE.getConstant(SC->getType(), 0);
Andrew Trick8b55b732011-03-14 16:50:06 +00006772 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00006773 getNoWrapFlags(FlagNW));
Dan Gohmana30370b2009-05-04 22:02:23 +00006774 if (const SCEVAddRecExpr *ShiftedAddRec =
6775 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattnerd934c702004-04-02 20:23:17 +00006776 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohmana37eaf22007-10-22 18:31:58 +00006777 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattnerd934c702004-04-02 20:23:17 +00006778 // This is strange and shouldn't happen.
Dan Gohman31efa302009-04-18 17:58:19 +00006779 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006780 }
6781
6782 // The only time we can solve this is when we have all constant indices.
6783 // Otherwise, we cannot determine the overflow conditions.
6784 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6785 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohman31efa302009-04-18 17:58:19 +00006786 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006787
6788
6789 // Okay at this point we know that all elements of the chrec are constants and
6790 // that the start element is zero.
6791
6792 // First check to see if the range contains zero. If not, the first
6793 // iteration exits.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00006794 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman0a40ad92009-04-16 03:18:22 +00006795 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohman1d2ded72010-05-03 22:09:21 +00006796 return SE.getConstant(getType(), 0);
Misha Brukman01808ca2005-04-21 21:13:18 +00006797
Chris Lattnerd934c702004-04-02 20:23:17 +00006798 if (isAffine()) {
6799 // If this is an affine expression then we have this situation:
6800 // Solve {0,+,A} in Range === Ax in Range
6801
Nick Lewycky52460262007-07-16 02:08:00 +00006802 // We know that zero is in the range. If A is positive then we know that
6803 // the upper value of the range must be the first possible exit value.
6804 // If A is negative then the lower of the range is the last possible loop
6805 // value. Also note that we already checked for a full range.
Dan Gohman0a40ad92009-04-16 03:18:22 +00006806 APInt One(BitWidth,1);
Nick Lewycky52460262007-07-16 02:08:00 +00006807 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
6808 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattnerd934c702004-04-02 20:23:17 +00006809
Nick Lewycky52460262007-07-16 02:08:00 +00006810 // The exit value should be (End+A)/A.
Nick Lewycky39349612007-09-27 14:12:54 +00006811 APInt ExitVal = (End + A).udiv(A);
Owen Andersonedb4a702009-07-24 23:12:02 +00006812 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattnerd934c702004-04-02 20:23:17 +00006813
6814 // Evaluate at the exit value. If we really did fall out of the valid
6815 // range, then we computed our trip count, otherwise wrap around or other
6816 // things must have happened.
Dan Gohmana37eaf22007-10-22 18:31:58 +00006817 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00006818 if (Range.contains(Val->getValue()))
Dan Gohman31efa302009-04-18 17:58:19 +00006819 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00006820
6821 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer3a7e9d82007-02-28 19:57:34 +00006822 assert(Range.contains(
Dan Gohmance973df2009-06-24 04:48:43 +00006823 EvaluateConstantChrecAtConstant(this,
Owen Andersonedb4a702009-07-24 23:12:02 +00006824 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattnerd934c702004-04-02 20:23:17 +00006825 "Linear scev computation is off in a bad way!");
Dan Gohmana37eaf22007-10-22 18:31:58 +00006826 return SE.getConstant(ExitValue);
Chris Lattnerd934c702004-04-02 20:23:17 +00006827 } else if (isQuadratic()) {
6828 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
6829 // quadratic equation to solve it. To do this, we must frame our problem in
6830 // terms of figuring out when zero is crossed, instead of when
6831 // Range.getUpper() is crossed.
Dan Gohmanaf752342009-07-07 17:06:11 +00006832 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00006833 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick8b55b732011-03-14 16:50:06 +00006834 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
6835 // getNoWrapFlags(FlagNW)
6836 FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00006837
6838 // Next, solve the constructed addrec
Dan Gohmanaf752342009-07-07 17:06:11 +00006839 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohmana37eaf22007-10-22 18:31:58 +00006840 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman48f82222009-05-04 22:30:44 +00006841 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6842 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerd934c702004-04-02 20:23:17 +00006843 if (R1) {
6844 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00006845 if (ConstantInt *CB =
Owen Anderson487375e2009-07-29 18:55:55 +00006846 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Andersonf1f17432009-07-06 22:37:39 +00006847 R1->getValue(), R2->getValue()))) {
Reid Spencercddc9df2007-01-12 04:24:46 +00006848 if (CB->getZExtValue() == false)
Chris Lattnerd934c702004-04-02 20:23:17 +00006849 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman01808ca2005-04-21 21:13:18 +00006850
Chris Lattnerd934c702004-04-02 20:23:17 +00006851 // Make sure the root is not off by one. The returned iteration should
6852 // not be in the range, but the previous one should be. When solving
6853 // for "X*X < 5", for example, we should not return a root of 2.
6854 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohmana37eaf22007-10-22 18:31:58 +00006855 R1->getValue(),
6856 SE);
Reid Spencer6a440332007-03-01 07:54:15 +00006857 if (Range.contains(R1Val->getValue())) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006858 // The next iteration must be out of the range...
Owen Andersonf1f17432009-07-06 22:37:39 +00006859 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00006860 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman01808ca2005-04-21 21:13:18 +00006861
Dan Gohmana37eaf22007-10-22 18:31:58 +00006862 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00006863 if (!Range.contains(R1Val->getValue()))
Dan Gohmana37eaf22007-10-22 18:31:58 +00006864 return SE.getConstant(NextVal);
Dan Gohman31efa302009-04-18 17:58:19 +00006865 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00006866 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006867
Chris Lattnerd934c702004-04-02 20:23:17 +00006868 // If R1 was not in the range, then it is a good return value. Make
6869 // sure that R1-1 WAS in the range though, just in case.
Owen Andersonf1f17432009-07-06 22:37:39 +00006870 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00006871 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohmana37eaf22007-10-22 18:31:58 +00006872 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00006873 if (Range.contains(R1Val->getValue()))
Chris Lattnerd934c702004-04-02 20:23:17 +00006874 return R1;
Dan Gohman31efa302009-04-18 17:58:19 +00006875 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00006876 }
6877 }
6878 }
6879
Dan Gohman31efa302009-04-18 17:58:19 +00006880 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006881}
6882
Sebastian Pop448712b2014-05-07 18:01:20 +00006883namespace {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00006884struct FindUndefs {
6885 bool Found;
6886 FindUndefs() : Found(false) {}
6887
6888 bool follow(const SCEV *S) {
6889 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
6890 if (isa<UndefValue>(C->getValue()))
6891 Found = true;
6892 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
6893 if (isa<UndefValue>(C->getValue()))
6894 Found = true;
6895 }
6896
6897 // Keep looking if we haven't found it yet.
6898 return !Found;
6899 }
6900 bool isDone() const {
6901 // Stop recursion if we have found an undef.
6902 return Found;
6903 }
6904};
6905}
6906
6907// Return true when S contains at least an undef value.
6908static inline bool
6909containsUndefs(const SCEV *S) {
6910 FindUndefs F;
6911 SCEVTraversal<FindUndefs> ST(F);
6912 ST.visitAll(S);
6913
6914 return F.Found;
6915}
6916
6917namespace {
Sebastian Pop448712b2014-05-07 18:01:20 +00006918// Collect all steps of SCEV expressions.
