blob: 9193e38b573b80589edcec60e292776419993862 [file] [log] [blame]
Adam Nemet04563272015-02-01 16:56:15 +00001//===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The implementation for the loop memory dependence that was originally
11// developed for the loop vectorizer.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/LoopAccessAnalysis.h"
16#include "llvm/Analysis/LoopInfo.h"
Adam Nemet7206d7a2015-02-06 18:31:04 +000017#include "llvm/Analysis/ScalarEvolutionExpander.h"
Benjamin Kramer799003b2015-03-23 19:32:43 +000018#include "llvm/Analysis/TargetLibraryInfo.h"
Adam Nemet04563272015-02-01 16:56:15 +000019#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/IR/DiagnosticInfo.h"
21#include "llvm/IR/Dominators.h"
Adam Nemet7206d7a2015-02-06 18:31:04 +000022#include "llvm/IR/IRBuilder.h"
Adam Nemet04563272015-02-01 16:56:15 +000023#include "llvm/Support/Debug.h"
Benjamin Kramer799003b2015-03-23 19:32:43 +000024#include "llvm/Support/raw_ostream.h"
David Blaikieb447ac62015-06-26 18:02:52 +000025#include "llvm/Analysis/VectorUtils.h"
Adam Nemet04563272015-02-01 16:56:15 +000026using namespace llvm;
27
Adam Nemet339f42b2015-02-19 19:15:07 +000028#define DEBUG_TYPE "loop-accesses"
Adam Nemet04563272015-02-01 16:56:15 +000029
Adam Nemetf219c642015-02-19 19:14:52 +000030static cl::opt<unsigned, true>
31VectorizationFactor("force-vector-width", cl::Hidden,
32 cl::desc("Sets the SIMD width. Zero is autoselect."),
33 cl::location(VectorizerParams::VectorizationFactor));
Adam Nemet1d862af2015-02-26 04:39:09 +000034unsigned VectorizerParams::VectorizationFactor;
Adam Nemetf219c642015-02-19 19:14:52 +000035
36static cl::opt<unsigned, true>
37VectorizationInterleave("force-vector-interleave", cl::Hidden,
38 cl::desc("Sets the vectorization interleave count. "
39 "Zero is autoselect."),
40 cl::location(
41 VectorizerParams::VectorizationInterleave));
Adam Nemet1d862af2015-02-26 04:39:09 +000042unsigned VectorizerParams::VectorizationInterleave;
Adam Nemetf219c642015-02-19 19:14:52 +000043
Adam Nemet1d862af2015-02-26 04:39:09 +000044static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
45 "runtime-memory-check-threshold", cl::Hidden,
46 cl::desc("When performing memory disambiguation checks at runtime do not "
47 "generate more than this number of comparisons (default = 8)."),
48 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
49unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
Adam Nemetf219c642015-02-19 19:14:52 +000050
Silviu Baranga1b6b50a2015-07-08 09:16:33 +000051/// \brief The maximum iterations used to merge memory checks
52static cl::opt<unsigned> MemoryCheckMergeThreshold(
53 "memory-check-merge-threshold", cl::Hidden,
54 cl::desc("Maximum number of comparisons done when trying to merge "
55 "runtime memory checks. (default = 100)"),
56 cl::init(100));
57
Adam Nemetf219c642015-02-19 19:14:52 +000058/// Maximum SIMD width.
59const unsigned VectorizerParams::MaxVectorWidth = 64;
60
Adam Nemeta2df7502015-11-03 21:39:52 +000061/// \brief We collect dependences up to this threshold.
62static cl::opt<unsigned>
63 MaxDependences("max-dependences", cl::Hidden,
64 cl::desc("Maximum number of dependences collected by "
65 "loop-access analysis (default = 100)"),
66 cl::init(100));
Adam Nemet9c926572015-03-10 17:40:37 +000067
Matthew Simpson37ec5f92016-05-16 17:00:56 +000068/// \brief Enable store-to-load forwarding conflict detection. This option can
69/// be disabled for correctness testing.
70static cl::opt<bool> EnableForwardingConflictDetection(
71 "store-to-load-forwarding-conflict-detection", cl::Hidden,
Matthew Simpsona250dc92016-05-16 14:14:49 +000072 cl::desc("Enable conflict detection in loop-access analysis"),
73 cl::init(true));
74
Adam Nemetf219c642015-02-19 19:14:52 +000075bool VectorizerParams::isInterleaveForced() {
76 return ::VectorizationInterleave.getNumOccurrences() > 0;
77}
78
Adam Nemet2bd6e982015-02-19 19:15:15 +000079void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message,
80 const Function *TheFunction,
81 const Loop *TheLoop,
82 const char *PassName) {
Adam Nemet04563272015-02-01 16:56:15 +000083 DebugLoc DL = TheLoop->getStartLoc();
Adam Nemet3e876342015-02-19 19:15:13 +000084 if (const Instruction *I = Message.getInstr())
Adam Nemet04563272015-02-01 16:56:15 +000085 DL = I->getDebugLoc();
Adam Nemet339f42b2015-02-19 19:15:07 +000086 emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName,
Adam Nemet04563272015-02-01 16:56:15 +000087 *TheFunction, DL, Message.str());
88}
89
90Value *llvm::stripIntegerCast(Value *V) {
91 if (CastInst *CI = dyn_cast<CastInst>(V))
92 if (CI->getOperand(0)->getType()->isIntegerTy())
93 return CI->getOperand(0);
94 return V;
95}
96
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +000097const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
Adam Nemet8bc61df2015-02-24 00:41:59 +000098 const ValueToValueMap &PtrToStride,
Adam Nemet04563272015-02-01 16:56:15 +000099 Value *Ptr, Value *OrigPtr) {
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000100 const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
Adam Nemet04563272015-02-01 16:56:15 +0000101
102 // If there is an entry in the map return the SCEV of the pointer with the
103 // symbolic stride replaced by one.
Adam Nemet8bc61df2015-02-24 00:41:59 +0000104 ValueToValueMap::const_iterator SI =
105 PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
Adam Nemet04563272015-02-01 16:56:15 +0000106 if (SI != PtrToStride.end()) {
107 Value *StrideVal = SI->second;
108
109 // Strip casts.
110 StrideVal = stripIntegerCast(StrideVal);
111
112 // Replace symbolic stride by one.
113 Value *One = ConstantInt::get(StrideVal->getType(), 1);
114 ValueToValueMap RewriteMap;
115 RewriteMap[StrideVal] = One;
116
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000117 ScalarEvolution *SE = PSE.getSE();
Silviu Barangae3c05342015-11-02 14:41:02 +0000118 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
119 const auto *CT =
120 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
121
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000122 PSE.addPredicate(*SE->getEqualPredicate(U, CT));
123 auto *Expr = PSE.getSCEV(Ptr);
Silviu Barangae3c05342015-11-02 14:41:02 +0000124
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000125 DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *Expr
Adam Nemet04563272015-02-01 16:56:15 +0000126 << "\n");
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000127 return Expr;
Adam Nemet04563272015-02-01 16:56:15 +0000128 }
129
130 // Otherwise, just return the SCEV of the original pointer.
Silviu Barangae3c05342015-11-02 14:41:02 +0000131 return OrigSCEV;
Adam Nemet04563272015-02-01 16:56:15 +0000132}
133
Adam Nemet7cdebac2015-07-14 22:32:44 +0000134void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
135 unsigned DepSetId, unsigned ASId,
Silviu Barangae3c05342015-11-02 14:41:02 +0000136 const ValueToValueMap &Strides,
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000137 PredicatedScalarEvolution &PSE) {
Adam Nemet04563272015-02-01 16:56:15 +0000138 // Get the stride replaced scev.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000139 const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000140 ScalarEvolution *SE = PSE.getSE();
Silviu Baranga0e5804a2015-07-16 14:02:58 +0000141
Adam Nemet279784f2016-03-24 04:28:47 +0000142 const SCEV *ScStart;
143 const SCEV *ScEnd;
Silviu Baranga0e5804a2015-07-16 14:02:58 +0000144
Adam Nemet59a65502016-03-24 05:15:24 +0000145 if (SE->isLoopInvariant(Sc, Lp))
Adam Nemet279784f2016-03-24 04:28:47 +0000146 ScStart = ScEnd = Sc;
Adam Nemet279784f2016-03-24 04:28:47 +0000147 else {
148 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
149 assert(AR && "Invalid addrec expression");
Silviu Baranga6f444df2016-04-08 14:29:09 +0000150 const SCEV *Ex = PSE.getBackedgeTakenCount();
Adam Nemet279784f2016-03-24 04:28:47 +0000151
152 ScStart = AR->getStart();
153 ScEnd = AR->evaluateAtIteration(Ex, *SE);
154 const SCEV *Step = AR->getStepRecurrence(*SE);
155
156 // For expressions with negative step, the upper bound is ScStart and the
157 // lower bound is ScEnd.
158 if (const SCEVConstant *CStep = dyn_cast<const SCEVConstant>(Step)) {
159 if (CStep->getValue()->isNegative())
160 std::swap(ScStart, ScEnd);
161 } else {
162 // Fallback case: the step is not constant, but the we can still
163 // get the upper and lower bounds of the interval by using min/max
164 // expressions.
165 ScStart = SE->getUMinExpr(ScStart, ScEnd);
166 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
167 }
Silviu Baranga0e5804a2015-07-16 14:02:58 +0000168 }
169
170 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000171}
172
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000173SmallVector<RuntimePointerChecking::PointerCheck, 4>
Adam Nemet38530882015-08-09 20:06:06 +0000174RuntimePointerChecking::generateChecks() const {
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000175 SmallVector<PointerCheck, 4> Checks;
176
Adam Nemet7c52e052015-07-27 19:38:50 +0000177 for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
178 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
179 const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I];
180 const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J];
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000181
Adam Nemet38530882015-08-09 20:06:06 +0000182 if (needsChecking(CGI, CGJ))
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000183 Checks.push_back(std::make_pair(&CGI, &CGJ));
184 }
185 }
186 return Checks;
187}
188
Adam Nemet15840392015-08-07 22:44:15 +0000189void RuntimePointerChecking::generateChecks(
190 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
191 assert(Checks.empty() && "Checks is not empty");
192 groupChecks(DepCands, UseDependencies);
193 Checks = generateChecks();
194}
195
Adam Nemet651a5a22015-08-09 20:06:08 +0000196bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M,
197 const CheckingPtrGroup &N) const {
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000198 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
199 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
Adam Nemet651a5a22015-08-09 20:06:08 +0000200 if (needsChecking(M.Members[I], N.Members[J]))
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000201 return true;
202 return false;
203}
204
205/// Compare \p I and \p J and return the minimum.
206/// Return nullptr in case we couldn't find an answer.
207static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
208 ScalarEvolution *SE) {
209 const SCEV *Diff = SE->getMinusSCEV(J, I);
210 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
211
212 if (!C)
213 return nullptr;
214 if (C->getValue()->isNegative())
215 return J;
216 return I;
217}
218
Adam Nemet7cdebac2015-07-14 22:32:44 +0000219bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) {
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000220 const SCEV *Start = RtCheck.Pointers[Index].Start;
221 const SCEV *End = RtCheck.Pointers[Index].End;
222
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000223 // Compare the starts and ends with the known minimum and maximum
224 // of this set. We need to know how we compare against the min/max
225 // of the set in order to be able to emit memchecks.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000226 const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000227 if (!Min0)
228 return false;
229
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000230 const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000231 if (!Min1)
232 return false;
233
234 // Update the low bound expression if we've found a new min value.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000235 if (Min0 == Start)
236 Low = Start;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000237
238 // Update the high bound expression if we've found a new max value.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000239 if (Min1 != End)
240 High = End;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000241
242 Members.push_back(Index);
243 return true;
244}
245
Adam Nemet7cdebac2015-07-14 22:32:44 +0000246void RuntimePointerChecking::groupChecks(
247 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000248 // We build the groups from dependency candidates equivalence classes
249 // because:
250 // - We know that pointers in the same equivalence class share
251 // the same underlying object and therefore there is a chance
252 // that we can compare pointers
253 // - We wouldn't be able to merge two pointers for which we need
254 // to emit a memcheck. The classes in DepCands are already
255 // conveniently built such that no two pointers in the same
256 // class need checking against each other.
