blob: 96db249584e82d231ea182165436ea045d347e24 [file] [log] [blame]
Chandler Carruthd8b0c8c2018-07-07 01:12:56 +00001///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
Chandler Carruth6bda14b2017-06-06 11:49:48 +000010#include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
Eugene Zelenkoa369a452017-05-16 23:10:25 +000011#include "llvm/ADT/DenseMap.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000012#include "llvm/ADT/STLExtras.h"
Eugene Zelenkoa369a452017-05-16 23:10:25 +000013#include "llvm/ADT/Sequence.h"
14#include "llvm/ADT/SetVector.h"
Chandler Carruth1353f9a2017-04-27 18:45:20 +000015#include "llvm/ADT/SmallPtrSet.h"
Eugene Zelenkoa369a452017-05-16 23:10:25 +000016#include "llvm/ADT/SmallVector.h"
Chandler Carruth1353f9a2017-04-27 18:45:20 +000017#include "llvm/ADT/Statistic.h"
Eugene Zelenkoa369a452017-05-16 23:10:25 +000018#include "llvm/ADT/Twine.h"
Chandler Carruth1353f9a2017-04-27 18:45:20 +000019#include "llvm/Analysis/AssumptionCache.h"
Chandler Carruth32e62f92018-04-19 18:44:25 +000020#include "llvm/Analysis/CFG.h"
Chandler Carruth693eedb2017-11-17 19:58:36 +000021#include "llvm/Analysis/CodeMetrics.h"
Chandler Carruth4da33312018-06-20 18:57:07 +000022#include "llvm/Analysis/InstructionSimplify.h"
Eugene Zelenkoa369a452017-05-16 23:10:25 +000023#include "llvm/Analysis/LoopAnalysisManager.h"
Chandler Carruth1353f9a2017-04-27 18:45:20 +000024#include "llvm/Analysis/LoopInfo.h"
Chandler Carruth32e62f92018-04-19 18:44:25 +000025#include "llvm/Analysis/LoopIterator.h"
Chandler Carruth1353f9a2017-04-27 18:45:20 +000026#include "llvm/Analysis/LoopPass.h"
Chandler Carruth4da33312018-06-20 18:57:07 +000027#include "llvm/Analysis/Utils/Local.h"
Eugene Zelenkoa369a452017-05-16 23:10:25 +000028#include "llvm/IR/BasicBlock.h"
29#include "llvm/IR/Constant.h"
Chandler Carruth1353f9a2017-04-27 18:45:20 +000030#include "llvm/IR/Constants.h"
31#include "llvm/IR/Dominators.h"
32#include "llvm/IR/Function.h"
Eugene Zelenkoa369a452017-05-16 23:10:25 +000033#include "llvm/IR/InstrTypes.h"
34#include "llvm/IR/Instruction.h"
Chandler Carruth1353f9a2017-04-27 18:45:20 +000035#include "llvm/IR/Instructions.h"
Chandler Carruth693eedb2017-11-17 19:58:36 +000036#include "llvm/IR/IntrinsicInst.h"
Eugene Zelenkoa369a452017-05-16 23:10:25 +000037#include "llvm/IR/Use.h"
38#include "llvm/IR/Value.h"
39#include "llvm/Pass.h"
40#include "llvm/Support/Casting.h"
Chandler Carruth1353f9a2017-04-27 18:45:20 +000041#include "llvm/Support/Debug.h"
Eugene Zelenkoa369a452017-05-16 23:10:25 +000042#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/GenericDomTree.h"
Chandler Carruth1353f9a2017-04-27 18:45:20 +000044#include "llvm/Support/raw_ostream.h"
Chandler Carruth693eedb2017-11-17 19:58:36 +000045#include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
Chandler Carruth1353f9a2017-04-27 18:45:20 +000046#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Chandler Carruth693eedb2017-11-17 19:58:36 +000047#include "llvm/Transforms/Utils/Cloning.h"
Chandler Carruth1353f9a2017-04-27 18:45:20 +000048#include "llvm/Transforms/Utils/LoopUtils.h"
Chandler Carruth693eedb2017-11-17 19:58:36 +000049#include "llvm/Transforms/Utils/ValueMapper.h"
Eugene Zelenkoa369a452017-05-16 23:10:25 +000050#include <algorithm>
51#include <cassert>
52#include <iterator>
Chandler Carruth693eedb2017-11-17 19:58:36 +000053#include <numeric>
Eugene Zelenkoa369a452017-05-16 23:10:25 +000054#include <utility>
Chandler Carruth1353f9a2017-04-27 18:45:20 +000055
56#define DEBUG_TYPE "simple-loop-unswitch"
57
58using namespace llvm;
59
60STATISTIC(NumBranches, "Number of branches unswitched");
61STATISTIC(NumSwitches, "Number of switches unswitched");
62STATISTIC(NumTrivial, "Number of unswitches that are trivial");
63
Chandler Carruth693eedb2017-11-17 19:58:36 +000064static cl::opt<bool> EnableNonTrivialUnswitch(
65 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
66 cl::desc("Forcibly enables non-trivial loop unswitching rather than "
67 "following the configuration passed into the pass."));
68
69static cl::opt<int>
70 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
71 cl::desc("The cost threshold for unswitching a loop."));
72
Chandler Carruth4da33312018-06-20 18:57:07 +000073/// Collect all of the loop invariant input values transitively used by the
74/// homogeneous instruction graph from a given root.
75///
76/// This essentially walks from a root recursively through loop variant operands
77/// which have the exact same opcode and finds all inputs which are loop
78/// invariant. For some operations these can be re-associated and unswitched out
79/// of the loop entirely.
Chandler Carruthd1dab0c2018-06-21 06:14:03 +000080static TinyPtrVector<Value *>
Chandler Carruth4da33312018-06-20 18:57:07 +000081collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root,
82 LoopInfo &LI) {
Chandler Carruth4da33312018-06-20 18:57:07 +000083 assert(!L.isLoopInvariant(&Root) &&
84 "Only need to walk the graph if root itself is not invariant.");
Chandler Carruthd1dab0c2018-06-21 06:14:03 +000085 TinyPtrVector<Value *> Invariants;
Chandler Carruth4da33312018-06-20 18:57:07 +000086
87 // Build a worklist and recurse through operators collecting invariants.
88 SmallVector<Instruction *, 4> Worklist;
89 SmallPtrSet<Instruction *, 8> Visited;
90 Worklist.push_back(&Root);
91 Visited.insert(&Root);
92 do {
93 Instruction &I = *Worklist.pop_back_val();
94 for (Value *OpV : I.operand_values()) {
95 // Skip constants as unswitching isn't interesting for them.
96 if (isa<Constant>(OpV))
97 continue;
98
99 // Add it to our result if loop invariant.
100 if (L.isLoopInvariant(OpV)) {
101 Invariants.push_back(OpV);
102 continue;
103 }
104
105 // If not an instruction with the same opcode, nothing we can do.
106 Instruction *OpI = dyn_cast<Instruction>(OpV);
107 if (!OpI || OpI->getOpcode() != Root.getOpcode())
108 continue;
109
110 // Visit this operand.
111 if (Visited.insert(OpI).second)
112 Worklist.push_back(OpI);
113 }
114 } while (!Worklist.empty());
115
116 return Invariants;
117}
118
119static void replaceLoopInvariantUses(Loop &L, Value *Invariant,
120 Constant &Replacement) {
121 assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?");
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000122
123 // Replace uses of LIC in the loop with the given constant.
Chandler Carruth4da33312018-06-20 18:57:07 +0000124 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) {
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000125 // Grab the use and walk past it so we can clobber it in the use list.
126 Use *U = &*UI++;
127 Instruction *UserI = dyn_cast<Instruction>(U->getUser());
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000128
129 // Replace this use within the loop body.
Chandler Carruth4da33312018-06-20 18:57:07 +0000130 if (UserI && L.contains(UserI))
131 U->set(&Replacement);
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000132 }
133}
134
Chandler Carruthd869b182017-05-12 02:19:59 +0000135/// Check that all the LCSSA PHI nodes in the loop exit block have trivial
136/// incoming values along this edge.
137static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB,
138 BasicBlock &ExitBB) {
139 for (Instruction &I : ExitBB) {
140 auto *PN = dyn_cast<PHINode>(&I);
141 if (!PN)
142 // No more PHIs to check.
143 return true;
144
145 // If the incoming value for this edge isn't loop invariant the unswitch
146 // won't be trivial.
147 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
148 return false;
149 }
150 llvm_unreachable("Basic blocks should never be empty!");
151}
152
Chandler Carruthd1dab0c2018-06-21 06:14:03 +0000153/// Insert code to test a set of loop invariant values, and conditionally branch
154/// on them.
155static void buildPartialUnswitchConditionalBranch(BasicBlock &BB,
156 ArrayRef<Value *> Invariants,
157 bool Direction,
158 BasicBlock &UnswitchedSucc,
159 BasicBlock &NormalSucc) {
160 IRBuilder<> IRB(&BB);
161 Value *Cond = Invariants.front();
162 for (Value *Invariant :
163 make_range(std::next(Invariants.begin()), Invariants.end()))
164 if (Direction)
165 Cond = IRB.CreateOr(Cond, Invariant);
166 else
167 Cond = IRB.CreateAnd(Cond, Invariant);
168
169 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
170 Direction ? &NormalSucc : &UnswitchedSucc);
171}
172
Chandler Carruthd869b182017-05-12 02:19:59 +0000173/// Rewrite the PHI nodes in an unswitched loop exit basic block.
174///
175/// Requires that the loop exit and unswitched basic block are the same, and
176/// that the exiting block was a unique predecessor of that block. Rewrites the
177/// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
178/// PHI nodes from the old preheader that now contains the unswitched
179/// terminator.
180static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
181 BasicBlock &OldExitingBB,
182 BasicBlock &OldPH) {
Benjamin Kramerc7fc81e2017-12-30 15:27:33 +0000183 for (PHINode &PN : UnswitchedBB.phis()) {
Chandler Carruthd869b182017-05-12 02:19:59 +0000184 // When the loop exit is directly unswitched we just need to update the
185 // incoming basic block. We loop to handle weird cases with repeated
186 // incoming blocks, but expect to typically only have one operand here.
Benjamin Kramerc7fc81e2017-12-30 15:27:33 +0000187 for (auto i : seq<int>(0, PN.getNumOperands())) {
188 assert(PN.getIncomingBlock(i) == &OldExitingBB &&
Chandler Carruthd869b182017-05-12 02:19:59 +0000189 "Found incoming block different from unique predecessor!");
Benjamin Kramerc7fc81e2017-12-30 15:27:33 +0000190 PN.setIncomingBlock(i, &OldPH);
Chandler Carruthd869b182017-05-12 02:19:59 +0000191 }
192 }
193}
194
195/// Rewrite the PHI nodes in the loop exit basic block and the split off
196/// unswitched block.
197///
198/// Because the exit block remains an exit from the loop, this rewrites the
199/// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
200/// nodes into the unswitched basic block to select between the value in the
201/// old preheader and the loop exit.
202static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
203 BasicBlock &UnswitchedBB,
204 BasicBlock &OldExitingBB,
Chandler Carruth4da33312018-06-20 18:57:07 +0000205 BasicBlock &OldPH,
206 bool FullUnswitch) {
Chandler Carruthd869b182017-05-12 02:19:59 +0000207 assert(&ExitBB != &UnswitchedBB &&
208 "Must have different loop exit and unswitched blocks!");
209 Instruction *InsertPt = &*UnswitchedBB.begin();
Benjamin Kramerc7fc81e2017-12-30 15:27:33 +0000210 for (PHINode &PN : ExitBB.phis()) {
211 auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
212 PN.getName() + ".split", InsertPt);
Chandler Carruthd869b182017-05-12 02:19:59 +0000213
214 // Walk backwards over the old PHI node's inputs to minimize the cost of
215 // removing each one. We have to do this weird loop manually so that we
216 // create the same number of new incoming edges in the new PHI as we expect
217 // each case-based edge to be included in the unswitched switch in some
218 // cases.
219 // FIXME: This is really, really gross. It would be much cleaner if LLVM
220 // allowed us to create a single entry for a predecessor block without
221 // having separate entries for each "edge" even though these edges are
222 // required to produce identical results.
Benjamin Kramerc7fc81e2017-12-30 15:27:33 +0000223 for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
224 if (PN.getIncomingBlock(i) != &OldExitingBB)
Chandler Carruthd869b182017-05-12 02:19:59 +0000225 continue;
226
Chandler Carruth4da33312018-06-20 18:57:07 +0000227 Value *Incoming = PN.getIncomingValue(i);
228 if (FullUnswitch)
229 // No more edge from the old exiting block to the exit block.
230 PN.removeIncomingValue(i);
231
Chandler Carruthd869b182017-05-12 02:19:59 +0000232 NewPN->addIncoming(Incoming, &OldPH);
233 }
234
235 // Now replace the old PHI with the new one and wire the old one in as an
236 // input to the new one.
Benjamin Kramerc7fc81e2017-12-30 15:27:33 +0000237 PN.replaceAllUsesWith(NewPN);
238 NewPN->addIncoming(&PN, &ExitBB);
Chandler Carruthd869b182017-05-12 02:19:59 +0000239 }
240}
241
Chandler Carruthd8b0c8c2018-07-07 01:12:56 +0000242/// Hoist the current loop up to the innermost loop containing a remaining exit.
243///
244/// Because we've removed an exit from the loop, we may have changed the set of
245/// loops reachable and need to move the current loop up the loop nest or even
246/// to an entirely separate nest.
247static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
248 DominatorTree &DT, LoopInfo &LI) {
249 // If the loop is already at the top level, we can't hoist it anywhere.
250 Loop *OldParentL = L.getParentLoop();
251 if (!OldParentL)
252 return;
253
254 SmallVector<BasicBlock *, 4> Exits;
255 L.getExitBlocks(Exits);
256 Loop *NewParentL = nullptr;
257 for (auto *ExitBB : Exits)
258 if (Loop *ExitL = LI.getLoopFor(ExitBB))
259 if (!NewParentL || NewParentL->contains(ExitL))
260 NewParentL = ExitL;
261
262 if (NewParentL == OldParentL)
263 return;
264
265 // The new parent loop (if different) should always contain the old one.