6919struct SCEVCollectStrides {
6920 ScalarEvolution &SE;
6921 SmallVectorImpl<const SCEV *> &Strides;
6922
6923 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
6924 : SE(SE), Strides(S) {}
6925
6926 bool follow(const SCEV *S) {
6927 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
6928 Strides.push_back(AR->getStepRecurrence(SE));
6929 return true;
6930 }
6931 bool isDone() const { return false; }
6932};
6933
6934// Collect all SCEVUnknown and SCEVMulExpr expressions.
6935struct SCEVCollectTerms {
6936 SmallVectorImpl<const SCEV *> &Terms;
6937
6938 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
6939 : Terms(T) {}
6940
6941 bool follow(const SCEV *S) {
Sebastian Popa6e58602014-05-27 22:41:45 +00006942 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00006943 if (!containsUndefs(S))
6944 Terms.push_back(S);
Sebastian Pop448712b2014-05-07 18:01:20 +00006945
6946 // Stop recursion: once we collected a term, do not walk its operands.
6947 return false;
6948 }
6949
6950 // Keep looking.
6951 return true;
6952 }
6953 bool isDone() const { return false; }
6954};
6955}
6956
6957/// Find parametric terms in this SCEVAddRecExpr.
6958void SCEVAddRecExpr::collectParametricTerms(
6959 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Terms) const {
6960 SmallVector<const SCEV *, 4> Strides;
6961 SCEVCollectStrides StrideCollector(SE, Strides);
6962 visitAll(this, StrideCollector);
6963
6964 DEBUG({
6965 dbgs() << "Strides:\n";
6966 for (const SCEV *S : Strides)
6967 dbgs() << *S << "\n";
6968 });
6969
6970 for (const SCEV *S : Strides) {
6971 SCEVCollectTerms TermCollector(Terms);
6972 visitAll(S, TermCollector);
6973 }
6974
6975 DEBUG({
6976 dbgs() << "Terms:\n";
6977 for (const SCEV *T : Terms)
6978 dbgs() << *T << "\n";
6979 });
6980}
6981
Sebastian Popc62c6792013-11-12 22:47:20 +00006982static const APInt srem(const SCEVConstant *C1, const SCEVConstant *C2) {
6983 APInt A = C1->getValue()->getValue();
6984 APInt B = C2->getValue()->getValue();
6985 uint32_t ABW = A.getBitWidth();
6986 uint32_t BBW = B.getBitWidth();
6987
6988 if (ABW > BBW)
Benjamin Kramer5f2768c2013-11-16 16:25:41 +00006989 B = B.sext(ABW);
Sebastian Popc62c6792013-11-12 22:47:20 +00006990 else if (ABW < BBW)
Benjamin Kramer5f2768c2013-11-16 16:25:41 +00006991 A = A.sext(BBW);
Sebastian Popc62c6792013-11-12 22:47:20 +00006992
6993 return APIntOps::srem(A, B);
6994}
6995
6996static const APInt sdiv(const SCEVConstant *C1, const SCEVConstant *C2) {
6997 APInt A = C1->getValue()->getValue();
6998 APInt B = C2->getValue()->getValue();
6999 uint32_t ABW = A.getBitWidth();
7000 uint32_t BBW = B.getBitWidth();
7001
7002 if (ABW > BBW)
Benjamin Kramer5f2768c2013-11-16 16:25:41 +00007003 B = B.sext(ABW);
Sebastian Popc62c6792013-11-12 22:47:20 +00007004 else if (ABW < BBW)
Benjamin Kramer5f2768c2013-11-16 16:25:41 +00007005 A = A.sext(BBW);
Sebastian Popc62c6792013-11-12 22:47:20 +00007006
7007 return APIntOps::sdiv(A, B);
7008}
7009
7010namespace {
Sebastian Pop448712b2014-05-07 18:01:20 +00007011struct FindSCEVSize {
7012 int Size;
7013 FindSCEVSize() : Size(0) {}
7014
7015 bool follow(const SCEV *S) {
7016 ++Size;
7017 // Keep looking at all operands of S.
7018 return true;
7019 }
7020 bool isDone() const {
7021 return false;
7022 }
7023};
7024}
7025
7026// Returns the size of the SCEV S.
7027static inline int sizeOfSCEV(const SCEV *S) {
7028 FindSCEVSize F;
7029 SCEVTraversal<FindSCEVSize> ST(F);
7030 ST.visitAll(S);
7031 return F.Size;
7032}
7033
7034namespace {
7035
7036struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
Sebastian Popc62c6792013-11-12 22:47:20 +00007037public:
Sebastian Pop448712b2014-05-07 18:01:20 +00007038 // Computes the Quotient and Remainder of the division of Numerator by
7039 // Denominator.
7040 static void divide(ScalarEvolution &SE, const SCEV *Numerator,
7041 const SCEV *Denominator, const SCEV **Quotient,
7042 const SCEV **Remainder) {
Sebastian Popb8d56f42014-05-07 19:00:37 +00007043 assert(Numerator && Denominator && "Uninitialized SCEV");
Sebastian Popc62c6792013-11-12 22:47:20 +00007044
Sebastian Pop448712b2014-05-07 18:01:20 +00007045 SCEVDivision D(SE, Numerator, Denominator);
Sebastian Popc62c6792013-11-12 22:47:20 +00007046
Sebastian Pop448712b2014-05-07 18:01:20 +00007047 // Check for the trivial case here to avoid having to check for it in the
7048 // rest of the code.
7049 if (Numerator == Denominator) {
7050 *Quotient = D.One;
7051 *Remainder = D.Zero;
7052 return;
Sebastian Popc62c6792013-11-12 22:47:20 +00007053 }
7054
Sebastian Pop0e75c5c2014-05-12 19:01:49 +00007055 if (Numerator->isZero()) {
Sebastian Pop448712b2014-05-07 18:01:20 +00007056 *Quotient = D.Zero;
7057 *Remainder = D.Zero;
7058 return;
Sebastian Popc62c6792013-11-12 22:47:20 +00007059 }
7060
Sebastian Pop448712b2014-05-07 18:01:20 +00007061 // Split the Denominator when it is a product.
7062 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
7063 const SCEV *Q, *R;
7064 *Quotient = Numerator;
7065 for (const SCEV *Op : T->operands()) {
7066 divide(SE, *Quotient, Op, &Q, &R);
7067 *Quotient = Q;
Sebastian Popc62c6792013-11-12 22:47:20 +00007068
Sebastian Pop448712b2014-05-07 18:01:20 +00007069 // Bail out when the Numerator is not divisible by one of the terms of
7070 // the Denominator.
Sebastian Pop0e75c5c2014-05-12 19:01:49 +00007071 if (!R->isZero()) {
Sebastian Pop448712b2014-05-07 18:01:20 +00007072 *Quotient = D.Zero;
7073 *Remainder = Numerator;
7074 return;
7075 }
7076 }
7077 *Remainder = D.Zero;
7078 return;
Sebastian Popc62c6792013-11-12 22:47:20 +00007079 }
7080
Sebastian Pop448712b2014-05-07 18:01:20 +00007081 D.visit(Numerator);
7082 *Quotient = D.Quotient;
7083 *Remainder = D.Remainder;
Sebastian Popc62c6792013-11-12 22:47:20 +00007084 }
7085
Sebastian Pop448712b2014-05-07 18:01:20 +00007086 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, const SCEV *Denominator)
7087 : SE(S), Denominator(Denominator) {
7088 Zero = SE.getConstant(Denominator->getType(), 0);
7089 One = SE.getConstant(Denominator->getType(), 1);
Sebastian Popc62c6792013-11-12 22:47:20 +00007090
Sebastian Pop448712b2014-05-07 18:01:20 +00007091 // By default, we don't know how to divide Expr by Denominator.