257
258 // We use the following (greedy) algorithm to construct the groups
259 // For every pointer in the equivalence class:
260 // For each existing group:
261 // - if the difference between this pointer and the min/max bounds
262 // of the group is a constant, then make the pointer part of the
263 // group and update the min/max bounds of that group as required.
264
265 CheckingGroups.clear();
266
Silviu Baranga48250602015-07-28 13:44:08 +0000267 // If we need to check two pointers to the same underlying object
268 // with a non-constant difference, we shouldn't perform any pointer
269 // grouping with those pointers. This is because we can easily get
270 // into cases where the resulting check would return false, even when
271 // the accesses are safe.
272 //
273 // The following example shows this:
274 // for (i = 0; i < 1000; ++i)
275 // a[5000 + i * m] = a[i] + a[i + 9000]
276 //
277 // Here grouping gives a check of (5000, 5000 + 1000 * m) against
278 // (0, 10000) which is always false. However, if m is 1, there is no
279 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
280 // us to perform an accurate check in this case.
281 //
282 // The above case requires that we have an UnknownDependence between
283 // accesses to the same underlying object. This cannot happen unless
284 // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies
285 // is also false. In this case we will use the fallback path and create
286 // separate checking groups for all pointers.
Mehdi Aminiafd13512015-11-05 05:49:43 +0000287
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000288 // If we don't have the dependency partitions, construct a new
Silviu Baranga48250602015-07-28 13:44:08 +0000289 // checking pointer group for each pointer. This is also required
290 // for correctness, because in this case we can have checking between
291 // pointers to the same underlying object.
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000292 if (!UseDependencies) {
293 for (unsigned I = 0; I < Pointers.size(); ++I)
294 CheckingGroups.push_back(CheckingPtrGroup(I, *this));
295 return;
296 }
297
298 unsigned TotalComparisons = 0;
299
300 DenseMap<Value *, unsigned> PositionMap;
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000301 for (unsigned Index = 0; Index < Pointers.size(); ++Index)
302 PositionMap[Pointers[Index].PointerValue] = Index;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000303
Silviu Barangace3877f2015-07-09 15:18:25 +0000304 // We need to keep track of what pointers we've already seen so we
305 // don't process them twice.
306 SmallSet<unsigned, 2> Seen;
307
Sanjay Patele4b9f502015-12-07 19:21:39 +0000308 // Go through all equivalence classes, get the "pointer check groups"
Silviu Barangace3877f2015-07-09 15:18:25 +0000309 // and add them to the overall solution. We use the order in which accesses
310 // appear in 'Pointers' to enforce determinism.
311 for (unsigned I = 0; I < Pointers.size(); ++I) {
312 // We've seen this pointer before, and therefore already processed
313 // its equivalence class.
314 if (Seen.count(I))
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000315 continue;
316
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000317 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
318 Pointers[I].IsWritePtr);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000319
Silviu Barangace3877f2015-07-09 15:18:25 +0000320 SmallVector<CheckingPtrGroup, 2> Groups;
321 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
322
Silviu Barangaa647c302015-07-13 14:48:24 +0000323 // Because DepCands is constructed by visiting accesses in the order in
324 // which they appear in alias sets (which is deterministic) and the
325 // iteration order within an equivalence class member is only dependent on
326 // the order in which unions and insertions are performed on the
327 // equivalence class, the iteration order is deterministic.
Silviu Barangace3877f2015-07-09 15:18:25 +0000328 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000329 MI != ME; ++MI) {
330 unsigned Pointer = PositionMap[MI->getPointer()];
331 bool Merged = false;
Silviu Barangace3877f2015-07-09 15:18:25 +0000332 // Mark this pointer as seen.
333 Seen.insert(Pointer);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000334
335 // Go through all the existing sets and see if we can find one
336 // which can include this pointer.
337 for (CheckingPtrGroup &Group : Groups) {
338 // Don't perform more than a certain amount of comparisons.
339 // This should limit the cost of grouping the pointers to something
340 // reasonable. If we do end up hitting this threshold, the algorithm
341 // will create separate groups for all remaining pointers.
342 if (TotalComparisons > MemoryCheckMergeThreshold)
343 break;
344
345 TotalComparisons++;
346
347 if (Group.addPointer(Pointer)) {
348 Merged = true;
349 break;
350 }
351 }
352
353 if (!Merged)
354 // We couldn't add this pointer to any existing set or the threshold
355 // for the number of comparisons has been reached. Create a new group
356 // to hold the current pointer.
357 Groups.push_back(CheckingPtrGroup(Pointer, *this));
358 }
359
360 // We've computed the grouped checks for this partition.
361 // Save the results and continue with the next one.
362 std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups));
363 }
Adam Nemet04563272015-02-01 16:56:15 +0000364}
365
Adam Nemet041e6de2015-07-16 02:48:05 +0000366bool RuntimePointerChecking::arePointersInSamePartition(
367 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
368 unsigned PtrIdx2) {
369 return (PtrToPartition[PtrIdx1] != -1 &&
370 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
371}
372
Adam Nemet651a5a22015-08-09 20:06:08 +0000373bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000374 const PointerInfo &PointerI = Pointers[I];
375 const PointerInfo &PointerJ = Pointers[J];
376
Adam Nemeta8945b72015-02-18 03:43:58 +0000377 // No need to check if two readonly pointers intersect.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000378 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
Adam Nemeta8945b72015-02-18 03:43:58 +0000379 return false;
380
381 // Only need to check pointers between two different dependency sets.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000382 if (PointerI.DependencySetId == PointerJ.DependencySetId)
Adam Nemeta8945b72015-02-18 03:43:58 +0000383 return false;
384
385 // Only need to check pointers in the same alias set.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000386 if (PointerI.AliasSetId != PointerJ.AliasSetId)
Adam Nemeta8945b72015-02-18 03:43:58 +0000387 return false;
388
389 return true;
390}
391
Adam Nemet54f0b832015-07-27 23:54:41 +0000392void RuntimePointerChecking::printChecks(
393 raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks,
394 unsigned Depth) const {
395 unsigned N = 0;
396 for (const auto &Check : Checks) {
397 const auto &First = Check.first->Members, &Second = Check.second->Members;
398
399 OS.indent(Depth) << "Check " << N++ << ":\n";
400
401 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
402 for (unsigned K = 0; K < First.size(); ++K)
403 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
404
405 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
406 for (unsigned K = 0; K < Second.size(); ++K)
407 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
408 }
409}
410
Adam Nemet3a91e942015-08-07 19:44:48 +0000411void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
Adam Nemete91cc6e2015-02-19 19:15:19 +0000412
413 OS.indent(Depth) << "Run-time memory checks:\n";
Adam Nemet15840392015-08-07 22:44:15 +0000414 printChecks(OS, Checks, Depth);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000415
416 OS.indent(Depth) << "Grouped accesses:\n";
417 for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
Adam Nemet54f0b832015-07-27 23:54:41 +0000418 const auto &CG = CheckingGroups[I];
419
420 OS.indent(Depth + 2) << "Group " << &CG << ":\n";
421 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
422 << ")\n";
423 for (unsigned J = 0; J < CG.Members.size(); ++J) {
424 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000425 << "\n";
426 }
427 }
Adam Nemete91cc6e2015-02-19 19:15:19 +0000428}
429
Adam Nemet04563272015-02-01 16:56:15 +0000430namespace {
431/// \brief Analyses memory accesses in a loop.
432///
433/// Checks whether run time pointer checks are needed and builds sets for data
434/// dependence checking.
435class AccessAnalysis {
436public:
437 /// \brief Read or write access location.
438 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
439 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
440
Adam Nemete2b885c2015-04-23 20:09:20 +0000441 AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI,
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000442 MemoryDepChecker::DepCandidates &DA,
443 PredicatedScalarEvolution &PSE)
Silviu Barangae3c05342015-11-02 14:41:02 +0000444 : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false),
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000445 PSE(PSE) {}
Adam Nemet04563272015-02-01 16:56:15 +0000446
447 /// \brief Register a load and whether it is only read from.
Chandler Carruthac80dc72015-06-17 07:18:54 +0000448 void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
Adam Nemet04563272015-02-01 16:56:15 +0000449 Value *Ptr = const_cast<Value*>(Loc.Ptr);
Chandler Carruthecbd1682015-06-17 07:21:38 +0000450 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
Adam Nemet04563272015-02-01 16:56:15 +0000451 Accesses.insert(MemAccessInfo(Ptr, false));
452 if (IsReadOnly)
453 ReadOnlyPtr.insert(Ptr);
454 }
455
456 /// \brief Register a store.
Chandler Carruthac80dc72015-06-17 07:18:54 +0000457 void addStore(MemoryLocation &Loc) {
Adam Nemet04563272015-02-01 16:56:15 +0000458 Value *Ptr = const_cast<Value*>(Loc.Ptr);
Chandler Carruthecbd1682015-06-17 07:21:38 +0000459 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
Adam Nemet04563272015-02-01 16:56:15 +0000460 Accesses.insert(MemAccessInfo(Ptr, true));
461 }
462
463 /// \brief Check whether we can check the pointers at runtime for
Adam Nemetee614742015-07-09 22:17:38 +0000464 /// non-intersection.
465 ///
466 /// Returns true if we need no check or if we do and we can generate them
467 /// (i.e. the pointers have computable bounds).
Adam Nemet7cdebac2015-07-14 22:32:44 +0000468 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
469 Loop *TheLoop, const ValueToValueMap &Strides,
Adam Nemet04563272015-02-01 16:56:15 +0000470 bool ShouldCheckStride = false);
471
472 /// \brief Goes over all memory accesses, checks whether a RT check is needed
473 /// and builds sets of dependent accesses.
474 void buildDependenceSets() {
475 processMemAccesses();
476 }
477
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000478 /// \brief Initial processing of memory accesses determined that we need to
479 /// perform dependency checking.
480 ///
481 /// Note that this can later be cleared if we retry memcheck analysis without
482 /// dependency checking (i.e. ShouldRetryWithRuntimeCheck).
Adam Nemet04563272015-02-01 16:56:15 +0000483 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
Adam Nemetdf3dc5b2015-05-18 15:37:03 +0000484
485 /// We decided that no dependence analysis would be used. Reset the state.
486 void resetDepChecks(MemoryDepChecker &DepChecker) {
487 CheckDeps.clear();
Adam Nemeta2df7502015-11-03 21:39:52 +0000488 DepChecker.clearDependences();
Adam Nemetdf3dc5b2015-05-18 15:37:03 +0000489 }
Adam Nemet04563272015-02-01 16:56:15 +0000490
491 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
492
493private:
494 typedef SetVector<MemAccessInfo> PtrAccessSet;
495
496 /// \brief Go over all memory access and check whether runtime pointer checks
Adam Nemetb41d2d32015-07-09 06:47:21 +0000497 /// are needed and build sets of dependency check candidates.
Adam Nemet04563272015-02-01 16:56:15 +0000498 void processMemAccesses();
499
500 /// Set of all accesses.
501 PtrAccessSet Accesses;
502
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000503 const DataLayout &DL;
504
Adam Nemet04563272015-02-01 16:56:15 +0000505 /// Set of accesses that need a further dependence check.
506 MemAccessInfoSet CheckDeps;
507
508 /// Set of pointers that are read only.
509 SmallPtrSet<Value*, 16> ReadOnlyPtr;
510
Adam Nemet04563272015-02-01 16:56:15 +0000511 /// An alias set tracker to partition the access set by underlying object and
512 //intrinsic property (such as TBAA metadata).
513 AliasSetTracker AST;
514
Adam Nemete2b885c2015-04-23 20:09:20 +0000515 LoopInfo *LI;
516
Adam Nemet04563272015-02-01 16:56:15 +0000517 /// Sets of potentially dependent accesses - members of one set share an
518 /// underlying pointer. The set "CheckDeps" identfies which sets really need a
519 /// dependence check.
