Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1 | //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // The implementation for the loop memory dependence that was originally |
| 11 | // developed for the loop vectorizer. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "llvm/Analysis/LoopAccessAnalysis.h" |
| 16 | #include "llvm/Analysis/LoopInfo.h" |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 17 | #include "llvm/Analysis/ScalarEvolutionExpander.h" |
Benjamin Kramer | 799003b | 2015-03-23 19:32:43 +0000 | [diff] [blame] | 18 | #include "llvm/Analysis/TargetLibraryInfo.h" |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 19 | #include "llvm/Analysis/ValueTracking.h" |
| 20 | #include "llvm/IR/DiagnosticInfo.h" |
| 21 | #include "llvm/IR/Dominators.h" |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 22 | #include "llvm/IR/IRBuilder.h" |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 23 | #include "llvm/Support/Debug.h" |
Benjamin Kramer | 799003b | 2015-03-23 19:32:43 +0000 | [diff] [blame] | 24 | #include "llvm/Support/raw_ostream.h" |
David Blaikie | b447ac6 | 2015-06-26 18:02:52 +0000 | [diff] [blame] | 25 | #include "llvm/Analysis/VectorUtils.h" |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 26 | using namespace llvm; |
| 27 | |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 28 | #define DEBUG_TYPE "loop-accesses" |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 29 | |
Adam Nemet | f219c64 | 2015-02-19 19:14:52 +0000 | [diff] [blame] | 30 | static cl::opt<unsigned, true> |
| 31 | VectorizationFactor("force-vector-width", cl::Hidden, |
| 32 | cl::desc("Sets the SIMD width. Zero is autoselect."), |
| 33 | cl::location(VectorizerParams::VectorizationFactor)); |
Adam Nemet | 1d862af | 2015-02-26 04:39:09 +0000 | [diff] [blame] | 34 | unsigned VectorizerParams::VectorizationFactor; |
Adam Nemet | f219c64 | 2015-02-19 19:14:52 +0000 | [diff] [blame] | 35 | |
| 36 | static cl::opt<unsigned, true> |
| 37 | VectorizationInterleave("force-vector-interleave", cl::Hidden, |
| 38 | cl::desc("Sets the vectorization interleave count. " |
| 39 | "Zero is autoselect."), |
| 40 | cl::location( |
| 41 | VectorizerParams::VectorizationInterleave)); |
Adam Nemet | 1d862af | 2015-02-26 04:39:09 +0000 | [diff] [blame] | 42 | unsigned VectorizerParams::VectorizationInterleave; |
Adam Nemet | f219c64 | 2015-02-19 19:14:52 +0000 | [diff] [blame] | 43 | |
Adam Nemet | 1d862af | 2015-02-26 04:39:09 +0000 | [diff] [blame] | 44 | static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( |
| 45 | "runtime-memory-check-threshold", cl::Hidden, |
| 46 | cl::desc("When performing memory disambiguation checks at runtime do not " |
| 47 | "generate more than this number of comparisons (default = 8)."), |
| 48 | cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); |
| 49 | unsigned VectorizerParams::RuntimeMemoryCheckThreshold; |
Adam Nemet | f219c64 | 2015-02-19 19:14:52 +0000 | [diff] [blame] | 50 | |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 51 | /// \brief The maximum iterations used to merge memory checks |
| 52 | static cl::opt<unsigned> MemoryCheckMergeThreshold( |
| 53 | "memory-check-merge-threshold", cl::Hidden, |
| 54 | cl::desc("Maximum number of comparisons done when trying to merge " |
| 55 | "runtime memory checks. (default = 100)"), |
| 56 | cl::init(100)); |
| 57 | |
Adam Nemet | f219c64 | 2015-02-19 19:14:52 +0000 | [diff] [blame] | 58 | /// Maximum SIMD width. |
| 59 | const unsigned VectorizerParams::MaxVectorWidth = 64; |
| 60 | |
Adam Nemet | a2df750 | 2015-11-03 21:39:52 +0000 | [diff] [blame] | 61 | /// \brief We collect dependences up to this threshold. |
| 62 | static cl::opt<unsigned> |
| 63 | MaxDependences("max-dependences", cl::Hidden, |
| 64 | cl::desc("Maximum number of dependences collected by " |
| 65 | "loop-access analysis (default = 100)"), |
| 66 | cl::init(100)); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 67 | |
Matthew Simpson | 37ec5f9 | 2016-05-16 17:00:56 +0000 | [diff] [blame^] | 68 | /// \brief Enable store-to-load forwarding conflict detection. This option can |
| 69 | /// be disabled for correctness testing. |
| 70 | static cl::opt<bool> EnableForwardingConflictDetection( |
| 71 | "store-to-load-forwarding-conflict-detection", cl::Hidden, |
Matthew Simpson | a250dc9 | 2016-05-16 14:14:49 +0000 | [diff] [blame] | 72 | cl::desc("Enable conflict detection in loop-access analysis"), |
| 73 | cl::init(true)); |
| 74 | |
Adam Nemet | f219c64 | 2015-02-19 19:14:52 +0000 | [diff] [blame] | 75 | bool VectorizerParams::isInterleaveForced() { |
| 76 | return ::VectorizationInterleave.getNumOccurrences() > 0; |
| 77 | } |
| 78 | |
Adam Nemet | 2bd6e98 | 2015-02-19 19:15:15 +0000 | [diff] [blame] | 79 | void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message, |
| 80 | const Function *TheFunction, |
| 81 | const Loop *TheLoop, |
| 82 | const char *PassName) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 83 | DebugLoc DL = TheLoop->getStartLoc(); |
Adam Nemet | 3e87634 | 2015-02-19 19:15:13 +0000 | [diff] [blame] | 84 | if (const Instruction *I = Message.getInstr()) |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 85 | DL = I->getDebugLoc(); |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 86 | emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName, |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 87 | *TheFunction, DL, Message.str()); |
| 88 | } |
| 89 | |
| 90 | Value *llvm::stripIntegerCast(Value *V) { |
| 91 | if (CastInst *CI = dyn_cast<CastInst>(V)) |
| 92 | if (CI->getOperand(0)->getType()->isIntegerTy()) |
| 93 | return CI->getOperand(0); |
| 94 | return V; |
| 95 | } |
| 96 | |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 97 | const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, |
Adam Nemet | 8bc61df | 2015-02-24 00:41:59 +0000 | [diff] [blame] | 98 | const ValueToValueMap &PtrToStride, |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 99 | Value *Ptr, Value *OrigPtr) { |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 100 | const SCEV *OrigSCEV = PSE.getSCEV(Ptr); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 101 | |
| 102 | // If there is an entry in the map return the SCEV of the pointer with the |
| 103 | // symbolic stride replaced by one. |
Adam Nemet | 8bc61df | 2015-02-24 00:41:59 +0000 | [diff] [blame] | 104 | ValueToValueMap::const_iterator SI = |
| 105 | PtrToStride.find(OrigPtr ? OrigPtr : Ptr); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 106 | if (SI != PtrToStride.end()) { |
| 107 | Value *StrideVal = SI->second; |
| 108 | |
| 109 | // Strip casts. |
| 110 | StrideVal = stripIntegerCast(StrideVal); |
| 111 | |
| 112 | // Replace symbolic stride by one. |
| 113 | Value *One = ConstantInt::get(StrideVal->getType(), 1); |
| 114 | ValueToValueMap RewriteMap; |
| 115 | RewriteMap[StrideVal] = One; |
| 116 | |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 117 | ScalarEvolution *SE = PSE.getSE(); |
Silviu Baranga | e3c0534 | 2015-11-02 14:41:02 +0000 | [diff] [blame] | 118 | const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal)); |
| 119 | const auto *CT = |
| 120 | static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType())); |
| 121 | |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 122 | PSE.addPredicate(*SE->getEqualPredicate(U, CT)); |
| 123 | auto *Expr = PSE.getSCEV(Ptr); |
Silviu Baranga | e3c0534 | 2015-11-02 14:41:02 +0000 | [diff] [blame] | 124 | |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 125 | DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *Expr |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 126 | << "\n"); |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 127 | return Expr; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 128 | } |
| 129 | |
| 130 | // Otherwise, just return the SCEV of the original pointer. |
Silviu Baranga | e3c0534 | 2015-11-02 14:41:02 +0000 | [diff] [blame] | 131 | return OrigSCEV; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 132 | } |
| 133 | |
Adam Nemet | 7cdebac | 2015-07-14 22:32:44 +0000 | [diff] [blame] | 134 | void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr, |
| 135 | unsigned DepSetId, unsigned ASId, |
Silviu Baranga | e3c0534 | 2015-11-02 14:41:02 +0000 | [diff] [blame] | 136 | const ValueToValueMap &Strides, |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 137 | PredicatedScalarEvolution &PSE) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 138 | // Get the stride replaced scev. |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 139 | const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 140 | ScalarEvolution *SE = PSE.getSE(); |
Silviu Baranga | 0e5804a | 2015-07-16 14:02:58 +0000 | [diff] [blame] | 141 | |
Adam Nemet | 279784f | 2016-03-24 04:28:47 +0000 | [diff] [blame] | 142 | const SCEV *ScStart; |
| 143 | const SCEV *ScEnd; |
Silviu Baranga | 0e5804a | 2015-07-16 14:02:58 +0000 | [diff] [blame] | 144 | |
Adam Nemet | 59a6550 | 2016-03-24 05:15:24 +0000 | [diff] [blame] | 145 | if (SE->isLoopInvariant(Sc, Lp)) |
Adam Nemet | 279784f | 2016-03-24 04:28:47 +0000 | [diff] [blame] | 146 | ScStart = ScEnd = Sc; |
Adam Nemet | 279784f | 2016-03-24 04:28:47 +0000 | [diff] [blame] | 147 | else { |
| 148 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); |
| 149 | assert(AR && "Invalid addrec expression"); |
Silviu Baranga | 6f444df | 2016-04-08 14:29:09 +0000 | [diff] [blame] | 150 | const SCEV *Ex = PSE.getBackedgeTakenCount(); |
Adam Nemet | 279784f | 2016-03-24 04:28:47 +0000 | [diff] [blame] | 151 | |
| 152 | ScStart = AR->getStart(); |
| 153 | ScEnd = AR->evaluateAtIteration(Ex, *SE); |
| 154 | const SCEV *Step = AR->getStepRecurrence(*SE); |
| 155 | |
| 156 | // For expressions with negative step, the upper bound is ScStart and the |
| 157 | // lower bound is ScEnd. |
| 158 | if (const SCEVConstant *CStep = dyn_cast<const SCEVConstant>(Step)) { |
| 159 | if (CStep->getValue()->isNegative()) |
| 160 | std::swap(ScStart, ScEnd); |
| 161 | } else { |
| 162 | // Fallback case: the step is not constant, but the we can still |
| 163 | // get the upper and lower bounds of the interval by using min/max |
| 164 | // expressions. |
| 165 | ScStart = SE->getUMinExpr(ScStart, ScEnd); |
| 166 | ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); |
| 167 | } |
Silviu Baranga | 0e5804a | 2015-07-16 14:02:58 +0000 | [diff] [blame] | 168 | } |
| 169 | |
| 170 | Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc); |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 171 | } |
| 172 | |
Adam Nemet | bbe1f1d | 2015-07-27 19:38:48 +0000 | [diff] [blame] | 173 | SmallVector<RuntimePointerChecking::PointerCheck, 4> |
Adam Nemet | 3853088 | 2015-08-09 20:06:06 +0000 | [diff] [blame] | 174 | RuntimePointerChecking::generateChecks() const { |
Adam Nemet | bbe1f1d | 2015-07-27 19:38:48 +0000 | [diff] [blame] | 175 | SmallVector<PointerCheck, 4> Checks; |
| 176 | |
Adam Nemet | 7c52e05 | 2015-07-27 19:38:50 +0000 | [diff] [blame] | 177 | for (unsigned I = 0; I < CheckingGroups.size(); ++I) { |
| 178 | for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { |
| 179 | const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I]; |
| 180 | const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J]; |
Adam Nemet | bbe1f1d | 2015-07-27 19:38:48 +0000 | [diff] [blame] | 181 | |
Adam Nemet | 3853088 | 2015-08-09 20:06:06 +0000 | [diff] [blame] | 182 | if (needsChecking(CGI, CGJ)) |
Adam Nemet | bbe1f1d | 2015-07-27 19:38:48 +0000 | [diff] [blame] | 183 | Checks.push_back(std::make_pair(&CGI, &CGJ)); |
| 184 | } |
| 185 | } |
| 186 | return Checks; |
| 187 | } |
| 188 | |
Adam Nemet | 1584039 | 2015-08-07 22:44:15 +0000 | [diff] [blame] | 189 | void RuntimePointerChecking::generateChecks( |
| 190 | MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { |
| 191 | assert(Checks.empty() && "Checks is not empty"); |
| 192 | groupChecks(DepCands, UseDependencies); |
| 193 | Checks = generateChecks(); |
| 194 | } |
| 195 | |
Adam Nemet | 651a5a2 | 2015-08-09 20:06:08 +0000 | [diff] [blame] | 196 | bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M, |
| 197 | const CheckingPtrGroup &N) const { |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 198 | for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) |
| 199 | for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) |
Adam Nemet | 651a5a2 | 2015-08-09 20:06:08 +0000 | [diff] [blame] | 200 | if (needsChecking(M.Members[I], N.Members[J])) |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 201 | return true; |
| 202 | return false; |
| 203 | } |
| 204 | |
| 205 | /// Compare \p I and \p J and return the minimum. |
| 206 | /// Return nullptr in case we couldn't find an answer. |
| 207 | static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, |
| 208 | ScalarEvolution *SE) { |
| 209 | const SCEV *Diff = SE->getMinusSCEV(J, I); |
| 210 | const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); |
| 211 | |
| 212 | if (!C) |
| 213 | return nullptr; |
| 214 | if (C->getValue()->isNegative()) |
| 215 | return J; |
| 216 | return I; |
| 217 | } |
| 218 | |
Adam Nemet | 7cdebac | 2015-07-14 22:32:44 +0000 | [diff] [blame] | 219 | bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) { |
Adam Nemet | 9f7dedc | 2015-07-14 22:32:50 +0000 | [diff] [blame] | 220 | const SCEV *Start = RtCheck.Pointers[Index].Start; |
| 221 | const SCEV *End = RtCheck.Pointers[Index].End; |
| 222 | |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 223 | // Compare the starts and ends with the known minimum and maximum |
| 224 | // of this set. We need to know how we compare against the min/max |
| 225 | // of the set in order to be able to emit memchecks. |
Adam Nemet | 9f7dedc | 2015-07-14 22:32:50 +0000 | [diff] [blame] | 226 | const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE); |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 227 | if (!Min0) |
| 228 | return false; |
| 229 | |
Adam Nemet | 9f7dedc | 2015-07-14 22:32:50 +0000 | [diff] [blame] | 230 | const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE); |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 231 | if (!Min1) |
| 232 | return false; |
| 233 | |
| 234 | // Update the low bound expression if we've found a new min value. |
Adam Nemet | 9f7dedc | 2015-07-14 22:32:50 +0000 | [diff] [blame] | 235 | if (Min0 == Start) |
| 236 | Low = Start; |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 237 | |
| 238 | // Update the high bound expression if we've found a new max value. |
Adam Nemet | 9f7dedc | 2015-07-14 22:32:50 +0000 | [diff] [blame] | 239 | if (Min1 != End) |
| 240 | High = End; |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 241 | |