7092 // Providing the default here simplifies the rest of the code.
7093 Quotient = Zero;
7094 Remainder = Numerator;
7095 }
7096
7097 // Except in the trivial case described above, we do not know how to divide
7098 // Expr by Denominator for the following functions with empty implementation.
7099 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
7100 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
7101 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
7102 void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
7103 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
7104 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
7105 void visitUnknown(const SCEVUnknown *Numerator) {}
7106 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
7107
7108 void visitConstant(const SCEVConstant *Numerator) {
7109 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
7110 Quotient = SE.getConstant(sdiv(Numerator, D));
7111 Remainder = SE.getConstant(srem(Numerator, D));
7112 return;
7113 }
7114 }
7115
7116 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
7117 const SCEV *StartQ, *StartR, *StepQ, *StepR;
7118 assert(Numerator->isAffine() && "Numerator should be affine");
7119 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
7120 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
7121 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
7122 Numerator->getNoWrapFlags());
7123 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
7124 Numerator->getNoWrapFlags());
7125 }
7126
7127 void visitAddExpr(const SCEVAddExpr *Numerator) {
7128 SmallVector<const SCEV *, 2> Qs, Rs;
Sebastian Popf93ef122014-05-27 22:42:00 +00007129 Type *Ty = Denominator->getType();
7130
Sebastian Pop448712b2014-05-07 18:01:20 +00007131 for (const SCEV *Op : Numerator->operands()) {
7132 const SCEV *Q, *R;
7133 divide(SE, Op, Denominator, &Q, &R);
Sebastian Popf93ef122014-05-27 22:42:00 +00007134
7135 // Bail out if types do not match.
7136 if (Ty != Q->getType() || Ty != R->getType()) {
7137 Quotient = Zero;
7138 Remainder = Numerator;
7139 return;
7140 }
7141
Sebastian Pop448712b2014-05-07 18:01:20 +00007142 Qs.push_back(Q);
7143 Rs.push_back(R);
Sebastian Popc62c6792013-11-12 22:47:20 +00007144 }
7145
Sebastian Pop448712b2014-05-07 18:01:20 +00007146 if (Qs.size() == 1) {
7147 Quotient = Qs[0];
7148 Remainder = Rs[0];
7149 return;
7150 }
7151
7152 Quotient = SE.getAddExpr(Qs);
7153 Remainder = SE.getAddExpr(Rs);
7154 }
7155
7156 void visitMulExpr(const SCEVMulExpr *Numerator) {
7157 SmallVector<const SCEV *, 2> Qs;
Sebastian Popf93ef122014-05-27 22:42:00 +00007158 Type *Ty = Denominator->getType();
Sebastian Pop448712b2014-05-07 18:01:20 +00007159
7160 bool FoundDenominatorTerm = false;
7161 for (const SCEV *Op : Numerator->operands()) {
Sebastian Popf93ef122014-05-27 22:42:00 +00007162 // Bail out if types do not match.
7163 if (Ty != Op->getType()) {
7164 Quotient = Zero;
7165 Remainder = Numerator;
7166 return;
7167 }
7168
Sebastian Pop448712b2014-05-07 18:01:20 +00007169 if (FoundDenominatorTerm) {
7170 Qs.push_back(Op);
Sebastian Popc62c6792013-11-12 22:47:20 +00007171 continue;
Sebastian Popc62c6792013-11-12 22:47:20 +00007172 }
Sebastian Pop448712b2014-05-07 18:01:20 +00007173
7174 // Check whether Denominator divides one of the product operands.
7175 const SCEV *Q, *R;
7176 divide(SE, Op, Denominator, &Q, &R);
Sebastian Pop0e75c5c2014-05-12 19:01:49 +00007177 if (!R->isZero()) {
Sebastian Pop448712b2014-05-07 18:01:20 +00007178 Qs.push_back(Op);
7179 continue;
7180 }
Sebastian Popf93ef122014-05-27 22:42:00 +00007181
7182 // Bail out if types do not match.
7183 if (Ty != Q->getType()) {
7184 Quotient = Zero;
7185 Remainder = Numerator;
7186 return;
7187 }
7188
Sebastian Pop448712b2014-05-07 18:01:20 +00007189 FoundDenominatorTerm = true;
7190 Qs.push_back(Q);
Sebastian Popc62c6792013-11-12 22:47:20 +00007191 }
7192
Sebastian Pop448712b2014-05-07 18:01:20 +00007193 if (FoundDenominatorTerm) {
7194 Remainder = Zero;
7195 if (Qs.size() == 1)
7196 Quotient = Qs[0];
7197 else
7198 Quotient = SE.getMulExpr(Qs);
7199 return;
Sebastian Popc62c6792013-11-12 22:47:20 +00007200 }
7201
Sebastian Pop448712b2014-05-07 18:01:20 +00007202 if (!isa<SCEVUnknown>(Denominator)) {
7203 Quotient = Zero;
7204 Remainder = Numerator;
7205 return;
Sebastian Pop9738e832014-04-08 21:21:10 +00007206 }
7207
Sebastian Pop448712b2014-05-07 18:01:20 +00007208 // The Remainder is obtained by replacing Denominator by 0 in Numerator.
7209 ValueToValueMap RewriteMap;
7210 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
7211 cast<SCEVConstant>(Zero)->getValue();
7212 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
Sebastian Popc62c6792013-11-12 22:47:20 +00007213
Sebastian Pop20daf322014-05-29 19:44:09 +00007214 if (Remainder->isZero()) {
7215 // The Quotient is obtained by replacing Denominator by 1 in Numerator.
7216 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
7217 cast<SCEVConstant>(One)->getValue();
7218 Quotient =
7219 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
7220 return;
7221 }
7222
Sebastian Pop448712b2014-05-07 18:01:20 +00007223 // Quotient is (Numerator - Remainder) divided by Denominator.
7224 const SCEV *Q, *R;
7225 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
7226 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) {
7227 // This SCEV does not seem to simplify: fail the division here.
7228 Quotient = Zero;
7229 Remainder = Numerator;
7230 return;
Sebastian Popc62c6792013-11-12 22:47:20 +00007231 }
Sebastian Pop448712b2014-05-07 18:01:20 +00007232 divide(SE, Diff, Denominator, &Q, &R);
7233 assert(R == Zero &&
7234 "(Numerator - Remainder) should evenly divide Denominator");
7235 Quotient = Q;
Sebastian Popc62c6792013-11-12 22:47:20 +00007236 }
7237
Sebastian Pop448712b2014-05-07 18:01:20 +00007238private:
7239 ScalarEvolution &SE;
7240 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
7241};
7242}
Sebastian Popc62c6792013-11-12 22:47:20 +00007243
Sebastian Popb1a548f2014-05-12 19:01:53 +00007244static bool findArrayDimensionsRec(ScalarEvolution &SE,
Sebastian Pop448712b2014-05-07 18:01:20 +00007245 SmallVectorImpl<const SCEV *> &Terms,
Sebastian Pop47fe7de2014-05-09 22:45:07 +00007246 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pope30bd352014-05-27 22:41:56 +00007247 int Last = Terms.size() - 1;
7248 const SCEV *Step = Terms[Last];
Sebastian Popc62c6792013-11-12 22:47:20 +00007249
Sebastian Pop448712b2014-05-07 18:01:20 +00007250 // End of recursion.