Adam Nemetdee666b2015-03-10 17:40:34 +0000520 MemoryDepChecker::DepCandidates &DepCands;
Adam Nemet04563272015-02-01 16:56:15 +0000521
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000522 /// \brief Initial processing of memory accesses determined that we may need
523 /// to add memchecks. Perform the analysis to determine the necessary checks.
524 ///
525 /// Note that, this is different from isDependencyCheckNeeded. When we retry
526 /// memcheck analysis without dependency checking
527 /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared
528 /// while this remains set if we have potentially dependent accesses.
529 bool IsRTCheckAnalysisNeeded;
Silviu Barangae3c05342015-11-02 14:41:02 +0000530
531 /// The SCEV predicate containing all the SCEV-related assumptions.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000532 PredicatedScalarEvolution &PSE;
Adam Nemet04563272015-02-01 16:56:15 +0000533};
534
535} // end anonymous namespace
536
537/// \brief Check whether a pointer can participate in a runtime bounds check.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000538static bool hasComputableBounds(PredicatedScalarEvolution &PSE,
Silviu Barangae3c05342015-11-02 14:41:02 +0000539 const ValueToValueMap &Strides, Value *Ptr,
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000540 Loop *L) {
541 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
Adam Nemet279784f2016-03-24 04:28:47 +0000542
543 // The bounds for loop-invariant pointer is trivial.
544 if (PSE.getSE()->isLoopInvariant(PtrScev, L))
545 return true;
546
Adam Nemet04563272015-02-01 16:56:15 +0000547 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
548 if (!AR)
549 return false;
550
551 return AR->isAffine();
552}
553
Adam Nemet7cdebac2015-07-14 22:32:44 +0000554bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
555 ScalarEvolution *SE, Loop *TheLoop,
556 const ValueToValueMap &StridesMap,
557 bool ShouldCheckStride) {
Adam Nemet04563272015-02-01 16:56:15 +0000558 // Find pointers with computable bounds. We are going to use this information
559 // to place a runtime bound check.
560 bool CanDoRT = true;
561
Adam Nemetee614742015-07-09 22:17:38 +0000562 bool NeedRTCheck = false;
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000563 if (!IsRTCheckAnalysisNeeded) return true;
Silviu Baranga98a13712015-06-08 10:27:06 +0000564
Adam Nemet04563272015-02-01 16:56:15 +0000565 bool IsDepCheckNeeded = isDependencyCheckNeeded();
Adam Nemet04563272015-02-01 16:56:15 +0000566
567 // We assign a consecutive id to access from different alias sets.
568 // Accesses between different groups doesn't need to be checked.
569 unsigned ASId = 1;
570 for (auto &AS : AST) {
Adam Nemet424edc62015-07-08 22:58:48 +0000571 int NumReadPtrChecks = 0;
572 int NumWritePtrChecks = 0;
573
Adam Nemet04563272015-02-01 16:56:15 +0000574 // We assign consecutive id to access from different dependence sets.
575 // Accesses within the same set don't need a runtime check.
576 unsigned RunningDepId = 1;
577 DenseMap<Value *, unsigned> DepSetId;
578
579 for (auto A : AS) {
580 Value *Ptr = A.getValue();
581 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
582 MemAccessInfo Access(Ptr, IsWrite);
583
Adam Nemet424edc62015-07-08 22:58:48 +0000584 if (IsWrite)
585 ++NumWritePtrChecks;
586 else
587 ++NumReadPtrChecks;
588
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000589 if (hasComputableBounds(PSE, StridesMap, Ptr, TheLoop) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000590 // When we run after a failing dependency check we have to make sure
591 // we don't have wrapping pointers.
Adam Nemet04563272015-02-01 16:56:15 +0000592 (!ShouldCheckStride ||
Denis Zobnin15d1e642016-05-10 05:55:16 +0000593 getPtrStride(PSE, Ptr, TheLoop, StridesMap) == 1)) {
Adam Nemet04563272015-02-01 16:56:15 +0000594 // The id of the dependence set.
595 unsigned DepId;
596
597 if (IsDepCheckNeeded) {
598 Value *Leader = DepCands.getLeaderValue(Access).getPointer();
599 unsigned &LeaderId = DepSetId[Leader];
600 if (!LeaderId)
601 LeaderId = RunningDepId++;
602 DepId = LeaderId;
603 } else
604 // Each access has its own dependence set.
605 DepId = RunningDepId++;
606
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000607 RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE);
Adam Nemet04563272015-02-01 16:56:15 +0000608
Adam Nemet339f42b2015-02-19 19:15:07 +0000609 DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
Adam Nemet04563272015-02-01 16:56:15 +0000610 } else {
Adam Nemetf10ca272015-05-18 15:36:52 +0000611 DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n');
Adam Nemet04563272015-02-01 16:56:15 +0000612 CanDoRT = false;
613 }
614 }
615
Adam Nemet424edc62015-07-08 22:58:48 +0000616 // If we have at least two writes or one write and a read then we need to
617 // check them. But there is no need to checks if there is only one
618 // dependence set for this alias set.
619 //
620 // Note that this function computes CanDoRT and NeedRTCheck independently.
621 // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer
622 // for which we couldn't find the bounds but we don't actually need to emit
623 // any checks so it does not matter.
624 if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2))
625 NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 &&
626 NumWritePtrChecks >= 1));
627
Adam Nemet04563272015-02-01 16:56:15 +0000628 ++ASId;
629 }
630
631 // If the pointers that we would use for the bounds comparison have different
632 // address spaces, assume the values aren't directly comparable, so we can't
633 // use them for the runtime check. We also have to assume they could
634 // overlap. In the future there should be metadata for whether address spaces
635 // are disjoint.
636 unsigned NumPointers = RtCheck.Pointers.size();
637 for (unsigned i = 0; i < NumPointers; ++i) {
638 for (unsigned j = i + 1; j < NumPointers; ++j) {
639 // Only need to check pointers between two different dependency sets.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000640 if (RtCheck.Pointers[i].DependencySetId ==
641 RtCheck.Pointers[j].DependencySetId)
Adam Nemet04563272015-02-01 16:56:15 +0000642 continue;
643 // Only need to check pointers in the same alias set.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000644 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
Adam Nemet04563272015-02-01 16:56:15 +0000645 continue;
646
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000647 Value *PtrI = RtCheck.Pointers[i].PointerValue;
648 Value *PtrJ = RtCheck.Pointers[j].PointerValue;
Adam Nemet04563272015-02-01 16:56:15 +0000649
650 unsigned ASi = PtrI->getType()->getPointerAddressSpace();
651 unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
652 if (ASi != ASj) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000653 DEBUG(dbgs() << "LAA: Runtime check would require comparison between"
Adam Nemet04d41632015-02-19 19:14:34 +0000654 " different address spaces\n");
Adam Nemet04563272015-02-01 16:56:15 +0000655 return false;
656 }
657 }
658 }
659
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000660 if (NeedRTCheck && CanDoRT)
Adam Nemet15840392015-08-07 22:44:15 +0000661 RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000662
Adam Nemet155e8742015-08-07 22:44:21 +0000663 DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
Adam Nemetee614742015-07-09 22:17:38 +0000664 << " pointer comparisons.\n");
665
666 RtCheck.Need = NeedRTCheck;
667
668 bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT;
669 if (!CanDoRTIfNeeded)
670 RtCheck.reset();
671 return CanDoRTIfNeeded;
Adam Nemet04563272015-02-01 16:56:15 +0000672}
673
674void AccessAnalysis::processMemAccesses() {
675 // We process the set twice: first we process read-write pointers, last we
676 // process read-only pointers. This allows us to skip dependence tests for
677 // read-only pointers.
678
Adam Nemet339f42b2015-02-19 19:15:07 +0000679 DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
Adam Nemet04563272015-02-01 16:56:15 +0000680 DEBUG(dbgs() << " AST: "; AST.dump());
Adam Nemet9c926572015-03-10 17:40:37 +0000681 DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n");
Adam Nemet04563272015-02-01 16:56:15 +0000682 DEBUG({
683 for (auto A : Accesses)
684 dbgs() << "\t" << *A.getPointer() << " (" <<
685 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
686 "read-only" : "read")) << ")\n";
687 });
688
689 // The AliasSetTracker has nicely partitioned our pointers by metadata
690 // compatibility and potential for underlying-object overlap. As a result, we
691 // only need to check for potential pointer dependencies within each alias
692 // set.
693 for (auto &AS : AST) {
694 // Note that both the alias-set tracker and the alias sets themselves used
695 // linked lists internally and so the iteration order here is deterministic
696 // (matching the original instruction order within each set).
697
698 bool SetHasWrite = false;
699
700 // Map of pointers to last access encountered.
701 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
702 UnderlyingObjToAccessMap ObjToLastAccess;
703
704 // Set of access to check after all writes have been processed.
705 PtrAccessSet DeferredAccesses;
706
707 // Iterate over each alias set twice, once to process read/write pointers,
708 // and then to process read-only pointers.
709 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
710 bool UseDeferred = SetIteration > 0;
711 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
712
713 for (auto AV : AS) {
714 Value *Ptr = AV.getValue();
715
716 // For a single memory access in AliasSetTracker, Accesses may contain
717 // both read and write, and they both need to be handled for CheckDeps.
718 for (auto AC : S) {
719 if (AC.getPointer() != Ptr)
720 continue;
721
722 bool IsWrite = AC.getInt();
723
724 // If we're using the deferred access set, then it contains only
725 // reads.
726 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
727 if (UseDeferred && !IsReadOnlyPtr)
728 continue;
729 // Otherwise, the pointer must be in the PtrAccessSet, either as a
730 // read or a write.
731 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
732 S.count(MemAccessInfo(Ptr, false))) &&
733 "Alias-set pointer not in the access set?");
734
735 MemAccessInfo Access(Ptr, IsWrite);
736 DepCands.insert(Access);
737
738 // Memorize read-only pointers for later processing and skip them in
739 // the first round (they need to be checked after we have seen all
740 // write pointers). Note: we also mark pointer that are not
741 // consecutive as "read-only" pointers (so that we check
742 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
743 if (!UseDeferred && IsReadOnlyPtr) {
744 DeferredAccesses.insert(Access);
745 continue;
746 }
747
748 // If this is a write - check other reads and writes for conflicts. If
749 // this is a read only check other writes for conflicts (but only if
750 // there is no other write to the ptr - this is an optimization to
751 // catch "a[i] = a[i] + " without having to do a dependence check).
752 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
753 CheckDeps.insert(Access);
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000754 IsRTCheckAnalysisNeeded = true;
Adam Nemet04563272015-02-01 16:56:15 +0000755 }
756
757 if (IsWrite)
758 SetHasWrite = true;
759
760 // Create sets of pointers connected by a shared alias set and
761 // underlying object.
762 typedef SmallVector<Value *, 16> ValueVector;
763 ValueVector TempObjects;
Adam Nemete2b885c2015-04-23 20:09:20 +0000764
765 GetUnderlyingObjects(Ptr, TempObjects, DL, LI);
766 DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000767 for (Value *UnderlyingObj : TempObjects) {
Mehdi Aminiafd13512015-11-05 05:49:43 +0000768 // nullptr never alias, don't join sets for pointer that have "null"
769 // in their UnderlyingObjects list.
770 if (isa<ConstantPointerNull>(UnderlyingObj))
771 continue;
772
Adam Nemet04563272015-02-01 16:56:15 +0000773 UnderlyingObjToAccessMap::iterator Prev =
774 ObjToLastAccess.find(UnderlyingObj);
775 if (Prev != ObjToLastAccess.end())
776 DepCands.unionSets(Access, Prev->second);
777
778 ObjToLastAccess[UnderlyingObj] = Access;
Adam Nemete2b885c2015-04-23 20:09:20 +0000779 DEBUG(dbgs() << " " << *UnderlyingObj << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000780 }
781 }
782 }
783 }
784 }
785}
786
Adam Nemet04563272015-02-01 16:56:15 +0000787static bool isInBoundsGep(Value *Ptr) {
788 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
789 return GEP->isInBounds();
790 return false;
791}
792
Adam Nemetc4866d22015-06-26 17:25:43 +0000793/// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
794/// i.e. monotonically increasing/decreasing.
