blob: 823fd9e6702c5081f58d1f1c85b30741c21244a2 [file] [log] [blame]
Nadav Rotemc4efbb82012-12-19 07:22:24 +00001==========================
2Auto-Vectorization in LLVM
3==========================
4
Sean Silva99e12f92012-12-20 22:42:20 +00005.. contents::
6 :local:
7
Nadav Rotem136d50a2013-04-15 22:21:25 +00008LLVM has two vectorizers: The :ref:`Loop Vectorizer <loop-vectorizer>`,
Nadav Rotemc875cc12013-04-15 22:11:07 +00009which operates on Loops, and the :ref:`SLP Vectorizer
Nadav Rotem87856b52013-06-26 17:59:35 +000010<slp-vectorizer>`. These vectorizers
Sean Silva99e12f92012-12-20 22:42:20 +000011focus on different optimization opportunities and use different techniques.
Nadav Rotem136d50a2013-04-15 22:21:25 +000012The SLP vectorizer merges multiple scalars that are found in the code into
Nadav Rotem87856b52013-06-26 17:59:35 +000013vectors while the Loop Vectorizer widens instructions in loops
14to operate on multiple consecutive iterations.
Sean Silva99e12f92012-12-20 22:42:20 +000015
Nadav Rotem2da8b3e2013-08-05 04:27:34 +000016Both the Loop Vectorizer and the SLP Vectorizer are enabled by default.
17
Sean Silva99e12f92012-12-20 22:42:20 +000018.. _loop-vectorizer:
Nadav Rotemc4efbb82012-12-19 07:22:24 +000019
20The Loop Vectorizer
21===================
22
Nadav Rotem0328f5e2012-12-19 18:04:44 +000023Usage
Sean Silva08fd0882012-12-20 02:40:45 +000024-----
Nadav Rotem0328f5e2012-12-19 18:04:44 +000025
Nadav Rotem2da8b3e2013-08-05 04:27:34 +000026The Loop Vectorizer is enabled by default, but it can be disabled
27through clang using the command line flag:
Nadav Rotemc4efbb82012-12-19 07:22:24 +000028
29.. code-block:: console
30
Nadav Rotemfe47d582013-04-08 21:34:49 +000031 $ clang ... -fno-vectorize file.c
Nadav Rotem8f4a6cc2012-12-19 18:02:36 +000032
Nadav Rotem7daadf22013-01-04 17:49:45 +000033Command line flags
34^^^^^^^^^^^^^^^^^^
35
36The loop vectorizer uses a cost model to decide on the optimal vectorization factor
37and unroll factor. However, users of the vectorizer can force the vectorizer to use
38specific values. Both 'clang' and 'opt' support the flags below.
39
40Users can control the vectorization SIMD width using the command line flag "-force-vector-width".
41
42.. code-block:: console
43
44 $ clang -mllvm -force-vector-width=8 ...
45 $ opt -loop-vectorize -force-vector-width=8 ...
46
47Users can control the unroll factor using the command line flag "-force-vector-unroll"
48
49.. code-block:: console
50
51 $ clang -mllvm -force-vector-unroll=2 ...
52 $ opt -loop-vectorize -force-vector-unroll=2 ...
53
Nadav Rotemc4efbb82012-12-19 07:22:24 +000054Features
Sean Silva08fd0882012-12-20 02:40:45 +000055--------
Nadav Rotemc4efbb82012-12-19 07:22:24 +000056
57The LLVM Loop Vectorizer has a number of features that allow it to vectorize
58complex loops.
59
60Loops with unknown trip count
Sean Silva08fd0882012-12-20 02:40:45 +000061^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Nadav Rotemc4efbb82012-12-19 07:22:24 +000062
63The Loop Vectorizer supports loops with an unknown trip count.
64In the loop below, the iteration ``start`` and ``finish`` points are unknown,
65and the Loop Vectorizer has a mechanism to vectorize loops that do not start
Sean Silva13ed79c2012-12-20 02:23:25 +000066at zero. In this example, 'n' may not be a multiple of the vector width, and
Nadav Rotemc4efbb82012-12-19 07:22:24 +000067the vectorizer has to execute the last few iterations as scalar code. Keeping
68a scalar copy of the loop increases the code size.
69
70.. code-block:: c++
71
72 void bar(float *A, float* B, float K, int start, int end) {
Sean Silva8c44a472012-12-20 22:47:41 +000073 for (int i = start; i < end; ++i)
74 A[i] *= B[i] + K;
Nadav Rotemc4efbb82012-12-19 07:22:24 +000075 }
76
77Runtime Checks of Pointers
Sean Silva08fd0882012-12-20 02:40:45 +000078^^^^^^^^^^^^^^^^^^^^^^^^^^
Nadav Rotemc4efbb82012-12-19 07:22:24 +000079
80In the example below, if the pointers A and B point to consecutive addresses,
81then it is illegal to vectorize the code because some elements of A will be
82written before they are read from array B.
