blob: c847fc165c285b5d708bef3658f65f6bc55961ca [file] [log] [blame]
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001//===--- HexagonBitSimplify.cpp -------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#define DEBUG_TYPE "hexbit"
11
Mehdi Aminib550cb12016-04-18 09:17:29 +000012#include "HexagonBitTracker.h"
13#include "HexagonTargetMachine.h"
Krzysztof Parzyszekced99412015-10-20 22:57:13 +000014#include "llvm/CodeGen/MachineDominators.h"
15#include "llvm/CodeGen/MachineFunctionPass.h"
16#include "llvm/CodeGen/MachineInstrBuilder.h"
17#include "llvm/CodeGen/MachineRegisterInfo.h"
Mehdi Aminib550cb12016-04-18 09:17:29 +000018#include "llvm/CodeGen/Passes.h"
Krzysztof Parzyszekced99412015-10-20 22:57:13 +000019#include "llvm/Support/Debug.h"
20#include "llvm/Support/raw_ostream.h"
Krzysztof Parzyszekced99412015-10-20 22:57:13 +000021#include "llvm/Target/TargetInstrInfo.h"
Mehdi Aminib550cb12016-04-18 09:17:29 +000022#include "llvm/Target/TargetMachine.h"
Krzysztof Parzyszekced99412015-10-20 22:57:13 +000023
24using namespace llvm;
25
26namespace llvm {
27 void initializeHexagonBitSimplifyPass(PassRegistry& Registry);
28 FunctionPass *createHexagonBitSimplify();
29}
30
31namespace {
32 // Set of virtual registers, based on BitVector.
33 struct RegisterSet : private BitVector {
34 RegisterSet() : BitVector() {}
35 explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
36 RegisterSet(const RegisterSet &RS) : BitVector(RS) {}
37
38 using BitVector::clear;
39 using BitVector::count;
40
41 unsigned find_first() const {
42 int First = BitVector::find_first();
43 if (First < 0)
44 return 0;
45 return x2v(First);
46 }
47
48 unsigned find_next(unsigned Prev) const {
49 int Next = BitVector::find_next(v2x(Prev));
50 if (Next < 0)
51 return 0;
52 return x2v(Next);
53 }
54
55 RegisterSet &insert(unsigned R) {
56 unsigned Idx = v2x(R);
57 ensure(Idx);
58 return static_cast<RegisterSet&>(BitVector::set(Idx));
59 }
60 RegisterSet &remove(unsigned R) {
61 unsigned Idx = v2x(R);
62 if (Idx >= size())
63 return *this;
64 return static_cast<RegisterSet&>(BitVector::reset(Idx));
65 }
66
67 RegisterSet &insert(const RegisterSet &Rs) {
68 return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
69 }
70 RegisterSet &remove(const RegisterSet &Rs) {
71 return static_cast<RegisterSet&>(BitVector::reset(Rs));
72 }
73
74 reference operator[](unsigned R) {
75 unsigned Idx = v2x(R);
76 ensure(Idx);
77 return BitVector::operator[](Idx);
78 }
79 bool operator[](unsigned R) const {
80 unsigned Idx = v2x(R);
81 assert(Idx < size());
82 return BitVector::operator[](Idx);
83 }
84 bool has(unsigned R) const {
85 unsigned Idx = v2x(R);
86 if (Idx >= size())
87 return false;
88 return BitVector::test(Idx);
89 }
90
91 bool empty() const {
92 return !BitVector::any();
93 }
94 bool includes(const RegisterSet &Rs) const {
95 // A.BitVector::test(B) <=> A-B != {}
96 return !Rs.BitVector::test(*this);
97 }
98 bool intersects(const RegisterSet &Rs) const {
99 return BitVector::anyCommon(Rs);
100 }
101
102 private:
103 void ensure(unsigned Idx) {
104 if (size() <= Idx)
105 resize(std::max(Idx+1, 32U));
106 }
107 static inline unsigned v2x(unsigned v) {
108 return TargetRegisterInfo::virtReg2Index(v);
109 }
110 static inline unsigned x2v(unsigned x) {
111 return TargetRegisterInfo::index2VirtReg(x);
112 }
113 };
114
115
116 struct PrintRegSet {
117 PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
118 : RS(S), TRI(RI) {}
119 friend raw_ostream &operator<< (raw_ostream &OS,
120 const PrintRegSet &P);
121 private:
122 const RegisterSet &RS;
123 const TargetRegisterInfo *TRI;
124 };
125
126 raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P)
127 LLVM_ATTRIBUTE_UNUSED;
128 raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
129 OS << '{';
130 for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
131 OS << ' ' << PrintReg(R, P.TRI);
132 OS << " }";
133 return OS;
134 }
135}
136
137
138namespace {
139 class Transformation;
140
141 class HexagonBitSimplify : public MachineFunctionPass {
142 public:
143 static char ID;
144 HexagonBitSimplify() : MachineFunctionPass(ID), MDT(0) {
145 initializeHexagonBitSimplifyPass(*PassRegistry::getPassRegistry());
146 }
147 virtual const char *getPassName() const {
148 return "Hexagon bit simplification";
149 }
150 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
151 AU.addRequired<MachineDominatorTree>();
152 AU.addPreserved<MachineDominatorTree>();
153 MachineFunctionPass::getAnalysisUsage(AU);
154 }
155 virtual bool runOnMachineFunction(MachineFunction &MF);
156
157 static void getInstrDefs(const MachineInstr &MI, RegisterSet &Defs);
158 static void getInstrUses(const MachineInstr &MI, RegisterSet &Uses);
159 static bool isEqual(const BitTracker::RegisterCell &RC1, uint16_t B1,
160 const BitTracker::RegisterCell &RC2, uint16_t B2, uint16_t W);
Krzysztof Parzyszekced99412015-10-20 22:57:13 +0000161 static bool isZero(const BitTracker::RegisterCell &RC, uint16_t B,
162 uint16_t W);
163 static bool getConst(const BitTracker::RegisterCell &RC, uint16_t B,
164 uint16_t W, uint64_t &U);
165 static bool replaceReg(unsigned OldR, unsigned NewR,
166 MachineRegisterInfo &MRI);
167 static bool getSubregMask(const BitTracker::RegisterRef &RR,
168 unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI);
169 static bool replaceRegWithSub(unsigned OldR, unsigned NewR,
170 unsigned NewSR, MachineRegisterInfo &MRI);
171 static bool replaceSubWithSub(unsigned OldR, unsigned OldSR,
172 unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI);
173 static bool parseRegSequence(const MachineInstr &I,
174 BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH);
175
176 static bool getUsedBitsInStore(unsigned Opc, BitVector &Bits,
177 uint16_t Begin);
178 static bool getUsedBits(unsigned Opc, unsigned OpN, BitVector &Bits,
179 uint16_t Begin, const HexagonInstrInfo &HII);
180
181 static const TargetRegisterClass *getFinalVRegClass(
182 const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI);
183 static bool isTransparentCopy(const BitTracker::RegisterRef &RD,
184 const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI);
185
186 private:
187 MachineDominatorTree *MDT;
188
189 bool visitBlock(MachineBasicBlock &B, Transformation &T, RegisterSet &AVs);
190 };
191
192 char HexagonBitSimplify::ID = 0;
193 typedef HexagonBitSimplify HBS;
194
195
196 // The purpose of this class is to provide a common facility to traverse
197 // the function top-down or bottom-up via the dominator tree, and keep
198 // track of the available registers.
199 class Transformation {
200 public:
201 bool TopDown;
202 Transformation(bool TD) : TopDown(TD) {}
203 virtual bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) = 0;
204 virtual ~Transformation() {}
205 };
206}
207
208INITIALIZE_PASS_BEGIN(HexagonBitSimplify, "hexbit",
209 "Hexagon bit simplification", false, false)
210INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
211INITIALIZE_PASS_END(HexagonBitSimplify, "hexbit",
212 "Hexagon bit simplification", false, false)
213
214
215bool HexagonBitSimplify::visitBlock(MachineBasicBlock &B, Transformation &T,
216 RegisterSet &AVs) {
217 MachineDomTreeNode *N = MDT->getNode(&B);
218 typedef GraphTraits<MachineDomTreeNode*> GTN;
219 bool Changed = false;
220
221 if (T.TopDown)
222 Changed = T.processBlock(B, AVs);
223
224 RegisterSet Defs;
225 for (auto &I : B)
226 getInstrDefs(I, Defs);
227 RegisterSet NewAVs = AVs;
228 NewAVs.insert(Defs);
229
230 for (auto I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I) {
231 MachineBasicBlock *SB = (*I)->getBlock();
232 Changed |= visitBlock(*SB, T, NewAVs);
233 }
234 if (!T.TopDown)
235 Changed |= T.processBlock(B, AVs);
236
237 return Changed;
238}
239
240//
241// Utility functions:
242//
243void HexagonBitSimplify::getInstrDefs(const MachineInstr &MI,
244 RegisterSet &Defs) {
245 for (auto &Op : MI.operands()) {
246 if (!Op.isReg() || !Op.isDef())
247 continue;
248 unsigned R = Op.getReg();
249 if (!TargetRegisterInfo::isVirtualRegister(R))
250 continue;
251 Defs.insert(R);
252 }
253}
254
255void HexagonBitSimplify::getInstrUses(const MachineInstr &MI,
256 RegisterSet &Uses) {
257 for (auto &Op : MI.operands()) {
258 if (!Op.isReg() || !Op.isUse())
259 continue;
260 unsigned R = Op.getReg();
261 if (!TargetRegisterInfo::isVirtualRegister(R))
262 continue;
263 Uses.insert(R);
264 }
265}
266
267// Check if all the bits in range [B, E) in both cells are equal.
268bool HexagonBitSimplify::isEqual(const BitTracker::RegisterCell &RC1,
269 uint16_t B1, const BitTracker::RegisterCell &RC2, uint16_t B2,
270 uint16_t W) {
271 for (uint16_t i = 0; i < W; ++i) {
272 // If RC1[i] is "bottom", it cannot be proven equal to RC2[i].
273 if (RC1[B1+i].Type == BitTracker::BitValue::Ref && RC1[B1+i].RefI.Reg == 0)
274 return false;
275 // Same for RC2[i].
276 if (RC2[B2+i].Type == BitTracker::BitValue::Ref && RC2[B2+i].RefI.Reg == 0)
277 return false;
278 if (RC1[B1+i] != RC2[B2+i])
279 return false;
280 }
281 return true;
282}
283
Krzysztof Parzyszekced99412015-10-20 22:57:13 +0000284bool HexagonBitSimplify::isZero(const BitTracker::RegisterCell &RC,
285 uint16_t B, uint16_t W) {
286 assert(B < RC.width() && B+W <= RC.width());
287 for (uint16_t i = B; i < B+W; ++i)
288 if (!RC[i].is(0))
289 return false;
290 return true;
291}
292
293
294bool HexagonBitSimplify::getConst(const BitTracker::RegisterCell &RC,
295 uint16_t B, uint16_t W, uint64_t &U) {
296 assert(B < RC.width() && B+W <= RC.width());
297 int64_t T = 0;
298 for (uint16_t i = B+W; i > B; --i) {
299 const BitTracker::BitValue &BV = RC[i-1];
300 T <<= 1;
301 if (BV.is(1))
302 T |= 1;
303 else if (!BV.is(0))
304 return false;
305 }
306 U = T;
307 return true;
308}
309
310
311bool HexagonBitSimplify::replaceReg(unsigned OldR, unsigned NewR,
312 MachineRegisterInfo &MRI) {
313 if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
314 !TargetRegisterInfo::isVirtualRegister(NewR))
315 return false;
316 auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
317 decltype(End) NextI;
318 for (auto I = Begin; I != End; I = NextI) {
319 NextI = std::next(I);
320 I->setReg(NewR);
321 }
322 return Begin != End;
323}
324
325
326bool HexagonBitSimplify::replaceRegWithSub(unsigned OldR, unsigned NewR,
327 unsigned NewSR, MachineRegisterInfo &MRI) {
328 if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
329 !TargetRegisterInfo::isVirtualRegister(NewR))
330 return false;
331 auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
332 decltype(End) NextI;
333 for (auto I = Begin; I != End; I = NextI) {
334 NextI = std::next(I);
335 I->setReg(NewR);
336 I->setSubReg(NewSR);
337 }
338 return Begin != End;
339}
340
341
342bool HexagonBitSimplify::replaceSubWithSub(unsigned OldR, unsigned OldSR,
343 unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI) {
344 if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
345 !TargetRegisterInfo::isVirtualRegister(NewR))
346 return false;
347 auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
348 decltype(End) NextI;
349 for (auto I = Begin; I != End; I = NextI) {
350 NextI = std::next(I);
351 if (I->getSubReg() != OldSR)
352 continue;
353 I->setReg(NewR);
354 I->setSubReg(NewSR);
355 }
356 return Begin != End;
357}
358
359
360// For a register ref (pair Reg:Sub), set Begin to the position of the LSB
361// of Sub in Reg, and set Width to the size of Sub in bits. Return true,
362// if this succeeded, otherwise return false.
363bool HexagonBitSimplify::getSubregMask(const BitTracker::RegisterRef &RR,
364 unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI) {
365 const TargetRegisterClass *RC = MRI.getRegClass(RR.Reg);
366 if (RC == &Hexagon::IntRegsRegClass) {
367 assert(RR.Sub == 0);
368 Begin = 0;
369 Width = 32;
370 return true;
371 }
372 if (RC == &Hexagon::DoubleRegsRegClass) {
373 if (RR.Sub == 0) {
374 Begin = 0;
375 Width = 64;
376 return true;
377 }
378 assert(RR.Sub == Hexagon::subreg_loreg || RR.Sub == Hexagon::subreg_hireg);
379 Width = 32;
380 Begin = (RR.Sub == Hexagon::subreg_loreg ? 0 : 32);
381 return true;
382 }
383 return false;
384}
385
386
387// For a REG_SEQUENCE, set SL to the low subregister and SH to the high
388// subregister.
389bool HexagonBitSimplify::parseRegSequence(const MachineInstr &I,
390 BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH) {
391 assert(I.getOpcode() == TargetOpcode::REG_SEQUENCE);
392 unsigned Sub1 = I.getOperand(2).getImm(), Sub2 = I.getOperand(4).getImm();
393 assert(Sub1 != Sub2);
394 if (Sub1 == Hexagon::subreg_loreg && Sub2 == Hexagon::subreg_hireg) {
395 SL = I.getOperand(1);
396 SH = I.getOperand(3);
397 return true;
398 }
399 if (Sub1 == Hexagon::subreg_hireg && Sub2 == Hexagon::subreg_loreg) {
400 SH = I.getOperand(1);
401 SL = I.getOperand(3);
402 return true;
403 }
404 return false;
405}
406
407
408// All stores (except 64-bit stores) take a 32-bit register as the source
409// of the value to be stored. If the instruction stores into a location
410// that is shorter than 32 bits, some bits of the source register are not
411// used. For each store instruction, calculate the set of used bits in
412// the source register, and set appropriate bits in Bits. Return true if
413// the bits are calculated, false otherwise.