795static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000796 PredicatedScalarEvolution &PSE, const Loop *L) {
Adam Nemetc4866d22015-06-26 17:25:43 +0000797 // FIXME: This should probably only return true for NUW.
798 if (AR->getNoWrapFlags(SCEV::NoWrapMask))
799 return true;
800
801 // Scalar evolution does not propagate the non-wrapping flags to values that
802 // are derived from a non-wrapping induction variable because non-wrapping
803 // could be flow-sensitive.
804 //
805 // Look through the potentially overflowing instruction to try to prove
806 // non-wrapping for the *specific* value of Ptr.
807
808 // The arithmetic implied by an inbounds GEP can't overflow.
809 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
810 if (!GEP || !GEP->isInBounds())
811 return false;
812
813 // Make sure there is only one non-const index and analyze that.
814 Value *NonConstIndex = nullptr;
815 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
816 if (!isa<ConstantInt>(*Index)) {
817 if (NonConstIndex)
818 return false;
819 NonConstIndex = *Index;
820 }
821 if (!NonConstIndex)
822 // The recurrence is on the pointer, ignore for now.
823 return false;
824
825 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW
826 // AddRec using a NSW operation.
827 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
828 if (OBO->hasNoSignedWrap() &&
829 // Assume constant for other the operand so that the AddRec can be
830 // easily found.
831 isa<ConstantInt>(OBO->getOperand(1))) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000832 auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
Adam Nemetc4866d22015-06-26 17:25:43 +0000833
834 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
835 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
836 }
837
838 return false;
839}
840
Adam Nemet04563272015-02-01 16:56:15 +0000841/// \brief Check whether the access through \p Ptr has a constant stride.
Denis Zobnin15d1e642016-05-10 05:55:16 +0000842int llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr,
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000843 const Loop *Lp, const ValueToValueMap &StridesMap,
844 bool Assume) {
Craig Toppere3dcce92015-08-01 22:20:21 +0000845 Type *Ty = Ptr->getType();
Adam Nemet04563272015-02-01 16:56:15 +0000846 assert(Ty->isPointerTy() && "Unexpected non-ptr");
847
848 // Make sure that the pointer does not point to aggregate types.
Craig Toppere3dcce92015-08-01 22:20:21 +0000849 auto *PtrTy = cast<PointerType>(Ty);
Adam Nemet04563272015-02-01 16:56:15 +0000850 if (PtrTy->getElementType()->isAggregateType()) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000851 DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" << *Ptr
852 << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000853 return 0;
854 }
855
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000856 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
Adam Nemet04563272015-02-01 16:56:15 +0000857
858 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000859 if (Assume && !AR)
Silviu Barangad68ed852016-03-23 15:29:30 +0000860 AR = PSE.getAsAddRec(Ptr);
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000861
Adam Nemet04563272015-02-01 16:56:15 +0000862 if (!AR) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000863 DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
864 << " SCEV: " << *PtrScev << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000865 return 0;
866 }
867
868 // The accesss function must stride over the innermost loop.
869 if (Lp != AR->getLoop()) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000870 DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " <<
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000871 *Ptr << " SCEV: " << *AR << "\n");
Kyle Butta02ce982016-01-08 01:55:13 +0000872 return 0;
Adam Nemet04563272015-02-01 16:56:15 +0000873 }
874
875 // The address calculation must not wrap. Otherwise, a dependence could be
876 // inverted.
877 // An inbounds getelementptr that is a AddRec with a unit stride
878 // cannot wrap per definition. The unit stride requirement is checked later.
879 // An getelementptr without an inbounds attribute and unit stride would have
880 // to access the pointer value "0" which is undefined behavior in address
881 // space 0, therefore we can also vectorize this case.
882 bool IsInBoundsGEP = isInBoundsGep(Ptr);
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000883 bool IsNoWrapAddRec =
884 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
885 isNoWrapAddRec(Ptr, AR, PSE, Lp);
Adam Nemet04563272015-02-01 16:56:15 +0000886 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
887 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000888 if (Assume) {
889 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
890 IsNoWrapAddRec = true;
891 DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"
892 << "LAA: Pointer: " << *Ptr << "\n"
893 << "LAA: SCEV: " << *AR << "\n"
894 << "LAA: Added an overflow assumption\n");
895 } else {
896 DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
897 << *Ptr << " SCEV: " << *AR << "\n");
898 return 0;
899 }
Adam Nemet04563272015-02-01 16:56:15 +0000900 }
901
902 // Check the step is constant.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000903 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
Adam Nemet04563272015-02-01 16:56:15 +0000904
Adam Nemet943befe2015-07-09 00:03:22 +0000905 // Calculate the pointer stride and check if it is constant.
Adam Nemet04563272015-02-01 16:56:15 +0000906 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
907 if (!C) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000908 DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr <<
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000909 " SCEV: " << *AR << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000910 return 0;
911 }
912
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000913 auto &DL = Lp->getHeader()->getModule()->getDataLayout();
914 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
Sanjoy Das0de2fec2015-12-17 20:28:46 +0000915 const APInt &APStepVal = C->getAPInt();
Adam Nemet04563272015-02-01 16:56:15 +0000916
917 // Huge step value - give up.
918 if (APStepVal.getBitWidth() > 64)
919 return 0;
920
921 int64_t StepVal = APStepVal.getSExtValue();
922
923 // Strided access.
924 int64_t Stride = StepVal / Size;
925 int64_t Rem = StepVal % Size;
926 if (Rem)
927 return 0;
928
929 // If the SCEV could wrap but we have an inbounds gep with a unit stride we
930 // know we can't "wrap around the address space". In case of address space
931 // zero we know that this won't happen without triggering undefined behavior.
932 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000933 Stride != 1 && Stride != -1) {
934 if (Assume) {
935 // We can avoid this case by adding a run-time check.
936 DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "
937 << "inbouds or in address space 0 may wrap:\n"
938 << "LAA: Pointer: " << *Ptr << "\n"
939 << "LAA: SCEV: " << *AR << "\n"
940 << "LAA: Added an overflow assumption\n");
941 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
942 } else
943 return 0;
944 }
Adam Nemet04563272015-02-01 16:56:15 +0000945
946 return Stride;
947}
948
Haicheng Wuf1c00a22016-01-26 02:27:47 +0000949/// Take the pointer operand from the Load/Store instruction.
950/// Returns NULL if this is not a valid Load/Store instruction.
951static Value *getPointerOperand(Value *I) {
952 if (LoadInst *LI = dyn_cast<LoadInst>(I))
953 return LI->getPointerOperand();
954 if (StoreInst *SI = dyn_cast<StoreInst>(I))
955 return SI->getPointerOperand();
956 return nullptr;
957}
958
959/// Take the address space operand from the Load/Store instruction.
960/// Returns -1 if this is not a valid Load/Store instruction.
961static unsigned getAddressSpaceOperand(Value *I) {
962 if (LoadInst *L = dyn_cast<LoadInst>(I))
963 return L->getPointerAddressSpace();
964 if (StoreInst *S = dyn_cast<StoreInst>(I))
965 return S->getPointerAddressSpace();
966 return -1;
967}
968
969/// Returns true if the memory operations \p A and \p B are consecutive.
970bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
971 ScalarEvolution &SE, bool CheckType) {
972 Value *PtrA = getPointerOperand(A);
973 Value *PtrB = getPointerOperand(B);
974 unsigned ASA = getAddressSpaceOperand(A);
975 unsigned ASB = getAddressSpaceOperand(B);
976
977 // Check that the address spaces match and that the pointers are valid.
978 if (!PtrA || !PtrB || (ASA != ASB))
979 return false;
980
981 // Make sure that A and B are different pointers.
982 if (PtrA == PtrB)
983 return false;
984
985 // Make sure that A and B have the same type if required.
986 if(CheckType && PtrA->getType() != PtrB->getType())
987 return false;
988
989 unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
990 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
991 APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty));
992
993 APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
994 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
995 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
996
997 // OffsetDelta = OffsetB - OffsetA;
998 const SCEV *OffsetSCEVA = SE.getConstant(OffsetA);
999 const SCEV *OffsetSCEVB = SE.getConstant(OffsetB);
1000 const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA);
1001 const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV);
1002 const APInt &OffsetDelta = OffsetDeltaC->getAPInt();
1003 // Check if they are based on the same pointer. That makes the offsets
1004 // sufficient.
1005 if (PtrA == PtrB)
1006 return OffsetDelta == Size;
1007
1008 // Compute the necessary base pointer delta to have the necessary final delta
1009 // equal to the size.
1010 // BaseDelta = Size - OffsetDelta;
1011 const SCEV *SizeSCEV = SE.getConstant(Size);
1012 const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV);
1013
1014 // Otherwise compute the distance with SCEV between the base pointers.
1015 const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1016 const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1017 const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta);
1018 return X == PtrSCEVB;
1019}
1020
Adam Nemet9c926572015-03-10 17:40:37 +00001021bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
1022 switch (Type) {
1023 case NoDep:
1024 case Forward:
1025 case BackwardVectorizable:
1026 return true;
1027
1028 case Unknown:
1029 case ForwardButPreventsForwarding:
1030 case Backward:
1031 case BackwardVectorizableButPreventsForwarding:
1032 return false;
1033 }
David Majnemerd388e932015-03-10 20:23:29 +00001034 llvm_unreachable("unexpected DepType!");
Adam Nemet9c926572015-03-10 17:40:37 +00001035}
1036
Adam Nemet397f5822015-11-03 23:50:03 +00001037bool MemoryDepChecker::Dependence::isBackward() const {
Adam Nemet9c926572015-03-10 17:40:37 +00001038 switch (Type) {
1039 case NoDep:
1040 case Forward:
1041 case ForwardButPreventsForwarding:
Adam Nemet397f5822015-11-03 23:50:03 +00001042 case Unknown:
Adam Nemet9c926572015-03-10 17:40:37 +00001043 return false;
1044
Adam Nemet9c926572015-03-10 17:40:37 +00001045 case BackwardVectorizable:
1046 case Backward:
1047 case BackwardVectorizableButPreventsForwarding:
1048 return true;
1049 }
David Majnemerd388e932015-03-10 20:23:29 +00001050 llvm_unreachable("unexpected DepType!");
Adam Nemet9c926572015-03-10 17:40:37 +00001051}
1052
Adam Nemet397f5822015-11-03 23:50:03 +00001053bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1054 return isBackward() || Type == Unknown;
1055}
1056
1057bool MemoryDepChecker::Dependence::isForward() const {
1058 switch (Type) {
1059 case Forward:
1060 case ForwardButPreventsForwarding:
1061 return true;
1062
1063 case NoDep:
1064 case Unknown:
1065 case BackwardVectorizable:
1066 case Backward:
1067 case BackwardVectorizableButPreventsForwarding:
1068 return false;
1069 }
1070 llvm_unreachable("unexpected DepType!");
1071}
1072
Adam Nemet04563272015-02-01 16:56:15 +00001073bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
1074 unsigned TypeByteSize) {
1075 // If loads occur at a distance that is not a multiple of a feasible vector
1076 // factor store-load forwarding does not take place.
1077 // Positive dependences might cause troubles because vectorizing them might
1078 // prevent store-load forwarding making vectorized code run a lot slower.
1079 // a[i] = a[i-3] ^ a[i-8];
1080 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1081 // hence on your typical architecture store-load forwarding does not take
1082 // place. Vectorizing in such cases does not make sense.
1083 // Store-load forwarding distance.
Adam Nemet884d3132016-05-16 16:57:47 +00001084
1085 // After this many iterations store-to-load forwarding conflicts should not
1086 // cause any slowdowns.
1087 const unsigned NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
Adam Nemet04563272015-02-01 16:56:15 +00001088 // Maximum vector factor.
