blob: 661922df35958ad4fa1cdfa732b6bf3fbe537ff1 [file] [log] [blame]
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001//===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
George Burgess IVe1100f52016-02-02 22:46:49 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00008//===----------------------------------------------------------------------===//
George Burgess IVe1100f52016-02-02 22:46:49 +00009//
10// This file implements the MemorySSA class.
11//
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000012//===----------------------------------------------------------------------===//
13
Daniel Berlin554dcd82017-04-11 20:06:36 +000014#include "llvm/Analysis/MemorySSA.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000015#include "llvm/ADT/DenseMap.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000016#include "llvm/ADT/DenseMapInfo.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000017#include "llvm/ADT/DenseSet.h"
18#include "llvm/ADT/DepthFirstIterator.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000019#include "llvm/ADT/Hashing.h"
20#include "llvm/ADT/None.h"
21#include "llvm/ADT/Optional.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000022#include "llvm/ADT/STLExtras.h"
23#include "llvm/ADT/SmallPtrSet.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000024#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/iterator.h"
26#include "llvm/ADT/iterator_range.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000027#include "llvm/Analysis/AliasAnalysis.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000028#include "llvm/Analysis/IteratedDominanceFrontier.h"
29#include "llvm/Analysis/MemoryLocation.h"
Nico Weber432a3882018-04-30 14:59:11 +000030#include "llvm/Config/llvm-config.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000031#include "llvm/IR/AssemblyAnnotationWriter.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000032#include "llvm/IR/BasicBlock.h"
33#include "llvm/IR/CallSite.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000034#include "llvm/IR/Dominators.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000035#include "llvm/IR/Function.h"
36#include "llvm/IR/Instruction.h"
37#include "llvm/IR/Instructions.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000038#include "llvm/IR/IntrinsicInst.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000039#include "llvm/IR/Intrinsics.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000040#include "llvm/IR/LLVMContext.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000041#include "llvm/IR/PassManager.h"
42#include "llvm/IR/Use.h"
43#include "llvm/Pass.h"
44#include "llvm/Support/AtomicOrdering.h"
45#include "llvm/Support/Casting.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/Compiler.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000048#include "llvm/Support/Debug.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000049#include "llvm/Support/ErrorHandling.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000050#include "llvm/Support/FormattedStream.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000051#include "llvm/Support/raw_ostream.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000052#include <algorithm>
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000053#include <cassert>
54#include <iterator>
55#include <memory>
56#include <utility>
57
58using namespace llvm;
George Burgess IVe1100f52016-02-02 22:46:49 +000059
60#define DEBUG_TYPE "memoryssa"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000061
Geoff Berryefb0dd12016-06-14 21:19:40 +000062INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
Geoff Berryb96d3b22016-06-01 21:30:40 +000063 true)
George Burgess IVe1100f52016-02-02 22:46:49 +000064INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
65INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
Geoff Berryefb0dd12016-06-14 21:19:40 +000066INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
67 true)
George Burgess IVe1100f52016-02-02 22:46:49 +000068
Chad Rosier232e29e2016-07-06 21:20:47 +000069INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa",
70 "Memory SSA Printer", false, false)
71INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
72INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
73 "Memory SSA Printer", false, false)
74
Daniel Berlinc43aa5a2016-08-02 16:24:03 +000075static cl::opt<unsigned> MaxCheckLimit(
76 "memssa-check-limit", cl::Hidden, cl::init(100),
77 cl::desc("The maximum number of stores/phis MemorySSA"
78 "will consider trying to walk past (default = 100)"));
79
Chad Rosier232e29e2016-07-06 21:20:47 +000080static cl::opt<bool>
81 VerifyMemorySSA("verify-memoryssa", cl::init(false), cl::Hidden,
82 cl::desc("Verify MemorySSA in legacy printer pass."));
83
George Burgess IVe1100f52016-02-02 22:46:49 +000084namespace llvm {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000085
Adrian Prantl5f8f34e42018-05-01 15:54:18 +000086/// An assembly annotator class to print Memory SSA information in
George Burgess IVe1100f52016-02-02 22:46:49 +000087/// comments.
88class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
89 friend class MemorySSA;
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000090
George Burgess IVe1100f52016-02-02 22:46:49 +000091 const MemorySSA *MSSA;
92
93public:
94 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
95
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000096 void emitBasicBlockStartAnnot(const BasicBlock *BB,
97 formatted_raw_ostream &OS) override {
George Burgess IVe1100f52016-02-02 22:46:49 +000098 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
99 OS << "; " << *MA << "\n";
100 }
101
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000102 void emitInstructionAnnot(const Instruction *I,
103 formatted_raw_ostream &OS) override {
George Burgess IVe1100f52016-02-02 22:46:49 +0000104 if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
105 OS << "; " << *MA << "\n";
106 }
107};
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000108
109} // end namespace llvm
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000110
George Burgess IV5f308972016-07-19 01:29:15 +0000111namespace {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000112
Daniel Berlindff31de2016-08-02 21:57:52 +0000113/// Our current alias analysis API differentiates heavily between calls and
114/// non-calls, and functions called on one usually assert on the other.
115/// This class encapsulates the distinction to simplify other code that wants
116/// "Memory affecting instructions and related data" to use as a key.
117/// For example, this class is used as a densemap key in the use optimizer.
118class MemoryLocOrCall {
119public:
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000120 bool IsCall = false;
121
122 MemoryLocOrCall() = default;
Daniel Berlindff31de2016-08-02 21:57:52 +0000123 MemoryLocOrCall(MemoryUseOrDef *MUD)
124 : MemoryLocOrCall(MUD->getMemoryInst()) {}
Sebastian Pop5068d7a2016-10-13 03:23:33 +0000125 MemoryLocOrCall(const MemoryUseOrDef *MUD)
126 : MemoryLocOrCall(MUD->getMemoryInst()) {}
Daniel Berlindff31de2016-08-02 21:57:52 +0000127
128 MemoryLocOrCall(Instruction *Inst) {
129 if (ImmutableCallSite(Inst)) {
130 IsCall = true;
131 CS = ImmutableCallSite(Inst);
132 } else {
133 IsCall = false;
134 // There is no such thing as a memorylocation for a fence inst, and it is
135 // unique in that regard.
136 if (!isa<FenceInst>(Inst))
137 Loc = MemoryLocation::get(Inst);
138 }
139 }
140
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000141 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {}
Daniel Berlindff31de2016-08-02 21:57:52 +0000142
Daniel Berlindff31de2016-08-02 21:57:52 +0000143 ImmutableCallSite getCS() const {
144 assert(IsCall);
145 return CS;
146 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000147
Daniel Berlindff31de2016-08-02 21:57:52 +0000148 MemoryLocation getLoc() const {
149 assert(!IsCall);
150 return Loc;
151 }
152
153 bool operator==(const MemoryLocOrCall &Other) const {
154 if (IsCall != Other.IsCall)
155 return false;
156
George Burgess IV3588fd42018-03-29 00:54:39 +0000157 if (!IsCall)
158 return Loc == Other.Loc;
159
160 if (CS.getCalledValue() != Other.CS.getCalledValue())
161 return false;
162
George Burgess IVaf0b06f2018-03-29 03:12:03 +0000163 return CS.arg_size() == Other.CS.arg_size() &&
164 std::equal(CS.arg_begin(), CS.arg_end(), Other.CS.arg_begin());
Daniel Berlindff31de2016-08-02 21:57:52 +0000165 }
166
167private:
Daniel Berlinf5361132016-10-22 04:15:41 +0000168 union {
Daniel Berlind602e042017-01-25 20:56:19 +0000169 ImmutableCallSite CS;
170 MemoryLocation Loc;
Daniel Berlinf5361132016-10-22 04:15:41 +0000171 };
Daniel Berlindff31de2016-08-02 21:57:52 +0000172};
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000173
174} // end anonymous namespace
Daniel Berlindff31de2016-08-02 21:57:52 +0000175
176namespace llvm {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000177
Daniel Berlindff31de2016-08-02 21:57:52 +0000178template <> struct DenseMapInfo<MemoryLocOrCall> {
179 static inline MemoryLocOrCall getEmptyKey() {
180 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
181 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000182
Daniel Berlindff31de2016-08-02 21:57:52 +0000183 static inline MemoryLocOrCall getTombstoneKey() {
184 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
185 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000186
Daniel Berlindff31de2016-08-02 21:57:52 +0000187 static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
George Burgess IV3588fd42018-03-29 00:54:39 +0000188 if (!MLOC.IsCall)
189 return hash_combine(
190 MLOC.IsCall,
191 DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));
192
193 hash_code hash =
194 hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue(
195 MLOC.getCS().getCalledValue()));
196
197 for (const Value *Arg : MLOC.getCS().args())
198 hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg));
199 return hash;
Daniel Berlindff31de2016-08-02 21:57:52 +0000200 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000201
Daniel Berlindff31de2016-08-02 21:57:52 +0000202 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
203 return LHS == RHS;
204 }
205};
Daniel Berlindf101192016-08-03 00:01:46 +0000206
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000207} // end namespace llvm
208
George Burgess IV82e355c2016-08-03 19:39:54 +0000209/// This does one-way checks to see if Use could theoretically be hoisted above
210/// MayClobber. This will not check the other way around.
211///
212/// This assumes that, for the purposes of MemorySSA, Use comes directly after
213/// MayClobber, with no potentially clobbering operations in between them.
214/// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
Alina Sbirleaca741a82017-12-22 19:54:03 +0000215static bool areLoadsReorderable(const LoadInst *Use,
216 const LoadInst *MayClobber) {
George Burgess IV82e355c2016-08-03 19:39:54 +0000217 bool VolatileUse = Use->isVolatile();
218 bool VolatileClobber = MayClobber->isVolatile();
219 // Volatile operations may never be reordered with other volatile operations.
220 if (VolatileUse && VolatileClobber)
Alina Sbirleaca741a82017-12-22 19:54:03 +0000221 return false;
222 // Otherwise, volatile doesn't matter here. From the language reference:
223 // 'optimizers may change the order of volatile operations relative to
224 // non-volatile operations.'"
George Burgess IV82e355c2016-08-03 19:39:54 +0000225
226 // If a load is seq_cst, it cannot be moved above other loads. If its ordering
227 // is weaker, it can be moved above other loads. We just need to be sure that
228 // MayClobber isn't an acquire load, because loads can't be moved above
229 // acquire loads.
230 //
231 // Note that this explicitly *does* allow the free reordering of monotonic (or
232 // weaker) loads of the same address.
233 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
234 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
235 AtomicOrdering::Acquire);
Alina Sbirleaca741a82017-12-22 19:54:03 +0000236 return !(SeqCstUse || MayClobberIsAcquire);
George Burgess IV82e355c2016-08-03 19:39:54 +0000237}
238
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000239namespace {
240
241struct ClobberAlias {
242 bool IsClobber;
243 Optional<AliasResult> AR;
244};
245
246} // end anonymous namespace
247
248// Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being
249// ignored if IsClobber = false.
250static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
251 const MemoryLocation &UseLoc,
252 const Instruction *UseInst,
253 AliasAnalysis &AA) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +0000254 Instruction *DefInst = MD->getMemoryInst();
255 assert(DefInst && "Defining instruction not actually an instruction");
Daniel Berlin74603a62017-04-10 18:46:00 +0000256 ImmutableCallSite UseCS(UseInst);
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000257 Optional<AliasResult> AR;
George Burgess IV5f308972016-07-19 01:29:15 +0000258
Daniel Berlindf101192016-08-03 00:01:46 +0000259 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
260 // These intrinsics will show up as affecting memory, but they are just
261 // markers.
262 switch (II->getIntrinsicID()) {
263 case Intrinsic::lifetime_start:
Daniel Berlin74603a62017-04-10 18:46:00 +0000264 if (UseCS)
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000265 return {false, NoAlias};
266 AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc);
267 return {AR == MustAlias, AR};
Daniel Berlindf101192016-08-03 00:01:46 +0000268 case Intrinsic::lifetime_end:
269 case Intrinsic::invariant_start:
270 case Intrinsic::invariant_end:
271 case Intrinsic::assume:
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000272 return {false, NoAlias};
Daniel Berlindf101192016-08-03 00:01:46 +0000273 default:
274 break;
275 }
276 }
277
Hans Wennborg70e22d12017-11-21 18:00:01 +0000278 if (UseCS) {
Daniel Berlindff31de2016-08-02 21:57:52 +0000279 ModRefInfo I = AA.getModRefInfo(DefInst, UseCS);
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000280 AR = isMustSet(I) ? MustAlias : MayAlias;
281 return {isModOrRefSet(I), AR};
Hans Wennborg70e22d12017-11-21 18:00:01 +0000282 }
George Burgess IV82e355c2016-08-03 19:39:54 +0000283
Alina Sbirleaca741a82017-12-22 19:54:03 +0000284 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst))
285 if (auto *UseLoad = dyn_cast<LoadInst>(UseInst))
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000286 return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias};
George Burgess IV82e355c2016-08-03 19:39:54 +0000287
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000288 ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc);
289 AR = isMustSet(I) ? MustAlias : MayAlias;
290 return {isModSet(I), AR};
Daniel Berlindff31de2016-08-02 21:57:52 +0000291}
292
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000293static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
294 const MemoryUseOrDef *MU,
295 const MemoryLocOrCall &UseMLOC,
296 AliasAnalysis &AA) {
Sebastian Pop5068d7a2016-10-13 03:23:33 +0000297 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
298 // to exist while MemoryLocOrCall is pushed through places.