414bool HexagonBitSimplify::getUsedBitsInStore(unsigned Opc, BitVector &Bits,
415 uint16_t Begin) {
416 using namespace Hexagon;
417
418 switch (Opc) {
419 // Store byte
420 case S2_storerb_io: // memb(Rs32+#s11:0)=Rt32
421 case S2_storerbnew_io: // memb(Rs32+#s11:0)=Nt8.new
422 case S2_pstorerbt_io: // if (Pv4) memb(Rs32+#u6:0)=Rt32
423 case S2_pstorerbf_io: // if (!Pv4) memb(Rs32+#u6:0)=Rt32
424 case S4_pstorerbtnew_io: // if (Pv4.new) memb(Rs32+#u6:0)=Rt32
425 case S4_pstorerbfnew_io: // if (!Pv4.new) memb(Rs32+#u6:0)=Rt32
426 case S2_pstorerbnewt_io: // if (Pv4) memb(Rs32+#u6:0)=Nt8.new
427 case S2_pstorerbnewf_io: // if (!Pv4) memb(Rs32+#u6:0)=Nt8.new
428 case S4_pstorerbnewtnew_io: // if (Pv4.new) memb(Rs32+#u6:0)=Nt8.new
429 case S4_pstorerbnewfnew_io: // if (!Pv4.new) memb(Rs32+#u6:0)=Nt8.new
430 case S2_storerb_pi: // memb(Rx32++#s4:0)=Rt32
431 case S2_storerbnew_pi: // memb(Rx32++#s4:0)=Nt8.new
432 case S2_pstorerbt_pi: // if (Pv4) memb(Rx32++#s4:0)=Rt32
433 case S2_pstorerbf_pi: // if (!Pv4) memb(Rx32++#s4:0)=Rt32
434 case S2_pstorerbtnew_pi: // if (Pv4.new) memb(Rx32++#s4:0)=Rt32
435 case S2_pstorerbfnew_pi: // if (!Pv4.new) memb(Rx32++#s4:0)=Rt32
436 case S2_pstorerbnewt_pi: // if (Pv4) memb(Rx32++#s4:0)=Nt8.new
437 case S2_pstorerbnewf_pi: // if (!Pv4) memb(Rx32++#s4:0)=Nt8.new
438 case S2_pstorerbnewtnew_pi: // if (Pv4.new) memb(Rx32++#s4:0)=Nt8.new
439 case S2_pstorerbnewfnew_pi: // if (!Pv4.new) memb(Rx32++#s4:0)=Nt8.new
440 case S4_storerb_ap: // memb(Re32=#U6)=Rt32
441 case S4_storerbnew_ap: // memb(Re32=#U6)=Nt8.new
442 case S2_storerb_pr: // memb(Rx32++Mu2)=Rt32
443 case S2_storerbnew_pr: // memb(Rx32++Mu2)=Nt8.new
444 case S4_storerb_ur: // memb(Ru32<<#u2+#U6)=Rt32
445 case S4_storerbnew_ur: // memb(Ru32<<#u2+#U6)=Nt8.new
446 case S2_storerb_pbr: // memb(Rx32++Mu2:brev)=Rt32
447 case S2_storerbnew_pbr: // memb(Rx32++Mu2:brev)=Nt8.new
448 case S2_storerb_pci: // memb(Rx32++#s4:0:circ(Mu2))=Rt32
449 case S2_storerbnew_pci: // memb(Rx32++#s4:0:circ(Mu2))=Nt8.new
450 case S2_storerb_pcr: // memb(Rx32++I:circ(Mu2))=Rt32
451 case S2_storerbnew_pcr: // memb(Rx32++I:circ(Mu2))=Nt8.new
452 case S4_storerb_rr: // memb(Rs32+Ru32<<#u2)=Rt32
453 case S4_storerbnew_rr: // memb(Rs32+Ru32<<#u2)=Nt8.new
454 case S4_pstorerbt_rr: // if (Pv4) memb(Rs32+Ru32<<#u2)=Rt32
455 case S4_pstorerbf_rr: // if (!Pv4) memb(Rs32+Ru32<<#u2)=Rt32
456 case S4_pstorerbtnew_rr: // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
457 case S4_pstorerbfnew_rr: // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
458 case S4_pstorerbnewt_rr: // if (Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
459 case S4_pstorerbnewf_rr: // if (!Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
460 case S4_pstorerbnewtnew_rr: // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
461 case S4_pstorerbnewfnew_rr: // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
462 case S2_storerbgp: // memb(gp+#u16:0)=Rt32
463 case S2_storerbnewgp: // memb(gp+#u16:0)=Nt8.new
464 case S4_pstorerbt_abs: // if (Pv4) memb(#u6)=Rt32
465 case S4_pstorerbf_abs: // if (!Pv4) memb(#u6)=Rt32
466 case S4_pstorerbtnew_abs: // if (Pv4.new) memb(#u6)=Rt32
467 case S4_pstorerbfnew_abs: // if (!Pv4.new) memb(#u6)=Rt32
468 case S4_pstorerbnewt_abs: // if (Pv4) memb(#u6)=Nt8.new
469 case S4_pstorerbnewf_abs: // if (!Pv4) memb(#u6)=Nt8.new
470 case S4_pstorerbnewtnew_abs: // if (Pv4.new) memb(#u6)=Nt8.new
471 case S4_pstorerbnewfnew_abs: // if (!Pv4.new) memb(#u6)=Nt8.new
472 Bits.set(Begin, Begin+8);
473 return true;
474
475 // Store low half
476 case S2_storerh_io: // memh(Rs32+#s11:1)=Rt32
477 case S2_storerhnew_io: // memh(Rs32+#s11:1)=Nt8.new
478 case S2_pstorerht_io: // if (Pv4) memh(Rs32+#u6:1)=Rt32
479 case S2_pstorerhf_io: // if (!Pv4) memh(Rs32+#u6:1)=Rt32
480 case S4_pstorerhtnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Rt32
481 case S4_pstorerhfnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Rt32
482 case S2_pstorerhnewt_io: // if (Pv4) memh(Rs32+#u6:1)=Nt8.new
483 case S2_pstorerhnewf_io: // if (!Pv4) memh(Rs32+#u6:1)=Nt8.new
484 case S4_pstorerhnewtnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Nt8.new
485 case S4_pstorerhnewfnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Nt8.new
486 case S2_storerh_pi: // memh(Rx32++#s4:1)=Rt32
487 case S2_storerhnew_pi: // memh(Rx32++#s4:1)=Nt8.new
488 case S2_pstorerht_pi: // if (Pv4) memh(Rx32++#s4:1)=Rt32
489 case S2_pstorerhf_pi: // if (!Pv4) memh(Rx32++#s4:1)=Rt32
490 case S2_pstorerhtnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Rt32
491 case S2_pstorerhfnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Rt32
492 case S2_pstorerhnewt_pi: // if (Pv4) memh(Rx32++#s4:1)=Nt8.new
493 case S2_pstorerhnewf_pi: // if (!Pv4) memh(Rx32++#s4:1)=Nt8.new
494 case S2_pstorerhnewtnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Nt8.new
495 case S2_pstorerhnewfnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Nt8.new
496 case S4_storerh_ap: // memh(Re32=#U6)=Rt32
497 case S4_storerhnew_ap: // memh(Re32=#U6)=Nt8.new
498 case S2_storerh_pr: // memh(Rx32++Mu2)=Rt32
499 case S2_storerhnew_pr: // memh(Rx32++Mu2)=Nt8.new
500 case S4_storerh_ur: // memh(Ru32<<#u2+#U6)=Rt32
501 case S4_storerhnew_ur: // memh(Ru32<<#u2+#U6)=Nt8.new
502 case S2_storerh_pbr: // memh(Rx32++Mu2:brev)=Rt32
503 case S2_storerhnew_pbr: // memh(Rx32++Mu2:brev)=Nt8.new
504 case S2_storerh_pci: // memh(Rx32++#s4:1:circ(Mu2))=Rt32
505 case S2_storerhnew_pci: // memh(Rx32++#s4:1:circ(Mu2))=Nt8.new
506 case S2_storerh_pcr: // memh(Rx32++I:circ(Mu2))=Rt32
507 case S2_storerhnew_pcr: // memh(Rx32++I:circ(Mu2))=Nt8.new
508 case S4_storerh_rr: // memh(Rs32+Ru32<<#u2)=Rt32
509 case S4_pstorerht_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt32
510 case S4_pstorerhf_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt32
511 case S4_pstorerhtnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
512 case S4_pstorerhfnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
513 case S4_storerhnew_rr: // memh(Rs32+Ru32<<#u2)=Nt8.new
514 case S4_pstorerhnewt_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
515 case S4_pstorerhnewf_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
516 case S4_pstorerhnewtnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
517 case S4_pstorerhnewfnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
518 case S2_storerhgp: // memh(gp+#u16:1)=Rt32
519 case S2_storerhnewgp: // memh(gp+#u16:1)=Nt8.new
520 case S4_pstorerht_abs: // if (Pv4) memh(#u6)=Rt32
521 case S4_pstorerhf_abs: // if (!Pv4) memh(#u6)=Rt32
522 case S4_pstorerhtnew_abs: // if (Pv4.new) memh(#u6)=Rt32
523 case S4_pstorerhfnew_abs: // if (!Pv4.new) memh(#u6)=Rt32
524 case S4_pstorerhnewt_abs: // if (Pv4) memh(#u6)=Nt8.new
525 case S4_pstorerhnewf_abs: // if (!Pv4) memh(#u6)=Nt8.new
526 case S4_pstorerhnewtnew_abs: // if (Pv4.new) memh(#u6)=Nt8.new
527 case S4_pstorerhnewfnew_abs: // if (!Pv4.new) memh(#u6)=Nt8.new
528 Bits.set(Begin, Begin+16);
529 return true;
530
531 // Store high half
532 case S2_storerf_io: // memh(Rs32+#s11:1)=Rt.H32
533 case S2_pstorerft_io: // if (Pv4) memh(Rs32+#u6:1)=Rt.H32
534 case S2_pstorerff_io: // if (!Pv4) memh(Rs32+#u6:1)=Rt.H32
535 case S4_pstorerftnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Rt.H32
536 case S4_pstorerffnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Rt.H32
537 case S2_storerf_pi: // memh(Rx32++#s4:1)=Rt.H32
538 case S2_pstorerft_pi: // if (Pv4) memh(Rx32++#s4:1)=Rt.H32
539 case S2_pstorerff_pi: // if (!Pv4) memh(Rx32++#s4:1)=Rt.H32
540 case S2_pstorerftnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Rt.H32
541 case S2_pstorerffnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Rt.H32
542 case S4_storerf_ap: // memh(Re32=#U6)=Rt.H32
543 case S2_storerf_pr: // memh(Rx32++Mu2)=Rt.H32
544 case S4_storerf_ur: // memh(Ru32<<#u2+#U6)=Rt.H32
545 case S2_storerf_pbr: // memh(Rx32++Mu2:brev)=Rt.H32
546 case S2_storerf_pci: // memh(Rx32++#s4:1:circ(Mu2))=Rt.H32
547 case S2_storerf_pcr: // memh(Rx32++I:circ(Mu2))=Rt.H32
548 case S4_storerf_rr: // memh(Rs32+Ru32<<#u2)=Rt.H32
549 case S4_pstorerft_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
550 case S4_pstorerff_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
551 case S4_pstorerftnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
552 case S4_pstorerffnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
553 case S2_storerfgp: // memh(gp+#u16:1)=Rt.H32
554 case S4_pstorerft_abs: // if (Pv4) memh(#u6)=Rt.H32
555 case S4_pstorerff_abs: // if (!Pv4) memh(#u6)=Rt.H32
556 case S4_pstorerftnew_abs: // if (Pv4.new) memh(#u6)=Rt.H32
557 case S4_pstorerffnew_abs: // if (!Pv4.new) memh(#u6)=Rt.H32
558 Bits.set(Begin+16, Begin+32);
559 return true;
560 }
561
562 return false;
563}
564
565
566// For an instruction with opcode Opc, calculate the set of bits that it
567// uses in a register in operand OpN. This only calculates the set of used
568// bits for cases where it does not depend on any operands (as is the case
569// in shifts, for example). For concrete instructions from a program, the
570// operand may be a subregister of a larger register, while Bits would
571// correspond to the larger register in its entirety. Because of that,
572// the parameter Begin can be used to indicate which bit of Bits should be
573// considered the LSB of of the operand.
574bool HexagonBitSimplify::getUsedBits(unsigned Opc, unsigned OpN,
575 BitVector &Bits, uint16_t Begin, const HexagonInstrInfo &HII) {
576 using namespace Hexagon;
577
578 const MCInstrDesc &D = HII.get(Opc);
579 if (D.mayStore()) {
580 if (OpN == D.getNumOperands()-1)
581 return getUsedBitsInStore(Opc, Bits, Begin);
582 return false;
583 }
584
585 switch (Opc) {
586 // One register source. Used bits: R1[0-7].
587 case A2_sxtb:
588 case A2_zxtb:
589 case A4_cmpbeqi:
590 case A4_cmpbgti:
591 case A4_cmpbgtui:
592 if (OpN == 1) {
593 Bits.set(Begin, Begin+8);
594 return true;
595 }
596 break;
597
598 // One register source. Used bits: R1[0-15].
599 case A2_aslh:
600 case A2_sxth:
601 case A2_zxth:
602 case A4_cmpheqi:
603 case A4_cmphgti:
604 case A4_cmphgtui:
605 if (OpN == 1) {
606 Bits.set(Begin, Begin+16);
607 return true;
608 }
609 break;
610
611 // One register source. Used bits: R1[16-31].
612 case A2_asrh:
613 if (OpN == 1) {
614 Bits.set(Begin+16, Begin+32);
615 return true;
616 }
617 break;
618
619 // Two register sources. Used bits: R1[0-7], R2[0-7].
620 case A4_cmpbeq:
621 case A4_cmpbgt:
622 case A4_cmpbgtu:
623 if (OpN == 1) {
624 Bits.set(Begin, Begin+8);
625 return true;
626 }
627 break;
628
629 // Two register sources. Used bits: R1[0-15], R2[0-15].