266 if (NewParentL)
267 assert(NewParentL->contains(OldParentL) &&
268 "Can only hoist this loop up the nest!");
269
270 // The preheader will need to move with the body of this loop. However,
271 // because it isn't in this loop we also need to update the primary loop map.
272 assert(OldParentL == LI.getLoopFor(&Preheader) &&
273 "Parent loop of this loop should contain this loop's preheader!");
274 LI.changeLoopFor(&Preheader, NewParentL);
275
276 // Remove this loop from its old parent.
277 OldParentL->removeChildLoop(&L);
278
279 // Add the loop either to the new parent or as a top-level loop.
280 if (NewParentL)
281 NewParentL->addChildLoop(&L);
282 else
283 LI.addTopLevelLoop(&L);
284
285 // Remove this loops blocks from the old parent and every other loop up the
286 // nest until reaching the new parent. Also update all of these
287 // no-longer-containing loops to reflect the nesting change.
288 for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
289 OldContainingL = OldContainingL->getParentLoop()) {
290 llvm::erase_if(OldContainingL->getBlocksVector(),
291 [&](const BasicBlock *BB) {
292 return BB == &Preheader || L.contains(BB);
293 });
294
295 OldContainingL->getBlocksSet().erase(&Preheader);
296 for (BasicBlock *BB : L.blocks())
297 OldContainingL->getBlocksSet().erase(BB);
298
299 // Because we just hoisted a loop out of this one, we have essentially
300 // created new exit paths from it. That means we need to form LCSSA PHI
301 // nodes for values used in the no-longer-nested loop.
302 formLCSSA(*OldContainingL, DT, &LI, nullptr);
303
304 // We shouldn't need to form dedicated exits because the exit introduced
Alina Sbirlea52e97a22018-08-28 20:41:05 +0000305 // here is the (just split by unswitching) preheader. However, after trivial
306 // unswitching it is possible to get new non-dedicated exits out of parent
307 // loop so let's conservatively form dedicated exit blocks and figure out
308 // if we can optimize later.
309 formDedicatedExitBlocks(OldContainingL, &DT, &LI, /*PreserveLCSSA*/ true);
Chandler Carruthd8b0c8c2018-07-07 01:12:56 +0000310 }
311}
312
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000313/// Unswitch a trivial branch if the condition is loop invariant.
314///
315/// This routine should only be called when loop code leading to the branch has
316/// been validated as trivial (no side effects). This routine checks if the
317/// condition is invariant and one of the successors is a loop exit. This
318/// allows us to unswitch without duplicating the loop, making it trivial.
319///
320/// If this routine fails to unswitch the branch it returns false.
321///
322/// If the branch can be unswitched, this routine splits the preheader and
323/// hoists the branch above that split. Preserves loop simplified form
324/// (splitting the exit block as necessary). It simplifies the branch within
325/// the loop to an unconditional branch but doesn't remove it entirely. Further
326/// cleanup can be done with some simplify-cfg like pass.
Chandler Carruth3897ded2018-07-03 09:13:27 +0000327///
328/// If `SE` is not null, it will be updated based on the potential loop SCEVs
329/// invalidated by this.
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000330static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
Chandler Carruth3897ded2018-07-03 09:13:27 +0000331 LoopInfo &LI, ScalarEvolution *SE) {
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000332 assert(BI.isConditional() && "Can only unswitch a conditional branch!");
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000333 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n");
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000334
Chandler Carruth4da33312018-06-20 18:57:07 +0000335 // The loop invariant values that we want to unswitch.
Chandler Carruthd1dab0c2018-06-21 06:14:03 +0000336 TinyPtrVector<Value *> Invariants;
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000337
Chandler Carruth4da33312018-06-20 18:57:07 +0000338 // When true, we're fully unswitching the branch rather than just unswitching
339 // some input conditions to the branch.
340 bool FullUnswitch = false;
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000341
Chandler Carruth4da33312018-06-20 18:57:07 +0000342 if (L.isLoopInvariant(BI.getCondition())) {
343 Invariants.push_back(BI.getCondition());
344 FullUnswitch = true;
345 } else {
346 if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition()))
347 Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
348 if (Invariants.empty())
349 // Couldn't find invariant inputs!
350 return false;
351 }
352
353 // Check that one of the branch's successors exits, and which one.
354 bool ExitDirection = true;
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000355 int LoopExitSuccIdx = 0;
356 auto *LoopExitBB = BI.getSuccessor(0);
Chandler Carruthbaf045f2018-05-10 17:33:20 +0000357 if (L.contains(LoopExitBB)) {
Chandler Carruth4da33312018-06-20 18:57:07 +0000358 ExitDirection = false;
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000359 LoopExitSuccIdx = 1;
360 LoopExitBB = BI.getSuccessor(1);
Chandler Carruthbaf045f2018-05-10 17:33:20 +0000361 if (L.contains(LoopExitBB))
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000362 return false;
363 }
364 auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
Chandler Carruthd869b182017-05-12 02:19:59 +0000365 auto *ParentBB = BI.getParent();
366 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB))
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000367 return false;
368
Chandler Carruth4da33312018-06-20 18:57:07 +0000369 // When unswitching only part of the branch's condition, we need the exit
370 // block to be reached directly from the partially unswitched input. This can
371 // be done when the exit block is along the true edge and the branch condition
372 // is a graph of `or` operations, or the exit block is along the false edge
373 // and the condition is a graph of `and` operations.
374 if (!FullUnswitch) {
375 if (ExitDirection) {
376 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or)
377 return false;
378 } else {
379 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And)
380 return false;
381 }
382 }
383
384 LLVM_DEBUG({
385 dbgs() << " unswitching trivial invariant conditions for: " << BI
386 << "\n";
387 for (Value *Invariant : Invariants) {
388 dbgs() << " " << *Invariant << " == true";
389 if (Invariant != Invariants.back())
390 dbgs() << " ||";
391 dbgs() << "\n";
392 }
393 });
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000394
Chandler Carruth3897ded2018-07-03 09:13:27 +0000395 // If we have scalar evolutions, we need to invalidate them including this
396 // loop and the loop containing the exit block.
397 if (SE) {
398 if (Loop *ExitL = LI.getLoopFor(LoopExitBB))
399 SE->forgetLoop(ExitL);
400 else
401 // Forget the entire nest as this exits the entire nest.
402 SE->forgetTopmostLoop(&L);
403 }
404
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000405 // Split the preheader, so that we know that there is a safe place to insert
406 // the conditional branch. We will change the preheader to have a conditional
407 // branch on LoopCond.
408 BasicBlock *OldPH = L.getLoopPreheader();
409 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI);
410
411 // Now that we have a place to insert the conditional branch, create a place
412 // to branch to: this is the exit block out of the loop that we are
413 // unswitching. We need to split this if there are other loop predecessors.
414 // Because the loop is in simplified form, *any* other predecessor is enough.
415 BasicBlock *UnswitchedBB;
Chandler Carruth4da33312018-06-20 18:57:07 +0000416 if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
417 assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&
Chandler Carruthd869b182017-05-12 02:19:59 +0000418 "A branch's parent isn't a predecessor!");
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000419 UnswitchedBB = LoopExitBB;
420 } else {
421 UnswitchedBB = SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI);
422 }
423
Chandler Carruth4da33312018-06-20 18:57:07 +0000424 // Actually move the invariant uses into the unswitched position. If possible,
425 // we do this by moving the instructions, but when doing partial unswitching
426 // we do it by building a new merge of the values in the unswitched position.
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000427 OldPH->getTerminator()->eraseFromParent();
Chandler Carruth4da33312018-06-20 18:57:07 +0000428 if (FullUnswitch) {
429 // If fully unswitching, we can use the existing branch instruction.
430 // Splice it into the old PH to gate reaching the new preheader and re-point
431 // its successors.
432 OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(),
433 BI);
434 BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
435 BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000436
Chandler Carruth4da33312018-06-20 18:57:07 +0000437 // Create a new unconditional branch that will continue the loop as a new
438 // terminator.
439 BranchInst::Create(ContinueBB, ParentBB);
440 } else {
441 // Only unswitching a subset of inputs to the condition, so we will need to
442 // build a new branch that merges the invariant inputs.
Chandler Carruth4da33312018-06-20 18:57:07 +0000443 if (ExitDirection)
444 assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
445 Instruction::Or &&
446 "Must have an `or` of `i1`s for the condition!");
447 else
448 assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
449 Instruction::And &&
450 "Must have an `and` of `i1`s for the condition!");
Chandler Carruthd1dab0c2018-06-21 06:14:03 +0000451 buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection,
452 *UnswitchedBB, *NewPH);
Chandler Carruth4da33312018-06-20 18:57:07 +0000453 }
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000454
Chandler Carruthd869b182017-05-12 02:19:59 +0000455 // Rewrite the relevant PHI nodes.
456 if (UnswitchedBB == LoopExitBB)
457 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
458 else
459 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
Chandler Carruth4da33312018-06-20 18:57:07 +0000460 *ParentBB, *OldPH, FullUnswitch);
Chandler Carruthd869b182017-05-12 02:19:59 +0000461
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000462 // Now we need to update the dominator tree.
Alina Sbirlea5666c7e2018-07-28 00:01:05 +0000463 SmallVector<DominatorTree::UpdateType, 2> DTUpdates;
464 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedBB});
Chandler Carruth4da33312018-06-20 18:57:07 +0000465 if (FullUnswitch)
Alina Sbirlea5666c7e2018-07-28 00:01:05 +0000466 DTUpdates.push_back({DT.Delete, ParentBB, LoopExitBB});
467 DT.applyUpdates(DTUpdates);
Chandler Carruth4da33312018-06-20 18:57:07 +0000468
469 // The constant we can replace all of our invariants with inside the loop
470 // body. If any of the invariants have a value other than this the loop won't
471 // be entered.
472 ConstantInt *Replacement = ExitDirection
473 ? ConstantInt::getFalse(BI.getContext())
474 : ConstantInt::getTrue(BI.getContext());
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000475
476 // Since this is an i1 condition we can also trivially replace uses of it
477 // within the loop with a constant.
Chandler Carruth4da33312018-06-20 18:57:07 +0000478 for (Value *Invariant : Invariants)
479 replaceLoopInvariantUses(L, Invariant, *Replacement);
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000480
Chandler Carruthd8b0c8c2018-07-07 01:12:56 +0000481 // If this was full unswitching, we may have changed the nesting relationship
482 // for this loop so hoist it to its correct parent if needed.
483 if (FullUnswitch)
484 hoistLoopToNewParent(L, *NewPH, DT, LI);
485
Alina Sbirlea52e97a22018-08-28 20:41:05 +0000486 LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n");
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000487 ++NumTrivial;
488 ++NumBranches;
489 return true;
490}
491
492/// Unswitch a trivial switch if the condition is loop invariant.
493///
494/// This routine should only be called when loop code leading to the switch has
495/// been validated as trivial (no side effects). This routine checks if the
496/// condition is invariant and that at least one of the successors is a loop
497/// exit. This allows us to unswitch without duplicating the loop, making it
498/// trivial.
499///
500/// If this routine fails to unswitch the switch it returns false.
501///
502/// If the switch can be unswitched, this routine splits the preheader and
503/// copies the switch above that split. If the default case is one of the
504/// exiting cases, it copies the non-exiting cases and points them at the new
505/// preheader. If the default case is not exiting, it copies the exiting cases
506/// and points the default at the preheader. It preserves loop simplified form
507/// (splitting the exit blocks as necessary). It simplifies the switch within
508/// the loop by removing now-dead cases. If the default case is one of those
509/// unswitched, it replaces its destination with a new basic block containing
510/// only unreachable. Such basic blocks, while technically loop exits, are not
511/// considered for unswitching so this is a stable transform and the same
512/// switch will not be revisited. If after unswitching there is only a single
513/// in-loop successor, the switch is further simplified to an unconditional
514/// branch. Still more cleanup can be done with some simplify-cfg like pass.
Chandler Carruth3897ded2018-07-03 09:13:27 +0000515///
516/// If `SE` is not null, it will be updated based on the potential loop SCEVs
517/// invalidated by this.
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000518static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
Chandler Carruth3897ded2018-07-03 09:13:27 +0000519 LoopInfo &LI, ScalarEvolution *SE) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000520 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n");
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000521 Value *LoopCond = SI.getCondition();
522
523 // If this isn't switching on an invariant condition, we can't unswitch it.
524 if (!L.isLoopInvariant(LoopCond))
525 return false;
526
Chandler Carruthd869b182017-05-12 02:19:59 +0000527 auto *ParentBB = SI.getParent();
528
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000529 SmallVector<int, 4> ExitCaseIndices;
530 for (auto Case : SI.cases()) {
531 auto *SuccBB = Case.getCaseSuccessor();
Chandler Carruthbaf045f2018-05-10 17:33:20 +0000532 if (!L.contains(SuccBB) &&
Chandler Carruthd869b182017-05-12 02:19:59 +0000533 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB))
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000534 ExitCaseIndices.push_back(Case.getCaseIndex());
535 }
536 BasicBlock *DefaultExitBB = nullptr;
Chandler Carruthbaf045f2018-05-10 17:33:20 +0000537 if (!L.contains(SI.getDefaultDest()) &&
Chandler Carruthd869b182017-05-12 02:19:59 +0000538 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) &&
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000539 !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator()))
540 DefaultExitBB = SI.getDefaultDest();
541 else if (ExitCaseIndices.empty())
542 return false;
543
Alina Sbirlea52e97a22018-08-28 20:41:05 +0000544 LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n");
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000545
Chandler Carruth3897ded2018-07-03 09:13:27 +0000546 // We may need to invalidate SCEVs for the outermost loop reached by any of
547 // the exits.
548 Loop *OuterL = &L;
549
Chandler Carruth47dc3a32018-07-10 08:36:05 +0000550 if (DefaultExitBB) {
551 // Clear out the default destination temporarily to allow accurate
552 // predecessor lists to be examined below.