299 if (UseMLOC.IsCall)
300 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
301 AA);
302 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
303 AA);
304}
305
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000306// Return true when MD may alias MU, return false otherwise.
Daniel Berlindcb004f2017-03-02 23:06:46 +0000307bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
308 AliasAnalysis &AA) {
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000309 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000310}
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000311
312namespace {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000313
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000314struct UpwardsMemoryQuery {
315 // True if our original query started off as a call
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000316 bool IsCall = false;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000317 // The pointer location we started the query with. This will be empty if
318 // IsCall is true.
319 MemoryLocation StartingLoc;
320 // This is the instruction we were querying about.
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000321 const Instruction *Inst = nullptr;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000322 // The MemoryAccess we actually got called with, used to test local domination
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000323 const MemoryAccess *OriginalAccess = nullptr;
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000324 Optional<AliasResult> AR = MayAlias;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000325
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000326 UpwardsMemoryQuery() = default;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000327
328 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
329 : IsCall(ImmutableCallSite(Inst)), Inst(Inst), OriginalAccess(Access) {
330 if (!IsCall)
331 StartingLoc = MemoryLocation::get(Inst);
332 }
333};
334
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000335} // end anonymous namespace
336
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000337static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc,
338 AliasAnalysis &AA) {
339 Instruction *Inst = MD->getMemoryInst();
340 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
341 switch (II->getIntrinsicID()) {
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000342 case Intrinsic::lifetime_end:
343 return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), Loc);
344 default:
345 return false;
346 }
347 }
348 return false;
349}
350
351static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysis &AA,
352 const Instruction *I) {
353 // If the memory can't be changed, then loads of the memory can't be
354 // clobbered.
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000355 return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) ||
Hal Finkela9d67cf2017-04-09 12:57:50 +0000356 AA.pointsToConstantMemory(cast<LoadInst>(I)->
357 getPointerOperand()));
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000358}
359
George Burgess IV5f308972016-07-19 01:29:15 +0000360/// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
361/// inbetween `Start` and `ClobberAt` can clobbers `Start`.
362///
363/// This is meant to be as simple and self-contained as possible. Because it
364/// uses no cache, etc., it can be relatively expensive.
365///
366/// \param Start The MemoryAccess that we want to walk from.
367/// \param ClobberAt A clobber for Start.
368/// \param StartLoc The MemoryLocation for Start.
369/// \param MSSA The MemorySSA isntance that Start and ClobberAt belong to.
370/// \param Query The UpwardsMemoryQuery we used for our search.
371/// \param AA The AliasAnalysis we used for our search.
372static void LLVM_ATTRIBUTE_UNUSED
373checkClobberSanity(MemoryAccess *Start, MemoryAccess *ClobberAt,
374 const MemoryLocation &StartLoc, const MemorySSA &MSSA,
375 const UpwardsMemoryQuery &Query, AliasAnalysis &AA) {
376 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");
377
378 if (MSSA.isLiveOnEntryDef(Start)) {
379 assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
380 "liveOnEntry must clobber itself");
381 return;
382 }
383
George Burgess IV5f308972016-07-19 01:29:15 +0000384 bool FoundClobber = false;
385 DenseSet<MemoryAccessPair> VisitedPhis;
386 SmallVector<MemoryAccessPair, 8> Worklist;
387 Worklist.emplace_back(Start, StartLoc);
388 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
389 // is found, complain.
390 while (!Worklist.empty()) {
391 MemoryAccessPair MAP = Worklist.pop_back_val();
392 // All we care about is that nothing from Start to ClobberAt clobbers Start.
393 // We learn nothing from revisiting nodes.
394 if (!VisitedPhis.insert(MAP).second)
395 continue;
396
397 for (MemoryAccess *MA : def_chain(MAP.first)) {
398 if (MA == ClobberAt) {
399 if (auto *MD = dyn_cast<MemoryDef>(MA)) {
400 // instructionClobbersQuery isn't essentially free, so don't use `|=`,
401 // since it won't let us short-circuit.
402 //
403 // Also, note that this can't be hoisted out of the `Worklist` loop,
404 // since MD may only act as a clobber for 1 of N MemoryLocations.
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000405 FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD);
406 if (!FoundClobber) {
407 ClobberAlias CA =
408 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA);
409 if (CA.IsClobber) {
410 FoundClobber = true;
411 // Not used: CA.AR;
412 }
413 }
George Burgess IV5f308972016-07-19 01:29:15 +0000414 }
415 break;
416 }
417
418 // We should never hit liveOnEntry, unless it's the clobber.
419 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");
420
421 if (auto *MD = dyn_cast<MemoryDef>(MA)) {
422 (void)MD;
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000423 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA)
424 .IsClobber &&
George Burgess IV5f308972016-07-19 01:29:15 +0000425 "Found clobber before reaching ClobberAt!");
426 continue;
427 }
428
429 assert(isa<MemoryPhi>(MA));
430 Worklist.append(upward_defs_begin({MA, MAP.second}), upward_defs_end());
431 }
432 }
433
434 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
435 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
436 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
437 "ClobberAt never acted as a clobber");
438}
439
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000440namespace {
441
George Burgess IV5f308972016-07-19 01:29:15 +0000442/// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
443/// in one class.
444class ClobberWalker {
445 /// Save a few bytes by using unsigned instead of size_t.
446 using ListIndex = unsigned;
447
448 /// Represents a span of contiguous MemoryDefs, potentially ending in a
449 /// MemoryPhi.
450 struct DefPath {
451 MemoryLocation Loc;
452 // Note that, because we always walk in reverse, Last will always dominate
453 // First. Also note that First and Last are inclusive.
454 MemoryAccess *First;
455 MemoryAccess *Last;
George Burgess IV5f308972016-07-19 01:29:15 +0000456 Optional<ListIndex> Previous;
457
458 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
459 Optional<ListIndex> Previous)
460 : Loc(Loc), First(First), Last(Last), Previous(Previous) {}
461
462 DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
463 Optional<ListIndex> Previous)
464 : DefPath(Loc, Init, Init, Previous) {}
465 };
466
467 const MemorySSA &MSSA;
468 AliasAnalysis &AA;
469 DominatorTree &DT;
George Burgess IV5f308972016-07-19 01:29:15 +0000470 UpwardsMemoryQuery *Query;
George Burgess IV5f308972016-07-19 01:29:15 +0000471
472 // Phi optimization bookkeeping
473 SmallVector<DefPath, 32> Paths;
474 DenseSet<ConstMemoryAccessPair> VisitedPhis;
George Burgess IV5f308972016-07-19 01:29:15 +0000475
George Burgess IV5f308972016-07-19 01:29:15 +0000476 /// Find the nearest def or phi that `From` can legally be optimized to.
Daniel Berlind0420312017-04-01 09:01:12 +0000477 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
George Burgess IV5f308972016-07-19 01:29:15 +0000478 assert(From->getNumOperands() && "Phi with no operands?");
479
480 BasicBlock *BB = From->getBlock();
George Burgess IV5f308972016-07-19 01:29:15 +0000481 MemoryAccess *Result = MSSA.getLiveOnEntryDef();
482 DomTreeNode *Node = DT.getNode(BB);
483 while ((Node = Node->getIDom())) {
Daniel Berlin7500c562017-04-01 08:59:45 +0000484 auto *Defs = MSSA.getBlockDefs(Node->getBlock());
485 if (Defs)
Daniel Berlind0420312017-04-01 09:01:12 +0000486 return &*Defs->rbegin();
George Burgess IV5f308972016-07-19 01:29:15 +0000487 }
George Burgess IV5f308972016-07-19 01:29:15 +0000488 return Result;
489 }
490
491 /// Result of calling walkToPhiOrClobber.
492 struct UpwardsWalkResult {
493 /// The "Result" of the walk. Either a clobber, the last thing we walked, or
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000494 /// both. Include alias info when clobber found.
George Burgess IV5f308972016-07-19 01:29:15 +0000495 MemoryAccess *Result;
496 bool IsKnownClobber;
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000497 Optional<AliasResult> AR;
George Burgess IV5f308972016-07-19 01:29:15 +0000498 };
499
500 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
501 /// This will update Desc.Last as it walks. It will (optionally) also stop at
502 /// StopAt.
503 ///
504 /// This does not test for whether StopAt is a clobber
Daniel Berlind0420312017-04-01 09:01:12 +0000505 UpwardsWalkResult
506 walkToPhiOrClobber(DefPath &Desc,
507 const MemoryAccess *StopAt = nullptr) const {
George Burgess IV5f308972016-07-19 01:29:15 +0000508 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
509
510 for (MemoryAccess *Current : def_chain(Desc.Last)) {
511 Desc.Last = Current;
512 if (Current == StopAt)
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000513 return {Current, false, MayAlias};
George Burgess IV5f308972016-07-19 01:29:15 +0000514
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000515 if (auto *MD = dyn_cast<MemoryDef>(Current)) {
516 if (MSSA.isLiveOnEntryDef(MD))
517 return {MD, true, MustAlias};
518 ClobberAlias CA =
519 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA);
520 if (CA.IsClobber)
521 return {MD, true, CA.AR};
522 }
George Burgess IV5f308972016-07-19 01:29:15 +0000523 }
524
525 assert(isa<MemoryPhi>(Desc.Last) &&
526 "Ended at a non-clobber that's not a phi?");
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000527 return {Desc.Last, false, MayAlias};
George Burgess IV5f308972016-07-19 01:29:15 +0000528 }
529
530 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
531 ListIndex PriorNode) {
532 auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}),
533 upward_defs_end());
534 for (const MemoryAccessPair &P : UpwardDefs) {
535 PausedSearches.push_back(Paths.size());
536 Paths.emplace_back(P.second, P.first, PriorNode);
537 }
538 }
539
540 /// Represents a search that terminated after finding a clobber. This clobber
541 /// may or may not be present in the path of defs from LastNode..SearchStart,
542 /// since it may have been retrieved from cache.
543 struct TerminatedPath {
544 MemoryAccess *Clobber;
545 ListIndex LastNode;
546 };
547
548 /// Get an access that keeps us from optimizing to the given phi.
549 ///
550 /// PausedSearches is an array of indices into the Paths array. Its incoming
551 /// value is the indices of searches that stopped at the last phi optimization
552 /// target. It's left in an unspecified state.
553 ///
554 /// If this returns None, NewPaused is a vector of searches that terminated
555 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
George Burgess IV14633b52016-08-03 01:22:19 +0000556 Optional<TerminatedPath>
Daniel Berlind0420312017-04-01 09:01:12 +0000557 getBlockingAccess(const MemoryAccess *StopWhere,
George Burgess IV5f308972016-07-19 01:29:15 +0000558 SmallVectorImpl<ListIndex> &PausedSearches,
559 SmallVectorImpl<ListIndex> &NewPaused,
560 SmallVectorImpl<TerminatedPath> &Terminated) {
561 assert(!PausedSearches.empty() && "No searches to continue?");
562
563 // BFS vs DFS really doesn't make a difference here, so just do a DFS with
564 // PausedSearches as our stack.
565 while (!PausedSearches.empty()) {
566 ListIndex PathIndex = PausedSearches.pop_back_val();
567 DefPath &Node = Paths[PathIndex];
568
569 // If we've already visited this path with this MemoryLocation, we don't
570 // need to do so again.
571 //
572 // NOTE: That we just drop these paths on the ground makes caching
573 // behavior sporadic. e.g. given a diamond:
574 // A
575 // B C
576 // D
577 //
578 // ...If we walk D, B, A, C, we'll only cache the result of phi
579 // optimization for A, B, and D; C will be skipped because it dies here.
580 // This arguably isn't the worst thing ever, since:
581 // - We generally query things in a top-down order, so if we got below D
582 // without needing cache entries for {C, MemLoc}, then chances are
583 // that those cache entries would end up ultimately unused.
584 // - We still cache things for A, so C only needs to walk up a bit.
585 // If this behavior becomes problematic, we can fix without a ton of extra
586 // work.