Adam Nemet2c34ab52016-05-12 21:41:53 +00001089 unsigned MaxVFWithoutSLForwardIssues = std::min(
1090 VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes);
Adam Nemet04563272015-02-01 16:56:15 +00001091
Adam Nemet884d3132016-05-16 16:57:47 +00001092 // Compute the smallest VF at which the store and load would be misaligned.
Adam Nemet9b5852a2016-05-16 16:57:42 +00001093 for (unsigned VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
1094 VF *= 2) {
Adam Nemet884d3132016-05-16 16:57:47 +00001095 // If the number of vector iteration between the store and the load are
1096 // small we could incur conflicts.
1097 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
Adam Nemet9b5852a2016-05-16 16:57:42 +00001098 MaxVFWithoutSLForwardIssues = (VF >>= 1);
Adam Nemet04563272015-02-01 16:56:15 +00001099 break;
1100 }
1101 }
1102
Adam Nemet9b5852a2016-05-16 16:57:42 +00001103 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
1104 DEBUG(dbgs() << "LAA: Distance " << Distance
1105 << " that could cause a store-load forwarding conflict\n");
Adam Nemet04563272015-02-01 16:56:15 +00001106 return true;
1107 }
1108
1109 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
Adam Nemetf219c642015-02-19 19:14:52 +00001110 MaxVFWithoutSLForwardIssues !=
Adam Nemet9b5852a2016-05-16 16:57:42 +00001111 VectorizerParams::MaxVectorWidth * TypeByteSize)
Adam Nemet04563272015-02-01 16:56:15 +00001112 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
1113 return false;
1114}
1115
Hao Liu751004a2015-06-08 04:48:37 +00001116/// \brief Check the dependence for two accesses with the same stride \p Stride.
1117/// \p Distance is the positive distance and \p TypeByteSize is type size in
1118/// bytes.
1119///
1120/// \returns true if they are independent.
1121static bool areStridedAccessesIndependent(unsigned Distance, unsigned Stride,
1122 unsigned TypeByteSize) {
1123 assert(Stride > 1 && "The stride must be greater than 1");
1124 assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1125 assert(Distance > 0 && "The distance must be non-zero");
1126
1127 // Skip if the distance is not multiple of type byte size.
1128 if (Distance % TypeByteSize)
1129 return false;
1130
1131 unsigned ScaledDist = Distance / TypeByteSize;
1132
1133 // No dependence if the scaled distance is not multiple of the stride.
1134 // E.g.
1135 // for (i = 0; i < 1024 ; i += 4)
1136 // A[i+2] = A[i] + 1;
1137 //
1138 // Two accesses in memory (scaled distance is 2, stride is 4):
1139 // | A[0] | | | | A[4] | | | |
1140 // | | | A[2] | | | | A[6] | |
1141 //
1142 // E.g.
1143 // for (i = 0; i < 1024 ; i += 3)
1144 // A[i+4] = A[i] + 1;
1145 //
1146 // Two accesses in memory (scaled distance is 4, stride is 3):
1147 // | A[0] | | | A[3] | | | A[6] | | |
1148 // | | | | | A[4] | | | A[7] | |
1149 return ScaledDist % Stride;
1150}
1151
Adam Nemet9c926572015-03-10 17:40:37 +00001152MemoryDepChecker::Dependence::DepType
1153MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
1154 const MemAccessInfo &B, unsigned BIdx,
1155 const ValueToValueMap &Strides) {
Adam Nemet04563272015-02-01 16:56:15 +00001156 assert (AIdx < BIdx && "Must pass arguments in program order");
1157
1158 Value *APtr = A.getPointer();
1159 Value *BPtr = B.getPointer();
1160 bool AIsWrite = A.getInt();
1161 bool BIsWrite = B.getInt();
1162
1163 // Two reads are independent.
1164 if (!AIsWrite && !BIsWrite)
Adam Nemet9c926572015-03-10 17:40:37 +00001165 return Dependence::NoDep;
Adam Nemet04563272015-02-01 16:56:15 +00001166
1167 // We cannot check pointers in different address spaces.
1168 if (APtr->getType()->getPointerAddressSpace() !=
1169 BPtr->getType()->getPointerAddressSpace())
Adam Nemet9c926572015-03-10 17:40:37 +00001170 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001171
Denis Zobnin15d1e642016-05-10 05:55:16 +00001172 int StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true);
1173 int StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true);
Adam Nemet04563272015-02-01 16:56:15 +00001174
Silviu Barangaadf4b732016-05-10 12:28:49 +00001175 const SCEV *Src = PSE.getSCEV(APtr);
1176 const SCEV *Sink = PSE.getSCEV(BPtr);
Adam Nemet04563272015-02-01 16:56:15 +00001177
1178 // If the induction step is negative we have to invert source and sink of the
1179 // dependence.
1180 if (StrideAPtr < 0) {
Adam Nemet04563272015-02-01 16:56:15 +00001181 std::swap(APtr, BPtr);
1182 std::swap(Src, Sink);
1183 std::swap(AIsWrite, BIsWrite);
1184 std::swap(AIdx, BIdx);
1185 std::swap(StrideAPtr, StrideBPtr);
1186 }
1187
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001188 const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src);
Adam Nemet04563272015-02-01 16:56:15 +00001189
Adam Nemet339f42b2015-02-19 19:15:07 +00001190 DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001191 << "(Induction step: " << StrideAPtr << ")\n");
Adam Nemet339f42b2015-02-19 19:15:07 +00001192 DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001193 << *InstMap[BIdx] << ": " << *Dist << "\n");
Adam Nemet04563272015-02-01 16:56:15 +00001194
Adam Nemet943befe2015-07-09 00:03:22 +00001195 // Need accesses with constant stride. We don't want to vectorize
Adam Nemet04563272015-02-01 16:56:15 +00001196 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
1197 // the address space.
1198 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
Adam Nemet943befe2015-07-09 00:03:22 +00001199 DEBUG(dbgs() << "Pointer access with non-constant stride\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001200 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001201 }
1202
1203 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
1204 if (!C) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001205 DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
Adam Nemet04563272015-02-01 16:56:15 +00001206 ShouldRetryWithRuntimeCheck = true;
Adam Nemet9c926572015-03-10 17:40:37 +00001207 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001208 }
1209
1210 Type *ATy = APtr->getType()->getPointerElementType();
1211 Type *BTy = BPtr->getType()->getPointerElementType();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001212 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
1213 unsigned TypeByteSize = DL.getTypeAllocSize(ATy);
Adam Nemet04563272015-02-01 16:56:15 +00001214
1215 // Negative distances are not plausible dependencies.
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001216 const APInt &Val = C->getAPInt();
Adam Nemet04563272015-02-01 16:56:15 +00001217 if (Val.isNegative()) {
1218 bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
Matthew Simpson37ec5f92016-05-16 17:00:56 +00001219 if (IsTrueDataDependence && EnableForwardingConflictDetection &&
Adam Nemet04563272015-02-01 16:56:15 +00001220 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
Adam Nemetb8486e52016-03-01 00:50:08 +00001221 ATy != BTy)) {
1222 DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001223 return Dependence::ForwardButPreventsForwarding;
Adam Nemetb8486e52016-03-01 00:50:08 +00001224 }
Adam Nemet04563272015-02-01 16:56:15 +00001225
Adam Nemet724ab222016-05-05 23:41:28 +00001226 DEBUG(dbgs() << "LAA: Dependence is negative\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001227 return Dependence::Forward;
Adam Nemet04563272015-02-01 16:56:15 +00001228 }
1229
1230 // Write to the same location with the same size.
1231 // Could be improved to assert type sizes are the same (i32 == float, etc).
1232 if (Val == 0) {
1233 if (ATy == BTy)
Adam Nemetd7037c52015-11-03 20:13:43 +00001234 return Dependence::Forward;
Adam Nemet339f42b2015-02-19 19:15:07 +00001235 DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001236 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001237 }
1238
1239 assert(Val.isStrictlyPositive() && "Expect a positive value");
1240
Adam Nemet04563272015-02-01 16:56:15 +00001241 if (ATy != BTy) {
Adam Nemet04d41632015-02-19 19:14:34 +00001242 DEBUG(dbgs() <<
Adam Nemet339f42b2015-02-19 19:15:07 +00001243 "LAA: ReadWrite-Write positive dependency with different types\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001244 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001245 }
1246
1247 unsigned Distance = (unsigned) Val.getZExtValue();
1248
Hao Liu751004a2015-06-08 04:48:37 +00001249 unsigned Stride = std::abs(StrideAPtr);
1250 if (Stride > 1 &&
Adam Nemet0131a562015-07-08 18:47:38 +00001251 areStridedAccessesIndependent(Distance, Stride, TypeByteSize)) {
1252 DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
Hao Liu751004a2015-06-08 04:48:37 +00001253 return Dependence::NoDep;
Adam Nemet0131a562015-07-08 18:47:38 +00001254 }
Hao Liu751004a2015-06-08 04:48:37 +00001255
Adam Nemet04563272015-02-01 16:56:15 +00001256 // Bail out early if passed-in parameters make vectorization not feasible.
Adam Nemetf219c642015-02-19 19:14:52 +00001257 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1258 VectorizerParams::VectorizationFactor : 1);
1259 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1260 VectorizerParams::VectorizationInterleave : 1);
Hao Liu751004a2015-06-08 04:48:37 +00001261 // The minimum number of iterations for a vectorized/unrolled version.
1262 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
Adam Nemet04563272015-02-01 16:56:15 +00001263
Hao Liu751004a2015-06-08 04:48:37 +00001264 // It's not vectorizable if the distance is smaller than the minimum distance
1265 // needed for a vectroized/unrolled version. Vectorizing one iteration in
1266 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1267 // TypeByteSize (No need to plus the last gap distance).
1268 //
1269 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1270 // foo(int *A) {
1271 // int *B = (int *)((char *)A + 14);
1272 // for (i = 0 ; i < 1024 ; i += 2)
1273 // B[i] = A[i] + 1;
1274 // }
1275 //
1276 // Two accesses in memory (stride is 2):
1277 // | A[0] | | A[2] | | A[4] | | A[6] | |
1278 // | B[0] | | B[2] | | B[4] |
1279 //
1280 // Distance needs for vectorizing iterations except the last iteration:
1281 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1282 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1283 //
1284 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1285 // 12, which is less than distance.
1286 //
1287 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1288 // the minimum distance needed is 28, which is greater than distance. It is
1289 // not safe to do vectorization.
1290 unsigned MinDistanceNeeded =
1291 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
1292 if (MinDistanceNeeded > Distance) {
1293 DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance
1294 << '\n');
1295 return Dependence::Backward;
1296 }
1297
1298 // Unsafe if the minimum distance needed is greater than max safe distance.
1299 if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1300 DEBUG(dbgs() << "LAA: Failure because it needs at least "
1301 << MinDistanceNeeded << " size in bytes");
Adam Nemet9c926572015-03-10 17:40:37 +00001302 return Dependence::Backward;
Adam Nemet04563272015-02-01 16:56:15 +00001303 }
1304
Adam Nemet9cc0c392015-02-26 17:58:48 +00001305 // Positive distance bigger than max vectorization factor.
Hao Liu751004a2015-06-08 04:48:37 +00001306 // FIXME: Should use max factor instead of max distance in bytes, which could
1307 // not handle different types.
1308 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1309 // void foo (int *A, char *B) {
1310 // for (unsigned i = 0; i < 1024; i++) {
1311 // A[i+2] = A[i] + 1;
1312 // B[i+2] = B[i] + 1;
1313 // }
1314 // }
1315 //
1316 // This case is currently unsafe according to the max safe distance. If we
1317 // analyze the two accesses on array B, the max safe dependence distance
1318 // is 2. Then we analyze the accesses on array A, the minimum distance needed
1319 // is 8, which is less than 2 and forbidden vectorization, But actually
1320 // both A and B could be vectorized by 2 iterations.