Sebastian Pope30bd352014-05-27 22:41:56 +00007251 if (Last == 0) {
7252 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
Sebastian Pop448712b2014-05-07 18:01:20 +00007253 SmallVector<const SCEV *, 2> Qs;
7254 for (const SCEV *Op : M->operands())
7255 if (!isa<SCEVConstant>(Op))
7256 Qs.push_back(Op);
Sebastian Popc62c6792013-11-12 22:47:20 +00007257
Sebastian Pope30bd352014-05-27 22:41:56 +00007258 Step = SE.getMulExpr(Qs);
Sebastian Popc62c6792013-11-12 22:47:20 +00007259 }
7260
Sebastian Pope30bd352014-05-27 22:41:56 +00007261 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007262 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00007263 }
7264
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00007265 for (const SCEV *&Term : Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00007266 // Normalize the terms before the next call to findArrayDimensionsRec.
7267 const SCEV *Q, *R;
Sebastian Pope30bd352014-05-27 22:41:56 +00007268 SCEVDivision::divide(SE, Term, Step, &Q, &R);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007269
7270 // Bail out when GCD does not evenly divide one of the terms.
7271 if (!R->isZero())
7272 return false;
7273
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00007274 Term = Q;
Sebastian Popc62c6792013-11-12 22:47:20 +00007275 }
7276
Tobias Grosser3080cf12014-05-08 07:55:34 +00007277 // Remove all SCEVConstants.
Tobias Grosser1e9db7e2014-05-08 21:43:19 +00007278 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
7279 return isa<SCEVConstant>(E);
7280 }),
7281 Terms.end());
Sebastian Popc62c6792013-11-12 22:47:20 +00007282
Sebastian Pop448712b2014-05-07 18:01:20 +00007283 if (Terms.size() > 0)
Sebastian Popb1a548f2014-05-12 19:01:53 +00007284 if (!findArrayDimensionsRec(SE, Terms, Sizes))
7285 return false;
7286
Sebastian Pope30bd352014-05-27 22:41:56 +00007287 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007288 return true;
Sebastian Pop448712b2014-05-07 18:01:20 +00007289}
Sebastian Popc62c6792013-11-12 22:47:20 +00007290
Sebastian Pop448712b2014-05-07 18:01:20 +00007291namespace {
7292struct FindParameter {
7293 bool FoundParameter;
7294 FindParameter() : FoundParameter(false) {}
Sebastian Popc62c6792013-11-12 22:47:20 +00007295
Sebastian Pop448712b2014-05-07 18:01:20 +00007296 bool follow(const SCEV *S) {
7297 if (isa<SCEVUnknown>(S)) {
7298 FoundParameter = true;
7299 // Stop recursion: we found a parameter.
7300 return false;
7301 }
7302 // Keep looking.
7303 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00007304 }
Sebastian Pop448712b2014-05-07 18:01:20 +00007305 bool isDone() const {
7306 // Stop recursion if we have found a parameter.
7307 return FoundParameter;
Sebastian Popc62c6792013-11-12 22:47:20 +00007308 }
Sebastian Popc62c6792013-11-12 22:47:20 +00007309};
7310}
7311
Sebastian Pop448712b2014-05-07 18:01:20 +00007312// Returns true when S contains at least a SCEVUnknown parameter.
7313static inline bool
7314containsParameters(const SCEV *S) {
7315 FindParameter F;
7316 SCEVTraversal<FindParameter> ST(F);
7317 ST.visitAll(S);
7318
7319 return F.FoundParameter;
7320}
7321
7322// Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
7323static inline bool
7324containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
7325 for (const SCEV *T : Terms)
7326 if (containsParameters(T))
7327 return true;
7328 return false;
7329}
7330
7331// Return the number of product terms in S.
7332static inline int numberOfTerms(const SCEV *S) {
7333 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
7334 return Expr->getNumOperands();
7335 return 1;
7336}
7337
Sebastian Popa6e58602014-05-27 22:41:45 +00007338static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
7339 if (isa<SCEVConstant>(T))
7340 return nullptr;
7341
7342 if (isa<SCEVUnknown>(T))
7343 return T;
7344
7345 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
7346 SmallVector<const SCEV *, 2> Factors;
7347 for (const SCEV *Op : M->operands())
7348 if (!isa<SCEVConstant>(Op))
7349 Factors.push_back(Op);
7350
7351 return SE.getMulExpr(Factors);
7352 }
7353
7354 return T;
7355}
7356
7357/// Return the size of an element read or written by Inst.
7358const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
7359 Type *Ty;
7360 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
7361 Ty = Store->getValueOperand()->getType();
7362 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
Tobias Grosser40ac1002014-06-08 19:21:20 +00007363 Ty = Load->getType();
Sebastian Popa6e58602014-05-27 22:41:45 +00007364 else
7365 return nullptr;
7366
7367 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
7368 return getSizeOfExpr(ETy, Ty);
7369}
7370
Sebastian Pop448712b2014-05-07 18:01:20 +00007371/// Second step of delinearization: compute the array dimensions Sizes from the
7372/// set of Terms extracted from the memory access function of this SCEVAddRec.
Sebastian Popa6e58602014-05-27 22:41:45 +00007373void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
7374 SmallVectorImpl<const SCEV *> &Sizes,
7375 const SCEV *ElementSize) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00007376
Sebastian Pop53524082014-05-29 19:44:05 +00007377 if (Terms.size() < 1 || !ElementSize)
Sebastian Pop448712b2014-05-07 18:01:20 +00007378 return;
7379
7380 // Early return when Terms do not contain parameters: we do not delinearize
7381 // non parametric SCEVs.
7382 if (!containsParameters(Terms))
7383 return;
7384
7385 DEBUG({
7386 dbgs() << "Terms:\n";
7387 for (const SCEV *T : Terms)
7388 dbgs() << *T << "\n";
7389 });
7390
7391 // Remove duplicates.
7392 std::sort(Terms.begin(), Terms.end());
7393 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
7394
7395 // Put larger terms first.
7396 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
7397 return numberOfTerms(LHS) > numberOfTerms(RHS);
7398 });
7399
Sebastian Popa6e58602014-05-27 22:41:45 +00007400 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
7401
7402 // Divide all terms by the element size.
7403 for (const SCEV *&Term : Terms) {
7404 const SCEV *Q, *R;
7405 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
7406 Term = Q;
7407 }
7408
7409 SmallVector<const SCEV *, 4> NewTerms;
7410
7411 // Remove constant factors.
7412 for (const SCEV *T : Terms)
7413 if (const SCEV *NewT = removeConstantFactors(SE, T))
7414 NewTerms.push_back(NewT);
7415
Sebastian Pop448712b2014-05-07 18:01:20 +00007416 DEBUG({
7417 dbgs() << "Terms after sorting:\n";
Sebastian Popa6e58602014-05-27 22:41:45 +00007418 for (const SCEV *T : NewTerms)
Sebastian Pop448712b2014-05-07 18:01:20 +00007419 dbgs() << *T << "\n";
7420 });
7421
Sebastian Popa6e58602014-05-27 22:41:45 +00007422 if (NewTerms.empty() ||
7423 !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
Sebastian Popb1a548f2014-05-12 19:01:53 +00007424 Sizes.clear();
7425 return;
7426 }
Sebastian Pop448712b2014-05-07 18:01:20 +00007427
Sebastian Popa6e58602014-05-27 22:41:45 +00007428 // The last element to be pushed into Sizes is the size of an element.