587 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second)
588 continue;
589
590 UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere);
591 if (Res.IsKnownClobber) {
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000592 assert(Res.Result != StopWhere);
George Burgess IV5f308972016-07-19 01:29:15 +0000593 // If this wasn't a cache hit, we hit a clobber when walking. That's a
594 // failure.
George Burgess IV14633b52016-08-03 01:22:19 +0000595 TerminatedPath Term{Res.Result, PathIndex};
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000596 if (!MSSA.dominates(Res.Result, StopWhere))
George Burgess IV14633b52016-08-03 01:22:19 +0000597 return Term;
George Burgess IV5f308972016-07-19 01:29:15 +0000598
599 // Otherwise, it's a valid thing to potentially optimize to.
George Burgess IV14633b52016-08-03 01:22:19 +0000600 Terminated.push_back(Term);
George Burgess IV5f308972016-07-19 01:29:15 +0000601 continue;
602 }
603
604 if (Res.Result == StopWhere) {
605 // We've hit our target. Save this path off for if we want to continue
606 // walking.
607 NewPaused.push_back(PathIndex);
608 continue;
609 }
610
611 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
612 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
613 }
614
615 return None;
616 }
617
618 template <typename T, typename Walker>
619 struct generic_def_path_iterator
620 : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
621 std::forward_iterator_tag, T *> {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000622 generic_def_path_iterator() = default;
George Burgess IV5f308972016-07-19 01:29:15 +0000623 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}
624
625 T &operator*() const { return curNode(); }
626
627 generic_def_path_iterator &operator++() {
628 N = curNode().Previous;
629 return *this;
630 }
631
632 bool operator==(const generic_def_path_iterator &O) const {
633 if (N.hasValue() != O.N.hasValue())
634 return false;
635 return !N.hasValue() || *N == *O.N;
636 }
637
638 private:
639 T &curNode() const { return W->Paths[*N]; }
640
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000641 Walker *W = nullptr;
642 Optional<ListIndex> N = None;
George Burgess IV5f308972016-07-19 01:29:15 +0000643 };
644
645 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
646 using const_def_path_iterator =
647 generic_def_path_iterator<const DefPath, const ClobberWalker>;
648
649 iterator_range<def_path_iterator> def_path(ListIndex From) {
650 return make_range(def_path_iterator(this, From), def_path_iterator());
651 }
652
653 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
654 return make_range(const_def_path_iterator(this, From),
655 const_def_path_iterator());
656 }
657
658 struct OptznResult {
659 /// The path that contains our result.
660 TerminatedPath PrimaryClobber;
661 /// The paths that we can legally cache back from, but that aren't
662 /// necessarily the result of the Phi optimization.
663 SmallVector<TerminatedPath, 4> OtherClobbers;
664 };
665
666 ListIndex defPathIndex(const DefPath &N) const {
667 // The assert looks nicer if we don't need to do &N
668 const DefPath *NP = &N;
669 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
670 "Out of bounds DefPath!");
671 return NP - &Paths.front();
672 }
673
674 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
675 /// that act as legal clobbers. Note that this won't return *all* clobbers.
676 ///
677 /// Phi optimization algorithm tl;dr:
678 /// - Find the earliest def/phi, A, we can optimize to
679 /// - Find if all paths from the starting memory access ultimately reach A
680 /// - If not, optimization isn't possible.
681 /// - Otherwise, walk from A to another clobber or phi, A'.
682 /// - If A' is a def, we're done.
683 /// - If A' is a phi, try to optimize it.
684 ///
685 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
686 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
687 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
688 const MemoryLocation &Loc) {
689 assert(Paths.empty() && VisitedPhis.empty() &&
690 "Reset the optimization state.");
691
692 Paths.emplace_back(Loc, Start, Phi, None);
693 // Stores how many "valid" optimization nodes we had prior to calling
694 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
695 auto PriorPathsSize = Paths.size();
696
697 SmallVector<ListIndex, 16> PausedSearches;
698 SmallVector<ListIndex, 8> NewPaused;
699 SmallVector<TerminatedPath, 4> TerminatedPaths;
700
701 addSearches(Phi, PausedSearches, 0);
702
703 // Moves the TerminatedPath with the "most dominated" Clobber to the end of
704 // Paths.
705 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
706 assert(!Paths.empty() && "Need a path to move");
George Burgess IV5f308972016-07-19 01:29:15 +0000707 auto Dom = Paths.begin();
708 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
709 if (!MSSA.dominates(I->Clobber, Dom->Clobber))
710 Dom = I;
711 auto Last = Paths.end() - 1;
712 if (Last != Dom)
713 std::iter_swap(Last, Dom);
714 };
715
716 MemoryPhi *Current = Phi;
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000717 while (true) {
George Burgess IV5f308972016-07-19 01:29:15 +0000718 assert(!MSSA.isLiveOnEntryDef(Current) &&
719 "liveOnEntry wasn't treated as a clobber?");
720
Daniel Berlind0420312017-04-01 09:01:12 +0000721 const auto *Target = getWalkTarget(Current);
George Burgess IV5f308972016-07-19 01:29:15 +0000722 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
723 // optimization for the prior phi.
724 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
725 return MSSA.dominates(P.Clobber, Target);
726 }));
727
728 // FIXME: This is broken, because the Blocker may be reported to be
729 // liveOnEntry, and we'll happily wait for that to disappear (read: never)
George Burgess IV7f414b92016-08-22 23:40:01 +0000730 // For the moment, this is fine, since we do nothing with blocker info.
George Burgess IV14633b52016-08-03 01:22:19 +0000731 if (Optional<TerminatedPath> Blocker = getBlockingAccess(
George Burgess IV5f308972016-07-19 01:29:15 +0000732 Target, PausedSearches, NewPaused, TerminatedPaths)) {
George Burgess IV5f308972016-07-19 01:29:15 +0000733
734 // Find the node we started at. We can't search based on N->Last, since
735 // we may have gone around a loop with a different MemoryLocation.
George Burgess IV14633b52016-08-03 01:22:19 +0000736 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
George Burgess IV5f308972016-07-19 01:29:15 +0000737 return defPathIndex(N) < PriorPathsSize;
738 });
739 assert(Iter != def_path_iterator());
740
741 DefPath &CurNode = *Iter;
742 assert(CurNode.Last == Current);
George Burgess IV5f308972016-07-19 01:29:15 +0000743
744 // Two things:
745 // A. We can't reliably cache all of NewPaused back. Consider a case
746 // where we have two paths in NewPaused; one of which can't optimize
747 // above this phi, whereas the other can. If we cache the second path
748 // back, we'll end up with suboptimal cache entries. We can handle
749 // cases like this a bit better when we either try to find all
750 // clobbers that block phi optimization, or when our cache starts
751 // supporting unfinished searches.
752 // B. We can't reliably cache TerminatedPaths back here without doing
753 // extra checks; consider a case like:
754 // T
755 // / \
756 // D C
757 // \ /
758 // S
759 // Where T is our target, C is a node with a clobber on it, D is a
760 // diamond (with a clobber *only* on the left or right node, N), and
761 // S is our start. Say we walk to D, through the node opposite N
762 // (read: ignoring the clobber), and see a cache entry in the top
763 // node of D. That cache entry gets put into TerminatedPaths. We then
764 // walk up to C (N is later in our worklist), find the clobber, and
765 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache
766 // the bottom part of D to the cached clobber, ignoring the clobber
767 // in N. Again, this problem goes away if we start tracking all
768 // blockers for a given phi optimization.
769 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
770 return {Result, {}};
771 }
772
773 // If there's nothing left to search, then all paths led to valid clobbers
774 // that we got from our cache; pick the nearest to the start, and allow
775 // the rest to be cached back.
776 if (NewPaused.empty()) {
777 MoveDominatedPathToEnd(TerminatedPaths);
778 TerminatedPath Result = TerminatedPaths.pop_back_val();
779 return {Result, std::move(TerminatedPaths)};
780 }
781
782 MemoryAccess *DefChainEnd = nullptr;
783 SmallVector<TerminatedPath, 4> Clobbers;
784 for (ListIndex Paused : NewPaused) {
785 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
786 if (WR.IsKnownClobber)
787 Clobbers.push_back({WR.Result, Paused});
788 else
789 // Micro-opt: If we hit the end of the chain, save it.
790 DefChainEnd = WR.Result;
791 }
792
793 if (!TerminatedPaths.empty()) {
794 // If we couldn't find the dominating phi/liveOnEntry in the above loop,
795 // do it now.
796 if (!DefChainEnd)
Daniel Berlind0420312017-04-01 09:01:12 +0000797 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
George Burgess IV5f308972016-07-19 01:29:15 +0000798 DefChainEnd = MA;
799
800 // If any of the terminated paths don't dominate the phi we'll try to
801 // optimize, we need to figure out what they are and quit.
802 const BasicBlock *ChainBB = DefChainEnd->getBlock();
803 for (const TerminatedPath &TP : TerminatedPaths) {
804 // Because we know that DefChainEnd is as "high" as we can go, we
805 // don't need local dominance checks; BB dominance is sufficient.
806 if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
807 Clobbers.push_back(TP);
808 }
809 }
810
811 // If we have clobbers in the def chain, find the one closest to Current
812 // and quit.
813 if (!Clobbers.empty()) {
814 MoveDominatedPathToEnd(Clobbers);
815 TerminatedPath Result = Clobbers.pop_back_val();
816 return {Result, std::move(Clobbers)};
817 }
818
819 assert(all_of(NewPaused,
820 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));
821
822 // Because liveOnEntry is a clobber, this must be a phi.
823 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);
824
825 PriorPathsSize = Paths.size();
826 PausedSearches.clear();
827 for (ListIndex I : NewPaused)
828 addSearches(DefChainPhi, PausedSearches, I);
829 NewPaused.clear();
830
831 Current = DefChainPhi;
832 }
833 }
834
George Burgess IV5f308972016-07-19 01:29:15 +0000835 void verifyOptResult(const OptznResult &R) const {
836 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
837 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
838 }));
839 }
840
841 void resetPhiOptznState() {
842 Paths.clear();
843 VisitedPhis.clear();
844 }
845
846public:
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000847 ClobberWalker(const MemorySSA &MSSA, AliasAnalysis &AA, DominatorTree &DT)
848 : MSSA(MSSA), AA(AA), DT(DT) {}
George Burgess IV5f308972016-07-19 01:29:15 +0000849
George Burgess IV5f308972016-07-19 01:29:15 +0000850 /// Finds the nearest clobber for the given query, optimizing phis if
851 /// possible.
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000852 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q) {
George Burgess IV5f308972016-07-19 01:29:15 +0000853 Query = &Q;
854
855 MemoryAccess *Current = Start;
856 // This walker pretends uses don't exist. If we're handed one, silently grab
857 // its def. (This has the nice side-effect of ensuring we never cache uses)
858 if (auto *MU = dyn_cast<MemoryUse>(Start))
859 Current = MU->getDefiningAccess();
860
861 DefPath FirstDesc(Q.StartingLoc, Current, Current, None);
862 // Fast path for the overly-common case (no crazy phi optimization
863 // necessary)
864 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
George Burgess IV93ea19b2016-07-24 07:03:49 +0000865 MemoryAccess *Result;
George Burgess IV5f308972016-07-19 01:29:15 +0000866 if (WalkResult.IsKnownClobber) {
George Burgess IV93ea19b2016-07-24 07:03:49 +0000867 Result = WalkResult.Result;
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000868 Q.AR = WalkResult.AR;
George Burgess IV93ea19b2016-07-24 07:03:49 +0000869 } else {
870 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
871 Current, Q.StartingLoc);
872 verifyOptResult(OptRes);
George Burgess IV93ea19b2016-07-24 07:03:49 +0000873 resetPhiOptznState();
874 Result = OptRes.PrimaryClobber.Clobber;
George Burgess IV5f308972016-07-19 01:29:15 +0000875 }
876
George Burgess IV5f308972016-07-19 01:29:15 +0000877#ifdef EXPENSIVE_CHECKS
George Burgess IV93ea19b2016-07-24 07:03:49 +0000878 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA);
George Burgess IV5f308972016-07-19 01:29:15 +0000879#endif
George Burgess IV93ea19b2016-07-24 07:03:49 +0000880 return Result;
George Burgess IV5f308972016-07-19 01:29:15 +0000881 }
Geoff Berrycdf53332016-08-08 17:52:01 +0000882
883 void verify(const MemorySSA *MSSA) { assert(MSSA == &this->MSSA); }
George Burgess IV5f308972016-07-19 01:29:15 +0000884};
885
886struct RenamePassData {
887 DomTreeNode *DTN;
888 DomTreeNode::const_iterator ChildIt;
889 MemoryAccess *IncomingVal;
890
891 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
892 MemoryAccess *M)
893 : DTN(D), ChildIt(It), IncomingVal(M) {}
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000894
George Burgess IV5f308972016-07-19 01:29:15 +0000895 void swap(RenamePassData &RHS) {
896 std::swap(DTN, RHS.DTN);
897 std::swap(ChildIt, RHS.ChildIt);
898 std::swap(IncomingVal, RHS.IncomingVal);
899 }
900};
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000901
902} // end anonymous namespace
George Burgess IV5f308972016-07-19 01:29:15 +0000903
904namespace llvm {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000905
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000906/// A MemorySSAWalker that does AA walks to disambiguate accesses. It no
Daniel Berlind952cea2017-04-07 01:28:36 +0000907/// longer does caching on its own,
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000908/// but the name has been retained for the moment.
