blob: 512b8092afb811172a03dfa568df6d35ab8bd152 [file] [log] [blame]
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001//===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file is a part of MemorySanitizer, a detector of uninitialized
11/// reads.
12///
13/// Status: early prototype.
14///
15/// The algorithm of the tool is similar to Memcheck
16/// (http://goo.gl/QKbem). We associate a few shadow bits with every
17/// byte of the application memory, poison the shadow of the malloc-ed
18/// or alloca-ed memory, load the shadow bits on every memory read,
19/// propagate the shadow bits through some of the arithmetic
20/// instruction (including MOV), store the shadow bits on every memory
21/// write, report a bug on some other instructions (e.g. JMP) if the
22/// associated shadow is poisoned.
23///
24/// But there are differences too. The first and the major one:
25/// compiler instrumentation instead of binary instrumentation. This
26/// gives us much better register allocation, possible compiler
27/// optimizations and a fast start-up. But this brings the major issue
28/// as well: msan needs to see all program events, including system
29/// calls and reads/writes in system libraries, so we either need to
30/// compile *everything* with msan or use a binary translation
31/// component (e.g. DynamoRIO) to instrument pre-built libraries.
32/// Another difference from Memcheck is that we use 8 shadow bits per
33/// byte of application memory and use a direct shadow mapping. This
34/// greatly simplifies the instrumentation code and avoids races on
35/// shadow updates (Memcheck is single-threaded so races are not a
36/// concern there. Memcheck uses 2 shadow bits per byte with a slow
37/// path storage that uses 8 bits per byte).
38///
39/// The default value of shadow is 0, which means "clean" (not poisoned).
40///
41/// Every module initializer should call __msan_init to ensure that the
42/// shadow memory is ready. On error, __msan_warning is called. Since
43/// parameters and return values may be passed via registers, we have a
44/// specialized thread-local shadow for return values
45/// (__msan_retval_tls) and parameters (__msan_param_tls).
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +000046///
47/// Origin tracking.
48///
49/// MemorySanitizer can track origins (allocation points) of all uninitialized
50/// values. This behavior is controlled with a flag (msan-track-origins) and is
51/// disabled by default.
52///
53/// Origins are 4-byte values created and interpreted by the runtime library.
54/// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
55/// of application memory. Propagation of origins is basically a bunch of
56/// "select" instructions that pick the origin of a dirty argument, if an
57/// instruction has one.
58///
59/// Every 4 aligned, consecutive bytes of application memory have one origin
60/// value associated with them. If these bytes contain uninitialized data
61/// coming from 2 different allocations, the last store wins. Because of this,
62/// MemorySanitizer reports can show unrelated origins, but this is unlikely in
Alexey Samsonov3efc87e2012-12-28 09:30:44 +000063/// practice.
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +000064///
65/// Origins are meaningless for fully initialized values, so MemorySanitizer
66/// avoids storing origin to memory when a fully initialized value is stored.
67/// This way it avoids needless overwritting origin of the 4-byte region on
68/// a short (i.e. 1 byte) clean store, and it is also good for performance.
Evgeniy Stepanov5522a702013-09-24 11:20:27 +000069///
70/// Atomic handling.
71///
72/// Ideally, every atomic store of application value should update the
73/// corresponding shadow location in an atomic way. Unfortunately, atomic store
74/// of two disjoint locations can not be done without severe slowdown.
75///
76/// Therefore, we implement an approximation that may err on the safe side.
77/// In this implementation, every atomically accessed location in the program
78/// may only change from (partially) uninitialized to fully initialized, but
79/// not the other way around. We load the shadow _after_ the application load,
80/// and we store the shadow _before_ the app store. Also, we always store clean
81/// shadow (if the application store is atomic). This way, if the store-load
82/// pair constitutes a happens-before arc, shadow store and load are correctly
83/// ordered such that the load will get either the value that was stored, or
84/// some later value (which is always clean).
85///
86/// This does not work very well with Compare-And-Swap (CAS) and
87/// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW
88/// must store the new shadow before the app operation, and load the shadow
89/// after the app operation. Computers don't work this way. Current
90/// implementation ignores the load aspect of CAS/RMW, always returning a clean
91/// value. It implements the store part as a simple atomic store by storing a
92/// clean shadow.
93
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000094//===----------------------------------------------------------------------===//
95
96#define DEBUG_TYPE "msan"
97
Chandler Carruthed0881b2012-12-03 16:50:05 +000098#include "llvm/Transforms/Instrumentation.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000099#include "llvm/ADT/DepthFirstIterator.h"
100#include "llvm/ADT/SmallString.h"
101#include "llvm/ADT/SmallVector.h"
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +0000102#include "llvm/ADT/Triple.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000103#include "llvm/ADT/ValueMap.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +0000104#include "llvm/IR/DataLayout.h"
105#include "llvm/IR/Function.h"
106#include "llvm/IR/IRBuilder.h"
107#include "llvm/IR/InlineAsm.h"
108#include "llvm/IR/IntrinsicInst.h"
109#include "llvm/IR/LLVMContext.h"
110#include "llvm/IR/MDBuilder.h"
111#include "llvm/IR/Module.h"
112#include "llvm/IR/Type.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +0000113#include "llvm/InstVisitor.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000114#include "llvm/Support/CommandLine.h"
115#include "llvm/Support/Compiler.h"
116#include "llvm/Support/Debug.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000117#include "llvm/Support/raw_ostream.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000118#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Evgeniy Stepanov4fbc0d082012-12-21 11:18:49 +0000119#include "llvm/Transforms/Utils/Local.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000120#include "llvm/Transforms/Utils/ModuleUtils.h"
Peter Collingbourne015370e2013-07-09 22:02:49 +0000121#include "llvm/Transforms/Utils/SpecialCaseList.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000122
123using namespace llvm;
124
125static const uint64_t kShadowMask32 = 1ULL << 31;
126static const uint64_t kShadowMask64 = 1ULL << 46;
127static const uint64_t kOriginOffset32 = 1ULL << 30;
128static const uint64_t kOriginOffset64 = 1ULL << 45;
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +0000129static const unsigned kMinOriginAlignment = 4;
130static const unsigned kShadowTLSAlignment = 8;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000131
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +0000132/// \brief Track origins of uninitialized values.
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000133///
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +0000134/// Adds a section to MemorySanitizer report that points to the allocation
135/// (stack or heap) the uninitialized bits came from originally.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000136static cl::opt<bool> ClTrackOrigins("msan-track-origins",
137 cl::desc("Track origins (allocation sites) of poisoned memory"),
138 cl::Hidden, cl::init(false));
139static cl::opt<bool> ClKeepGoing("msan-keep-going",
140 cl::desc("keep going after reporting a UMR"),
141 cl::Hidden, cl::init(false));
142static cl::opt<bool> ClPoisonStack("msan-poison-stack",
143 cl::desc("poison uninitialized stack variables"),
144 cl::Hidden, cl::init(true));
145static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
146 cl::desc("poison uninitialized stack variables with a call"),
147 cl::Hidden, cl::init(false));
148static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
149 cl::desc("poison uninitialized stack variables with the given patter"),
150 cl::Hidden, cl::init(0xff));
Evgeniy Stepanova9a962c2013-03-21 09:38:26 +0000151static cl::opt<bool> ClPoisonUndef("msan-poison-undef",
152 cl::desc("poison undef temps"),
153 cl::Hidden, cl::init(true));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000154
155static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
156 cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
157 cl::Hidden, cl::init(true));
158
Evgeniy Stepanovfac84032013-01-25 15:31:10 +0000159static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact",
160 cl::desc("exact handling of relational integer ICmp"),
Evgeniy Stepanov6f85ef32013-01-28 11:42:28 +0000161 cl::Hidden, cl::init(false));
Evgeniy Stepanovfac84032013-01-25 15:31:10 +0000162
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000163static cl::opt<bool> ClStoreCleanOrigin("msan-store-clean-origin",
164 cl::desc("store origin for clean (fully initialized) values"),
165 cl::Hidden, cl::init(false));
166
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000167// This flag controls whether we check the shadow of the address
168// operand of load or store. Such bugs are very rare, since load from
169// a garbage address typically results in SEGV, but still happen
170// (e.g. only lower bits of address are garbage, or the access happens
171// early at program startup where malloc-ed memory is more likely to
172// be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
173static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
174 cl::desc("report accesses through a pointer which has poisoned shadow"),
175 cl::Hidden, cl::init(true));
176
177static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
178 cl::desc("print out instructions with default strict semantics"),
179 cl::Hidden, cl::init(false));
180
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000181static cl::opt<std::string> ClBlacklistFile("msan-blacklist",
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000182 cl::desc("File containing the list of functions where MemorySanitizer "
183 "should not report bugs"), cl::Hidden);
184
Evgeniy Stepanov37b86452013-09-19 15:22:35 +0000185// Experimental. Wraps all indirect calls in the instrumented code with
186// a call to the given function. This is needed to assist the dynamic
187// helper tool (MSanDR) to regain control on transition between instrumented and
188// non-instrumented code.
189static cl::opt<std::string> ClWrapIndirectCalls("msan-wrap-indirect-calls",
190 cl::desc("Wrap indirect calls with a given function"),
191 cl::Hidden);
192
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000193namespace {
194
195/// \brief An instrumentation pass implementing detection of uninitialized
196/// reads.
197///
198/// MemorySanitizer: instrument the code in module to find
199/// uninitialized reads.
200class MemorySanitizer : public FunctionPass {
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000201 public:
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000202 MemorySanitizer(bool TrackOrigins = false,
203 StringRef BlacklistFile = StringRef())
Evgeniy Stepanov37b86452013-09-19 15:22:35 +0000204 : FunctionPass(ID),
205 TrackOrigins(TrackOrigins || ClTrackOrigins),
206 TD(0),
207 WarningFn(0),
208 BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile : BlacklistFile),
209 WrapIndirectCalls(!ClWrapIndirectCalls.empty()) {}
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000210 const char *getPassName() const { return "MemorySanitizer"; }
211 bool runOnFunction(Function &F);
212 bool doInitialization(Module &M);
213 static char ID; // Pass identification, replacement for typeid.
214
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000215 private:
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000216 void initializeCallbacks(Module &M);
217
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000218 /// \brief Track origins (allocation points) of uninitialized values.
219 bool TrackOrigins;
220
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000221 DataLayout *TD;
222 LLVMContext *C;
223 Type *IntptrTy;
224 Type *OriginTy;
225 /// \brief Thread-local shadow storage for function parameters.
226 GlobalVariable *ParamTLS;
227 /// \brief Thread-local origin storage for function parameters.
228 GlobalVariable *ParamOriginTLS;
229 /// \brief Thread-local shadow storage for function return value.
230 GlobalVariable *RetvalTLS;
231 /// \brief Thread-local origin storage for function return value.
232 GlobalVariable *RetvalOriginTLS;
233 /// \brief Thread-local shadow storage for in-register va_arg function
234 /// parameters (x86_64-specific).
235 GlobalVariable *VAArgTLS;
236 /// \brief Thread-local shadow storage for va_arg overflow area
237 /// (x86_64-specific).
238 GlobalVariable *VAArgOverflowSizeTLS;
239 /// \brief Thread-local space used to pass origin value to the UMR reporting
240 /// function.
241 GlobalVariable *OriginTLS;
242
243 /// \brief The run-time callback to print a warning.
244 Value *WarningFn;
245 /// \brief Run-time helper that copies origin info for a memory range.
246 Value *MsanCopyOriginFn;
247 /// \brief Run-time helper that generates a new origin value for a stack
248 /// allocation.
Evgeniy Stepanov0435ecd2013-09-13 12:54:49 +0000249 Value *MsanSetAllocaOrigin4Fn;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000250 /// \brief Run-time helper that poisons stack on function entry.
251 Value *MsanPoisonStackFn;
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +0000252 /// \brief MSan runtime replacements for memmove, memcpy and memset.
253 Value *MemmoveFn, *MemcpyFn, *MemsetFn;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000254
255 /// \brief Address mask used in application-to-shadow address calculation.
256 /// ShadowAddr is computed as ApplicationAddr & ~ShadowMask.
257 uint64_t ShadowMask;
258 /// \brief Offset of the origin shadow from the "normal" shadow.