7429 Sizes.push_back(ElementSize);
7430
Sebastian Pop448712b2014-05-07 18:01:20 +00007431 DEBUG({
7432 dbgs() << "Sizes:\n";
7433 for (const SCEV *S : Sizes)
7434 dbgs() << *S << "\n";
7435 });
7436}
7437
7438/// Third step of delinearization: compute the access functions for the
7439/// Subscripts based on the dimensions in Sizes.
Sebastian Pop28e6b972014-05-27 22:41:51 +00007440void SCEVAddRecExpr::computeAccessFunctions(
Sebastian Pop448712b2014-05-07 18:01:20 +00007441 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Subscripts,
7442 SmallVectorImpl<const SCEV *> &Sizes) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00007443
Sebastian Popb1a548f2014-05-12 19:01:53 +00007444 // Early exit in case this SCEV is not an affine multivariate function.
7445 if (Sizes.empty() || !this->isAffine())
Sebastian Pop28e6b972014-05-27 22:41:51 +00007446 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007447
Sebastian Pop28e6b972014-05-27 22:41:51 +00007448 const SCEV *Res = this;
Sebastian Pop448712b2014-05-07 18:01:20 +00007449 int Last = Sizes.size() - 1;
7450 for (int i = Last; i >= 0; i--) {
7451 const SCEV *Q, *R;
7452 SCEVDivision::divide(SE, Res, Sizes[i], &Q, &R);
7453
7454 DEBUG({
7455 dbgs() << "Res: " << *Res << "\n";
7456 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
7457 dbgs() << "Res divided by Sizes[i]:\n";
7458 dbgs() << "Quotient: " << *Q << "\n";
7459 dbgs() << "Remainder: " << *R << "\n";
7460 });
7461
7462 Res = Q;
7463
Sebastian Popa6e58602014-05-27 22:41:45 +00007464 // Do not record the last subscript corresponding to the size of elements in
7465 // the array.
Sebastian Pop448712b2014-05-07 18:01:20 +00007466 if (i == Last) {
Sebastian Popa6e58602014-05-27 22:41:45 +00007467
7468 // Bail out if the remainder is too complex.
Sebastian Pop28e6b972014-05-27 22:41:51 +00007469 if (isa<SCEVAddRecExpr>(R)) {
7470 Subscripts.clear();
7471 Sizes.clear();
7472 return;
7473 }
Sebastian Popa6e58602014-05-27 22:41:45 +00007474
Sebastian Pop448712b2014-05-07 18:01:20 +00007475 continue;
7476 }
7477
7478 // Record the access function for the current subscript.
7479 Subscripts.push_back(R);
7480 }
7481
7482 // Also push in last position the remainder of the last division: it will be
7483 // the access function of the innermost dimension.
7484 Subscripts.push_back(Res);
7485
7486 std::reverse(Subscripts.begin(), Subscripts.end());
7487
7488 DEBUG({
7489 dbgs() << "Subscripts:\n";
7490 for (const SCEV *S : Subscripts)
7491 dbgs() << *S << "\n";
7492 });
Sebastian Pop448712b2014-05-07 18:01:20 +00007493}
7494
Sebastian Popc62c6792013-11-12 22:47:20 +00007495/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
7496/// sizes of an array access. Returns the remainder of the delinearization that
Sebastian Pop7ee14722013-11-13 22:37:58 +00007497/// is the offset start of the array. The SCEV->delinearize algorithm computes
7498/// the multiples of SCEV coefficients: that is a pattern matching of sub
7499/// expressions in the stride and base of a SCEV corresponding to the
7500/// computation of a GCD (greatest common divisor) of base and stride. When
7501/// SCEV->delinearize fails, it returns the SCEV unchanged.
7502///
7503/// For example: when analyzing the memory access A[i][j][k] in this loop nest
7504///
7505/// void foo(long n, long m, long o, double A[n][m][o]) {
7506///
7507/// for (long i = 0; i < n; i++)
7508/// for (long j = 0; j < m; j++)
7509/// for (long k = 0; k < o; k++)
7510/// A[i][j][k] = 1.0;
7511/// }
7512///
7513/// the delinearization input is the following AddRec SCEV:
7514///
7515/// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
7516///
7517/// From this SCEV, we are able to say that the base offset of the access is %A
7518/// because it appears as an offset that does not divide any of the strides in
7519/// the loops:
7520///
7521/// CHECK: Base offset: %A
7522///
7523/// and then SCEV->delinearize determines the size of some of the dimensions of
7524/// the array as these are the multiples by which the strides are happening:
7525///
7526/// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
7527///
7528/// Note that the outermost dimension remains of UnknownSize because there are
7529/// no strides that would help identifying the size of the last dimension: when
7530/// the array has been statically allocated, one could compute the size of that
7531/// dimension by dividing the overall size of the array by the size of the known
7532/// dimensions: %m * %o * 8.
7533///
7534/// Finally delinearize provides the access functions for the array reference
7535/// that does correspond to A[i][j][k] of the above C testcase:
7536///
7537/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
7538///
7539/// The testcases are checking the output of a function pass:
7540/// DelinearizationPass that walks through all loads and stores of a function
7541/// asking for the SCEV of the memory access with respect to all enclosing
7542/// loops, calling SCEV->delinearize on that and printing the results.
7543
Sebastian Pop28e6b972014-05-27 22:41:51 +00007544void SCEVAddRecExpr::delinearize(ScalarEvolution &SE,
7545 SmallVectorImpl<const SCEV *> &Subscripts,
7546 SmallVectorImpl<const SCEV *> &Sizes,
7547 const SCEV *ElementSize) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00007548 // First step: collect parametric terms.
7549 SmallVector<const SCEV *, 4> Terms;
7550 collectParametricTerms(SE, Terms);
Sebastian Popc62c6792013-11-12 22:47:20 +00007551
Sebastian Popb1a548f2014-05-12 19:01:53 +00007552 if (Terms.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00007553 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007554
Sebastian Pop448712b2014-05-07 18:01:20 +00007555 // Second step: find subscript sizes.
Sebastian Popa6e58602014-05-27 22:41:45 +00007556 SE.findArrayDimensions(Terms, Sizes, ElementSize);
Sebastian Pop7ee14722013-11-13 22:37:58 +00007557
Sebastian Popb1a548f2014-05-12 19:01:53 +00007558 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00007559 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007560
Sebastian Pop448712b2014-05-07 18:01:20 +00007561 // Third step: compute the access functions for each subscript.
