blob: e14319bba873bd24ebb06213b6e5902b8077a835 [file] [log] [blame]
Daniel Berlinae6b8b62017-01-28 01:35:02 +00001//===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------===//
9//
10// This file implements the MemorySSAUpdater class.
11//
12//===----------------------------------------------------------------===//
Daniel Berlin554dcd82017-04-11 20:06:36 +000013#include "llvm/Analysis/MemorySSAUpdater.h"
Daniel Berlinae6b8b62017-01-28 01:35:02 +000014#include "llvm/ADT/STLExtras.h"
15#include "llvm/ADT/SmallPtrSet.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000016#include "llvm/Analysis/MemorySSA.h"
Daniel Berlinae6b8b62017-01-28 01:35:02 +000017#include "llvm/IR/DataLayout.h"
18#include "llvm/IR/Dominators.h"
19#include "llvm/IR/GlobalVariable.h"
20#include "llvm/IR/IRBuilder.h"
Daniel Berlinae6b8b62017-01-28 01:35:02 +000021#include "llvm/IR/LLVMContext.h"
22#include "llvm/IR/Metadata.h"
23#include "llvm/IR/Module.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/FormattedStream.h"
Daniel Berlinae6b8b62017-01-28 01:35:02 +000026#include <algorithm>
27
28#define DEBUG_TYPE "memoryssa"
29using namespace llvm;
George Burgess IV56169ed2017-04-21 04:54:52 +000030
Daniel Berlinae6b8b62017-01-28 01:35:02 +000031// This is the marker algorithm from "Simple and Efficient Construction of
32// Static Single Assignment Form"
33// The simple, non-marker algorithm places phi nodes at any join
34// Here, we place markers, and only place phi nodes if they end up necessary.
35// They are only necessary if they break a cycle (IE we recursively visit
36// ourselves again), or we discover, while getting the value of the operands,
37// that there are two or more definitions needing to be merged.
38// This still will leave non-minimal form in the case of irreducible control
39// flow, where phi nodes may be in cycles with themselves, but unnecessary.
Eli Friedman88e2bac2018-03-26 19:52:54 +000040MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(
41 BasicBlock *BB,
42 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
43 // First, do a cache lookup. Without this cache, certain CFG structures
44 // (like a series of if statements) take exponential time to visit.
45 auto Cached = CachedPreviousDef.find(BB);
46 if (Cached != CachedPreviousDef.end()) {
47 return Cached->second;
48 } else if (BasicBlock *Pred = BB->getSinglePredecessor()) {
49 // Single predecessor case, just recurse, we can only have one definition.
50 MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef);
51 CachedPreviousDef.insert({BB, Result});
52 return Result;
Daniel Berlinae6b8b62017-01-28 01:35:02 +000053 } else if (VisitedBlocks.count(BB)) {
54 // We hit our node again, meaning we had a cycle, we must insert a phi
55 // node to break it so we have an operand. The only case this will
56 // insert useless phis is if we have irreducible control flow.
Eli Friedman88e2bac2018-03-26 19:52:54 +000057 MemoryAccess *Result = MSSA->createMemoryPhi(BB);
58 CachedPreviousDef.insert({BB, Result});
59 return Result;
Daniel Berlinae6b8b62017-01-28 01:35:02 +000060 } else if (VisitedBlocks.insert(BB).second) {
61 // Mark us visited so we can detect a cycle
62 SmallVector<MemoryAccess *, 8> PhiOps;
63
64 // Recurse to get the values in our predecessors for placement of a
65 // potential phi node. This will insert phi nodes if we cycle in order to
66 // break the cycle and have an operand.
67 for (auto *Pred : predecessors(BB))
Eli Friedman88e2bac2018-03-26 19:52:54 +000068 PhiOps.push_back(getPreviousDefFromEnd(Pred, CachedPreviousDef));
Daniel Berlinae6b8b62017-01-28 01:35:02 +000069
70 // Now try to simplify the ops to avoid placing a phi.