553 SI.setDefaultDest(nullptr);
554 // Check the loop containing this exit.
555 Loop *ExitL = LI.getLoopFor(DefaultExitBB);
556 if (!ExitL || ExitL->contains(OuterL))
557 OuterL = ExitL;
558 }
559
560 // Store the exit cases into a separate data structure and remove them from
561 // the switch.
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000562 SmallVector<std::pair<ConstantInt *, BasicBlock *>, 4> ExitCases;
563 ExitCases.reserve(ExitCaseIndices.size());
564 // We walk the case indices backwards so that we remove the last case first
565 // and don't disrupt the earlier indices.
566 for (unsigned Index : reverse(ExitCaseIndices)) {
567 auto CaseI = SI.case_begin() + Index;
Chandler Carruth3897ded2018-07-03 09:13:27 +0000568 // Compute the outer loop from this exit.
569 Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor());
570 if (!ExitL || ExitL->contains(OuterL))
571 OuterL = ExitL;
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000572 // Save the value of this case.
573 ExitCases.push_back({CaseI->getCaseValue(), CaseI->getCaseSuccessor()});
574 // Delete the unswitched cases.
575 SI.removeCase(CaseI);
576 }
577
Chandler Carruth3897ded2018-07-03 09:13:27 +0000578 if (SE) {
579 if (OuterL)
580 SE->forgetLoop(OuterL);
581 else
582 SE->forgetTopmostLoop(&L);
583 }
584
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000585 // Check if after this all of the remaining cases point at the same
586 // successor.
587 BasicBlock *CommonSuccBB = nullptr;
588 if (SI.getNumCases() > 0 &&
589 std::all_of(std::next(SI.case_begin()), SI.case_end(),
590 [&SI](const SwitchInst::CaseHandle &Case) {
591 return Case.getCaseSuccessor() ==
592 SI.case_begin()->getCaseSuccessor();
593 }))
594 CommonSuccBB = SI.case_begin()->getCaseSuccessor();
Chandler Carruth47dc3a32018-07-10 08:36:05 +0000595 if (!DefaultExitBB) {
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000596 // If we're not unswitching the default, we need it to match any cases to
597 // have a common successor or if we have no cases it is the common
598 // successor.
599 if (SI.getNumCases() == 0)
600 CommonSuccBB = SI.getDefaultDest();
601 else if (SI.getDefaultDest() != CommonSuccBB)
602 CommonSuccBB = nullptr;
603 }
604
605 // Split the preheader, so that we know that there is a safe place to insert
606 // the switch.
607 BasicBlock *OldPH = L.getLoopPreheader();
608 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI);
609 OldPH->getTerminator()->eraseFromParent();
610
611 // Now add the unswitched switch.
612 auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
613
Chandler Carruthd869b182017-05-12 02:19:59 +0000614 // Rewrite the IR for the unswitched basic blocks. This requires two steps.
615 // First, we split any exit blocks with remaining in-loop predecessors. Then
616 // we update the PHIs in one of two ways depending on if there was a split.
617 // We walk in reverse so that we split in the same order as the cases
618 // appeared. This is purely for convenience of reading the resulting IR, but
619 // it doesn't cost anything really.
620 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000621 SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
622 // Handle the default exit if necessary.
623 // FIXME: It'd be great if we could merge this with the loop below but LLVM's
624 // ranges aren't quite powerful enough yet.
Chandler Carruthd869b182017-05-12 02:19:59 +0000625 if (DefaultExitBB) {
626 if (pred_empty(DefaultExitBB)) {
627 UnswitchedExitBBs.insert(DefaultExitBB);
628 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
629 } else {
630 auto *SplitBB =
631 SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI);
Chandler Carruth4da33312018-06-20 18:57:07 +0000632 rewritePHINodesForExitAndUnswitchedBlocks(
633 *DefaultExitBB, *SplitBB, *ParentBB, *OldPH, /*FullUnswitch*/ true);
Chandler Carruthd869b182017-05-12 02:19:59 +0000634 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
635 }
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000636 }
637 // Note that we must use a reference in the for loop so that we update the
638 // container.
639 for (auto &CasePair : reverse(ExitCases)) {
640 // Grab a reference to the exit block in the pair so that we can update it.
Chandler Carruthd869b182017-05-12 02:19:59 +0000641 BasicBlock *ExitBB = CasePair.second;
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000642
643 // If this case is the last edge into the exit block, we can simply reuse it
644 // as it will no longer be a loop exit. No mapping necessary.
Chandler Carruthd869b182017-05-12 02:19:59 +0000645 if (pred_empty(ExitBB)) {
646 // Only rewrite once.
647 if (UnswitchedExitBBs.insert(ExitBB).second)
648 rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000649 continue;
Chandler Carruthd869b182017-05-12 02:19:59 +0000650 }
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000651
652 // Otherwise we need to split the exit block so that we retain an exit
653 // block from the loop and a target for the unswitched condition.
654 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
655 if (!SplitExitBB) {
656 // If this is the first time we see this, do the split and remember it.
657 SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI);
Chandler Carruth4da33312018-06-20 18:57:07 +0000658 rewritePHINodesForExitAndUnswitchedBlocks(
659 *ExitBB, *SplitExitBB, *ParentBB, *OldPH, /*FullUnswitch*/ true);
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000660 }
Chandler Carruthd869b182017-05-12 02:19:59 +0000661 // Update the case pair to point to the split block.
662 CasePair.second = SplitExitBB;
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000663 }
664
665 // Now add the unswitched cases. We do this in reverse order as we built them
666 // in reverse order.
667 for (auto CasePair : reverse(ExitCases)) {
668 ConstantInt *CaseVal = CasePair.first;
669 BasicBlock *UnswitchedBB = CasePair.second;
670
671 NewSI->addCase(CaseVal, UnswitchedBB);
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000672 }
673
674 // If the default was unswitched, re-point it and add explicit cases for
675 // entering the loop.
676 if (DefaultExitBB) {
677 NewSI->setDefaultDest(DefaultExitBB);
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000678
679 // We removed all the exit cases, so we just copy the cases to the
680 // unswitched switch.
681 for (auto Case : SI.cases())
682 NewSI->addCase(Case.getCaseValue(), NewPH);
683 }
684
685 // If we ended up with a common successor for every path through the switch
686 // after unswitching, rewrite it to an unconditional branch to make it easy
687 // to recognize. Otherwise we potentially have to recognize the default case
688 // pointing at unreachable and other complexity.
689 if (CommonSuccBB) {
690 BasicBlock *BB = SI.getParent();
Chandler Carruth47dc3a32018-07-10 08:36:05 +0000691 // We may have had multiple edges to this common successor block, so remove
692 // them as predecessors. We skip the first one, either the default or the
693 // actual first case.
694 bool SkippedFirst = DefaultExitBB == nullptr;
695 for (auto Case : SI.cases()) {
696 assert(Case.getCaseSuccessor() == CommonSuccBB &&
697 "Non-common successor!");
Chandler Carruth148861f2018-07-10 08:57:04 +0000698 (void)Case;
Chandler Carruth47dc3a32018-07-10 08:36:05 +0000699 if (!SkippedFirst) {
700 SkippedFirst = true;
701 continue;
702 }
703 CommonSuccBB->removePredecessor(BB,
704 /*DontDeleteUselessPHIs*/ true);
705 }
706 // Now nuke the switch and replace it with a direct branch.
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000707 SI.eraseFromParent();
708 BranchInst::Create(CommonSuccBB, BB);
Chandler Carruth47dc3a32018-07-10 08:36:05 +0000709 } else if (DefaultExitBB) {
710 assert(SI.getNumCases() > 0 &&
711 "If we had no cases we'd have a common successor!");
712 // Move the last case to the default successor. This is valid as if the
713 // default got unswitched it cannot be reached. This has the advantage of
714 // being simple and keeping the number of edges from this switch to
715 // successors the same, and avoiding any PHI update complexity.
716 auto LastCaseI = std::prev(SI.case_end());
717 SI.setDefaultDest(LastCaseI->getCaseSuccessor());
718 SI.removeCase(LastCaseI);
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000719 }
720
Chandler Carruth2c85a232018-05-01 09:54:39 +0000721 // Walk the unswitched exit blocks and the unswitched split blocks and update
722 // the dominator tree based on the CFG edits. While we are walking unordered
723 // containers here, the API for applyUpdates takes an unordered list of
724 // updates and requires them to not contain duplicates.
725 SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
726 for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
727 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
728 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
729 }
730 for (auto SplitUnswitchedPair : SplitExitBBMap) {
731 auto *UnswitchedBB = SplitUnswitchedPair.second;
732 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedBB});
733 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedBB});
734 }
735 DT.applyUpdates(DTUpdates);
David Green7c35de12018-02-28 11:00:08 +0000736 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
Chandler Carruthd8b0c8c2018-07-07 01:12:56 +0000737
738 // We may have changed the nesting relationship for this loop so hoist it to
739 // its correct parent if needed.
740 hoistLoopToNewParent(L, *NewPH, DT, LI);
741
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000742 ++NumTrivial;
743 ++NumSwitches;
Alina Sbirlea52e97a22018-08-28 20:41:05 +0000744 LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n");
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000745 return true;
746}
747
748/// This routine scans the loop to find a branch or switch which occurs before
749/// any side effects occur. These can potentially be unswitched without
750/// duplicating the loop. If a branch or switch is successfully unswitched the
751/// scanning continues to see if subsequent branches or switches have become
752/// trivial. Once all trivial candidates have been unswitched, this routine
753/// returns.
754///
755/// The return value indicates whether anything was unswitched (and therefore
756/// changed).
Chandler Carruth3897ded2018-07-03 09:13:27 +0000757///
758/// If `SE` is not null, it will be updated based on the potential loop SCEVs
759/// invalidated by this.
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000760static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
Chandler Carruth3897ded2018-07-03 09:13:27 +0000761 LoopInfo &LI, ScalarEvolution *SE) {
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000762 bool Changed = false;
763
764 // If loop header has only one reachable successor we should keep looking for
765 // trivial condition candidates in the successor as well. An alternative is
766 // to constant fold conditions and merge successors into loop header (then we
767 // only need to check header's terminator). The reason for not doing this in
768 // LoopUnswitch pass is that it could potentially break LoopPassManager's
769 // invariants. Folding dead branches could either eliminate the current loop
770 // or make other loops unreachable. LCSSA form might also not be preserved
771 // after deleting branches. The following code keeps traversing loop header's
772 // successors until it finds the trivial condition candidate (condition that
773 // is not a constant). Since unswitching generates branches with constant
774 // conditions, this scenario could be very common in practice.
775 BasicBlock *CurrentBB = L.getHeader();
776 SmallPtrSet<BasicBlock *, 8> Visited;
777 Visited.insert(CurrentBB);
778 do {
779 // Check if there are any side-effecting instructions (e.g. stores, calls,
780 // volatile loads) in the part of the loop that the code *would* execute
781 // without unswitching.
782 if (llvm::any_of(*CurrentBB,
783 [](Instruction &I) { return I.mayHaveSideEffects(); }))
784 return Changed;
785
Chandler Carruthedb12a82018-10-15 10:04:59 +0000786 Instruction *CurrentTerm = CurrentBB->getTerminator();
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000787
788 if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
789 // Don't bother trying to unswitch past a switch with a constant
790 // condition. This should be removed prior to running this pass by
791 // simplify-cfg.
792 if (isa<Constant>(SI->getCondition()))
793 return Changed;
794
Chandler Carruth3897ded2018-07-03 09:13:27 +0000795 if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE))
Hiroshi Inouef2096492018-06-14 05:41:49 +0000796 // Couldn't unswitch this one so we're done.
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000797 return Changed;
798
799 // Mark that we managed to unswitch something.
800 Changed = true;
801
802 // If unswitching turned the terminator into an unconditional branch then
803 // we can continue. The unswitching logic specifically works to fold any
804 // cases it can into an unconditional branch to make it easier to
805 // recognize here.
806 auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
807 if (!BI || BI->isConditional())
808 return Changed;
809
810 CurrentBB = BI->getSuccessor(0);
811 continue;
812 }
813
814 auto *BI = dyn_cast<BranchInst>(CurrentTerm);
815 if (!BI)
816 // We do not understand other terminator instructions.
817 return Changed;
818
819 // Don't bother trying to unswitch past an unconditional branch or a branch
820 // with a constant value. These should be removed by simplify-cfg prior to
821 // running this pass.
822 if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
823 return Changed;
824
825 // Found a trivial condition candidate: non-foldable conditional branch. If
826 // we fail to unswitch this, we can't do anything else that is trivial.
Chandler Carruth3897ded2018-07-03 09:13:27 +0000827 if (!unswitchTrivialBranch(L, *BI, DT, LI, SE))
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000828 return Changed;
829
830 // Mark that we managed to unswitch something.
831 Changed = true;
832
Chandler Carruth4da33312018-06-20 18:57:07 +0000833 // If we only unswitched some of the conditions feeding the branch, we won't
834 // have collapsed it to a single successor.
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000835 BI = cast<BranchInst>(CurrentBB->getTerminator());
Chandler Carruth4da33312018-06-20 18:57:07 +0000836 if (BI->isConditional())
837 return Changed;
838
839 // Follow the newly unconditional branch into its successor.
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000840 CurrentBB = BI->getSuccessor(0);
841
842 // When continuing, if we exit the loop or reach a previous visited block,
843 // then we can not reach any trivial condition candidates (unfoldable
844 // branch instructions or switch instructions) and no unswitch can happen.
845 } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
846
847 return Changed;
848}
849
Chandler Carruth693eedb2017-11-17 19:58:36 +0000850/// Build the cloned blocks for an unswitched copy of the given loop.
851///
852/// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
853/// after the split block (`SplitBB`) that will be used to select between the
854/// cloned and original loop.
855///
856/// This routine handles cloning all of the necessary loop blocks and exit
857/// blocks including rewriting their instructions and the relevant PHI nodes.