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000909class MemorySSA::CachingWalker final : public MemorySSAWalker {
George Burgess IV5f308972016-07-19 01:29:15 +0000910 ClobberWalker Walker;
George Burgess IV5f308972016-07-19 01:29:15 +0000911
912 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, UpwardsMemoryQuery &);
George Burgess IV5f308972016-07-19 01:29:15 +0000913
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000914public:
915 CachingWalker(MemorySSA *, AliasAnalysis *, DominatorTree *);
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000916 ~CachingWalker() override = default;
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000917
George Burgess IV400ae402016-07-20 19:51:34 +0000918 using MemorySSAWalker::getClobberingMemoryAccess;
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000919
George Burgess IV400ae402016-07-20 19:51:34 +0000920 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override;
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000921 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
George Burgess IV013fd732016-10-28 19:22:46 +0000922 const MemoryLocation &) override;
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000923 void invalidateInfo(MemoryAccess *) override;
924
Geoff Berrycdf53332016-08-08 17:52:01 +0000925 void verify(const MemorySSA *MSSA) override {
926 MemorySSAWalker::verify(MSSA);
927 Walker.verify(MSSA);
928 }
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000929};
George Burgess IVe1100f52016-02-02 22:46:49 +0000930
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000931} // end namespace llvm
932
Daniel Berlin78cbd282017-02-20 22:26:03 +0000933void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
934 bool RenameAllUses) {
George Burgess IVe1100f52016-02-02 22:46:49 +0000935 // Pass through values to our successors
936 for (const BasicBlock *S : successors(BB)) {
937 auto It = PerBlockAccesses.find(S);
938 // Rename the phi nodes in our successor block
939 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
940 continue;
Daniel Berlinada263d2016-06-20 20:21:33 +0000941 AccessList *Accesses = It->second.get();
George Burgess IVe1100f52016-02-02 22:46:49 +0000942 auto *Phi = cast<MemoryPhi>(&Accesses->front());
Daniel Berlin78cbd282017-02-20 22:26:03 +0000943 if (RenameAllUses) {
944 int PhiIndex = Phi->getBasicBlockIndex(BB);
945 assert(PhiIndex != -1 && "Incomplete phi during partial rename");
946 Phi->setIncomingValue(PhiIndex, IncomingVal);
947 } else
948 Phi->addIncoming(IncomingVal, BB);
George Burgess IVe1100f52016-02-02 22:46:49 +0000949 }
Daniel Berlin78cbd282017-02-20 22:26:03 +0000950}
George Burgess IVe1100f52016-02-02 22:46:49 +0000951
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000952/// Rename a single basic block into MemorySSA form.
Daniel Berlin78cbd282017-02-20 22:26:03 +0000953/// Uses the standard SSA renaming algorithm.
954/// \returns The new incoming value.
955MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
956 bool RenameAllUses) {
957 auto It = PerBlockAccesses.find(BB);
958 // Skip most processing if the list is empty.
959 if (It != PerBlockAccesses.end()) {
960 AccessList *Accesses = It->second.get();
961 for (MemoryAccess &L : *Accesses) {
962 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
963 if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
964 MUD->setDefiningAccess(IncomingVal);
965 if (isa<MemoryDef>(&L))
966 IncomingVal = &L;
967 } else {
968 IncomingVal = &L;
969 }
970 }
971 }
George Burgess IVe1100f52016-02-02 22:46:49 +0000972 return IncomingVal;
973}
974
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000975/// This is the standard SSA renaming algorithm.
George Burgess IVe1100f52016-02-02 22:46:49 +0000976///
977/// We walk the dominator tree in preorder, renaming accesses, and then filling
978/// in phi nodes in our successors.
979void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
Daniel Berlin78cbd282017-02-20 22:26:03 +0000980 SmallPtrSetImpl<BasicBlock *> &Visited,
981 bool SkipVisited, bool RenameAllUses) {
George Burgess IVe1100f52016-02-02 22:46:49 +0000982 SmallVector<RenamePassData, 32> WorkStack;
Daniel Berlin78cbd282017-02-20 22:26:03 +0000983 // Skip everything if we already renamed this block and we are skipping.
984 // Note: You can't sink this into the if, because we need it to occur
985 // regardless of whether we skip blocks or not.
986 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
987 if (SkipVisited && AlreadyVisited)
988 return;
989
990 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
991 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
George Burgess IVe1100f52016-02-02 22:46:49 +0000992 WorkStack.push_back({Root, Root->begin(), IncomingVal});
George Burgess IVe1100f52016-02-02 22:46:49 +0000993
994 while (!WorkStack.empty()) {
995 DomTreeNode *Node = WorkStack.back().DTN;
996 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
997 IncomingVal = WorkStack.back().IncomingVal;
998
999 if (ChildIt == Node->end()) {
1000 WorkStack.pop_back();
1001 } else {
1002 DomTreeNode *Child = *ChildIt;
1003 ++WorkStack.back().ChildIt;
1004 BasicBlock *BB = Child->getBlock();
Daniel Berlin78cbd282017-02-20 22:26:03 +00001005 // Note: You can't sink this into the if, because we need it to occur
1006 // regardless of whether we skip blocks or not.
1007 AlreadyVisited = !Visited.insert(BB).second;
1008 if (SkipVisited && AlreadyVisited) {
1009 // We already visited this during our renaming, which can happen when
1010 // being asked to rename multiple blocks. Figure out the incoming val,
1011 // which is the last def.
1012 // Incoming value can only change if there is a block def, and in that
1013 // case, it's the last block def in the list.
1014 if (auto *BlockDefs = getWritableBlockDefs(BB))
1015 IncomingVal = &*BlockDefs->rbegin();
1016 } else
1017 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
1018 renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
George Burgess IVe1100f52016-02-02 22:46:49 +00001019 WorkStack.push_back({Child, Child->begin(), IncomingVal});
1020 }
1021 }
1022}
1023
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001024/// This handles unreachable block accesses by deleting phi nodes in
George Burgess IVe1100f52016-02-02 22:46:49 +00001025/// unreachable blocks, and marking all other unreachable MemoryAccess's as
1026/// being uses of the live on entry definition.
1027void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
1028 assert(!DT->isReachableFromEntry(BB) &&
1029 "Reachable block found while handling unreachable blocks");
1030
Daniel Berlinfc7e6512016-07-06 05:32:05 +00001031 // Make sure phi nodes in our reachable successors end up with a
1032 // LiveOnEntryDef for our incoming edge, even though our block is forward
1033 // unreachable. We could just disconnect these blocks from the CFG fully,
1034 // but we do not right now.
1035 for (const BasicBlock *S : successors(BB)) {
1036 if (!DT->isReachableFromEntry(S))
1037 continue;
1038 auto It = PerBlockAccesses.find(S);
1039 // Rename the phi nodes in our successor block
1040 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1041 continue;
1042 AccessList *Accesses = It->second.get();
1043 auto *Phi = cast<MemoryPhi>(&Accesses->front());
1044 Phi->addIncoming(LiveOnEntryDef.get(), BB);
1045 }
1046
George Burgess IVe1100f52016-02-02 22:46:49 +00001047 auto It = PerBlockAccesses.find(BB);
1048 if (It == PerBlockAccesses.end())
1049 return;
1050
1051 auto &Accesses = It->second;
1052 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
1053 auto Next = std::next(AI);
1054 // If we have a phi, just remove it. We are going to replace all
1055 // users with live on entry.
1056 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
1057 UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
1058 else
1059 Accesses->erase(AI);
1060 AI = Next;
1061 }
1062}
1063
Geoff Berryb96d3b22016-06-01 21:30:40 +00001064MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
1065 : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
George Burgess IV68ac9412018-02-23 23:07:18 +00001066 NextID(0) {
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001067 buildMemorySSA();
Geoff Berryb96d3b22016-06-01 21:30:40 +00001068}
1069
George Burgess IVe1100f52016-02-02 22:46:49 +00001070MemorySSA::~MemorySSA() {
1071 // Drop all our references
1072 for (const auto &Pair : PerBlockAccesses)
1073 for (MemoryAccess &MA : *Pair.second)
1074 MA.dropAllReferences();
1075}
1076
Daniel Berlin14300262016-06-21 18:39:20 +00001077MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
George Burgess IVe1100f52016-02-02 22:46:49 +00001078 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
1079
1080 if (Res.second)
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001081 Res.first->second = llvm::make_unique<AccessList>();
George Burgess IVe1100f52016-02-02 22:46:49 +00001082 return Res.first->second.get();
1083}
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001084
Daniel Berlind602e042017-01-25 20:56:19 +00001085MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
1086 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));
1087
1088 if (Res.second)
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001089 Res.first->second = llvm::make_unique<DefsList>();
Daniel Berlind602e042017-01-25 20:56:19 +00001090 return Res.first->second.get();
1091}
George Burgess IVe1100f52016-02-02 22:46:49 +00001092
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001093namespace llvm {
1094
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001095/// This class is a batch walker of all MemoryUse's in the program, and points
1096/// their defining access at the thing that actually clobbers them. Because it
1097/// is a batch walker that touches everything, it does not operate like the
1098/// other walkers. This walker is basically performing a top-down SSA renaming
1099/// pass, where the version stack is used as the cache. This enables it to be
1100/// significantly more time and memory efficient than using the regular walker,
1101/// which is walking bottom-up.
1102class MemorySSA::OptimizeUses {
1103public:
1104 OptimizeUses(MemorySSA *MSSA, MemorySSAWalker *Walker, AliasAnalysis *AA,
1105 DominatorTree *DT)
1106 : MSSA(MSSA), Walker(Walker), AA(AA), DT(DT) {
1107 Walker = MSSA->getWalker();
1108 }
1109
1110 void optimizeUses();
1111
1112private:
1113 /// This represents where a given memorylocation is in the stack.
1114 struct MemlocStackInfo {
1115 // This essentially is keeping track of versions of the stack. Whenever
1116 // the stack changes due to pushes or pops, these versions increase.
1117 unsigned long StackEpoch;
1118 unsigned long PopEpoch;
1119 // This is the lower bound of places on the stack to check. It is equal to
1120 // the place the last stack walk ended.
1121 // Note: Correctness depends on this being initialized to 0, which densemap
1122 // does
1123 unsigned long LowerBound;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001124 const BasicBlock *LowerBoundBlock;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001125 // This is where the last walk for this memory location ended.
1126 unsigned long LastKill;
1127 bool LastKillValid;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001128 Optional<AliasResult> AR;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001129 };
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001130
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001131 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
1132 SmallVectorImpl<MemoryAccess *> &,
1133 DenseMap<MemoryLocOrCall, MemlocStackInfo> &);
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001134
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001135 MemorySSA *MSSA;
1136 MemorySSAWalker *Walker;
1137 AliasAnalysis *AA;
1138 DominatorTree *DT;
1139};
1140
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001141} // end namespace llvm
1142
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001143/// Optimize the uses in a given block This is basically the SSA renaming
1144/// algorithm, with one caveat: We are able to use a single stack for all
1145/// MemoryUses. This is because the set of *possible* reaching MemoryDefs is
1146/// the same for every MemoryUse. The *actual* clobbering MemoryDef is just
1147/// going to be some position in that stack of possible ones.
1148///
1149/// We track the stack positions that each MemoryLocation needs
1150/// to check, and last ended at. This is because we only want to check the
1151/// things that changed since last time. The same MemoryLocation should
1152/// get clobbered by the same store (getModRefInfo does not use invariantness or
1153/// things like this, and if they start, we can modify MemoryLocOrCall to
1154/// include relevant data)
1155void MemorySSA::OptimizeUses::optimizeUsesInBlock(
1156 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
1157 SmallVectorImpl<MemoryAccess *> &VersionStack,
1158 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {
1159
1160 /// If no accesses, nothing to do.
1161 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
1162 if (Accesses == nullptr)
1163 return;
1164
1165 // Pop everything that doesn't dominate the current block off the stack,
1166 // increment the PopEpoch to account for this.