| 242 | Members.push_back(Index); |
| 243 | return true; |
| 244 | } |
| 245 | |
Adam Nemet | 7cdebac | 2015-07-14 22:32:44 +0000 | [diff] [blame] | 246 | void RuntimePointerChecking::groupChecks( |
| 247 | MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 248 | // We build the groups from dependency candidates equivalence classes |
| 249 | // because: |
| 250 | // - We know that pointers in the same equivalence class share |
| 251 | // the same underlying object and therefore there is a chance |
| 252 | // that we can compare pointers |
| 253 | // - We wouldn't be able to merge two pointers for which we need |
| 254 | // to emit a memcheck. The classes in DepCands are already |
| 255 | // conveniently built such that no two pointers in the same |
| 256 | // class need checking against each other. |
| 257 | |
| 258 | // We use the following (greedy) algorithm to construct the groups |
| 259 | // For every pointer in the equivalence class: |
| 260 | // For each existing group: |
| 261 | // - if the difference between this pointer and the min/max bounds |
| 262 | // of the group is a constant, then make the pointer part of the |
| 263 | // group and update the min/max bounds of that group as required. |
| 264 | |
| 265 | CheckingGroups.clear(); |
| 266 | |
Silviu Baranga | 4825060 | 2015-07-28 13:44:08 +0000 | [diff] [blame] | 267 | // If we need to check two pointers to the same underlying object |
| 268 | // with a non-constant difference, we shouldn't perform any pointer |
| 269 | // grouping with those pointers. This is because we can easily get |
| 270 | // into cases where the resulting check would return false, even when |
| 271 | // the accesses are safe. |
| 272 | // |
| 273 | // The following example shows this: |
| 274 | // for (i = 0; i < 1000; ++i) |
| 275 | // a[5000 + i * m] = a[i] + a[i + 9000] |
| 276 | // |
| 277 | // Here grouping gives a check of (5000, 5000 + 1000 * m) against |
| 278 | // (0, 10000) which is always false. However, if m is 1, there is no |
| 279 | // dependence. Not grouping the checks for a[i] and a[i + 9000] allows |
| 280 | // us to perform an accurate check in this case. |
| 281 | // |
| 282 | // The above case requires that we have an UnknownDependence between |
| 283 | // accesses to the same underlying object. This cannot happen unless |
| 284 | // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies |
| 285 | // is also false. In this case we will use the fallback path and create |
| 286 | // separate checking groups for all pointers. |
Mehdi Amini | afd1351 | 2015-11-05 05:49:43 +0000 | [diff] [blame] | 287 | |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 288 | // If we don't have the dependency partitions, construct a new |
Silviu Baranga | 4825060 | 2015-07-28 13:44:08 +0000 | [diff] [blame] | 289 | // checking pointer group for each pointer. This is also required |
| 290 | // for correctness, because in this case we can have checking between |
| 291 | // pointers to the same underlying object. |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 292 | if (!UseDependencies) { |
| 293 | for (unsigned I = 0; I < Pointers.size(); ++I) |
| 294 | CheckingGroups.push_back(CheckingPtrGroup(I, *this)); |
| 295 | return; |
| 296 | } |
| 297 | |
| 298 | unsigned TotalComparisons = 0; |
| 299 | |
| 300 | DenseMap<Value *, unsigned> PositionMap; |
Adam Nemet | 9f7dedc | 2015-07-14 22:32:50 +0000 | [diff] [blame] | 301 | for (unsigned Index = 0; Index < Pointers.size(); ++Index) |
| 302 | PositionMap[Pointers[Index].PointerValue] = Index; |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 303 | |
Silviu Baranga | ce3877f | 2015-07-09 15:18:25 +0000 | [diff] [blame] | 304 | // We need to keep track of what pointers we've already seen so we |
| 305 | // don't process them twice. |
| 306 | SmallSet<unsigned, 2> Seen; |
| 307 | |
Sanjay Patel | e4b9f50 | 2015-12-07 19:21:39 +0000 | [diff] [blame] | 308 | // Go through all equivalence classes, get the "pointer check groups" |
Silviu Baranga | ce3877f | 2015-07-09 15:18:25 +0000 | [diff] [blame] | 309 | // and add them to the overall solution. We use the order in which accesses |
| 310 | // appear in 'Pointers' to enforce determinism. |
| 311 | for (unsigned I = 0; I < Pointers.size(); ++I) { |
| 312 | // We've seen this pointer before, and therefore already processed |
| 313 | // its equivalence class. |
| 314 | if (Seen.count(I)) |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 315 | continue; |
| 316 | |
Adam Nemet | 9f7dedc | 2015-07-14 22:32:50 +0000 | [diff] [blame] | 317 | MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, |
| 318 | Pointers[I].IsWritePtr); |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 319 | |
Silviu Baranga | ce3877f | 2015-07-09 15:18:25 +0000 | [diff] [blame] | 320 | SmallVector<CheckingPtrGroup, 2> Groups; |
| 321 | auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); |
| 322 | |
Silviu Baranga | a647c30 | 2015-07-13 14:48:24 +0000 | [diff] [blame] | 323 | // Because DepCands is constructed by visiting accesses in the order in |
| 324 | // which they appear in alias sets (which is deterministic) and the |
| 325 | // iteration order within an equivalence class member is only dependent on |
| 326 | // the order in which unions and insertions are performed on the |
| 327 | // equivalence class, the iteration order is deterministic. |
Silviu Baranga | ce3877f | 2015-07-09 15:18:25 +0000 | [diff] [blame] | 328 | for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 329 | MI != ME; ++MI) { |
| 330 | unsigned Pointer = PositionMap[MI->getPointer()]; |
| 331 | bool Merged = false; |
Silviu Baranga | ce3877f | 2015-07-09 15:18:25 +0000 | [diff] [blame] | 332 | // Mark this pointer as seen. |
| 333 | Seen.insert(Pointer); |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 334 | |
| 335 | // Go through all the existing sets and see if we can find one |
| 336 | // which can include this pointer. |
| 337 | for (CheckingPtrGroup &Group : Groups) { |
| 338 | // Don't perform more than a certain amount of comparisons. |
| 339 | // This should limit the cost of grouping the pointers to something |
| 340 | // reasonable. If we do end up hitting this threshold, the algorithm |
| 341 | // will create separate groups for all remaining pointers. |
| 342 | if (TotalComparisons > MemoryCheckMergeThreshold) |
| 343 | break; |
| 344 | |
| 345 | TotalComparisons++; |
| 346 | |
| 347 | if (Group.addPointer(Pointer)) { |
| 348 | Merged = true; |
| 349 | break; |
| 350 | } |
| 351 | } |
| 352 | |
| 353 | if (!Merged) |
| 354 | // We couldn't add this pointer to any existing set or the threshold |
| 355 | // for the number of comparisons has been reached. Create a new group |
| 356 | // to hold the current pointer. |
| 357 | Groups.push_back(CheckingPtrGroup(Pointer, *this)); |
| 358 | } |
| 359 | |
| 360 | // We've computed the grouped checks for this partition. |
| 361 | // Save the results and continue with the next one. |
| 362 | std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups)); |
| 363 | } |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 364 | } |
| 365 | |
Adam Nemet | 041e6de | 2015-07-16 02:48:05 +0000 | [diff] [blame] | 366 | bool RuntimePointerChecking::arePointersInSamePartition( |
| 367 | const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, |
| 368 | unsigned PtrIdx2) { |
| 369 | return (PtrToPartition[PtrIdx1] != -1 && |
| 370 | PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); |
| 371 | } |
| 372 | |
Adam Nemet | 651a5a2 | 2015-08-09 20:06:08 +0000 | [diff] [blame] | 373 | bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { |
Adam Nemet | 9f7dedc | 2015-07-14 22:32:50 +0000 | [diff] [blame] | 374 | const PointerInfo &PointerI = Pointers[I]; |
| 375 | const PointerInfo &PointerJ = Pointers[J]; |
| 376 | |
Adam Nemet | a8945b7 | 2015-02-18 03:43:58 +0000 | [diff] [blame] | 377 | // No need to check if two readonly pointers intersect. |
Adam Nemet | 9f7dedc | 2015-07-14 22:32:50 +0000 | [diff] [blame] | 378 | if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) |
Adam Nemet | a8945b7 | 2015-02-18 03:43:58 +0000 | [diff] [blame] | 379 | return false; |
| 380 | |
| 381 | // Only need to check pointers between two different dependency sets. |
Adam Nemet | 9f7dedc | 2015-07-14 22:32:50 +0000 | [diff] [blame] | 382 | if (PointerI.DependencySetId == PointerJ.DependencySetId) |
Adam Nemet | a8945b7 | 2015-02-18 03:43:58 +0000 | [diff] [blame] | 383 | return false; |
| 384 | |
| 385 | // Only need to check pointers in the same alias set. |
Adam Nemet | 9f7dedc | 2015-07-14 22:32:50 +0000 | [diff] [blame] | 386 | if (PointerI.AliasSetId != PointerJ.AliasSetId) |
Adam Nemet | a8945b7 | 2015-02-18 03:43:58 +0000 | [diff] [blame] | 387 | return false; |
| 388 | |
| 389 | return true; |
| 390 | } |
| 391 | |
Adam Nemet | 54f0b83 | 2015-07-27 23:54:41 +0000 | [diff] [blame] | 392 | void RuntimePointerChecking::printChecks( |
| 393 | raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks, |
| 394 | unsigned Depth) const { |
| 395 | unsigned N = 0; |
| 396 | for (const auto &Check : Checks) { |
| 397 | const auto &First = Check.first->Members, &Second = Check.second->Members; |
| 398 | |
| 399 | OS.indent(Depth) << "Check " << N++ << ":\n"; |
| 400 | |
| 401 | OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; |
| 402 | for (unsigned K = 0; K < First.size(); ++K) |
| 403 | OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; |
| 404 | |
| 405 | OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; |
| 406 | for (unsigned K = 0; K < Second.size(); ++K) |
| 407 | OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; |
| 408 | } |
| 409 | } |
| 410 | |
Adam Nemet | 3a91e94 | 2015-08-07 19:44:48 +0000 | [diff] [blame] | 411 | void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 412 | |
| 413 | OS.indent(Depth) << "Run-time memory checks:\n"; |
Adam Nemet | 1584039 | 2015-08-07 22:44:15 +0000 | [diff] [blame] | 414 | printChecks(OS, Checks, Depth); |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 415 | |
| 416 | OS.indent(Depth) << "Grouped accesses:\n"; |
| 417 | for (unsigned I = 0; I < CheckingGroups.size(); ++I) { |
Adam Nemet | 54f0b83 | 2015-07-27 23:54:41 +0000 | [diff] [blame] | 418 | const auto &CG = CheckingGroups[I]; |
| 419 | |
| 420 | OS.indent(Depth + 2) << "Group " << &CG << ":\n"; |
| 421 | OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High |
| 422 | << ")\n"; |
| 423 | for (unsigned J = 0; J < CG.Members.size(); ++J) { |
| 424 | OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 425 | << "\n"; |
| 426 | } |
| 427 | } |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 428 | } |
| 429 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 430 | namespace { |
| 431 | /// \brief Analyses memory accesses in a loop. |
| 432 | /// |
| 433 | /// Checks whether run time pointer checks are needed and builds sets for data |
| 434 | /// dependence checking. |
| 435 | class AccessAnalysis { |
| 436 | public: |
| 437 | /// \brief Read or write access location. |
| 438 | typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; |
| 439 | typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; |
| 440 | |
Adam Nemet | e2b885c | 2015-04-23 20:09:20 +0000 | [diff] [blame] | 441 | AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI, |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 442 | MemoryDepChecker::DepCandidates &DA, |
| 443 | PredicatedScalarEvolution &PSE) |
Silviu Baranga | e3c0534 | 2015-11-02 14:41:02 +0000 | [diff] [blame] | 444 | : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false), |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 445 | PSE(PSE) {} |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 446 | |
| 447 | /// \brief Register a load and whether it is only read from. |
Chandler Carruth | ac80dc7 | 2015-06-17 07:18:54 +0000 | [diff] [blame] | 448 | void addLoad(MemoryLocation &Loc, bool IsReadOnly) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 449 | Value *Ptr = const_cast<Value*>(Loc.Ptr); |
Chandler Carruth | ecbd168 | 2015-06-17 07:21:38 +0000 | [diff] [blame] | 450 | AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 451 | Accesses.insert(MemAccessInfo(Ptr, false)); |
| 452 | if (IsReadOnly) |
| 453 | ReadOnlyPtr.insert(Ptr); |
| 454 | } |
| 455 | |
| 456 | /// \brief Register a store. |
Chandler Carruth | ac80dc7 | 2015-06-17 07:18:54 +0000 | [diff] [blame] | 457 | void addStore(MemoryLocation &Loc) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 458 | Value *Ptr = const_cast<Value*>(Loc.Ptr); |
Chandler Carruth | ecbd168 | 2015-06-17 07:21:38 +0000 | [diff] [blame] | 459 | AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 460 | Accesses.insert(MemAccessInfo(Ptr, true)); |
| 461 | } |
| 462 | |
| 463 | /// \brief Check whether we can check the pointers at runtime for |
Adam Nemet | ee61474 | 2015-07-09 22:17:38 +0000 | [diff] [blame] | 464 | /// non-intersection. |
| 465 | /// |
| 466 | /// Returns true if we need no check or if we do and we can generate them |
| 467 | /// (i.e. the pointers have computable bounds). |
Adam Nemet | 7cdebac | 2015-07-14 22:32:44 +0000 | [diff] [blame] | 468 | bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, |
| 469 | Loop *TheLoop, const ValueToValueMap &Strides, |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 470 | bool ShouldCheckStride = false); |
| 471 | |
| 472 | /// \brief Goes over all memory accesses, checks whether a RT check is needed |
| 473 | /// and builds sets of dependent accesses. |
| 474 | void buildDependenceSets() { |
| 475 | processMemAccesses(); |
| 476 | } |
| 477 | |
Adam Nemet | 5dc3b2c | 2015-07-09 06:47:18 +0000 | [diff] [blame] | 478 | /// \brief Initial processing of memory accesses determined that we need to |
| 479 | /// perform dependency checking. |
| 480 | /// |
| 481 | /// Note that this can later be cleared if we retry memcheck analysis without |
| 482 | /// dependency checking (i.e. ShouldRetryWithRuntimeCheck). |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 483 | bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } |
Adam Nemet | df3dc5b | 2015-05-18 15:37:03 +0000 | [diff] [blame] | 484 | |
| 485 | /// We decided that no dependence analysis would be used. Reset the state. |
| 486 | void resetDepChecks(MemoryDepChecker &DepChecker) { |
| 487 | CheckDeps.clear(); |
Adam Nemet | a2df750 | 2015-11-03 21:39:52 +0000 | [diff] [blame] | 488 | DepChecker.clearDependences(); |
Adam Nemet | df3dc5b | 2015-05-18 15:37:03 +0000 | [diff] [blame] | 489 | } |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 490 | |
| 491 | MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } |
| 492 | |
| 493 | private: |
| 494 | typedef SetVector<MemAccessInfo> PtrAccessSet; |
| 495 | |
| 496 | /// \brief Go over all memory access and check whether runtime pointer checks |
Adam Nemet | b41d2d3 | 2015-07-09 06:47:21 +0000 | [diff] [blame] | 497 | /// are needed and build sets of dependency check candidates. |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 498 | void processMemAccesses(); |
| 499 | |
| 500 | /// Set of all accesses. |
| 501 | PtrAccessSet Accesses; |
| 502 | |
Mehdi Amini | a28d91d | 2015-03-10 02:37:25 +0000 | [diff] [blame] | 503 | const DataLayout &DL; |
| 504 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 505 | /// Set of accesses that need a further dependence check. |
| 506 | MemAccessInfoSet CheckDeps; |
| 507 | |
| 508 | /// Set of pointers that are read only. |
| 509 | SmallPtrSet<Value*, 16> ReadOnlyPtr; |
| 510 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 511 | /// An alias set tracker to partition the access set by underlying object and |
| 512 | //intrinsic property (such as TBAA metadata). |
| 513 | AliasSetTracker AST; |
| 514 | |
Adam Nemet | e2b885c | 2015-04-23 20:09:20 +0000 | [diff] [blame] | 515 | LoopInfo *LI; |
| 516 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 517 | /// Sets of potentially dependent accesses - members of one set share an |
| 518 | /// underlying pointer. The set "CheckDeps" identfies which sets really need a |
| 519 | /// dependence check. |
Adam Nemet | dee666b | 2015-03-10 17:40:34 +0000 | [diff] [blame] | 520 | MemoryDepChecker::DepCandidates &DepCands; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 521 | |
Adam Nemet | 5dc3b2c | 2015-07-09 06:47:18 +0000 | [diff] [blame] | 522 | /// \brief Initial processing of memory accesses determined that we may need |
| 523 | /// to add memchecks. Perform the analysis to determine the necessary checks. |
| 524 | /// |
| 525 | /// Note that, this is different from isDependencyCheckNeeded. When we retry |
| 526 | /// memcheck analysis without dependency checking |
| 527 | /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared |
| 528 | /// while this remains set if we have potentially dependent accesses. |
| 529 | bool IsRTCheckAnalysisNeeded; |
Silviu Baranga | e3c0534 | 2015-11-02 14:41:02 +0000 | [diff] [blame] | 530 | |
| 531 | /// The SCEV predicate containing all the SCEV-related assumptions. |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 532 | PredicatedScalarEvolution &PSE; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 533 | }; |
| 534 | |
| 535 | } // end anonymous namespace |
| 536 | |
| 537 | /// \brief Check whether a pointer can participate in a runtime bounds check. |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 538 | static bool hasComputableBounds(PredicatedScalarEvolution &PSE, |
Silviu Baranga | e3c0534 | 2015-11-02 14:41:02 +0000 | [diff] [blame] | 539 | const ValueToValueMap &Strides, Value *Ptr, |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 540 | Loop *L) { |
| 541 | const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); |
Adam Nemet | 279784f | 2016-03-24 04:28:47 +0000 | [diff] [blame] | 542 | |
| 543 | // The bounds for loop-invariant pointer is trivial. |
| 544 | if (PSE.getSE()->isLoopInvariant(PtrScev, L)) |
| 545 | return true; |
| 546 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 547 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); |
| 548 | if (!AR) |
| 549 | return false; |
| 550 | |
| 551 | return AR->isAffine(); |
| 552 | } |
| 553 | |
Adam Nemet | 7cdebac | 2015-07-14 22:32:44 +0000 | [diff] [blame] | 554 | bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, |
| 555 | ScalarEvolution *SE, Loop *TheLoop, |
| 556 | const ValueToValueMap &StridesMap, |
| 557 | bool ShouldCheckStride) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 558 | // Find pointers with computable bounds. We are going to use this information |
| 559 | // to place a runtime bound check. |
| 560 | bool CanDoRT = true; |
| 561 | |
Adam Nemet | ee61474 | 2015-07-09 22:17:38 +0000 | [diff] [blame] | 562 | bool NeedRTCheck = false; |
Adam Nemet | 5dc3b2c | 2015-07-09 06:47:18 +0000 | [diff] [blame] | 563 | if (!IsRTCheckAnalysisNeeded) return true; |
Silviu Baranga | 98a1371 | 2015-06-08 10:27:06 +0000 | [diff] [blame] | 564 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 565 | bool IsDepCheckNeeded = isDependencyCheckNeeded(); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 566 | |
| 567 | // We assign a consecutive id to access from different alias sets. |
| 568 | // Accesses between different groups doesn't need to be checked. |
| 569 | unsigned ASId = 1; |
| 570 | for (auto &AS : AST) { |
Adam Nemet | 424edc6 | 2015-07-08 22:58:48 +0000 | [diff] [blame] | 571 | int NumReadPtrChecks = 0; |
| 572 | int NumWritePtrChecks = 0; |
| 573 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 574 | // We assign consecutive id to access from different dependence sets. |
| 575 | // Accesses within the same set don't need a runtime check. |
| 576 | unsigned RunningDepId = 1; |
| 577 | DenseMap<Value *, unsigned> DepSetId; |
| 578 | |
| 579 | for (auto A : AS) { |
| 580 | Value *Ptr = A.getValue(); |
| 581 | bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); |
| 582 | MemAccessInfo Access(Ptr, IsWrite); |
| 583 | |
Adam Nemet | 424edc6 | 2015-07-08 22:58:48 +0000 | [diff] [blame] | 584 | if (IsWrite) |
| 585 | ++NumWritePtrChecks; |
| 586 | else |
| 587 | ++NumReadPtrChecks; |
| 588 | |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 589 | if (hasComputableBounds(PSE, StridesMap, Ptr, TheLoop) && |
Mehdi Amini | a28d91d | 2015-03-10 02:37:25 +0000 | [diff] [blame] | 590 | // When we run after a failing dependency check we have to make sure |
| 591 | // we don't have wrapping pointers. |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 592 | (!ShouldCheckStride || |
Denis Zobnin | 15d1e64 | 2016-05-10 05:55:16 +0000 | [diff] [blame] | 593 | getPtrStride(PSE, Ptr, TheLoop, StridesMap) == 1)) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 594 | // The id of the dependence set. |
| 595 | unsigned DepId; |
| 596 | |
| 597 | if (IsDepCheckNeeded) { |
| 598 | Value *Leader = DepCands.getLeaderValue(Access).getPointer(); |
| 599 | unsigned &LeaderId = DepSetId[Leader]; |
| 600 | if (!LeaderId) |
| 601 | LeaderId = RunningDepId++; |
| 602 | DepId = LeaderId; |
| 603 | } else |
| 604 | // Each access has its own dependence set. |
| 605 | DepId = RunningDepId++; |
| 606 | |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 607 | RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 608 | |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 609 | DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 610 | } else { |
Adam Nemet | f10ca27 | 2015-05-18 15:36:52 +0000 | [diff] [blame] | 611 | DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n'); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 612 | CanDoRT = false; |
| 613 | } |
| 614 | } |
| 615 | |
Adam Nemet | 424edc6 | 2015-07-08 22:58:48 +0000 | [diff] [blame] | 616 | // If we have at least two writes or one write and a read then we need to |
| 617 | // check them. But there is no need to checks if there is only one |
| 618 | // dependence set for this alias set. |
| 619 | // |
| 620 | // Note that this function computes CanDoRT and NeedRTCheck independently. |
| 621 | // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer |
| 622 | // for which we couldn't find the bounds but we don't actually need to emit |
| 623 | // any checks so it does not matter. |
| 624 | if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2)) |
| 625 | NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 && |
| 626 | NumWritePtrChecks >= 1)); |
| 627 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 628 | ++ASId; |
| 629 | } |
| 630 | |
| 631 | // If the pointers that we would use for the bounds comparison have different |
| 632 | // address spaces, assume the values aren't directly comparable, so we can't |
| 633 | // use them for the runtime check. We also have to assume they could |
| 634 | // overlap. In the future there should be metadata for whether address spaces |
| 635 | // are disjoint. |
| 636 | unsigned NumPointers = RtCheck.Pointers.size(); |
| 637 | for (unsigned i = 0; i < NumPointers; ++i) { |
| 638 | for (unsigned j = i + 1; j < NumPointers; ++j) { |
| 639 | // Only need to check pointers between two different dependency sets. |
Adam Nemet | 9f7dedc | 2015-07-14 22:32:50 +0000 | [diff] [blame] | 640 | if (RtCheck.Pointers[i].DependencySetId == |
| 641 | RtCheck.Pointers[j].DependencySetId) |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 642 | continue; |
| 643 | // Only need to check pointers in the same alias set. |
Adam Nemet | 9f7dedc | 2015-07-14 22:32:50 +0000 | [diff] [blame] | 644 | if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 645 | continue; |
| 646 | |
Adam Nemet | 9f7dedc | 2015-07-14 22:32:50 +0000 | [diff] [blame] | 647 | Value *PtrI = RtCheck.Pointers[i].PointerValue; |
| 648 | Value *PtrJ = RtCheck.Pointers[j].PointerValue; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 649 | |
| 650 | unsigned ASi = PtrI->getType()->getPointerAddressSpace(); |
| 651 | unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); |
| 652 | if (ASi != ASj) { |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 653 | DEBUG(dbgs() << "LAA: Runtime check would require comparison between" |
Adam Nemet | 04d4163 | 2015-02-19 19:14:34 +0000 | [diff] [blame] | 654 | " different address spaces\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 655 | return false; |
| 656 | } |
| 657 | } |
| 658 | } |
| 659 | |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 660 | if (NeedRTCheck && CanDoRT) |
Adam Nemet | 1584039 | 2015-08-07 22:44:15 +0000 | [diff] [blame] | 661 | RtCheck.generateChecks(DepCands, IsDepCheckNeeded); |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 662 | |
Adam Nemet | 155e874 | 2015-08-07 22:44:21 +0000 | [diff] [blame] | 663 | DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() |
Adam Nemet | ee61474 | 2015-07-09 22:17:38 +0000 | [diff] [blame] | 664 | << " pointer comparisons.\n"); |
| 665 | |
| 666 | RtCheck.Need = NeedRTCheck; |
| 667 | |
| 668 | bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT; |
| 669 | if (!CanDoRTIfNeeded) |
| 670 | RtCheck.reset(); |
| 671 | return CanDoRTIfNeeded; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 672 | } |
| 673 | |
| 674 | void AccessAnalysis::processMemAccesses() { |
| 675 | // We process the set twice: first we process read-write pointers, last we |
| 676 | // process read-only pointers. This allows us to skip dependence tests for |
| 677 | // read-only pointers. |
| 678 | |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 679 | DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 680 | DEBUG(dbgs() << " AST: "; AST.dump()); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 681 | DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 682 | DEBUG({ |
| 683 | for (auto A : Accesses) |
| 684 | dbgs() << "\t" << *A.getPointer() << " (" << |
| 685 | (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? |
| 686 | "read-only" : "read")) << ")\n"; |
| 687 | }); |
| 688 | |
| 689 | // The AliasSetTracker has nicely partitioned our pointers by metadata |
| 690 | // compatibility and potential for underlying-object overlap. As a result, we |
| 691 | // only need to check for potential pointer dependencies within each alias |
| 692 | // set. |
| 693 | for (auto &AS : AST) { |
| 694 | // Note that both the alias-set tracker and the alias sets themselves used |
| 695 | // linked lists internally and so the iteration order here is deterministic |
| 696 | // (matching the original instruction order within each set). |
| 697 | |
| 698 | bool SetHasWrite = false; |
| 699 | |
| 700 | // Map of pointers to last access encountered. |
| 701 | typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; |
| 702 | UnderlyingObjToAccessMap ObjToLastAccess; |
| 703 | |
| 704 | // Set of access to check after all writes have been processed. |
| 705 | PtrAccessSet DeferredAccesses; |
| 706 | |
| 707 | // Iterate over each alias set twice, once to process read/write pointers, |
| 708 | // and then to process read-only pointers. |
| 709 | for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { |
| 710 | bool UseDeferred = SetIteration > 0; |
| 711 | PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; |
| 712 | |
| 713 | for (auto AV : AS) { |
| 714 | Value *Ptr = AV.getValue(); |
| 715 | |
| 716 | // For a single memory access in AliasSetTracker, Accesses may contain |
| 717 | // both read and write, and they both need to be handled for CheckDeps. |
| 718 | for (auto AC : S) { |
| 719 | if (AC.getPointer() != Ptr) |
| 720 | continue; |
| 721 | |
| 722 | bool IsWrite = AC.getInt(); |
| 723 | |
| 724 | // If we're using the deferred access set, then it contains only |
| 725 | // reads. |
| 726 | bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; |
| 727 | if (UseDeferred && !IsReadOnlyPtr) |
| 728 | continue; |
| 729 | // Otherwise, the pointer must be in the PtrAccessSet, either as a |
| 730 | // read or a write. |
| 731 | assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || |
| 732 | S.count(MemAccessInfo(Ptr, false))) && |
| 733 | "Alias-set pointer not in the access set?"); |
| 734 | |
| 735 | MemAccessInfo Access(Ptr, IsWrite); |
| 736 | DepCands.insert(Access); |
| 737 | |
| 738 | // Memorize read-only pointers for later processing and skip them in |
| 739 | // the first round (they need to be checked after we have seen all |
| 740 | // write pointers). Note: we also mark pointer that are not |
| 741 | // consecutive as "read-only" pointers (so that we check |
| 742 | // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". |
| 743 | if (!UseDeferred && IsReadOnlyPtr) { |
| 744 | DeferredAccesses.insert(Access); |
| 745 | continue; |
| 746 | } |
| 747 | |
| 748 | // If this is a write - check other reads and writes for conflicts. If |
| 749 | // this is a read only check other writes for conflicts (but only if |
| 750 | // there is no other write to the ptr - this is an optimization to |
| 751 | // catch "a[i] = a[i] + " without having to do a dependence check). |
| 752 | if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { |
| 753 | CheckDeps.insert(Access); |
Adam Nemet | 5dc3b2c | 2015-07-09 06:47:18 +0000 | [diff] [blame] | 754 | IsRTCheckAnalysisNeeded = true; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 755 | } |
| 756 | |
| 757 | if (IsWrite) |
| 758 | SetHasWrite = true; |
| 759 | |
| 760 | // Create sets of pointers connected by a shared alias set and |