630 case A4_cmpheq:
631 case A4_cmphgt:
632 case A4_cmphgtu:
633 case A2_addh_h16_ll:
634 case A2_addh_h16_sat_ll:
635 case A2_addh_l16_ll:
636 case A2_addh_l16_sat_ll:
637 case A2_combine_ll:
638 case A2_subh_h16_ll:
639 case A2_subh_h16_sat_ll:
640 case A2_subh_l16_ll:
641 case A2_subh_l16_sat_ll:
642 case M2_mpy_acc_ll_s0:
643 case M2_mpy_acc_ll_s1:
644 case M2_mpy_acc_sat_ll_s0:
645 case M2_mpy_acc_sat_ll_s1:
646 case M2_mpy_ll_s0:
647 case M2_mpy_ll_s1:
648 case M2_mpy_nac_ll_s0:
649 case M2_mpy_nac_ll_s1:
650 case M2_mpy_nac_sat_ll_s0:
651 case M2_mpy_nac_sat_ll_s1:
652 case M2_mpy_rnd_ll_s0:
653 case M2_mpy_rnd_ll_s1:
654 case M2_mpy_sat_ll_s0:
655 case M2_mpy_sat_ll_s1:
656 case M2_mpy_sat_rnd_ll_s0:
657 case M2_mpy_sat_rnd_ll_s1:
658 case M2_mpyd_acc_ll_s0:
659 case M2_mpyd_acc_ll_s1:
660 case M2_mpyd_ll_s0:
661 case M2_mpyd_ll_s1:
662 case M2_mpyd_nac_ll_s0:
663 case M2_mpyd_nac_ll_s1:
664 case M2_mpyd_rnd_ll_s0:
665 case M2_mpyd_rnd_ll_s1:
666 case M2_mpyu_acc_ll_s0:
667 case M2_mpyu_acc_ll_s1:
668 case M2_mpyu_ll_s0:
669 case M2_mpyu_ll_s1:
670 case M2_mpyu_nac_ll_s0:
671 case M2_mpyu_nac_ll_s1:
672 case M2_mpyud_acc_ll_s0:
673 case M2_mpyud_acc_ll_s1:
674 case M2_mpyud_ll_s0:
675 case M2_mpyud_ll_s1:
676 case M2_mpyud_nac_ll_s0:
677 case M2_mpyud_nac_ll_s1:
678 if (OpN == 1 || OpN == 2) {
679 Bits.set(Begin, Begin+16);
680 return true;
681 }
682 break;
683
684 // Two register sources. Used bits: R1[0-15], R2[16-31].
685 case A2_addh_h16_lh:
686 case A2_addh_h16_sat_lh:
687 case A2_combine_lh:
688 case A2_subh_h16_lh:
689 case A2_subh_h16_sat_lh:
690 case M2_mpy_acc_lh_s0:
691 case M2_mpy_acc_lh_s1:
692 case M2_mpy_acc_sat_lh_s0:
693 case M2_mpy_acc_sat_lh_s1:
694 case M2_mpy_lh_s0:
695 case M2_mpy_lh_s1:
696 case M2_mpy_nac_lh_s0:
697 case M2_mpy_nac_lh_s1:
698 case M2_mpy_nac_sat_lh_s0:
699 case M2_mpy_nac_sat_lh_s1:
700 case M2_mpy_rnd_lh_s0:
701 case M2_mpy_rnd_lh_s1:
702 case M2_mpy_sat_lh_s0:
703 case M2_mpy_sat_lh_s1:
704 case M2_mpy_sat_rnd_lh_s0:
705 case M2_mpy_sat_rnd_lh_s1:
706 case M2_mpyd_acc_lh_s0:
707 case M2_mpyd_acc_lh_s1:
708 case M2_mpyd_lh_s0:
709 case M2_mpyd_lh_s1:
710 case M2_mpyd_nac_lh_s0:
711 case M2_mpyd_nac_lh_s1:
712 case M2_mpyd_rnd_lh_s0:
713 case M2_mpyd_rnd_lh_s1:
714 case M2_mpyu_acc_lh_s0:
715 case M2_mpyu_acc_lh_s1:
716 case M2_mpyu_lh_s0:
717 case M2_mpyu_lh_s1:
718 case M2_mpyu_nac_lh_s0:
719 case M2_mpyu_nac_lh_s1:
720 case M2_mpyud_acc_lh_s0:
721 case M2_mpyud_acc_lh_s1:
722 case M2_mpyud_lh_s0:
723 case M2_mpyud_lh_s1:
724 case M2_mpyud_nac_lh_s0:
725 case M2_mpyud_nac_lh_s1:
726 // These four are actually LH.
727 case A2_addh_l16_hl:
728 case A2_addh_l16_sat_hl:
729 case A2_subh_l16_hl:
730 case A2_subh_l16_sat_hl:
731 if (OpN == 1) {
732 Bits.set(Begin, Begin+16);
733 return true;
734 }
735 if (OpN == 2) {
736 Bits.set(Begin+16, Begin+32);
737 return true;
738 }
739 break;
740
741 // Two register sources, used bits: R1[16-31], R2[0-15].
742 case A2_addh_h16_hl:
743 case A2_addh_h16_sat_hl:
744 case A2_combine_hl:
745 case A2_subh_h16_hl:
746 case A2_subh_h16_sat_hl:
747 case M2_mpy_acc_hl_s0:
748 case M2_mpy_acc_hl_s1:
749 case M2_mpy_acc_sat_hl_s0:
750 case M2_mpy_acc_sat_hl_s1:
751 case M2_mpy_hl_s0:
752 case M2_mpy_hl_s1:
753 case M2_mpy_nac_hl_s0:
754 case M2_mpy_nac_hl_s1:
755 case M2_mpy_nac_sat_hl_s0:
756 case M2_mpy_nac_sat_hl_s1:
757 case M2_mpy_rnd_hl_s0:
758 case M2_mpy_rnd_hl_s1:
759 case M2_mpy_sat_hl_s0:
760 case M2_mpy_sat_hl_s1:
761 case M2_mpy_sat_rnd_hl_s0:
762 case M2_mpy_sat_rnd_hl_s1:
763 case M2_mpyd_acc_hl_s0:
764 case M2_mpyd_acc_hl_s1:
765 case M2_mpyd_hl_s0:
766 case M2_mpyd_hl_s1:
767 case M2_mpyd_nac_hl_s0:
768 case M2_mpyd_nac_hl_s1:
769 case M2_mpyd_rnd_hl_s0:
770 case M2_mpyd_rnd_hl_s1:
771 case M2_mpyu_acc_hl_s0:
772 case M2_mpyu_acc_hl_s1:
773 case M2_mpyu_hl_s0:
774 case M2_mpyu_hl_s1:
775 case M2_mpyu_nac_hl_s0:
776 case M2_mpyu_nac_hl_s1:
777 case M2_mpyud_acc_hl_s0:
778 case M2_mpyud_acc_hl_s1:
779 case M2_mpyud_hl_s0:
780 case M2_mpyud_hl_s1:
781 case M2_mpyud_nac_hl_s0:
782 case M2_mpyud_nac_hl_s1:
783 if (OpN == 1) {
784 Bits.set(Begin+16, Begin+32);
785 return true;
786 }
787 if (OpN == 2) {
788 Bits.set(Begin, Begin+16);
789 return true;
790 }
791 break;
792
793 // Two register sources, used bits: R1[16-31], R2[16-31].
794 case A2_addh_h16_hh:
795 case A2_addh_h16_sat_hh:
796 case A2_combine_hh:
797 case A2_subh_h16_hh:
798 case A2_subh_h16_sat_hh:
799 case M2_mpy_acc_hh_s0:
800 case M2_mpy_acc_hh_s1:
801 case M2_mpy_acc_sat_hh_s0:
802 case M2_mpy_acc_sat_hh_s1:
803 case M2_mpy_hh_s0:
804 case M2_mpy_hh_s1:
805 case M2_mpy_nac_hh_s0:
806 case M2_mpy_nac_hh_s1:
807 case M2_mpy_nac_sat_hh_s0:
808 case M2_mpy_nac_sat_hh_s1:
809 case M2_mpy_rnd_hh_s0:
810 case M2_mpy_rnd_hh_s1:
811 case M2_mpy_sat_hh_s0:
812 case M2_mpy_sat_hh_s1:
813 case M2_mpy_sat_rnd_hh_s0:
814 case M2_mpy_sat_rnd_hh_s1:
815 case M2_mpyd_acc_hh_s0:
816 case M2_mpyd_acc_hh_s1:
817 case M2_mpyd_hh_s0:
818 case M2_mpyd_hh_s1:
819 case M2_mpyd_nac_hh_s0:
820 case M2_mpyd_nac_hh_s1:
821 case M2_mpyd_rnd_hh_s0:
822 case M2_mpyd_rnd_hh_s1:
823 case M2_mpyu_acc_hh_s0:
824 case M2_mpyu_acc_hh_s1:
825 case M2_mpyu_hh_s0:
826 case M2_mpyu_hh_s1:
827 case M2_mpyu_nac_hh_s0:
828 case M2_mpyu_nac_hh_s1:
829 case M2_mpyud_acc_hh_s0:
830 case M2_mpyud_acc_hh_s1:
831 case M2_mpyud_hh_s0:
832 case M2_mpyud_hh_s1:
833 case M2_mpyud_nac_hh_s0:
834 case M2_mpyud_nac_hh_s1:
835 if (OpN == 1 || OpN == 2) {
836 Bits.set(Begin+16, Begin+32);
837 return true;
838 }
839 break;
840 }
841
842 return false;
843}
844
845
846// Calculate the register class that matches Reg:Sub. For example, if
847// vreg1 is a double register, then vreg1:subreg_hireg would match "int"
848// register class.
849const TargetRegisterClass *HexagonBitSimplify::getFinalVRegClass(
850 const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI) {
851 if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
852 return nullptr;
853 auto *RC = MRI.getRegClass(RR.Reg);
854 if (RR.Sub == 0)
855 return RC;
856
857 auto VerifySR = [] (unsigned Sub) -> void {
858 assert(Sub == Hexagon::subreg_hireg || Sub == Hexagon::subreg_loreg);
859 };
860
861 switch (RC->getID()) {
862 case Hexagon::DoubleRegsRegClassID:
863 VerifySR(RR.Sub);
864 return &Hexagon::IntRegsRegClass;
Krzysztof Parzyszek5337a3e2016-01-14 21:45:43 +0000865 case Hexagon::VecDblRegsRegClassID:
866 VerifySR(RR.Sub);
867 return &Hexagon::VectorRegsRegClass;
868 case Hexagon::VecDblRegs128BRegClassID:
869 VerifySR(RR.Sub);
870 return &Hexagon::VectorRegs128BRegClass;
Krzysztof Parzyszekced99412015-10-20 22:57:13 +0000871 }
872 return nullptr;
873}
874
875
876// Check if RD could be replaced with RS at any possible use of RD.
877// For example a predicate register cannot be replaced with a integer
878// register, but a 64-bit register with a subregister can be replaced
879// with a 32-bit register.
880bool HexagonBitSimplify::isTransparentCopy(const BitTracker::RegisterRef &RD,
881 const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI) {
882 if (!TargetRegisterInfo::isVirtualRegister(RD.Reg) ||
883 !TargetRegisterInfo::isVirtualRegister(RS.Reg))
884 return false;
885 // Return false if one (or both) classes are nullptr.
886 auto *DRC = getFinalVRegClass(RD, MRI);
887 if (!DRC)
888 return false;
889
890 return DRC == getFinalVRegClass(RS, MRI);
891}
892
893
894//
895// Dead code elimination
896//
897namespace {
898 class DeadCodeElimination {
899 public:
900 DeadCodeElimination(MachineFunction &mf, MachineDominatorTree &mdt)
901 : MF(mf), HII(*MF.getSubtarget<HexagonSubtarget>().getInstrInfo()),
902 MDT(mdt), MRI(mf.getRegInfo()) {}
903
904 bool run() {
905 return runOnNode(MDT.getRootNode());
906 }
907
908 private:
909 bool isDead(unsigned R) const;
910 bool runOnNode(MachineDomTreeNode *N);
911
912 MachineFunction &MF;
913 const HexagonInstrInfo &HII;
914 MachineDominatorTree &MDT;
915 MachineRegisterInfo &MRI;
916 };
917}
918
919
920bool DeadCodeElimination::isDead(unsigned R) const {
921 for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
922 MachineInstr *UseI = I->getParent();
923 if (UseI->isDebugValue())
924 continue;
925 if (UseI->isPHI()) {
926 assert(!UseI->getOperand(0).getSubReg());
927 unsigned DR = UseI->getOperand(0).getReg();
928 if (DR == R)
929 continue;
930 }
931 return false;
932 }
933 return true;
934}
935
936
937bool DeadCodeElimination::runOnNode(MachineDomTreeNode *N) {
938 bool Changed = false;
939 typedef GraphTraits<MachineDomTreeNode*> GTN;
940 for (auto I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I)
941 Changed |= runOnNode(*I);
942
943 MachineBasicBlock *B = N->getBlock();
944 std::vector<MachineInstr*> Instrs;
945 for (auto I = B->rbegin(), E = B->rend(); I != E; ++I)
946 Instrs.push_back(&*I);
947
948 for (auto MI : Instrs) {
949 unsigned Opc = MI->getOpcode();
950 // Do not touch lifetime markers. This is why the target-independent DCE
951 // cannot be used.
952 if (Opc == TargetOpcode::LIFETIME_START ||
953 Opc == TargetOpcode::LIFETIME_END)
954 continue;
955 bool Store = false;
956 if (MI->isInlineAsm())
957 continue;
958 // Delete PHIs if possible.
959 if (!MI->isPHI() && !MI->isSafeToMove(nullptr, Store))
960 continue;
961
962 bool AllDead = true;
963 SmallVector<unsigned,2> Regs;
964 for (auto &Op : MI->operands()) {
965 if (!Op.isReg() || !Op.isDef())
966 continue;
967 unsigned R = Op.getReg();
968 if (!TargetRegisterInfo::isVirtualRegister(R) || !isDead(R)) {
969 AllDead = false;
970 break;
971 }
972 Regs.push_back(R);
973 }
974 if (!AllDead)
975 continue;
976
977 B->erase(MI);
978 for (unsigned i = 0, n = Regs.size(); i != n; ++i)
979 MRI.markUsesInDebugValueAsUndef(Regs[i]);
980 Changed = true;
981 }
982
983 return Changed;
984}
985
986
987//
988// Eliminate redundant instructions
989//
990// This transformation will identify instructions where the output register
991// is the same as one of its input registers. This only works on instructions
992// that define a single register (unlike post-increment loads, for example).
993// The equality check is actually more detailed: the code calculates which
994// bits of the output are used, and only compares these bits with the input
995// registers.
996// If the output matches an input, the instruction is replaced with COPY.
997// The copies will be removed by another transformation.
998namespace {
999 class RedundantInstrElimination : public Transformation {
1000 public:
1001 RedundantInstrElimination(BitTracker &bt, const HexagonInstrInfo &hii,
1002 MachineRegisterInfo &mri)
1003 : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1004 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1005 private:
1006 bool isLossyShiftLeft(const MachineInstr &MI, unsigned OpN,
1007 unsigned &LostB, unsigned &LostE);
1008 bool isLossyShiftRight(const MachineInstr &MI, unsigned OpN,
1009 unsigned &LostB, unsigned &LostE);
1010 bool computeUsedBits(unsigned Reg, BitVector &Bits);
1011 bool computeUsedBits(const MachineInstr &MI, unsigned OpN, BitVector &Bits,
1012 uint16_t Begin);
1013 bool usedBitsEqual(BitTracker::RegisterRef RD, BitTracker::RegisterRef RS);
1014
1015 const HexagonInstrInfo &HII;
1016 MachineRegisterInfo &MRI;
1017 BitTracker &BT;
1018 };
1019}
1020
1021
1022// Check if the instruction is a lossy shift left, where the input being
1023// shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
1024// of bit indices that are lost.