Piotr Padlewskicc5868c12017-02-18 20:34:36 +00001167 while (true) {
1168 assert(
1169 !VersionStack.empty() &&
1170 "Version stack should have liveOnEntry sentinel dominating everything");
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001171 BasicBlock *BackBlock = VersionStack.back()->getBlock();
1172 if (DT->dominates(BackBlock, BB))
1173 break;
1174 while (VersionStack.back()->getBlock() == BackBlock)
1175 VersionStack.pop_back();
1176 ++PopEpoch;
1177 }
Piotr Padlewskicc5868c12017-02-18 20:34:36 +00001178
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001179 for (MemoryAccess &MA : *Accesses) {
1180 auto *MU = dyn_cast<MemoryUse>(&MA);
1181 if (!MU) {
1182 VersionStack.push_back(&MA);
1183 ++StackEpoch;
1184 continue;
1185 }
1186
George Burgess IV024f3d22016-08-03 19:57:02 +00001187 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001188 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None);
George Burgess IV024f3d22016-08-03 19:57:02 +00001189 continue;
1190 }
1191
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001192 MemoryLocOrCall UseMLOC(MU);
1193 auto &LocInfo = LocStackInfo[UseMLOC];
Daniel Berlin26fcea92016-08-02 20:02:21 +00001194 // If the pop epoch changed, it means we've removed stuff from top of
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001195 // stack due to changing blocks. We may have to reset the lower bound or
1196 // last kill info.
1197 if (LocInfo.PopEpoch != PopEpoch) {
1198 LocInfo.PopEpoch = PopEpoch;
1199 LocInfo.StackEpoch = StackEpoch;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001200 // If the lower bound was in something that no longer dominates us, we
1201 // have to reset it.
1202 // We can't simply track stack size, because the stack may have had
1203 // pushes/pops in the meantime.
1204 // XXX: This is non-optimal, but only is slower cases with heavily
1205 // branching dominator trees. To get the optimal number of queries would
1206 // be to make lowerbound and lastkill a per-loc stack, and pop it until
1207 // the top of that stack dominates us. This does not seem worth it ATM.
1208 // A much cheaper optimization would be to always explore the deepest
1209 // branch of the dominator tree first. This will guarantee this resets on
1210 // the smallest set of blocks.
1211 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
Daniel Berlin1e98c042016-09-26 17:22:54 +00001212 !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001213 // Reset the lower bound of things to check.
1214 // TODO: Some day we should be able to reset to last kill, rather than
1215 // 0.
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001216 LocInfo.LowerBound = 0;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001217 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001218 LocInfo.LastKillValid = false;
1219 }
1220 } else if (LocInfo.StackEpoch != StackEpoch) {
1221 // If all that has changed is the StackEpoch, we only have to check the
1222 // new things on the stack, because we've checked everything before. In
1223 // this case, the lower bound of things to check remains the same.
1224 LocInfo.PopEpoch = PopEpoch;
1225 LocInfo.StackEpoch = StackEpoch;
1226 }
1227 if (!LocInfo.LastKillValid) {
1228 LocInfo.LastKill = VersionStack.size() - 1;
1229 LocInfo.LastKillValid = true;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001230 LocInfo.AR = MayAlias;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001231 }
1232
1233 // At this point, we should have corrected last kill and LowerBound to be
1234 // in bounds.
1235 assert(LocInfo.LowerBound < VersionStack.size() &&
1236 "Lower bound out of range");
1237 assert(LocInfo.LastKill < VersionStack.size() &&
1238 "Last kill info out of range");
1239 // In any case, the new upper bound is the top of the stack.
1240 unsigned long UpperBound = VersionStack.size() - 1;
1241
1242 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
Daniel Berlin26fcea92016-08-02 20:02:21 +00001243 DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
1244 << *(MU->getMemoryInst()) << ")"
1245 << " because there are " << UpperBound - LocInfo.LowerBound
1246 << " stores to disambiguate\n");
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001247 // Because we did not walk, LastKill is no longer valid, as this may
1248 // have been a kill.
1249 LocInfo.LastKillValid = false;
1250 continue;
1251 }
1252 bool FoundClobberResult = false;
1253 while (UpperBound > LocInfo.LowerBound) {
1254 if (isa<MemoryPhi>(VersionStack[UpperBound])) {
1255 // For phis, use the walker, see where we ended up, go there
1256 Instruction *UseInst = MU->getMemoryInst();
1257 MemoryAccess *Result = Walker->getClobberingMemoryAccess(UseInst);
1258 // We are guaranteed to find it or something is wrong
1259 while (VersionStack[UpperBound] != Result) {
1260 assert(UpperBound != 0);
1261 --UpperBound;
1262 }
1263 FoundClobberResult = true;
1264 break;
1265 }
1266
1267 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
Daniel Berlindf101192016-08-03 00:01:46 +00001268 // If the lifetime of the pointer ends at this instruction, it's live on
1269 // entry.
1270 if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) {
1271 // Reset UpperBound to liveOnEntryDef's place in the stack
1272 UpperBound = 0;
1273 FoundClobberResult = true;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001274 LocInfo.AR = MustAlias;
Daniel Berlindf101192016-08-03 00:01:46 +00001275 break;
1276 }
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001277 ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA);
1278 if (CA.IsClobber) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001279 FoundClobberResult = true;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001280 LocInfo.AR = CA.AR;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001281 break;
1282 }
1283 --UpperBound;
1284 }
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001285
1286 // Note: Phis always have AliasResult AR set to MayAlias ATM.
1287
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001288 // At the end of this loop, UpperBound is either a clobber, or lower bound
1289 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
1290 if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001291 // We were last killed now by where we got to
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001292 if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound]))
1293 LocInfo.AR = None;
1294 MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001295 LocInfo.LastKill = UpperBound;
1296 } else {
1297 // Otherwise, we checked all the new ones, and now we know we can get to
1298 // LastKill.
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001299 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001300 }
1301 LocInfo.LowerBound = VersionStack.size() - 1;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001302 LocInfo.LowerBoundBlock = BB;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001303 }
1304}
1305
1306/// Optimize uses to point to their actual clobbering definitions.
1307void MemorySSA::OptimizeUses::optimizeUses() {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001308 SmallVector<MemoryAccess *, 16> VersionStack;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001309 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001310 VersionStack.push_back(MSSA->getLiveOnEntryDef());
1311
1312 unsigned long StackEpoch = 1;
1313 unsigned long PopEpoch = 1;
Piotr Padlewskicc5868c12017-02-18 20:34:36 +00001314 // We perform a non-recursive top-down dominator tree walk.
Daniel Berlin7ac3d742016-08-05 22:09:14 +00001315 for (const auto *DomNode : depth_first(DT->getRootNode()))
1316 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
1317 LocStackInfo);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001318}
1319
Daniel Berlin3d512a22016-08-22 19:14:30 +00001320void MemorySSA::placePHINodes(
Mandeep Singh Grang73f00952016-11-21 19:33:02 +00001321 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks,
1322 const DenseMap<const BasicBlock *, unsigned int> &BBNumbers) {
Daniel Berlin3d512a22016-08-22 19:14:30 +00001323 // Determine where our MemoryPhi's should go
1324 ForwardIDFCalculator IDFs(*DT);
1325 IDFs.setDefiningBlocks(DefiningBlocks);
Daniel Berlin3d512a22016-08-22 19:14:30 +00001326 SmallVector<BasicBlock *, 32> IDFBlocks;
1327 IDFs.calculate(IDFBlocks);
1328
Mandeep Singh Grang97bcade2018-04-01 01:46:51 +00001329 llvm::sort(IDFBlocks.begin(), IDFBlocks.end(),
1330 [&BBNumbers](const BasicBlock *A, const BasicBlock *B) {
1331 return BBNumbers.lookup(A) < BBNumbers.lookup(B);
1332 });
Mandeep Singh Grang73f00952016-11-21 19:33:02 +00001333
Daniel Berlin3d512a22016-08-22 19:14:30 +00001334 // Now place MemoryPhi nodes.
Daniel Berlind602e042017-01-25 20:56:19 +00001335 for (auto &BB : IDFBlocks)
1336 createMemoryPhi(BB);
Daniel Berlin3d512a22016-08-22 19:14:30 +00001337}
1338
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001339void MemorySSA::buildMemorySSA() {
George Burgess IVe1100f52016-02-02 22:46:49 +00001340 // We create an access to represent "live on entry", for things like
1341 // arguments or users of globals, where the memory they use is defined before
1342 // the beginning of the function. We do not actually insert it into the IR.
1343 // We do not define a live on exit for the immediate uses, and thus our
1344 // semantics do *not* imply that something with no immediate uses can simply
1345 // be removed.
1346 BasicBlock &StartingPoint = F.getEntryBlock();
George Burgess IV612cf212018-02-27 06:43:19 +00001347 LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr,
1348 &StartingPoint, NextID++));
Mandeep Singh Grang73f00952016-11-21 19:33:02 +00001349 DenseMap<const BasicBlock *, unsigned int> BBNumbers;
1350 unsigned NextBBNum = 0;
George Burgess IVe1100f52016-02-02 22:46:49 +00001351
1352 // We maintain lists of memory accesses per-block, trading memory for time. We
1353 // could just look up the memory access for every possible instruction in the
1354 // stream.
1355 SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
George Burgess IVe1100f52016-02-02 22:46:49 +00001356 // Go through each block, figure out where defs occur, and chain together all
1357 // the accesses.
1358 for (BasicBlock &B : F) {
Mandeep Singh Grang73f00952016-11-21 19:33:02 +00001359 BBNumbers[&B] = NextBBNum++;
Daniel Berlin7898ca62016-02-07 01:52:15 +00001360 bool InsertIntoDef = false;
Daniel Berlinada263d2016-06-20 20:21:33 +00001361 AccessList *Accesses = nullptr;
Daniel Berlind602e042017-01-25 20:56:19 +00001362 DefsList *Defs = nullptr;
George Burgess IVe1100f52016-02-02 22:46:49 +00001363 for (Instruction &I : B) {
Peter Collingbourneffecb142016-05-26 01:19:17 +00001364 MemoryUseOrDef *MUD = createNewAccess(&I);
George Burgess IVb42b7622016-03-11 19:34:03 +00001365 if (!MUD)
George Burgess IVe1100f52016-02-02 22:46:49 +00001366 continue;
Daniel Berlin1b51a292016-02-07 01:52:19 +00001367
George Burgess IVe1100f52016-02-02 22:46:49 +00001368 if (!Accesses)
1369 Accesses = getOrCreateAccessList(&B);
George Burgess IVb42b7622016-03-11 19:34:03 +00001370 Accesses->push_back(MUD);
Daniel Berlind602e042017-01-25 20:56:19 +00001371 if (isa<MemoryDef>(MUD)) {
1372 InsertIntoDef = true;
1373 if (!Defs)
1374 Defs = getOrCreateDefsList(&B);
1375 Defs->push_back(*MUD);
1376 }
George Burgess IVe1100f52016-02-02 22:46:49 +00001377 }
Daniel Berlin7898ca62016-02-07 01:52:15 +00001378 if (InsertIntoDef)
1379 DefiningBlocks.insert(&B);
Daniel Berlin1b51a292016-02-07 01:52:19 +00001380 }
Mandeep Singh Grang73f00952016-11-21 19:33:02 +00001381 placePHINodes(DefiningBlocks, BBNumbers);
George Burgess IVe1100f52016-02-02 22:46:49 +00001382
1383 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
1384 // filled in with all blocks.
1385 SmallPtrSet<BasicBlock *, 16> Visited;
1386 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
1387
George Burgess IV5f308972016-07-19 01:29:15 +00001388 CachingWalker *Walker = getWalkerImpl();
1389
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001390 OptimizeUses(this, Walker, AA, DT).optimizeUses();
George Burgess IV5f308972016-07-19 01:29:15 +00001391
George Burgess IVe1100f52016-02-02 22:46:49 +00001392 // Mark the uses in unreachable blocks as live on entry, so that they go
1393 // somewhere.
1394 for (auto &BB : F)
1395 if (!Visited.count(&BB))
1396 markUnreachableAsLiveOnEntry(&BB);
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001397}
George Burgess IVe1100f52016-02-02 22:46:49 +00001398
George Burgess IV5f308972016-07-19 01:29:15 +00001399MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }
1400
1401MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() {
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001402 if (Walker)
1403 return Walker.get();
1404
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001405 Walker = llvm::make_unique<CachingWalker>(this, AA, DT);
Geoff Berryb96d3b22016-06-01 21:30:40 +00001406 return Walker.get();
George Burgess IVe1100f52016-02-02 22:46:49 +00001407}
1408
Daniel Berlind602e042017-01-25 20:56:19 +00001409// This is a helper function used by the creation routines. It places NewAccess
1410// into the access and defs lists for a given basic block, at the given
1411// insertion point.