| 761 | // underlying object. |
| 762 | typedef SmallVector<Value *, 16> ValueVector; |
| 763 | ValueVector TempObjects; |
Adam Nemet | e2b885c | 2015-04-23 20:09:20 +0000 | [diff] [blame] | 764 | |
| 765 | GetUnderlyingObjects(Ptr, TempObjects, DL, LI); |
| 766 | DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 767 | for (Value *UnderlyingObj : TempObjects) { |
Mehdi Amini | afd1351 | 2015-11-05 05:49:43 +0000 | [diff] [blame] | 768 | // nullptr never alias, don't join sets for pointer that have "null" |
| 769 | // in their UnderlyingObjects list. |
| 770 | if (isa<ConstantPointerNull>(UnderlyingObj)) |
| 771 | continue; |
| 772 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 773 | UnderlyingObjToAccessMap::iterator Prev = |
| 774 | ObjToLastAccess.find(UnderlyingObj); |
| 775 | if (Prev != ObjToLastAccess.end()) |
| 776 | DepCands.unionSets(Access, Prev->second); |
| 777 | |
| 778 | ObjToLastAccess[UnderlyingObj] = Access; |
Adam Nemet | e2b885c | 2015-04-23 20:09:20 +0000 | [diff] [blame] | 779 | DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 780 | } |
| 781 | } |
| 782 | } |
| 783 | } |
| 784 | } |
| 785 | } |
| 786 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 787 | static bool isInBoundsGep(Value *Ptr) { |
| 788 | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) |
| 789 | return GEP->isInBounds(); |
| 790 | return false; |
| 791 | } |
| 792 | |
Adam Nemet | c4866d2 | 2015-06-26 17:25:43 +0000 | [diff] [blame] | 793 | /// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, |
| 794 | /// i.e. monotonically increasing/decreasing. |
| 795 | static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, |
Silviu Baranga | ea63a7f | 2016-02-08 17:02:45 +0000 | [diff] [blame] | 796 | PredicatedScalarEvolution &PSE, const Loop *L) { |
Adam Nemet | c4866d2 | 2015-06-26 17:25:43 +0000 | [diff] [blame] | 797 | // FIXME: This should probably only return true for NUW. |
| 798 | if (AR->getNoWrapFlags(SCEV::NoWrapMask)) |
| 799 | return true; |
| 800 | |
| 801 | // Scalar evolution does not propagate the non-wrapping flags to values that |
| 802 | // are derived from a non-wrapping induction variable because non-wrapping |
| 803 | // could be flow-sensitive. |
| 804 | // |
| 805 | // Look through the potentially overflowing instruction to try to prove |
| 806 | // non-wrapping for the *specific* value of Ptr. |
| 807 | |
| 808 | // The arithmetic implied by an inbounds GEP can't overflow. |
| 809 | auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); |
| 810 | if (!GEP || !GEP->isInBounds()) |
| 811 | return false; |
| 812 | |
| 813 | // Make sure there is only one non-const index and analyze that. |
| 814 | Value *NonConstIndex = nullptr; |
| 815 | for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) |
| 816 | if (!isa<ConstantInt>(*Index)) { |
| 817 | if (NonConstIndex) |
| 818 | return false; |
| 819 | NonConstIndex = *Index; |
| 820 | } |
| 821 | if (!NonConstIndex) |
| 822 | // The recurrence is on the pointer, ignore for now. |
| 823 | return false; |
| 824 | |
| 825 | // The index in GEP is signed. It is non-wrapping if it's derived from a NSW |
| 826 | // AddRec using a NSW operation. |
| 827 | if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) |
| 828 | if (OBO->hasNoSignedWrap() && |
| 829 | // Assume constant for other the operand so that the AddRec can be |
| 830 | // easily found. |
| 831 | isa<ConstantInt>(OBO->getOperand(1))) { |
Silviu Baranga | ea63a7f | 2016-02-08 17:02:45 +0000 | [diff] [blame] | 832 | auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); |
Adam Nemet | c4866d2 | 2015-06-26 17:25:43 +0000 | [diff] [blame] | 833 | |
| 834 | if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) |
| 835 | return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); |
| 836 | } |
| 837 | |
| 838 | return false; |
| 839 | } |
| 840 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 841 | /// \brief Check whether the access through \p Ptr has a constant stride. |
Denis Zobnin | 15d1e64 | 2016-05-10 05:55:16 +0000 | [diff] [blame] | 842 | int llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr, |
Silviu Baranga | ea63a7f | 2016-02-08 17:02:45 +0000 | [diff] [blame] | 843 | const Loop *Lp, const ValueToValueMap &StridesMap, |
| 844 | bool Assume) { |
Craig Topper | e3dcce9 | 2015-08-01 22:20:21 +0000 | [diff] [blame] | 845 | Type *Ty = Ptr->getType(); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 846 | assert(Ty->isPointerTy() && "Unexpected non-ptr"); |
| 847 | |
| 848 | // Make sure that the pointer does not point to aggregate types. |
Craig Topper | e3dcce9 | 2015-08-01 22:20:21 +0000 | [diff] [blame] | 849 | auto *PtrTy = cast<PointerType>(Ty); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 850 | if (PtrTy->getElementType()->isAggregateType()) { |
Silviu Baranga | ea63a7f | 2016-02-08 17:02:45 +0000 | [diff] [blame] | 851 | DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" << *Ptr |
| 852 | << "\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 853 | return 0; |
| 854 | } |
| 855 | |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 856 | const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 857 | |
| 858 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); |
Silviu Baranga | ea63a7f | 2016-02-08 17:02:45 +0000 | [diff] [blame] | 859 | if (Assume && !AR) |
Silviu Baranga | d68ed85 | 2016-03-23 15:29:30 +0000 | [diff] [blame] | 860 | AR = PSE.getAsAddRec(Ptr); |
Silviu Baranga | ea63a7f | 2016-02-08 17:02:45 +0000 | [diff] [blame] | 861 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 862 | if (!AR) { |
Silviu Baranga | ea63a7f | 2016-02-08 17:02:45 +0000 | [diff] [blame] | 863 | DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr |
| 864 | << " SCEV: " << *PtrScev << "\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 865 | return 0; |
| 866 | } |
| 867 | |
| 868 | // The accesss function must stride over the innermost loop. |
| 869 | if (Lp != AR->getLoop()) { |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 870 | DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " << |
Silviu Baranga | ea63a7f | 2016-02-08 17:02:45 +0000 | [diff] [blame] | 871 | *Ptr << " SCEV: " << *AR << "\n"); |
Kyle Butt | a02ce98 | 2016-01-08 01:55:13 +0000 | [diff] [blame] | 872 | return 0; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 873 | } |
| 874 | |
| 875 | // The address calculation must not wrap. Otherwise, a dependence could be |
| 876 | // inverted. |
| 877 | // An inbounds getelementptr that is a AddRec with a unit stride |
| 878 | // cannot wrap per definition. The unit stride requirement is checked later. |
| 879 | // An getelementptr without an inbounds attribute and unit stride would have |
| 880 | // to access the pointer value "0" which is undefined behavior in address |
| 881 | // space 0, therefore we can also vectorize this case. |
| 882 | bool IsInBoundsGEP = isInBoundsGep(Ptr); |
Silviu Baranga | ea63a7f | 2016-02-08 17:02:45 +0000 | [diff] [blame] | 883 | bool IsNoWrapAddRec = |
| 884 | PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) || |
| 885 | isNoWrapAddRec(Ptr, AR, PSE, Lp); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 886 | bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; |
| 887 | if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { |
Silviu Baranga | ea63a7f | 2016-02-08 17:02:45 +0000 | [diff] [blame] | 888 | if (Assume) { |
| 889 | PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); |
| 890 | IsNoWrapAddRec = true; |
| 891 | DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n" |
| 892 | << "LAA: Pointer: " << *Ptr << "\n" |
| 893 | << "LAA: SCEV: " << *AR << "\n" |
| 894 | << "LAA: Added an overflow assumption\n"); |
| 895 | } else { |
| 896 | DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " |
| 897 | << *Ptr << " SCEV: " << *AR << "\n"); |
| 898 | return 0; |
| 899 | } |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 900 | } |
| 901 | |
| 902 | // Check the step is constant. |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 903 | const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 904 | |
Adam Nemet | 943befe | 2015-07-09 00:03:22 +0000 | [diff] [blame] | 905 | // Calculate the pointer stride and check if it is constant. |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 906 | const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); |
| 907 | if (!C) { |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 908 | DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr << |
Silviu Baranga | ea63a7f | 2016-02-08 17:02:45 +0000 | [diff] [blame] | 909 | " SCEV: " << *AR << "\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 910 | return 0; |
| 911 | } |
| 912 | |
Mehdi Amini | a28d91d | 2015-03-10 02:37:25 +0000 | [diff] [blame] | 913 | auto &DL = Lp->getHeader()->getModule()->getDataLayout(); |
| 914 | int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); |
Sanjoy Das | 0de2fec | 2015-12-17 20:28:46 +0000 | [diff] [blame] | 915 | const APInt &APStepVal = C->getAPInt(); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 916 | |
| 917 | // Huge step value - give up. |
| 918 | if (APStepVal.getBitWidth() > 64) |
| 919 | return 0; |
| 920 | |
| 921 | int64_t StepVal = APStepVal.getSExtValue(); |
| 922 | |
| 923 | // Strided access. |
| 924 | int64_t Stride = StepVal / Size; |
| 925 | int64_t Rem = StepVal % Size; |
| 926 | if (Rem) |
| 927 | return 0; |
| 928 | |
| 929 | // If the SCEV could wrap but we have an inbounds gep with a unit stride we |
| 930 | // know we can't "wrap around the address space". In case of address space |
| 931 | // zero we know that this won't happen without triggering undefined behavior. |
| 932 | if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && |
Silviu Baranga | ea63a7f | 2016-02-08 17:02:45 +0000 | [diff] [blame] | 933 | Stride != 1 && Stride != -1) { |
| 934 | if (Assume) { |
| 935 | // We can avoid this case by adding a run-time check. |
| 936 | DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either " |
| 937 | << "inbouds or in address space 0 may wrap:\n" |
| 938 | << "LAA: Pointer: " << *Ptr << "\n" |
| 939 | << "LAA: SCEV: " << *AR << "\n" |
| 940 | << "LAA: Added an overflow assumption\n"); |
| 941 | PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); |
| 942 | } else |
| 943 | return 0; |
| 944 | } |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 945 | |
| 946 | return Stride; |
| 947 | } |
| 948 | |
Haicheng Wu | f1c00a2 | 2016-01-26 02:27:47 +0000 | [diff] [blame] | 949 | /// Take the pointer operand from the Load/Store instruction. |
| 950 | /// Returns NULL if this is not a valid Load/Store instruction. |
| 951 | static Value *getPointerOperand(Value *I) { |
| 952 | if (LoadInst *LI = dyn_cast<LoadInst>(I)) |
| 953 | return LI->getPointerOperand(); |
| 954 | if (StoreInst *SI = dyn_cast<StoreInst>(I)) |
| 955 | return SI->getPointerOperand(); |
| 956 | return nullptr; |
| 957 | } |
| 958 | |
| 959 | /// Take the address space operand from the Load/Store instruction. |
| 960 | /// Returns -1 if this is not a valid Load/Store instruction. |
| 961 | static unsigned getAddressSpaceOperand(Value *I) { |
| 962 | if (LoadInst *L = dyn_cast<LoadInst>(I)) |
| 963 | return L->getPointerAddressSpace(); |
| 964 | if (StoreInst *S = dyn_cast<StoreInst>(I)) |
| 965 | return S->getPointerAddressSpace(); |
| 966 | return -1; |
| 967 | } |
| 968 | |
| 969 | /// Returns true if the memory operations \p A and \p B are consecutive. |
| 970 | bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, |
| 971 | ScalarEvolution &SE, bool CheckType) { |
| 972 | Value *PtrA = getPointerOperand(A); |
| 973 | Value *PtrB = getPointerOperand(B); |
| 974 | unsigned ASA = getAddressSpaceOperand(A); |
| 975 | unsigned ASB = getAddressSpaceOperand(B); |
| 976 | |
| 977 | // Check that the address spaces match and that the pointers are valid. |
| 978 | if (!PtrA || !PtrB || (ASA != ASB)) |
| 979 | return false; |
| 980 | |
| 981 | // Make sure that A and B are different pointers. |
| 982 | if (PtrA == PtrB) |
| 983 | return false; |
| 984 | |
| 985 | // Make sure that A and B have the same type if required. |
| 986 | if(CheckType && PtrA->getType() != PtrB->getType()) |
| 987 | return false; |
| 988 | |
| 989 | unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA); |
| 990 | Type *Ty = cast<PointerType>(PtrA->getType())->getElementType(); |
| 991 | APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty)); |
| 992 | |
| 993 | APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0); |
| 994 | PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); |
| 995 | PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); |
| 996 | |
| 997 | // OffsetDelta = OffsetB - OffsetA; |
| 998 | const SCEV *OffsetSCEVA = SE.getConstant(OffsetA); |
| 999 | const SCEV *OffsetSCEVB = SE.getConstant(OffsetB); |
| 1000 | const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA); |
| 1001 | const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV); |
| 1002 | const APInt &OffsetDelta = OffsetDeltaC->getAPInt(); |
| 1003 | // Check if they are based on the same pointer. That makes the offsets |
| 1004 | // sufficient. |
| 1005 | if (PtrA == PtrB) |
| 1006 | return OffsetDelta == Size; |
| 1007 | |
| 1008 | // Compute the necessary base pointer delta to have the necessary final delta |
| 1009 | // equal to the size. |
| 1010 | // BaseDelta = Size - OffsetDelta; |
| 1011 | const SCEV *SizeSCEV = SE.getConstant(Size); |
| 1012 | const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV); |
| 1013 | |
| 1014 | // Otherwise compute the distance with SCEV between the base pointers. |
| 1015 | const SCEV *PtrSCEVA = SE.getSCEV(PtrA); |
| 1016 | const SCEV *PtrSCEVB = SE.getSCEV(PtrB); |
| 1017 | const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta); |
| 1018 | return X == PtrSCEVB; |
| 1019 | } |
| 1020 | |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1021 | bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { |
| 1022 | switch (Type) { |
| 1023 | case NoDep: |
| 1024 | case Forward: |
| 1025 | case BackwardVectorizable: |
| 1026 | return true; |
| 1027 | |
| 1028 | case Unknown: |
| 1029 | case ForwardButPreventsForwarding: |
| 1030 | case Backward: |
| 1031 | case BackwardVectorizableButPreventsForwarding: |
| 1032 | return false; |
| 1033 | } |
David Majnemer | d388e93 | 2015-03-10 20:23:29 +0000 | [diff] [blame] | 1034 | llvm_unreachable("unexpected DepType!"); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1035 | } |
| 1036 | |
Adam Nemet | 397f582 | 2015-11-03 23:50:03 +0000 | [diff] [blame] | 1037 | bool MemoryDepChecker::Dependence::isBackward() const { |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1038 | switch (Type) { |