259 /// OriginAddr is computed as (ShadowAddr + OriginOffset) & ~3ULL
260 uint64_t OriginOffset;
261 /// \brief Branch weights for error reporting.
262 MDNode *ColdCallWeights;
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000263 /// \brief Branch weights for origin store.
264 MDNode *OriginStoreWeights;
Dmitri Gribenko9bf66a52013-05-09 21:16:18 +0000265 /// \brief Path to blacklist file.
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000266 SmallString<64> BlacklistFile;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000267 /// \brief The blacklist.
Peter Collingbourne015370e2013-07-09 22:02:49 +0000268 OwningPtr<SpecialCaseList> BL;
Evgeniy Stepanov1d2da652012-11-29 12:30:18 +0000269 /// \brief An empty volatile inline asm that prevents callback merge.
270 InlineAsm *EmptyAsm;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000271
Evgeniy Stepanov37b86452013-09-19 15:22:35 +0000272 bool WrapIndirectCalls;
273 /// \brief Run-time wrapper for indirect calls.
274 Value *IndirectCallWrapperFn;
275 // Argument and return type of IndirectCallWrapperFn: void (*f)(void).
276 Type *AnyFunctionPtrTy;
277
Evgeniy Stepanovda0072b2012-11-29 13:12:03 +0000278 friend struct MemorySanitizerVisitor;
279 friend struct VarArgAMD64Helper;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000280};
281} // namespace
282
283char MemorySanitizer::ID = 0;
284INITIALIZE_PASS(MemorySanitizer, "msan",
285 "MemorySanitizer: detects uninitialized reads.",
286 false, false)
287
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000288FunctionPass *llvm::createMemorySanitizerPass(bool TrackOrigins,
289 StringRef BlacklistFile) {
290 return new MemorySanitizer(TrackOrigins, BlacklistFile);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000291}
292
293/// \brief Create a non-const global initialized with the given string.
294///
295/// Creates a writable global for Str so that we can pass it to the
296/// run-time lib. Runtime uses first 4 bytes of the string to store the
297/// frame ID, so the string needs to be mutable.
298static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
299 StringRef Str) {
300 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
301 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
302 GlobalValue::PrivateLinkage, StrConst, "");
303}
304
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000305
306/// \brief Insert extern declaration of runtime-provided functions and globals.
307void MemorySanitizer::initializeCallbacks(Module &M) {
308 // Only do this once.
309 if (WarningFn)
310 return;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000311
312 IRBuilder<> IRB(*C);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000313 // Create the callback.
314 // FIXME: this function should have "Cold" calling conv,
315 // which is not yet implemented.
316 StringRef WarningFnName = ClKeepGoing ? "__msan_warning"
317 : "__msan_warning_noreturn";
318 WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), NULL);
319
320 MsanCopyOriginFn = M.getOrInsertFunction(
321 "__msan_copy_origin", IRB.getVoidTy(), IRB.getInt8PtrTy(),
322 IRB.getInt8PtrTy(), IntptrTy, NULL);
Evgeniy Stepanov0435ecd2013-09-13 12:54:49 +0000323 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction(
324 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
325 IRB.getInt8PtrTy(), IntptrTy, NULL);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000326 MsanPoisonStackFn = M.getOrInsertFunction(
327 "__msan_poison_stack", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, NULL);
328 MemmoveFn = M.getOrInsertFunction(
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000329 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
330 IRB.getInt8PtrTy(), IntptrTy, NULL);
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +0000331 MemcpyFn = M.getOrInsertFunction(
332 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
333 IntptrTy, NULL);
334 MemsetFn = M.getOrInsertFunction(
335 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000336 IntptrTy, NULL);
337
338 // Create globals.
339 RetvalTLS = new GlobalVariable(
340 M, ArrayType::get(IRB.getInt64Ty(), 8), false,
341 GlobalVariable::ExternalLinkage, 0, "__msan_retval_tls", 0,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000342 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000343 RetvalOriginTLS = new GlobalVariable(
344 M, OriginTy, false, GlobalVariable::ExternalLinkage, 0,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000345 "__msan_retval_origin_tls", 0, GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000346
347 ParamTLS = new GlobalVariable(
348 M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
349 GlobalVariable::ExternalLinkage, 0, "__msan_param_tls", 0,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000350 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000351 ParamOriginTLS = new GlobalVariable(
352 M, ArrayType::get(OriginTy, 1000), false, GlobalVariable::ExternalLinkage,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000353 0, "__msan_param_origin_tls", 0, GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000354
355 VAArgTLS = new GlobalVariable(
356 M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
357 GlobalVariable::ExternalLinkage, 0, "__msan_va_arg_tls", 0,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000358 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000359 VAArgOverflowSizeTLS = new GlobalVariable(
360 M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, 0,
361 "__msan_va_arg_overflow_size_tls", 0,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000362 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000363 OriginTLS = new GlobalVariable(
364 M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, 0,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000365 "__msan_origin_tls", 0, GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanov1d2da652012-11-29 12:30:18 +0000366
367 // We insert an empty inline asm after __msan_report* to avoid callback merge.
368 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
369 StringRef(""), StringRef(""),
370 /*hasSideEffects=*/true);
Evgeniy Stepanov37b86452013-09-19 15:22:35 +0000371
372 if (WrapIndirectCalls) {
373 AnyFunctionPtrTy =
374 PointerType::getUnqual(FunctionType::get(IRB.getVoidTy(), false));
375 IndirectCallWrapperFn = M.getOrInsertFunction(
376 ClWrapIndirectCalls, AnyFunctionPtrTy, AnyFunctionPtrTy, NULL);
377 }
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000378}
379
380/// \brief Module-level initialization.
381///
382/// inserts a call to __msan_init to the module's constructor list.
383bool MemorySanitizer::doInitialization(Module &M) {
384 TD = getAnalysisIfAvailable<DataLayout>();
385 if (!TD)
386 return false;
Alexey Samsonove4b5fb82013-08-12 11:46:09 +0000387 BL.reset(SpecialCaseList::createOrDie(BlacklistFile));
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000388 C = &(M.getContext());
389 unsigned PtrSize = TD->getPointerSizeInBits(/* AddressSpace */0);
390 switch (PtrSize) {
391 case 64:
392 ShadowMask = kShadowMask64;
393 OriginOffset = kOriginOffset64;
394 break;
395 case 32:
396 ShadowMask = kShadowMask32;
397 OriginOffset = kOriginOffset32;
398 break;
399 default:
400 report_fatal_error("unsupported pointer size");
401 break;
402 }
403
404 IRBuilder<> IRB(*C);
405 IntptrTy = IRB.getIntPtrTy(TD);
406 OriginTy = IRB.getInt32Ty();
407
408 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000409 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000410
411 // Insert a call to __msan_init/__msan_track_origins into the module's CTORs.
412 appendToGlobalCtors(M, cast<Function>(M.getOrInsertFunction(
413 "__msan_init", IRB.getVoidTy(), NULL)), 0);
414
Evgeniy Stepanov888385e2013-05-31 12:04:29 +0000415 if (TrackOrigins)
416 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
417 IRB.getInt32(TrackOrigins), "__msan_track_origins");
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000418
Evgeniy Stepanov888385e2013-05-31 12:04:29 +0000419 if (ClKeepGoing)
420 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
421 IRB.getInt32(ClKeepGoing), "__msan_keep_going");
Evgeniy Stepanovdcf6bcb2013-01-22 13:26:53 +0000422
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000423 return true;
424}
425
426namespace {
427
428/// \brief A helper class that handles instrumentation of VarArg
429/// functions on a particular platform.
430///
431/// Implementations are expected to insert the instrumentation
432/// necessary to propagate argument shadow through VarArg function
433/// calls. Visit* methods are called during an InstVisitor pass over
434/// the function, and should avoid creating new basic blocks. A new
435/// instance of this class is created for each instrumented function.
436struct VarArgHelper {
437 /// \brief Visit a CallSite.
438 virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0;
439
440 /// \brief Visit a va_start call.
441 virtual void visitVAStartInst(VAStartInst &I) = 0;
442
443 /// \brief Visit a va_copy call.
444 virtual void visitVACopyInst(VACopyInst &I) = 0;
445
446 /// \brief Finalize function instrumentation.
447 ///
448 /// This method is called after visiting all interesting (see above)
449 /// instructions in a function.
450 virtual void finalizeInstrumentation() = 0;
Evgeniy Stepanovda0072b2012-11-29 13:12:03 +0000451
452 virtual ~VarArgHelper() {}
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000453};
454
455struct MemorySanitizerVisitor;
456
457VarArgHelper*
458CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
459 MemorySanitizerVisitor &Visitor);
460
461/// This class does all the work for a given function. Store and Load
462/// instructions store and load corresponding shadow and origin
463/// values. Most instructions propagate shadow from arguments to their
464/// return values. Certain instructions (most importantly, BranchInst)
465/// test their argument shadow and print reports (with a runtime call) if it's
466/// non-zero.
467struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
468 Function &F;
469 MemorySanitizer &MS;
470 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
471 ValueMap<Value*, Value*> ShadowMap, OriginMap;
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000472 OwningPtr<VarArgHelper> VAHelper;
473
474 // The following flags disable parts of MSan instrumentation based on
475 // blacklist contents and command-line options.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000476 bool InsertChecks;
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000477 bool LoadShadow;
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +0000478 bool PoisonStack;
479 bool PoisonUndef;
Evgeniy Stepanov604293f2013-09-16 13:24:32 +0000480 bool CheckReturnValue;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000481
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000482 struct ShadowOriginAndInsertPoint {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000483 Value *Shadow;
484 Value *Origin;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000485 Instruction *OrigIns;
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000486 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000487 : Shadow(S), Origin(O), OrigIns(I) { }
488 ShadowOriginAndInsertPoint() : Shadow(0), Origin(0), OrigIns(0) { }
489 };
490 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000491 SmallVector<Instruction*, 16> StoreList;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000492
493 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS)
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000494 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) {
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +0000495 bool SanitizeFunction = !MS.BL->isIn(F) && F.getAttributes().hasAttribute(
496 AttributeSet::FunctionIndex,
497 Attribute::SanitizeMemory);
498 InsertChecks = SanitizeFunction;
499 LoadShadow = SanitizeFunction;
500 PoisonStack = SanitizeFunction && ClPoisonStack;
501 PoisonUndef = SanitizeFunction && ClPoisonUndef;
Evgeniy Stepanov604293f2013-09-16 13:24:32 +0000502 // FIXME: Consider using SpecialCaseList to specify a list of functions that
503 // must always return fully initialized values. For now, we hardcode "main".
504 CheckReturnValue = SanitizeFunction && (F.getName() == "main");
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000505
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000506 DEBUG(if (!InsertChecks)
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000507 dbgs() << "MemorySanitizer is not inserting checks into '"
508 << F.getName() << "'\n");
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000509 }
510
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000511 void materializeStores() {
512 for (size_t i = 0, n = StoreList.size(); i < n; i++) {
513 StoreInst& I = *dyn_cast<StoreInst>(StoreList[i]);
514
515 IRBuilder<> IRB(&I);
516 Value *Val = I.getValueOperand();
517 Value *Addr = I.getPointerOperand();
Evgeniy Stepanov5522a702013-09-24 11:20:27 +0000518 Value *Shadow = I.isAtomic() ? getCleanShadow(Val) : getShadow(Val);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000519 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
520
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000521 StoreInst *NewSI =
522 IRB.CreateAlignedStore(Shadow, ShadowPtr, I.getAlignment());
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000523 DEBUG(dbgs() << " STORE: " << *NewSI << "\n");
NAKAMURA Takumie0b1b462012-12-06 13:38:00 +0000524 (void)NewSI;
Evgeniy Stepanovc4415592013-01-22 12:30:52 +0000525
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000526 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000527 insertShadowCheck(Addr, &I);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000528
Evgeniy Stepanov5522a702013-09-24 11:20:27 +0000529 if (I.isAtomic())
530 I.setOrdering(addReleaseOrdering(I.getOrdering()));
531
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000532 if (MS.TrackOrigins) {
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +0000533 unsigned Alignment = std::max(kMinOriginAlignment, I.getAlignment());
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000534 if (ClStoreCleanOrigin || isa<StructType>(Shadow->getType())) {
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +0000535 IRB.CreateAlignedStore(getOrigin(Val), getOriginPtr(Addr, IRB),
536 Alignment);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000537 } else {
538 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
539
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000540 // TODO(eugenis): handle non-zero constant shadow by inserting an
541 // unconditional check (can not simply fail compilation as this could
542 // be in the dead code).