Chandler Carruth16529962018-06-25 23:32:54 +0000858/// Any loop blocks or exit blocks which are dominated by a different successor
859/// than the one for this clone of the loop blocks can be trivially skipped. We
860/// use the `DominatingSucc` map to determine whether a block satisfies that
861/// property with a simple map lookup.
862///
863/// It also correctly creates the unconditional branch in the cloned
Chandler Carruth693eedb2017-11-17 19:58:36 +0000864/// unswitched parent block to only point at the unswitched successor.
865///
866/// This does not handle most of the necessary updates to `LoopInfo`. Only exit
867/// block splitting is correctly reflected in `LoopInfo`, essentially all of
868/// the cloned blocks (and their loops) are left without full `LoopInfo`
869/// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
870/// blocks to them but doesn't create the cloned `DominatorTree` structure and
871/// instead the caller must recompute an accurate DT. It *does* correctly
872/// update the `AssumptionCache` provided in `AC`.
873static BasicBlock *buildClonedLoopBlocks(
874 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
875 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
876 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
Chandler Carruth16529962018-06-25 23:32:54 +0000877 const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
Chandler Carruth69e68f82018-04-25 00:18:07 +0000878 ValueToValueMapTy &VMap,
879 SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
880 DominatorTree &DT, LoopInfo &LI) {
Chandler Carruth693eedb2017-11-17 19:58:36 +0000881 SmallVector<BasicBlock *, 4> NewBlocks;
882 NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
883
884 // We will need to clone a bunch of blocks, wrap up the clone operation in
885 // a helper.
886 auto CloneBlock = [&](BasicBlock *OldBB) {
887 // Clone the basic block and insert it before the new preheader.
888 BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
889 NewBB->moveBefore(LoopPH);
890
891 // Record this block and the mapping.
892 NewBlocks.push_back(NewBB);
893 VMap[OldBB] = NewBB;
894
Chandler Carruth693eedb2017-11-17 19:58:36 +0000895 return NewBB;
896 };
897
Chandler Carruth16529962018-06-25 23:32:54 +0000898 // We skip cloning blocks when they have a dominating succ that is not the
899 // succ we are cloning for.
900 auto SkipBlock = [&](BasicBlock *BB) {
901 auto It = DominatingSucc.find(BB);
902 return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
903 };
904
Chandler Carruth693eedb2017-11-17 19:58:36 +0000905 // First, clone the preheader.
906 auto *ClonedPH = CloneBlock(LoopPH);
907
908 // Then clone all the loop blocks, skipping the ones that aren't necessary.
909 for (auto *LoopBB : L.blocks())
Chandler Carruth16529962018-06-25 23:32:54 +0000910 if (!SkipBlock(LoopBB))
Chandler Carruth693eedb2017-11-17 19:58:36 +0000911 CloneBlock(LoopBB);
912
913 // Split all the loop exit edges so that when we clone the exit blocks, if
914 // any of the exit blocks are *also* a preheader for some other loop, we
915 // don't create multiple predecessors entering the loop header.
916 for (auto *ExitBB : ExitBlocks) {
Chandler Carruth16529962018-06-25 23:32:54 +0000917 if (SkipBlock(ExitBB))
Chandler Carruth693eedb2017-11-17 19:58:36 +0000918 continue;
919
920 // When we are going to clone an exit, we don't need to clone all the
921 // instructions in the exit block and we want to ensure we have an easy
922 // place to merge the CFG, so split the exit first. This is always safe to
923 // do because there cannot be any non-loop predecessors of a loop exit in
924 // loop simplified form.
925 auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI);
926
927 // Rearrange the names to make it easier to write test cases by having the
928 // exit block carry the suffix rather than the merge block carrying the
929 // suffix.
930 MergeBB->takeName(ExitBB);
931 ExitBB->setName(Twine(MergeBB->getName()) + ".split");
932
933 // Now clone the original exit block.
934 auto *ClonedExitBB = CloneBlock(ExitBB);
935 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
936 "Exit block should have been split to have one successor!");
937 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
938 "Cloned exit block has the wrong successor!");
939
Chandler Carruth693eedb2017-11-17 19:58:36 +0000940 // Remap any cloned instructions and create a merge phi node for them.
941 for (auto ZippedInsts : llvm::zip_first(
942 llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
943 llvm::make_range(ClonedExitBB->begin(),
944 std::prev(ClonedExitBB->end())))) {
945 Instruction &I = std::get<0>(ZippedInsts);
946 Instruction &ClonedI = std::get<1>(ZippedInsts);
947
948 // The only instructions in the exit block should be PHI nodes and
949 // potentially a landing pad.
950 assert(
951 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
952 "Bad instruction in exit block!");
953 // We should have a value map between the instruction and its clone.
954 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
955
956 auto *MergePN =
957 PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
958 &*MergeBB->getFirstInsertionPt());
959 I.replaceAllUsesWith(MergePN);
960 MergePN->addIncoming(&I, ExitBB);
961 MergePN->addIncoming(&ClonedI, ClonedExitBB);
962 }
963 }
964
965 // Rewrite the instructions in the cloned blocks to refer to the instructions
966 // in the cloned blocks. We have to do this as a second pass so that we have
967 // everything available. Also, we have inserted new instructions which may
968 // include assume intrinsics, so we update the assumption cache while
969 // processing this.
970 for (auto *ClonedBB : NewBlocks)
971 for (Instruction &I : *ClonedBB) {
972 RemapInstruction(&I, VMap,
973 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
974 if (auto *II = dyn_cast<IntrinsicInst>(&I))
975 if (II->getIntrinsicID() == Intrinsic::assume)
976 AC.registerAssumption(II);
977 }
978
Chandler Carruth693eedb2017-11-17 19:58:36 +0000979 // Update any PHI nodes in the cloned successors of the skipped blocks to not
980 // have spurious incoming values.
981 for (auto *LoopBB : L.blocks())
Chandler Carruth16529962018-06-25 23:32:54 +0000982 if (SkipBlock(LoopBB))
Chandler Carruth693eedb2017-11-17 19:58:36 +0000983 for (auto *SuccBB : successors(LoopBB))
984 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
985 for (PHINode &PN : ClonedSuccBB->phis())
986 PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
987
Chandler Carruthed296542018-07-09 10:30:48 +0000988 // Remove the cloned parent as a predecessor of any successor we ended up
989 // cloning other than the unswitched one.
990 auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
991 for (auto *SuccBB : successors(ParentBB)) {
992 if (SuccBB == UnswitchedSuccBB)
993 continue;
994
995 auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB));
996 if (!ClonedSuccBB)
997 continue;
998
999 ClonedSuccBB->removePredecessor(ClonedParentBB,
1000 /*DontDeleteUselessPHIs*/ true);
1001 }
1002
1003 // Replace the cloned branch with an unconditional branch to the cloned
1004 // unswitched successor.
1005 auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
1006 ClonedParentBB->getTerminator()->eraseFromParent();
1007 BranchInst::Create(ClonedSuccBB, ClonedParentBB);
1008
1009 // If there are duplicate entries in the PHI nodes because of multiple edges
1010 // to the unswitched successor, we need to nuke all but one as we replaced it
1011 // with a direct branch.
1012 for (PHINode &PN : ClonedSuccBB->phis()) {
1013 bool Found = false;
1014 // Loop over the incoming operands backwards so we can easily delete as we
1015 // go without invalidating the index.
1016 for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
1017 if (PN.getIncomingBlock(i) != ClonedParentBB)
1018 continue;
1019 if (!Found) {
1020 Found = true;
1021 continue;
1022 }
1023 PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false);
1024 }
1025 }
1026
Chandler Carruth69e68f82018-04-25 00:18:07 +00001027 // Record the domtree updates for the new blocks.
Chandler Carruth44aab922018-05-01 09:42:09 +00001028 SmallPtrSet<BasicBlock *, 4> SuccSet;
1029 for (auto *ClonedBB : NewBlocks) {
Chandler Carruth69e68f82018-04-25 00:18:07 +00001030 for (auto *SuccBB : successors(ClonedBB))
Chandler Carruth44aab922018-05-01 09:42:09 +00001031 if (SuccSet.insert(SuccBB).second)
1032 DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
1033 SuccSet.clear();
1034 }
Chandler Carruth69e68f82018-04-25 00:18:07 +00001035
Chandler Carruth693eedb2017-11-17 19:58:36 +00001036 return ClonedPH;
1037}
1038
1039/// Recursively clone the specified loop and all of its children.
1040///
1041/// The target parent loop for the clone should be provided, or can be null if
1042/// the clone is a top-level loop. While cloning, all the blocks are mapped
1043/// with the provided value map. The entire original loop must be present in
1044/// the value map. The cloned loop is returned.
1045static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
1046 const ValueToValueMapTy &VMap, LoopInfo &LI) {
1047 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
1048 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
1049 ClonedL.reserveBlocks(OrigL.getNumBlocks());
1050 for (auto *BB : OrigL.blocks()) {
1051 auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
1052 ClonedL.addBlockEntry(ClonedBB);
Chandler Carruth0ace1482018-04-24 03:27:00 +00001053 if (LI.getLoopFor(BB) == &OrigL)
Chandler Carruth693eedb2017-11-17 19:58:36 +00001054 LI.changeLoopFor(ClonedBB, &ClonedL);
Chandler Carruth693eedb2017-11-17 19:58:36 +00001055 }
1056 };
1057
1058 // We specially handle the first loop because it may get cloned into
1059 // a different parent and because we most commonly are cloning leaf loops.
1060 Loop *ClonedRootL = LI.AllocateLoop();
1061 if (RootParentL)
1062 RootParentL->addChildLoop(ClonedRootL);
1063 else
1064 LI.addTopLevelLoop(ClonedRootL);
1065 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
1066
1067 if (OrigRootL.empty())
1068 return ClonedRootL;
1069
1070 // If we have a nest, we can quickly clone the entire loop nest using an
1071 // iterative approach because it is a tree. We keep the cloned parent in the
1072 // data structure to avoid repeatedly querying through a map to find it.
1073 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
1074 // Build up the loops to clone in reverse order as we'll clone them from the
1075 // back.
1076 for (Loop *ChildL : llvm::reverse(OrigRootL))
1077 LoopsToClone.push_back({ClonedRootL, ChildL});
1078 do {
1079 Loop *ClonedParentL, *L;
1080 std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
1081 Loop *ClonedL = LI.AllocateLoop();
1082 ClonedParentL->addChildLoop(ClonedL);
1083 AddClonedBlocksToLoop(*L, *ClonedL);
1084 for (Loop *ChildL : llvm::reverse(*L))
1085 LoopsToClone.push_back({ClonedL, ChildL});
1086 } while (!LoopsToClone.empty());
1087
1088 return ClonedRootL;
1089}
1090
1091/// Build the cloned loops of an original loop from unswitching.
1092///
1093/// Because unswitching simplifies the CFG of the loop, this isn't a trivial
1094/// operation. We need to re-verify that there even is a loop (as the backedge
1095/// may not have been cloned), and even if there are remaining backedges the
1096/// backedge set may be different. However, we know that each child loop is
1097/// undisturbed, we only need to find where to place each child loop within
1098/// either any parent loop or within a cloned version of the original loop.
1099///
1100/// Because child loops may end up cloned outside of any cloned version of the
1101/// original loop, multiple cloned sibling loops may be created. All of them
1102/// are returned so that the newly introduced loop nest roots can be
1103/// identified.
Chandler Carruth92815032018-06-02 01:29:01 +00001104static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
1105 const ValueToValueMapTy &VMap, LoopInfo &LI,
1106 SmallVectorImpl<Loop *> &NonChildClonedLoops) {
Chandler Carruth693eedb2017-11-17 19:58:36 +00001107 Loop *ClonedL = nullptr;
1108
1109 auto *OrigPH = OrigL.getLoopPreheader();
1110 auto *OrigHeader = OrigL.getHeader();
1111
1112 auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
1113 auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
1114
1115 // We need to know the loops of the cloned exit blocks to even compute the
1116 // accurate parent loop. If we only clone exits to some parent of the
1117 // original parent, we want to clone into that outer loop. We also keep track
1118 // of the loops that our cloned exit blocks participate in.
1119 Loop *ParentL = nullptr;
1120 SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
1121 SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
1122 ClonedExitsInLoops.reserve(ExitBlocks.size());
1123 for (auto *ExitBB : ExitBlocks)
1124 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
1125 if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1126 ExitLoopMap[ClonedExitBB] = ExitL;
1127 ClonedExitsInLoops.push_back(ClonedExitBB);
1128 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1129 ParentL = ExitL;
1130 }
1131 assert((!ParentL || ParentL == OrigL.getParentLoop() ||
1132 ParentL->contains(OrigL.getParentLoop())) &&
1133 "The computed parent loop should always contain (or be) the parent of "
1134 "the original loop.");
1135
1136 // We build the set of blocks dominated by the cloned header from the set of
1137 // cloned blocks out of the original loop. While not all of these will
1138 // necessarily be in the cloned loop, it is enough to establish that they
1139 // aren't in unreachable cycles, etc.
1140 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
1141 for (auto *BB : OrigL.blocks())
1142 if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
1143 ClonedLoopBlocks.insert(ClonedBB);
1144
1145 // Rebuild the set of blocks that will end up in the cloned loop. We may have
1146 // skipped cloning some region of this loop which can in turn skip some of
1147 // the backedges so we have to rebuild the blocks in the loop based on the
1148 // backedges that remain after cloning.
1149 SmallVector<BasicBlock *, 16> Worklist;
1150 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
1151 for (auto *Pred : predecessors(ClonedHeader)) {
1152 // The only possible non-loop header predecessor is the preheader because
1153 // we know we cloned the loop in simplified form.
1154 if (Pred == ClonedPH)
1155 continue;
1156
1157 // Because the loop was in simplified form, the only non-loop predecessor
1158 // should be the preheader.
1159 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
1160 "header other than the preheader "
1161 "that is not part of the loop!");
1162
1163 // Insert this block into the loop set and on the first visit (and if it
1164 // isn't the header we're currently walking) put it into the worklist to
1165 // recurse through.