83
84Some programmers use the 'restrict' keyword to notify the compiler that the
85pointers are disjointed, but in our example, the Loop Vectorizer has no way of
86knowing that the pointers A and B are unique. The Loop Vectorizer handles this
87loop by placing code that checks, at runtime, if the arrays A and B point to
88disjointed memory locations. If arrays A and B overlap, then the scalar version
Sean Silva287e7d22012-12-20 22:59:36 +000089of the loop is executed.
Nadav Rotemc4efbb82012-12-19 07:22:24 +000090
91.. code-block:: c++
92
93 void bar(float *A, float* B, float K, int n) {
Sean Silva8c44a472012-12-20 22:47:41 +000094 for (int i = 0; i < n; ++i)
95 A[i] *= B[i] + K;
Nadav Rotemc4efbb82012-12-19 07:22:24 +000096 }
97
98
99Reductions
Sean Silva08fd0882012-12-20 02:40:45 +0000100^^^^^^^^^^
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000101
Sean Silva287e7d22012-12-20 22:59:36 +0000102In this example the ``sum`` variable is used by consecutive iterations of
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000103the loop. Normally, this would prevent vectorization, but the vectorizer can
Sean Silva13ed79c2012-12-20 02:23:25 +0000104detect that 'sum' is a reduction variable. The variable 'sum' becomes a vector
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000105of integers, and at the end of the loop the elements of the array are added
Sean Silva287e7d22012-12-20 22:59:36 +0000106together to create the correct result. We support a number of different
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000107reduction operations, such as addition, multiplication, XOR, AND and OR.
108
109.. code-block:: c++
110
111 int foo(int *A, int *B, int n) {
112 unsigned sum = 0;
113 for (int i = 0; i < n; ++i)
Sean Silva287e7d22012-12-20 22:59:36 +0000114 sum += A[i] + 5;
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000115 return sum;
116 }
117
Nadav Rotem9f207812013-01-08 17:46:30 +0000118We support floating point reduction operations when `-ffast-math` is used.
119
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000120Inductions
Sean Silva08fd0882012-12-20 02:40:45 +0000121^^^^^^^^^^
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000122
123In this example the value of the induction variable ``i`` is saved into an
124array. The Loop Vectorizer knows to vectorize induction variables.
125
126.. code-block:: c++
127
128 void bar(float *A, float* B, float K, int n) {
Sean Silva8c44a472012-12-20 22:47:41 +0000129 for (int i = 0; i < n; ++i)
130 A[i] = i;
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000131 }
132
133If Conversion
Sean Silva08fd0882012-12-20 02:40:45 +0000134^^^^^^^^^^^^^
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000135
136The Loop Vectorizer is able to "flatten" the IF statement in the code and
137generate a single stream of instructions. The Loop Vectorizer supports any
138control flow in the innermost loop. The innermost loop may contain complex
139nesting of IFs, ELSEs and even GOTOs.
140
141.. code-block:: c++
142
143 int foo(int *A, int *B, int n) {
144 unsigned sum = 0;
145 for (int i = 0; i < n; ++i)
146 if (A[i] > B[i])
147 sum += A[i] + 5;
148 return sum;
149 }
150
151Pointer Induction Variables
Sean Silva08fd0882012-12-20 02:40:45 +0000152^^^^^^^^^^^^^^^^^^^^^^^^^^^
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000153
154This example uses the "accumulate" function of the standard c++ library. This
155loop uses C++ iterators, which are pointers, and not integer indices.
156The Loop Vectorizer detects pointer induction variables and can vectorize
157this loop. This feature is important because many C++ programs use iterators.
158
159.. code-block:: c++
160
161 int baz(int *A, int n) {
162 return std::accumulate(A, A + n, 0);
163 }
164
165Reverse Iterators
Sean Silva08fd0882012-12-20 02:40:45 +0000166^^^^^^^^^^^^^^^^^
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000167
168The Loop Vectorizer can vectorize loops that count backwards.
169
170.. code-block:: c++
171
172 int foo(int *A, int *B, int n) {
173 for (int i = n; i > 0; --i)
174 A[i] +=1;
175 }
176
177Scatter / Gather
Sean Silva08fd0882012-12-20 02:40:45 +0000178^^^^^^^^^^^^^^^^
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000179
Nadav Rotema616d682013-01-03 01:47:02 +0000180The Loop Vectorizer can vectorize code that becomes a sequence of scalar instructions
181that scatter/gathers memory.