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000543 if (isa<Constant>(ConvertedShadow))
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000544 continue;
545
546 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
547 getCleanShadow(ConvertedShadow), "_mscmp");
548 Instruction *CheckTerm =
Evgeniy Stepanov49175b22012-12-14 13:43:11 +0000549 SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false,
550 MS.OriginStoreWeights);
551 IRBuilder<> IRBNew(CheckTerm);
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +0000552 IRBNew.CreateAlignedStore(getOrigin(Val), getOriginPtr(Addr, IRBNew),
553 Alignment);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000554 }
555 }
556 }
557 }
558
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000559 void materializeChecks() {
560 for (size_t i = 0, n = InstrumentationList.size(); i < n; i++) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000561 Value *Shadow = InstrumentationList[i].Shadow;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000562 Instruction *OrigIns = InstrumentationList[i].OrigIns;
563 IRBuilder<> IRB(OrigIns);
564 DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n");
565 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
566 DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n");
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000567 // See the comment in materializeStores().
568 if (isa<Constant>(ConvertedShadow))
569 continue;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000570 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
571 getCleanShadow(ConvertedShadow), "_mscmp");
572 Instruction *CheckTerm =
573 SplitBlockAndInsertIfThen(cast<Instruction>(Cmp),
574 /* Unreachable */ !ClKeepGoing,
575 MS.ColdCallWeights);
576
577 IRB.SetInsertPoint(CheckTerm);
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000578 if (MS.TrackOrigins) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000579 Value *Origin = InstrumentationList[i].Origin;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000580 IRB.CreateStore(Origin ? (Value*)Origin : (Value*)IRB.getInt32(0),
581 MS.OriginTLS);
582 }
583 CallInst *Call = IRB.CreateCall(MS.WarningFn);
584 Call->setDebugLoc(OrigIns->getDebugLoc());
Evgeniy Stepanov1d2da652012-11-29 12:30:18 +0000585 IRB.CreateCall(MS.EmptyAsm);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000586 DEBUG(dbgs() << " CHECK: " << *Cmp << "\n");
587 }
588 DEBUG(dbgs() << "DONE:\n" << F);
589 }
590
591 /// \brief Add MemorySanitizer instrumentation to a function.
592 bool runOnFunction() {
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000593 MS.initializeCallbacks(*F.getParent());
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000594 if (!MS.TD) return false;
Evgeniy Stepanov4fbc0d082012-12-21 11:18:49 +0000595
596 // In the presence of unreachable blocks, we may see Phi nodes with
597 // incoming nodes from such blocks. Since InstVisitor skips unreachable
598 // blocks, such nodes will not have any shadow value associated with them.
599 // It's easier to remove unreachable blocks than deal with missing shadow.
600 removeUnreachableBlocks(F);
601
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000602 // Iterate all BBs in depth-first order and create shadow instructions
603 // for all instructions (where applicable).
604 // For PHI nodes we create dummy shadow PHIs which will be finalized later.
605 for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
606 DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
607 BasicBlock *BB = *DI;
608 visit(*BB);
609 }
610
611 // Finalize PHI nodes.
612 for (size_t i = 0, n = ShadowPHINodes.size(); i < n; i++) {
613 PHINode *PN = ShadowPHINodes[i];
614 PHINode *PNS = cast<PHINode>(getShadow(PN));
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000615 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : 0;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000616 size_t NumValues = PN->getNumIncomingValues();
617 for (size_t v = 0; v < NumValues; v++) {
618 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
619 if (PNO)
620 PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
621 }
622 }
623
624 VAHelper->finalizeInstrumentation();
625
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000626 // Delayed instrumentation of StoreInst.
Evgeniy Stepanov47ac9ba2012-12-06 11:58:59 +0000627 // This may add new checks to be inserted later.
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000628 materializeStores();
629
630 // Insert shadow value checks.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000631 materializeChecks();
632
633 return true;
634 }
635
636 /// \brief Compute the shadow type that corresponds to a given Value.
637 Type *getShadowTy(Value *V) {
638 return getShadowTy(V->getType());
639 }
640
641 /// \brief Compute the shadow type that corresponds to a given Type.
642 Type *getShadowTy(Type *OrigTy) {
643 if (!OrigTy->isSized()) {
644 return 0;
645 }
646 // For integer type, shadow is the same as the original type.
647 // This may return weird-sized types like i1.
648 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
649 return IT;
Evgeniy Stepanovf19c0862012-12-25 16:04:38 +0000650 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
Evgeniy Stepanovd14e47b2013-01-15 16:44:52 +0000651 uint32_t EltSize = MS.TD->getTypeSizeInBits(VT->getElementType());
Evgeniy Stepanovf19c0862012-12-25 16:04:38 +0000652 return VectorType::get(IntegerType::get(*MS.C, EltSize),
653 VT->getNumElements());
654 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000655 if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
656 SmallVector<Type*, 4> Elements;
657 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
658 Elements.push_back(getShadowTy(ST->getElementType(i)));
659 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
660 DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
661 return Res;
662 }
Evgeniy Stepanovd14e47b2013-01-15 16:44:52 +0000663 uint32_t TypeSize = MS.TD->getTypeSizeInBits(OrigTy);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000664 return IntegerType::get(*MS.C, TypeSize);
665 }
666
667 /// \brief Flatten a vector type.
668 Type *getShadowTyNoVec(Type *ty) {
669 if (VectorType *vt = dyn_cast<VectorType>(ty))
670 return IntegerType::get(*MS.C, vt->getBitWidth());
671 return ty;
672 }
673
674 /// \brief Convert a shadow value to it's flattened variant.
675 Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) {
676 Type *Ty = V->getType();
677 Type *NoVecTy = getShadowTyNoVec(Ty);
678 if (Ty == NoVecTy) return V;
679 return IRB.CreateBitCast(V, NoVecTy);
680 }
681
682 /// \brief Compute the shadow address that corresponds to a given application
683 /// address.
684 ///
685 /// Shadow = Addr & ~ShadowMask.
686 Value *getShadowPtr(Value *Addr, Type *ShadowTy,
687 IRBuilder<> &IRB) {
688 Value *ShadowLong =
689 IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
690 ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
691 return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
692 }
693
694 /// \brief Compute the origin address that corresponds to a given application
695 /// address.
696 ///
697 /// OriginAddr = (ShadowAddr + OriginOffset) & ~3ULL
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000698 Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB) {
699 Value *ShadowLong =
700 IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
Evgeniy Stepanov62ba6112012-11-29 13:43:05 +0000701 ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000702 Value *Add =
703 IRB.CreateAdd(ShadowLong,
704 ConstantInt::get(MS.IntptrTy, MS.OriginOffset));
Evgeniy Stepanov62ba6112012-11-29 13:43:05 +0000705 Value *SecondAnd =
706 IRB.CreateAnd(Add, ConstantInt::get(MS.IntptrTy, ~3ULL));
707 return IRB.CreateIntToPtr(SecondAnd, PointerType::get(IRB.getInt32Ty(), 0));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000708 }
709
710 /// \brief Compute the shadow address for a given function argument.
711 ///
712 /// Shadow = ParamTLS+ArgOffset.
713 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
714 int ArgOffset) {
715 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
716 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
717 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
718 "_msarg");
719 }
720
721 /// \brief Compute the origin address for a given function argument.
722 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
723 int ArgOffset) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000724 if (!MS.TrackOrigins) return 0;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000725 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
726 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
727 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
728 "_msarg_o");
729 }
730
731 /// \brief Compute the shadow address for a retval.
732 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
733 Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy);
734 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
735 "_msret");
736 }
737
738 /// \brief Compute the origin address for a retval.
739 Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
740 // We keep a single origin for the entire retval. Might be too optimistic.
741 return MS.RetvalOriginTLS;
742 }
743
744 /// \brief Set SV to be the shadow value for V.
745 void setShadow(Value *V, Value *SV) {
746 assert(!ShadowMap.count(V) && "Values may only have one shadow");
747 ShadowMap[V] = SV;
748 }
749
750 /// \brief Set Origin to be the origin value for V.
751 void setOrigin(Value *V, Value *Origin) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000752 if (!MS.TrackOrigins) return;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000753 assert(!OriginMap.count(V) && "Values may only have one origin");
754 DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n");
755 OriginMap[V] = Origin;
756 }
757
758 /// \brief Create a clean shadow value for a given value.
759 ///
760 /// Clean shadow (all zeroes) means all bits of the value are defined
761 /// (initialized).
Evgeniy Stepanova9a962c2013-03-21 09:38:26 +0000762 Constant *getCleanShadow(Value *V) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000763 Type *ShadowTy = getShadowTy(V);
764 if (!ShadowTy)
765 return 0;
766 return Constant::getNullValue(ShadowTy);
767 }
768
769 /// \brief Create a dirty shadow of a given shadow type.
770 Constant *getPoisonedShadow(Type *ShadowTy) {
771 assert(ShadowTy);
772 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
773 return Constant::getAllOnesValue(ShadowTy);
774 StructType *ST = cast<StructType>(ShadowTy);
775 SmallVector<Constant *, 4> Vals;
776 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
777 Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
778 return ConstantStruct::get(ST, Vals);
779 }
780
Evgeniy Stepanova9a962c2013-03-21 09:38:26 +0000781 /// \brief Create a dirty shadow for a given value.
782 Constant *getPoisonedShadow(Value *V) {
783 Type *ShadowTy = getShadowTy(V);
784 if (!ShadowTy)
785 return 0;
786 return getPoisonedShadow(ShadowTy);
787 }
788
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000789 /// \brief Create a clean (zero) origin.
790 Value *getCleanOrigin() {
791 return Constant::getNullValue(MS.OriginTy);
792 }
793
794 /// \brief Get the shadow value for a given Value.
795 ///
796 /// This function either returns the value set earlier with setShadow,
797 /// or extracts if from ParamTLS (for function arguments).
798 Value *getShadow(Value *V) {
799 if (Instruction *I = dyn_cast<Instruction>(V)) {
800 // For instructions the shadow is already stored in the map.
801 Value *Shadow = ShadowMap[V];
802 if (!Shadow) {
803 DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000804 (void)I;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000805 assert(Shadow && "No shadow for a value");
806 }
807 return Shadow;
808 }
809 if (UndefValue *U = dyn_cast<UndefValue>(V)) {
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +0000810 Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000811 DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000812 (void)U;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000813 return AllOnes;
814 }
815 if (Argument *A = dyn_cast<Argument>(V)) {
816 // For arguments we compute the shadow on demand and store it in the map.
817 Value **ShadowPtr = &ShadowMap[V];
818 if (*ShadowPtr)
819 return *ShadowPtr;
820 Function *F = A->getParent();
821 IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI());
822 unsigned ArgOffset = 0;
823 for (Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
824 AI != AE; ++AI) {
825 if (!AI->getType()->isSized()) {
826 DEBUG(dbgs() << "Arg is not sized\n");
827 continue;
828 }
829 unsigned Size = AI->hasByValAttr()
830 ? MS.TD->getTypeAllocSize(AI->getType()->getPointerElementType())
831 : MS.TD->getTypeAllocSize(AI->getType());
832 if (A == AI) {
833 Value *Base = getShadowPtrForArgument(AI, EntryIRB, ArgOffset);
834 if (AI->hasByValAttr()) {
835 // ByVal pointer itself has clean shadow. We copy the actual
836 // argument shadow to the underlying memory.
Evgeniy Stepanovfca01232013-05-28 13:07:43 +0000837 // Figure out maximal valid memcpy alignment.