1166 if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
1167 Worklist.push_back(Pred);
1168 }
1169
1170 // If we had any backedges then there *is* a cloned loop. Put the header into
1171 // the loop set and then walk the worklist backwards to find all the blocks
1172 // that remain within the loop after cloning.
1173 if (!BlocksInClonedLoop.empty()) {
1174 BlocksInClonedLoop.insert(ClonedHeader);
1175
1176 while (!Worklist.empty()) {
1177 BasicBlock *BB = Worklist.pop_back_val();
1178 assert(BlocksInClonedLoop.count(BB) &&
1179 "Didn't put block into the loop set!");
1180
1181 // Insert any predecessors that are in the possible set into the cloned
1182 // set, and if the insert is successful, add them to the worklist. Note
1183 // that we filter on the blocks that are definitely reachable via the
1184 // backedge to the loop header so we may prune out dead code within the
1185 // cloned loop.
1186 for (auto *Pred : predecessors(BB))
1187 if (ClonedLoopBlocks.count(Pred) &&
1188 BlocksInClonedLoop.insert(Pred).second)
1189 Worklist.push_back(Pred);
1190 }
1191
1192 ClonedL = LI.AllocateLoop();
1193 if (ParentL) {
1194 ParentL->addBasicBlockToLoop(ClonedPH, LI);
1195 ParentL->addChildLoop(ClonedL);
1196 } else {
1197 LI.addTopLevelLoop(ClonedL);
1198 }
Chandler Carruth92815032018-06-02 01:29:01 +00001199 NonChildClonedLoops.push_back(ClonedL);
Chandler Carruth693eedb2017-11-17 19:58:36 +00001200
1201 ClonedL->reserveBlocks(BlocksInClonedLoop.size());
1202 // We don't want to just add the cloned loop blocks based on how we
1203 // discovered them. The original order of blocks was carefully built in
1204 // a way that doesn't rely on predecessor ordering. Rather than re-invent
1205 // that logic, we just re-walk the original blocks (and those of the child
1206 // loops) and filter them as we add them into the cloned loop.
1207 for (auto *BB : OrigL.blocks()) {
1208 auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
1209 if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
1210 continue;
1211
1212 // Directly add the blocks that are only in this loop.
1213 if (LI.getLoopFor(BB) == &OrigL) {
1214 ClonedL->addBasicBlockToLoop(ClonedBB, LI);
1215 continue;
1216 }
1217
1218 // We want to manually add it to this loop and parents.
1219 // Registering it with LoopInfo will happen when we clone the top
1220 // loop for this block.
1221 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
1222 PL->addBlockEntry(ClonedBB);
1223 }
1224
1225 // Now add each child loop whose header remains within the cloned loop. All
1226 // of the blocks within the loop must satisfy the same constraints as the
1227 // header so once we pass the header checks we can just clone the entire
1228 // child loop nest.
1229 for (Loop *ChildL : OrigL) {
1230 auto *ClonedChildHeader =
1231 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1232 if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
1233 continue;
1234
1235#ifndef NDEBUG
1236 // We should never have a cloned child loop header but fail to have
1237 // all of the blocks for that child loop.
1238 for (auto *ChildLoopBB : ChildL->blocks())
1239 assert(BlocksInClonedLoop.count(
1240 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
1241 "Child cloned loop has a header within the cloned outer "
1242 "loop but not all of its blocks!");
1243#endif
1244
1245 cloneLoopNest(*ChildL, ClonedL, VMap, LI);
1246 }
1247 }
1248
1249 // Now that we've handled all the components of the original loop that were
1250 // cloned into a new loop, we still need to handle anything from the original
1251 // loop that wasn't in a cloned loop.
1252
1253 // Figure out what blocks are left to place within any loop nest containing
1254 // the unswitched loop. If we never formed a loop, the cloned PH is one of
1255 // them.
1256 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
1257 if (BlocksInClonedLoop.empty())
1258 UnloopedBlockSet.insert(ClonedPH);
1259 for (auto *ClonedBB : ClonedLoopBlocks)
1260 if (!BlocksInClonedLoop.count(ClonedBB))
1261 UnloopedBlockSet.insert(ClonedBB);
1262
1263 // Copy the cloned exits and sort them in ascending loop depth, we'll work
1264 // backwards across these to process them inside out. The order shouldn't
1265 // matter as we're just trying to build up the map from inside-out; we use
1266 // the map in a more stably ordered way below.
1267 auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
Fangrui Song0cac7262018-09-27 02:13:45 +00001268 llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1269 return ExitLoopMap.lookup(LHS)->getLoopDepth() <
1270 ExitLoopMap.lookup(RHS)->getLoopDepth();
1271 });
Chandler Carruth693eedb2017-11-17 19:58:36 +00001272
1273 // Populate the existing ExitLoopMap with everything reachable from each
1274 // exit, starting from the inner most exit.
1275 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
1276 assert(Worklist.empty() && "Didn't clear worklist!");
1277
1278 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
1279 Loop *ExitL = ExitLoopMap.lookup(ExitBB);
1280
1281 // Walk the CFG back until we hit the cloned PH adding everything reachable
1282 // and in the unlooped set to this exit block's loop.
1283 Worklist.push_back(ExitBB);
1284 do {
1285 BasicBlock *BB = Worklist.pop_back_val();
1286 // We can stop recursing at the cloned preheader (if we get there).
1287 if (BB == ClonedPH)
1288 continue;
1289
1290 for (BasicBlock *PredBB : predecessors(BB)) {
1291 // If this pred has already been moved to our set or is part of some
1292 // (inner) loop, no update needed.
1293 if (!UnloopedBlockSet.erase(PredBB)) {
1294 assert(
1295 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
1296 "Predecessor not mapped to a loop!");
1297 continue;
1298 }
1299
1300 // We just insert into the loop set here. We'll add these blocks to the
1301 // exit loop after we build up the set in an order that doesn't rely on
1302 // predecessor order (which in turn relies on use list order).
1303 bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
1304 (void)Inserted;
1305 assert(Inserted && "Should only visit an unlooped block once!");
1306
1307 // And recurse through to its predecessors.
1308 Worklist.push_back(PredBB);
1309 }
1310 } while (!Worklist.empty());
1311 }
1312
1313 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned
1314 // blocks to their outer loops, walk the cloned blocks and the cloned exits
1315 // in their original order adding them to the correct loop.
1316
1317 // We need a stable insertion order. We use the order of the original loop
1318 // order and map into the correct parent loop.
1319 for (auto *BB : llvm::concat<BasicBlock *const>(
1320 makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
1321 if (Loop *OuterL = ExitLoopMap.lookup(BB))
1322 OuterL->addBasicBlockToLoop(BB, LI);
1323
1324#ifndef NDEBUG
1325 for (auto &BBAndL : ExitLoopMap) {
1326 auto *BB = BBAndL.first;
1327 auto *OuterL = BBAndL.second;
1328 assert(LI.getLoopFor(BB) == OuterL &&
1329 "Failed to put all blocks into outer loops!");
1330 }
1331#endif
1332
1333 // Now that all the blocks are placed into the correct containing loop in the
1334 // absence of child loops, find all the potentially cloned child loops and
1335 // clone them into whatever outer loop we placed their header into.
1336 for (Loop *ChildL : OrigL) {
1337 auto *ClonedChildHeader =
1338 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1339 if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
1340 continue;
1341
1342#ifndef NDEBUG
1343 for (auto *ChildLoopBB : ChildL->blocks())
1344 assert(VMap.count(ChildLoopBB) &&
1345 "Cloned a child loop header but not all of that loops blocks!");
1346#endif
1347
1348 NonChildClonedLoops.push_back(cloneLoopNest(
1349 *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
1350 }
Chandler Carruth693eedb2017-11-17 19:58:36 +00001351}
1352
Chandler Carruth69e68f82018-04-25 00:18:07 +00001353static void
Chandler Carruth16529962018-06-25 23:32:54 +00001354deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1355 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
1356 DominatorTree &DT) {
1357 // Find all the dead clones, and remove them from their successors.
1358 SmallVector<BasicBlock *, 16> DeadBlocks;
1359 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
1360 for (auto &VMap : VMaps)
1361 if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
1362 if (!DT.isReachableFromEntry(ClonedBB)) {
1363 for (BasicBlock *SuccBB : successors(ClonedBB))
1364 SuccBB->removePredecessor(ClonedBB);
1365 DeadBlocks.push_back(ClonedBB);
1366 }
1367
1368 // Drop any remaining references to break cycles.
1369 for (BasicBlock *BB : DeadBlocks)
1370 BB->dropAllReferences();
1371 // Erase them from the IR.
1372 for (BasicBlock *BB : DeadBlocks)
1373 BB->eraseFromParent();
1374}
1375
1376static void
Chandler Carruth69e68f82018-04-25 00:18:07 +00001377deleteDeadBlocksFromLoop(Loop &L,
Chandler Carruth69e68f82018-04-25 00:18:07 +00001378 SmallVectorImpl<BasicBlock *> &ExitBlocks,
1379 DominatorTree &DT, LoopInfo &LI) {
Fedor Sergeev8b6effd2018-09-04 20:19:41 +00001380 // Find all the dead blocks tied to this loop, and remove them from their
1381 // successors.
1382 SmallPtrSet<BasicBlock *, 16> DeadBlockSet;
1383
1384 // Start with loop/exit blocks and get a transitive closure of reachable dead
1385 // blocks.
1386 SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(),
1387 ExitBlocks.end());
1388 DeathCandidates.append(L.blocks().begin(), L.blocks().end());
1389 while (!DeathCandidates.empty()) {
1390 auto *BB = DeathCandidates.pop_back_val();
1391 if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) {
1392 for (BasicBlock *SuccBB : successors(BB)) {
Chandler Carruth16529962018-06-25 23:32:54 +00001393 SuccBB->removePredecessor(BB);
Fedor Sergeev8b6effd2018-09-04 20:19:41 +00001394 DeathCandidates.push_back(SuccBB);
Fedor Sergeev7b49aa02018-08-29 19:10:44 +00001395 }
Fedor Sergeev8b6effd2018-09-04 20:19:41 +00001396 DeadBlockSet.insert(BB);
1397 }
1398 }
Chandler Carruth693eedb2017-11-17 19:58:36 +00001399
1400 // Filter out the dead blocks from the exit blocks list so that it can be
1401 // used in the caller.
1402 llvm::erase_if(ExitBlocks,
Chandler Carruth69e68f82018-04-25 00:18:07 +00001403 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
Chandler Carruth693eedb2017-11-17 19:58:36 +00001404
Chandler Carruth693eedb2017-11-17 19:58:36 +00001405 // Walk from this loop up through its parents removing all of the dead blocks.
1406 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
Fedor Sergeev8b6effd2018-09-04 20:19:41 +00001407 for (auto *BB : DeadBlockSet)
Chandler Carruth693eedb2017-11-17 19:58:36 +00001408 ParentL->getBlocksSet().erase(BB);
1409 llvm::erase_if(ParentL->getBlocksVector(),
Chandler Carruth69e68f82018-04-25 00:18:07 +00001410 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
Chandler Carruth693eedb2017-11-17 19:58:36 +00001411 }
1412
1413 // Now delete the dead child loops. This raw delete will clear them
1414 // recursively.
1415 llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
Chandler Carruth69e68f82018-04-25 00:18:07 +00001416 if (!DeadBlockSet.count(ChildL->getHeader()))
Chandler Carruth693eedb2017-11-17 19:58:36 +00001417 return false;
1418
1419 assert(llvm::all_of(ChildL->blocks(),
1420 [&](BasicBlock *ChildBB) {
Chandler Carruth69e68f82018-04-25 00:18:07 +00001421 return DeadBlockSet.count(ChildBB);
Chandler Carruth693eedb2017-11-17 19:58:36 +00001422 }) &&
1423 "If the child loop header is dead all blocks in the child loop must "
1424 "be dead as well!");
1425 LI.destroy(ChildL);
1426 return true;
1427 });
1428
Chandler Carruth69e68f82018-04-25 00:18:07 +00001429 // Remove the loop mappings for the dead blocks and drop all the references
1430 // from these blocks to others to handle cyclic references as we start
1431 // deleting the blocks themselves.
Fedor Sergeev8b6effd2018-09-04 20:19:41 +00001432 for (auto *BB : DeadBlockSet) {
Chandler Carruth69e68f82018-04-25 00:18:07 +00001433 // Check that the dominator tree has already been updated.
1434 assert(!DT.getNode(BB) && "Should already have cleared domtree!");
Chandler Carruth693eedb2017-11-17 19:58:36 +00001435 LI.changeLoopFor(BB, nullptr);
Chandler Carruth693eedb2017-11-17 19:58:36 +00001436 BB->dropAllReferences();
Chandler Carruth693eedb2017-11-17 19:58:36 +00001437 }
Chandler Carruth69e68f82018-04-25 00:18:07 +00001438
1439 // Actually delete the blocks now that they've been fully unhooked from the
1440 // IR.
Fedor Sergeev7b49aa02018-08-29 19:10:44 +00001441 for (auto *BB : DeadBlockSet)
Chandler Carruth69e68f82018-04-25 00:18:07 +00001442 BB->eraseFromParent();
Chandler Carruth693eedb2017-11-17 19:58:36 +00001443}
1444
1445/// Recompute the set of blocks in a loop after unswitching.
1446///
1447/// This walks from the original headers predecessors to rebuild the loop. We
1448/// take advantage of the fact that new blocks can't have been added, and so we
1449/// filter by the original loop's blocks. This also handles potentially
1450/// unreachable code that we don't want to explore but might be found examining
1451/// the predecessors of the header.
1452///
1453/// If the original loop is no longer a loop, this will return an empty set. If
1454/// it remains a loop, all the blocks within it will be added to the set
1455/// (including those blocks in inner loops).
1456static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
1457 LoopInfo &LI) {
1458 SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
1459
1460 auto *PH = L.getLoopPreheader();
1461 auto *Header = L.getHeader();
1462
1463 // A worklist to use while walking backwards from the header.
1464 SmallVector<BasicBlock *, 16> Worklist;
1465
1466 // First walk the predecessors of the header to find the backedges. This will
1467 // form the basis of our walk.