Sebastian Pop28e6b972014-05-27 22:41:51 +00007562 computeAccessFunctions(SE, Subscripts, Sizes);
Sebastian Popc62c6792013-11-12 22:47:20 +00007563
Sebastian Pop28e6b972014-05-27 22:41:51 +00007564 if (Subscripts.empty())
7565 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007566
Sebastian Pop448712b2014-05-07 18:01:20 +00007567 DEBUG({
7568 dbgs() << "succeeded to delinearize " << *this << "\n";
7569 dbgs() << "ArrayDecl[UnknownSize]";
7570 for (const SCEV *S : Sizes)
7571 dbgs() << "[" << *S << "]";
Sebastian Popc62c6792013-11-12 22:47:20 +00007572
Sebastian Pop444621a2014-05-09 22:45:02 +00007573 dbgs() << "\nArrayRef";
7574 for (const SCEV *S : Subscripts)
Sebastian Pop448712b2014-05-07 18:01:20 +00007575 dbgs() << "[" << *S << "]";
7576 dbgs() << "\n";
7577 });
Sebastian Popc62c6792013-11-12 22:47:20 +00007578}
Chris Lattnerd934c702004-04-02 20:23:17 +00007579
7580//===----------------------------------------------------------------------===//
Dan Gohman48f82222009-05-04 22:30:44 +00007581// SCEVCallbackVH Class Implementation
7582//===----------------------------------------------------------------------===//
7583
Dan Gohmand33a0902009-05-19 19:22:47 +00007584void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmandd707af2009-07-13 22:20:53 +00007585 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman48f82222009-05-04 22:30:44 +00007586 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
7587 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007588 SE->ValueExprMap.erase(getValPtr());
Dan Gohman48f82222009-05-04 22:30:44 +00007589 // this now dangles!
7590}
7591
Dan Gohman7a066722010-07-28 01:09:07 +00007592void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmandd707af2009-07-13 22:20:53 +00007593 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christopheref6d5932010-07-29 01:25:38 +00007594
Dan Gohman48f82222009-05-04 22:30:44 +00007595 // Forget all the expressions associated with users of the old value,
7596 // so that future queries will recompute the expressions using the new
7597 // value.
Dan Gohman7cac9572010-08-02 23:49:30 +00007598 Value *Old = getValPtr();
Chandler Carruthcdf47882014-03-09 03:16:01 +00007599 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
Dan Gohmanf34f8632009-07-14 14:34:04 +00007600 SmallPtrSet<User *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00007601 while (!Worklist.empty()) {
7602 User *U = Worklist.pop_back_val();
7603 // Deleting the Old value will cause this to dangle. Postpone
7604 // that until everything else is done.
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007605 if (U == Old)
Dan Gohman48f82222009-05-04 22:30:44 +00007606 continue;
Dan Gohmanf34f8632009-07-14 14:34:04 +00007607 if (!Visited.insert(U))
7608 continue;
Dan Gohman48f82222009-05-04 22:30:44 +00007609 if (PHINode *PN = dyn_cast<PHINode>(U))
7610 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007611 SE->ValueExprMap.erase(U);
Chandler Carruthcdf47882014-03-09 03:16:01 +00007612 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
Dan Gohman48f82222009-05-04 22:30:44 +00007613 }
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007614 // Delete the Old value.
7615 if (PHINode *PN = dyn_cast<PHINode>(Old))
7616 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007617 SE->ValueExprMap.erase(Old);
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007618 // this now dangles!
Dan Gohman48f82222009-05-04 22:30:44 +00007619}
7620
Dan Gohmand33a0902009-05-19 19:22:47 +00007621ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman48f82222009-05-04 22:30:44 +00007622 : CallbackVH(V), SE(se) {}
7623
7624//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00007625// ScalarEvolution Class Implementation
7626//===----------------------------------------------------------------------===//
7627
Dan Gohmanc8e23622009-04-21 23:15:49 +00007628ScalarEvolution::ScalarEvolution()
Craig Topper9f008862014-04-15 04:59:12 +00007629 : FunctionPass(ID), ValuesAtScopes(64), LoopDispositions(64),
7630 BlockDispositions(64), FirstUnknown(nullptr) {
Owen Anderson6c18d1a2010-10-19 17:21:58 +00007631 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanc8e23622009-04-21 23:15:49 +00007632}
7633
Chris Lattnerd934c702004-04-02 20:23:17 +00007634bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00007635 this->F = &F;
7636 LI = &getAnalysis<LoopInfo>();
Rafael Espindola93512512014-02-25 17:30:31 +00007637 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
Craig Topper9f008862014-04-15 04:59:12 +00007638 DL = DLP ? &DLP->getDataLayout() : nullptr;
Chad Rosierc24b86f2011-12-01 03:08:23 +00007639 TLI = &getAnalysis<TargetLibraryInfo>();
Chandler Carruth73523022014-01-13 13:07:17 +00007640 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
Chris Lattnerd934c702004-04-02 20:23:17 +00007641 return false;
7642}
7643
7644void ScalarEvolution::releaseMemory() {
Dan Gohman7cac9572010-08-02 23:49:30 +00007645 // Iterate through all the SCEVUnknown instances and call their
7646 // destructors, so that they release their references to their values.
7647 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
7648 U->~SCEVUnknown();
Craig Topper9f008862014-04-15 04:59:12 +00007649 FirstUnknown = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00007650
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007651 ValueExprMap.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00007652
7653 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
7654 // that a loop had multiple computable exits.
7655 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
7656 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
7657 I != E; ++I) {
7658 I->second.clear();
7659 }
7660
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007661 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
7662
Dan Gohmanc8e23622009-04-21 23:15:49 +00007663 BackedgeTakenCounts.clear();
7664 ConstantEvolutionLoopExitValue.clear();
Dan Gohman5122d612009-05-08 20:47:27 +00007665 ValuesAtScopes.clear();
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007666 LoopDispositions.clear();
Dan Gohman8ea83d82010-11-18 00:34:22 +00007667 BlockDispositions.clear();
Dan Gohman761065e2010-11-17 02:44:44 +00007668 UnsignedRanges.clear();
7669 SignedRanges.clear();
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007670 UniqueSCEVs.clear();
7671 SCEVAllocator.Reset();
Chris Lattnerd934c702004-04-02 20:23:17 +00007672}
7673
7674void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
7675 AU.setPreservesAll();
Chris Lattnerd934c702004-04-02 20:23:17 +00007676 AU.addRequiredTransitive<LoopInfo>();
Chandler Carruth73523022014-01-13 13:07:17 +00007677 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
Chad Rosierc24b86f2011-12-01 03:08:23 +00007678 AU.addRequired<TargetLibraryInfo>();
Dan Gohman0a40ad92009-04-16 03:18:22 +00007679}
7680
Dan Gohmanc8e23622009-04-21 23:15:49 +00007681bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman0bddac12009-02-24 18:55:53 +00007682 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattnerd934c702004-04-02 20:23:17 +00007683}
7684
Dan Gohmanc8e23622009-04-21 23:15:49 +00007685static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattnerd934c702004-04-02 20:23:17 +00007686 const Loop *L) {
7687 // Print all inner loops first
7688 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
7689 PrintLoopInfo(OS, SE, *I);
Misha Brukman01808ca2005-04-21 21:13:18 +00007690
Dan Gohmanbc694912010-01-09 18:17:45 +00007691 OS << "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007692 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007693 OS << ": ";
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00007694
Dan Gohmancb0efec2009-12-18 01:14:11 +00007695 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00007696 L->getExitBlocks(ExitBlocks);
7697 if (ExitBlocks.size() != 1)
Nick Lewyckyd1200b02008-01-02 02:49:20 +00007698 OS << "<multiple exits> ";
Chris Lattnerd934c702004-04-02 20:23:17 +00007699
Dan Gohman0bddac12009-02-24 18:55:53 +00007700 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
7701 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattnerd934c702004-04-02 20:23:17 +00007702 } else {
Dan Gohman0bddac12009-02-24 18:55:53 +00007703 OS << "Unpredictable backedge-taken count. ";
Chris Lattnerd934c702004-04-02 20:23:17 +00007704 }
7705
Dan Gohmanbc694912010-01-09 18:17:45 +00007706 OS << "\n"
7707 "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007708 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007709 OS << ": ";
Dan Gohman69942932009-06-24 00:33:16 +00007710
7711 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
7712 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
7713 } else {
7714 OS << "Unpredictable max backedge-taken count. ";
7715 }
7716
7717 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00007718}
7719
Dan Gohmancb0efec2009-12-18 01:14:11 +00007720void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman8b0a4192010-03-01 17:49:51 +00007721 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanc8e23622009-04-21 23:15:49 +00007722 // out SCEV values of all instructions that are interesting. Doing
7723 // this potentially causes it to create new SCEV objects though,
7724 // which technically conflicts with the const qualifier. This isn't
Dan Gohman028e6152009-07-10 20:25:29 +00007725 // observable from outside the class though, so casting away the
7726 // const isn't dangerous.