838 unsigned ArgAlign = AI->getParamAlignment();
839 if (ArgAlign == 0) {
840 Type *EltType = A->getType()->getPointerElementType();
841 ArgAlign = MS.TD->getABITypeAlignment(EltType);
842 }
843 unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000844 Value *Cpy = EntryIRB.CreateMemCpy(
Evgeniy Stepanovfca01232013-05-28 13:07:43 +0000845 getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), Base, Size,
846 CopyAlign);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000847 DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n");
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000848 (void)Cpy;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000849 *ShadowPtr = getCleanShadow(V);
850 } else {
Evgeniy Stepanovfca01232013-05-28 13:07:43 +0000851 *ShadowPtr = EntryIRB.CreateAlignedLoad(Base, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000852 }
853 DEBUG(dbgs() << " ARG: " << *AI << " ==> " <<
854 **ShadowPtr << "\n");
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000855 if (MS.TrackOrigins) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000856 Value* OriginPtr = getOriginPtrForArgument(AI, EntryIRB, ArgOffset);
857 setOrigin(A, EntryIRB.CreateLoad(OriginPtr));
858 }
859 }
Evgeniy Stepanovfca01232013-05-28 13:07:43 +0000860 ArgOffset += DataLayout::RoundUpAlignment(Size, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000861 }
862 assert(*ShadowPtr && "Could not find shadow for an argument");
863 return *ShadowPtr;
864 }
865 // For everything else the shadow is zero.
866 return getCleanShadow(V);
867 }
868
869 /// \brief Get the shadow for i-th argument of the instruction I.
870 Value *getShadow(Instruction *I, int i) {
871 return getShadow(I->getOperand(i));
872 }
873
874 /// \brief Get the origin for a value.
875 Value *getOrigin(Value *V) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000876 if (!MS.TrackOrigins) return 0;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000877 if (isa<Instruction>(V) || isa<Argument>(V)) {
878 Value *Origin = OriginMap[V];
879 if (!Origin) {
880 DEBUG(dbgs() << "NO ORIGIN: " << *V << "\n");
881 Origin = getCleanOrigin();
882 }
883 return Origin;
884 }
885 return getCleanOrigin();
886 }
887
888 /// \brief Get the origin for i-th argument of the instruction I.
889 Value *getOrigin(Instruction *I, int i) {
890 return getOrigin(I->getOperand(i));
891 }
892
893 /// \brief Remember the place where a shadow check should be inserted.
894 ///
895 /// This location will be later instrumented with a check that will print a
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000896 /// UMR warning in runtime if the shadow value is not 0.
897 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) {
898 assert(Shadow);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000899 if (!InsertChecks) return;
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000900#ifndef NDEBUG
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000901 Type *ShadowTy = Shadow->getType();
902 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) &&
903 "Can only insert checks for integer and vector shadow types");
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000904#endif
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000905 InstrumentationList.push_back(
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000906 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
907 }
908
909 /// \brief Remember the place where a shadow check should be inserted.
910 ///
911 /// This location will be later instrumented with a check that will print a
912 /// UMR warning in runtime if the value is not fully defined.
913 void insertShadowCheck(Value *Val, Instruction *OrigIns) {
914 assert(Val);
915 Instruction *Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
916 if (!Shadow) return;
917 Instruction *Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
918 insertShadowCheck(Shadow, Origin, OrigIns);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000919 }
920
Evgeniy Stepanov5522a702013-09-24 11:20:27 +0000921 AtomicOrdering addReleaseOrdering(AtomicOrdering a) {
922 switch (a) {
923 case NotAtomic:
924 return NotAtomic;
925 case Unordered:
926 case Monotonic:
927 case Release:
928 return Release;
929 case Acquire:
930 case AcquireRelease:
931 return AcquireRelease;
932 case SequentiallyConsistent:
933 return SequentiallyConsistent;
934 }
Evgeniy Stepanov32be0342013-09-25 08:56:00 +0000935 llvm_unreachable("Unknown ordering");
Evgeniy Stepanov5522a702013-09-24 11:20:27 +0000936 }
937
938 AtomicOrdering addAcquireOrdering(AtomicOrdering a) {
939 switch (a) {
940 case NotAtomic:
941 return NotAtomic;
942 case Unordered:
943 case Monotonic:
944 case Acquire:
945 return Acquire;
946 case Release:
947 case AcquireRelease:
948 return AcquireRelease;
949 case SequentiallyConsistent:
950 return SequentiallyConsistent;
951 }
Evgeniy Stepanov32be0342013-09-25 08:56:00 +0000952 llvm_unreachable("Unknown ordering");
Evgeniy Stepanov5522a702013-09-24 11:20:27 +0000953 }
954
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000955 // ------------------- Visitors.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000956
957 /// \brief Instrument LoadInst
958 ///
959 /// Loads the corresponding shadow and (optionally) origin.
960 /// Optionally, checks that the load address is fully defined.
961 void visitLoadInst(LoadInst &I) {
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000962 assert(I.getType()->isSized() && "Load type must have size");
Evgeniy Stepanov5522a702013-09-24 11:20:27 +0000963 IRBuilder<> IRB(I.getNextNode());
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000964 Type *ShadowTy = getShadowTy(&I);
965 Value *Addr = I.getPointerOperand();
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000966 if (LoadShadow) {
967 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
968 setShadow(&I,
969 IRB.CreateAlignedLoad(ShadowPtr, I.getAlignment(), "_msld"));
970 } else {
971 setShadow(&I, getCleanShadow(&I));
972 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000973
974 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000975 insertShadowCheck(I.getPointerOperand(), &I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000976
Evgeniy Stepanov5522a702013-09-24 11:20:27 +0000977 if (I.isAtomic())
978 I.setOrdering(addAcquireOrdering(I.getOrdering()));
979
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +0000980 if (MS.TrackOrigins) {
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000981 if (LoadShadow) {
982 unsigned Alignment = std::max(kMinOriginAlignment, I.getAlignment());
983 setOrigin(&I,
984 IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB), Alignment));
985 } else {
986 setOrigin(&I, getCleanOrigin());
987 }
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +0000988 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000989 }
990
991 /// \brief Instrument StoreInst
992 ///
993 /// Stores the corresponding shadow and (optionally) origin.
994 /// Optionally, checks that the store address is fully defined.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000995 void visitStoreInst(StoreInst &I) {
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000996 StoreList.push_back(&I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000997 }
998
Evgeniy Stepanov5522a702013-09-24 11:20:27 +0000999 void handleCASOrRMW(Instruction &I) {
1000 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
1001
1002 IRBuilder<> IRB(&I);
1003 Value *Addr = I.getOperand(0);
1004 Value *ShadowPtr = getShadowPtr(Addr, I.getType(), IRB);
1005
1006 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001007 insertShadowCheck(Addr, &I);
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001008
1009 // Only test the conditional argument of cmpxchg instruction.
1010 // The other argument can potentially be uninitialized, but we can not
1011 // detect this situation reliably without possible false positives.
1012 if (isa<AtomicCmpXchgInst>(I))
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001013 insertShadowCheck(I.getOperand(1), &I);
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001014
1015 IRB.CreateStore(getCleanShadow(&I), ShadowPtr);
1016
1017 setShadow(&I, getCleanShadow(&I));
1018 }
1019
1020 void visitAtomicRMWInst(AtomicRMWInst &I) {
1021 handleCASOrRMW(I);
1022 I.setOrdering(addReleaseOrdering(I.getOrdering()));
1023 }
1024
1025 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
1026 handleCASOrRMW(I);
1027 I.setOrdering(addReleaseOrdering(I.getOrdering()));
1028 }
1029
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +00001030 // Vector manipulation.
1031 void visitExtractElementInst(ExtractElementInst &I) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001032 insertShadowCheck(I.getOperand(1), &I);
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +00001033 IRBuilder<> IRB(&I);
1034 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
1035 "_msprop"));
1036 setOrigin(&I, getOrigin(&I, 0));
1037 }
1038
1039 void visitInsertElementInst(InsertElementInst &I) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001040 insertShadowCheck(I.getOperand(2), &I);
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +00001041 IRBuilder<> IRB(&I);
1042 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
1043 I.getOperand(2), "_msprop"));
1044 setOriginForNaryOp(I);
1045 }
1046
1047 void visitShuffleVectorInst(ShuffleVectorInst &I) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001048 insertShadowCheck(I.getOperand(2), &I);
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +00001049 IRBuilder<> IRB(&I);
1050 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
1051 I.getOperand(2), "_msprop"));
1052 setOriginForNaryOp(I);
1053 }
1054
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001055 // Casts.
1056 void visitSExtInst(SExtInst &I) {
1057 IRBuilder<> IRB(&I);
1058 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
1059 setOrigin(&I, getOrigin(&I, 0));
1060 }
1061
1062 void visitZExtInst(ZExtInst &I) {
1063 IRBuilder<> IRB(&I);
1064 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
1065 setOrigin(&I, getOrigin(&I, 0));
1066 }
1067
1068 void visitTruncInst(TruncInst &I) {
1069 IRBuilder<> IRB(&I);
1070 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
1071 setOrigin(&I, getOrigin(&I, 0));
1072 }
1073
1074 void visitBitCastInst(BitCastInst &I) {
1075 IRBuilder<> IRB(&I);
1076 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
1077 setOrigin(&I, getOrigin(&I, 0));
1078 }
1079
1080 void visitPtrToIntInst(PtrToIntInst &I) {
1081 IRBuilder<> IRB(&I);
1082 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1083 "_msprop_ptrtoint"));
1084 setOrigin(&I, getOrigin(&I, 0));
1085 }
1086
1087 void visitIntToPtrInst(IntToPtrInst &I) {
1088 IRBuilder<> IRB(&I);
1089 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1090 "_msprop_inttoptr"));
1091 setOrigin(&I, getOrigin(&I, 0));
1092 }
1093
1094 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
1095 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
1096 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
1097 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
1098 void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
1099 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
1100
1101 /// \brief Propagate shadow for bitwise AND.
1102 ///
1103 /// This code is exact, i.e. if, for example, a bit in the left argument
1104 /// is defined and 0, then neither the value not definedness of the
1105 /// corresponding bit in B don't affect the resulting shadow.
1106 void visitAnd(BinaryOperator &I) {
1107 IRBuilder<> IRB(&I);
1108 // "And" of 0 and a poisoned value results in unpoisoned value.
1109 // 1&1 => 1; 0&1 => 0; p&1 => p;
1110 // 1&0 => 0; 0&0 => 0; p&0 => 0;
1111 // 1&p => p; 0&p => 0; p&p => p;
1112 // S = (S1 & S2) | (V1 & S2) | (S1 & V2)
1113 Value *S1 = getShadow(&I, 0);
1114 Value *S2 = getShadow(&I, 1);
1115 Value *V1 = I.getOperand(0);
1116 Value *V2 = I.getOperand(1);
1117 if (V1->getType() != S1->getType()) {
1118 V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1119 V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1120 }
1121 Value *S1S2 = IRB.CreateAnd(S1, S2);
1122 Value *V1S2 = IRB.CreateAnd(V1, S2);
1123 Value *S1V2 = IRB.CreateAnd(S1, V2);
1124 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
1125 setOriginForNaryOp(I);
1126 }
1127
1128 void visitOr(BinaryOperator &I) {
1129 IRBuilder<> IRB(&I);
1130 // "Or" of 1 and a poisoned value results in unpoisoned value.
1131 // 1|1 => 1; 0|1 => 1; p|1 => 1;
1132 // 1|0 => 1; 0|0 => 0; p|0 => p;
1133 // 1|p => 1; 0|p => p; p|p => p;
1134 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
1135 Value *S1 = getShadow(&I, 0);
1136 Value *S2 = getShadow(&I, 1);
1137 Value *V1 = IRB.CreateNot(I.getOperand(0));
1138 Value *V2 = IRB.CreateNot(I.getOperand(1));
1139 if (V1->getType() != S1->getType()) {
1140 V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1141 V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1142 }
1143 Value *S1S2 = IRB.CreateAnd(S1, S2);
1144 Value *V1S2 = IRB.CreateAnd(V1, S2);
1145 Value *S1V2 = IRB.CreateAnd(S1, V2);
1146 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
1147 setOriginForNaryOp(I);
1148 }
1149
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001150 /// \brief Default propagation of shadow and/or origin.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001151 ///
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001152 /// This class implements the general case of shadow propagation, used in all
1153 /// cases where we don't know and/or don't care about what the operation
1154 /// actually does. It converts all input shadow values to a common type
1155 /// (extending or truncating as necessary), and bitwise OR's them.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001156 ///
1157 /// This is much cheaper than inserting checks (i.e. requiring inputs to be
1158 /// fully initialized), and less prone to false positives.