71 // This may return null if we never created a phi yet, that's okay
72 MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB));
73 bool PHIExistsButNeedsUpdate = false;
74 // See if the existing phi operands match what we need.
75 // Unlike normal SSA, we only allow one phi node per block, so we can't just
76 // create a new one.
77 if (Phi && Phi->getNumOperands() != 0)
78 if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) {
79 PHIExistsButNeedsUpdate = true;
80 }
81
82 // See if we can avoid the phi by simplifying it.
83 auto *Result = tryRemoveTrivialPhi(Phi, PhiOps);
84 // If we couldn't simplify, we may have to create a phi
85 if (Result == Phi) {
86 if (!Phi)
87 Phi = MSSA->createMemoryPhi(BB);
88
89 // These will have been filled in by the recursive read we did above.
90 if (PHIExistsButNeedsUpdate) {
91 std::copy(PhiOps.begin(), PhiOps.end(), Phi->op_begin());
92 std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin());
93 } else {
94 unsigned i = 0;
95 for (auto *Pred : predecessors(BB))
96 Phi->addIncoming(PhiOps[i++], Pred);
Daniel Berlin97f34e82017-09-27 05:35:19 +000097 InsertedPHIs.push_back(Phi);
Daniel Berlinae6b8b62017-01-28 01:35:02 +000098 }
Daniel Berlinae6b8b62017-01-28 01:35:02 +000099 Result = Phi;
100 }
Daniel Berlin97f34e82017-09-27 05:35:19 +0000101
Daniel Berlinae6b8b62017-01-28 01:35:02 +0000102 // Set ourselves up for the next variable by resetting visited state.
103 VisitedBlocks.erase(BB);
Eli Friedman88e2bac2018-03-26 19:52:54 +0000104 CachedPreviousDef.insert({BB, Result});
Daniel Berlinae6b8b62017-01-28 01:35:02 +0000105 return Result;
106 }
107 llvm_unreachable("Should have hit one of the three cases above");
108}
109
110// This starts at the memory access, and goes backwards in the block to find the
111// previous definition. If a definition is not found the block of the access,
112// it continues globally, creating phi nodes to ensure we have a single
113// definition.
114MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) {
Eli Friedman88e2bac2018-03-26 19:52:54 +0000115 if (auto *LocalResult = getPreviousDefInBlock(MA))
116 return LocalResult;
117 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
118 return getPreviousDefRecursive(MA->getBlock(), CachedPreviousDef);
Daniel Berlinae6b8b62017-01-28 01:35:02 +0000119}
120
121// This starts at the memory access, and goes backwards in the block to the find
122// the previous definition. If the definition is not found in the block of the
123// access, it returns nullptr.
124MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) {
125 auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock());
126
127 // It's possible there are no defs, or we got handed the first def to start.
128 if (Defs) {
129 // If this is a def, we can just use the def iterators.
130 if (!isa<MemoryUse>(MA)) {
131 auto Iter = MA->getReverseDefsIterator();
132 ++Iter;
133 if (Iter != Defs->rend())
134 return &*Iter;
135 } else {
136 // Otherwise, have to walk the all access iterator.
Alina Sbirlea33e58722017-06-07 16:46:53 +0000137 auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend();
138 for (auto &U : make_range(++MA->getReverseIterator(), End))
139 if (!isa<MemoryUse>(U))
140 return cast<MemoryAccess>(&U);
141 // Note that if MA comes before Defs->begin(), we won't hit a def.