1321 MaxSafeDepDistBytes =
1322 Distance < MaxSafeDepDistBytes ? Distance : MaxSafeDepDistBytes;
Adam Nemet04563272015-02-01 16:56:15 +00001323
1324 bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
Matthew Simpson37ec5f92016-05-16 17:00:56 +00001325 if (IsTrueDataDependence && EnableForwardingConflictDetection &&
Adam Nemet04563272015-02-01 16:56:15 +00001326 couldPreventStoreLoadForward(Distance, TypeByteSize))
Adam Nemet9c926572015-03-10 17:40:37 +00001327 return Dependence::BackwardVectorizableButPreventsForwarding;
Adam Nemet04563272015-02-01 16:56:15 +00001328
Hao Liu751004a2015-06-08 04:48:37 +00001329 DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
1330 << " with max VF = "
1331 << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n');
Adam Nemet04563272015-02-01 16:56:15 +00001332
Adam Nemet9c926572015-03-10 17:40:37 +00001333 return Dependence::BackwardVectorizable;
Adam Nemet04563272015-02-01 16:56:15 +00001334}
1335
Adam Nemetdee666b2015-03-10 17:40:34 +00001336bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
Adam Nemet04563272015-02-01 16:56:15 +00001337 MemAccessInfoSet &CheckDeps,
Adam Nemet8bc61df2015-02-24 00:41:59 +00001338 const ValueToValueMap &Strides) {
Adam Nemet04563272015-02-01 16:56:15 +00001339
1340 MaxSafeDepDistBytes = -1U;
1341 while (!CheckDeps.empty()) {
1342 MemAccessInfo CurAccess = *CheckDeps.begin();
1343
1344 // Get the relevant memory access set.
1345 EquivalenceClasses<MemAccessInfo>::iterator I =
1346 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
1347
1348 // Check accesses within this set.
Richard Trieu7a083812016-02-18 22:09:30 +00001349 EquivalenceClasses<MemAccessInfo>::member_iterator AI =
1350 AccessSets.member_begin(I);
1351 EquivalenceClasses<MemAccessInfo>::member_iterator AE =
1352 AccessSets.member_end();
Adam Nemet04563272015-02-01 16:56:15 +00001353
1354 // Check every access pair.
1355 while (AI != AE) {
1356 CheckDeps.erase(*AI);
1357 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
1358 while (OI != AE) {
1359 // Check every accessing instruction pair in program order.
1360 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
1361 I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
1362 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
1363 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
Adam Nemet9c926572015-03-10 17:40:37 +00001364 auto A = std::make_pair(&*AI, *I1);
1365 auto B = std::make_pair(&*OI, *I2);
1366
1367 assert(*I1 != *I2);
1368 if (*I1 > *I2)
1369 std::swap(A, B);
1370
1371 Dependence::DepType Type =
1372 isDependent(*A.first, A.second, *B.first, B.second, Strides);
1373 SafeForVectorization &= Dependence::isSafeForVectorization(Type);
1374
Adam Nemeta2df7502015-11-03 21:39:52 +00001375 // Gather dependences unless we accumulated MaxDependences
Adam Nemet9c926572015-03-10 17:40:37 +00001376 // dependences. In that case return as soon as we find the first
1377 // unsafe dependence. This puts a limit on this quadratic
1378 // algorithm.
Adam Nemeta2df7502015-11-03 21:39:52 +00001379 if (RecordDependences) {
1380 if (Type != Dependence::NoDep)
1381 Dependences.push_back(Dependence(A.second, B.second, Type));
Adam Nemet9c926572015-03-10 17:40:37 +00001382
Adam Nemeta2df7502015-11-03 21:39:52 +00001383 if (Dependences.size() >= MaxDependences) {
1384 RecordDependences = false;
1385 Dependences.clear();
Adam Nemet9c926572015-03-10 17:40:37 +00001386 DEBUG(dbgs() << "Too many dependences, stopped recording\n");
1387 }
1388 }
Adam Nemeta2df7502015-11-03 21:39:52 +00001389 if (!RecordDependences && !SafeForVectorization)
Adam Nemet04563272015-02-01 16:56:15 +00001390 return false;
1391 }
1392 ++OI;
1393 }
1394 AI++;
1395 }
1396 }
Adam Nemet9c926572015-03-10 17:40:37 +00001397
Adam Nemeta2df7502015-11-03 21:39:52 +00001398 DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001399 return SafeForVectorization;
Adam Nemet04563272015-02-01 16:56:15 +00001400}
1401
Adam Nemetec1e2bb2015-03-10 18:54:26 +00001402SmallVector<Instruction *, 4>
1403MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
1404 MemAccessInfo Access(Ptr, isWrite);
1405 auto &IndexVector = Accesses.find(Access)->second;
1406
1407 SmallVector<Instruction *, 4> Insts;
1408 std::transform(IndexVector.begin(), IndexVector.end(),
1409 std::back_inserter(Insts),
1410 [&](unsigned Idx) { return this->InstMap[Idx]; });
1411 return Insts;
1412}
1413
Adam Nemet58913d62015-03-10 17:40:43 +00001414const char *MemoryDepChecker::Dependence::DepName[] = {
1415 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
1416 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
1417
1418void MemoryDepChecker::Dependence::print(
1419 raw_ostream &OS, unsigned Depth,
1420 const SmallVectorImpl<Instruction *> &Instrs) const {
1421 OS.indent(Depth) << DepName[Type] << ":\n";
1422 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
1423 OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
1424}
1425
Adam Nemet929c38e2015-02-19 19:15:10 +00001426bool LoopAccessInfo::canAnalyzeLoop() {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001427 // We need to have a loop header.
Adam Nemetd8968f02016-01-18 21:16:33 +00001428 DEBUG(dbgs() << "LAA: Found a loop in "
1429 << TheLoop->getHeader()->getParent()->getName() << ": "
1430 << TheLoop->getHeader()->getName() << '\n');
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001431
Adam Nemetd8968f02016-01-18 21:16:33 +00001432 // We can only analyze innermost loops.
Adam Nemet929c38e2015-02-19 19:15:10 +00001433 if (!TheLoop->empty()) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001434 DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
Adam Nemet2bd6e982015-02-19 19:15:15 +00001435 emitAnalysis(LoopAccessReport() << "loop is not the innermost loop");
Adam Nemet929c38e2015-02-19 19:15:10 +00001436 return false;
1437 }
1438
1439 // We must have a single backedge.
1440 if (TheLoop->getNumBackEdges() != 1) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001441 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
Adam Nemet929c38e2015-02-19 19:15:10 +00001442 emitAnalysis(
Adam Nemet2bd6e982015-02-19 19:15:15 +00001443 LoopAccessReport() <<
Adam Nemet929c38e2015-02-19 19:15:10 +00001444 "loop control flow is not understood by analyzer");
1445 return false;
1446 }
1447
1448 // We must have a single exiting block.
1449 if (!TheLoop->getExitingBlock()) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001450 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
Adam Nemet929c38e2015-02-19 19:15:10 +00001451 emitAnalysis(
Adam Nemet2bd6e982015-02-19 19:15:15 +00001452 LoopAccessReport() <<
Adam Nemet929c38e2015-02-19 19:15:10 +00001453 "loop control flow is not understood by analyzer");
1454 return false;
1455 }
1456
1457 // We only handle bottom-tested loops, i.e. loop in which the condition is
1458 // checked at the end of each iteration. With that we can assume that all
1459 // instructions in the loop are executed the same number of times.
1460 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001461 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
Adam Nemet929c38e2015-02-19 19:15:10 +00001462 emitAnalysis(
Adam Nemet2bd6e982015-02-19 19:15:15 +00001463 LoopAccessReport() <<
Adam Nemet929c38e2015-02-19 19:15:10 +00001464 "loop control flow is not understood by analyzer");
1465 return false;
1466 }
1467
Adam Nemet929c38e2015-02-19 19:15:10 +00001468 // ScalarEvolution needs to be able to find the exit count.
Silviu Baranga6f444df2016-04-08 14:29:09 +00001469 const SCEV *ExitCount = PSE.getBackedgeTakenCount();
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001470 if (ExitCount == PSE.getSE()->getCouldNotCompute()) {
1471 emitAnalysis(LoopAccessReport()
1472 << "could not determine number of loop iterations");
Adam Nemet929c38e2015-02-19 19:15:10 +00001473 DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
1474 return false;
1475 }
1476
1477 return true;
1478}
1479
Adam Nemet8bc61df2015-02-24 00:41:59 +00001480void LoopAccessInfo::analyzeLoop(const ValueToValueMap &Strides) {
Adam Nemet04563272015-02-01 16:56:15 +00001481
1482 typedef SmallVector<Value*, 16> ValueVector;
1483 typedef SmallPtrSet<Value*, 16> ValueSet;
1484
1485 // Holds the Load and Store *instructions*.
1486 ValueVector Loads;
1487 ValueVector Stores;
1488
1489 // Holds all the different accesses in the loop.
1490 unsigned NumReads = 0;
1491 unsigned NumReadWrites = 0;
1492
Adam Nemet7cdebac2015-07-14 22:32:44 +00001493 PtrRtChecking.Pointers.clear();
1494 PtrRtChecking.Need = false;
Adam Nemet04563272015-02-01 16:56:15 +00001495
1496 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
Adam Nemet04563272015-02-01 16:56:15 +00001497
1498 // For each block.
1499 for (Loop::block_iterator bb = TheLoop->block_begin(),
1500 be = TheLoop->block_end(); bb != be; ++bb) {
1501
1502 // Scan the BB and collect legal loads and stores.
1503 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
1504 ++it) {
1505
1506 // If this is a load, save it. If this instruction can read from memory
1507 // but is not a load, then we quit. Notice that we don't handle function
1508 // calls that read or write.
1509 if (it->mayReadFromMemory()) {
1510 // Many math library functions read the rounding mode. We will only
1511 // vectorize a loop if it contains known function calls that don't set
1512 // the flag. Therefore, it is safe to ignore this read from memory.
1513 CallInst *Call = dyn_cast<CallInst>(it);
David Majnemerb4b27232016-04-19 19:10:21 +00001514 if (Call && getVectorIntrinsicIDForCall(Call, TLI))
Adam Nemet04563272015-02-01 16:56:15 +00001515 continue;
1516
Michael Zolotukhin9b3cf602015-03-17 19:46:50 +00001517 // If the function has an explicit vectorized counterpart, we can safely
1518 // assume that it can be vectorized.
1519 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
1520 TLI->isFunctionVectorizable(Call->getCalledFunction()->getName()))
1521 continue;
1522
Adam Nemet04563272015-02-01 16:56:15 +00001523 LoadInst *Ld = dyn_cast<LoadInst>(it);
1524 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
Adam Nemet2bd6e982015-02-19 19:15:15 +00001525 emitAnalysis(LoopAccessReport(Ld)
Adam Nemet04563272015-02-01 16:56:15 +00001526 << "read with atomic ordering or volatile read");
Adam Nemet339f42b2015-02-19 19:15:07 +00001527 DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001528 CanVecMem = false;
1529 return;
Adam Nemet04563272015-02-01 16:56:15 +00001530 }
1531 NumLoads++;
1532 Loads.push_back(Ld);
1533 DepChecker.addAccess(Ld);
1534 continue;
1535 }
1536
1537 // Save 'store' instructions. Abort if other instructions write to memory.
1538 if (it->mayWriteToMemory()) {
1539 StoreInst *St = dyn_cast<StoreInst>(it);
1540 if (!St) {
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +00001541 emitAnalysis(LoopAccessReport(&*it) <<
Adam Nemet04d41632015-02-19 19:14:34 +00001542 "instruction cannot be vectorized");
Adam Nemet436018c2015-02-19 19:15:00 +00001543 CanVecMem = false;
1544 return;
Adam Nemet04563272015-02-01 16:56:15 +00001545 }
1546 if (!St->isSimple() && !IsAnnotatedParallel) {
Adam Nemet2bd6e982015-02-19 19:15:15 +00001547 emitAnalysis(LoopAccessReport(St)
Adam Nemet04563272015-02-01 16:56:15 +00001548 << "write with atomic ordering or volatile write");
Adam Nemet339f42b2015-02-19 19:15:07 +00001549 DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001550 CanVecMem = false;
1551 return;
Adam Nemet04563272015-02-01 16:56:15 +00001552 }
1553 NumStores++;
1554 Stores.push_back(St);
1555 DepChecker.addAccess(St);
1556 }
1557 } // Next instr.