1412void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
1413 const BasicBlock *BB,
1414 InsertionPlace Point) {
1415 auto *Accesses = getOrCreateAccessList(BB);
1416 if (Point == Beginning) {
1417 // If it's a phi node, it goes first, otherwise, it goes after any phi
1418 // nodes.
1419 if (isa<MemoryPhi>(NewAccess)) {
1420 Accesses->push_front(NewAccess);
1421 auto *Defs = getOrCreateDefsList(BB);
1422 Defs->push_front(*NewAccess);
1423 } else {
1424 auto AI = find_if_not(
1425 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1426 Accesses->insert(AI, NewAccess);
1427 if (!isa<MemoryUse>(NewAccess)) {
1428 auto *Defs = getOrCreateDefsList(BB);
1429 auto DI = find_if_not(
1430 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1431 Defs->insert(DI, *NewAccess);
1432 }
1433 }
1434 } else {
1435 Accesses->push_back(NewAccess);
1436 if (!isa<MemoryUse>(NewAccess)) {
1437 auto *Defs = getOrCreateDefsList(BB);
1438 Defs->push_back(*NewAccess);
1439 }
1440 }
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001441 BlockNumberingValid.erase(BB);
Daniel Berlind602e042017-01-25 20:56:19 +00001442}
1443
1444void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
1445 AccessList::iterator InsertPt) {
1446 auto *Accesses = getWritableBlockAccesses(BB);
1447 bool WasEnd = InsertPt == Accesses->end();
1448 Accesses->insert(AccessList::iterator(InsertPt), What);
1449 if (!isa<MemoryUse>(What)) {
1450 auto *Defs = getOrCreateDefsList(BB);
1451 // If we got asked to insert at the end, we have an easy job, just shove it
1452 // at the end. If we got asked to insert before an existing def, we also get
Zhaoshi Zhenga5531f22018-04-04 21:08:11 +00001453 // an iterator. If we got asked to insert before a use, we have to hunt for
Daniel Berlind602e042017-01-25 20:56:19 +00001454 // the next def.
1455 if (WasEnd) {
1456 Defs->push_back(*What);
1457 } else if (isa<MemoryDef>(InsertPt)) {
1458 Defs->insert(InsertPt->getDefsIterator(), *What);
1459 } else {
1460 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
1461 ++InsertPt;
1462 // Either we found a def, or we are inserting at the end
1463 if (InsertPt == Accesses->end())
1464 Defs->push_back(*What);
1465 else
1466 Defs->insert(InsertPt->getDefsIterator(), *What);
1467 }
1468 }
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001469 BlockNumberingValid.erase(BB);
Daniel Berlind602e042017-01-25 20:56:19 +00001470}
1471
Zhaoshi Zhenga5531f22018-04-04 21:08:11 +00001472// Move What before Where in the IR. The end result is that What will belong to
Daniel Berlin60ead052017-01-28 01:23:13 +00001473// the right lists and have the right Block set, but will not otherwise be
1474// correct. It will not have the right defining access, and if it is a def,
1475// things below it will not properly be updated.
1476void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1477 AccessList::iterator Where) {
1478 // Keep it in the lookup tables, remove from the lists
1479 removeFromLists(What, false);
1480 What->setBlock(BB);
1481 insertIntoListsBefore(What, BB, Where);
1482}
1483
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001484void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1485 InsertionPlace Point) {
1486 removeFromLists(What, false);
1487 What->setBlock(BB);
1488 insertIntoListsForBlock(What, BB, Point);
1489}
1490
Daniel Berlin14300262016-06-21 18:39:20 +00001491MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
1492 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
Daniel Berlin14300262016-06-21 18:39:20 +00001493 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001494 // Phi's always are placed at the front of the block.
Daniel Berlind602e042017-01-25 20:56:19 +00001495 insertIntoListsForBlock(Phi, BB, Beginning);
Daniel Berlin5130cc82016-07-31 21:08:20 +00001496 ValueToMemoryAccess[BB] = Phi;
Daniel Berlin14300262016-06-21 18:39:20 +00001497 return Phi;
1498}
1499
1500MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
1501 MemoryAccess *Definition) {
1502 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
1503 MemoryUseOrDef *NewAccess = createNewAccess(I);
1504 assert(
1505 NewAccess != nullptr &&
1506 "Tried to create a memory access for a non-memory touching instruction");
1507 NewAccess->setDefiningAccess(Definition);
1508 return NewAccess;
1509}
1510
Daniel Berlind952cea2017-04-07 01:28:36 +00001511// Return true if the instruction has ordering constraints.
1512// Note specifically that this only considers stores and loads
1513// because others are still considered ModRef by getModRefInfo.
1514static inline bool isOrdered(const Instruction *I) {
1515 if (auto *SI = dyn_cast<StoreInst>(I)) {
1516 if (!SI->isUnordered())
1517 return true;
1518 } else if (auto *LI = dyn_cast<LoadInst>(I)) {
1519 if (!LI->isUnordered())
1520 return true;
1521 }
1522 return false;
1523}
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001524
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001525/// Helper function to create new memory accesses
Peter Collingbourneffecb142016-05-26 01:19:17 +00001526MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I) {
Peter Collingbourneb9aa1f42016-05-26 04:58:46 +00001527 // The assume intrinsic has a control dependency which we model by claiming
1528 // that it writes arbitrarily. Ignore that fake memory dependency here.
1529 // FIXME: Replace this special casing with a more accurate modelling of
1530 // assume's control dependency.
1531 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1532 if (II->getIntrinsicID() == Intrinsic::assume)
1533 return nullptr;
1534
George Burgess IVe1100f52016-02-02 22:46:49 +00001535 // Find out what affect this instruction has on memory.
Alina Sbirlea967e7962017-08-01 00:28:29 +00001536 ModRefInfo ModRef = AA->getModRefInfo(I, None);
Daniel Berlind952cea2017-04-07 01:28:36 +00001537 // The isOrdered check is used to ensure that volatiles end up as defs
1538 // (atomics end up as ModRef right now anyway). Until we separate the
1539 // ordering chain from the memory chain, this enables people to see at least
1540 // some relative ordering to volatiles. Note that getClobberingMemoryAccess
1541 // will still give an answer that bypasses other volatile loads. TODO:
1542 // Separate memory aliasing and ordering into two different chains so that we
1543 // can precisely represent both "what memory will this read/write/is clobbered
1544 // by" and "what instructions can I move this past".
Alina Sbirlea63d22502017-12-05 20:12:23 +00001545 bool Def = isModSet(ModRef) || isOrdered(I);
1546 bool Use = isRefSet(ModRef);
George Burgess IVe1100f52016-02-02 22:46:49 +00001547
1548 // It's possible for an instruction to not modify memory at all. During
1549 // construction, we ignore them.
Peter Collingbourneffecb142016-05-26 01:19:17 +00001550 if (!Def && !Use)
George Burgess IVe1100f52016-02-02 22:46:49 +00001551 return nullptr;
1552
George Burgess IVb42b7622016-03-11 19:34:03 +00001553 MemoryUseOrDef *MUD;
George Burgess IVe1100f52016-02-02 22:46:49 +00001554 if (Def)
George Burgess IVb42b7622016-03-11 19:34:03 +00001555 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
George Burgess IVe1100f52016-02-02 22:46:49 +00001556 else
George Burgess IVb42b7622016-03-11 19:34:03 +00001557 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
Daniel Berlin5130cc82016-07-31 21:08:20 +00001558 ValueToMemoryAccess[I] = MUD;
George Burgess IVb42b7622016-03-11 19:34:03 +00001559 return MUD;
George Burgess IVe1100f52016-02-02 22:46:49 +00001560}
1561
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001562/// Returns true if \p Replacer dominates \p Replacee .
George Burgess IVe1100f52016-02-02 22:46:49 +00001563bool MemorySSA::dominatesUse(const MemoryAccess *Replacer,
1564 const MemoryAccess *Replacee) const {
1565 if (isa<MemoryUseOrDef>(Replacee))
1566 return DT->dominates(Replacer->getBlock(), Replacee->getBlock());
1567 const auto *MP = cast<MemoryPhi>(Replacee);
1568 // For a phi node, the use occurs in the predecessor block of the phi node.
1569 // Since we may occur multiple times in the phi node, we have to check each
1570 // operand to ensure Replacer dominates each operand where Replacee occurs.
1571 for (const Use &Arg : MP->operands()) {
George Burgess IVb5a229f2016-02-02 23:15:26 +00001572 if (Arg.get() != Replacee &&
George Burgess IVe1100f52016-02-02 22:46:49 +00001573 !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg)))
1574 return false;
1575 }
1576 return true;
1577}
1578
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001579/// Properly remove \p MA from all of MemorySSA's lookup tables.
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001580void MemorySSA::removeFromLookups(MemoryAccess *MA) {
1581 assert(MA->use_empty() &&
1582 "Trying to remove memory access that still has uses");
Daniel Berlin5c46b942016-07-19 22:49:43 +00001583 BlockNumbering.erase(MA);
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001584 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA))
1585 MUD->setDefiningAccess(nullptr);
1586 // Invalidate our walker's cache if necessary
1587 if (!isa<MemoryUse>(MA))
1588 Walker->invalidateInfo(MA);
1589 // The call below to erase will destroy MA, so we can't change the order we
1590 // are doing things here
1591 Value *MemoryInst;
1592 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA)) {
1593 MemoryInst = MUD->getMemoryInst();
1594 } else {
1595 MemoryInst = MA->getBlock();
1596 }
Daniel Berlin5130cc82016-07-31 21:08:20 +00001597 auto VMA = ValueToMemoryAccess.find(MemoryInst);
1598 if (VMA->second == MA)
1599 ValueToMemoryAccess.erase(VMA);
Daniel Berlin60ead052017-01-28 01:23:13 +00001600}
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001601
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001602/// Properly remove \p MA from all of MemorySSA's lists.
Daniel Berlin60ead052017-01-28 01:23:13 +00001603///
1604/// Because of the way the intrusive list and use lists work, it is important to
1605/// do removal in the right order.
1606/// ShouldDelete defaults to true, and will cause the memory access to also be
1607/// deleted, not just removed.
1608void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
Daniel Berlind602e042017-01-25 20:56:19 +00001609 // The access list owns the reference, so we erase it from the non-owning list
1610 // first.
1611 if (!isa<MemoryUse>(MA)) {
1612 auto DefsIt = PerBlockDefs.find(MA->getBlock());
1613 std::unique_ptr<DefsList> &Defs = DefsIt->second;
1614 Defs->remove(*MA);
1615 if (Defs->empty())
1616 PerBlockDefs.erase(DefsIt);
1617 }
1618
Daniel Berlin60ead052017-01-28 01:23:13 +00001619 // The erase call here will delete it. If we don't want it deleted, we call
1620 // remove instead.
George Burgess IVe0e6e482016-03-02 02:35:04 +00001621 auto AccessIt = PerBlockAccesses.find(MA->getBlock());
Daniel Berlinada263d2016-06-20 20:21:33 +00001622 std::unique_ptr<AccessList> &Accesses = AccessIt->second;
Daniel Berlin60ead052017-01-28 01:23:13 +00001623 if (ShouldDelete)
1624 Accesses->erase(MA);
1625 else
1626 Accesses->remove(MA);
1627
George Burgess IVe0e6e482016-03-02 02:35:04 +00001628 if (Accesses->empty())
1629 PerBlockAccesses.erase(AccessIt);
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001630}
1631
George Burgess IVe1100f52016-02-02 22:46:49 +00001632void MemorySSA::print(raw_ostream &OS) const {
1633 MemorySSAAnnotatedWriter Writer(this);
1634 F.print(OS, &Writer);
1635}
1636
Aaron Ballman615eb472017-10-15 14:32:27 +00001637#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Daniel Berlin78cbd282017-02-20 22:26:03 +00001638LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
Matthias Braun8c209aa2017-01-28 02:02:38 +00001639#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001640
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001641void MemorySSA::verifyMemorySSA() const {
1642 verifyDefUses(F);
1643 verifyDomination(F);
Daniel Berlin14300262016-06-21 18:39:20 +00001644 verifyOrdering(F);
Geoff Berrycdf53332016-08-08 17:52:01 +00001645 Walker->verify(this);
Daniel Berlin14300262016-06-21 18:39:20 +00001646}
1647
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001648/// Verify that the order and existence of MemoryAccesses matches the
Daniel Berlin14300262016-06-21 18:39:20 +00001649/// order and existence of memory affecting instructions.
1650void MemorySSA::verifyOrdering(Function &F) const {
1651 // Walk all the blocks, comparing what the lookups think and what the access
1652 // lists think, as well as the order in the blocks vs the order in the access
1653 // lists.