Dan Gohmancb0efec2009-12-18 01:14:11 +00007727 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattnerd934c702004-04-02 20:23:17 +00007728
Dan Gohmanbc694912010-01-09 18:17:45 +00007729 OS << "Classifying expressions for: ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007730 F->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007731 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00007732 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmand18dc2c2010-05-03 17:03:23 +00007733 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanfda3c4a2009-07-13 23:03:05 +00007734 OS << *I << '\n';
Dan Gohman81313fd2008-09-14 17:21:12 +00007735 OS << " --> ";
Dan Gohmanaf752342009-07-07 17:06:11 +00007736 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattnerd934c702004-04-02 20:23:17 +00007737 SV->print(OS);
Misha Brukman01808ca2005-04-21 21:13:18 +00007738
Dan Gohmanb9063a82009-06-19 17:49:54 +00007739 const Loop *L = LI->getLoopFor((*I).getParent());
7740
Dan Gohmanaf752342009-07-07 17:06:11 +00007741 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohmanb9063a82009-06-19 17:49:54 +00007742 if (AtUse != SV) {
7743 OS << " --> ";
7744 AtUse->print(OS);
7745 }
7746
7747 if (L) {
Dan Gohman94c468f2009-06-18 00:37:45 +00007748 OS << "\t\t" "Exits: ";
Dan Gohmanaf752342009-07-07 17:06:11 +00007749 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmanafd6db92010-11-17 21:23:15 +00007750 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00007751 OS << "<<Unknown>>";
7752 } else {
7753 OS << *ExitValue;
7754 }
7755 }
7756
Chris Lattnerd934c702004-04-02 20:23:17 +00007757 OS << "\n";
7758 }
7759
Dan Gohmanbc694912010-01-09 18:17:45 +00007760 OS << "Determining loop execution counts for: ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007761 F->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007762 OS << "\n";
Dan Gohmanc8e23622009-04-21 23:15:49 +00007763 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
7764 PrintLoopInfo(OS, &SE, *I);
Chris Lattnerd934c702004-04-02 20:23:17 +00007765}
Dan Gohmane20f8242009-04-21 00:47:46 +00007766
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007767ScalarEvolution::LoopDisposition
7768ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00007769 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values = LoopDispositions[S];
7770 for (unsigned u = 0; u < Values.size(); u++) {
7771 if (Values[u].first == L)
7772 return Values[u].second;
7773 }
7774 Values.push_back(std::make_pair(L, LoopVariant));
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007775 LoopDisposition D = computeLoopDisposition(S, L);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00007776 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values2 = LoopDispositions[S];
7777 for (unsigned u = Values2.size(); u > 0; u--) {
7778 if (Values2[u - 1].first == L) {
7779 Values2[u - 1].second = D;
7780 break;
7781 }
7782 }
7783 return D;
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007784}
7785
7786ScalarEvolution::LoopDisposition
7787ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00007788 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohmanafd6db92010-11-17 21:23:15 +00007789 case scConstant:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007790 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007791 case scTruncate:
7792 case scZeroExtend:
7793 case scSignExtend:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007794 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohmanafd6db92010-11-17 21:23:15 +00007795 case scAddRecExpr: {
7796 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
7797
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007798 // If L is the addrec's loop, it's computable.
7799 if (AR->getLoop() == L)
7800 return LoopComputable;
7801
Dan Gohmanafd6db92010-11-17 21:23:15 +00007802 // Add recurrences are never invariant in the function-body (null loop).
7803 if (!L)
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007804 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007805
7806 // This recurrence is variant w.r.t. L if L contains AR's loop.
7807 if (L->contains(AR->getLoop()))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007808 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007809
7810 // This recurrence is invariant w.r.t. L if AR's loop contains L.
7811 if (AR->getLoop()->contains(L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007812 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007813
7814 // This recurrence is variant w.r.t. L if any of its operands
7815 // are variant.
7816 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
7817 I != E; ++I)
7818 if (!isLoopInvariant(*I, L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007819 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007820
7821 // Otherwise it's loop-invariant.
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007822 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007823 }
7824 case scAddExpr:
7825 case scMulExpr:
7826 case scUMaxExpr:
7827 case scSMaxExpr: {
7828 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohmanafd6db92010-11-17 21:23:15 +00007829 bool HasVarying = false;
7830 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
7831 I != E; ++I) {
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007832 LoopDisposition D = getLoopDisposition(*I, L);
7833 if (D == LoopVariant)
7834 return LoopVariant;
7835 if (D == LoopComputable)
7836 HasVarying = true;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007837 }
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007838 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007839 }
7840 case scUDivExpr: {
7841 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007842 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
7843 if (LD == LoopVariant)
7844 return LoopVariant;
7845 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
7846 if (RD == LoopVariant)
7847 return LoopVariant;
7848 return (LD == LoopInvariant && RD == LoopInvariant) ?
7849 LoopInvariant : LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007850 }
7851 case scUnknown:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007852 // All non-instruction values are loop invariant. All instructions are loop
7853 // invariant if they are not contained in the specified loop.
7854 // Instructions are never considered invariant in the function body
7855 // (null loop) because they are defined within the "loop".
7856 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
7857 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
7858 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007859 case scCouldNotCompute:
7860 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohmanafd6db92010-11-17 21:23:15 +00007861 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00007862 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007863}
7864
7865bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
7866 return getLoopDisposition(S, L) == LoopInvariant;
7867}
7868
7869bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
7870 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007871}
Dan Gohman20d9ce22010-11-17 21:41:58 +00007872
Dan Gohman8ea83d82010-11-18 00:34:22 +00007873ScalarEvolution::BlockDisposition
7874ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00007875 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values = BlockDispositions[S];
7876 for (unsigned u = 0; u < Values.size(); u++) {
7877 if (Values[u].first == BB)
7878 return Values[u].second;
7879 }
7880 Values.push_back(std::make_pair(BB, DoesNotDominateBlock));
Dan Gohman8ea83d82010-11-18 00:34:22 +00007881 BlockDisposition D = computeBlockDisposition(S, BB);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00007882 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values2 = BlockDispositions[S];
7883 for (unsigned u = Values2.size(); u > 0; u--) {
7884 if (Values2[u - 1].first == BB) {
7885 Values2[u - 1].second = D;
7886 break;
7887 }
7888 }
7889 return D;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007890}
7891
Dan Gohman8ea83d82010-11-18 00:34:22 +00007892ScalarEvolution::BlockDisposition
7893ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00007894 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohman20d9ce22010-11-17 21:41:58 +00007895 case scConstant:
Dan Gohman8ea83d82010-11-18 00:34:22 +00007896 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007897 case scTruncate:
7898 case scZeroExtend:
7899 case scSignExtend:
Dan Gohman8ea83d82010-11-18 00:34:22 +00007900 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohman20d9ce22010-11-17 21:41:58 +00007901 case scAddRecExpr: {
7902 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman8ea83d82010-11-18 00:34:22 +00007903 // to test for proper dominance too, because the instruction which
7904 // produces the addrec's value is a PHI, and a PHI effectively properly
7905 // dominates its entire containing block.