| 1039 | case NoDep: |
| 1040 | case Forward: |
| 1041 | case ForwardButPreventsForwarding: |
Adam Nemet | 397f582 | 2015-11-03 23:50:03 +0000 | [diff] [blame] | 1042 | case Unknown: |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1043 | return false; |
| 1044 | |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1045 | case BackwardVectorizable: |
| 1046 | case Backward: |
| 1047 | case BackwardVectorizableButPreventsForwarding: |
| 1048 | return true; |
| 1049 | } |
David Majnemer | d388e93 | 2015-03-10 20:23:29 +0000 | [diff] [blame] | 1050 | llvm_unreachable("unexpected DepType!"); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1051 | } |
| 1052 | |
Adam Nemet | 397f582 | 2015-11-03 23:50:03 +0000 | [diff] [blame] | 1053 | bool MemoryDepChecker::Dependence::isPossiblyBackward() const { |
| 1054 | return isBackward() || Type == Unknown; |
| 1055 | } |
| 1056 | |
| 1057 | bool MemoryDepChecker::Dependence::isForward() const { |
| 1058 | switch (Type) { |
| 1059 | case Forward: |
| 1060 | case ForwardButPreventsForwarding: |
| 1061 | return true; |
| 1062 | |
| 1063 | case NoDep: |
| 1064 | case Unknown: |
| 1065 | case BackwardVectorizable: |
| 1066 | case Backward: |
| 1067 | case BackwardVectorizableButPreventsForwarding: |
| 1068 | return false; |
| 1069 | } |
| 1070 | llvm_unreachable("unexpected DepType!"); |
| 1071 | } |
| 1072 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1073 | bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance, |
| 1074 | unsigned TypeByteSize) { |
| 1075 | // If loads occur at a distance that is not a multiple of a feasible vector |
| 1076 | // factor store-load forwarding does not take place. |
| 1077 | // Positive dependences might cause troubles because vectorizing them might |
| 1078 | // prevent store-load forwarding making vectorized code run a lot slower. |
| 1079 | // a[i] = a[i-3] ^ a[i-8]; |
| 1080 | // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and |
| 1081 | // hence on your typical architecture store-load forwarding does not take |
| 1082 | // place. Vectorizing in such cases does not make sense. |
| 1083 | // Store-load forwarding distance. |
Adam Nemet | 884d313 | 2016-05-16 16:57:47 +0000 | [diff] [blame] | 1084 | |
| 1085 | // After this many iterations store-to-load forwarding conflicts should not |
| 1086 | // cause any slowdowns. |
| 1087 | const unsigned NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1088 | // Maximum vector factor. |
Adam Nemet | 2c34ab5 | 2016-05-12 21:41:53 +0000 | [diff] [blame] | 1089 | unsigned MaxVFWithoutSLForwardIssues = std::min( |
| 1090 | VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1091 | |
Adam Nemet | 884d313 | 2016-05-16 16:57:47 +0000 | [diff] [blame] | 1092 | // Compute the smallest VF at which the store and load would be misaligned. |
Adam Nemet | 9b5852a | 2016-05-16 16:57:42 +0000 | [diff] [blame] | 1093 | for (unsigned VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; |
| 1094 | VF *= 2) { |
Adam Nemet | 884d313 | 2016-05-16 16:57:47 +0000 | [diff] [blame] | 1095 | // If the number of vector iteration between the store and the load are |
| 1096 | // small we could incur conflicts. |
| 1097 | if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { |
Adam Nemet | 9b5852a | 2016-05-16 16:57:42 +0000 | [diff] [blame] | 1098 | MaxVFWithoutSLForwardIssues = (VF >>= 1); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1099 | break; |
| 1100 | } |
| 1101 | } |
| 1102 | |
Adam Nemet | 9b5852a | 2016-05-16 16:57:42 +0000 | [diff] [blame] | 1103 | if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { |
| 1104 | DEBUG(dbgs() << "LAA: Distance " << Distance |
| 1105 | << " that could cause a store-load forwarding conflict\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1106 | return true; |
| 1107 | } |
| 1108 | |
| 1109 | if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && |
Adam Nemet | f219c64 | 2015-02-19 19:14:52 +0000 | [diff] [blame] | 1110 | MaxVFWithoutSLForwardIssues != |
Adam Nemet | 9b5852a | 2016-05-16 16:57:42 +0000 | [diff] [blame] | 1111 | VectorizerParams::MaxVectorWidth * TypeByteSize) |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1112 | MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; |
| 1113 | return false; |
| 1114 | } |
| 1115 | |
Hao Liu | 751004a | 2015-06-08 04:48:37 +0000 | [diff] [blame] | 1116 | /// \brief Check the dependence for two accesses with the same stride \p Stride. |
| 1117 | /// \p Distance is the positive distance and \p TypeByteSize is type size in |
| 1118 | /// bytes. |
| 1119 | /// |
| 1120 | /// \returns true if they are independent. |
| 1121 | static bool areStridedAccessesIndependent(unsigned Distance, unsigned Stride, |
| 1122 | unsigned TypeByteSize) { |
| 1123 | assert(Stride > 1 && "The stride must be greater than 1"); |
| 1124 | assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); |
| 1125 | assert(Distance > 0 && "The distance must be non-zero"); |
| 1126 | |
| 1127 | // Skip if the distance is not multiple of type byte size. |
| 1128 | if (Distance % TypeByteSize) |
| 1129 | return false; |
| 1130 | |
| 1131 | unsigned ScaledDist = Distance / TypeByteSize; |
| 1132 | |
| 1133 | // No dependence if the scaled distance is not multiple of the stride. |
| 1134 | // E.g. |
| 1135 | // for (i = 0; i < 1024 ; i += 4) |
| 1136 | // A[i+2] = A[i] + 1; |
| 1137 | // |
| 1138 | // Two accesses in memory (scaled distance is 2, stride is 4): |
| 1139 | // | A[0] | | | | A[4] | | | | |
| 1140 | // | | | A[2] | | | | A[6] | | |
| 1141 | // |
| 1142 | // E.g. |
| 1143 | // for (i = 0; i < 1024 ; i += 3) |
| 1144 | // A[i+4] = A[i] + 1; |
| 1145 | // |
| 1146 | // Two accesses in memory (scaled distance is 4, stride is 3): |
| 1147 | // | A[0] | | | A[3] | | | A[6] | | | |
| 1148 | // | | | | | A[4] | | | A[7] | | |
| 1149 | return ScaledDist % Stride; |
| 1150 | } |
| 1151 | |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1152 | MemoryDepChecker::Dependence::DepType |
| 1153 | MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, |
| 1154 | const MemAccessInfo &B, unsigned BIdx, |
| 1155 | const ValueToValueMap &Strides) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1156 | assert (AIdx < BIdx && "Must pass arguments in program order"); |
| 1157 | |
| 1158 | Value *APtr = A.getPointer(); |
| 1159 | Value *BPtr = B.getPointer(); |
| 1160 | bool AIsWrite = A.getInt(); |
| 1161 | bool BIsWrite = B.getInt(); |
| 1162 | |
| 1163 | // Two reads are independent. |
| 1164 | if (!AIsWrite && !BIsWrite) |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1165 | return Dependence::NoDep; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1166 | |
| 1167 | // We cannot check pointers in different address spaces. |
| 1168 | if (APtr->getType()->getPointerAddressSpace() != |
| 1169 | BPtr->getType()->getPointerAddressSpace()) |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1170 | return Dependence::Unknown; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1171 | |
Denis Zobnin | 15d1e64 | 2016-05-10 05:55:16 +0000 | [diff] [blame] | 1172 | int StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true); |
| 1173 | int StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1174 | |
Silviu Baranga | adf4b73 | 2016-05-10 12:28:49 +0000 | [diff] [blame] | 1175 | const SCEV *Src = PSE.getSCEV(APtr); |
| 1176 | const SCEV *Sink = PSE.getSCEV(BPtr); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1177 | |
| 1178 | // If the induction step is negative we have to invert source and sink of the |
| 1179 | // dependence. |
| 1180 | if (StrideAPtr < 0) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1181 | std::swap(APtr, BPtr); |
| 1182 | std::swap(Src, Sink); |
| 1183 | std::swap(AIsWrite, BIsWrite); |
| 1184 | std::swap(AIdx, BIdx); |
| 1185 | std::swap(StrideAPtr, StrideBPtr); |
| 1186 | } |
| 1187 | |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 1188 | const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1189 | |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1190 | DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 1191 | << "(Induction step: " << StrideAPtr << ")\n"); |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1192 | DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 1193 | << *InstMap[BIdx] << ": " << *Dist << "\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1194 | |
Adam Nemet | 943befe | 2015-07-09 00:03:22 +0000 | [diff] [blame] | 1195 | // Need accesses with constant stride. We don't want to vectorize |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1196 | // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in |
| 1197 | // the address space. |
| 1198 | if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ |
Adam Nemet | 943befe | 2015-07-09 00:03:22 +0000 | [diff] [blame] | 1199 | DEBUG(dbgs() << "Pointer access with non-constant stride\n"); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1200 | return Dependence::Unknown; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1201 | } |
| 1202 | |
| 1203 | const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); |
| 1204 | if (!C) { |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1205 | DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1206 | ShouldRetryWithRuntimeCheck = true; |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1207 | return Dependence::Unknown; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1208 | } |
| 1209 | |
| 1210 | Type *ATy = APtr->getType()->getPointerElementType(); |
| 1211 | Type *BTy = BPtr->getType()->getPointerElementType(); |
Mehdi Amini | a28d91d | 2015-03-10 02:37:25 +0000 | [diff] [blame] | 1212 | auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); |
| 1213 | unsigned TypeByteSize = DL.getTypeAllocSize(ATy); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1214 | |
| 1215 | // Negative distances are not plausible dependencies. |
Sanjoy Das | 0de2fec | 2015-12-17 20:28:46 +0000 | [diff] [blame] | 1216 | const APInt &Val = C->getAPInt(); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1217 | if (Val.isNegative()) { |
| 1218 | bool IsTrueDataDependence = (AIsWrite && !BIsWrite); |
Matthew Simpson | 37ec5f9 | 2016-05-16 17:00:56 +0000 | [diff] [blame^] | 1219 | if (IsTrueDataDependence && EnableForwardingConflictDetection && |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1220 | (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || |
Adam Nemet | b8486e5 | 2016-03-01 00:50:08 +0000 | [diff] [blame] | 1221 | ATy != BTy)) { |
| 1222 | DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1223 | return Dependence::ForwardButPreventsForwarding; |
Adam Nemet | b8486e5 | 2016-03-01 00:50:08 +0000 | [diff] [blame] | 1224 | } |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1225 | |
Adam Nemet | 724ab22 | 2016-05-05 23:41:28 +0000 | [diff] [blame] | 1226 | DEBUG(dbgs() << "LAA: Dependence is negative\n"); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1227 | return Dependence::Forward; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1228 | } |
| 1229 | |
| 1230 | // Write to the same location with the same size. |
| 1231 | // Could be improved to assert type sizes are the same (i32 == float, etc). |
| 1232 | if (Val == 0) { |
| 1233 | if (ATy == BTy) |
Adam Nemet | d7037c5 | 2015-11-03 20:13:43 +0000 | [diff] [blame] | 1234 | return Dependence::Forward; |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1235 | DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n"); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1236 | return Dependence::Unknown; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1237 | } |
| 1238 | |
| 1239 | assert(Val.isStrictlyPositive() && "Expect a positive value"); |
| 1240 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1241 | if (ATy != BTy) { |
Adam Nemet | 04d4163 | 2015-02-19 19:14:34 +0000 | [diff] [blame] | 1242 | DEBUG(dbgs() << |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1243 | "LAA: ReadWrite-Write positive dependency with different types\n"); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1244 | return Dependence::Unknown; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1245 | } |
| 1246 | |
| 1247 | unsigned Distance = (unsigned) Val.getZExtValue(); |
| 1248 | |
Hao Liu | 751004a | 2015-06-08 04:48:37 +0000 | [diff] [blame] | 1249 | unsigned Stride = std::abs(StrideAPtr); |
| 1250 | if (Stride > 1 && |
Adam Nemet | 0131a56 | 2015-07-08 18:47:38 +0000 | [diff] [blame] | 1251 | areStridedAccessesIndependent(Distance, Stride, TypeByteSize)) { |
| 1252 | DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); |
Hao Liu | 751004a | 2015-06-08 04:48:37 +0000 | [diff] [blame] | 1253 | return Dependence::NoDep; |
Adam Nemet | 0131a56 | 2015-07-08 18:47:38 +0000 | [diff] [blame] | 1254 | } |
Hao Liu | 751004a | 2015-06-08 04:48:37 +0000 | [diff] [blame] | 1255 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1256 | // Bail out early if passed-in parameters make vectorization not feasible. |
Adam Nemet | f219c64 | 2015-02-19 19:14:52 +0000 | [diff] [blame] | 1257 | unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? |
| 1258 | VectorizerParams::VectorizationFactor : 1); |
| 1259 | unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? |
| 1260 | VectorizerParams::VectorizationInterleave : 1); |
Hao Liu | 751004a | 2015-06-08 04:48:37 +0000 | [diff] [blame] | 1261 | // The minimum number of iterations for a vectorized/unrolled version. |
| 1262 | unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1263 | |
Hao Liu | 751004a | 2015-06-08 04:48:37 +0000 | [diff] [blame] | 1264 | // It's not vectorizable if the distance is smaller than the minimum distance |
| 1265 | // needed for a vectroized/unrolled version. Vectorizing one iteration in |
| 1266 | // front needs TypeByteSize * Stride. Vectorizing the last iteration needs |
| 1267 | // TypeByteSize (No need to plus the last gap distance). |
| 1268 | // |
| 1269 | // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. |
| 1270 | // foo(int *A) { |
| 1271 | // int *B = (int *)((char *)A + 14); |
| 1272 | // for (i = 0 ; i < 1024 ; i += 2) |
| 1273 | // B[i] = A[i] + 1; |
| 1274 | // } |
| 1275 | // |
| 1276 | // Two accesses in memory (stride is 2): |
| 1277 | // | A[0] | | A[2] | | A[4] | | A[6] | | |
| 1278 | // | B[0] | | B[2] | | B[4] | |
| 1279 | // |
| 1280 | // Distance needs for vectorizing iterations except the last iteration: |
| 1281 | // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. |
| 1282 | // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. |
| 1283 | // |
| 1284 | // If MinNumIter is 2, it is vectorizable as the minimum distance needed is |