142 return nullptr;
Daniel Berlinae6b8b62017-01-28 01:35:02 +0000143 }
144 }
145 return nullptr;
146}
147
148// This starts at the end of block
Eli Friedman88e2bac2018-03-26 19:52:54 +0000149MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd(
150 BasicBlock *BB,
151 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
Daniel Berlinae6b8b62017-01-28 01:35:02 +0000152 auto *Defs = MSSA->getWritableBlockDefs(BB);
153
154 if (Defs)
155 return &*Defs->rbegin();
156
Eli Friedman88e2bac2018-03-26 19:52:54 +0000157 return getPreviousDefRecursive(BB, CachedPreviousDef);
Daniel Berlinae6b8b62017-01-28 01:35:02 +0000158}
159// Recurse over a set of phi uses to eliminate the trivial ones
160MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) {
161 if (!Phi)
162 return nullptr;
163 TrackingVH<MemoryAccess> Res(Phi);
164 SmallVector<TrackingVH<Value>, 8> Uses;
165 std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses));
166 for (auto &U : Uses) {
167 if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U)) {
168 auto OperRange = UsePhi->operands();
169 tryRemoveTrivialPhi(UsePhi, OperRange);
170 }
171 }
172 return Res;
173}
174
175// Eliminate trivial phis
176// Phis are trivial if they are defined either by themselves, or all the same
177// argument.
178// IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c)
179// We recursively try to remove them.
180template <class RangeType>
181MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi,
182 RangeType &Operands) {
Zhaoshi Zheng43af17b2018-04-09 20:55:37 +0000183 // Bail out on non-opt Phis.
184 if (NonOptPhis.count(Phi))
185 return Phi;
186
Daniel Berlinae6b8b62017-01-28 01:35:02 +0000187 // Detect equal or self arguments
188 MemoryAccess *Same = nullptr;
189 for (auto &Op : Operands) {
190 // If the same or self, good so far
191 if (Op == Phi || Op == Same)
192 continue;
193 // not the same, return the phi since it's not eliminatable by us
194 if (Same)
195 return Phi;
196 Same = cast<MemoryAccess>(Op);
197 }
198 // Never found a non-self reference, the phi is undef
199 if (Same == nullptr)
200 return MSSA->getLiveOnEntryDef();
201 if (Phi) {
202 Phi->replaceAllUsesWith(Same);
Daniel Berlin17e8d0e2017-02-22 22:19:55 +0000203 removeMemoryAccess(Phi);
Daniel Berlinae6b8b62017-01-28 01:35:02 +0000204 }
205
206 // We should only end up recursing in case we replaced something, in which
207 // case, we may have made other Phis trivial.
208 return recursePhi(Same);
209}
210
211void MemorySSAUpdater::insertUse(MemoryUse *MU) {
212 InsertedPHIs.clear();
213 MU->setDefiningAccess(getPreviousDef(MU));
214 // Unlike for defs, there is no extra work to do. Because uses do not create
215 // new may-defs, there are only two cases:
216 //
217 // 1. There was a def already below us, and therefore, we should not have
218 // created a phi node because it was already needed for the def.
219 //
220 // 2. There is no def below us, and therefore, there is no extra renaming work
221 // to do.
222}
223
Daniel Berlin9d8a3352017-01-30 11:35:39 +0000224// Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef.
George Burgess IV56169ed2017-04-21 04:54:52 +0000225static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB,
226 MemoryAccess *NewDef) {
Daniel Berlinae6b8b62017-01-28 01:35:02 +0000227 // Replace any operand with us an incoming block with the new defining
228 // access.
229 int i = MP->getBasicBlockIndex(BB);
230 assert(i != -1 && "Should have found the basic block in the phi");
Daniel Berlin9d8a3352017-01-30 11:35:39 +0000231 // We can't just compare i against getNumOperands since one is signed and the
232 // other not. So use it to index into the block iterator.
233 for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end();
234 ++BBIter) {
235 if (*BBIter != BB)
236 break;
Daniel Berlinae6b8b62017-01-28 01:35:02 +0000237 MP->setIncomingValue(i, NewDef);
238 ++i;
239 }
240}
241
242// A brief description of the algorithm:
243// First, we compute what should define the new def, using the SSA
244// construction algorithm.
245// Then, we update the defs below us (and any new phi nodes) in the graph to
246// point to the correct new defs, to ensure we only have one variable, and no
247// disconnected stores.