Dan Gohman20d9ce22010-11-17 21:41:58 +00007906 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
7907 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00007908 return DoesNotDominateBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007909 }
7910 // FALL THROUGH into SCEVNAryExpr handling.
7911 case scAddExpr:
7912 case scMulExpr:
7913 case scUMaxExpr:
7914 case scSMaxExpr: {
7915 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00007916 bool Proper = true;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007917 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman8ea83d82010-11-18 00:34:22 +00007918 I != E; ++I) {
7919 BlockDisposition D = getBlockDisposition(*I, BB);
7920 if (D == DoesNotDominateBlock)
7921 return DoesNotDominateBlock;
7922 if (D == DominatesBlock)
7923 Proper = false;
7924 }
7925 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007926 }
7927 case scUDivExpr: {
7928 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00007929 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
7930 BlockDisposition LD = getBlockDisposition(LHS, BB);
7931 if (LD == DoesNotDominateBlock)
7932 return DoesNotDominateBlock;
7933 BlockDisposition RD = getBlockDisposition(RHS, BB);
7934 if (RD == DoesNotDominateBlock)
7935 return DoesNotDominateBlock;
7936 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
7937 ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007938 }
7939 case scUnknown:
7940 if (Instruction *I =
Dan Gohman8ea83d82010-11-18 00:34:22 +00007941 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
7942 if (I->getParent() == BB)
7943 return DominatesBlock;
7944 if (DT->properlyDominates(I->getParent(), BB))
7945 return ProperlyDominatesBlock;
7946 return DoesNotDominateBlock;
7947 }
7948 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007949 case scCouldNotCompute:
7950 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman20d9ce22010-11-17 21:41:58 +00007951 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00007952 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman8ea83d82010-11-18 00:34:22 +00007953}
7954
7955bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
7956 return getBlockDisposition(S, BB) >= DominatesBlock;
7957}
7958
7959bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
7960 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007961}
Dan Gohman534749b2010-11-17 22:27:42 +00007962
Andrew Trick365e31c2012-07-13 23:33:03 +00007963namespace {
7964// Search for a SCEV expression node within an expression tree.
7965// Implements SCEVTraversal::Visitor.
7966struct SCEVSearch {
7967 const SCEV *Node;
7968 bool IsFound;
7969
7970 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
7971
7972 bool follow(const SCEV *S) {
7973 IsFound |= (S == Node);
7974 return !IsFound;
7975 }
7976 bool isDone() const { return IsFound; }
7977};
7978}
7979
Dan Gohman534749b2010-11-17 22:27:42 +00007980bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Andrew Trick365e31c2012-07-13 23:33:03 +00007981 SCEVSearch Search(Op);
7982 visitAll(S, Search);
7983 return Search.IsFound;
Dan Gohman534749b2010-11-17 22:27:42 +00007984}
Dan Gohman7e6b3932010-11-17 23:28:48 +00007985
7986void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
7987 ValuesAtScopes.erase(S);
7988 LoopDispositions.erase(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00007989 BlockDispositions.erase(S);
Dan Gohman7e6b3932010-11-17 23:28:48 +00007990 UnsignedRanges.erase(S);
7991 SignedRanges.erase(S);
Andrew Trick9093e152013-03-26 03:14:53 +00007992
7993 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
7994 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
7995 BackedgeTakenInfo &BEInfo = I->second;
7996 if (BEInfo.hasOperand(S, this)) {
7997 BEInfo.clear();
7998 BackedgeTakenCounts.erase(I++);
7999 }
8000 else
8001 ++I;
8002 }
Dan Gohman7e6b3932010-11-17 23:28:48 +00008003}
Benjamin Kramer214935e2012-10-26 17:31:32 +00008004
8005typedef DenseMap<const Loop *, std::string> VerifyMap;
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008006
Alp Tokercb402912014-01-24 17:20:08 +00008007/// replaceSubString - Replaces all occurrences of From in Str with To.
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008008static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
8009 size_t Pos = 0;
8010 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
8011 Str.replace(Pos, From.size(), To.data(), To.size());
8012 Pos += To.size();
8013 }
8014}
8015
Benjamin Kramer214935e2012-10-26 17:31:32 +00008016/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
8017static void
8018getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
8019 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
8020 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
8021
8022 std::string &S = Map[L];
8023 if (S.empty()) {
8024 raw_string_ostream OS(S);
8025 SE.getBackedgeTakenCount(L)->print(OS);
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008026
8027 // false and 0 are semantically equivalent. This can happen in dead loops.
8028 replaceSubString(OS.str(), "false", "0");
8029 // Remove wrap flags, their use in SCEV is highly fragile.
8030 // FIXME: Remove this when SCEV gets smarter about them.
8031 replaceSubString(OS.str(), "<nw>", "");
8032 replaceSubString(OS.str(), "<nsw>", "");
8033 replaceSubString(OS.str(), "<nuw>", "");
Benjamin Kramer214935e2012-10-26 17:31:32 +00008034 }
8035 }
8036}
8037
8038void ScalarEvolution::verifyAnalysis() const {
8039 if (!VerifySCEV)
8040 return;
8041
8042 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8043
8044 // Gather stringified backedge taken counts for all loops using SCEV's caches.
8045 // FIXME: It would be much better to store actual values instead of strings,
8046 // but SCEV pointers will change if we drop the caches.
8047 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
8048 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8049 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
8050
8051 // Gather stringified backedge taken counts for all loops without using
8052 // SCEV's caches.
8053 SE.releaseMemory();
8054 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8055 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE);
8056
8057 // Now compare whether they're the same with and without caches. This allows
8058 // verifying that no pass changed the cache.
8059 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
8060 "New loops suddenly appeared!");
8061
8062 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
8063 OldE = BackedgeDumpsOld.end(),
8064 NewI = BackedgeDumpsNew.begin();
8065 OldI != OldE; ++OldI, ++NewI) {
8066 assert(OldI->first == NewI->first && "Loop order changed!");
8067
8068 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
8069 // changes.
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008070 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
Benjamin Kramer214935e2012-10-26 17:31:32 +00008071 // means that a pass is buggy or SCEV has to learn a new pattern but is
8072 // usually not harmful.
8073 if (OldI->second != NewI->second &&
8074 OldI->second.find("undef") == std::string::npos &&
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008075 NewI->second.find("undef") == std::string::npos &&
8076 OldI->second != "***COULDNOTCOMPUTE***" &&
Benjamin Kramer214935e2012-10-26 17:31:32 +00008077 NewI->second != "***COULDNOTCOMPUTE***") {
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008078 dbgs() << "SCEVValidator: SCEV for loop '"
Benjamin Kramer214935e2012-10-26 17:31:32 +00008079 << OldI->first->getHeader()->getName()
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008080 << "' changed from '" << OldI->second
8081 << "' to '" << NewI->second << "'!\n";
Benjamin Kramer214935e2012-10-26 17:31:32 +00008082 std::abort();
8083 }
8084 }
8085
8086 // TODO: Verify more things.
8087}