1558 } // Next block.
1559
1560 // Now we have two lists that hold the loads and the stores.
1561 // Next, we find the pointers that they use.
1562
1563 // Check if we see any stores. If there are no stores, then we don't
1564 // care if the pointers are *restrict*.
1565 if (!Stores.size()) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001566 DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001567 CanVecMem = true;
1568 return;
Adam Nemet04563272015-02-01 16:56:15 +00001569 }
1570
Adam Nemetdee666b2015-03-10 17:40:34 +00001571 MemoryDepChecker::DepCandidates DependentAccesses;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001572 AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001573 AA, LI, DependentAccesses, PSE);
Adam Nemet04563272015-02-01 16:56:15 +00001574
1575 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
1576 // multiple times on the same object. If the ptr is accessed twice, once
1577 // for read and once for write, it will only appear once (on the write
1578 // list). This is okay, since we are going to check for conflicts between
1579 // writes and between reads and writes, but not between reads and reads.
1580 ValueSet Seen;
1581
1582 ValueVector::iterator I, IE;
1583 for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
1584 StoreInst *ST = cast<StoreInst>(*I);
1585 Value* Ptr = ST->getPointerOperand();
Adam Nemetce482502015-04-08 17:48:40 +00001586 // Check for store to loop invariant address.
1587 StoreToLoopInvariantAddress |= isUniform(Ptr);
Adam Nemet04563272015-02-01 16:56:15 +00001588 // If we did *not* see this pointer before, insert it to the read-write
1589 // list. At this phase it is only a 'write' list.
1590 if (Seen.insert(Ptr).second) {
1591 ++NumReadWrites;
1592
Chandler Carruthac80dc72015-06-17 07:18:54 +00001593 MemoryLocation Loc = MemoryLocation::get(ST);
Adam Nemet04563272015-02-01 16:56:15 +00001594 // The TBAA metadata could have a control dependency on the predication
1595 // condition, so we cannot rely on it when determining whether or not we
1596 // need runtime pointer checks.
Adam Nemet01abb2c2015-02-18 03:43:19 +00001597 if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
Adam Nemet04563272015-02-01 16:56:15 +00001598 Loc.AATags.TBAA = nullptr;
1599
1600 Accesses.addStore(Loc);
1601 }
1602 }
1603
1604 if (IsAnnotatedParallel) {
Adam Nemet04d41632015-02-19 19:14:34 +00001605 DEBUG(dbgs()
Adam Nemet339f42b2015-02-19 19:15:07 +00001606 << "LAA: A loop annotated parallel, ignore memory dependency "
Adam Nemet04d41632015-02-19 19:14:34 +00001607 << "checks.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001608 CanVecMem = true;
1609 return;
Adam Nemet04563272015-02-01 16:56:15 +00001610 }
1611
1612 for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
1613 LoadInst *LD = cast<LoadInst>(*I);
1614 Value* Ptr = LD->getPointerOperand();
1615 // If we did *not* see this pointer before, insert it to the
1616 // read list. If we *did* see it before, then it is already in
1617 // the read-write list. This allows us to vectorize expressions
1618 // such as A[i] += x; Because the address of A[i] is a read-write
1619 // pointer. This only works if the index of A[i] is consecutive.
1620 // If the address of i is unknown (for example A[B[i]]) then we may
1621 // read a few words, modify, and write a few words, and some of the
1622 // words may be written to the same address.
1623 bool IsReadOnlyPtr = false;
Denis Zobnin15d1e642016-05-10 05:55:16 +00001624 if (Seen.insert(Ptr).second || !getPtrStride(PSE, Ptr, TheLoop, Strides)) {
Adam Nemet04563272015-02-01 16:56:15 +00001625 ++NumReads;
1626 IsReadOnlyPtr = true;
1627 }
1628
Chandler Carruthac80dc72015-06-17 07:18:54 +00001629 MemoryLocation Loc = MemoryLocation::get(LD);
Adam Nemet04563272015-02-01 16:56:15 +00001630 // The TBAA metadata could have a control dependency on the predication
1631 // condition, so we cannot rely on it when determining whether or not we
1632 // need runtime pointer checks.
Adam Nemet01abb2c2015-02-18 03:43:19 +00001633 if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
Adam Nemet04563272015-02-01 16:56:15 +00001634 Loc.AATags.TBAA = nullptr;
1635
1636 Accesses.addLoad(Loc, IsReadOnlyPtr);
1637 }
1638
1639 // If we write (or read-write) to a single destination and there are no
1640 // other reads in this loop then is it safe to vectorize.
1641 if (NumReadWrites == 1 && NumReads == 0) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001642 DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001643 CanVecMem = true;
1644 return;
Adam Nemet04563272015-02-01 16:56:15 +00001645 }
1646
1647 // Build dependence sets and check whether we need a runtime pointer bounds
1648 // check.
1649 Accesses.buildDependenceSets();
Adam Nemet04563272015-02-01 16:56:15 +00001650
1651 // Find pointers with computable bounds. We are going to use this information
1652 // to place a runtime bound check.
Adam Nemetee614742015-07-09 22:17:38 +00001653 bool CanDoRTIfNeeded =
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001654 Accesses.canCheckPtrAtRT(PtrRtChecking, PSE.getSE(), TheLoop, Strides);
Adam Nemetee614742015-07-09 22:17:38 +00001655 if (!CanDoRTIfNeeded) {
Adam Nemet2bd6e982015-02-19 19:15:15 +00001656 emitAnalysis(LoopAccessReport() << "cannot identify array bounds");
Adam Nemetee614742015-07-09 22:17:38 +00001657 DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
1658 << "the array bounds.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001659 CanVecMem = false;
1660 return;
Adam Nemet04563272015-02-01 16:56:15 +00001661 }
1662
Adam Nemetee614742015-07-09 22:17:38 +00001663 DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n");
Adam Nemet04563272015-02-01 16:56:15 +00001664
Adam Nemet436018c2015-02-19 19:15:00 +00001665 CanVecMem = true;
Adam Nemet04563272015-02-01 16:56:15 +00001666 if (Accesses.isDependencyCheckNeeded()) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001667 DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
Adam Nemet04563272015-02-01 16:56:15 +00001668 CanVecMem = DepChecker.areDepsSafe(
1669 DependentAccesses, Accesses.getDependenciesToCheck(), Strides);
1670 MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
1671
1672 if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001673 DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
Adam Nemet04563272015-02-01 16:56:15 +00001674
1675 // Clear the dependency checks. We assume they are not needed.
Adam Nemetdf3dc5b2015-05-18 15:37:03 +00001676 Accesses.resetDepChecks(DepChecker);
Adam Nemet04563272015-02-01 16:56:15 +00001677
Adam Nemet7cdebac2015-07-14 22:32:44 +00001678 PtrRtChecking.reset();
1679 PtrRtChecking.Need = true;
Adam Nemet04563272015-02-01 16:56:15 +00001680
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001681 auto *SE = PSE.getSE();
Adam Nemetee614742015-07-09 22:17:38 +00001682 CanDoRTIfNeeded =
Adam Nemet7cdebac2015-07-14 22:32:44 +00001683 Accesses.canCheckPtrAtRT(PtrRtChecking, SE, TheLoop, Strides, true);
Silviu Baranga98a13712015-06-08 10:27:06 +00001684
Adam Nemet949e91a2015-03-10 19:12:41 +00001685 // Check that we found the bounds for the pointer.
Adam Nemetee614742015-07-09 22:17:38 +00001686 if (!CanDoRTIfNeeded) {
Adam Nemetb6dc76f2015-03-10 18:54:19 +00001687 emitAnalysis(LoopAccessReport()
1688 << "cannot check memory dependencies at runtime");
1689 DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
Adam Nemetb6dc76f2015-03-10 18:54:19 +00001690 CanVecMem = false;
1691 return;
1692 }
1693
Adam Nemet04563272015-02-01 16:56:15 +00001694 CanVecMem = true;
1695 }
1696 }
1697
Adam Nemet4bb90a72015-03-10 21:47:39 +00001698 if (CanVecMem)
1699 DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop. We"
Adam Nemet7cdebac2015-07-14 22:32:44 +00001700 << (PtrRtChecking.Need ? "" : " don't")
Adam Nemet0f67c6c2015-07-09 22:17:41 +00001701 << " need runtime memory checks.\n");
Adam Nemet4bb90a72015-03-10 21:47:39 +00001702 else {
Adam Nemet0a77dfa2016-05-09 23:03:44 +00001703 emitAnalysis(
1704 LoopAccessReport()
1705 << "unsafe dependent memory operations in loop. Use "
1706 "#pragma loop distribute(enable) to allow loop distribution "
1707 "to attempt to isolate the offending operations into a separate "
1708 "loop");
Adam Nemet4bb90a72015-03-10 21:47:39 +00001709 DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
1710 }
Adam Nemet04563272015-02-01 16:56:15 +00001711}
1712
Adam Nemet01abb2c2015-02-18 03:43:19 +00001713bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
1714 DominatorTree *DT) {
Adam Nemet04563272015-02-01 16:56:15 +00001715 assert(TheLoop->contains(BB) && "Unknown block used");
1716
1717 // Blocks that do not dominate the latch need predication.
1718 BasicBlock* Latch = TheLoop->getLoopLatch();
1719 return !DT->dominates(BB, Latch);
1720}
1721
Adam Nemet2bd6e982015-02-19 19:15:15 +00001722void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) {
Adam Nemetc9228532015-02-19 19:14:56 +00001723 assert(!Report && "Multiple reports generated");
1724 Report = Message;
Adam Nemet04563272015-02-01 16:56:15 +00001725}
1726
Adam Nemet57ac7662015-02-19 19:15:21 +00001727bool LoopAccessInfo::isUniform(Value *V) const {
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001728 return (PSE.getSE()->isLoopInvariant(PSE.getSE()->getSCEV(V), TheLoop));
Adam Nemet04563272015-02-01 16:56:15 +00001729}
Adam Nemet7206d7a2015-02-06 18:31:04 +00001730
1731// FIXME: this function is currently a duplicate of the one in
1732// LoopVectorize.cpp.
1733static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
1734 Instruction *Loc) {
1735 if (FirstInst)
1736 return FirstInst;
1737 if (Instruction *I = dyn_cast<Instruction>(V))
1738 return I->getParent() == Loc->getParent() ? I : nullptr;
1739 return nullptr;
1740}
1741
Benjamin Kramer039b1042015-10-28 13:54:36 +00001742namespace {
Adam Nemet4e533ef2015-08-21 23:19:57 +00001743/// \brief IR Values for the lower and upper bounds of a pointer evolution. We
1744/// need to use value-handles because SCEV expansion can invalidate previously
1745/// expanded values. Thus expansion of a pointer can invalidate the bounds for
1746/// a previous one.
Adam Nemet1da7df32015-07-26 05:32:14 +00001747struct PointerBounds {
Adam Nemet4e533ef2015-08-21 23:19:57 +00001748 TrackingVH<Value> Start;
1749 TrackingVH<Value> End;
Adam Nemet1da7df32015-07-26 05:32:14 +00001750};
Benjamin Kramer039b1042015-10-28 13:54:36 +00001751} // end anonymous namespace
Adam Nemet7206d7a2015-02-06 18:31:04 +00001752
Adam Nemet1da7df32015-07-26 05:32:14 +00001753/// \brief Expand code for the lower and upper bound of the pointer group \p CG
1754/// in \p TheLoop. \return the values for the bounds.
1755static PointerBounds
1756expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop,
1757 Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE,
1758 const RuntimePointerChecking &PtrRtChecking) {
1759 Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue;
1760 const SCEV *Sc = SE->getSCEV(Ptr);
1761
1762 if (SE->isLoopInvariant(Sc, TheLoop)) {
1763 DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr
1764 << "\n");
1765 return {Ptr, Ptr};
1766 } else {
1767 unsigned AS = Ptr->getType()->getPointerAddressSpace();
1768 LLVMContext &Ctx = Loc->getContext();
1769
1770 // Use this type for pointer arithmetic.