1025bool RedundantInstrElimination::isLossyShiftLeft(const MachineInstr &MI,
1026 unsigned OpN, unsigned &LostB, unsigned &LostE) {
1027 using namespace Hexagon;
1028 unsigned Opc = MI.getOpcode();
1029 unsigned ImN, RegN, Width;
1030 switch (Opc) {
1031 case S2_asl_i_p:
1032 ImN = 2;
1033 RegN = 1;
1034 Width = 64;
1035 break;
1036 case S2_asl_i_p_acc:
1037 case S2_asl_i_p_and:
1038 case S2_asl_i_p_nac:
1039 case S2_asl_i_p_or:
1040 case S2_asl_i_p_xacc:
1041 ImN = 3;
1042 RegN = 2;
1043 Width = 64;
1044 break;
1045 case S2_asl_i_r:
1046 ImN = 2;
1047 RegN = 1;
1048 Width = 32;
1049 break;
1050 case S2_addasl_rrri:
1051 case S4_andi_asl_ri:
1052 case S4_ori_asl_ri:
1053 case S4_addi_asl_ri:
1054 case S4_subi_asl_ri:
1055 case S2_asl_i_r_acc:
1056 case S2_asl_i_r_and:
1057 case S2_asl_i_r_nac:
1058 case S2_asl_i_r_or:
1059 case S2_asl_i_r_sat:
1060 case S2_asl_i_r_xacc:
1061 ImN = 3;
1062 RegN = 2;
1063 Width = 32;
1064 break;
1065 default:
1066 return false;
1067 }
1068
1069 if (RegN != OpN)
1070 return false;
1071
1072 assert(MI.getOperand(ImN).isImm());
1073 unsigned S = MI.getOperand(ImN).getImm();
1074 if (S == 0)
1075 return false;
1076 LostB = Width-S;
1077 LostE = Width;
1078 return true;
1079}
1080
1081
1082// Check if the instruction is a lossy shift right, where the input being
1083// shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
1084// of bit indices that are lost.
1085bool RedundantInstrElimination::isLossyShiftRight(const MachineInstr &MI,
1086 unsigned OpN, unsigned &LostB, unsigned &LostE) {
1087 using namespace Hexagon;
1088 unsigned Opc = MI.getOpcode();
1089 unsigned ImN, RegN;
1090 switch (Opc) {
1091 case S2_asr_i_p:
1092 case S2_lsr_i_p:
1093 ImN = 2;
1094 RegN = 1;
1095 break;
1096 case S2_asr_i_p_acc:
1097 case S2_asr_i_p_and:
1098 case S2_asr_i_p_nac:
1099 case S2_asr_i_p_or:
1100 case S2_lsr_i_p_acc:
1101 case S2_lsr_i_p_and:
1102 case S2_lsr_i_p_nac:
1103 case S2_lsr_i_p_or:
1104 case S2_lsr_i_p_xacc:
1105 ImN = 3;
1106 RegN = 2;
1107 break;
1108 case S2_asr_i_r:
1109 case S2_lsr_i_r:
1110 ImN = 2;
1111 RegN = 1;
1112 break;
1113 case S4_andi_lsr_ri:
1114 case S4_ori_lsr_ri:
1115 case S4_addi_lsr_ri:
1116 case S4_subi_lsr_ri:
1117 case S2_asr_i_r_acc:
1118 case S2_asr_i_r_and:
1119 case S2_asr_i_r_nac:
1120 case S2_asr_i_r_or:
1121 case S2_lsr_i_r_acc:
1122 case S2_lsr_i_r_and:
1123 case S2_lsr_i_r_nac:
1124 case S2_lsr_i_r_or:
1125 case S2_lsr_i_r_xacc:
1126 ImN = 3;
1127 RegN = 2;
1128 break;
1129
1130 default:
1131 return false;
1132 }
1133
1134 if (RegN != OpN)
1135 return false;
1136
1137 assert(MI.getOperand(ImN).isImm());
1138 unsigned S = MI.getOperand(ImN).getImm();
1139 LostB = 0;
1140 LostE = S;
1141 return true;
1142}
1143
1144
1145// Calculate the bit vector that corresponds to the used bits of register Reg.
1146// The vector Bits has the same size, as the size of Reg in bits. If the cal-
1147// culation fails (i.e. the used bits are unknown), it returns false. Other-
1148// wise, it returns true and sets the corresponding bits in Bits.
1149bool RedundantInstrElimination::computeUsedBits(unsigned Reg, BitVector &Bits) {
1150 BitVector Used(Bits.size());
1151 RegisterSet Visited;
1152 std::vector<unsigned> Pending;
1153 Pending.push_back(Reg);
1154
1155 for (unsigned i = 0; i < Pending.size(); ++i) {
1156 unsigned R = Pending[i];
1157 if (Visited.has(R))
1158 continue;
1159 Visited.insert(R);
1160 for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
1161 BitTracker::RegisterRef UR = *I;
1162 unsigned B, W;
1163 if (!HBS::getSubregMask(UR, B, W, MRI))
1164 return false;
1165 MachineInstr &UseI = *I->getParent();
1166 if (UseI.isPHI() || UseI.isCopy()) {
1167 unsigned DefR = UseI.getOperand(0).getReg();
1168 if (!TargetRegisterInfo::isVirtualRegister(DefR))
1169 return false;
1170 Pending.push_back(DefR);
1171 } else {
1172 if (!computeUsedBits(UseI, I.getOperandNo(), Used, B))
1173 return false;
1174 }
1175 }
1176 }
1177 Bits |= Used;
1178 return true;
1179}
1180
1181
1182// Calculate the bits used by instruction MI in a register in operand OpN.
1183// Return true/false if the calculation succeeds/fails. If is succeeds, set
1184// used bits in Bits. This function does not reset any bits in Bits, so
1185// subsequent calls over different instructions will result in the union
1186// of the used bits in all these instructions.
1187// The register in question may be used with a sub-register, whereas Bits
1188// holds the bits for the entire register. To keep track of that, the
1189// argument Begin indicates where in Bits is the lowest-significant bit
1190// of the register used in operand OpN. For example, in instruction:
1191// vreg1 = S2_lsr_i_r vreg2:subreg_hireg, 10
1192// the operand 1 is a 32-bit register, which happens to be a subregister
1193// of the 64-bit register vreg2, and that subregister starts at position 32.
1194// In this case Begin=32, since Bits[32] would be the lowest-significant bit
1195// of vreg2:subreg_hireg.
1196bool RedundantInstrElimination::computeUsedBits(const MachineInstr &MI,
1197 unsigned OpN, BitVector &Bits, uint16_t Begin) {
1198 unsigned Opc = MI.getOpcode();
1199 BitVector T(Bits.size());
1200 bool GotBits = HBS::getUsedBits(Opc, OpN, T, Begin, HII);
1201 // Even if we don't have bits yet, we could still provide some information
1202 // if the instruction is a lossy shift: the lost bits will be marked as
1203 // not used.
1204 unsigned LB, LE;
1205 if (isLossyShiftLeft(MI, OpN, LB, LE) || isLossyShiftRight(MI, OpN, LB, LE)) {
1206 assert(MI.getOperand(OpN).isReg());
1207 BitTracker::RegisterRef RR = MI.getOperand(OpN);
1208 const TargetRegisterClass *RC = HBS::getFinalVRegClass(RR, MRI);
1209 uint16_t Width = RC->getSize()*8;
1210
1211 if (!GotBits)
1212 T.set(Begin, Begin+Width);
1213 assert(LB <= LE && LB < Width && LE <= Width);
1214 T.reset(Begin+LB, Begin+LE);
1215 GotBits = true;
1216 }
1217 if (GotBits)
1218 Bits |= T;
1219 return GotBits;
1220}
1221
1222
1223// Calculates the used bits in RD ("defined register"), and checks if these
1224// bits in RS ("used register") and RD are identical.
1225bool RedundantInstrElimination::usedBitsEqual(BitTracker::RegisterRef RD,
1226 BitTracker::RegisterRef RS) {
1227 const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
1228 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
1229
1230 unsigned DB, DW;
1231 if (!HBS::getSubregMask(RD, DB, DW, MRI))
1232 return false;
1233 unsigned SB, SW;
1234 if (!HBS::getSubregMask(RS, SB, SW, MRI))
1235 return false;
1236 if (SW != DW)
1237 return false;
1238
1239 BitVector Used(DC.width());
1240 if (!computeUsedBits(RD.Reg, Used))
1241 return false;
1242
1243 for (unsigned i = 0; i != DW; ++i)
1244 if (Used[i+DB] && DC[DB+i] != SC[SB+i])
1245 return false;
1246 return true;
1247}
1248
1249
1250bool RedundantInstrElimination::processBlock(MachineBasicBlock &B,
1251 const RegisterSet&) {
Krzysztof Parzyszek1adca302016-07-26 18:30:11 +00001252 if (!BT.reached(&B))
1253 return false;
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001254 bool Changed = false;
1255
1256 for (auto I = B.begin(), E = B.end(), NextI = I; I != E; ++I) {
1257 NextI = std::next(I);
1258 MachineInstr *MI = &*I;
1259
1260 if (MI->getOpcode() == TargetOpcode::COPY)
1261 continue;
1262 if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
1263 continue;
1264 unsigned NumD = MI->getDesc().getNumDefs();
1265 if (NumD != 1)
1266 continue;
1267
1268 BitTracker::RegisterRef RD = MI->getOperand(0);
1269 if (!BT.has(RD.Reg))
1270 continue;
1271 const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
Krzysztof Parzyszeka3c5d442016-01-13 15:48:18 +00001272 auto At = MI->isPHI() ? B.getFirstNonPHI()
1273 : MachineBasicBlock::iterator(MI);
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001274
1275 // Find a source operand that is equal to the result.
1276 for (auto &Op : MI->uses()) {
1277 if (!Op.isReg())
1278 continue;
1279 BitTracker::RegisterRef RS = Op;
1280 if (!BT.has(RS.Reg))
1281 continue;
1282 if (!HBS::isTransparentCopy(RD, RS, MRI))
1283 continue;
1284
1285 unsigned BN, BW;
1286 if (!HBS::getSubregMask(RS, BN, BW, MRI))
1287 continue;
1288
1289 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
1290 if (!usedBitsEqual(RD, RS) && !HBS::isEqual(DC, 0, SC, BN, BW))
1291 continue;
1292
1293 // If found, replace the instruction with a COPY.
Benjamin Kramer4ca41fd2016-06-12 17:30:47 +00001294 const DebugLoc &DL = MI->getDebugLoc();
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001295 const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
1296 unsigned NewR = MRI.createVirtualRegister(FRC);
Krzysztof Parzyszek6eba5b82016-07-26 19:08:45 +00001297 MachineInstr *CopyI =
1298 BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
1299 .addReg(RS.Reg, 0, RS.Sub);
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001300 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
Krzysztof Parzyszek6eba5b82016-07-26 19:08:45 +00001301 // This pass can create copies between registers that don't have the
1302 // exact same values. Updating the tracker has to involve updating
1303 // all dependent cells. Example:
Krzysztof Parzyszek1adca302016-07-26 18:30:11 +00001304 // vreg1 = inst vreg2 ; vreg1 != vreg2, but used bits are equal
1305 //
1306 // vreg3 = copy vreg2 ; <- inserted
1307 // ... = vreg3 ; <- replaced from vreg2
1308 // Indirectly, we can create a "copy" between vreg1 and vreg2 even
1309 // though their exact values do not match.
Krzysztof Parzyszek6eba5b82016-07-26 19:08:45 +00001310 BT.visit(*CopyI);
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001311 Changed = true;
1312 break;
1313 }
1314 }
1315
1316 return Changed;
1317}
1318
1319
1320//
1321// Const generation
1322//
1323// Recognize instructions that produce constant values known at compile-time.
1324// Replace them with register definitions that load these constants directly.
1325namespace {
1326 class ConstGeneration : public Transformation {
1327 public:
1328 ConstGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
1329 MachineRegisterInfo &mri)
1330 : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1331 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
Krzysztof Parzyszek1adca302016-07-26 18:30:11 +00001332 static bool isTfrConst(const MachineInstr &MI);
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001333 private:
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001334 bool isConst(unsigned R, int64_t &V) const;
1335 unsigned genTfrConst(const TargetRegisterClass *RC, int64_t C,
1336 MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL);
1337
1338 const HexagonInstrInfo &HII;
1339 MachineRegisterInfo &MRI;
1340 BitTracker &BT;
1341 };
1342}
1343
1344bool ConstGeneration::isConst(unsigned R, int64_t &C) const {
1345 if (!BT.has(R))
1346 return false;
1347 const BitTracker::RegisterCell &RC = BT.lookup(R);
1348 int64_t T = 0;
1349 for (unsigned i = RC.width(); i > 0; --i) {
1350 const BitTracker::BitValue &V = RC[i-1];
1351 T <<= 1;
1352 if (V.is(1))
1353 T |= 1;
1354 else if (!V.is(0))
1355 return false;
1356 }
1357 C = T;
1358 return true;
1359}
1360
Krzysztof Parzyszek1adca302016-07-26 18:30:11 +00001361bool ConstGeneration::isTfrConst(const MachineInstr &MI) {
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +00001362 unsigned Opc = MI.getOpcode();
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001363 switch (Opc) {
1364 case Hexagon::A2_combineii:
1365 case Hexagon::A4_combineii:
1366 case Hexagon::A2_tfrsi:
1367 case Hexagon::A2_tfrpi:
1368 case Hexagon::TFR_PdTrue:
1369 case Hexagon::TFR_PdFalse:
1370 case Hexagon::CONST32_Int_Real:
1371 case Hexagon::CONST64_Int_Real:
1372 return true;
1373 }
1374 return false;
1375}
1376
1377
1378// Generate a transfer-immediate instruction that is appropriate for the
1379// register class and the actual value being transferred.