| 1285 | // 12, which is less than distance. |
| 1286 | // |
| 1287 | // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), |
| 1288 | // the minimum distance needed is 28, which is greater than distance. It is |
| 1289 | // not safe to do vectorization. |
| 1290 | unsigned MinDistanceNeeded = |
| 1291 | TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; |
| 1292 | if (MinDistanceNeeded > Distance) { |
| 1293 | DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance |
| 1294 | << '\n'); |
| 1295 | return Dependence::Backward; |
| 1296 | } |
| 1297 | |
| 1298 | // Unsafe if the minimum distance needed is greater than max safe distance. |
| 1299 | if (MinDistanceNeeded > MaxSafeDepDistBytes) { |
| 1300 | DEBUG(dbgs() << "LAA: Failure because it needs at least " |
| 1301 | << MinDistanceNeeded << " size in bytes"); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1302 | return Dependence::Backward; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1303 | } |
| 1304 | |
Adam Nemet | 9cc0c39 | 2015-02-26 17:58:48 +0000 | [diff] [blame] | 1305 | // Positive distance bigger than max vectorization factor. |
Hao Liu | 751004a | 2015-06-08 04:48:37 +0000 | [diff] [blame] | 1306 | // FIXME: Should use max factor instead of max distance in bytes, which could |
| 1307 | // not handle different types. |
| 1308 | // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. |
| 1309 | // void foo (int *A, char *B) { |
| 1310 | // for (unsigned i = 0; i < 1024; i++) { |
| 1311 | // A[i+2] = A[i] + 1; |
| 1312 | // B[i+2] = B[i] + 1; |
| 1313 | // } |
| 1314 | // } |
| 1315 | // |
| 1316 | // This case is currently unsafe according to the max safe distance. If we |
| 1317 | // analyze the two accesses on array B, the max safe dependence distance |
| 1318 | // is 2. Then we analyze the accesses on array A, the minimum distance needed |
| 1319 | // is 8, which is less than 2 and forbidden vectorization, But actually |
| 1320 | // both A and B could be vectorized by 2 iterations. |
| 1321 | MaxSafeDepDistBytes = |
| 1322 | Distance < MaxSafeDepDistBytes ? Distance : MaxSafeDepDistBytes; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1323 | |
| 1324 | bool IsTrueDataDependence = (!AIsWrite && BIsWrite); |
Matthew Simpson | 37ec5f9 | 2016-05-16 17:00:56 +0000 | [diff] [blame^] | 1325 | if (IsTrueDataDependence && EnableForwardingConflictDetection && |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1326 | couldPreventStoreLoadForward(Distance, TypeByteSize)) |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1327 | return Dependence::BackwardVectorizableButPreventsForwarding; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1328 | |
Hao Liu | 751004a | 2015-06-08 04:48:37 +0000 | [diff] [blame] | 1329 | DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() |
| 1330 | << " with max VF = " |
| 1331 | << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n'); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1332 | |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1333 | return Dependence::BackwardVectorizable; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1334 | } |
| 1335 | |
Adam Nemet | dee666b | 2015-03-10 17:40:34 +0000 | [diff] [blame] | 1336 | bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1337 | MemAccessInfoSet &CheckDeps, |
Adam Nemet | 8bc61df | 2015-02-24 00:41:59 +0000 | [diff] [blame] | 1338 | const ValueToValueMap &Strides) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1339 | |
| 1340 | MaxSafeDepDistBytes = -1U; |
| 1341 | while (!CheckDeps.empty()) { |
| 1342 | MemAccessInfo CurAccess = *CheckDeps.begin(); |
| 1343 | |
| 1344 | // Get the relevant memory access set. |
| 1345 | EquivalenceClasses<MemAccessInfo>::iterator I = |
| 1346 | AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); |
| 1347 | |
| 1348 | // Check accesses within this set. |
Richard Trieu | 7a08381 | 2016-02-18 22:09:30 +0000 | [diff] [blame] | 1349 | EquivalenceClasses<MemAccessInfo>::member_iterator AI = |
| 1350 | AccessSets.member_begin(I); |
| 1351 | EquivalenceClasses<MemAccessInfo>::member_iterator AE = |
| 1352 | AccessSets.member_end(); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1353 | |
| 1354 | // Check every access pair. |
| 1355 | while (AI != AE) { |
| 1356 | CheckDeps.erase(*AI); |
| 1357 | EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); |
| 1358 | while (OI != AE) { |
| 1359 | // Check every accessing instruction pair in program order. |
| 1360 | for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), |
| 1361 | I1E = Accesses[*AI].end(); I1 != I1E; ++I1) |
| 1362 | for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), |
| 1363 | I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1364 | auto A = std::make_pair(&*AI, *I1); |
| 1365 | auto B = std::make_pair(&*OI, *I2); |
| 1366 | |
| 1367 | assert(*I1 != *I2); |
| 1368 | if (*I1 > *I2) |
| 1369 | std::swap(A, B); |
| 1370 | |
| 1371 | Dependence::DepType Type = |
| 1372 | isDependent(*A.first, A.second, *B.first, B.second, Strides); |
| 1373 | SafeForVectorization &= Dependence::isSafeForVectorization(Type); |
| 1374 | |
Adam Nemet | a2df750 | 2015-11-03 21:39:52 +0000 | [diff] [blame] | 1375 | // Gather dependences unless we accumulated MaxDependences |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1376 | // dependences. In that case return as soon as we find the first |
| 1377 | // unsafe dependence. This puts a limit on this quadratic |
| 1378 | // algorithm. |
Adam Nemet | a2df750 | 2015-11-03 21:39:52 +0000 | [diff] [blame] | 1379 | if (RecordDependences) { |
| 1380 | if (Type != Dependence::NoDep) |
| 1381 | Dependences.push_back(Dependence(A.second, B.second, Type)); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1382 | |
Adam Nemet | a2df750 | 2015-11-03 21:39:52 +0000 | [diff] [blame] | 1383 | if (Dependences.size() >= MaxDependences) { |
| 1384 | RecordDependences = false; |
| 1385 | Dependences.clear(); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1386 | DEBUG(dbgs() << "Too many dependences, stopped recording\n"); |
| 1387 | } |
| 1388 | } |
Adam Nemet | a2df750 | 2015-11-03 21:39:52 +0000 | [diff] [blame] | 1389 | if (!RecordDependences && !SafeForVectorization) |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1390 | return false; |
| 1391 | } |
| 1392 | ++OI; |
| 1393 | } |
| 1394 | AI++; |
| 1395 | } |
| 1396 | } |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1397 | |
Adam Nemet | a2df750 | 2015-11-03 21:39:52 +0000 | [diff] [blame] | 1398 | DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1399 | return SafeForVectorization; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1400 | } |
| 1401 | |
Adam Nemet | ec1e2bb | 2015-03-10 18:54:26 +0000 | [diff] [blame] | 1402 | SmallVector<Instruction *, 4> |
| 1403 | MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { |
| 1404 | MemAccessInfo Access(Ptr, isWrite); |
| 1405 | auto &IndexVector = Accesses.find(Access)->second; |
| 1406 | |
| 1407 | SmallVector<Instruction *, 4> Insts; |
| 1408 | std::transform(IndexVector.begin(), IndexVector.end(), |
| 1409 | std::back_inserter(Insts), |
| 1410 | [&](unsigned Idx) { return this->InstMap[Idx]; }); |
| 1411 | return Insts; |
| 1412 | } |
| 1413 | |
Adam Nemet | 58913d6 | 2015-03-10 17:40:43 +0000 | [diff] [blame] | 1414 | const char *MemoryDepChecker::Dependence::DepName[] = { |
| 1415 | "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", |
| 1416 | "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; |
| 1417 | |
| 1418 | void MemoryDepChecker::Dependence::print( |
| 1419 | raw_ostream &OS, unsigned Depth, |
| 1420 | const SmallVectorImpl<Instruction *> &Instrs) const { |
| 1421 | OS.indent(Depth) << DepName[Type] << ":\n"; |
| 1422 | OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; |
| 1423 | OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; |
| 1424 | } |
| 1425 | |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1426 | bool LoopAccessInfo::canAnalyzeLoop() { |
Adam Nemet | 8dcb3b6 | 2015-04-17 22:43:10 +0000 | [diff] [blame] | 1427 | // We need to have a loop header. |
Adam Nemet | d8968f0 | 2016-01-18 21:16:33 +0000 | [diff] [blame] | 1428 | DEBUG(dbgs() << "LAA: Found a loop in " |
| 1429 | << TheLoop->getHeader()->getParent()->getName() << ": " |
| 1430 | << TheLoop->getHeader()->getName() << '\n'); |
Adam Nemet | 8dcb3b6 | 2015-04-17 22:43:10 +0000 | [diff] [blame] | 1431 | |
Adam Nemet | d8968f0 | 2016-01-18 21:16:33 +0000 | [diff] [blame] | 1432 | // We can only analyze innermost loops. |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1433 | if (!TheLoop->empty()) { |
Adam Nemet | 8dcb3b6 | 2015-04-17 22:43:10 +0000 | [diff] [blame] | 1434 | DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); |
Adam Nemet | 2bd6e98 | 2015-02-19 19:15:15 +0000 | [diff] [blame] | 1435 | emitAnalysis(LoopAccessReport() << "loop is not the innermost loop"); |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1436 | return false; |
| 1437 | } |
| 1438 | |
| 1439 | // We must have a single backedge. |
| 1440 | if (TheLoop->getNumBackEdges() != 1) { |
Adam Nemet | 8dcb3b6 | 2015-04-17 22:43:10 +0000 | [diff] [blame] | 1441 | DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1442 | emitAnalysis( |
Adam Nemet | 2bd6e98 | 2015-02-19 19:15:15 +0000 | [diff] [blame] | 1443 | LoopAccessReport() << |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1444 | "loop control flow is not understood by analyzer"); |
| 1445 | return false; |
| 1446 | } |
| 1447 | |
| 1448 | // We must have a single exiting block. |
| 1449 | if (!TheLoop->getExitingBlock()) { |
Adam Nemet | 8dcb3b6 | 2015-04-17 22:43:10 +0000 | [diff] [blame] | 1450 | DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1451 | emitAnalysis( |
Adam Nemet | 2bd6e98 | 2015-02-19 19:15:15 +0000 | [diff] [blame] | 1452 | LoopAccessReport() << |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1453 | "loop control flow is not understood by analyzer"); |
| 1454 | return false; |
| 1455 | } |
| 1456 | |
| 1457 | // We only handle bottom-tested loops, i.e. loop in which the condition is |
| 1458 | // checked at the end of each iteration. With that we can assume that all |
| 1459 | // instructions in the loop are executed the same number of times. |
| 1460 | if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { |
Adam Nemet | 8dcb3b6 | 2015-04-17 22:43:10 +0000 | [diff] [blame] | 1461 | DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1462 | emitAnalysis( |
Adam Nemet | 2bd6e98 | 2015-02-19 19:15:15 +0000 | [diff] [blame] | 1463 | LoopAccessReport() << |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1464 | "loop control flow is not understood by analyzer"); |
| 1465 | return false; |
| 1466 | } |
| 1467 | |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1468 | // ScalarEvolution needs to be able to find the exit count. |
Silviu Baranga | 6f444df | 2016-04-08 14:29:09 +0000 | [diff] [blame] | 1469 | const SCEV *ExitCount = PSE.getBackedgeTakenCount(); |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 1470 | if (ExitCount == PSE.getSE()->getCouldNotCompute()) { |
| 1471 | emitAnalysis(LoopAccessReport() |
| 1472 | << "could not determine number of loop iterations"); |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1473 | DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); |
| 1474 | return false; |
| 1475 | } |
| 1476 | |
| 1477 | return true; |
| 1478 | } |
| 1479 | |
Adam Nemet | 8bc61df | 2015-02-24 00:41:59 +0000 | [diff] [blame] | 1480 | void LoopAccessInfo::analyzeLoop(const ValueToValueMap &Strides) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1481 | |
| 1482 | typedef SmallVector<Value*, 16> ValueVector; |
| 1483 | typedef SmallPtrSet<Value*, 16> ValueSet; |
| 1484 | |
| 1485 | // Holds the Load and Store *instructions*. |
| 1486 | ValueVector Loads; |
| 1487 | ValueVector Stores; |
| 1488 | |
| 1489 | // Holds all the different accesses in the loop. |
| 1490 | unsigned NumReads = 0; |
| 1491 | unsigned NumReadWrites = 0; |
| 1492 | |
Adam Nemet | 7cdebac | 2015-07-14 22:32:44 +0000 | [diff] [blame] | 1493 | PtrRtChecking.Pointers.clear(); |
| 1494 | PtrRtChecking.Need = false; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1495 | |
| 1496 | const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1497 | |
| 1498 | // For each block. |
| 1499 | for (Loop::block_iterator bb = TheLoop->block_begin(), |
| 1500 | be = TheLoop->block_end(); bb != be; ++bb) { |
| 1501 | |
| 1502 | // Scan the BB and collect legal loads and stores. |
| 1503 | for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; |
| 1504 | ++it) { |
| 1505 | |
| 1506 | // If this is a load, save it. If this instruction can read from memory |
| 1507 | // but is not a load, then we quit. Notice that we don't handle function |
| 1508 | // calls that read or write. |
| 1509 | if (it->mayReadFromMemory()) { |
| 1510 | // Many math library functions read the rounding mode. We will only |
| 1511 | // vectorize a loop if it contains known function calls that don't set |
| 1512 | // the flag. Therefore, it is safe to ignore this read from memory. |
| 1513 | CallInst *Call = dyn_cast<CallInst>(it); |
David Majnemer | b4b2723 | 2016-04-19 19:10:21 +0000 | [diff] [blame] | 1514 | if (Call && getVectorIntrinsicIDForCall(Call, TLI)) |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1515 | continue; |
| 1516 | |
Michael Zolotukhin | 9b3cf60 | 2015-03-17 19:46:50 +0000 | [diff] [blame] | 1517 | // If the function has an explicit vectorized counterpart, we can safely |
| 1518 | // assume that it can be vectorized. |
| 1519 | if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && |
| 1520 | TLI->isFunctionVectorizable(Call->getCalledFunction()->getName())) |
| 1521 | continue; |
| 1522 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1523 | LoadInst *Ld = dyn_cast<LoadInst>(it); |
| 1524 | if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { |
Adam Nemet | 2bd6e98 | 2015-02-19 19:15:15 +0000 | [diff] [blame] | 1525 | emitAnalysis(LoopAccessReport(Ld) |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1526 | << "read with atomic ordering or volatile read"); |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1527 | DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); |
Adam Nemet | 436018c | 2015-02-19 19:15:00 +0000 | [diff] [blame] | 1528 | CanVecMem = false; |
| 1529 | return; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1530 | } |
| 1531 | NumLoads++; |
| 1532 | Loads.push_back(Ld); |
| 1533 | DepChecker.addAccess(Ld); |
| 1534 | continue; |
| 1535 | } |
| 1536 | |
| 1537 | // Save 'store' instructions. Abort if other instructions write to memory. |