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001159 ///
1160 /// This class also implements the general case of origin propagation. For a
1161 /// Nary operation, result origin is set to the origin of an argument that is
1162 /// not entirely initialized. If there is more than one such arguments, the
1163 /// rightmost of them is picked. It does not matter which one is picked if all
1164 /// arguments are initialized.
1165 template <bool CombineShadow>
1166 class Combiner {
1167 Value *Shadow;
1168 Value *Origin;
1169 IRBuilder<> &IRB;
1170 MemorySanitizerVisitor *MSV;
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00001171
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001172 public:
1173 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) :
1174 Shadow(0), Origin(0), IRB(IRB), MSV(MSV) {}
1175
1176 /// \brief Add a pair of shadow and origin values to the mix.
1177 Combiner &Add(Value *OpShadow, Value *OpOrigin) {
1178 if (CombineShadow) {
1179 assert(OpShadow);
1180 if (!Shadow)
1181 Shadow = OpShadow;
1182 else {
1183 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
1184 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
1185 }
1186 }
1187
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001188 if (MSV->MS.TrackOrigins) {
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001189 assert(OpOrigin);
1190 if (!Origin) {
1191 Origin = OpOrigin;
1192 } else {
1193 Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB);
1194 Value *Cond = IRB.CreateICmpNE(FlatShadow,
1195 MSV->getCleanShadow(FlatShadow));
1196 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
1197 }
1198 }
1199 return *this;
1200 }
1201
1202 /// \brief Add an application value to the mix.
1203 Combiner &Add(Value *V) {
1204 Value *OpShadow = MSV->getShadow(V);
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001205 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : 0;
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001206 return Add(OpShadow, OpOrigin);
1207 }
1208
1209 /// \brief Set the current combined values as the given instruction's shadow
1210 /// and origin.
1211 void Done(Instruction *I) {
1212 if (CombineShadow) {
1213 assert(Shadow);
1214 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
1215 MSV->setShadow(I, Shadow);
1216 }
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001217 if (MSV->MS.TrackOrigins) {
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001218 assert(Origin);
1219 MSV->setOrigin(I, Origin);
1220 }
1221 }
1222 };
1223
1224 typedef Combiner<true> ShadowAndOriginCombiner;
1225 typedef Combiner<false> OriginCombiner;
1226
1227 /// \brief Propagate origin for arbitrary operation.
1228 void setOriginForNaryOp(Instruction &I) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001229 if (!MS.TrackOrigins) return;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001230 IRBuilder<> IRB(&I);
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001231 OriginCombiner OC(this, IRB);
1232 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1233 OC.Add(OI->get());
1234 OC.Done(&I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001235 }
1236
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001237 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
Evgeniy Stepanovf19c0862012-12-25 16:04:38 +00001238 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
1239 "Vector of pointers is not a valid shadow type");
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001240 return Ty->isVectorTy() ?
1241 Ty->getVectorNumElements() * Ty->getScalarSizeInBits() :
1242 Ty->getPrimitiveSizeInBits();
1243 }
1244
1245 /// \brief Cast between two shadow types, extending or truncating as
1246 /// necessary.
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00001247 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy,
1248 bool Signed = false) {
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001249 Type *srcTy = V->getType();
1250 if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00001251 return IRB.CreateIntCast(V, dstTy, Signed);
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001252 if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
1253 dstTy->getVectorNumElements() == srcTy->getVectorNumElements())
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00001254 return IRB.CreateIntCast(V, dstTy, Signed);
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001255 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
1256 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
1257 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
1258 Value *V2 =
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00001259 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed);
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001260 return IRB.CreateBitCast(V2, dstTy);
1261 // TODO: handle struct types.
1262 }
1263
1264 /// \brief Propagate shadow for arbitrary operation.
1265 void handleShadowOr(Instruction &I) {
1266 IRBuilder<> IRB(&I);
1267 ShadowAndOriginCombiner SC(this, IRB);
1268 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1269 SC.Add(OI->get());
1270 SC.Done(&I);
1271 }
1272
1273 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
1274 void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
1275 void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
1276 void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
1277 void visitSub(BinaryOperator &I) { handleShadowOr(I); }
1278 void visitXor(BinaryOperator &I) { handleShadowOr(I); }
1279 void visitMul(BinaryOperator &I) { handleShadowOr(I); }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001280
1281 void handleDiv(Instruction &I) {
1282 IRBuilder<> IRB(&I);
1283 // Strict on the second argument.
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001284 insertShadowCheck(I.getOperand(1), &I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001285 setShadow(&I, getShadow(&I, 0));
1286 setOrigin(&I, getOrigin(&I, 0));
1287 }
1288
1289 void visitUDiv(BinaryOperator &I) { handleDiv(I); }
1290 void visitSDiv(BinaryOperator &I) { handleDiv(I); }
1291 void visitFDiv(BinaryOperator &I) { handleDiv(I); }
1292 void visitURem(BinaryOperator &I) { handleDiv(I); }
1293 void visitSRem(BinaryOperator &I) { handleDiv(I); }
1294 void visitFRem(BinaryOperator &I) { handleDiv(I); }
1295
1296 /// \brief Instrument == and != comparisons.
1297 ///
1298 /// Sometimes the comparison result is known even if some of the bits of the
1299 /// arguments are not.
1300 void handleEqualityComparison(ICmpInst &I) {
1301 IRBuilder<> IRB(&I);
1302 Value *A = I.getOperand(0);
1303 Value *B = I.getOperand(1);
1304 Value *Sa = getShadow(A);
1305 Value *Sb = getShadow(B);
Evgeniy Stepanovd14e47b2013-01-15 16:44:52 +00001306
1307 // Get rid of pointers and vectors of pointers.
1308 // For ints (and vectors of ints), types of A and Sa match,
1309 // and this is a no-op.
1310 A = IRB.CreatePointerCast(A, Sa->getType());
1311 B = IRB.CreatePointerCast(B, Sb->getType());
1312
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001313 // A == B <==> (C = A^B) == 0
1314 // A != B <==> (C = A^B) != 0
1315 // Sc = Sa | Sb
1316 Value *C = IRB.CreateXor(A, B);
1317 Value *Sc = IRB.CreateOr(Sa, Sb);
1318 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
1319 // Result is defined if one of the following is true
1320 // * there is a defined 1 bit in C
1321 // * C is fully defined
1322 // Si = !(C & ~Sc) && Sc
1323 Value *Zero = Constant::getNullValue(Sc->getType());
1324 Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
1325 Value *Si =
1326 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
1327 IRB.CreateICmpEQ(
1328 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
1329 Si->setName("_msprop_icmp");
1330 setShadow(&I, Si);
1331 setOriginForNaryOp(I);
1332 }
1333
Evgeniy Stepanovfac84032013-01-25 15:31:10 +00001334 /// \brief Build the lowest possible value of V, taking into account V's
1335 /// uninitialized bits.
1336 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
1337 bool isSigned) {
1338 if (isSigned) {
1339 // Split shadow into sign bit and other bits.
1340 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
1341 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
1342 // Maximise the undefined shadow bit, minimize other undefined bits.
1343 return
1344 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit);
1345 } else {
1346 // Minimize undefined bits.
1347 return IRB.CreateAnd(A, IRB.CreateNot(Sa));
1348 }
1349 }
1350
1351 /// \brief Build the highest possible value of V, taking into account V's
1352 /// uninitialized bits.
1353 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
1354 bool isSigned) {
1355 if (isSigned) {
1356 // Split shadow into sign bit and other bits.
1357 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
1358 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
1359 // Minimise the undefined shadow bit, maximise other undefined bits.
1360 return
1361 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits);
1362 } else {
1363 // Maximize undefined bits.
1364 return IRB.CreateOr(A, Sa);
1365 }
1366 }
1367
1368 /// \brief Instrument relational comparisons.
1369 ///
1370 /// This function does exact shadow propagation for all relational
1371 /// comparisons of integers, pointers and vectors of those.
1372 /// FIXME: output seems suboptimal when one of the operands is a constant
1373 void handleRelationalComparisonExact(ICmpInst &I) {
1374 IRBuilder<> IRB(&I);
1375 Value *A = I.getOperand(0);
1376 Value *B = I.getOperand(1);
1377 Value *Sa = getShadow(A);
1378 Value *Sb = getShadow(B);
1379
1380 // Get rid of pointers and vectors of pointers.
1381 // For ints (and vectors of ints), types of A and Sa match,
1382 // and this is a no-op.
1383 A = IRB.CreatePointerCast(A, Sa->getType());
1384 B = IRB.CreatePointerCast(B, Sb->getType());
1385
Evgeniy Stepanov2cb0fa12013-01-25 15:35:29 +00001386 // Let [a0, a1] be the interval of possible values of A, taking into account
1387 // its undefined bits. Let [b0, b1] be the interval of possible values of B.
1388 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
Evgeniy Stepanovfac84032013-01-25 15:31:10 +00001389 bool IsSigned = I.isSigned();
1390 Value *S1 = IRB.CreateICmp(I.getPredicate(),
1391 getLowestPossibleValue(IRB, A, Sa, IsSigned),
1392 getHighestPossibleValue(IRB, B, Sb, IsSigned));
1393 Value *S2 = IRB.CreateICmp(I.getPredicate(),
1394 getHighestPossibleValue(IRB, A, Sa, IsSigned),
1395 getLowestPossibleValue(IRB, B, Sb, IsSigned));
1396 Value *Si = IRB.CreateXor(S1, S2);
1397 setShadow(&I, Si);
1398 setOriginForNaryOp(I);
1399 }
1400
Evgeniy Stepanov857d9d22012-11-29 14:25:47 +00001401 /// \brief Instrument signed relational comparisons.
1402 ///
1403 /// Handle (x<0) and (x>=0) comparisons (essentially, sign bit tests) by
1404 /// propagating the highest bit of the shadow. Everything else is delegated
1405 /// to handleShadowOr().
1406 void handleSignedRelationalComparison(ICmpInst &I) {
1407 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
1408 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
1409 Value* op = NULL;
1410 CmpInst::Predicate pre = I.getPredicate();
1411 if (constOp0 && constOp0->isNullValue() &&
1412 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE)) {
1413 op = I.getOperand(1);
1414 } else if (constOp1 && constOp1->isNullValue() &&
1415 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) {
1416 op = I.getOperand(0);
1417 }
1418 if (op) {
1419 IRBuilder<> IRB(&I);
1420 Value* Shadow =
1421 IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), "_msprop_icmpslt");
1422 setShadow(&I, Shadow);
1423 setOrigin(&I, getOrigin(op));
1424 } else {
1425 handleShadowOr(I);
1426 }
1427 }
1428
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001429 void visitICmpInst(ICmpInst &I) {
Evgeniy Stepanov6f85ef32013-01-28 11:42:28 +00001430 if (!ClHandleICmp) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001431 handleShadowOr(I);
Evgeniy Stepanov6f85ef32013-01-28 11:42:28 +00001432 return;
1433 }
1434 if (I.isEquality()) {
1435 handleEqualityComparison(I);
1436 return;
1437 }
1438
1439 assert(I.isRelational());
1440 if (ClHandleICmpExact) {
1441 handleRelationalComparisonExact(I);
1442 return;
1443 }
1444 if (I.isSigned()) {
1445 handleSignedRelationalComparison(I);
1446 return;
1447 }
1448
1449 assert(I.isUnsigned());
1450 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
1451 handleRelationalComparisonExact(I);
1452 return;
1453 }
1454
1455 handleShadowOr(I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001456 }
1457
1458 void visitFCmpInst(FCmpInst &I) {
1459 handleShadowOr(I);
1460 }
1461
1462 void handleShift(BinaryOperator &I) {
1463 IRBuilder<> IRB(&I);
1464 // If any of the S2 bits are poisoned, the whole thing is poisoned.
1465 // Otherwise perform the same shift on S1.