1380unsigned ConstGeneration::genTfrConst(const TargetRegisterClass *RC, int64_t C,
1381 MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL) {
1382 unsigned Reg = MRI.createVirtualRegister(RC);
1383 if (RC == &Hexagon::IntRegsRegClass) {
1384 BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), Reg)
1385 .addImm(int32_t(C));
1386 return Reg;
1387 }
1388
1389 if (RC == &Hexagon::DoubleRegsRegClass) {
1390 if (isInt<8>(C)) {
1391 BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrpi), Reg)
1392 .addImm(C);
1393 return Reg;
1394 }
1395
1396 unsigned Lo = Lo_32(C), Hi = Hi_32(C);
1397 if (isInt<8>(Lo) || isInt<8>(Hi)) {
1398 unsigned Opc = isInt<8>(Lo) ? Hexagon::A2_combineii
1399 : Hexagon::A4_combineii;
1400 BuildMI(B, At, DL, HII.get(Opc), Reg)
1401 .addImm(int32_t(Hi))
1402 .addImm(int32_t(Lo));
1403 return Reg;
1404 }
1405
1406 BuildMI(B, At, DL, HII.get(Hexagon::CONST64_Int_Real), Reg)
1407 .addImm(C);
1408 return Reg;
1409 }
1410
1411 if (RC == &Hexagon::PredRegsRegClass) {
1412 unsigned Opc;
1413 if (C == 0)
1414 Opc = Hexagon::TFR_PdFalse;
1415 else if ((C & 0xFF) == 0xFF)
1416 Opc = Hexagon::TFR_PdTrue;
1417 else
1418 return 0;
1419 BuildMI(B, At, DL, HII.get(Opc), Reg);
1420 return Reg;
1421 }
1422
1423 return 0;
1424}
1425
1426
1427bool ConstGeneration::processBlock(MachineBasicBlock &B, const RegisterSet&) {
Krzysztof Parzyszek1adca302016-07-26 18:30:11 +00001428 if (!BT.reached(&B))
1429 return false;
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001430 bool Changed = false;
1431 RegisterSet Defs;
1432
1433 for (auto I = B.begin(), E = B.end(); I != E; ++I) {
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +00001434 if (isTfrConst(*I))
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001435 continue;
1436 Defs.clear();
1437 HBS::getInstrDefs(*I, Defs);
1438 if (Defs.count() != 1)
1439 continue;
1440 unsigned DR = Defs.find_first();
1441 if (!TargetRegisterInfo::isVirtualRegister(DR))
1442 continue;
Krzysztof Parzyszek1adca302016-07-26 18:30:11 +00001443 uint64_t U;
1444 const BitTracker::RegisterCell &DRC = BT.lookup(DR);
1445 if (HBS::getConst(DRC, 0, DRC.width(), U)) {
1446 int64_t C = U;
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001447 DebugLoc DL = I->getDebugLoc();
1448 auto At = I->isPHI() ? B.getFirstNonPHI() : I;
1449 unsigned ImmReg = genTfrConst(MRI.getRegClass(DR), C, B, At, DL);
1450 if (ImmReg) {
1451 HBS::replaceReg(DR, ImmReg, MRI);
Krzysztof Parzyszek1adca302016-07-26 18:30:11 +00001452 BT.put(ImmReg, DRC);
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001453 Changed = true;
1454 }
1455 }
1456 }
1457 return Changed;
1458}
1459
1460
1461//
1462// Copy generation
1463//
1464// Identify pairs of available registers which hold identical values.
1465// In such cases, only one of them needs to be calculated, the other one
1466// will be defined as a copy of the first.
1467//
1468// Copy propagation
1469//
1470// Eliminate register copies RD = RS, by replacing the uses of RD with
1471// with uses of RS.
1472namespace {
1473 class CopyGeneration : public Transformation {
1474 public:
1475 CopyGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
1476 MachineRegisterInfo &mri)
1477 : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1478 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1479 private:
1480 bool findMatch(const BitTracker::RegisterRef &Inp,
1481 BitTracker::RegisterRef &Out, const RegisterSet &AVs);
1482
1483 const HexagonInstrInfo &HII;
1484 MachineRegisterInfo &MRI;
1485 BitTracker &BT;
Krzysztof Parzyszek1adca302016-07-26 18:30:11 +00001486 RegisterSet Forbidden;
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001487 };
1488
1489 class CopyPropagation : public Transformation {
1490 public:
1491 CopyPropagation(const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
1492 : Transformation(false), MRI(mri) {}
1493 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1494 static bool isCopyReg(unsigned Opc);
1495 private:
1496 bool propagateRegCopy(MachineInstr &MI);
1497
1498 MachineRegisterInfo &MRI;
1499 };
1500
1501}
1502
1503
1504/// Check if there is a register in AVs that is identical to Inp. If so,
1505/// set Out to the found register. The output may be a pair Reg:Sub.
1506bool CopyGeneration::findMatch(const BitTracker::RegisterRef &Inp,
1507 BitTracker::RegisterRef &Out, const RegisterSet &AVs) {
1508 if (!BT.has(Inp.Reg))
1509 return false;
1510 const BitTracker::RegisterCell &InpRC = BT.lookup(Inp.Reg);
Krzysztof Parzyszek1adca302016-07-26 18:30:11 +00001511 auto *FRC = HBS::getFinalVRegClass(Inp, MRI);
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001512 unsigned B, W;
1513 if (!HBS::getSubregMask(Inp, B, W, MRI))
1514 return false;
1515
1516 for (unsigned R = AVs.find_first(); R; R = AVs.find_next(R)) {
Krzysztof Parzyszek1adca302016-07-26 18:30:11 +00001517 if (!BT.has(R) || Forbidden[R])
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001518 continue;
1519 const BitTracker::RegisterCell &RC = BT.lookup(R);
1520 unsigned RW = RC.width();
1521 if (W == RW) {
Krzysztof Parzyszek1adca302016-07-26 18:30:11 +00001522 if (FRC != MRI.getRegClass(R))
1523 continue;
1524 if (!HBS::isTransparentCopy(R, Inp, MRI))
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001525 continue;
1526 if (!HBS::isEqual(InpRC, B, RC, 0, W))
1527 continue;
1528 Out.Reg = R;
1529 Out.Sub = 0;
1530 return true;
1531 }
1532 // Check if there is a super-register, whose part (with a subregister)
1533 // is equal to the input.
1534 // Only do double registers for now.
1535 if (W*2 != RW)
1536 continue;
1537 if (MRI.getRegClass(R) != &Hexagon::DoubleRegsRegClass)
1538 continue;
1539
1540 if (HBS::isEqual(InpRC, B, RC, 0, W))
1541 Out.Sub = Hexagon::subreg_loreg;
1542 else if (HBS::isEqual(InpRC, B, RC, W, W))
1543 Out.Sub = Hexagon::subreg_hireg;
1544 else
1545 continue;
1546 Out.Reg = R;
Krzysztof Parzyszek1adca302016-07-26 18:30:11 +00001547 if (HBS::isTransparentCopy(Out, Inp, MRI))
1548 return true;
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001549 }
1550 return false;
1551}
1552
1553
1554bool CopyGeneration::processBlock(MachineBasicBlock &B,
1555 const RegisterSet &AVs) {
Krzysztof Parzyszek1adca302016-07-26 18:30:11 +00001556 if (!BT.reached(&B))
1557 return false;
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001558 RegisterSet AVB(AVs);
1559 bool Changed = false;
1560 RegisterSet Defs;
1561
1562 for (auto I = B.begin(), E = B.end(), NextI = I; I != E;
1563 ++I, AVB.insert(Defs)) {
1564 NextI = std::next(I);
1565 Defs.clear();
1566 HBS::getInstrDefs(*I, Defs);
1567
1568 unsigned Opc = I->getOpcode();
Krzysztof Parzyszek1adca302016-07-26 18:30:11 +00001569 if (CopyPropagation::isCopyReg(Opc) || ConstGeneration::isTfrConst(*I))
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001570 continue;
1571
Krzysztof Parzyszek1adca302016-07-26 18:30:11 +00001572 DebugLoc DL = I->getDebugLoc();
1573 auto At = I->isPHI() ? B.getFirstNonPHI() : I;
1574
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001575 for (unsigned R = Defs.find_first(); R; R = Defs.find_next(R)) {
1576 BitTracker::RegisterRef MR;
Krzysztof Parzyszek1adca302016-07-26 18:30:11 +00001577 auto *FRC = HBS::getFinalVRegClass(R, MRI);
1578
1579 if (findMatch(R, MR, AVB)) {
1580 unsigned NewR = MRI.createVirtualRegister(FRC);
1581 BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
1582 .addReg(MR.Reg, 0, MR.Sub);
1583 BT.put(BitTracker::RegisterRef(NewR), BT.get(MR));
1584 HBS::replaceReg(R, NewR, MRI);
1585 Forbidden.insert(R);
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001586 continue;
Krzysztof Parzyszek1adca302016-07-26 18:30:11 +00001587 }
1588
1589 if (FRC == &Hexagon::DoubleRegsRegClass) {
1590 // Try to generate REG_SEQUENCE.
1591 BitTracker::RegisterRef TL = { R, Hexagon::subreg_loreg };
1592 BitTracker::RegisterRef TH = { R, Hexagon::subreg_hireg };
1593 BitTracker::RegisterRef ML, MH;
1594 if (findMatch(TL, ML, AVB) && findMatch(TH, MH, AVB)) {
1595 auto *FRC = HBS::getFinalVRegClass(R, MRI);
1596 unsigned NewR = MRI.createVirtualRegister(FRC);
1597 BuildMI(B, At, DL, HII.get(TargetOpcode::REG_SEQUENCE), NewR)
1598 .addReg(ML.Reg, 0, ML.Sub)
1599 .addImm(Hexagon::subreg_loreg)
1600 .addReg(MH.Reg, 0, MH.Sub)
1601 .addImm(Hexagon::subreg_hireg);
1602 BT.put(BitTracker::RegisterRef(NewR), BT.get(R));
1603 HBS::replaceReg(R, NewR, MRI);
1604 Forbidden.insert(R);
1605 }
1606 }
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001607 }
1608 }
1609
1610 return Changed;
1611}
1612
1613
1614bool CopyPropagation::isCopyReg(unsigned Opc) {
1615 switch (Opc) {
1616 case TargetOpcode::COPY:
1617 case TargetOpcode::REG_SEQUENCE:
1618 case Hexagon::A2_tfr:
1619 case Hexagon::A2_tfrp:
1620 case Hexagon::A2_combinew:
1621 case Hexagon::A4_combineir:
1622 case Hexagon::A4_combineri:
1623 return true;
1624 default:
1625 break;
1626 }
1627 return false;
1628}
1629
1630
1631bool CopyPropagation::propagateRegCopy(MachineInstr &MI) {
1632 bool Changed = false;
1633 unsigned Opc = MI.getOpcode();
1634 BitTracker::RegisterRef RD = MI.getOperand(0);
1635 assert(MI.getOperand(0).getSubReg() == 0);
1636
1637 switch (Opc) {
1638 case TargetOpcode::COPY:
1639 case Hexagon::A2_tfr:
1640 case Hexagon::A2_tfrp: {
1641 BitTracker::RegisterRef RS = MI.getOperand(1);
1642 if (!HBS::isTransparentCopy(RD, RS, MRI))
1643 break;
1644 if (RS.Sub != 0)
1645 Changed = HBS::replaceRegWithSub(RD.Reg, RS.Reg, RS.Sub, MRI);
1646 else
1647 Changed = HBS::replaceReg(RD.Reg, RS.Reg, MRI);
1648 break;
1649 }
1650 case TargetOpcode::REG_SEQUENCE: {
1651 BitTracker::RegisterRef SL, SH;
1652 if (HBS::parseRegSequence(MI, SL, SH)) {
1653 Changed = HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_loreg,
1654 SL.Reg, SL.Sub, MRI);
1655 Changed |= HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_hireg,
1656 SH.Reg, SH.Sub, MRI);
1657 }
1658 break;
1659 }
1660 case Hexagon::A2_combinew: {
1661 BitTracker::RegisterRef RH = MI.getOperand(1), RL = MI.getOperand(2);
1662 Changed = HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_loreg,
1663 RL.Reg, RL.Sub, MRI);
1664 Changed |= HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_hireg,
1665 RH.Reg, RH.Sub, MRI);
1666 break;
1667 }
1668 case Hexagon::A4_combineir:
1669 case Hexagon::A4_combineri: {
1670 unsigned SrcX = (Opc == Hexagon::A4_combineir) ? 2 : 1;
1671 unsigned Sub = (Opc == Hexagon::A4_combineir) ? Hexagon::subreg_loreg
1672 : Hexagon::subreg_hireg;
1673 BitTracker::RegisterRef RS = MI.getOperand(SrcX);
1674 Changed = HBS::replaceSubWithSub(RD.Reg, Sub, RS.Reg, RS.Sub, MRI);
1675 break;
1676 }
1677 }
1678 return Changed;
1679}
1680
1681
1682bool CopyPropagation::processBlock(MachineBasicBlock &B, const RegisterSet&) {
1683 std::vector<MachineInstr*> Instrs;
1684 for (auto I = B.rbegin(), E = B.rend(); I != E; ++I)
1685 Instrs.push_back(&*I);
1686
1687 bool Changed = false;
1688 for (auto I : Instrs) {
1689 unsigned Opc = I->getOpcode();
1690 if (!CopyPropagation::isCopyReg(Opc))
1691 continue;
1692 Changed |= propagateRegCopy(*I);
1693 }
1694
1695 return Changed;
1696}
1697
1698
1699//
1700// Bit simplification
1701//
1702// Recognize patterns that can be simplified and replace them with the
1703// simpler forms.
1704// This is by no means complete
1705namespace {
1706 class BitSimplification : public Transformation {
1707 public:
1708 BitSimplification(BitTracker &bt, const HexagonInstrInfo &hii,
1709 MachineRegisterInfo &mri)
1710 : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1711 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1712 private:
1713 struct RegHalf : public BitTracker::RegisterRef {
1714 bool Low; // Low/High halfword.
1715 };
1716
1717 bool matchHalf(unsigned SelfR, const BitTracker::RegisterCell &RC,
1718 unsigned B, RegHalf &RH);
1719
1720 bool matchPackhl(unsigned SelfR, const BitTracker::RegisterCell &RC,
1721 BitTracker::RegisterRef &Rs, BitTracker::RegisterRef &Rt);
1722 unsigned getCombineOpcode(bool HLow, bool LLow);
1723
1724 bool genStoreUpperHalf(MachineInstr *MI);
1725 bool genStoreImmediate(MachineInstr *MI);
1726 bool genPackhl(MachineInstr *MI, BitTracker::RegisterRef RD,
1727 const BitTracker::RegisterCell &RC);
1728 bool genExtractHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
1729 const BitTracker::RegisterCell &RC);
1730 bool genCombineHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
1731 const BitTracker::RegisterCell &RC);
1732 bool genExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD,
1733 const BitTracker::RegisterCell &RC);
1734 bool simplifyTstbit(MachineInstr *MI, BitTracker::RegisterRef RD,
1735 const BitTracker::RegisterCell &RC);
1736
1737 const HexagonInstrInfo &HII;
1738 MachineRegisterInfo &MRI;
1739 BitTracker &BT;
1740 };
1741}
1742
1743
1744// Check if the bits [B..B+16) in register cell RC form a valid halfword,
1745// i.e. [0..16), [16..32), etc. of some register. If so, return true and
1746// set the information about the found register in RH.
1747bool BitSimplification::matchHalf(unsigned SelfR,
1748 const BitTracker::RegisterCell &RC, unsigned B, RegHalf &RH) {
1749 // XXX This could be searching in the set of available registers, in case
1750 // the match is not exact.
1751
1752 // Match 16-bit chunks, where the RC[B..B+15] references exactly one
1753 // register and all the bits B..B+15 match between RC and the register.
1754 // This is meant to match "v1[0-15]", where v1 = { [0]:0 [1-15]:v1... },
1755 // and RC = { [0]:0 [1-15]:v1[1-15]... }.