Daniel Berlin78cbd282017-02-20 22:26:03 +0000248void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) {
Daniel Berlinae6b8b62017-01-28 01:35:02 +0000249 InsertedPHIs.clear();
250
251 // See if we had a local def, and if not, go hunting.
Eli Friedman88e2bac2018-03-26 19:52:54 +0000252 MemoryAccess *DefBefore = getPreviousDef(MD);
253 bool DefBeforeSameBlock = DefBefore->getBlock() == MD->getBlock();
Daniel Berlinae6b8b62017-01-28 01:35:02 +0000254
255 // There is a def before us, which means we can replace any store/phi uses
256 // of that thing with us, since we are in the way of whatever was there
257 // before.
258 // We now define that def's memorydefs and memoryphis
Daniel Berlin9d8a3352017-01-30 11:35:39 +0000259 if (DefBeforeSameBlock) {
260 for (auto UI = DefBefore->use_begin(), UE = DefBefore->use_end();
261 UI != UE;) {
262 Use &U = *UI++;
263 // Leave the uses alone
264 if (isa<MemoryUse>(U.getUser()))
265 continue;
266 U.set(MD);
267 }
Daniel Berlinae6b8b62017-01-28 01:35:02 +0000268 }
Daniel Berlin9d8a3352017-01-30 11:35:39 +0000269
Daniel Berlinae6b8b62017-01-28 01:35:02 +0000270 // and that def is now our defining access.
271 // We change them in this order otherwise we will appear in the use list
272 // above and reset ourselves.
273 MD->setDefiningAccess(DefBefore);
274
275 SmallVector<MemoryAccess *, 8> FixupList(InsertedPHIs.begin(),
276 InsertedPHIs.end());
277 if (!DefBeforeSameBlock) {
278 // If there was a local def before us, we must have the same effect it
279 // did. Because every may-def is the same, any phis/etc we would create, it
280 // would also have created. If there was no local def before us, we
281 // performed a global update, and have to search all successors and make
282 // sure we update the first def in each of them (following all paths until
283 // we hit the first def along each path). This may also insert phi nodes.
284 // TODO: There are other cases we can skip this work, such as when we have a
285 // single successor, and only used a straight line of single pred blocks
286 // backwards to find the def. To make that work, we'd have to track whether
287 // getDefRecursive only ever used the single predecessor case. These types
288 // of paths also only exist in between CFG simplifications.
289 FixupList.push_back(MD);
290 }
291
292 while (!FixupList.empty()) {
293 unsigned StartingPHISize = InsertedPHIs.size();
294 fixupDefs(FixupList);
295 FixupList.clear();
296 // Put any new phis on the fixup list, and process them
297 FixupList.append(InsertedPHIs.end() - StartingPHISize, InsertedPHIs.end());
298 }
Daniel Berlin78cbd282017-02-20 22:26:03 +0000299 // Now that all fixups are done, rename all uses if we are asked.
300 if (RenameUses) {
301 SmallPtrSet<BasicBlock *, 16> Visited;
302 BasicBlock *StartBlock = MD->getBlock();
303 // We are guaranteed there is a def in the block, because we just got it
304 // handed to us in this function.
305 MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin();
306 // Convert to incoming value if it's a memorydef. A phi *is* already an
307 // incoming value.
308 if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
309 FirstDef = MD->getDefiningAccess();
310
311 MSSA->renamePass(MD->getBlock(), FirstDef, Visited);
312 // We just inserted a phi into this block, so the incoming value will become
313 // the phi anyway, so it does not matter what we pass.
314 for (auto *MP : InsertedPHIs)
315 MSSA->renamePass(MP->getBlock(), nullptr, Visited);
316 }
Daniel Berlinae6b8b62017-01-28 01:35:02 +0000317}
318
319void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<MemoryAccess *> &Vars) {
320 SmallPtrSet<const BasicBlock *, 8> Seen;
321 SmallVector<const BasicBlock *, 16> Worklist;
322 for (auto *NewDef : Vars) {
323 // First, see if there is a local def after the operand.