| 1538 | if (it->mayWriteToMemory()) { |
| 1539 | StoreInst *St = dyn_cast<StoreInst>(it); |
| 1540 | if (!St) { |
Duncan P. N. Exon Smith | 5a82c91 | 2015-10-10 00:53:03 +0000 | [diff] [blame] | 1541 | emitAnalysis(LoopAccessReport(&*it) << |
Adam Nemet | 04d4163 | 2015-02-19 19:14:34 +0000 | [diff] [blame] | 1542 | "instruction cannot be vectorized"); |
Adam Nemet | 436018c | 2015-02-19 19:15:00 +0000 | [diff] [blame] | 1543 | CanVecMem = false; |
| 1544 | return; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1545 | } |
| 1546 | if (!St->isSimple() && !IsAnnotatedParallel) { |
Adam Nemet | 2bd6e98 | 2015-02-19 19:15:15 +0000 | [diff] [blame] | 1547 | emitAnalysis(LoopAccessReport(St) |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1548 | << "write with atomic ordering or volatile write"); |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1549 | DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); |
Adam Nemet | 436018c | 2015-02-19 19:15:00 +0000 | [diff] [blame] | 1550 | CanVecMem = false; |
| 1551 | return; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1552 | } |
| 1553 | NumStores++; |
| 1554 | Stores.push_back(St); |
| 1555 | DepChecker.addAccess(St); |
| 1556 | } |
| 1557 | } // Next instr. |
| 1558 | } // Next block. |
| 1559 | |
| 1560 | // Now we have two lists that hold the loads and the stores. |
| 1561 | // Next, we find the pointers that they use. |
| 1562 | |
| 1563 | // Check if we see any stores. If there are no stores, then we don't |
| 1564 | // care if the pointers are *restrict*. |
| 1565 | if (!Stores.size()) { |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1566 | DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); |
Adam Nemet | 436018c | 2015-02-19 19:15:00 +0000 | [diff] [blame] | 1567 | CanVecMem = true; |
| 1568 | return; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1569 | } |
| 1570 | |
Adam Nemet | dee666b | 2015-03-10 17:40:34 +0000 | [diff] [blame] | 1571 | MemoryDepChecker::DepCandidates DependentAccesses; |
Mehdi Amini | a28d91d | 2015-03-10 02:37:25 +0000 | [diff] [blame] | 1572 | AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(), |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 1573 | AA, LI, DependentAccesses, PSE); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1574 | |
| 1575 | // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects |
| 1576 | // multiple times on the same object. If the ptr is accessed twice, once |
| 1577 | // for read and once for write, it will only appear once (on the write |
| 1578 | // list). This is okay, since we are going to check for conflicts between |
| 1579 | // writes and between reads and writes, but not between reads and reads. |
| 1580 | ValueSet Seen; |
| 1581 | |
| 1582 | ValueVector::iterator I, IE; |
| 1583 | for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) { |
| 1584 | StoreInst *ST = cast<StoreInst>(*I); |
| 1585 | Value* Ptr = ST->getPointerOperand(); |
Adam Nemet | ce48250 | 2015-04-08 17:48:40 +0000 | [diff] [blame] | 1586 | // Check for store to loop invariant address. |
| 1587 | StoreToLoopInvariantAddress |= isUniform(Ptr); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1588 | // If we did *not* see this pointer before, insert it to the read-write |
| 1589 | // list. At this phase it is only a 'write' list. |
| 1590 | if (Seen.insert(Ptr).second) { |
| 1591 | ++NumReadWrites; |
| 1592 | |
Chandler Carruth | ac80dc7 | 2015-06-17 07:18:54 +0000 | [diff] [blame] | 1593 | MemoryLocation Loc = MemoryLocation::get(ST); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1594 | // The TBAA metadata could have a control dependency on the predication |
| 1595 | // condition, so we cannot rely on it when determining whether or not we |
| 1596 | // need runtime pointer checks. |
Adam Nemet | 01abb2c | 2015-02-18 03:43:19 +0000 | [diff] [blame] | 1597 | if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1598 | Loc.AATags.TBAA = nullptr; |
| 1599 | |
| 1600 | Accesses.addStore(Loc); |
| 1601 | } |
| 1602 | } |
| 1603 | |
| 1604 | if (IsAnnotatedParallel) { |
Adam Nemet | 04d4163 | 2015-02-19 19:14:34 +0000 | [diff] [blame] | 1605 | DEBUG(dbgs() |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1606 | << "LAA: A loop annotated parallel, ignore memory dependency " |
Adam Nemet | 04d4163 | 2015-02-19 19:14:34 +0000 | [diff] [blame] | 1607 | << "checks.\n"); |
Adam Nemet | 436018c | 2015-02-19 19:15:00 +0000 | [diff] [blame] | 1608 | CanVecMem = true; |
| 1609 | return; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1610 | } |
| 1611 | |
| 1612 | for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) { |
| 1613 | LoadInst *LD = cast<LoadInst>(*I); |
| 1614 | Value* Ptr = LD->getPointerOperand(); |
| 1615 | // If we did *not* see this pointer before, insert it to the |
| 1616 | // read list. If we *did* see it before, then it is already in |
| 1617 | // the read-write list. This allows us to vectorize expressions |
| 1618 | // such as A[i] += x; Because the address of A[i] is a read-write |
| 1619 | // pointer. This only works if the index of A[i] is consecutive. |
| 1620 | // If the address of i is unknown (for example A[B[i]]) then we may |
| 1621 | // read a few words, modify, and write a few words, and some of the |
| 1622 | // words may be written to the same address. |
| 1623 | bool IsReadOnlyPtr = false; |
Denis Zobnin | 15d1e64 | 2016-05-10 05:55:16 +0000 | [diff] [blame] | 1624 | if (Seen.insert(Ptr).second || !getPtrStride(PSE, Ptr, TheLoop, Strides)) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1625 | ++NumReads; |
| 1626 | IsReadOnlyPtr = true; |
| 1627 | } |
| 1628 | |
Chandler Carruth | ac80dc7 | 2015-06-17 07:18:54 +0000 | [diff] [blame] | 1629 | MemoryLocation Loc = MemoryLocation::get(LD); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1630 | // The TBAA metadata could have a control dependency on the predication |
| 1631 | // condition, so we cannot rely on it when determining whether or not we |
| 1632 | // need runtime pointer checks. |
Adam Nemet | 01abb2c | 2015-02-18 03:43:19 +0000 | [diff] [blame] | 1633 | if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1634 | Loc.AATags.TBAA = nullptr; |
| 1635 | |
| 1636 | Accesses.addLoad(Loc, IsReadOnlyPtr); |
| 1637 | } |
| 1638 | |
| 1639 | // If we write (or read-write) to a single destination and there are no |
| 1640 | // other reads in this loop then is it safe to vectorize. |
| 1641 | if (NumReadWrites == 1 && NumReads == 0) { |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1642 | DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); |
Adam Nemet | 436018c | 2015-02-19 19:15:00 +0000 | [diff] [blame] | 1643 | CanVecMem = true; |
| 1644 | return; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1645 | } |
| 1646 | |
| 1647 | // Build dependence sets and check whether we need a runtime pointer bounds |
| 1648 | // check. |
| 1649 | Accesses.buildDependenceSets(); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1650 | |
| 1651 | // Find pointers with computable bounds. We are going to use this information |
| 1652 | // to place a runtime bound check. |
Adam Nemet | ee61474 | 2015-07-09 22:17:38 +0000 | [diff] [blame] | 1653 | bool CanDoRTIfNeeded = |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 1654 | Accesses.canCheckPtrAtRT(PtrRtChecking, PSE.getSE(), TheLoop, Strides); |
Adam Nemet | ee61474 | 2015-07-09 22:17:38 +0000 | [diff] [blame] | 1655 | if (!CanDoRTIfNeeded) { |
Adam Nemet | 2bd6e98 | 2015-02-19 19:15:15 +0000 | [diff] [blame] | 1656 | emitAnalysis(LoopAccessReport() << "cannot identify array bounds"); |
Adam Nemet | ee61474 | 2015-07-09 22:17:38 +0000 | [diff] [blame] | 1657 | DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " |
| 1658 | << "the array bounds.\n"); |
Adam Nemet | 436018c | 2015-02-19 19:15:00 +0000 | [diff] [blame] | 1659 | CanVecMem = false; |
| 1660 | return; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1661 | } |
| 1662 | |
Adam Nemet | ee61474 | 2015-07-09 22:17:38 +0000 | [diff] [blame] | 1663 | DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1664 | |
Adam Nemet | 436018c | 2015-02-19 19:15:00 +0000 | [diff] [blame] | 1665 | CanVecMem = true; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1666 | if (Accesses.isDependencyCheckNeeded()) { |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1667 | DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1668 | CanVecMem = DepChecker.areDepsSafe( |
| 1669 | DependentAccesses, Accesses.getDependenciesToCheck(), Strides); |
| 1670 | MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes(); |
| 1671 | |
| 1672 | if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) { |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1673 | DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1674 | |
| 1675 | // Clear the dependency checks. We assume they are not needed. |
Adam Nemet | df3dc5b | 2015-05-18 15:37:03 +0000 | [diff] [blame] | 1676 | Accesses.resetDepChecks(DepChecker); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1677 | |
Adam Nemet | 7cdebac | 2015-07-14 22:32:44 +0000 | [diff] [blame] | 1678 | PtrRtChecking.reset(); |
| 1679 | PtrRtChecking.Need = true; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1680 | |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 1681 | auto *SE = PSE.getSE(); |
Adam Nemet | ee61474 | 2015-07-09 22:17:38 +0000 | [diff] [blame] | 1682 | CanDoRTIfNeeded = |
Adam Nemet | 7cdebac | 2015-07-14 22:32:44 +0000 | [diff] [blame] | 1683 | Accesses.canCheckPtrAtRT(PtrRtChecking, SE, TheLoop, Strides, true); |
Silviu Baranga | 98a1371 | 2015-06-08 10:27:06 +0000 | [diff] [blame] | 1684 | |
Adam Nemet | 949e91a | 2015-03-10 19:12:41 +0000 | [diff] [blame] | 1685 | // Check that we found the bounds for the pointer. |
Adam Nemet | ee61474 | 2015-07-09 22:17:38 +0000 | [diff] [blame] | 1686 | if (!CanDoRTIfNeeded) { |
Adam Nemet | b6dc76f | 2015-03-10 18:54:19 +0000 | [diff] [blame] | 1687 | emitAnalysis(LoopAccessReport() |
| 1688 | << "cannot check memory dependencies at runtime"); |
| 1689 | DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); |
Adam Nemet | b6dc76f | 2015-03-10 18:54:19 +0000 | [diff] [blame] | 1690 | CanVecMem = false; |
| 1691 | return; |
| 1692 | } |
| 1693 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1694 | CanVecMem = true; |
| 1695 | } |
| 1696 | } |
| 1697 | |
Adam Nemet | 4bb90a7 | 2015-03-10 21:47:39 +0000 | [diff] [blame] | 1698 | if (CanVecMem) |
| 1699 | DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop. We" |
Adam Nemet | 7cdebac | 2015-07-14 22:32:44 +0000 | [diff] [blame] | 1700 | << (PtrRtChecking.Need ? "" : " don't") |
Adam Nemet | 0f67c6c | 2015-07-09 22:17:41 +0000 | [diff] [blame] | 1701 | << " need runtime memory checks.\n"); |
Adam Nemet | 4bb90a7 | 2015-03-10 21:47:39 +0000 | [diff] [blame] | 1702 | else { |
Adam Nemet | 0a77dfa | 2016-05-09 23:03:44 +0000 | [diff] [blame] | 1703 | emitAnalysis( |
| 1704 | LoopAccessReport() |
| 1705 | << "unsafe dependent memory operations in loop. Use " |
| 1706 | "#pragma loop distribute(enable) to allow loop distribution " |
| 1707 | "to attempt to isolate the offending operations into a separate " |
| 1708 | "loop"); |
Adam Nemet | 4bb90a7 | 2015-03-10 21:47:39 +0000 | [diff] [blame] | 1709 | DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); |
| 1710 | } |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1711 | } |
| 1712 | |
Adam Nemet | 01abb2c | 2015-02-18 03:43:19 +0000 | [diff] [blame] | 1713 | bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, |
| 1714 | DominatorTree *DT) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1715 | assert(TheLoop->contains(BB) && "Unknown block used"); |
| 1716 | |
| 1717 | // Blocks that do not dominate the latch need predication. |
| 1718 | BasicBlock* Latch = TheLoop->getLoopLatch(); |
| 1719 | return !DT->dominates(BB, Latch); |
| 1720 | } |
| 1721 | |
Adam Nemet | 2bd6e98 | 2015-02-19 19:15:15 +0000 | [diff] [blame] | 1722 | void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) { |
Adam Nemet | c922853 | 2015-02-19 19:14:56 +0000 | [diff] [blame] | 1723 | assert(!Report && "Multiple reports generated"); |
| 1724 | Report = Message; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1725 | } |
| 1726 | |
Adam Nemet | 57ac766 | 2015-02-19 19:15:21 +0000 | [diff] [blame] | 1727 | bool LoopAccessInfo::isUniform(Value *V) const { |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 1728 | return (PSE.getSE()->isLoopInvariant(PSE.getSE()->getSCEV(V), TheLoop)); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1729 | } |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 1730 | |
| 1731 | // FIXME: this function is currently a duplicate of the one in |
| 1732 | // LoopVectorize.cpp. |
| 1733 | static Instruction *getFirstInst(Instruction *FirstInst, Value *V, |
| 1734 | Instruction *Loc) { |
| 1735 | if (FirstInst) |
| 1736 | return FirstInst; |
| 1737 | if (Instruction *I = dyn_cast<Instruction>(V)) |
| 1738 | return I->getParent() == Loc->getParent() ? I : nullptr; |
| 1739 | return nullptr; |
| 1740 | } |
| 1741 | |
Benjamin Kramer | 039b104 | 2015-10-28 13:54:36 +0000 | [diff] [blame] | 1742 | namespace { |
Adam Nemet | 4e533ef | 2015-08-21 23:19:57 +0000 | [diff] [blame] | 1743 | /// \brief IR Values for the lower and upper bounds of a pointer evolution. We |
| 1744 | /// need to use value-handles because SCEV expansion can invalidate previously |
| 1745 | /// expanded values. Thus expansion of a pointer can invalidate the bounds for |
| 1746 | /// a previous one. |
Adam Nemet | 1da7df3 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 1747 | struct PointerBounds { |
Adam Nemet | 4e533ef | 2015-08-21 23:19:57 +0000 | [diff] [blame] | 1748 | TrackingVH<Value> Start; |
| 1749 | TrackingVH<Value> End; |
Adam Nemet | 1da7df3 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 1750 | }; |
Benjamin Kramer | 039b104 | 2015-10-28 13:54:36 +0000 | [diff] [blame] | 1751 | } // end anonymous namespace |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 1752 | |
Adam Nemet | 1da7df3 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 1753 | /// \brief Expand code for the lower and upper bound of the pointer group \p CG |
| 1754 | /// in \p TheLoop. \return the values for the bounds. |
| 1755 | static PointerBounds |
| 1756 | expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop, |
| 1757 | Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE, |
| 1758 | const RuntimePointerChecking &PtrRtChecking) { |
| 1759 | Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue; |
| 1760 | const SCEV *Sc = SE->getSCEV(Ptr); |
| 1761 | |
| 1762 | if (SE->isLoopInvariant(Sc, TheLoop)) { |