1756 bool Low = false;
1757 unsigned I = B;
1758 while (I < B+16 && RC[I].num())
1759 I++;
1760 if (I == B+16)
1761 return false;
1762
1763 unsigned Reg = RC[I].RefI.Reg;
1764 unsigned P = RC[I].RefI.Pos; // The RefI.Pos will be advanced by I-B.
1765 if (P < I-B)
1766 return false;
1767 unsigned Pos = P - (I-B);
1768
1769 if (Reg == 0 || Reg == SelfR) // Don't match "self".
1770 return false;
1771 if (!TargetRegisterInfo::isVirtualRegister(Reg))
1772 return false;
1773 if (!BT.has(Reg))
1774 return false;
1775
1776 const BitTracker::RegisterCell &SC = BT.lookup(Reg);
1777 if (Pos+16 > SC.width())
1778 return false;
1779
1780 for (unsigned i = 0; i < 16; ++i) {
1781 const BitTracker::BitValue &RV = RC[i+B];
1782 if (RV.Type == BitTracker::BitValue::Ref) {
1783 if (RV.RefI.Reg != Reg)
1784 return false;
1785 if (RV.RefI.Pos != i+Pos)
1786 return false;
1787 continue;
1788 }
1789 if (RC[i+B] != SC[i+Pos])
1790 return false;
1791 }
1792
1793 unsigned Sub = 0;
1794 switch (Pos) {
1795 case 0:
1796 Sub = Hexagon::subreg_loreg;
1797 Low = true;
1798 break;
1799 case 16:
1800 Sub = Hexagon::subreg_loreg;
1801 Low = false;
1802 break;
1803 case 32:
1804 Sub = Hexagon::subreg_hireg;
1805 Low = true;
1806 break;
1807 case 48:
1808 Sub = Hexagon::subreg_hireg;
1809 Low = false;
1810 break;
1811 default:
1812 return false;
1813 }
1814
1815 RH.Reg = Reg;
1816 RH.Sub = Sub;
1817 RH.Low = Low;
1818 // If the subregister is not valid with the register, set it to 0.
1819 if (!HBS::getFinalVRegClass(RH, MRI))
1820 RH.Sub = 0;
1821
1822 return true;
1823}
1824
1825
1826// Check if RC matches the pattern of a S2_packhl. If so, return true and
1827// set the inputs Rs and Rt.
1828bool BitSimplification::matchPackhl(unsigned SelfR,
1829 const BitTracker::RegisterCell &RC, BitTracker::RegisterRef &Rs,
1830 BitTracker::RegisterRef &Rt) {
1831 RegHalf L1, H1, L2, H2;
1832
1833 if (!matchHalf(SelfR, RC, 0, L2) || !matchHalf(SelfR, RC, 16, L1))
1834 return false;
1835 if (!matchHalf(SelfR, RC, 32, H2) || !matchHalf(SelfR, RC, 48, H1))
1836 return false;
1837
1838 // Rs = H1.L1, Rt = H2.L2
1839 if (H1.Reg != L1.Reg || H1.Sub != L1.Sub || H1.Low || !L1.Low)
1840 return false;
1841 if (H2.Reg != L2.Reg || H2.Sub != L2.Sub || H2.Low || !L2.Low)
1842 return false;
1843
1844 Rs = H1;
1845 Rt = H2;
1846 return true;
1847}
1848
1849
1850unsigned BitSimplification::getCombineOpcode(bool HLow, bool LLow) {
1851 return HLow ? LLow ? Hexagon::A2_combine_ll
1852 : Hexagon::A2_combine_lh
1853 : LLow ? Hexagon::A2_combine_hl
1854 : Hexagon::A2_combine_hh;
1855}
1856
1857
1858// If MI stores the upper halfword of a register (potentially obtained via
1859// shifts or extracts), replace it with a storerf instruction. This could
1860// cause the "extraction" code to become dead.
1861bool BitSimplification::genStoreUpperHalf(MachineInstr *MI) {
1862 unsigned Opc = MI->getOpcode();
1863 if (Opc != Hexagon::S2_storerh_io)
1864 return false;
1865
1866 MachineOperand &ValOp = MI->getOperand(2);
1867 BitTracker::RegisterRef RS = ValOp;
1868 if (!BT.has(RS.Reg))
1869 return false;
1870 const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
1871 RegHalf H;
1872 if (!matchHalf(0, RC, 0, H))
1873 return false;
1874 if (H.Low)
1875 return false;
1876 MI->setDesc(HII.get(Hexagon::S2_storerf_io));
1877 ValOp.setReg(H.Reg);
1878 ValOp.setSubReg(H.Sub);
1879 return true;
1880}
1881
1882
1883// If MI stores a value known at compile-time, and the value is within a range
1884// that avoids using constant-extenders, replace it with a store-immediate.
1885bool BitSimplification::genStoreImmediate(MachineInstr *MI) {
1886 unsigned Opc = MI->getOpcode();
1887 unsigned Align = 0;
1888 switch (Opc) {
1889 case Hexagon::S2_storeri_io:
1890 Align++;
1891 case Hexagon::S2_storerh_io:
1892 Align++;
1893 case Hexagon::S2_storerb_io:
1894 break;
1895 default:
1896 return false;
1897 }
1898
1899 // Avoid stores to frame-indices (due to an unknown offset).
1900 if (!MI->getOperand(0).isReg())
1901 return false;
1902 MachineOperand &OffOp = MI->getOperand(1);
1903 if (!OffOp.isImm())
1904 return false;
1905
1906 int64_t Off = OffOp.getImm();
1907 // Offset is u6:a. Sadly, there is no isShiftedUInt(n,x).
1908 if (!isUIntN(6+Align, Off) || (Off & ((1<<Align)-1)))
1909 return false;
1910 // Source register:
1911 BitTracker::RegisterRef RS = MI->getOperand(2);
1912 if (!BT.has(RS.Reg))
1913 return false;
1914 const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
1915 uint64_t U;
1916 if (!HBS::getConst(RC, 0, RC.width(), U))
1917 return false;
1918
1919 // Only consider 8-bit values to avoid constant-extenders.
1920 int V;
1921 switch (Opc) {
1922 case Hexagon::S2_storerb_io:
1923 V = int8_t(U);
1924 break;
1925 case Hexagon::S2_storerh_io:
1926 V = int16_t(U);
1927 break;
1928 case Hexagon::S2_storeri_io:
1929 V = int32_t(U);
1930 break;
1931 }
1932 if (!isInt<8>(V))
1933 return false;
1934
1935 MI->RemoveOperand(2);
1936 switch (Opc) {
1937 case Hexagon::S2_storerb_io:
1938 MI->setDesc(HII.get(Hexagon::S4_storeirb_io));
1939 break;
1940 case Hexagon::S2_storerh_io:
1941 MI->setDesc(HII.get(Hexagon::S4_storeirh_io));
1942 break;
1943 case Hexagon::S2_storeri_io:
1944 MI->setDesc(HII.get(Hexagon::S4_storeiri_io));
1945 break;
1946 }
1947 MI->addOperand(MachineOperand::CreateImm(V));
1948 return true;
1949}
1950
1951
1952// If MI is equivalent o S2_packhl, generate the S2_packhl. MI could be the
1953// last instruction in a sequence that results in something equivalent to
1954// the pack-halfwords. The intent is to cause the entire sequence to become
1955// dead.
1956bool BitSimplification::genPackhl(MachineInstr *MI,
1957 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
1958 unsigned Opc = MI->getOpcode();
1959 if (Opc == Hexagon::S2_packhl)
1960 return false;
1961 BitTracker::RegisterRef Rs, Rt;
1962 if (!matchPackhl(RD.Reg, RC, Rs, Rt))
1963 return false;
1964
1965 MachineBasicBlock &B = *MI->getParent();
1966 unsigned NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
1967 DebugLoc DL = MI->getDebugLoc();
Krzysztof Parzyszeka3c5d442016-01-13 15:48:18 +00001968 auto At = MI->isPHI() ? B.getFirstNonPHI()
1969 : MachineBasicBlock::iterator(MI);
1970 BuildMI(B, At, DL, HII.get(Hexagon::S2_packhl), NewR)
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001971 .addReg(Rs.Reg, 0, Rs.Sub)
1972 .addReg(Rt.Reg, 0, Rt.Sub);
1973 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
1974 BT.put(BitTracker::RegisterRef(NewR), RC);
1975 return true;
1976}
1977
1978
1979// If MI produces halfword of the input in the low half of the output,
1980// replace it with zero-extend or extractu.
1981bool BitSimplification::genExtractHalf(MachineInstr *MI,
1982 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
1983 RegHalf L;
1984 // Check for halfword in low 16 bits, zeros elsewhere.
1985 if (!matchHalf(RD.Reg, RC, 0, L) || !HBS::isZero(RC, 16, 16))
1986 return false;
1987
1988 unsigned Opc = MI->getOpcode();
1989 MachineBasicBlock &B = *MI->getParent();
1990 DebugLoc DL = MI->getDebugLoc();
1991
1992 // Prefer zxth, since zxth can go in any slot, while extractu only in
1993 // slots 2 and 3.
1994 unsigned NewR = 0;
Krzysztof Parzyszeka3c5d442016-01-13 15:48:18 +00001995 auto At = MI->isPHI() ? B.getFirstNonPHI()
1996 : MachineBasicBlock::iterator(MI);
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001997 if (L.Low && Opc != Hexagon::A2_zxth) {
1998 NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
Krzysztof Parzyszeka3c5d442016-01-13 15:48:18 +00001999 BuildMI(B, At, DL, HII.get(Hexagon::A2_zxth), NewR)
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00002000 .addReg(L.Reg, 0, L.Sub);
Krzysztof Parzyszek0d112122016-01-14 21:59:22 +00002001 } else if (!L.Low && Opc != Hexagon::S2_lsr_i_r) {
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00002002 NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
Krzysztof Parzyszek0d112122016-01-14 21:59:22 +00002003 BuildMI(B, MI, DL, HII.get(Hexagon::S2_lsr_i_r), NewR)
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00002004 .addReg(L.Reg, 0, L.Sub)
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00002005 .addImm(16);
2006 }
2007 if (NewR == 0)
2008 return false;
2009 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2010 BT.put(BitTracker::RegisterRef(NewR), RC);
2011 return true;
2012}
2013
2014
2015// If MI is equivalent to a combine(.L/.H, .L/.H) replace with with the
2016// combine.
2017bool BitSimplification::genCombineHalf(MachineInstr *MI,
2018 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2019 RegHalf L, H;
2020 // Check for combine h/l
2021 if (!matchHalf(RD.Reg, RC, 0, L) || !matchHalf(RD.Reg, RC, 16, H))
2022 return false;
2023 // Do nothing if this is just a reg copy.
2024 if (L.Reg == H.Reg && L.Sub == H.Sub && !H.Low && L.Low)
2025 return false;
2026
2027 unsigned Opc = MI->getOpcode();
2028 unsigned COpc = getCombineOpcode(H.Low, L.Low);
2029 if (COpc == Opc)
2030 return false;
2031
2032 MachineBasicBlock &B = *MI->getParent();
2033 DebugLoc DL = MI->getDebugLoc();
2034 unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
Krzysztof Parzyszeka3c5d442016-01-13 15:48:18 +00002035 auto At = MI->isPHI() ? B.getFirstNonPHI()
2036 : MachineBasicBlock::iterator(MI);
2037 BuildMI(B, At, DL, HII.get(COpc), NewR)
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00002038 .addReg(H.Reg, 0, H.Sub)
2039 .addReg(L.Reg, 0, L.Sub);
2040 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2041 BT.put(BitTracker::RegisterRef(NewR), RC);
2042 return true;
2043}
2044
2045
2046// If MI resets high bits of a register and keeps the lower ones, replace it
2047// with zero-extend byte/half, and-immediate, or extractu, as appropriate.
2048bool BitSimplification::genExtractLow(MachineInstr *MI,
2049 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2050 unsigned Opc = MI->getOpcode();
2051 switch (Opc) {
2052 case Hexagon::A2_zxtb:
2053 case Hexagon::A2_zxth:
2054 case Hexagon::S2_extractu:
2055 return false;
2056 }
2057 if (Opc == Hexagon::A2_andir && MI->getOperand(2).isImm()) {
2058 int32_t Imm = MI->getOperand(2).getImm();
2059 if (isInt<10>(Imm))
2060 return false;
2061 }
2062
2063 if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
2064 return false;
2065 unsigned W = RC.width();
2066 while (W > 0 && RC[W-1].is(0))
2067 W--;
2068 if (W == 0 || W == RC.width())
2069 return false;
2070 unsigned NewOpc = (W == 8) ? Hexagon::A2_zxtb
2071 : (W == 16) ? Hexagon::A2_zxth
2072 : (W < 10) ? Hexagon::A2_andir
2073 : Hexagon::S2_extractu;
2074 MachineBasicBlock &B = *MI->getParent();
2075 DebugLoc DL = MI->getDebugLoc();
2076
2077 for (auto &Op : MI->uses()) {
2078 if (!Op.isReg())
2079 continue;
2080 BitTracker::RegisterRef RS = Op;
2081 if (!BT.has(RS.Reg))
2082 continue;
2083 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
2084 unsigned BN, BW;
2085 if (!HBS::getSubregMask(RS, BN, BW, MRI))
2086 continue;
2087 if (BW < W || !HBS::isEqual(RC, 0, SC, BN, W))
2088 continue;
2089
2090 unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
Krzysztof Parzyszeka3c5d442016-01-13 15:48:18 +00002091 auto At = MI->isPHI() ? B.getFirstNonPHI()
2092 : MachineBasicBlock::iterator(MI);
2093 auto MIB = BuildMI(B, At, DL, HII.get(NewOpc), NewR)
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00002094 .addReg(RS.Reg, 0, RS.Sub);
2095 if (NewOpc == Hexagon::A2_andir)
2096 MIB.addImm((1 << W) - 1);
2097 else if (NewOpc == Hexagon::S2_extractu)
2098 MIB.addImm(W).addImm(0);
2099 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2100 BT.put(BitTracker::RegisterRef(NewR), RC);
2101 return true;
2102 }
2103 return false;
2104}
2105
2106
2107// Check for tstbit simplification opportunity, where the bit being checked
2108// can be tracked back to another register. For example:
2109// vreg2 = S2_lsr_i_r vreg1, 5
2110// vreg3 = S2_tstbit_i vreg2, 0
2111// =>
2112// vreg3 = S2_tstbit_i vreg1, 5
2113bool BitSimplification::simplifyTstbit(MachineInstr *MI,
2114 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2115 unsigned Opc = MI->getOpcode();
2116 if (Opc != Hexagon::S2_tstbit_i)
2117 return false;
2118
2119 unsigned BN = MI->getOperand(2).getImm();
2120 BitTracker::RegisterRef RS = MI->getOperand(1);
2121 unsigned F, W;
2122 DebugLoc DL = MI->getDebugLoc();
2123 if (!BT.has(RS.Reg) || !HBS::getSubregMask(RS, F, W, MRI))
2124 return false;
2125 MachineBasicBlock &B = *MI->getParent();
Krzysztof Parzyszeka3c5d442016-01-13 15:48:18 +00002126 auto At = MI->isPHI() ? B.getFirstNonPHI()
2127 : MachineBasicBlock::iterator(MI);
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00002128
2129 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
2130 const BitTracker::BitValue &V = SC[F+BN];
2131 if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != RS.Reg) {
2132 const TargetRegisterClass *TC = MRI.getRegClass(V.RefI.Reg);
2133 // Need to map V.RefI.Reg to a 32-bit register, i.e. if it is
2134 // a double register, need to use a subregister and adjust bit
2135 // number.