1466 Value *S1 = getShadow(&I, 0);
1467 Value *S2 = getShadow(&I, 1);
1468 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
1469 S2->getType());
1470 Value *V2 = I.getOperand(1);
1471 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
1472 setShadow(&I, IRB.CreateOr(Shift, S2Conv));
1473 setOriginForNaryOp(I);
1474 }
1475
1476 void visitShl(BinaryOperator &I) { handleShift(I); }
1477 void visitAShr(BinaryOperator &I) { handleShift(I); }
1478 void visitLShr(BinaryOperator &I) { handleShift(I); }
1479
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001480 /// \brief Instrument llvm.memmove
1481 ///
1482 /// At this point we don't know if llvm.memmove will be inlined or not.
1483 /// If we don't instrument it and it gets inlined,
1484 /// our interceptor will not kick in and we will lose the memmove.
1485 /// If we instrument the call here, but it does not get inlined,
1486 /// we will memove the shadow twice: which is bad in case
1487 /// of overlapping regions. So, we simply lower the intrinsic to a call.
1488 ///
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +00001489 /// Similar situation exists for memcpy and memset.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001490 void visitMemMoveInst(MemMoveInst &I) {
1491 IRBuilder<> IRB(&I);
1492 IRB.CreateCall3(
1493 MS.MemmoveFn,
1494 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1495 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1496 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1497 I.eraseFromParent();
1498 }
1499
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +00001500 // Similar to memmove: avoid copying shadow twice.
1501 // This is somewhat unfortunate as it may slowdown small constant memcpys.
1502 // FIXME: consider doing manual inline for small constant sizes and proper
1503 // alignment.
1504 void visitMemCpyInst(MemCpyInst &I) {
1505 IRBuilder<> IRB(&I);
1506 IRB.CreateCall3(
1507 MS.MemcpyFn,
1508 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1509 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1510 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1511 I.eraseFromParent();
1512 }
1513
1514 // Same as memcpy.
1515 void visitMemSetInst(MemSetInst &I) {
1516 IRBuilder<> IRB(&I);
1517 IRB.CreateCall3(
1518 MS.MemsetFn,
1519 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1520 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
1521 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1522 I.eraseFromParent();
1523 }
1524
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001525 void visitVAStartInst(VAStartInst &I) {
1526 VAHelper->visitVAStartInst(I);
1527 }
1528
1529 void visitVACopyInst(VACopyInst &I) {
1530 VAHelper->visitVACopyInst(I);
1531 }
1532
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001533 enum IntrinsicKind {
1534 IK_DoesNotAccessMemory,
1535 IK_OnlyReadsMemory,
1536 IK_WritesMemory
1537 };
1538
1539 static IntrinsicKind getIntrinsicKind(Intrinsic::ID iid) {
1540 const int DoesNotAccessMemory = IK_DoesNotAccessMemory;
1541 const int OnlyReadsArgumentPointees = IK_OnlyReadsMemory;
1542 const int OnlyReadsMemory = IK_OnlyReadsMemory;
1543 const int OnlyAccessesArgumentPointees = IK_WritesMemory;
1544 const int UnknownModRefBehavior = IK_WritesMemory;
1545#define GET_INTRINSIC_MODREF_BEHAVIOR
1546#define ModRefBehavior IntrinsicKind
Chandler Carruthdb25c6c2013-01-02 12:09:16 +00001547#include "llvm/IR/Intrinsics.gen"
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001548#undef ModRefBehavior
1549#undef GET_INTRINSIC_MODREF_BEHAVIOR
1550 }
1551
1552 /// \brief Handle vector store-like intrinsics.
1553 ///
1554 /// Instrument intrinsics that look like a simple SIMD store: writes memory,
1555 /// has 1 pointer argument and 1 vector argument, returns void.
1556 bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
1557 IRBuilder<> IRB(&I);
1558 Value* Addr = I.getArgOperand(0);
1559 Value *Shadow = getShadow(&I, 1);
1560 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
1561
1562 // We don't know the pointer alignment (could be unaligned SSE store!).
1563 // Have to assume to worst case.
1564 IRB.CreateAlignedStore(Shadow, ShadowPtr, 1);
1565
1566 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001567 insertShadowCheck(Addr, &I);
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001568
1569 // FIXME: use ClStoreCleanOrigin
1570 // FIXME: factor out common code from materializeStores
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001571 if (MS.TrackOrigins)
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001572 IRB.CreateStore(getOrigin(&I, 1), getOriginPtr(Addr, IRB));
1573 return true;
1574 }
1575
1576 /// \brief Handle vector load-like intrinsics.
1577 ///
1578 /// Instrument intrinsics that look like a simple SIMD load: reads memory,
1579 /// has 1 pointer argument, returns a vector.
1580 bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
1581 IRBuilder<> IRB(&I);
1582 Value *Addr = I.getArgOperand(0);
1583
1584 Type *ShadowTy = getShadowTy(&I);
Evgeniy Stepanov00062b42013-02-28 11:25:14 +00001585 if (LoadShadow) {
1586 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
1587 // We don't know the pointer alignment (could be unaligned SSE load!).
1588 // Have to assume to worst case.
1589 setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, 1, "_msld"));
1590 } else {
1591 setShadow(&I, getCleanShadow(&I));
1592 }
1593
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001594 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001595 insertShadowCheck(Addr, &I);
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001596
Evgeniy Stepanov00062b42013-02-28 11:25:14 +00001597 if (MS.TrackOrigins) {
1598 if (LoadShadow)
1599 setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB)));
1600 else
1601 setOrigin(&I, getCleanOrigin());
1602 }
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001603 return true;
1604 }
1605
1606 /// \brief Handle (SIMD arithmetic)-like intrinsics.
1607 ///
1608 /// Instrument intrinsics with any number of arguments of the same type,
1609 /// equal to the return type. The type should be simple (no aggregates or
1610 /// pointers; vectors are fine).
1611 /// Caller guarantees that this intrinsic does not access memory.
1612 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
1613 Type *RetTy = I.getType();
1614 if (!(RetTy->isIntOrIntVectorTy() ||
1615 RetTy->isFPOrFPVectorTy() ||
1616 RetTy->isX86_MMXTy()))
1617 return false;
1618
1619 unsigned NumArgOperands = I.getNumArgOperands();
1620
1621 for (unsigned i = 0; i < NumArgOperands; ++i) {
1622 Type *Ty = I.getArgOperand(i)->getType();
1623 if (Ty != RetTy)
1624 return false;
1625 }
1626
1627 IRBuilder<> IRB(&I);
1628 ShadowAndOriginCombiner SC(this, IRB);
1629 for (unsigned i = 0; i < NumArgOperands; ++i)
1630 SC.Add(I.getArgOperand(i));
1631 SC.Done(&I);
1632
1633 return true;
1634 }
1635
1636 /// \brief Heuristically instrument unknown intrinsics.
1637 ///
1638 /// The main purpose of this code is to do something reasonable with all
1639 /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
1640 /// We recognize several classes of intrinsics by their argument types and
1641 /// ModRefBehaviour and apply special intrumentation when we are reasonably
1642 /// sure that we know what the intrinsic does.
1643 ///
1644 /// We special-case intrinsics where this approach fails. See llvm.bswap
1645 /// handling as an example of that.
1646 bool handleUnknownIntrinsic(IntrinsicInst &I) {
1647 unsigned NumArgOperands = I.getNumArgOperands();
1648 if (NumArgOperands == 0)
1649 return false;
1650
1651 Intrinsic::ID iid = I.getIntrinsicID();
1652 IntrinsicKind IK = getIntrinsicKind(iid);
1653 bool OnlyReadsMemory = IK == IK_OnlyReadsMemory;
1654 bool WritesMemory = IK == IK_WritesMemory;
1655 assert(!(OnlyReadsMemory && WritesMemory));
1656
1657 if (NumArgOperands == 2 &&
1658 I.getArgOperand(0)->getType()->isPointerTy() &&
1659 I.getArgOperand(1)->getType()->isVectorTy() &&
1660 I.getType()->isVoidTy() &&
1661 WritesMemory) {
1662 // This looks like a vector store.
1663 return handleVectorStoreIntrinsic(I);
1664 }
1665
1666 if (NumArgOperands == 1 &&
1667 I.getArgOperand(0)->getType()->isPointerTy() &&
1668 I.getType()->isVectorTy() &&
1669 OnlyReadsMemory) {
1670 // This looks like a vector load.
1671 return handleVectorLoadIntrinsic(I);
1672 }
1673
1674 if (!OnlyReadsMemory && !WritesMemory)
1675 if (maybeHandleSimpleNomemIntrinsic(I))
1676 return true;
1677
1678 // FIXME: detect and handle SSE maskstore/maskload
1679 return false;
1680 }
1681
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001682 void handleBswap(IntrinsicInst &I) {
1683 IRBuilder<> IRB(&I);
1684 Value *Op = I.getArgOperand(0);
1685 Type *OpType = Op->getType();
1686 Function *BswapFunc = Intrinsic::getDeclaration(
1687 F.getParent(), Intrinsic::bswap, ArrayRef<Type*>(&OpType, 1));
1688 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
1689 setOrigin(&I, getOrigin(Op));
1690 }
1691
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001692 // \brief Instrument vector convert instrinsic.
1693 //
1694 // This function instruments intrinsics like cvtsi2ss:
1695 // %Out = int_xxx_cvtyyy(%ConvertOp)
1696 // or
1697 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp)
1698 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same
1699 // number \p Out elements, and (if has 2 arguments) copies the rest of the
1700 // elements from \p CopyOp.
1701 // In most cases conversion involves floating-point value which may trigger a
1702 // hardware exception when not fully initialized. For this reason we require
1703 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise.
1704 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p
1705 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always
1706 // return a fully initialized value.
1707 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) {
1708 IRBuilder<> IRB(&I);
1709 Value *CopyOp, *ConvertOp;
1710
1711 switch (I.getNumArgOperands()) {
1712 case 2:
1713 CopyOp = I.getArgOperand(0);
1714 ConvertOp = I.getArgOperand(1);
1715 break;
1716 case 1:
1717 ConvertOp = I.getArgOperand(0);
1718 CopyOp = NULL;
1719 break;
1720 default:
1721 llvm_unreachable("Cvt intrinsic with unsupported number of arguments.");
1722 }
1723
1724 // The first *NumUsedElements* elements of ConvertOp are converted to the
1725 // same number of output elements. The rest of the output is copied from
1726 // CopyOp, or (if not available) filled with zeroes.
1727 // Combine shadow for elements of ConvertOp that are used in this operation,
1728 // and insert a check.
1729 // FIXME: consider propagating shadow of ConvertOp, at least in the case of
1730 // int->any conversion.
1731 Value *ConvertShadow = getShadow(ConvertOp);
1732 Value *AggShadow = 0;
1733 if (ConvertOp->getType()->isVectorTy()) {
1734 AggShadow = IRB.CreateExtractElement(
1735 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
1736 for (int i = 1; i < NumUsedElements; ++i) {
1737 Value *MoreShadow = IRB.CreateExtractElement(
1738 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i));
1739 AggShadow = IRB.CreateOr(AggShadow, MoreShadow);
1740 }
1741 } else {
1742 AggShadow = ConvertShadow;
1743 }
1744 assert(AggShadow->getType()->isIntegerTy());
1745 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I);
1746
1747 // Build result shadow by zero-filling parts of CopyOp shadow that come from
1748 // ConvertOp.