324 auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock());
325 auto DefIter = NewDef->getDefsIterator();
326
Zhaoshi Zheng43af17b2018-04-09 20:55:37 +0000327 // The temporary Phi is being fixed, unmark it for not to optimize.
328 if (MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(NewDef))
329 NonOptPhis.erase(Phi);
330
Daniel Berlinae6b8b62017-01-28 01:35:02 +0000331 // If there is a local def after us, we only have to rename that.
332 if (++DefIter != Defs->end()) {
333 cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef);
334 continue;
335 }
336
337 // Otherwise, we need to search down through the CFG.
338 // For each of our successors, handle it directly if their is a phi, or
339 // place on the fixup worklist.
340 for (const auto *S : successors(NewDef->getBlock())) {
341 if (auto *MP = MSSA->getMemoryAccess(S))
342 setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef);
343 else
344 Worklist.push_back(S);
345 }
346
347 while (!Worklist.empty()) {
348 const BasicBlock *FixupBlock = Worklist.back();
349 Worklist.pop_back();
350
351 // Get the first def in the block that isn't a phi node.
352 if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) {
353 auto *FirstDef = &*Defs->begin();
354 // The loop above and below should have taken care of phi nodes
355 assert(!isa<MemoryPhi>(FirstDef) &&
356 "Should have already handled phi nodes!");
357 // We are now this def's defining access, make sure we actually dominate
358 // it
359 assert(MSSA->dominates(NewDef, FirstDef) &&
360 "Should have dominated the new access");
361
362 // This may insert new phi nodes, because we are not guaranteed the
363 // block we are processing has a single pred, and depending where the
364 // store was inserted, it may require phi nodes below it.
365 cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef));
366 return;
367 }
368 // We didn't find a def, so we must continue.
369 for (const auto *S : successors(FixupBlock)) {
370 // If there is a phi node, handle it.
371 // Otherwise, put the block on the worklist
372 if (auto *MP = MSSA->getMemoryAccess(S))
373 setMemoryPhiValueForBlock(MP, FixupBlock, NewDef);
374 else {
375 // If we cycle, we should have ended up at a phi node that we already
376 // processed. FIXME: Double check this
377 if (!Seen.insert(S).second)
378 continue;
379 Worklist.push_back(S);
380 }
381 }
382 }
383 }
384}
385
386// Move What before Where in the MemorySSA IR.
Daniel Berlin9d8a3352017-01-30 11:35:39 +0000387template <class WhereType>
Daniel Berlinae6b8b62017-01-28 01:35:02 +0000388void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
Daniel Berlin9d8a3352017-01-30 11:35:39 +0000389 WhereType Where) {
Zhaoshi Zheng43af17b2018-04-09 20:55:37 +0000390 // Mark MemoryPhi users of What not to be optimized.
391 for (auto *U : What->users())
392 if (MemoryPhi *PhiUser = dyn_cast_or_null<MemoryPhi>(U))
393 NonOptPhis.insert(PhiUser);
394
Daniel Berlinae6b8b62017-01-28 01:35:02 +0000395 // Replace all our users with our defining access.
396 What->replaceAllUsesWith(What->getDefiningAccess());
397
398 // Let MemorySSA take care of moving it around in the lists.
399 MSSA->moveTo(What, BB, Where);
400
401 // Now reinsert it into the IR and do whatever fixups needed.
402 if (auto *MD = dyn_cast<MemoryDef>(What))
403 insertDef(MD);
404 else
405 insertUse(cast<MemoryUse>(What));
Zhaoshi Zheng43af17b2018-04-09 20:55:37 +0000406
407 // Clear dangling pointers. We added all MemoryPhi users, but not all
408 // of them are removed by fixupDefs().
409 NonOptPhis.clear();
Daniel Berlinae6b8b62017-01-28 01:35:02 +0000410}
Daniel Berlin9d8a3352017-01-30 11:35:39 +0000411
Daniel Berlinae6b8b62017-01-28 01:35:02 +0000412// Move What before Where in the MemorySSA IR.