2136 unsigned P = UINT_MAX;
2137 BitTracker::RegisterRef RR(V.RefI.Reg, 0);
2138 if (TC == &Hexagon::DoubleRegsRegClass) {
2139 P = V.RefI.Pos;
2140 RR.Sub = Hexagon::subreg_loreg;
2141 if (P >= 32) {
2142 P -= 32;
2143 RR.Sub = Hexagon::subreg_hireg;
2144 }
2145 } else if (TC == &Hexagon::IntRegsRegClass) {
2146 P = V.RefI.Pos;
2147 }
2148 if (P != UINT_MAX) {
2149 unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
Krzysztof Parzyszeka3c5d442016-01-13 15:48:18 +00002150 BuildMI(B, At, DL, HII.get(Hexagon::S2_tstbit_i), NewR)
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00002151 .addReg(RR.Reg, 0, RR.Sub)
2152 .addImm(P);
2153 HBS::replaceReg(RD.Reg, NewR, MRI);
2154 BT.put(NewR, RC);
2155 return true;
2156 }
2157 } else if (V.is(0) || V.is(1)) {
2158 unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
2159 unsigned NewOpc = V.is(0) ? Hexagon::TFR_PdFalse : Hexagon::TFR_PdTrue;
Krzysztof Parzyszeka3c5d442016-01-13 15:48:18 +00002160 BuildMI(B, At, DL, HII.get(NewOpc), NewR);
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00002161 HBS::replaceReg(RD.Reg, NewR, MRI);
2162 return true;
2163 }
2164
2165 return false;
2166}
2167
2168
2169bool BitSimplification::processBlock(MachineBasicBlock &B,
2170 const RegisterSet &AVs) {
Krzysztof Parzyszek1adca302016-07-26 18:30:11 +00002171 if (!BT.reached(&B))
2172 return false;
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00002173 bool Changed = false;
2174 RegisterSet AVB = AVs;
2175 RegisterSet Defs;
2176
2177 for (auto I = B.begin(), E = B.end(); I != E; ++I, AVB.insert(Defs)) {
2178 MachineInstr *MI = &*I;
2179 Defs.clear();
2180 HBS::getInstrDefs(*MI, Defs);
2181
2182 unsigned Opc = MI->getOpcode();
2183 if (Opc == TargetOpcode::COPY || Opc == TargetOpcode::REG_SEQUENCE)
2184 continue;
2185
2186 if (MI->mayStore()) {
2187 bool T = genStoreUpperHalf(MI);
2188 T = T || genStoreImmediate(MI);
2189 Changed |= T;
2190 continue;
2191 }
2192
2193 if (Defs.count() != 1)
2194 continue;
2195 const MachineOperand &Op0 = MI->getOperand(0);
2196 if (!Op0.isReg() || !Op0.isDef())
2197 continue;
2198 BitTracker::RegisterRef RD = Op0;
2199 if (!BT.has(RD.Reg))
2200 continue;
2201 const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
2202 const BitTracker::RegisterCell &RC = BT.lookup(RD.Reg);
2203
2204 if (FRC->getID() == Hexagon::DoubleRegsRegClassID) {
2205 bool T = genPackhl(MI, RD, RC);
2206 Changed |= T;
2207 continue;
2208 }
2209
2210 if (FRC->getID() == Hexagon::IntRegsRegClassID) {
2211 bool T = genExtractHalf(MI, RD, RC);
2212 T = T || genCombineHalf(MI, RD, RC);
2213 T = T || genExtractLow(MI, RD, RC);
2214 Changed |= T;
2215 continue;
2216 }
2217
2218 if (FRC->getID() == Hexagon::PredRegsRegClassID) {
2219 bool T = simplifyTstbit(MI, RD, RC);
2220 Changed |= T;
2221 continue;
2222 }
2223 }
2224 return Changed;
2225}
2226
2227
2228bool HexagonBitSimplify::runOnMachineFunction(MachineFunction &MF) {
Andrew Kaylor5b444a22016-04-26 19:46:28 +00002229 if (skipFunction(*MF.getFunction()))
2230 return false;
2231
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00002232 auto &HST = MF.getSubtarget<HexagonSubtarget>();
2233 auto &HRI = *HST.getRegisterInfo();
2234 auto &HII = *HST.getInstrInfo();
2235
2236 MDT = &getAnalysis<MachineDominatorTree>();
2237 MachineRegisterInfo &MRI = MF.getRegInfo();
2238 bool Changed;
2239
2240 Changed = DeadCodeElimination(MF, *MDT).run();
2241
2242 const HexagonEvaluator HE(HRI, MRI, HII, MF);
2243 BitTracker BT(HE, MF);
2244 DEBUG(BT.trace(true));
2245 BT.run();
2246
2247 MachineBasicBlock &Entry = MF.front();
2248
2249 RegisterSet AIG; // Available registers for IG.
2250 ConstGeneration ImmG(BT, HII, MRI);
2251 Changed |= visitBlock(Entry, ImmG, AIG);
2252
2253 RegisterSet ARE; // Available registers for RIE.
2254 RedundantInstrElimination RIE(BT, HII, MRI);
Krzysztof Parzyszek1adca302016-07-26 18:30:11 +00002255 bool Ried = visitBlock(Entry, RIE, ARE);
2256 if (Ried) {
2257 Changed = true;
2258 BT.run();
2259 }
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00002260
2261 RegisterSet ACG; // Available registers for CG.
2262 CopyGeneration CopyG(BT, HII, MRI);
2263 Changed |= visitBlock(Entry, CopyG, ACG);
2264
2265 RegisterSet ACP; // Available registers for CP.
2266 CopyPropagation CopyP(HRI, MRI);
2267 Changed |= visitBlock(Entry, CopyP, ACP);
2268
2269 Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
2270
2271 BT.run();
2272 RegisterSet ABS; // Available registers for BS.
2273 BitSimplification BitS(BT, HII, MRI);
2274 Changed |= visitBlock(Entry, BitS, ABS);
2275
2276 Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
2277
2278 if (Changed) {
2279 for (auto &B : MF)
2280 for (auto &I : B)
2281 I.clearKillInfo();
2282 DeadCodeElimination(MF, *MDT).run();
2283 }
2284 return Changed;
2285}
2286
2287
2288// Recognize loops where the code at the end of the loop matches the code
2289// before the entry of the loop, and the matching code is such that is can
2290// be simplified. This pass relies on the bit simplification above and only
2291// prepares code in a way that can be handled by the bit simplifcation.
2292//
2293// This is the motivating testcase (and explanation):
2294//
2295// {
2296// loop0(.LBB0_2, r1) // %for.body.preheader
2297// r5:4 = memd(r0++#8)
2298// }
2299// {
2300// r3 = lsr(r4, #16)
2301// r7:6 = combine(r5, r5)
2302// }
2303// {
2304// r3 = insert(r5, #16, #16)
2305// r7:6 = vlsrw(r7:6, #16)
2306// }
2307// .LBB0_2:
2308// {
2309// memh(r2+#4) = r5
2310// memh(r2+#6) = r6 # R6 is really R5.H
2311// }
2312// {
2313// r2 = add(r2, #8)
2314// memh(r2+#0) = r4
2315// memh(r2+#2) = r3 # R3 is really R4.H
2316// }
2317// {
2318// r5:4 = memd(r0++#8)
2319// }
2320// { # "Shuffling" code that sets up R3 and R6
2321// r3 = lsr(r4, #16) # so that their halves can be stored in the
2322// r7:6 = combine(r5, r5) # next iteration. This could be folded into
2323// } # the stores if the code was at the beginning
2324// { # of the loop iteration. Since the same code
2325// r3 = insert(r5, #16, #16) # precedes the loop, it can actually be moved
2326// r7:6 = vlsrw(r7:6, #16) # there.
2327// }:endloop0
2328//
2329//
2330// The outcome:
2331//
2332// {
2333// loop0(.LBB0_2, r1)
2334// r5:4 = memd(r0++#8)
2335// }
2336// .LBB0_2:
2337// {
2338// memh(r2+#4) = r5
2339// memh(r2+#6) = r5.h
2340// }
2341// {
2342// r2 = add(r2, #8)
2343// memh(r2+#0) = r4
2344// memh(r2+#2) = r4.h
2345// }
2346// {
2347// r5:4 = memd(r0++#8)
2348// }:endloop0
2349
2350namespace llvm {
2351 FunctionPass *createHexagonLoopRescheduling();
2352 void initializeHexagonLoopReschedulingPass(PassRegistry&);
2353}
2354
2355namespace {
2356 class HexagonLoopRescheduling : public MachineFunctionPass {
2357 public:
2358 static char ID;
2359 HexagonLoopRescheduling() : MachineFunctionPass(ID),
2360 HII(0), HRI(0), MRI(0), BTP(0) {
2361 initializeHexagonLoopReschedulingPass(*PassRegistry::getPassRegistry());
2362 }
2363
2364 bool runOnMachineFunction(MachineFunction &MF) override;
2365
2366 private:
2367 const HexagonInstrInfo *HII;
2368 const HexagonRegisterInfo *HRI;
2369 MachineRegisterInfo *MRI;
2370 BitTracker *BTP;
2371
2372 struct LoopCand {
2373 LoopCand(MachineBasicBlock *lb, MachineBasicBlock *pb,
2374 MachineBasicBlock *eb) : LB(lb), PB(pb), EB(eb) {}
2375 MachineBasicBlock *LB, *PB, *EB;
2376 };
2377 typedef std::vector<MachineInstr*> InstrList;
2378 struct InstrGroup {
2379 BitTracker::RegisterRef Inp, Out;
2380 InstrList Ins;
2381 };
2382 struct PhiInfo {
2383 PhiInfo(MachineInstr &P, MachineBasicBlock &B);
2384 unsigned DefR;
Krzysztof Parzyszek57c3ddd2016-07-26 19:17:13 +00002385 BitTracker::RegisterRef LR, PR; // Loop Register, Preheader Register
2386 MachineBasicBlock *LB, *PB; // Loop Block, Preheader Block
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00002387 };
2388
2389 static unsigned getDefReg(const MachineInstr *MI);
2390 bool isConst(unsigned Reg) const;
2391 bool isBitShuffle(const MachineInstr *MI, unsigned DefR) const;
2392 bool isStoreInput(const MachineInstr *MI, unsigned DefR) const;
2393 bool isShuffleOf(unsigned OutR, unsigned InpR) const;
2394 bool isSameShuffle(unsigned OutR1, unsigned InpR1, unsigned OutR2,
2395 unsigned &InpR2) const;
2396 void moveGroup(InstrGroup &G, MachineBasicBlock &LB, MachineBasicBlock &PB,
2397 MachineBasicBlock::iterator At, unsigned OldPhiR, unsigned NewPredR);
2398 bool processLoop(LoopCand &C);
2399 };
2400}
2401
2402char HexagonLoopRescheduling::ID = 0;
2403
2404INITIALIZE_PASS(HexagonLoopRescheduling, "hexagon-loop-resched",
2405 "Hexagon Loop Rescheduling", false, false)
2406
2407
2408HexagonLoopRescheduling::PhiInfo::PhiInfo(MachineInstr &P,
2409 MachineBasicBlock &B) {
2410 DefR = HexagonLoopRescheduling::getDefReg(&P);
2411 LB = &B;
2412 PB = nullptr;
2413 for (unsigned i = 1, n = P.getNumOperands(); i < n; i += 2) {
2414 const MachineOperand &OpB = P.getOperand(i+1);
2415 if (OpB.getMBB() == &B) {
2416 LR = P.getOperand(i);
2417 continue;
2418 }
2419 PB = OpB.getMBB();
2420 PR = P.getOperand(i);
2421 }
2422}
2423
2424
2425unsigned HexagonLoopRescheduling::getDefReg(const MachineInstr *MI) {
2426 RegisterSet Defs;
2427 HBS::getInstrDefs(*MI, Defs);
2428 if (Defs.count() != 1)
2429 return 0;
2430 return Defs.find_first();
2431}
2432
2433
2434bool HexagonLoopRescheduling::isConst(unsigned Reg) const {
2435 if (!BTP->has(Reg))
2436 return false;
2437 const BitTracker::RegisterCell &RC = BTP->lookup(Reg);
2438 for (unsigned i = 0, w = RC.width(); i < w; ++i) {
2439 const BitTracker::BitValue &V = RC[i];
2440 if (!V.is(0) && !V.is(1))
2441 return false;
2442 }
2443 return true;
2444}
2445
2446
2447bool HexagonLoopRescheduling::isBitShuffle(const MachineInstr *MI,
2448 unsigned DefR) const {
2449 unsigned Opc = MI->getOpcode();
2450 switch (Opc) {
2451 case TargetOpcode::COPY:
2452 case Hexagon::S2_lsr_i_r:
2453 case Hexagon::S2_asr_i_r:
2454 case Hexagon::S2_asl_i_r:
2455 case Hexagon::S2_lsr_i_p:
2456 case Hexagon::S2_asr_i_p:
2457 case Hexagon::S2_asl_i_p:
2458 case Hexagon::S2_insert:
2459 case Hexagon::A2_or:
2460 case Hexagon::A2_orp:
2461 case Hexagon::A2_and:
2462 case Hexagon::A2_andp:
2463 case Hexagon::A2_combinew:
2464 case Hexagon::A4_combineri:
2465 case Hexagon::A4_combineir:
2466 case Hexagon::A2_combineii:
2467 case Hexagon::A4_combineii:
2468 case Hexagon::A2_combine_ll:
2469 case Hexagon::A2_combine_lh:
2470 case Hexagon::A2_combine_hl:
2471 case Hexagon::A2_combine_hh:
2472 return true;
2473 }
2474 return false;
2475}
2476
2477
2478bool HexagonLoopRescheduling::isStoreInput(const MachineInstr *MI,
2479 unsigned InpR) const {
2480 for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
2481 const MachineOperand &Op = MI->getOperand(i);
2482 if (!Op.isReg())
2483 continue;
2484 if (Op.getReg() == InpR)
2485 return i == n-1;
2486 }
2487 return false;
2488}
2489
2490
2491bool HexagonLoopRescheduling::isShuffleOf(unsigned OutR, unsigned InpR) const {
2492 if (!BTP->has(OutR) || !BTP->has(InpR))
2493 return false;
2494 const BitTracker::RegisterCell &OutC = BTP->lookup(OutR);
2495 for (unsigned i = 0, w = OutC.width(); i < w; ++i) {
2496 const BitTracker::BitValue &V = OutC[i];
2497 if (V.Type != BitTracker::BitValue::Ref)
2498 continue;
2499 if (V.RefI.Reg != InpR)
2500 return false;
2501 }
2502 return true;
2503}
2504
2505
2506bool HexagonLoopRescheduling::isSameShuffle(unsigned OutR1, unsigned InpR1,
2507 unsigned OutR2, unsigned &InpR2) const {
2508 if (!BTP->has(OutR1) || !BTP->has(InpR1) || !BTP->has(OutR2))
2509 return false;
2510 const BitTracker::RegisterCell &OutC1 = BTP->lookup(OutR1);