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000182
183.. code-block:: c++
184
Arnold Schwaighofer34ac9be2014-03-12 23:23:44 +0000185 int foo(int * A, int * B, int n) {
186 for (intptr_t i = 0; i < n; ++i)
187 A[i] += B[i*4];
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000188 }
189
Arnold Schwaighofer34ac9be2014-03-12 23:23:44 +0000190In many situations the cost model will inform LLVM that this is not beneficial
191and LLVM will only vectorize such code if forced with "-mllvm -force-vector-width=#".
192
Nadav Rotemaf14a3f2012-12-19 07:36:35 +0000193Vectorization of Mixed Types
Sean Silva08fd0882012-12-20 02:40:45 +0000194^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000195
196The Loop Vectorizer can vectorize programs with mixed types. The Vectorizer
197cost model can estimate the cost of the type conversion and decide if
198vectorization is profitable.
199
200.. code-block:: c++
201
202 int foo(int *A, char *B, int n, int k) {
Sean Silva8c44a472012-12-20 22:47:41 +0000203 for (int i = 0; i < n; ++i)
Sean Silvae140b2e2012-12-20 22:49:13 +0000204 A[i] += 4 * B[i];
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000205 }
206
Renato Golinf2ea19e2013-02-23 13:25:41 +0000207Global Structures Alias Analysis
208^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
209
210Access to global structures can also be vectorized, with alias analysis being
211used to make sure accesses don't alias. Run-time checks can also be added on
212pointer access to structure members.
213
214Many variations are supported, but some that rely on undefined behaviour being
215ignored (as other compilers do) are still being left un-vectorized.
216
217.. code-block:: c++
218
219 struct { int A[100], K, B[100]; } Foo;
220
221 int foo() {
222 for (int i = 0; i < 100; ++i)
223 Foo.A[i] = Foo.B[i] + 100;
224 }
225
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000226Vectorization of function calls
Sean Silva08fd0882012-12-20 02:40:45 +0000227^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000228
229The Loop Vectorize can vectorize intrinsic math functions.
230See the table below for a list of these functions.
231
232+-----+-----+---------+
233| pow | exp | exp2 |
234+-----+-----+---------+
235| sin | cos | sqrt |
236+-----+-----+---------+
237| log |log2 | log10 |
238+-----+-----+---------+
239|fabs |floor| ceil |
240+-----+-----+---------+
241|fma |trunc|nearbyint|
242+-----+-----+---------+
Nadav Rotem7375d352012-12-26 06:03:35 +0000243| | | fmuladd |
244+-----+-----+---------+
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000245
Benjamin Kramera87d5122013-02-28 19:33:46 +0000246The loop vectorizer knows about special instructions on the target and will
247vectorize a loop containing a function call that maps to the instructions. For
248example, the loop below will be vectorized on Intel x86 if the SSE4.1 roundps
249instruction is available.
250
251.. code-block:: c++
252
253 void foo(float *f) {
254 for (int i = 0; i != 1024; ++i)
255 f[i] = floorf(f[i]);
256 }
Nadav Rotema616d682013-01-03 01:47:02 +0000257
258Partial unrolling during vectorization
259^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
260
261Modern processors feature multiple execution units, and only programs that contain a
Nadav Rotem7ea18a72013-01-03 01:56:33 +0000262high degree of parallelism can fully utilize the entire width of the machine.
Nadav Rotema616d682013-01-03 01:47:02 +0000263The Loop Vectorizer increases the instruction level parallelism (ILP) by
264performing partial-unrolling of loops.
265
266In the example below the entire array is accumulated into the variable 'sum'.
Nadav Rotem7ea18a72013-01-03 01:56:33 +0000267This is inefficient because only a single execution port can be used by the processor.
Nadav Rotema616d682013-01-03 01:47:02 +0000268By unrolling the code the Loop Vectorizer allows two or more execution ports
Nadav Rotem7ea18a72013-01-03 01:56:33 +0000269to be used simultaneously.
Nadav Rotema616d682013-01-03 01:47:02 +0000270
271.. code-block:: c++
272
273 int foo(int *A, int *B, int n) {
274 unsigned sum = 0;
275 for (int i = 0; i < n; ++i)
276 sum += A[i];
277 return sum;
278 }
279
Nadav Rotem7daadf22013-01-04 17:49:45 +0000280The Loop Vectorizer uses a cost model to decide when it is profitable to unroll loops.
281The decision to unroll the loop depends on the register pressure and the generated code size.