1654 SmallVector<MemoryAccess *, 32> ActualAccesses;
Daniel Berlind602e042017-01-25 20:56:19 +00001655 SmallVector<MemoryAccess *, 32> ActualDefs;
Daniel Berlin14300262016-06-21 18:39:20 +00001656 for (BasicBlock &B : F) {
1657 const AccessList *AL = getBlockAccesses(&B);
Daniel Berlind602e042017-01-25 20:56:19 +00001658 const auto *DL = getBlockDefs(&B);
Daniel Berlin14300262016-06-21 18:39:20 +00001659 MemoryAccess *Phi = getMemoryAccess(&B);
Daniel Berlind602e042017-01-25 20:56:19 +00001660 if (Phi) {
Daniel Berlin14300262016-06-21 18:39:20 +00001661 ActualAccesses.push_back(Phi);
Daniel Berlind602e042017-01-25 20:56:19 +00001662 ActualDefs.push_back(Phi);
1663 }
1664
Daniel Berlin14300262016-06-21 18:39:20 +00001665 for (Instruction &I : B) {
1666 MemoryAccess *MA = getMemoryAccess(&I);
Daniel Berlind602e042017-01-25 20:56:19 +00001667 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
1668 "We have memory affecting instructions "
1669 "in this block but they are not in the "
1670 "access list or defs list");
1671 if (MA) {
Daniel Berlin14300262016-06-21 18:39:20 +00001672 ActualAccesses.push_back(MA);
Daniel Berlind602e042017-01-25 20:56:19 +00001673 if (isa<MemoryDef>(MA))
1674 ActualDefs.push_back(MA);
1675 }
Daniel Berlin14300262016-06-21 18:39:20 +00001676 }
1677 // Either we hit the assert, really have no accesses, or we have both
Daniel Berlind602e042017-01-25 20:56:19 +00001678 // accesses and an access list.
1679 // Same with defs.
1680 if (!AL && !DL)
Daniel Berlin14300262016-06-21 18:39:20 +00001681 continue;
1682 assert(AL->size() == ActualAccesses.size() &&
1683 "We don't have the same number of accesses in the block as on the "
1684 "access list");
Davide Italiano6c77de02017-01-30 03:16:43 +00001685 assert((DL || ActualDefs.size() == 0) &&
1686 "Either we should have a defs list, or we should have no defs");
Daniel Berlind602e042017-01-25 20:56:19 +00001687 assert((!DL || DL->size() == ActualDefs.size()) &&
1688 "We don't have the same number of defs in the block as on the "
1689 "def list");
Daniel Berlin14300262016-06-21 18:39:20 +00001690 auto ALI = AL->begin();
1691 auto AAI = ActualAccesses.begin();
1692 while (ALI != AL->end() && AAI != ActualAccesses.end()) {
1693 assert(&*ALI == *AAI && "Not the same accesses in the same order");
1694 ++ALI;
1695 ++AAI;
1696 }
1697 ActualAccesses.clear();
Daniel Berlind602e042017-01-25 20:56:19 +00001698 if (DL) {
1699 auto DLI = DL->begin();
1700 auto ADI = ActualDefs.begin();
1701 while (DLI != DL->end() && ADI != ActualDefs.end()) {
1702 assert(&*DLI == *ADI && "Not the same defs in the same order");
1703 ++DLI;
1704 ++ADI;
1705 }
1706 }
1707 ActualDefs.clear();
Daniel Berlin14300262016-06-21 18:39:20 +00001708 }
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001709}
1710
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001711/// Verify the domination properties of MemorySSA by checking that each
George Burgess IVe1100f52016-02-02 22:46:49 +00001712/// definition dominates all of its uses.
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001713void MemorySSA::verifyDomination(Function &F) const {
Daniel Berlin7af95872016-08-05 21:47:20 +00001714#ifndef NDEBUG
George Burgess IVe1100f52016-02-02 22:46:49 +00001715 for (BasicBlock &B : F) {
1716 // Phi nodes are attached to basic blocks
Daniel Berlin2919b1c2016-08-05 21:46:52 +00001717 if (MemoryPhi *MP = getMemoryAccess(&B))
1718 for (const Use &U : MP->uses())
1719 assert(dominates(MP, U) && "Memory PHI does not dominate it's uses");
Daniel Berlin7af95872016-08-05 21:47:20 +00001720
George Burgess IVe1100f52016-02-02 22:46:49 +00001721 for (Instruction &I : B) {
1722 MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I));
1723 if (!MD)
1724 continue;
1725
Daniel Berlin2919b1c2016-08-05 21:46:52 +00001726 for (const Use &U : MD->uses())
1727 assert(dominates(MD, U) && "Memory Def does not dominate it's uses");
George Burgess IVe1100f52016-02-02 22:46:49 +00001728 }
1729 }
Daniel Berlin7af95872016-08-05 21:47:20 +00001730#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001731}
1732
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001733/// Verify the def-use lists in MemorySSA, by verifying that \p Use
George Burgess IVe1100f52016-02-02 22:46:49 +00001734/// appears in the use list of \p Def.
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001735void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
Daniel Berlin7af95872016-08-05 21:47:20 +00001736#ifndef NDEBUG
George Burgess IVe1100f52016-02-02 22:46:49 +00001737 // The live on entry use may cause us to get a NULL def here
Daniel Berlin7af95872016-08-05 21:47:20 +00001738 if (!Def)
1739 assert(isLiveOnEntryDef(Use) &&
1740 "Null def but use not point to live on entry def");
1741 else
Daniel Berlinda2f38e2016-08-11 21:26:50 +00001742 assert(is_contained(Def->users(), Use) &&
Daniel Berlin7af95872016-08-05 21:47:20 +00001743 "Did not find use in def's use list");
1744#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001745}
1746
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001747/// Verify the immediate use information, by walking all the memory
George Burgess IVe1100f52016-02-02 22:46:49 +00001748/// accesses and verifying that, for each use, it appears in the
1749/// appropriate def's use list
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001750void MemorySSA::verifyDefUses(Function &F) const {
George Burgess IVe1100f52016-02-02 22:46:49 +00001751 for (BasicBlock &B : F) {
1752 // Phi nodes are attached to basic blocks
Daniel Berlin14300262016-06-21 18:39:20 +00001753 if (MemoryPhi *Phi = getMemoryAccess(&B)) {
David Majnemer580e7542016-06-25 00:04:06 +00001754 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
1755 pred_begin(&B), pred_end(&B))) &&
Daniel Berlin14300262016-06-21 18:39:20 +00001756 "Incomplete MemoryPhi Node");
George Burgess IVe1100f52016-02-02 22:46:49 +00001757 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I)
1758 verifyUseInDefs(Phi->getIncomingValue(I), Phi);
Daniel Berlin14300262016-06-21 18:39:20 +00001759 }
George Burgess IVe1100f52016-02-02 22:46:49 +00001760
1761 for (Instruction &I : B) {
George Burgess IV66837ab2016-11-01 21:17:46 +00001762 if (MemoryUseOrDef *MA = getMemoryAccess(&I)) {
1763 verifyUseInDefs(MA->getDefiningAccess(), MA);
George Burgess IVe1100f52016-02-02 22:46:49 +00001764 }
1765 }
1766 }
1767}
1768
George Burgess IV66837ab2016-11-01 21:17:46 +00001769MemoryUseOrDef *MemorySSA::getMemoryAccess(const Instruction *I) const {
1770 return cast_or_null<MemoryUseOrDef>(ValueToMemoryAccess.lookup(I));
George Burgess IVe1100f52016-02-02 22:46:49 +00001771}
1772
1773MemoryPhi *MemorySSA::getMemoryAccess(const BasicBlock *BB) const {
George Burgess IV66837ab2016-11-01 21:17:46 +00001774 return cast_or_null<MemoryPhi>(ValueToMemoryAccess.lookup(cast<Value>(BB)));
George Burgess IVe1100f52016-02-02 22:46:49 +00001775}
1776
Daniel Berlin5c46b942016-07-19 22:49:43 +00001777/// Perform a local numbering on blocks so that instruction ordering can be
1778/// determined in constant time.
1779/// TODO: We currently just number in order. If we numbered by N, we could
1780/// allow at least N-1 sequences of insertBefore or insertAfter (and at least
1781/// log2(N) sequences of mixed before and after) without needing to invalidate
1782/// the numbering.
1783void MemorySSA::renumberBlock(const BasicBlock *B) const {
1784 // The pre-increment ensures the numbers really start at 1.
1785 unsigned long CurrentNumber = 0;
1786 const AccessList *AL = getBlockAccesses(B);
1787 assert(AL != nullptr && "Asking to renumber an empty block");
1788 for (const auto &I : *AL)
1789 BlockNumbering[&I] = ++CurrentNumber;
1790 BlockNumberingValid.insert(B);
1791}
1792
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001793/// Determine, for two memory accesses in the same block,
George Burgess IVe1100f52016-02-02 22:46:49 +00001794/// whether \p Dominator dominates \p Dominatee.
1795/// \returns True if \p Dominator dominates \p Dominatee.
1796bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
1797 const MemoryAccess *Dominatee) const {
Daniel Berlin5c46b942016-07-19 22:49:43 +00001798 const BasicBlock *DominatorBlock = Dominator->getBlock();
Daniel Berlin5c46b942016-07-19 22:49:43 +00001799
Daniel Berlin19860302016-07-19 23:08:08 +00001800 assert((DominatorBlock == Dominatee->getBlock()) &&
Daniel Berlin5c46b942016-07-19 22:49:43 +00001801 "Asking for local domination when accesses are in different blocks!");
Sebastian Pope1f60b12016-06-10 21:36:41 +00001802 // A node dominates itself.
1803 if (Dominatee == Dominator)
1804 return true;
1805
1806 // When Dominatee is defined on function entry, it is not dominated by another
1807 // memory access.
1808 if (isLiveOnEntryDef(Dominatee))
1809 return false;
1810
1811 // When Dominator is defined on function entry, it dominates the other memory
1812 // access.
1813 if (isLiveOnEntryDef(Dominator))
1814 return true;
1815
Daniel Berlin5c46b942016-07-19 22:49:43 +00001816 if (!BlockNumberingValid.count(DominatorBlock))
1817 renumberBlock(DominatorBlock);
George Burgess IVe1100f52016-02-02 22:46:49 +00001818
Daniel Berlin5c46b942016-07-19 22:49:43 +00001819 unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
1820 // All numbers start with 1
1821 assert(DominatorNum != 0 && "Block was not numbered properly");
1822 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
1823 assert(DominateeNum != 0 && "Block was not numbered properly");
1824 return DominatorNum < DominateeNum;
George Burgess IVe1100f52016-02-02 22:46:49 +00001825}
1826
George Burgess IV5f308972016-07-19 01:29:15 +00001827bool MemorySSA::dominates(const MemoryAccess *Dominator,
1828 const MemoryAccess *Dominatee) const {
1829 if (Dominator == Dominatee)
1830 return true;
1831
1832 if (isLiveOnEntryDef(Dominatee))
1833 return false;
1834
1835 if (Dominator->getBlock() != Dominatee->getBlock())
1836 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
1837 return locallyDominates(Dominator, Dominatee);
1838}
1839
Daniel Berlin2919b1c2016-08-05 21:46:52 +00001840bool MemorySSA::dominates(const MemoryAccess *Dominator,
1841 const Use &Dominatee) const {
1842 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
1843 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
1844 // The def must dominate the incoming block of the phi.
1845 if (UseBB != Dominator->getBlock())
1846 return DT->dominates(Dominator->getBlock(), UseBB);
1847 // If the UseBB and the DefBB are the same, compare locally.
1848 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
1849 }
1850 // If it's not a PHI node use, the normal dominates can already handle it.