2511 const BitTracker::RegisterCell &OutC2 = BTP->lookup(OutR2);
2512 unsigned W = OutC1.width();
2513 unsigned MatchR = 0;
2514 if (W != OutC2.width())
2515 return false;
2516 for (unsigned i = 0; i < W; ++i) {
2517 const BitTracker::BitValue &V1 = OutC1[i], &V2 = OutC2[i];
2518 if (V1.Type != V2.Type || V1.Type == BitTracker::BitValue::One)
2519 return false;
2520 if (V1.Type != BitTracker::BitValue::Ref)
2521 continue;
2522 if (V1.RefI.Pos != V2.RefI.Pos)
2523 return false;
2524 if (V1.RefI.Reg != InpR1)
2525 return false;
2526 if (V2.RefI.Reg == 0 || V2.RefI.Reg == OutR2)
2527 return false;
2528 if (!MatchR)
2529 MatchR = V2.RefI.Reg;
2530 else if (V2.RefI.Reg != MatchR)
2531 return false;
2532 }
2533 InpR2 = MatchR;
2534 return true;
2535}
2536
2537
2538void HexagonLoopRescheduling::moveGroup(InstrGroup &G, MachineBasicBlock &LB,
2539 MachineBasicBlock &PB, MachineBasicBlock::iterator At, unsigned OldPhiR,
2540 unsigned NewPredR) {
2541 DenseMap<unsigned,unsigned> RegMap;
2542
2543 const TargetRegisterClass *PhiRC = MRI->getRegClass(NewPredR);
2544 unsigned PhiR = MRI->createVirtualRegister(PhiRC);
2545 BuildMI(LB, At, At->getDebugLoc(), HII->get(TargetOpcode::PHI), PhiR)
2546 .addReg(NewPredR)
2547 .addMBB(&PB)
2548 .addReg(G.Inp.Reg)
2549 .addMBB(&LB);
2550 RegMap.insert(std::make_pair(G.Inp.Reg, PhiR));
2551
2552 for (unsigned i = G.Ins.size(); i > 0; --i) {
2553 const MachineInstr *SI = G.Ins[i-1];
2554 unsigned DR = getDefReg(SI);
2555 const TargetRegisterClass *RC = MRI->getRegClass(DR);
2556 unsigned NewDR = MRI->createVirtualRegister(RC);
2557 DebugLoc DL = SI->getDebugLoc();
2558
2559 auto MIB = BuildMI(LB, At, DL, HII->get(SI->getOpcode()), NewDR);
2560 for (unsigned j = 0, m = SI->getNumOperands(); j < m; ++j) {
2561 const MachineOperand &Op = SI->getOperand(j);
2562 if (!Op.isReg()) {
2563 MIB.addOperand(Op);
2564 continue;
2565 }
2566 if (!Op.isUse())
2567 continue;
2568 unsigned UseR = RegMap[Op.getReg()];
2569 MIB.addReg(UseR, 0, Op.getSubReg());
2570 }
2571 RegMap.insert(std::make_pair(DR, NewDR));
2572 }
2573
2574 HBS::replaceReg(OldPhiR, RegMap[G.Out.Reg], *MRI);
2575}
2576
2577
2578bool HexagonLoopRescheduling::processLoop(LoopCand &C) {
2579 DEBUG(dbgs() << "Processing loop in BB#" << C.LB->getNumber() << "\n");
2580 std::vector<PhiInfo> Phis;
2581 for (auto &I : *C.LB) {
2582 if (!I.isPHI())
2583 break;
2584 unsigned PR = getDefReg(&I);
2585 if (isConst(PR))
2586 continue;
2587 bool BadUse = false, GoodUse = false;
2588 for (auto UI = MRI->use_begin(PR), UE = MRI->use_end(); UI != UE; ++UI) {
2589 MachineInstr *UseI = UI->getParent();
2590 if (UseI->getParent() != C.LB) {
2591 BadUse = true;
2592 break;
2593 }
2594 if (isBitShuffle(UseI, PR) || isStoreInput(UseI, PR))
2595 GoodUse = true;
2596 }
2597 if (BadUse || !GoodUse)
2598 continue;
2599
2600 Phis.push_back(PhiInfo(I, *C.LB));
2601 }
2602
2603 DEBUG({
2604 dbgs() << "Phis: {";
2605 for (auto &I : Phis) {
2606 dbgs() << ' ' << PrintReg(I.DefR, HRI) << "=phi("
2607 << PrintReg(I.PR.Reg, HRI, I.PR.Sub) << ":b" << I.PB->getNumber()
2608 << ',' << PrintReg(I.LR.Reg, HRI, I.LR.Sub) << ":b"
2609 << I.LB->getNumber() << ')';
2610 }
2611 dbgs() << " }\n";
2612 });
2613
2614 if (Phis.empty())
2615 return false;
2616
2617 bool Changed = false;
2618 InstrList ShufIns;
2619
2620 // Go backwards in the block: for each bit shuffling instruction, check
2621 // if that instruction could potentially be moved to the front of the loop:
2622 // the output of the loop cannot be used in a non-shuffling instruction
2623 // in this loop.
2624 for (auto I = C.LB->rbegin(), E = C.LB->rend(); I != E; ++I) {
2625 if (I->isTerminator())
2626 continue;
2627 if (I->isPHI())
2628 break;
2629
2630 RegisterSet Defs;
2631 HBS::getInstrDefs(*I, Defs);
2632 if (Defs.count() != 1)
2633 continue;
2634 unsigned DefR = Defs.find_first();
2635 if (!TargetRegisterInfo::isVirtualRegister(DefR))
2636 continue;
2637 if (!isBitShuffle(&*I, DefR))
2638 continue;
2639
2640 bool BadUse = false;
2641 for (auto UI = MRI->use_begin(DefR), UE = MRI->use_end(); UI != UE; ++UI) {
2642 MachineInstr *UseI = UI->getParent();
2643 if (UseI->getParent() == C.LB) {
2644 if (UseI->isPHI()) {
2645 // If the use is in a phi node in this loop, then it should be
2646 // the value corresponding to the back edge.
2647 unsigned Idx = UI.getOperandNo();
2648 if (UseI->getOperand(Idx+1).getMBB() != C.LB)
2649 BadUse = true;
2650 } else {
2651 auto F = std::find(ShufIns.begin(), ShufIns.end(), UseI);
2652 if (F == ShufIns.end())
2653 BadUse = true;
2654 }
2655 } else {
2656 // There is a use outside of the loop, but there is no epilog block
2657 // suitable for a copy-out.
2658 if (C.EB == nullptr)
2659 BadUse = true;
2660 }
2661 if (BadUse)
2662 break;
2663 }
2664
2665 if (BadUse)
2666 continue;
2667 ShufIns.push_back(&*I);
2668 }
2669
2670 // Partition the list of shuffling instructions into instruction groups,
2671 // where each group has to be moved as a whole (i.e. a group is a chain of
2672 // dependent instructions). A group produces a single live output register,
2673 // which is meant to be the input of the loop phi node (although this is
2674 // not checked here yet). It also uses a single register as its input,
2675 // which is some value produced in the loop body. After moving the group
2676 // to the beginning of the loop, that input register would need to be
2677 // the loop-carried register (through a phi node) instead of the (currently
2678 // loop-carried) output register.
2679 typedef std::vector<InstrGroup> InstrGroupList;
2680 InstrGroupList Groups;
2681
2682 for (unsigned i = 0, n = ShufIns.size(); i < n; ++i) {
2683 MachineInstr *SI = ShufIns[i];
2684 if (SI == nullptr)
2685 continue;
2686
2687 InstrGroup G;
2688 G.Ins.push_back(SI);
2689 G.Out.Reg = getDefReg(SI);
2690 RegisterSet Inputs;
2691 HBS::getInstrUses(*SI, Inputs);
2692
2693 for (unsigned j = i+1; j < n; ++j) {
2694 MachineInstr *MI = ShufIns[j];
2695 if (MI == nullptr)
2696 continue;
2697 RegisterSet Defs;
2698 HBS::getInstrDefs(*MI, Defs);
2699 // If this instruction does not define any pending inputs, skip it.
2700 if (!Defs.intersects(Inputs))
2701 continue;
2702 // Otherwise, add it to the current group and remove the inputs that
2703 // are defined by MI.
2704 G.Ins.push_back(MI);
2705 Inputs.remove(Defs);
2706 // Then add all registers used by MI.
2707 HBS::getInstrUses(*MI, Inputs);
2708 ShufIns[j] = nullptr;
2709 }
2710
2711 // Only add a group if it requires at most one register.
2712 if (Inputs.count() > 1)
2713 continue;
2714 auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
2715 return G.Out.Reg == P.LR.Reg;
2716 };
2717 if (std::find_if(Phis.begin(), Phis.end(), LoopInpEq) == Phis.end())
2718 continue;
2719
2720 G.Inp.Reg = Inputs.find_first();
2721 Groups.push_back(G);
2722 }
2723
2724 DEBUG({
2725 for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
2726 InstrGroup &G = Groups[i];
2727 dbgs() << "Group[" << i << "] inp: "
2728 << PrintReg(G.Inp.Reg, HRI, G.Inp.Sub)
2729 << " out: " << PrintReg(G.Out.Reg, HRI, G.Out.Sub) << "\n";
2730 for (unsigned j = 0, m = G.Ins.size(); j < m; ++j)
2731 dbgs() << " " << *G.Ins[j];
2732 }
2733 });
2734
2735 for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
2736 InstrGroup &G = Groups[i];
2737 if (!isShuffleOf(G.Out.Reg, G.Inp.Reg))
2738 continue;
2739 auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
2740 return G.Out.Reg == P.LR.Reg;
2741 };
2742 auto F = std::find_if(Phis.begin(), Phis.end(), LoopInpEq);
2743 if (F == Phis.end())
2744 continue;
Krzysztof Parzyszek57c3ddd2016-07-26 19:17:13 +00002745 unsigned PrehR = 0;
2746 if (!isSameShuffle(G.Out.Reg, G.Inp.Reg, F->PR.Reg, PrehR)) {
2747 const MachineInstr *DefPrehR = MRI->getVRegDef(F->PR.Reg);
2748 unsigned Opc = DefPrehR->getOpcode();
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00002749 if (Opc != Hexagon::A2_tfrsi && Opc != Hexagon::A2_tfrpi)
2750 continue;
Krzysztof Parzyszek57c3ddd2016-07-26 19:17:13 +00002751 if (!DefPrehR->getOperand(1).isImm())
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00002752 continue;
Krzysztof Parzyszek57c3ddd2016-07-26 19:17:13 +00002753 if (DefPrehR->getOperand(1).getImm() != 0)
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00002754 continue;
2755 const TargetRegisterClass *RC = MRI->getRegClass(G.Inp.Reg);
2756 if (RC != MRI->getRegClass(F->PR.Reg)) {
Krzysztof Parzyszek57c3ddd2016-07-26 19:17:13 +00002757 PrehR = MRI->createVirtualRegister(RC);
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00002758 unsigned TfrI = (RC == &Hexagon::IntRegsRegClass) ? Hexagon::A2_tfrsi
2759 : Hexagon::A2_tfrpi;
2760 auto T = C.PB->getFirstTerminator();
2761 DebugLoc DL = (T != C.PB->end()) ? T->getDebugLoc() : DebugLoc();
Krzysztof Parzyszek57c3ddd2016-07-26 19:17:13 +00002762 BuildMI(*C.PB, T, DL, HII->get(TfrI), PrehR)
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00002763 .addImm(0);
2764 } else {
Krzysztof Parzyszek57c3ddd2016-07-26 19:17:13 +00002765 PrehR = F->PR.Reg;
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00002766 }
2767 }
Krzysztof Parzyszek57c3ddd2016-07-26 19:17:13 +00002768 // isSameShuffle could match with PrehR being of a wider class than
2769 // G.Inp.Reg, for example if G shuffles the low 32 bits of its input,
2770 // it would match for the input being a 32-bit register, and PrehR
2771 // being a 64-bit register (where the low 32 bits match). This could
2772 // be handled, but for now skip these cases.
2773 if (MRI->getRegClass(PrehR) != MRI->getRegClass(G.Inp.Reg))
2774 continue;
2775 moveGroup(G, *F->LB, *F->PB, F->LB->getFirstNonPHI(), F->DefR, PrehR);
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00002776 Changed = true;
2777 }
2778
2779 return Changed;
2780}
2781
2782
2783bool HexagonLoopRescheduling::runOnMachineFunction(MachineFunction &MF) {
Andrew Kaylor5b444a22016-04-26 19:46:28 +00002784 if (skipFunction(*MF.getFunction()))
2785 return false;
2786
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00002787 auto &HST = MF.getSubtarget<HexagonSubtarget>();
2788 HII = HST.getInstrInfo();
2789 HRI = HST.getRegisterInfo();
2790 MRI = &MF.getRegInfo();
2791 const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
2792 BitTracker BT(HE, MF);
2793 DEBUG(BT.trace(true));
2794 BT.run();
2795 BTP = &BT;
2796
2797 std::vector<LoopCand> Cand;
2798
2799 for (auto &B : MF) {
2800 if (B.pred_size() != 2 || B.succ_size() != 2)
2801 continue;
2802 MachineBasicBlock *PB = nullptr;
2803 bool IsLoop = false;
2804 for (auto PI = B.pred_begin(), PE = B.pred_end(); PI != PE; ++PI) {
2805 if (*PI != &B)
2806 PB = *PI;
2807 else
2808 IsLoop = true;
2809 }
2810 if (!IsLoop)
2811 continue;
2812
2813 MachineBasicBlock *EB = nullptr;
2814 for (auto SI = B.succ_begin(), SE = B.succ_end(); SI != SE; ++SI) {
2815 if (*SI == &B)
2816 continue;
2817 // Set EP to the epilog block, if it has only 1 predecessor (i.e. the
2818 // edge from B to EP is non-critical.
2819 if ((*SI)->pred_size() == 1)
2820 EB = *SI;
2821 break;
2822 }
2823
2824 Cand.push_back(LoopCand(&B, PB, EB));
2825 }
2826
2827 bool Changed = false;
2828 for (auto &C : Cand)
2829 Changed |= processLoop(C);
2830
2831 return Changed;
2832}
2833
2834//===----------------------------------------------------------------------===//
2835// Public Constructor Functions
2836//===----------------------------------------------------------------------===//
2837
2838FunctionPass *llvm::createHexagonLoopRescheduling() {
2839 return new HexagonLoopRescheduling();
2840}
2841
2842FunctionPass *llvm::createHexagonBitSimplify() {
2843 return new HexagonBitSimplify();
2844}
2845