1468 for (auto *Pred : predecessors(Header)) {
1469 // Skip the preheader.
1470 if (Pred == PH)
1471 continue;
1472
1473 // Because the loop was in simplified form, the only non-loop predecessor
1474 // is the preheader.
1475 assert(L.contains(Pred) && "Found a predecessor of the loop header other "
1476 "than the preheader that is not part of the "
1477 "loop!");
1478
1479 // Insert this block into the loop set and on the first visit and, if it
1480 // isn't the header we're currently walking, put it into the worklist to
1481 // recurse through.
1482 if (LoopBlockSet.insert(Pred).second && Pred != Header)
1483 Worklist.push_back(Pred);
1484 }
1485
1486 // If no backedges were found, we're done.
1487 if (LoopBlockSet.empty())
1488 return LoopBlockSet;
1489
Chandler Carruth693eedb2017-11-17 19:58:36 +00001490 // We found backedges, recurse through them to identify the loop blocks.
1491 while (!Worklist.empty()) {
1492 BasicBlock *BB = Worklist.pop_back_val();
1493 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
1494
Chandler Carruth43acdb32018-04-24 10:33:08 +00001495 // No need to walk past the header.
1496 if (BB == Header)
1497 continue;
1498
Chandler Carruth693eedb2017-11-17 19:58:36 +00001499 // Because we know the inner loop structure remains valid we can use the
1500 // loop structure to jump immediately across the entire nested loop.
1501 // Further, because it is in loop simplified form, we can directly jump
1502 // to its preheader afterward.
1503 if (Loop *InnerL = LI.getLoopFor(BB))
1504 if (InnerL != &L) {
1505 assert(L.contains(InnerL) &&
1506 "Should not reach a loop *outside* this loop!");
1507 // The preheader is the only possible predecessor of the loop so
1508 // insert it into the set and check whether it was already handled.
1509 auto *InnerPH = InnerL->getLoopPreheader();
1510 assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
1511 "but not contain the inner loop "
1512 "preheader!");
1513 if (!LoopBlockSet.insert(InnerPH).second)
1514 // The only way to reach the preheader is through the loop body
1515 // itself so if it has been visited the loop is already handled.
1516 continue;
1517
1518 // Insert all of the blocks (other than those already present) into
Chandler Carruthbf7190a2018-04-23 06:58:36 +00001519 // the loop set. We expect at least the block that led us to find the
1520 // inner loop to be in the block set, but we may also have other loop
1521 // blocks if they were already enqueued as predecessors of some other
1522 // outer loop block.
Chandler Carruth693eedb2017-11-17 19:58:36 +00001523 for (auto *InnerBB : InnerL->blocks()) {
1524 if (InnerBB == BB) {
1525 assert(LoopBlockSet.count(InnerBB) &&
1526 "Block should already be in the set!");
1527 continue;
1528 }
1529
Chandler Carruthbf7190a2018-04-23 06:58:36 +00001530 LoopBlockSet.insert(InnerBB);
Chandler Carruth693eedb2017-11-17 19:58:36 +00001531 }
1532
1533 // Add the preheader to the worklist so we will continue past the
1534 // loop body.
1535 Worklist.push_back(InnerPH);
1536 continue;
1537 }
1538
1539 // Insert any predecessors that were in the original loop into the new
1540 // set, and if the insert is successful, add them to the worklist.
1541 for (auto *Pred : predecessors(BB))
1542 if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
1543 Worklist.push_back(Pred);
1544 }
1545
Chandler Carruth43acdb32018-04-24 10:33:08 +00001546 assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");
1547
Chandler Carruth693eedb2017-11-17 19:58:36 +00001548 // We've found all the blocks participating in the loop, return our completed
1549 // set.
1550 return LoopBlockSet;
1551}
1552
1553/// Rebuild a loop after unswitching removes some subset of blocks and edges.
1554///
1555/// The removal may have removed some child loops entirely but cannot have
1556/// disturbed any remaining child loops. However, they may need to be hoisted
1557/// to the parent loop (or to be top-level loops). The original loop may be
1558/// completely removed.
1559///
1560/// The sibling loops resulting from this update are returned. If the original
1561/// loop remains a valid loop, it will be the first entry in this list with all
1562/// of the newly sibling loops following it.
1563///
1564/// Returns true if the loop remains a loop after unswitching, and false if it
1565/// is no longer a loop after unswitching (and should not continue to be
1566/// referenced).
1567static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1568 LoopInfo &LI,
1569 SmallVectorImpl<Loop *> &HoistedLoops) {
1570 auto *PH = L.getLoopPreheader();
1571
1572 // Compute the actual parent loop from the exit blocks. Because we may have
1573 // pruned some exits the loop may be different from the original parent.
1574 Loop *ParentL = nullptr;
1575 SmallVector<Loop *, 4> ExitLoops;
1576 SmallVector<BasicBlock *, 4> ExitsInLoops;
1577 ExitsInLoops.reserve(ExitBlocks.size());
1578 for (auto *ExitBB : ExitBlocks)
1579 if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1580 ExitLoops.push_back(ExitL);
1581 ExitsInLoops.push_back(ExitBB);
1582 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1583 ParentL = ExitL;
1584 }
1585
1586 // Recompute the blocks participating in this loop. This may be empty if it
1587 // is no longer a loop.
1588 auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
1589
1590 // If we still have a loop, we need to re-set the loop's parent as the exit
1591 // block set changing may have moved it within the loop nest. Note that this
1592 // can only happen when this loop has a parent as it can only hoist the loop
1593 // *up* the nest.
1594 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1595 // Remove this loop's (original) blocks from all of the intervening loops.
1596 for (Loop *IL = L.getParentLoop(); IL != ParentL;
1597 IL = IL->getParentLoop()) {
1598 IL->getBlocksSet().erase(PH);
1599 for (auto *BB : L.blocks())
1600 IL->getBlocksSet().erase(BB);
1601 llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
1602 return BB == PH || L.contains(BB);
1603 });
1604 }
1605
1606 LI.changeLoopFor(PH, ParentL);
1607 L.getParentLoop()->removeChildLoop(&L);
1608 if (ParentL)
1609 ParentL->addChildLoop(&L);
1610 else
1611 LI.addTopLevelLoop(&L);
1612 }
1613
1614 // Now we update all the blocks which are no longer within the loop.
1615 auto &Blocks = L.getBlocksVector();
1616 auto BlocksSplitI =
1617 LoopBlockSet.empty()
1618 ? Blocks.begin()
1619 : std::stable_partition(
1620 Blocks.begin(), Blocks.end(),
1621 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
1622
1623 // Before we erase the list of unlooped blocks, build a set of them.
1624 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
1625 if (LoopBlockSet.empty())
1626 UnloopedBlocks.insert(PH);
1627
1628 // Now erase these blocks from the loop.
1629 for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
1630 L.getBlocksSet().erase(BB);
1631 Blocks.erase(BlocksSplitI, Blocks.end());
1632
1633 // Sort the exits in ascending loop depth, we'll work backwards across these
1634 // to process them inside out.
1635 std::stable_sort(ExitsInLoops.begin(), ExitsInLoops.end(),
1636 [&](BasicBlock *LHS, BasicBlock *RHS) {
1637 return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
1638 });
1639
1640 // We'll build up a set for each exit loop.
1641 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
1642 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
1643
1644 auto RemoveUnloopedBlocksFromLoop =
1645 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
1646 for (auto *BB : UnloopedBlocks)
1647 L.getBlocksSet().erase(BB);
1648 llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
1649 return UnloopedBlocks.count(BB);
1650 });
1651 };
1652
1653 SmallVector<BasicBlock *, 16> Worklist;
1654 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
1655 assert(Worklist.empty() && "Didn't clear worklist!");
1656 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
1657
1658 // Grab the next exit block, in decreasing loop depth order.
1659 BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
1660 Loop &ExitL = *LI.getLoopFor(ExitBB);
1661 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
1662
1663 // Erase all of the unlooped blocks from the loops between the previous
1664 // exit loop and this exit loop. This works because the ExitInLoops list is
1665 // sorted in increasing order of loop depth and thus we visit loops in
1666 // decreasing order of loop depth.
1667 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
1668 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1669
1670 // Walk the CFG back until we hit the cloned PH adding everything reachable
1671 // and in the unlooped set to this exit block's loop.
1672 Worklist.push_back(ExitBB);
1673 do {
1674 BasicBlock *BB = Worklist.pop_back_val();
1675 // We can stop recursing at the cloned preheader (if we get there).
1676 if (BB == PH)
1677 continue;
1678
1679 for (BasicBlock *PredBB : predecessors(BB)) {
1680 // If this pred has already been moved to our set or is part of some
1681 // (inner) loop, no update needed.
1682 if (!UnloopedBlocks.erase(PredBB)) {
1683 assert((NewExitLoopBlocks.count(PredBB) ||
1684 ExitL.contains(LI.getLoopFor(PredBB))) &&
1685 "Predecessor not in a nested loop (or already visited)!");
1686 continue;
1687 }
1688
1689 // We just insert into the loop set here. We'll add these blocks to the
1690 // exit loop after we build up the set in a deterministic order rather
1691 // than the predecessor-influenced visit order.
1692 bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
1693 (void)Inserted;
1694 assert(Inserted && "Should only visit an unlooped block once!");
1695
1696 // And recurse through to its predecessors.
1697 Worklist.push_back(PredBB);
1698 }
1699 } while (!Worklist.empty());
1700
1701 // If blocks in this exit loop were directly part of the original loop (as
1702 // opposed to a child loop) update the map to point to this exit loop. This
1703 // just updates a map and so the fact that the order is unstable is fine.
1704 for (auto *BB : NewExitLoopBlocks)
1705 if (Loop *BBL = LI.getLoopFor(BB))
1706 if (BBL == &L || !L.contains(BBL))
1707 LI.changeLoopFor(BB, &ExitL);
1708
1709 // We will remove the remaining unlooped blocks from this loop in the next
1710 // iteration or below.
1711 NewExitLoopBlocks.clear();
1712 }
1713
1714 // Any remaining unlooped blocks are no longer part of any loop unless they
1715 // are part of some child loop.
1716 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
1717 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1718 for (auto *BB : UnloopedBlocks)
1719 if (Loop *BBL = LI.getLoopFor(BB))
1720 if (BBL == &L || !L.contains(BBL))
1721 LI.changeLoopFor(BB, nullptr);
1722
1723 // Sink all the child loops whose headers are no longer in the loop set to
1724 // the parent (or to be top level loops). We reach into the loop and directly
1725 // update its subloop vector to make this batch update efficient.
1726 auto &SubLoops = L.getSubLoopsVector();
1727 auto SubLoopsSplitI =
1728 LoopBlockSet.empty()
1729 ? SubLoops.begin()
1730 : std::stable_partition(
1731 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
1732 return LoopBlockSet.count(SubL->getHeader());
1733 });
1734 for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
1735 HoistedLoops.push_back(HoistedL);
1736 HoistedL->setParentLoop(nullptr);
1737
1738 // To compute the new parent of this hoisted loop we look at where we
1739 // placed the preheader above. We can't lookup the header itself because we
1740 // retained the mapping from the header to the hoisted loop. But the
1741 // preheader and header should have the exact same new parent computed
1742 // based on the set of exit blocks from the original loop as the preheader
1743 // is a predecessor of the header and so reached in the reverse walk. And
1744 // because the loops were all in simplified form the preheader of the
1745 // hoisted loop can't be part of some *other* loop.
1746 if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
1747 NewParentL->addChildLoop(HoistedL);
1748 else
1749 LI.addTopLevelLoop(HoistedL);
1750 }
1751 SubLoops.erase(SubLoopsSplitI, SubLoops.end());
1752
1753 // Actually delete the loop if nothing remained within it.
1754 if (Blocks.empty()) {
1755 assert(SubLoops.empty() &&
1756 "Failed to remove all subloops from the original loop!");
1757 if (Loop *ParentL = L.getParentLoop())
1758 ParentL->removeChildLoop(llvm::find(*ParentL, &L));
1759 else
1760 LI.removeLoop(llvm::find(LI, &L));
1761 LI.destroy(&L);
1762 return false;
1763 }
1764
1765 return true;
1766}
1767
1768/// Helper to visit a dominator subtree, invoking a callable on each node.
1769///
1770/// Returning false at any point will stop walking past that node of the tree.
1771template <typename CallableT>
1772void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
1773 SmallVector<DomTreeNode *, 4> DomWorklist;
1774 DomWorklist.push_back(DT[BB]);
1775#ifndef NDEBUG
1776 SmallPtrSet<DomTreeNode *, 4> Visited;
1777 Visited.insert(DT[BB]);
1778#endif
1779 do {
1780 DomTreeNode *N = DomWorklist.pop_back_val();
1781
1782 // Visit this node.
1783 if (!Callable(N->getBlock()))
1784 continue;
1785
1786 // Accumulate the child nodes.
1787 for (DomTreeNode *ChildN : *N) {
1788 assert(Visited.insert(ChildN).second &&
1789 "Cannot visit a node twice when walking a tree!");
1790 DomWorklist.push_back(ChildN);
1791 }
1792 } while (!DomWorklist.empty());
1793}
1794
Chandler Carruth16529962018-06-25 23:32:54 +00001795static bool unswitchNontrivialInvariants(
Chandler Carruth60b2e052018-10-18 00:40:26 +00001796 Loop &L, Instruction &TI, ArrayRef<Value *> Invariants,
Chandler Carruth16529962018-06-25 23:32:54 +00001797 DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
Chandler Carruth3897ded2018-07-03 09:13:27 +00001798 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
1799 ScalarEvolution *SE) {
Chandler Carruth16529962018-06-25 23:32:54 +00001800 auto *ParentBB = TI.getParent();
1801 BranchInst *BI = dyn_cast<BranchInst>(&TI);
1802 SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00001803
Chandler Carruth16529962018-06-25 23:32:54 +00001804 // We can only unswitch switches, conditional branches with an invariant
1805 // condition, or combining invariant conditions with an instruction.