1851 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
1852}
1853
George Burgess IVe1100f52016-02-02 22:46:49 +00001854const static char LiveOnEntryStr[] = "liveOnEntry";
1855
Reid Kleckner96ab8722017-05-18 17:24:10 +00001856void MemoryAccess::print(raw_ostream &OS) const {
1857 switch (getValueID()) {
1858 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS);
1859 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS);
1860 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS);
1861 }
1862 llvm_unreachable("invalid value id");
1863}
1864
George Burgess IVe1100f52016-02-02 22:46:49 +00001865void MemoryDef::print(raw_ostream &OS) const {
1866 MemoryAccess *UO = getDefiningAccess();
1867
1868 OS << getID() << " = MemoryDef(";
1869 if (UO && UO->getID())
1870 OS << UO->getID();
1871 else
1872 OS << LiveOnEntryStr;
1873 OS << ')';
1874}
1875
1876void MemoryPhi::print(raw_ostream &OS) const {
1877 bool First = true;
1878 OS << getID() << " = MemoryPhi(";
1879 for (const auto &Op : operands()) {
1880 BasicBlock *BB = getIncomingBlock(Op);
1881 MemoryAccess *MA = cast<MemoryAccess>(Op);
1882 if (!First)
1883 OS << ',';
1884 else
1885 First = false;
1886
1887 OS << '{';
1888 if (BB->hasName())
1889 OS << BB->getName();
1890 else
1891 BB->printAsOperand(OS, false);
1892 OS << ',';
1893 if (unsigned ID = MA->getID())
1894 OS << ID;
1895 else
1896 OS << LiveOnEntryStr;
1897 OS << '}';
1898 }
1899 OS << ')';
1900}
1901
George Burgess IVe1100f52016-02-02 22:46:49 +00001902void MemoryUse::print(raw_ostream &OS) const {
1903 MemoryAccess *UO = getDefiningAccess();
1904 OS << "MemoryUse(";
1905 if (UO && UO->getID())
1906 OS << UO->getID();
1907 else
1908 OS << LiveOnEntryStr;
1909 OS << ')';
1910}
1911
1912void MemoryAccess::dump() const {
Daniel Berlin78cbd282017-02-20 22:26:03 +00001913// Cannot completely remove virtual function even in release mode.
Aaron Ballman615eb472017-10-15 14:32:27 +00001914#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
George Burgess IVe1100f52016-02-02 22:46:49 +00001915 print(dbgs());
1916 dbgs() << "\n";
Matthias Braun8c209aa2017-01-28 02:02:38 +00001917#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001918}
1919
Chad Rosier232e29e2016-07-06 21:20:47 +00001920char MemorySSAPrinterLegacyPass::ID = 0;
1921
1922MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) {
1923 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
1924}
1925
1926void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
1927 AU.setPreservesAll();
1928 AU.addRequired<MemorySSAWrapperPass>();
Chad Rosier232e29e2016-07-06 21:20:47 +00001929}
1930
1931bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) {
1932 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
1933 MSSA.print(dbgs());
1934 if (VerifyMemorySSA)
1935 MSSA.verifyMemorySSA();
1936 return false;
1937}
1938
Chandler Carruthdab4eae2016-11-23 17:53:26 +00001939AnalysisKey MemorySSAAnalysis::Key;
George Burgess IVe1100f52016-02-02 22:46:49 +00001940
Daniel Berlin1e98c042016-09-26 17:22:54 +00001941MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
1942 FunctionAnalysisManager &AM) {
Geoff Berryb96d3b22016-06-01 21:30:40 +00001943 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1944 auto &AA = AM.getResult<AAManager>(F);
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001945 return MemorySSAAnalysis::Result(llvm::make_unique<MemorySSA>(F, &AA, &DT));
George Burgess IVe1100f52016-02-02 22:46:49 +00001946}
1947
Geoff Berryb96d3b22016-06-01 21:30:40 +00001948PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
1949 FunctionAnalysisManager &AM) {
1950 OS << "MemorySSA for function: " << F.getName() << "\n";
Geoff Berry290a13e2016-08-08 18:27:22 +00001951 AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS);
Geoff Berryb96d3b22016-06-01 21:30:40 +00001952
1953 return PreservedAnalyses::all();
George Burgess IVe1100f52016-02-02 22:46:49 +00001954}
1955
Geoff Berryb96d3b22016-06-01 21:30:40 +00001956PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
1957 FunctionAnalysisManager &AM) {
Geoff Berry290a13e2016-08-08 18:27:22 +00001958 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();
Geoff Berryb96d3b22016-06-01 21:30:40 +00001959
1960 return PreservedAnalyses::all();
1961}
1962
1963char MemorySSAWrapperPass::ID = 0;
1964
1965MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
1966 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
1967}
1968
1969void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
1970
1971void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
George Burgess IVe1100f52016-02-02 22:46:49 +00001972 AU.setPreservesAll();
Geoff Berryb96d3b22016-06-01 21:30:40 +00001973 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
1974 AU.addRequiredTransitive<AAResultsWrapperPass>();
George Burgess IVe1100f52016-02-02 22:46:49 +00001975}
1976
Geoff Berryb96d3b22016-06-01 21:30:40 +00001977bool MemorySSAWrapperPass::runOnFunction(Function &F) {
1978 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1979 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1980 MSSA.reset(new MemorySSA(F, &AA, &DT));
George Burgess IVe1100f52016-02-02 22:46:49 +00001981 return false;
1982}
1983
Geoff Berryb96d3b22016-06-01 21:30:40 +00001984void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); }
George Burgess IVe1100f52016-02-02 22:46:49 +00001985
Geoff Berryb96d3b22016-06-01 21:30:40 +00001986void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
George Burgess IVe1100f52016-02-02 22:46:49 +00001987 MSSA->print(OS);
1988}
1989
George Burgess IVe1100f52016-02-02 22:46:49 +00001990MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
1991
George Burgess IVfd1f2f82016-06-24 21:02:12 +00001992MemorySSA::CachingWalker::CachingWalker(MemorySSA *M, AliasAnalysis *A,
1993 DominatorTree *D)
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001994 : MemorySSAWalker(M), Walker(*M, *A, *D) {}
George Burgess IVe1100f52016-02-02 22:46:49 +00001995
George Burgess IVfd1f2f82016-06-24 21:02:12 +00001996void MemorySSA::CachingWalker::invalidateInfo(MemoryAccess *MA) {
Daniel Berlind7a7ae02017-04-05 19:01:58 +00001997 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1998 MUD->resetOptimized();
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001999}
2000
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00002001/// Walk the use-def chains starting at \p MA and find
George Burgess IVe1100f52016-02-02 22:46:49 +00002002/// the MemoryAccess that actually clobbers Loc.
2003///
2004/// \returns our clobbering memory access
George Burgess IVfd1f2f82016-06-24 21:02:12 +00002005MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
2006 MemoryAccess *StartingAccess, UpwardsMemoryQuery &Q) {
George Burgess IV0034e392018-04-09 23:09:27 +00002007 return Walker.findClobber(StartingAccess, Q);
George Burgess IVe1100f52016-02-02 22:46:49 +00002008}
2009
George Burgess IVfd1f2f82016-06-24 21:02:12 +00002010MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
George Burgess IV013fd732016-10-28 19:22:46 +00002011 MemoryAccess *StartingAccess, const MemoryLocation &Loc) {
George Burgess IVe1100f52016-02-02 22:46:49 +00002012 if (isa<MemoryPhi>(StartingAccess))
2013 return StartingAccess;
2014
2015 auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess);
2016 if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
2017 return StartingUseOrDef;
2018
2019 Instruction *I = StartingUseOrDef->getMemoryInst();
2020
2021 // Conservatively, fences are always clobbers, so don't perform the walk if we
2022 // hit a fence.
David Majnemera940f362016-07-15 17:19:24 +00002023 if (!ImmutableCallSite(I) && I->isFenceLike())
George Burgess IVe1100f52016-02-02 22:46:49 +00002024 return StartingUseOrDef;
2025
2026 UpwardsMemoryQuery Q;
2027 Q.OriginalAccess = StartingUseOrDef;
2028 Q.StartingLoc = Loc;
George Burgess IV5f308972016-07-19 01:29:15 +00002029 Q.Inst = I;
George Burgess IVe1100f52016-02-02 22:46:49 +00002030 Q.IsCall = false;
George Burgess IVe1100f52016-02-02 22:46:49 +00002031
George Burgess IVe1100f52016-02-02 22:46:49 +00002032 // Unlike the other function, do not walk to the def of a def, because we are
2033 // handed something we already believe is the clobbering access.
2034 MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef)
2035 ? StartingUseOrDef->getDefiningAccess()
2036 : StartingUseOrDef;
2037
2038 MemoryAccess *Clobber = getClobberingMemoryAccess(DefiningAccess, Q);
George Burgess IVe1100f52016-02-02 22:46:49 +00002039 DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2040 DEBUG(dbgs() << *StartingUseOrDef << "\n");
2041 DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2042 DEBUG(dbgs() << *Clobber << "\n");
2043 return Clobber;
2044}
2045
2046MemoryAccess *
George Burgess IV400ae402016-07-20 19:51:34 +00002047MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
2048 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
2049 // If this is a MemoryPhi, we can't do anything.
2050 if (!StartingAccess)
2051 return MA;
George Burgess IVe1100f52016-02-02 22:46:49 +00002052
Daniel Berlincd2deac2016-10-20 20:13:45 +00002053 // If this is an already optimized use or def, return the optimized result.
Alina Sbirlead90c9f42018-03-08 18:03:14 +00002054 // Note: Currently, we store the optimized def result in a separate field,
2055 // since we can't use the defining access.
George Burgess IV6f49f4a2018-02-24 00:15:21 +00002056 if (StartingAccess->isOptimized())
2057 return StartingAccess->getOptimized();
Daniel Berlincd2deac2016-10-20 20:13:45 +00002058
George Burgess IV400ae402016-07-20 19:51:34 +00002059 const Instruction *I = StartingAccess->getMemoryInst();
George Burgess IV5f308972016-07-19 01:29:15 +00002060 UpwardsMemoryQuery Q(I, StartingAccess);
George Burgess IV44477c62018-03-11 04:16:12 +00002061 // We can't sanely do anything with a fence, since they conservatively clobber
2062 // all memory, and have no locations to get pointers from to try to
2063 // disambiguate.
George Burgess IV5f308972016-07-19 01:29:15 +00002064 if (!Q.IsCall && I->isFenceLike())
George Burgess IVe1100f52016-02-02 22:46:49 +00002065 return StartingAccess;
2066
George Burgess IV024f3d22016-08-03 19:57:02 +00002067 if (isUseTriviallyOptimizableToLiveOnEntry(*MSSA->AA, I)) {
2068 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
George Burgess IV44477c62018-03-11 04:16:12 +00002069 StartingAccess->setOptimized(LiveOnEntry);
2070 StartingAccess->setOptimizedAccessType(None);
George Burgess IV024f3d22016-08-03 19:57:02 +00002071 return LiveOnEntry;
2072 }
2073
George Burgess IVe1100f52016-02-02 22:46:49 +00002074 // Start with the thing we already think clobbers this location
2075 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
2076
2077 // At this point, DefiningAccess may be the live on entry def.
2078 // If it is, we will not get a better result.
Alina Sbirlead90c9f42018-03-08 18:03:14 +00002079 if (MSSA->isLiveOnEntryDef(DefiningAccess)) {
George Burgess IV44477c62018-03-11 04:16:12 +00002080 StartingAccess->setOptimized(DefiningAccess);
2081 StartingAccess->setOptimizedAccessType(None);
George Burgess IVe1100f52016-02-02 22:46:49 +00002082 return DefiningAccess;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00002083 }
George Burgess IVe1100f52016-02-02 22:46:49 +00002084
2085 MemoryAccess *Result = getClobberingMemoryAccess(DefiningAccess, Q);
George Burgess IVe1100f52016-02-02 22:46:49 +00002086 DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2087 DEBUG(dbgs() << *DefiningAccess << "\n");
2088 DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2089 DEBUG(dbgs() << *Result << "\n");
Alina Sbirlead90c9f42018-03-08 18:03:14 +00002090
George Burgess IV44477c62018-03-11 04:16:12 +00002091 StartingAccess->setOptimized(Result);
2092 if (MSSA->isLiveOnEntryDef(Result))
2093 StartingAccess->setOptimizedAccessType(None);
2094 else if (Q.AR == MustAlias)
2095 StartingAccess->setOptimizedAccessType(MustAlias);
George Burgess IVe1100f52016-02-02 22:46:49 +00002096
2097 return Result;
2098}
2099
George Burgess IVe1100f52016-02-02 22:46:49 +00002100MemoryAccess *
George Burgess IV400ae402016-07-20 19:51:34 +00002101DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
George Burgess IVe1100f52016-02-02 22:46:49 +00002102 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
2103 return Use->getDefiningAccess();
2104 return MA;
2105}
2106
2107MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
George Burgess IV013fd732016-10-28 19:22:46 +00002108 MemoryAccess *StartingAccess, const MemoryLocation &) {
George Burgess IVe1100f52016-02-02 22:46:49 +00002109 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
2110 return Use->getDefiningAccess();
2111 return StartingAccess;
2112}
Reid Kleckner96ab8722017-05-18 17:24:10 +00002113
2114void MemoryPhi::deleteMe(DerivedUser *Self) {
2115 delete static_cast<MemoryPhi *>(Self);
2116}
2117
2118void MemoryDef::deleteMe(DerivedUser *Self) {
2119 delete static_cast<MemoryDef *>(Self);
2120}
2121
2122void MemoryUse::deleteMe(DerivedUser *Self) {
2123 delete static_cast<MemoryUse *>(Self);
2124}