413void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
414 moveTo(What, Where->getBlock(), Where->getIterator());
415}
416
417// Move What after Where in the MemorySSA IR.
418void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
419 moveTo(What, Where->getBlock(), ++Where->getIterator());
420}
421
Daniel Berlin9d8a3352017-01-30 11:35:39 +0000422void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB,
423 MemorySSA::InsertionPlace Where) {
424 return moveTo(What, BB, Where);
425}
Daniel Berlin17e8d0e2017-02-22 22:19:55 +0000426
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000427/// If all arguments of a MemoryPHI are defined by the same incoming
Daniel Berlin17e8d0e2017-02-22 22:19:55 +0000428/// argument, return that argument.
429static MemoryAccess *onlySingleValue(MemoryPhi *MP) {
430 MemoryAccess *MA = nullptr;
431
432 for (auto &Arg : MP->operands()) {
433 if (!MA)
434 MA = cast<MemoryAccess>(Arg);
435 else if (MA != Arg)
436 return nullptr;
437 }
438 return MA;
439}
George Burgess IV56169ed2017-04-21 04:54:52 +0000440
Daniel Berlin17e8d0e2017-02-22 22:19:55 +0000441void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA) {
442 assert(!MSSA->isLiveOnEntryDef(MA) &&
443 "Trying to remove the live on entry def");
444 // We can only delete phi nodes if they have no uses, or we can replace all
445 // uses with a single definition.
446 MemoryAccess *NewDefTarget = nullptr;
447 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) {
448 // Note that it is sufficient to know that all edges of the phi node have
449 // the same argument. If they do, by the definition of dominance frontiers
450 // (which we used to place this phi), that argument must dominate this phi,
451 // and thus, must dominate the phi's uses, and so we will not hit the assert
452 // below.
453 NewDefTarget = onlySingleValue(MP);
454 assert((NewDefTarget || MP->use_empty()) &&
455 "We can't delete this memory phi");
456 } else {
457 NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess();
458 }
459
460 // Re-point the uses at our defining access
461 if (!isa<MemoryUse>(MA) && !MA->use_empty()) {
462 // Reset optimized on users of this store, and reset the uses.
463 // A few notes:
464 // 1. This is a slightly modified version of RAUW to avoid walking the
465 // uses twice here.
466 // 2. If we wanted to be complete, we would have to reset the optimized
467 // flags on users of phi nodes if doing the below makes a phi node have all
468 // the same arguments. Instead, we prefer users to removeMemoryAccess those
469 // phi nodes, because doing it here would be N^3.
470 if (MA->hasValueHandle())
471 ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget);
472 // Note: We assume MemorySSA is not used in metadata since it's not really
473 // part of the IR.
474
475 while (!MA->use_empty()) {
476 Use &U = *MA->use_begin();
Daniel Berline33bc312017-04-04 23:43:10 +0000477 if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser()))
478 MUD->resetOptimized();
Daniel Berlin17e8d0e2017-02-22 22:19:55 +0000479 U.set(NewDefTarget);
480 }
481 }
482
483 // The call below to erase will destroy MA, so we can't change the order we
484 // are doing things here
485 MSSA->removeFromLookups(MA);
486 MSSA->removeFromLists(MA);
487}
488
489MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB(
490 Instruction *I, MemoryAccess *Definition, const BasicBlock *BB,
491 MemorySSA::InsertionPlace Point) {
492 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
493 MSSA->insertIntoListsForBlock(NewAccess, BB, Point);
494 return NewAccess;
495}
496
497MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore(
498 Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) {
499 assert(I->getParent() == InsertPt->getBlock() &&
500 "New and old access must be in the same block");
501 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
502 MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
503 InsertPt->getIterator());
504 return NewAccess;
505}
506
507MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter(
508 Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) {
509 assert(I->getParent() == InsertPt->getBlock() &&
510 "New and old access must be in the same block");
511 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
512 MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
513 ++InsertPt->getIterator());
514 return NewAccess;
515}