1806 assert((SI || BI->isConditional()) &&
1807 "Can only unswitch switches and conditional branch!");
1808 bool FullUnswitch = SI || BI->getCondition() == Invariants[0];
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00001809 if (FullUnswitch)
1810 assert(Invariants.size() == 1 &&
1811 "Cannot have other invariants with full unswitching!");
1812 else
Chandler Carruth16529962018-06-25 23:32:54 +00001813 assert(isa<Instruction>(BI->getCondition()) &&
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00001814 "Partial unswitching requires an instruction as the condition!");
1815
1816 // Constant and BBs tracking the cloned and continuing successor. When we are
1817 // unswitching the entire condition, this can just be trivially chosen to
1818 // unswitch towards `true`. However, when we are unswitching a set of
1819 // invariants combined with `and` or `or`, the combining operation determines
1820 // the best direction to unswitch: we want to unswitch the direction that will
1821 // collapse the branch.
1822 bool Direction = true;
1823 int ClonedSucc = 0;
1824 if (!FullUnswitch) {
Chandler Carruth16529962018-06-25 23:32:54 +00001825 if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) {
1826 assert(cast<Instruction>(BI->getCondition())->getOpcode() ==
1827 Instruction::And &&
1828 "Only `or` and `and` instructions can combine invariants being "
1829 "unswitched.");
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00001830 Direction = false;
1831 ClonedSucc = 1;
1832 }
1833 }
Chandler Carruth693eedb2017-11-17 19:58:36 +00001834
Chandler Carruth16529962018-06-25 23:32:54 +00001835 BasicBlock *RetainedSuccBB =
1836 BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
1837 SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
1838 if (BI)
1839 UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
1840 else
1841 for (auto Case : SI->cases())
Chandler Carruthed296542018-07-09 10:30:48 +00001842 if (Case.getCaseSuccessor() != RetainedSuccBB)
1843 UnswitchedSuccBBs.insert(Case.getCaseSuccessor());
Chandler Carruth16529962018-06-25 23:32:54 +00001844
1845 assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&
1846 "Should not unswitch the same successor we are retaining!");
Chandler Carruth693eedb2017-11-17 19:58:36 +00001847
1848 // The branch should be in this exact loop. Any inner loop's invariant branch
1849 // should be handled by unswitching that inner loop. The caller of this
1850 // routine should filter out any candidates that remain (but were skipped for
1851 // whatever reason).
1852 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
1853
1854 SmallVector<BasicBlock *, 4> ExitBlocks;
1855 L.getUniqueExitBlocks(ExitBlocks);
1856
1857 // We cannot unswitch if exit blocks contain a cleanuppad instruction as we
1858 // don't know how to split those exit blocks.
1859 // FIXME: We should teach SplitBlock to handle this and remove this
1860 // restriction.
1861 for (auto *ExitBB : ExitBlocks)
1862 if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI()))
1863 return false;
1864
Chandler Carruth693eedb2017-11-17 19:58:36 +00001865 // Compute the parent loop now before we start hacking on things.
1866 Loop *ParentL = L.getParentLoop();
1867
1868 // Compute the outer-most loop containing one of our exit blocks. This is the
1869 // furthest up our loopnest which can be mutated, which we will use below to
1870 // update things.
1871 Loop *OuterExitL = &L;
1872 for (auto *ExitBB : ExitBlocks) {
1873 Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
1874 if (!NewOuterExitL) {
1875 // We exited the entire nest with this block, so we're done.
1876 OuterExitL = nullptr;
1877 break;
1878 }
1879 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
1880 OuterExitL = NewOuterExitL;
1881 }
1882
Chandler Carruth3897ded2018-07-03 09:13:27 +00001883 // At this point, we're definitely going to unswitch something so invalidate
1884 // any cached information in ScalarEvolution for the outer most loop
1885 // containing an exit block and all nested loops.
1886 if (SE) {
1887 if (OuterExitL)
1888 SE->forgetLoop(OuterExitL);
1889 else
1890 SE->forgetTopmostLoop(&L);
1891 }
1892
Chandler Carruth16529962018-06-25 23:32:54 +00001893 // If the edge from this terminator to a successor dominates that successor,
1894 // store a map from each block in its dominator subtree to it. This lets us
1895 // tell when cloning for a particular successor if a block is dominated by
1896 // some *other* successor with a single data structure. We use this to
1897 // significantly reduce cloning.
1898 SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
1899 for (auto *SuccBB : llvm::concat<BasicBlock *const>(
1900 makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs))
1901 if (SuccBB->getUniquePredecessor() ||
1902 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
1903 return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
1904 }))
1905 visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
1906 DominatingSucc[BB] = SuccBB;
1907 return true;
1908 });
Chandler Carruth693eedb2017-11-17 19:58:36 +00001909
1910 // Split the preheader, so that we know that there is a safe place to insert
1911 // the conditional branch. We will change the preheader to have a conditional
1912 // branch on LoopCond. The original preheader will become the split point
1913 // between the unswitched versions, and we will have a new preheader for the
1914 // original loop.
1915 BasicBlock *SplitBB = L.getLoopPreheader();
1916 BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI);
1917
Chandler Carruth69e68f82018-04-25 00:18:07 +00001918 // Keep track of the dominator tree updates needed.
1919 SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
1920
Chandler Carruth16529962018-06-25 23:32:54 +00001921 // Clone the loop for each unswitched successor.
1922 SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
1923 VMaps.reserve(UnswitchedSuccBBs.size());
1924 SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
1925 for (auto *SuccBB : UnswitchedSuccBBs) {
1926 VMaps.emplace_back(new ValueToValueMapTy());
1927 ClonedPHs[SuccBB] = buildClonedLoopBlocks(
1928 L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
1929 DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI);
1930 }
Chandler Carruth693eedb2017-11-17 19:58:36 +00001931
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00001932 // The stitching of the branched code back together depends on whether we're
1933 // doing full unswitching or not with the exception that we always want to
1934 // nuke the initial terminator placed in the split block.
Chandler Carruth693eedb2017-11-17 19:58:36 +00001935 SplitBB->getTerminator()->eraseFromParent();
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00001936 if (FullUnswitch) {
Chandler Carruthed296542018-07-09 10:30:48 +00001937 // First we need to unhook the successor relationship as we'll be replacing
1938 // the terminator with a direct branch. This is much simpler for branches
1939 // than switches so we handle those first.
Chandler Carruth16529962018-06-25 23:32:54 +00001940 if (BI) {
Chandler Carruthed296542018-07-09 10:30:48 +00001941 // Remove the parent as a predecessor of the unswitched successor.
Chandler Carruth16529962018-06-25 23:32:54 +00001942 assert(UnswitchedSuccBBs.size() == 1 &&
1943 "Only one possible unswitched block for a branch!");
Chandler Carruthed296542018-07-09 10:30:48 +00001944 BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
1945 UnswitchedSuccBB->removePredecessor(ParentBB,
1946 /*DontDeleteUselessPHIs*/ true);
1947 DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
1948 } else {
1949 // Note that we actually want to remove the parent block as a predecessor
1950 // of *every* case successor. The case successor is either unswitched,
1951 // completely eliminating an edge from the parent to that successor, or it
1952 // is a duplicate edge to the retained successor as the retained successor
1953 // is always the default successor and as we'll replace this with a direct
1954 // branch we no longer need the duplicate entries in the PHI nodes.
1955 assert(SI->getDefaultDest() == RetainedSuccBB &&
1956 "Not retaining default successor!");
1957 for (auto &Case : SI->cases())
1958 Case.getCaseSuccessor()->removePredecessor(
1959 ParentBB,
1960 /*DontDeleteUselessPHIs*/ true);
1961
1962 // We need to use the set to populate domtree updates as even when there
1963 // are multiple cases pointing at the same successor we only want to
1964 // remove and insert one edge in the domtree.
1965 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
1966 DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
1967 }
1968
1969 // Now that we've unhooked the successor relationship, splice the terminator
1970 // from the original loop to the split.
1971 SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI);
1972
1973 // Now wire up the terminator to the preheaders.
1974 if (BI) {
Chandler Carruth16529962018-06-25 23:32:54 +00001975 BasicBlock *ClonedPH = ClonedPHs.begin()->second;
1976 BI->setSuccessor(ClonedSucc, ClonedPH);
1977 BI->setSuccessor(1 - ClonedSucc, LoopPH);
1978 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
1979 } else {
1980 assert(SI && "Must either be a branch or switch!");
1981
1982 // Walk the cases and directly update their successors.
Chandler Carruthed296542018-07-09 10:30:48 +00001983 SI->setDefaultDest(LoopPH);
Chandler Carruth16529962018-06-25 23:32:54 +00001984 for (auto &Case : SI->cases())
Chandler Carruthed296542018-07-09 10:30:48 +00001985 if (Case.getCaseSuccessor() == RetainedSuccBB)
1986 Case.setSuccessor(LoopPH);
1987 else
1988 Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);
1989
Chandler Carruth16529962018-06-25 23:32:54 +00001990 // We need to use the set to populate domtree updates as even when there
1991 // are multiple cases pointing at the same successor we only want to
Chandler Carruthed296542018-07-09 10:30:48 +00001992 // remove and insert one edge in the domtree.
Chandler Carruth16529962018-06-25 23:32:54 +00001993 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
1994 DTUpdates.push_back(
1995 {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
Chandler Carruth16529962018-06-25 23:32:54 +00001996 }
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00001997
1998 // Create a new unconditional branch to the continuing block (as opposed to
1999 // the one cloned).
Chandler Carruth16529962018-06-25 23:32:54 +00002000 BranchInst::Create(RetainedSuccBB, ParentBB);
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002001 } else {
Chandler Carruth16529962018-06-25 23:32:54 +00002002 assert(BI && "Only branches have partial unswitching.");
2003 assert(UnswitchedSuccBBs.size() == 1 &&
2004 "Only one possible unswitched block for a branch!");
2005 BasicBlock *ClonedPH = ClonedPHs.begin()->second;
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002006 // When doing a partial unswitch, we have to do a bit more work to build up
2007 // the branch in the split block.
2008 buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction,
2009 *ClonedPH, *LoopPH);
Chandler Carruth16529962018-06-25 23:32:54 +00002010 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002011 }
Chandler Carruth693eedb2017-11-17 19:58:36 +00002012
Chandler Carruth16529962018-06-25 23:32:54 +00002013 // Apply the updates accumulated above to get an up-to-date dominator tree.
Chandler Carruth69e68f82018-04-25 00:18:07 +00002014 DT.applyUpdates(DTUpdates);
2015
Chandler Carruth16529962018-06-25 23:32:54 +00002016 // Now that we have an accurate dominator tree, first delete the dead cloned
2017 // blocks so that we can accurately build any cloned loops. It is important to
2018 // not delete the blocks from the original loop yet because we still want to
2019 // reference the original loop to understand the cloned loop's structure.
2020 deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT);
2021
Chandler Carruth69e68f82018-04-25 00:18:07 +00002022 // Build the cloned loop structure itself. This may be substantially
2023 // different from the original structure due to the simplified CFG. This also
2024 // handles inserting all the cloned blocks into the correct loops.
2025 SmallVector<Loop *, 4> NonChildClonedLoops;
Chandler Carruth16529962018-06-25 23:32:54 +00002026 for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
2027 buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);
Chandler Carruth69e68f82018-04-25 00:18:07 +00002028
Chandler Carruth16529962018-06-25 23:32:54 +00002029 // Now that our cloned loops have been built, we can update the original loop.
2030 // First we delete the dead blocks from it and then we rebuild the loop
2031 // structure taking these deletions into account.
2032 deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI);
Chandler Carruth693eedb2017-11-17 19:58:36 +00002033 SmallVector<Loop *, 4> HoistedLoops;
2034 bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops);
2035
Chandler Carruth69e68f82018-04-25 00:18:07 +00002036 // This transformation has a high risk of corrupting the dominator tree, and
2037 // the below steps to rebuild loop structures will result in hard to debug
2038 // errors in that case so verify that the dominator tree is sane first.
2039 // FIXME: Remove this when the bugs stop showing up and rely on existing
2040 // verification steps.
2041 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
Chandler Carruth693eedb2017-11-17 19:58:36 +00002042
Chandler Carruth16529962018-06-25 23:32:54 +00002043 if (BI) {
2044 // If we unswitched a branch which collapses the condition to a known
2045 // constant we want to replace all the uses of the invariants within both
2046 // the original and cloned blocks. We do this here so that we can use the
2047 // now updated dominator tree to identify which side the users are on.
2048 assert(UnswitchedSuccBBs.size() == 1 &&
2049 "Only one possible unswitched block for a branch!");
2050 BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2051 ConstantInt *UnswitchedReplacement =
2052 Direction ? ConstantInt::getTrue(BI->getContext())
2053 : ConstantInt::getFalse(BI->getContext());
2054 ConstantInt *ContinueReplacement =
2055 Direction ? ConstantInt::getFalse(BI->getContext())
2056 : ConstantInt::getTrue(BI->getContext());
2057 for (Value *Invariant : Invariants)
2058 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end();
2059 UI != UE;) {
2060 // Grab the use and walk past it so we can clobber it in the use list.
2061 Use *U = &*UI++;
2062 Instruction *UserI = dyn_cast<Instruction>(U->getUser());
2063 if (!UserI)
2064 continue;
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002065
Chandler Carruth16529962018-06-25 23:32:54 +00002066 // Replace it with the 'continue' side if in the main loop body, and the
2067 // unswitched if in the cloned blocks.
2068 if (DT.dominates(LoopPH, UserI->getParent()))
2069 U->set(ContinueReplacement);
2070 else if (DT.dominates(ClonedPH, UserI->getParent()))
2071 U->set(UnswitchedReplacement);
2072 }
2073 }
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002074
Chandler Carruth693eedb2017-11-17 19:58:36 +00002075 // We can change which blocks are exit blocks of all the cloned sibling
2076 // loops, the current loop, and any parent loops which shared exit blocks
2077 // with the current loop. As a consequence, we need to re-form LCSSA for
2078 // them. But we shouldn't need to re-form LCSSA for any child loops.
2079 // FIXME: This could be made more efficient by tracking which exit blocks are
2080 // new, and focusing on them, but that isn't likely to be necessary.