| 1763 | DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr |
| 1764 | << "\n"); |
| 1765 | return {Ptr, Ptr}; |
| 1766 | } else { |
| 1767 | unsigned AS = Ptr->getType()->getPointerAddressSpace(); |
| 1768 | LLVMContext &Ctx = Loc->getContext(); |
| 1769 | |
| 1770 | // Use this type for pointer arithmetic. |
| 1771 | Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); |
| 1772 | Value *Start = nullptr, *End = nullptr; |
| 1773 | |
| 1774 | DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); |
| 1775 | Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc); |
| 1776 | End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc); |
| 1777 | DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n"); |
| 1778 | return {Start, End}; |
| 1779 | } |
| 1780 | } |
| 1781 | |
| 1782 | /// \brief Turns a collection of checks into a collection of expanded upper and |
| 1783 | /// lower bounds for both pointers in the check. |
| 1784 | static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds( |
| 1785 | const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks, |
| 1786 | Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp, |
| 1787 | const RuntimePointerChecking &PtrRtChecking) { |
| 1788 | SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; |
| 1789 | |
| 1790 | // Here we're relying on the SCEV Expander's cache to only emit code for the |
| 1791 | // same bounds once. |
| 1792 | std::transform( |
| 1793 | PointerChecks.begin(), PointerChecks.end(), |
| 1794 | std::back_inserter(ChecksWithBounds), |
| 1795 | [&](const RuntimePointerChecking::PointerCheck &Check) { |
NAKAMURA Takumi | 94abbbd | 2015-07-27 01:35:30 +0000 | [diff] [blame] | 1796 | PointerBounds |
| 1797 | First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking), |
| 1798 | Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking); |
| 1799 | return std::make_pair(First, Second); |
Adam Nemet | 1da7df3 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 1800 | }); |
| 1801 | |
| 1802 | return ChecksWithBounds; |
| 1803 | } |
| 1804 | |
Adam Nemet | 5b0a479 | 2015-08-11 00:09:37 +0000 | [diff] [blame] | 1805 | std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks( |
Adam Nemet | 1da7df3 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 1806 | Instruction *Loc, |
| 1807 | const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks) |
| 1808 | const { |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 1809 | auto *SE = PSE.getSE(); |
Adam Nemet | 1da7df3 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 1810 | SCEVExpander Exp(*SE, DL, "induction"); |
| 1811 | auto ExpandedChecks = |
| 1812 | expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, PtrRtChecking); |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 1813 | |
| 1814 | LLVMContext &Ctx = Loc->getContext(); |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 1815 | Instruction *FirstInst = nullptr; |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 1816 | IRBuilder<> ChkBuilder(Loc); |
| 1817 | // Our instructions might fold to a constant. |
| 1818 | Value *MemoryRuntimeCheck = nullptr; |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 1819 | |
Adam Nemet | 1da7df3 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 1820 | for (const auto &Check : ExpandedChecks) { |
| 1821 | const PointerBounds &A = Check.first, &B = Check.second; |
Adam Nemet | cdb791c | 2015-08-19 17:24:36 +0000 | [diff] [blame] | 1822 | // Check if two pointers (A and B) conflict where conflict is computed as: |
| 1823 | // start(A) <= end(B) && start(B) <= end(A) |
Adam Nemet | 1da7df3 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 1824 | unsigned AS0 = A.Start->getType()->getPointerAddressSpace(); |
| 1825 | unsigned AS1 = B.Start->getType()->getPointerAddressSpace(); |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 1826 | |
Adam Nemet | 1da7df3 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 1827 | assert((AS0 == B.End->getType()->getPointerAddressSpace()) && |
| 1828 | (AS1 == A.End->getType()->getPointerAddressSpace()) && |
| 1829 | "Trying to bounds check pointers with different address spaces"); |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 1830 | |
Adam Nemet | 1da7df3 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 1831 | Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); |
| 1832 | Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 1833 | |
Adam Nemet | 1da7df3 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 1834 | Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc"); |
| 1835 | Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc"); |
| 1836 | Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc"); |
| 1837 | Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc"); |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 1838 | |
Adam Nemet | 1da7df3 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 1839 | Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0"); |
| 1840 | FirstInst = getFirstInst(FirstInst, Cmp0, Loc); |
| 1841 | Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1"); |
| 1842 | FirstInst = getFirstInst(FirstInst, Cmp1, Loc); |
| 1843 | Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); |
| 1844 | FirstInst = getFirstInst(FirstInst, IsConflict, Loc); |
| 1845 | if (MemoryRuntimeCheck) { |
| 1846 | IsConflict = |
| 1847 | ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 1848 | FirstInst = getFirstInst(FirstInst, IsConflict, Loc); |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 1849 | } |
Adam Nemet | 1da7df3 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 1850 | MemoryRuntimeCheck = IsConflict; |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 1851 | } |
| 1852 | |
Adam Nemet | 90fec84 | 2015-04-02 17:51:57 +0000 | [diff] [blame] | 1853 | if (!MemoryRuntimeCheck) |
| 1854 | return std::make_pair(nullptr, nullptr); |
| 1855 | |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 1856 | // We have to do this trickery because the IRBuilder might fold the check to a |
| 1857 | // constant expression in which case there is no Instruction anchored in a |
| 1858 | // the block. |
| 1859 | Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, |
| 1860 | ConstantInt::getTrue(Ctx)); |
| 1861 | ChkBuilder.Insert(Check, "memcheck.conflict"); |
| 1862 | FirstInst = getFirstInst(FirstInst, Check, Loc); |
| 1863 | return std::make_pair(FirstInst, Check); |
| 1864 | } |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 1865 | |
Adam Nemet | 5b0a479 | 2015-08-11 00:09:37 +0000 | [diff] [blame] | 1866 | std::pair<Instruction *, Instruction *> |
| 1867 | LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const { |
Adam Nemet | 1da7df3 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 1868 | if (!PtrRtChecking.Need) |
| 1869 | return std::make_pair(nullptr, nullptr); |
| 1870 | |
Adam Nemet | 5b0a479 | 2015-08-11 00:09:37 +0000 | [diff] [blame] | 1871 | return addRuntimeChecks(Loc, PtrRtChecking.getChecks()); |
Adam Nemet | 1da7df3 | 2015-07-26 05:32:14 +0000 | [diff] [blame] | 1872 | } |
| 1873 | |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 1874 | LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, |
Mehdi Amini | a28d91d | 2015-03-10 02:37:25 +0000 | [diff] [blame] | 1875 | const DataLayout &DL, |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 1876 | const TargetLibraryInfo *TLI, AliasAnalysis *AA, |
Adam Nemet | e2b885c | 2015-04-23 20:09:20 +0000 | [diff] [blame] | 1877 | DominatorTree *DT, LoopInfo *LI, |
Adam Nemet | 8bc61df | 2015-02-24 00:41:59 +0000 | [diff] [blame] | 1878 | const ValueToValueMap &Strides) |
Silviu Baranga | ea63a7f | 2016-02-08 17:02:45 +0000 | [diff] [blame] | 1879 | : PSE(*SE, *L), PtrRtChecking(SE), DepChecker(PSE, L), TheLoop(L), DL(DL), |
Adam Nemet | 7cdebac | 2015-07-14 22:32:44 +0000 | [diff] [blame] | 1880 | TLI(TLI), AA(AA), DT(DT), LI(LI), NumLoads(0), NumStores(0), |
Adam Nemet | ce48250 | 2015-04-08 17:48:40 +0000 | [diff] [blame] | 1881 | MaxSafeDepDistBytes(-1U), CanVecMem(false), |
| 1882 | StoreToLoopInvariantAddress(false) { |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1883 | if (canAnalyzeLoop()) |
| 1884 | analyzeLoop(Strides); |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 1885 | } |
| 1886 | |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 1887 | void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { |
| 1888 | if (CanVecMem) { |
Adam Nemet | 4ad38b6 | 2016-05-13 22:49:09 +0000 | [diff] [blame] | 1889 | OS.indent(Depth) << "Memory dependences are safe"; |
Adam Nemet | c62e554 | 2016-05-13 22:49:13 +0000 | [diff] [blame] | 1890 | if (MaxSafeDepDistBytes != -1U) |
| 1891 | OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes |
| 1892 | << " bytes"; |
Adam Nemet | 7cdebac | 2015-07-14 22:32:44 +0000 | [diff] [blame] | 1893 | if (PtrRtChecking.Need) |
Adam Nemet | 4ad38b6 | 2016-05-13 22:49:09 +0000 | [diff] [blame] | 1894 | OS << " with run-time checks"; |
| 1895 | OS << "\n"; |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 1896 | } |
| 1897 | |
| 1898 | if (Report) |
| 1899 | OS.indent(Depth) << "Report: " << Report->str() << "\n"; |
| 1900 | |
Adam Nemet | a2df750 | 2015-11-03 21:39:52 +0000 | [diff] [blame] | 1901 | if (auto *Dependences = DepChecker.getDependences()) { |
| 1902 | OS.indent(Depth) << "Dependences:\n"; |
| 1903 | for (auto &Dep : *Dependences) { |
Adam Nemet | 58913d6 | 2015-03-10 17:40:43 +0000 | [diff] [blame] | 1904 | Dep.print(OS, Depth + 2, DepChecker.getMemoryInstructions()); |
| 1905 | OS << "\n"; |
| 1906 | } |
| 1907 | } else |
Adam Nemet | a2df750 | 2015-11-03 21:39:52 +0000 | [diff] [blame] | 1908 | OS.indent(Depth) << "Too many dependences, not recorded\n"; |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 1909 | |
| 1910 | // List the pair of accesses need run-time checks to prove independence. |
Adam Nemet | 7cdebac | 2015-07-14 22:32:44 +0000 | [diff] [blame] | 1911 | PtrRtChecking.print(OS, Depth); |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 1912 | OS << "\n"; |
Adam Nemet | c338432 | 2015-05-18 15:36:57 +0000 | [diff] [blame] | 1913 | |
| 1914 | OS.indent(Depth) << "Store to invariant address was " |
| 1915 | << (StoreToLoopInvariantAddress ? "" : "not ") |
| 1916 | << "found in loop.\n"; |
Silviu Baranga | e3c0534 | 2015-11-02 14:41:02 +0000 | [diff] [blame] | 1917 | |
| 1918 | OS.indent(Depth) << "SCEV assumptions:\n"; |
Silviu Baranga | 9cd9a7e | 2015-12-09 16:06:28 +0000 | [diff] [blame] | 1919 | PSE.getUnionPredicate().print(OS, Depth); |
Silviu Baranga | b77365b | 2016-04-14 16:08:45 +0000 | [diff] [blame] | 1920 | |
| 1921 | OS << "\n"; |
| 1922 | |
| 1923 | OS.indent(Depth) << "Expressions re-written:\n"; |
| 1924 | PSE.print(OS, Depth); |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 1925 | } |
| 1926 | |
Adam Nemet | 8bc61df | 2015-02-24 00:41:59 +0000 | [diff] [blame] | 1927 | const LoopAccessInfo & |
| 1928 | LoopAccessAnalysis::getInfo(Loop *L, const ValueToValueMap &Strides) { |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 1929 | auto &LAI = LoopAccessInfoMap[L]; |
| 1930 | |
| 1931 | #ifndef NDEBUG |
| 1932 | assert((!LAI || LAI->NumSymbolicStrides == Strides.size()) && |
| 1933 | "Symbolic strides changed for loop"); |
| 1934 | #endif |
| 1935 | |
| 1936 | if (!LAI) { |
Mehdi Amini | a28d91d | 2015-03-10 02:37:25 +0000 | [diff] [blame] | 1937 | const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); |
Silviu Baranga | e3c0534 | 2015-11-02 14:41:02 +0000 | [diff] [blame] | 1938 | LAI = |
| 1939 | llvm::make_unique<LoopAccessInfo>(L, SE, DL, TLI, AA, DT, LI, Strides); |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 1940 | #ifndef NDEBUG |
| 1941 | LAI->NumSymbolicStrides = Strides.size(); |
| 1942 | #endif |
| 1943 | } |
| 1944 | return *LAI.get(); |
| 1945 | } |
| 1946 | |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 1947 | void LoopAccessAnalysis::print(raw_ostream &OS, const Module *M) const { |
| 1948 | LoopAccessAnalysis &LAA = *const_cast<LoopAccessAnalysis *>(this); |
| 1949 | |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 1950 | ValueToValueMap NoSymbolicStrides; |
| 1951 | |
| 1952 | for (Loop *TopLevelLoop : *LI) |
| 1953 | for (Loop *L : depth_first(TopLevelLoop)) { |
| 1954 | OS.indent(2) << L->getHeader()->getName() << ":\n"; |
| 1955 | auto &LAI = LAA.getInfo(L, NoSymbolicStrides); |
| 1956 | LAI.print(OS, 4); |
| 1957 | } |
| 1958 | } |
| 1959 | |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 1960 | bool LoopAccessAnalysis::runOnFunction(Function &F) { |
Chandler Carruth | 2f1fd16 | 2015-08-17 02:08:17 +0000 | [diff] [blame] | 1961 | SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 1962 | auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); |
| 1963 | TLI = TLIP ? &TLIP->getTLI() : nullptr; |
Chandler Carruth | 7b560d4 | 2015-09-09 17:55:00 +0000 | [diff] [blame] | 1964 | AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 1965 | DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
Adam Nemet | e2b885c | 2015-04-23 20:09:20 +0000 | [diff] [blame] | 1966 | LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 1967 | |
| 1968 | return false; |
| 1969 | } |
| 1970 | |
| 1971 | void LoopAccessAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { |
Chandler Carruth | 2f1fd16 | 2015-08-17 02:08:17 +0000 | [diff] [blame] | 1972 | AU.addRequired<ScalarEvolutionWrapperPass>(); |
Chandler Carruth | 7b560d4 | 2015-09-09 17:55:00 +0000 | [diff] [blame] | 1973 | AU.addRequired<AAResultsWrapperPass>(); |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 1974 | AU.addRequired<DominatorTreeWrapperPass>(); |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 1975 | AU.addRequired<LoopInfoWrapperPass>(); |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 1976 | |
| 1977 | AU.setPreservesAll(); |
| 1978 | } |
| 1979 | |
| 1980 | char LoopAccessAnalysis::ID = 0; |
| 1981 | static const char laa_name[] = "Loop Access Analysis"; |
| 1982 | #define LAA_NAME "loop-accesses" |
| 1983 | |
| 1984 | INITIALIZE_PASS_BEGIN(LoopAccessAnalysis, LAA_NAME, laa_name, false, true) |
Chandler Carruth | 7b560d4 | 2015-09-09 17:55:00 +0000 | [diff] [blame] | 1985 | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
Chandler Carruth | 2f1fd16 | 2015-08-17 02:08:17 +0000 | [diff] [blame] | 1986 | INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 1987 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 1988 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 1989 | INITIALIZE_PASS_END(LoopAccessAnalysis, LAA_NAME, laa_name, false, true) |
| 1990 | |
| 1991 | namespace llvm { |
| 1992 | Pass *createLAAPass() { |
| 1993 | return new LoopAccessAnalysis(); |
| 1994 | } |
| 1995 | } |