Nadav Rotema616d682013-01-03 01:47:02 +0000282
Nadav Rotem15bdbbe2012-12-19 08:28:24 +0000283Performance
Sean Silva08fd0882012-12-20 02:40:45 +0000284-----------
Nadav Rotem15bdbbe2012-12-19 08:28:24 +0000285
Sean Silva287e7d22012-12-20 22:59:36 +0000286This section shows the the execution time of Clang on a simple benchmark:
Nadav Rotem90c8b4b2012-12-19 08:43:05 +0000287`gcc-loops <http://llvm.org/viewvc/llvm-project/test-suite/trunk/SingleSource/UnitTests/Vectorizer/>`_.
Sean Silva287e7d22012-12-20 22:59:36 +0000288This benchmarks is a collection of loops from the GCC autovectorization
Nadav Rotem8f4a6cc2012-12-19 18:02:36 +0000289`page <http://gcc.gnu.org/projects/tree-ssa/vectorization.html>`_ by Dorit Nuzman.
Nadav Rotem15bdbbe2012-12-19 08:28:24 +0000290
Nadav Rotem12da3962012-12-20 00:03:36 +0000291The chart below compares GCC-4.7, ICC-13, and Clang-SVN with and without loop vectorization at -O3, tuned for "corei7-avx", running on a Sandybridge iMac.
Sean Silva287e7d22012-12-20 22:59:36 +0000292The Y-axis shows the time in msec. Lower is better. The last column shows the geomean of all the kernels.
Nadav Rotem15bdbbe2012-12-19 08:28:24 +0000293
294.. image:: gcc-loops.png
295
Nadav Rotem014e19c2013-01-04 19:00:42 +0000296And Linpack-pc with the same configuration. Result is Mflops, higher is better.
297
298.. image:: linpack-pc.png
299
Nadav Rotem57da1fd2013-04-15 05:53:23 +0000300.. _slp-vectorizer:
Sean Silva99e12f92012-12-20 22:42:20 +0000301
Nadav Rotem57da1fd2013-04-15 05:53:23 +0000302The SLP Vectorizer
303==================
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000304
Nadav Rotem0328f5e2012-12-19 18:04:44 +0000305Details
Sean Silva08fd0882012-12-20 02:40:45 +0000306-------
Nadav Rotem0328f5e2012-12-19 18:04:44 +0000307
Nadav Rotem57da1fd2013-04-15 05:53:23 +0000308The goal of SLP vectorization (a.k.a. superword-level parallelism) is
Nadav Rotem87856b52013-06-26 17:59:35 +0000309to combine similar independent instructions
310into vector instructions. Memory accesses, arithmetic operations, comparison
311operations, PHI-nodes, can all be vectorized using this technique.
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000312
313For example, the following function performs very similar operations on its
314inputs (a1, b1) and (a2, b2). The basic-block vectorizer may combine these
315into vector operations.
316
317.. code-block:: c++
318
Nadav Rotem57da1fd2013-04-15 05:53:23 +0000319 void foo(int a1, int a2, int b1, int b2, int *A) {
320 A[0] = a1*(a1 + b1)/b1 + 50*b1/a1;
321 A[1] = a2*(a2 + b2)/b2 + 50*b2/a2;
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000322 }
323
Nadav Rotem87856b52013-06-26 17:59:35 +0000324The SLP-vectorizer processes the code bottom-up, across basic blocks, in search of scalars to combine.
Nadav Rotemc4efbb82012-12-19 07:22:24 +0000325
Nadav Rotem57da1fd2013-04-15 05:53:23 +0000326Usage
327------
Nadav Rotemefa56e12013-04-14 07:42:25 +0000328
Nadav Rotem2da8b3e2013-08-05 04:27:34 +0000329The SLP Vectorizer is enabled by default, but it can be disabled
Nadav Rotem57da1fd2013-04-15 05:53:23 +0000330through clang using the command line flag:
Nadav Rotemefa56e12013-04-14 07:42:25 +0000331
Nadav Rotem57da1fd2013-04-15 05:53:23 +0000332.. code-block:: console
333
Nadav Rotem2da8b3e2013-08-05 04:27:34 +0000334 $ clang -fno-slp-vectorize file.c
Nadav Rotem57da1fd2013-04-15 05:53:23 +0000335
Nadav Rotem136d50a2013-04-15 22:21:25 +0000336LLVM has a second basic block vectorization phase
Nadav Rotem57da1fd2013-04-15 05:53:23 +0000337which is more compile-time intensive (The BB vectorizer). This optimization
338can be enabled through clang using the command line flag:
339
340.. code-block:: console
341
342 $ clang -fslp-vectorize-aggressive file.c
343