1749 if (CopyOp) {
1750 assert(CopyOp->getType() == I.getType());
1751 assert(CopyOp->getType()->isVectorTy());
1752 Value *ResultShadow = getShadow(CopyOp);
1753 Type *EltTy = ResultShadow->getType()->getVectorElementType();
1754 for (int i = 0; i < NumUsedElements; ++i) {
1755 ResultShadow = IRB.CreateInsertElement(
1756 ResultShadow, ConstantInt::getNullValue(EltTy),
1757 ConstantInt::get(IRB.getInt32Ty(), i));
1758 }
1759 setShadow(&I, ResultShadow);
1760 setOrigin(&I, getOrigin(CopyOp));
1761 } else {
1762 setShadow(&I, getCleanShadow(&I));
1763 }
1764 }
1765
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001766 void visitIntrinsicInst(IntrinsicInst &I) {
1767 switch (I.getIntrinsicID()) {
1768 case llvm::Intrinsic::bswap:
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00001769 handleBswap(I);
1770 break;
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001771 case llvm::Intrinsic::x86_avx512_cvtsd2usi64:
1772 case llvm::Intrinsic::x86_avx512_cvtsd2usi:
1773 case llvm::Intrinsic::x86_avx512_cvtss2usi64:
1774 case llvm::Intrinsic::x86_avx512_cvtss2usi:
1775 case llvm::Intrinsic::x86_avx512_cvttss2usi64:
1776 case llvm::Intrinsic::x86_avx512_cvttss2usi:
1777 case llvm::Intrinsic::x86_avx512_cvttsd2usi64:
1778 case llvm::Intrinsic::x86_avx512_cvttsd2usi:
1779 case llvm::Intrinsic::x86_avx512_cvtusi2sd:
1780 case llvm::Intrinsic::x86_avx512_cvtusi2ss:
1781 case llvm::Intrinsic::x86_avx512_cvtusi642sd:
1782 case llvm::Intrinsic::x86_avx512_cvtusi642ss:
1783 case llvm::Intrinsic::x86_sse2_cvtsd2si64:
1784 case llvm::Intrinsic::x86_sse2_cvtsd2si:
1785 case llvm::Intrinsic::x86_sse2_cvtsd2ss:
1786 case llvm::Intrinsic::x86_sse2_cvtsi2sd:
1787 case llvm::Intrinsic::x86_sse2_cvtsi642sd:
1788 case llvm::Intrinsic::x86_sse2_cvtss2sd:
1789 case llvm::Intrinsic::x86_sse2_cvttsd2si64:
1790 case llvm::Intrinsic::x86_sse2_cvttsd2si:
1791 case llvm::Intrinsic::x86_sse_cvtsi2ss:
1792 case llvm::Intrinsic::x86_sse_cvtsi642ss:
1793 case llvm::Intrinsic::x86_sse_cvtss2si64:
1794 case llvm::Intrinsic::x86_sse_cvtss2si:
1795 case llvm::Intrinsic::x86_sse_cvttss2si64:
1796 case llvm::Intrinsic::x86_sse_cvttss2si:
1797 handleVectorConvertIntrinsic(I, 1);
1798 break;
1799 case llvm::Intrinsic::x86_sse2_cvtdq2pd:
1800 case llvm::Intrinsic::x86_sse2_cvtps2pd:
1801 case llvm::Intrinsic::x86_sse_cvtps2pi:
1802 case llvm::Intrinsic::x86_sse_cvttps2pi:
1803 handleVectorConvertIntrinsic(I, 2);
1804 break;
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001805 default:
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001806 if (!handleUnknownIntrinsic(I))
1807 visitInstruction(I);
Evgeniy Stepanov88b8dce2012-12-17 16:30:05 +00001808 break;
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001809 }
1810 }
1811
Evgeniy Stepanov37b86452013-09-19 15:22:35 +00001812 // Replace call to (*Fn) with a call to (*IndirectCallWrapperFn(Fn)).
1813 void wrapIndirectCall(IRBuilder<> &IRB, CallSite CS) {
1814 Value *Fn = CS.getCalledValue();
1815 Value *NewFn = IRB.CreateBitCast(
1816 IRB.CreateCall(MS.IndirectCallWrapperFn,
1817 IRB.CreateBitCast(Fn, MS.AnyFunctionPtrTy)),
1818 Fn->getType());
1819 setShadow(NewFn, getShadow(Fn));
1820 CS.setCalledFunction(NewFn);
1821 }
1822
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001823 void visitCallSite(CallSite CS) {
1824 Instruction &I = *CS.getInstruction();
1825 assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite");
1826 if (CS.isCall()) {
Evgeniy Stepanov7ad7e832012-11-29 14:32:03 +00001827 CallInst *Call = cast<CallInst>(&I);
1828
1829 // For inline asm, do the usual thing: check argument shadow and mark all
1830 // outputs as clean. Note that any side effects of the inline asm that are
1831 // not immediately visible in its constraints are not handled.
1832 if (Call->isInlineAsm()) {
1833 visitInstruction(I);
1834 return;
1835 }
1836
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001837 // Allow only tail calls with the same types, otherwise
1838 // we may have a false positive: shadow for a non-void RetVal
1839 // will get propagated to a void RetVal.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001840 if (Call->isTailCall() && Call->getType() != Call->getParent()->getType())
1841 Call->setTailCall(false);
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001842
1843 assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere");
Evgeniy Stepanov383b61e2012-12-07 09:08:32 +00001844
1845 // We are going to insert code that relies on the fact that the callee
1846 // will become a non-readonly function after it is instrumented by us. To
1847 // prevent this code from being optimized out, mark that function
1848 // non-readonly in advance.
1849 if (Function *Func = Call->getCalledFunction()) {
1850 // Clear out readonly/readnone attributes.
1851 AttrBuilder B;
Bill Wendling3d7b0b82012-12-19 07:18:57 +00001852 B.addAttribute(Attribute::ReadOnly)
1853 .addAttribute(Attribute::ReadNone);
Bill Wendling430fa9b2013-01-23 00:45:55 +00001854 Func->removeAttributes(AttributeSet::FunctionIndex,
1855 AttributeSet::get(Func->getContext(),
1856 AttributeSet::FunctionIndex,
1857 B));
Evgeniy Stepanov383b61e2012-12-07 09:08:32 +00001858 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001859 }
1860 IRBuilder<> IRB(&I);
Evgeniy Stepanov37b86452013-09-19 15:22:35 +00001861
1862 if (MS.WrapIndirectCalls && !CS.getCalledFunction())
1863 wrapIndirectCall(IRB, CS);
1864
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001865 unsigned ArgOffset = 0;
1866 DEBUG(dbgs() << " CallSite: " << I << "\n");
1867 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
1868 ArgIt != End; ++ArgIt) {
1869 Value *A = *ArgIt;
1870 unsigned i = ArgIt - CS.arg_begin();
1871 if (!A->getType()->isSized()) {
1872 DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n");
1873 continue;
1874 }
1875 unsigned Size = 0;
1876 Value *Store = 0;
1877 // Compute the Shadow for arg even if it is ByVal, because
1878 // in that case getShadow() will copy the actual arg shadow to
1879 // __msan_param_tls.
1880 Value *ArgShadow = getShadow(A);
1881 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
1882 DEBUG(dbgs() << " Arg#" << i << ": " << *A <<
1883 " Shadow: " << *ArgShadow << "\n");
Bill Wendling3d7b0b82012-12-19 07:18:57 +00001884 if (CS.paramHasAttr(i + 1, Attribute::ByVal)) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001885 assert(A->getType()->isPointerTy() &&
1886 "ByVal argument is not a pointer!");
1887 Size = MS.TD->getTypeAllocSize(A->getType()->getPointerElementType());
1888 unsigned Alignment = CS.getParamAlignment(i + 1);
1889 Store = IRB.CreateMemCpy(ArgShadowBase,
1890 getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB),
1891 Size, Alignment);
1892 } else {
1893 Size = MS.TD->getTypeAllocSize(A->getType());
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00001894 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
1895 kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001896 }
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001897 if (MS.TrackOrigins)
Evgeniy Stepanov49175b22012-12-14 13:43:11 +00001898 IRB.CreateStore(getOrigin(A),
1899 getOriginPtrForArgument(A, IRB, ArgOffset));
Edwin Vane82f80d42013-01-29 17:42:24 +00001900 (void)Store;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001901 assert(Size != 0 && Store != 0);
1902 DEBUG(dbgs() << " Param:" << *Store << "\n");
1903 ArgOffset += DataLayout::RoundUpAlignment(Size, 8);
1904 }
1905 DEBUG(dbgs() << " done with call args\n");
1906
1907 FunctionType *FT =
Evgeniy Stepanov37b86452013-09-19 15:22:35 +00001908 cast<FunctionType>(CS.getCalledValue()->getType()->getContainedType(0));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001909 if (FT->isVarArg()) {
1910 VAHelper->visitCallSite(CS, IRB);
1911 }
1912
1913 // Now, get the shadow for the RetVal.
1914 if (!I.getType()->isSized()) return;
1915 IRBuilder<> IRBBefore(&I);
1916 // Untill we have full dynamic coverage, make sure the retval shadow is 0.
1917 Value *Base = getShadowPtrForRetval(&I, IRBBefore);
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00001918 IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001919 Instruction *NextInsn = 0;
1920 if (CS.isCall()) {
1921 NextInsn = I.getNextNode();
1922 } else {
1923 BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest();
1924 if (!NormalDest->getSinglePredecessor()) {
1925 // FIXME: this case is tricky, so we are just conservative here.
1926 // Perhaps we need to split the edge between this BB and NormalDest,
1927 // but a naive attempt to use SplitEdge leads to a crash.
1928 setShadow(&I, getCleanShadow(&I));
1929 setOrigin(&I, getCleanOrigin());
1930 return;
1931 }
1932 NextInsn = NormalDest->getFirstInsertionPt();
1933 assert(NextInsn &&
1934 "Could not find insertion point for retval shadow load");
1935 }
1936 IRBuilder<> IRBAfter(NextInsn);
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00001937 Value *RetvalShadow =
1938 IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter),
1939 kShadowTLSAlignment, "_msret");
1940 setShadow(&I, RetvalShadow);
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001941 if (MS.TrackOrigins)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001942 setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter)));
1943 }
1944
1945 void visitReturnInst(ReturnInst &I) {
1946 IRBuilder<> IRB(&I);
Evgeniy Stepanov604293f2013-09-16 13:24:32 +00001947 Value *RetVal = I.getReturnValue();
1948 if (!RetVal) return;
1949 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
1950 if (CheckReturnValue) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001951 insertShadowCheck(RetVal, &I);
Evgeniy Stepanov604293f2013-09-16 13:24:32 +00001952 Value *Shadow = getCleanShadow(RetVal);
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00001953 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
Evgeniy Stepanov604293f2013-09-16 13:24:32 +00001954 } else {
1955 Value *Shadow = getShadow(RetVal);
1956 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
1957 // FIXME: make it conditional if ClStoreCleanOrigin==0
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001958 if (MS.TrackOrigins)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001959 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
1960 }
1961 }
1962
1963 void visitPHINode(PHINode &I) {
1964 IRBuilder<> IRB(&I);
1965 ShadowPHINodes.push_back(&I);
1966 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
1967 "_msphi_s"));
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001968 if (MS.TrackOrigins)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001969 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
1970 "_msphi_o"));
1971 }
1972
1973 void visitAllocaInst(AllocaInst &I) {
1974 setShadow(&I, getCleanShadow(&I));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001975 IRBuilder<> IRB(I.getNextNode());
1976 uint64_t Size = MS.TD->getTypeAllocSize(I.getAllocatedType());
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +00001977 if (PoisonStack && ClPoisonStackWithCall) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001978 IRB.CreateCall2(MS.MsanPoisonStackFn,
1979 IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
1980 ConstantInt::get(MS.IntptrTy, Size));
1981 } else {
1982 Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB);
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +00001983 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0);
1984 IRB.CreateMemSet(ShadowBase, PoisonValue, Size, I.getAlignment());
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001985 }
1986
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +00001987 if (PoisonStack && MS.TrackOrigins) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001988 setOrigin(&I, getCleanOrigin());
1989 SmallString<2048> StackDescriptionStorage;
1990 raw_svector_ostream StackDescription(StackDescriptionStorage);
1991 // We create a string with a description of the stack allocation and
1992 // pass it into __msan_set_alloca_origin.
1993 // It will be printed by the run-time if stack-originated UMR is found.
1994 // The first 4 bytes of the string are set to '----' and will be replaced
1995 // by __msan_va_arg_overflow_size_tls at the first call.
1996 StackDescription << "----" << I.getName() << "@" << F.getName();
1997 Value *Descr =
1998 createPrivateNonConstGlobalForString(*F.getParent(),
1999 StackDescription.str());
Evgeniy Stepanov0435ecd2013-09-13 12:54:49 +00002000
2001 IRB.CreateCall4(MS.MsanSetAllocaOrigin4Fn,
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002002 IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
2003 ConstantInt::get(MS.IntptrTy, Size),
Evgeniy Stepanov0435ecd2013-09-13 12:54:49 +00002004 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()),
2005 IRB.CreatePointerCast(&F, MS.IntptrTy));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002006 }
2007 }
2008
2009 void visitSelectInst(SelectInst& I) {
2010 IRBuilder<> IRB(&I);
Evgeniy Stepanov566f5912013-09-03 10:04:11 +00002011 // a = select b, c, d
Evgeniy Stepanov566f5912013-09-03 10:04:11 +00002012 Value *S = IRB.CreateSelect(I.getCondition(), getShadow(I.getTrueValue()),
2013 getShadow(I.getFalseValue()));
Evgeniy Stepanove95d37c2013-09-03 13:05:29 +00002014 if (I.getType()->isAggregateType()) {
2015 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do
2016 // an extra "select". This results in much more compact IR.