1771 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
1772 Value *Start = nullptr, *End = nullptr;
1773
1774 DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1775 Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
1776 End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
1777 DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n");
1778 return {Start, End};
1779 }
1780}
1781
1782/// \brief Turns a collection of checks into a collection of expanded upper and
1783/// lower bounds for both pointers in the check.
1784static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds(
1785 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks,
1786 Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp,
1787 const RuntimePointerChecking &PtrRtChecking) {
1788 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
1789
1790 // Here we're relying on the SCEV Expander's cache to only emit code for the
1791 // same bounds once.
1792 std::transform(
1793 PointerChecks.begin(), PointerChecks.end(),
1794 std::back_inserter(ChecksWithBounds),
1795 [&](const RuntimePointerChecking::PointerCheck &Check) {
NAKAMURA Takumi94abbbd2015-07-27 01:35:30 +00001796 PointerBounds
1797 First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking),
1798 Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking);
1799 return std::make_pair(First, Second);
Adam Nemet1da7df32015-07-26 05:32:14 +00001800 });
1801
1802 return ChecksWithBounds;
1803}
1804
Adam Nemet5b0a4792015-08-11 00:09:37 +00001805std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks(
Adam Nemet1da7df32015-07-26 05:32:14 +00001806 Instruction *Loc,
1807 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks)
1808 const {
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001809 auto *SE = PSE.getSE();
Adam Nemet1da7df32015-07-26 05:32:14 +00001810 SCEVExpander Exp(*SE, DL, "induction");
1811 auto ExpandedChecks =
1812 expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, PtrRtChecking);
Adam Nemet7206d7a2015-02-06 18:31:04 +00001813
1814 LLVMContext &Ctx = Loc->getContext();
Adam Nemet7206d7a2015-02-06 18:31:04 +00001815 Instruction *FirstInst = nullptr;
Adam Nemet7206d7a2015-02-06 18:31:04 +00001816 IRBuilder<> ChkBuilder(Loc);
1817 // Our instructions might fold to a constant.
1818 Value *MemoryRuntimeCheck = nullptr;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +00001819
Adam Nemet1da7df32015-07-26 05:32:14 +00001820 for (const auto &Check : ExpandedChecks) {
1821 const PointerBounds &A = Check.first, &B = Check.second;
Adam Nemetcdb791c2015-08-19 17:24:36 +00001822 // Check if two pointers (A and B) conflict where conflict is computed as:
1823 // start(A) <= end(B) && start(B) <= end(A)
Adam Nemet1da7df32015-07-26 05:32:14 +00001824 unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
1825 unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
Adam Nemet7206d7a2015-02-06 18:31:04 +00001826
Adam Nemet1da7df32015-07-26 05:32:14 +00001827 assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
1828 (AS1 == A.End->getType()->getPointerAddressSpace()) &&
1829 "Trying to bounds check pointers with different address spaces");
Adam Nemet7206d7a2015-02-06 18:31:04 +00001830
Adam Nemet1da7df32015-07-26 05:32:14 +00001831 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1832 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
Adam Nemet7206d7a2015-02-06 18:31:04 +00001833
Adam Nemet1da7df32015-07-26 05:32:14 +00001834 Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
1835 Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
1836 Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc");
1837 Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc");
Adam Nemet7206d7a2015-02-06 18:31:04 +00001838
Adam Nemet1da7df32015-07-26 05:32:14 +00001839 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
1840 FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
1841 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
1842 FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
1843 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1844 FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
1845 if (MemoryRuntimeCheck) {
1846 IsConflict =
1847 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
Adam Nemet7206d7a2015-02-06 18:31:04 +00001848 FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
Adam Nemet7206d7a2015-02-06 18:31:04 +00001849 }
Adam Nemet1da7df32015-07-26 05:32:14 +00001850 MemoryRuntimeCheck = IsConflict;
Adam Nemet7206d7a2015-02-06 18:31:04 +00001851 }
1852
Adam Nemet90fec842015-04-02 17:51:57 +00001853 if (!MemoryRuntimeCheck)
1854 return std::make_pair(nullptr, nullptr);
1855
Adam Nemet7206d7a2015-02-06 18:31:04 +00001856 // We have to do this trickery because the IRBuilder might fold the check to a
1857 // constant expression in which case there is no Instruction anchored in a
1858 // the block.
1859 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
1860 ConstantInt::getTrue(Ctx));
1861 ChkBuilder.Insert(Check, "memcheck.conflict");
1862 FirstInst = getFirstInst(FirstInst, Check, Loc);
1863 return std::make_pair(FirstInst, Check);
1864}
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001865
Adam Nemet5b0a4792015-08-11 00:09:37 +00001866std::pair<Instruction *, Instruction *>
1867LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const {
Adam Nemet1da7df32015-07-26 05:32:14 +00001868 if (!PtrRtChecking.Need)
1869 return std::make_pair(nullptr, nullptr);
1870
Adam Nemet5b0a4792015-08-11 00:09:37 +00001871 return addRuntimeChecks(Loc, PtrRtChecking.getChecks());
Adam Nemet1da7df32015-07-26 05:32:14 +00001872}
1873
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001874LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001875 const DataLayout &DL,
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001876 const TargetLibraryInfo *TLI, AliasAnalysis *AA,
Adam Nemete2b885c2015-04-23 20:09:20 +00001877 DominatorTree *DT, LoopInfo *LI,
Adam Nemet8bc61df2015-02-24 00:41:59 +00001878 const ValueToValueMap &Strides)
Silviu Barangaea63a7f2016-02-08 17:02:45 +00001879 : PSE(*SE, *L), PtrRtChecking(SE), DepChecker(PSE, L), TheLoop(L), DL(DL),
Adam Nemet7cdebac2015-07-14 22:32:44 +00001880 TLI(TLI), AA(AA), DT(DT), LI(LI), NumLoads(0), NumStores(0),
Adam Nemetce482502015-04-08 17:48:40 +00001881 MaxSafeDepDistBytes(-1U), CanVecMem(false),
1882 StoreToLoopInvariantAddress(false) {
Adam Nemet929c38e2015-02-19 19:15:10 +00001883 if (canAnalyzeLoop())
1884 analyzeLoop(Strides);
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001885}
1886
Adam Nemete91cc6e2015-02-19 19:15:19 +00001887void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
1888 if (CanVecMem) {
Adam Nemet4ad38b62016-05-13 22:49:09 +00001889 OS.indent(Depth) << "Memory dependences are safe";
Adam Nemetc62e5542016-05-13 22:49:13 +00001890 if (MaxSafeDepDistBytes != -1U)
1891 OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes
1892 << " bytes";
Adam Nemet7cdebac2015-07-14 22:32:44 +00001893 if (PtrRtChecking.Need)
Adam Nemet4ad38b62016-05-13 22:49:09 +00001894 OS << " with run-time checks";
1895 OS << "\n";
Adam Nemete91cc6e2015-02-19 19:15:19 +00001896 }
1897
1898 if (Report)
1899 OS.indent(Depth) << "Report: " << Report->str() << "\n";
1900
Adam Nemeta2df7502015-11-03 21:39:52 +00001901 if (auto *Dependences = DepChecker.getDependences()) {
1902 OS.indent(Depth) << "Dependences:\n";
1903 for (auto &Dep : *Dependences) {
Adam Nemet58913d62015-03-10 17:40:43 +00001904 Dep.print(OS, Depth + 2, DepChecker.getMemoryInstructions());
1905 OS << "\n";
1906 }
1907 } else
Adam Nemeta2df7502015-11-03 21:39:52 +00001908 OS.indent(Depth) << "Too many dependences, not recorded\n";
Adam Nemete91cc6e2015-02-19 19:15:19 +00001909
1910 // List the pair of accesses need run-time checks to prove independence.
Adam Nemet7cdebac2015-07-14 22:32:44 +00001911 PtrRtChecking.print(OS, Depth);
Adam Nemete91cc6e2015-02-19 19:15:19 +00001912 OS << "\n";
Adam Nemetc3384322015-05-18 15:36:57 +00001913
1914 OS.indent(Depth) << "Store to invariant address was "
1915 << (StoreToLoopInvariantAddress ? "" : "not ")
1916 << "found in loop.\n";
Silviu Barangae3c05342015-11-02 14:41:02 +00001917
1918 OS.indent(Depth) << "SCEV assumptions:\n";
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001919 PSE.getUnionPredicate().print(OS, Depth);
Silviu Barangab77365b2016-04-14 16:08:45 +00001920
1921 OS << "\n";
1922
1923 OS.indent(Depth) << "Expressions re-written:\n";
1924 PSE.print(OS, Depth);
Adam Nemete91cc6e2015-02-19 19:15:19 +00001925}
1926
Adam Nemet8bc61df2015-02-24 00:41:59 +00001927const LoopAccessInfo &
1928LoopAccessAnalysis::getInfo(Loop *L, const ValueToValueMap &Strides) {
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001929 auto &LAI = LoopAccessInfoMap[L];
1930
1931#ifndef NDEBUG
1932 assert((!LAI || LAI->NumSymbolicStrides == Strides.size()) &&
1933 "Symbolic strides changed for loop");
1934#endif
1935
1936 if (!LAI) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001937 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
Silviu Barangae3c05342015-11-02 14:41:02 +00001938 LAI =
1939 llvm::make_unique<LoopAccessInfo>(L, SE, DL, TLI, AA, DT, LI, Strides);
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001940#ifndef NDEBUG
1941 LAI->NumSymbolicStrides = Strides.size();
1942#endif
1943 }
1944 return *LAI.get();
1945}
1946
Adam Nemete91cc6e2015-02-19 19:15:19 +00001947void LoopAccessAnalysis::print(raw_ostream &OS, const Module *M) const {
1948 LoopAccessAnalysis &LAA = *const_cast<LoopAccessAnalysis *>(this);
1949
Adam Nemete91cc6e2015-02-19 19:15:19 +00001950 ValueToValueMap NoSymbolicStrides;
1951
1952 for (Loop *TopLevelLoop : *LI)
1953 for (Loop *L : depth_first(TopLevelLoop)) {
1954 OS.indent(2) << L->getHeader()->getName() << ":\n";
1955 auto &LAI = LAA.getInfo(L, NoSymbolicStrides);
1956 LAI.print(OS, 4);
1957 }
1958}
1959
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001960bool LoopAccessAnalysis::runOnFunction(Function &F) {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00001961 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001962 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1963 TLI = TLIP ? &TLIP->getTLI() : nullptr;
Chandler Carruth7b560d42015-09-09 17:55:00 +00001964 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001965 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
Adam Nemete2b885c2015-04-23 20:09:20 +00001966 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001967
1968 return false;
1969}
1970
1971void LoopAccessAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00001972 AU.addRequired<ScalarEvolutionWrapperPass>();
Chandler Carruth7b560d42015-09-09 17:55:00 +00001973 AU.addRequired<AAResultsWrapperPass>();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001974 AU.addRequired<DominatorTreeWrapperPass>();
Adam Nemete91cc6e2015-02-19 19:15:19 +00001975 AU.addRequired<LoopInfoWrapperPass>();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001976
1977 AU.setPreservesAll();
1978}
1979
1980char LoopAccessAnalysis::ID = 0;
1981static const char laa_name[] = "Loop Access Analysis";
1982#define LAA_NAME "loop-accesses"
1983
1984INITIALIZE_PASS_BEGIN(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
Chandler Carruth7b560d42015-09-09 17:55:00 +00001985INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
Chandler Carruth2f1fd162015-08-17 02:08:17 +00001986INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001987INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Adam Nemete91cc6e2015-02-19 19:15:19 +00001988INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001989INITIALIZE_PASS_END(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
1990
1991namespace llvm {
1992 Pass *createLAAPass() {
1993 return new LoopAccessAnalysis();
1994 }
1995}