2017 // Sa = select Sb, poisoned, (select b, Sc, Sd)
2018 S = IRB.CreateSelect(getShadow(I.getCondition()),
2019 getPoisonedShadow(getShadowTy(I.getType())), S,
2020 "_msprop_select_agg");
2021 } else {
2022 // Sa = (sext Sb) | (select b, Sc, Sd)
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00002023 S = IRB.CreateOr(S, CreateShadowCast(IRB, getShadow(I.getCondition()),
2024 S->getType(), true),
2025 "_msprop_select");
Evgeniy Stepanove95d37c2013-09-03 13:05:29 +00002026 }
2027 setShadow(&I, S);
Evgeniy Stepanovec837122012-12-25 14:56:21 +00002028 if (MS.TrackOrigins) {
2029 // Origins are always i32, so any vector conditions must be flattened.
2030 // FIXME: consider tracking vector origins for app vectors?
2031 Value *Cond = I.getCondition();
2032 if (Cond->getType()->isVectorTy()) {
2033 Value *ConvertedShadow = convertToShadowTyNoVec(Cond, IRB);
2034 Cond = IRB.CreateICmpNE(ConvertedShadow,
2035 getCleanShadow(ConvertedShadow), "_mso_select");
2036 }
2037 setOrigin(&I, IRB.CreateSelect(Cond,
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002038 getOrigin(I.getTrueValue()), getOrigin(I.getFalseValue())));
Evgeniy Stepanovec837122012-12-25 14:56:21 +00002039 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002040 }
2041
2042 void visitLandingPadInst(LandingPadInst &I) {
2043 // Do nothing.
2044 // See http://code.google.com/p/memory-sanitizer/issues/detail?id=1
2045 setShadow(&I, getCleanShadow(&I));
2046 setOrigin(&I, getCleanOrigin());
2047 }
2048
2049 void visitGetElementPtrInst(GetElementPtrInst &I) {
2050 handleShadowOr(I);
2051 }
2052
2053 void visitExtractValueInst(ExtractValueInst &I) {
2054 IRBuilder<> IRB(&I);
2055 Value *Agg = I.getAggregateOperand();
2056 DEBUG(dbgs() << "ExtractValue: " << I << "\n");
2057 Value *AggShadow = getShadow(Agg);
2058 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
2059 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
2060 DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n");
2061 setShadow(&I, ResShadow);
Evgeniy Stepanov560e08932013-11-11 13:37:10 +00002062 setOriginForNaryOp(I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002063 }
2064
2065 void visitInsertValueInst(InsertValueInst &I) {
2066 IRBuilder<> IRB(&I);
2067 DEBUG(dbgs() << "InsertValue: " << I << "\n");
2068 Value *AggShadow = getShadow(I.getAggregateOperand());
2069 Value *InsShadow = getShadow(I.getInsertedValueOperand());
2070 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
2071 DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n");
2072 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
2073 DEBUG(dbgs() << " Res: " << *Res << "\n");
2074 setShadow(&I, Res);
Evgeniy Stepanov560e08932013-11-11 13:37:10 +00002075 setOriginForNaryOp(I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002076 }
2077
2078 void dumpInst(Instruction &I) {
2079 if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2080 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
2081 } else {
2082 errs() << "ZZZ " << I.getOpcodeName() << "\n";
2083 }
2084 errs() << "QQQ " << I << "\n";
2085 }
2086
2087 void visitResumeInst(ResumeInst &I) {
2088 DEBUG(dbgs() << "Resume: " << I << "\n");
2089 // Nothing to do here.
2090 }
2091
2092 void visitInstruction(Instruction &I) {
2093 // Everything else: stop propagating and check for poisoned shadow.
2094 if (ClDumpStrictInstructions)
2095 dumpInst(I);
2096 DEBUG(dbgs() << "DEFAULT: " << I << "\n");
2097 for (size_t i = 0, n = I.getNumOperands(); i < n; i++)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00002098 insertShadowCheck(I.getOperand(i), &I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002099 setShadow(&I, getCleanShadow(&I));
2100 setOrigin(&I, getCleanOrigin());
2101 }
2102};
2103
2104/// \brief AMD64-specific implementation of VarArgHelper.
2105struct VarArgAMD64Helper : public VarArgHelper {
2106 // An unfortunate workaround for asymmetric lowering of va_arg stuff.
2107 // See a comment in visitCallSite for more details.
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00002108 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002109 static const unsigned AMD64FpEndOffset = 176;
2110
2111 Function &F;
2112 MemorySanitizer &MS;
2113 MemorySanitizerVisitor &MSV;
2114 Value *VAArgTLSCopy;
2115 Value *VAArgOverflowSize;
2116
2117 SmallVector<CallInst*, 16> VAStartInstrumentationList;
2118
2119 VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
2120 MemorySanitizerVisitor &MSV)
2121 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(0), VAArgOverflowSize(0) { }
2122
2123 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
2124
2125 ArgKind classifyArgument(Value* arg) {
2126 // A very rough approximation of X86_64 argument classification rules.
2127 Type *T = arg->getType();
2128 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
2129 return AK_FloatingPoint;
2130 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
2131 return AK_GeneralPurpose;
2132 if (T->isPointerTy())
2133 return AK_GeneralPurpose;
2134 return AK_Memory;
2135 }
2136
2137 // For VarArg functions, store the argument shadow in an ABI-specific format
2138 // that corresponds to va_list layout.
2139 // We do this because Clang lowers va_arg in the frontend, and this pass
2140 // only sees the low level code that deals with va_list internals.
2141 // A much easier alternative (provided that Clang emits va_arg instructions)
2142 // would have been to associate each live instance of va_list with a copy of
2143 // MSanParamTLS, and extract shadow on va_arg() call in the argument list
2144 // order.
2145 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) {
2146 unsigned GpOffset = 0;
2147 unsigned FpOffset = AMD64GpEndOffset;
2148 unsigned OverflowOffset = AMD64FpEndOffset;
2149 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
2150 ArgIt != End; ++ArgIt) {
2151 Value *A = *ArgIt;
2152 ArgKind AK = classifyArgument(A);
2153 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
2154 AK = AK_Memory;
2155 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
2156 AK = AK_Memory;
2157 Value *Base;
2158 switch (AK) {
2159 case AK_GeneralPurpose:
2160 Base = getShadowPtrForVAArgument(A, IRB, GpOffset);
2161 GpOffset += 8;
2162 break;
2163 case AK_FloatingPoint:
2164 Base = getShadowPtrForVAArgument(A, IRB, FpOffset);
2165 FpOffset += 16;
2166 break;
2167 case AK_Memory:
2168 uint64_t ArgSize = MS.TD->getTypeAllocSize(A->getType());
2169 Base = getShadowPtrForVAArgument(A, IRB, OverflowOffset);
2170 OverflowOffset += DataLayout::RoundUpAlignment(ArgSize, 8);
2171 }
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00002172 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002173 }
2174 Constant *OverflowSize =
2175 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
2176 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
2177 }
2178
2179 /// \brief Compute the shadow address for a given va_arg.
2180 Value *getShadowPtrForVAArgument(Value *A, IRBuilder<> &IRB,
2181 int ArgOffset) {
2182 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
2183 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
2184 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(A), 0),
2185 "_msarg");
2186 }
2187
2188 void visitVAStartInst(VAStartInst &I) {
2189 IRBuilder<> IRB(&I);
2190 VAStartInstrumentationList.push_back(&I);
2191 Value *VAListTag = I.getArgOperand(0);
2192 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
2193
2194 // Unpoison the whole __va_list_tag.
2195 // FIXME: magic ABI constants.
2196 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
Peter Collingbournef7d65c42013-01-10 22:36:33 +00002197 /* size */24, /* alignment */8, false);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002198 }
2199
2200 void visitVACopyInst(VACopyInst &I) {
2201 IRBuilder<> IRB(&I);
2202 Value *VAListTag = I.getArgOperand(0);
2203 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
2204
2205 // Unpoison the whole __va_list_tag.
2206 // FIXME: magic ABI constants.
2207 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
Peter Collingbournef7d65c42013-01-10 22:36:33 +00002208 /* size */24, /* alignment */8, false);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002209 }
2210
2211 void finalizeInstrumentation() {
2212 assert(!VAArgOverflowSize && !VAArgTLSCopy &&
2213 "finalizeInstrumentation called twice");
2214 if (!VAStartInstrumentationList.empty()) {
2215 // If there is a va_start in this function, make a backup copy of
2216 // va_arg_tls somewhere in the function entry block.
2217 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
2218 VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
2219 Value *CopySize =
2220 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
2221 VAArgOverflowSize);
2222 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
2223 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
2224 }
2225
2226 // Instrument va_start.
2227 // Copy va_list shadow from the backup copy of the TLS contents.
2228 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
2229 CallInst *OrigInst = VAStartInstrumentationList[i];
2230 IRBuilder<> IRB(OrigInst->getNextNode());
2231 Value *VAListTag = OrigInst->getArgOperand(0);
2232
2233 Value *RegSaveAreaPtrPtr =
2234 IRB.CreateIntToPtr(
2235 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
2236 ConstantInt::get(MS.IntptrTy, 16)),
2237 Type::getInt64PtrTy(*MS.C));
2238 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
2239 Value *RegSaveAreaShadowPtr =
2240 MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
2241 IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy,
2242 AMD64FpEndOffset, 16);
2243
2244 Value *OverflowArgAreaPtrPtr =
2245 IRB.CreateIntToPtr(
2246 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
2247 ConstantInt::get(MS.IntptrTy, 8)),
2248 Type::getInt64PtrTy(*MS.C));
2249 Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr);
2250 Value *OverflowArgAreaShadowPtr =
2251 MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB);
Evgeniy Stepanovd42863c2013-08-23 12:11:00 +00002252 Value *SrcPtr = IRB.CreateConstGEP1_32(VAArgTLSCopy, AMD64FpEndOffset);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002253 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16);
2254 }
2255 }
2256};
2257
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002258/// \brief A no-op implementation of VarArgHelper.
2259struct VarArgNoOpHelper : public VarArgHelper {
2260 VarArgNoOpHelper(Function &F, MemorySanitizer &MS,
2261 MemorySanitizerVisitor &MSV) {}
2262
2263 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) {}
2264
2265 void visitVAStartInst(VAStartInst &I) {}
2266
2267 void visitVACopyInst(VACopyInst &I) {}
2268
2269 void finalizeInstrumentation() {}
2270};
2271
2272VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002273 MemorySanitizerVisitor &Visitor) {
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002274 // VarArg handling is only implemented on AMD64. False positives are possible
2275 // on other platforms.
2276 llvm::Triple TargetTriple(Func.getParent()->getTargetTriple());
2277 if (TargetTriple.getArch() == llvm::Triple::x86_64)
2278 return new VarArgAMD64Helper(Func, Msan, Visitor);
2279 else
2280 return new VarArgNoOpHelper(Func, Msan, Visitor);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002281}
2282
2283} // namespace
2284
2285bool MemorySanitizer::runOnFunction(Function &F) {
2286 MemorySanitizerVisitor Visitor(F, *this);
2287
2288 // Clear out readonly/readnone attributes.
2289 AttrBuilder B;
Bill Wendling3d7b0b82012-12-19 07:18:57 +00002290 B.addAttribute(Attribute::ReadOnly)
2291 .addAttribute(Attribute::ReadNone);
Bill Wendling430fa9b2013-01-23 00:45:55 +00002292 F.removeAttributes(AttributeSet::FunctionIndex,
2293 AttributeSet::get(F.getContext(),
2294 AttributeSet::FunctionIndex, B));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002295
2296 return Visitor.runOnFunction();
2297}