2081 //
2082 // In order to reasonably rebuild LCSSA we need to walk inside-out across the
2083 // loop nest and update every loop that could have had its exits changed. We
2084 // also need to cover any intervening loops. We add all of these loops to
2085 // a list and sort them by loop depth to achieve this without updating
2086 // unnecessary loops.
Chandler Carruth92815032018-06-02 01:29:01 +00002087 auto UpdateLoop = [&](Loop &UpdateL) {
Chandler Carruth693eedb2017-11-17 19:58:36 +00002088#ifndef NDEBUG
Chandler Carruth43acdb32018-04-24 10:33:08 +00002089 UpdateL.verifyLoop();
2090 for (Loop *ChildL : UpdateL) {
2091 ChildL->verifyLoop();
Chandler Carruth693eedb2017-11-17 19:58:36 +00002092 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
2093 "Perturbed a child loop's LCSSA form!");
Chandler Carruth43acdb32018-04-24 10:33:08 +00002094 }
Chandler Carruth693eedb2017-11-17 19:58:36 +00002095#endif
Chandler Carruth92815032018-06-02 01:29:01 +00002096 // First build LCSSA for this loop so that we can preserve it when
2097 // forming dedicated exits. We don't want to perturb some other loop's
2098 // LCSSA while doing that CFG edit.
Chandler Carruth693eedb2017-11-17 19:58:36 +00002099 formLCSSA(UpdateL, DT, &LI, nullptr);
Chandler Carruth92815032018-06-02 01:29:01 +00002100
2101 // For loops reached by this loop's original exit blocks we may
2102 // introduced new, non-dedicated exits. At least try to re-form dedicated
2103 // exits for these loops. This may fail if they couldn't have dedicated
2104 // exits to start with.
2105 formDedicatedExitBlocks(&UpdateL, &DT, &LI, /*PreserveLCSSA*/ true);
Chandler Carruth693eedb2017-11-17 19:58:36 +00002106 };
2107
2108 // For non-child cloned loops and hoisted loops, we just need to update LCSSA
2109 // and we can do it in any order as they don't nest relative to each other.
Chandler Carruth92815032018-06-02 01:29:01 +00002110 //
2111 // Also check if any of the loops we have updated have become top-level loops
2112 // as that will necessitate widening the outer loop scope.
2113 for (Loop *UpdatedL :
2114 llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
2115 UpdateLoop(*UpdatedL);
2116 if (!UpdatedL->getParentLoop())
2117 OuterExitL = nullptr;
2118 }
2119 if (IsStillLoop) {
2120 UpdateLoop(L);
2121 if (!L.getParentLoop())
2122 OuterExitL = nullptr;
2123 }
Chandler Carruth693eedb2017-11-17 19:58:36 +00002124
2125 // If the original loop had exit blocks, walk up through the outer most loop
2126 // of those exit blocks to update LCSSA and form updated dedicated exits.
Chandler Carruth92815032018-06-02 01:29:01 +00002127 if (OuterExitL != &L)
Chandler Carruth693eedb2017-11-17 19:58:36 +00002128 for (Loop *OuterL = ParentL; OuterL != OuterExitL;
2129 OuterL = OuterL->getParentLoop())
Chandler Carruth92815032018-06-02 01:29:01 +00002130 UpdateLoop(*OuterL);
Chandler Carruth693eedb2017-11-17 19:58:36 +00002131
2132#ifndef NDEBUG
2133 // Verify the entire loop structure to catch any incorrect updates before we
2134 // progress in the pass pipeline.
2135 LI.verify(DT);
2136#endif
2137
2138 // Now that we've unswitched something, make callbacks to report the changes.
2139 // For that we need to merge together the updated loops and the cloned loops
2140 // and check whether the original loop survived.
2141 SmallVector<Loop *, 4> SibLoops;
2142 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
2143 if (UpdatedL->getParentLoop() == ParentL)
2144 SibLoops.push_back(UpdatedL);
Chandler Carruth71fd2702018-05-30 02:46:45 +00002145 UnswitchCB(IsStillLoop, SibLoops);
Chandler Carruth693eedb2017-11-17 19:58:36 +00002146
2147 ++NumBranches;
2148 return true;
2149}
2150
2151/// Recursively compute the cost of a dominator subtree based on the per-block
2152/// cost map provided.
2153///
2154/// The recursive computation is memozied into the provided DT-indexed cost map
2155/// to allow querying it for most nodes in the domtree without it becoming
2156/// quadratic.
2157static int
2158computeDomSubtreeCost(DomTreeNode &N,
2159 const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap,
2160 SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) {
2161 // Don't accumulate cost (or recurse through) blocks not in our block cost
2162 // map and thus not part of the duplication cost being considered.
2163 auto BBCostIt = BBCostMap.find(N.getBlock());
2164 if (BBCostIt == BBCostMap.end())
2165 return 0;
2166
2167 // Lookup this node to see if we already computed its cost.
2168 auto DTCostIt = DTCostMap.find(&N);
2169 if (DTCostIt != DTCostMap.end())
2170 return DTCostIt->second;
2171
2172 // If not, we have to compute it. We can't use insert above and update
2173 // because computing the cost may insert more things into the map.
2174 int Cost = std::accumulate(
2175 N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) {
2176 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
2177 });
2178 bool Inserted = DTCostMap.insert({&N, Cost}).second;
2179 (void)Inserted;
2180 assert(Inserted && "Should not insert a node while visiting children!");
2181 return Cost;
2182}
2183
Chandler Carruth3897ded2018-07-03 09:13:27 +00002184static bool
2185unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI,
2186 AssumptionCache &AC, TargetTransformInfo &TTI,
2187 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
2188 ScalarEvolution *SE) {
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002189 // Collect all invariant conditions within this loop (as opposed to an inner
2190 // loop which would be handled when visiting that inner loop).
Chandler Carruth60b2e052018-10-18 00:40:26 +00002191 SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4>
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002192 UnswitchCandidates;
2193 for (auto *BB : L.blocks()) {
2194 if (LI.getLoopFor(BB) != &L)
2195 continue;
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002196
Chandler Carruth16529962018-06-25 23:32:54 +00002197 if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2198 // We can only consider fully loop-invariant switch conditions as we need
2199 // to completely eliminate the switch after unswitching.
2200 if (!isa<Constant>(SI->getCondition()) &&
2201 L.isLoopInvariant(SI->getCondition()))
2202 UnswitchCandidates.push_back({SI, {SI->getCondition()}});
2203 continue;
2204 }
2205
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002206 auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002207 if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) ||
2208 BI->getSuccessor(0) == BI->getSuccessor(1))
2209 continue;
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002210
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002211 if (L.isLoopInvariant(BI->getCondition())) {
2212 UnswitchCandidates.push_back({BI, {BI->getCondition()}});
2213 continue;
2214 }
2215
2216 Instruction &CondI = *cast<Instruction>(BI->getCondition());
2217 if (CondI.getOpcode() != Instruction::And &&
2218 CondI.getOpcode() != Instruction::Or)
2219 continue;
2220
2221 TinyPtrVector<Value *> Invariants =
2222 collectHomogenousInstGraphLoopInvariants(L, CondI, LI);
2223 if (Invariants.empty())
2224 continue;
2225
2226 UnswitchCandidates.push_back({BI, std::move(Invariants)});
Chandler Carruth71fd2702018-05-30 02:46:45 +00002227 }
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002228
Chandler Carruth693eedb2017-11-17 19:58:36 +00002229 // If we didn't find any candidates, we're done.
2230 if (UnswitchCandidates.empty())
Chandler Carruth71fd2702018-05-30 02:46:45 +00002231 return false;
Chandler Carruth693eedb2017-11-17 19:58:36 +00002232
Chandler Carruth32e62f92018-04-19 18:44:25 +00002233 // Check if there are irreducible CFG cycles in this loop. If so, we cannot
2234 // easily unswitch non-trivial edges out of the loop. Doing so might turn the
2235 // irreducible control flow into reducible control flow and introduce new
2236 // loops "out of thin air". If we ever discover important use cases for doing
2237 // this, we can add support to loop unswitch, but it is a lot of complexity
Hiroshi Inouef2096492018-06-14 05:41:49 +00002238 // for what seems little or no real world benefit.
Chandler Carruth32e62f92018-04-19 18:44:25 +00002239 LoopBlocksRPO RPOT(&L);
2240 RPOT.perform(&LI);
2241 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
Chandler Carruth71fd2702018-05-30 02:46:45 +00002242 return false;
Chandler Carruth32e62f92018-04-19 18:44:25 +00002243
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002244 LLVM_DEBUG(
2245 dbgs() << "Considering " << UnswitchCandidates.size()
2246 << " non-trivial loop invariant conditions for unswitching.\n");
Chandler Carruth693eedb2017-11-17 19:58:36 +00002247
2248 // Given that unswitching these terminators will require duplicating parts of
2249 // the loop, so we need to be able to model that cost. Compute the ephemeral
2250 // values and set up a data structure to hold per-BB costs. We cache each
2251 // block's cost so that we don't recompute this when considering different
2252 // subsets of the loop for duplication during unswitching.
2253 SmallPtrSet<const Value *, 4> EphValues;
2254 CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
2255 SmallDenseMap<BasicBlock *, int, 4> BBCostMap;
2256
2257 // Compute the cost of each block, as well as the total loop cost. Also, bail
2258 // out if we see instructions which are incompatible with loop unswitching
2259 // (convergent, noduplicate, or cross-basic-block tokens).
2260 // FIXME: We might be able to safely handle some of these in non-duplicated
2261 // regions.
2262 int LoopCost = 0;
2263 for (auto *BB : L.blocks()) {
2264 int Cost = 0;
2265 for (auto &I : *BB) {
2266 if (EphValues.count(&I))
2267 continue;
2268
2269 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
Chandler Carruth71fd2702018-05-30 02:46:45 +00002270 return false;
Chandler Carruth693eedb2017-11-17 19:58:36 +00002271 if (auto CS = CallSite(&I))
2272 if (CS.isConvergent() || CS.cannotDuplicate())
Chandler Carruth71fd2702018-05-30 02:46:45 +00002273 return false;
Chandler Carruth693eedb2017-11-17 19:58:36 +00002274
2275 Cost += TTI.getUserCost(&I);
2276 }
2277 assert(Cost >= 0 && "Must not have negative costs!");
2278 LoopCost += Cost;
2279 assert(LoopCost >= 0 && "Must not have negative loop costs!");
2280 BBCostMap[BB] = Cost;
2281 }
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002282 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n");
Chandler Carruth693eedb2017-11-17 19:58:36 +00002283
2284 // Now we find the best candidate by searching for the one with the following
2285 // properties in order:
2286 //
2287 // 1) An unswitching cost below the threshold
2288 // 2) The smallest number of duplicated unswitch candidates (to avoid
2289 // creating redundant subsequent unswitching)
2290 // 3) The smallest cost after unswitching.
2291 //
2292 // We prioritize reducing fanout of unswitch candidates provided the cost
2293 // remains below the threshold because this has a multiplicative effect.
2294 //
2295 // This requires memoizing each dominator subtree to avoid redundant work.
2296 //
2297 // FIXME: Need to actually do the number of candidates part above.
2298 SmallDenseMap<DomTreeNode *, int, 4> DTCostMap;
2299 // Given a terminator which might be unswitched, computes the non-duplicated
2300 // cost for that terminator.
Chandler Carruth60b2e052018-10-18 00:40:26 +00002301 auto ComputeUnswitchedCost = [&](Instruction &TI, bool FullUnswitch) {
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002302 BasicBlock &BB = *TI.getParent();
Chandler Carruth693eedb2017-11-17 19:58:36 +00002303 SmallPtrSet<BasicBlock *, 4> Visited;
2304
2305 int Cost = LoopCost;
2306 for (BasicBlock *SuccBB : successors(&BB)) {
2307 // Don't count successors more than once.
2308 if (!Visited.insert(SuccBB).second)
2309 continue;
2310
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002311 // If this is a partial unswitch candidate, then it must be a conditional
2312 // branch with a condition of either `or` or `and`. In that case, one of
2313 // the successors is necessarily duplicated, so don't even try to remove
2314 // its cost.
2315 if (!FullUnswitch) {
2316 auto &BI = cast<BranchInst>(TI);
2317 if (cast<Instruction>(BI.getCondition())->getOpcode() ==
2318 Instruction::And) {
2319 if (SuccBB == BI.getSuccessor(1))
2320 continue;
2321 } else {
2322 assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
2323 Instruction::Or &&
2324 "Only `and` and `or` conditions can result in a partial "
2325 "unswitch!");
2326 if (SuccBB == BI.getSuccessor(0))
2327 continue;
2328 }
2329 }
2330
Chandler Carruth693eedb2017-11-17 19:58:36 +00002331 // This successor's domtree will not need to be duplicated after
2332 // unswitching if the edge to the successor dominates it (and thus the
2333 // entire tree). This essentially means there is no other path into this
2334 // subtree and so it will end up live in only one clone of the loop.
2335 if (SuccBB->getUniquePredecessor() ||
2336 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2337 return PredBB == &BB || DT.dominates(SuccBB, PredBB);
2338 })) {
2339 Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
2340 assert(Cost >= 0 &&
2341 "Non-duplicated cost should never exceed total loop cost!");
2342 }
2343 }
2344
2345 // Now scale the cost by the number of unique successors minus one. We
2346 // subtract one because there is already at least one copy of the entire
2347 // loop. This is computing the new cost of unswitching a condition.
2348 assert(Visited.size() > 1 &&
2349 "Cannot unswitch a condition without multiple distinct successors!");
2350 return Cost * (Visited.size() - 1);
2351 };
Chandler Carruth60b2e052018-10-18 00:40:26 +00002352 Instruction *BestUnswitchTI = nullptr;
Chandler Carruth693eedb2017-11-17 19:58:36 +00002353 int BestUnswitchCost;
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002354 ArrayRef<Value *> BestUnswitchInvariants;
2355 for (auto &TerminatorAndInvariants : UnswitchCandidates) {
Chandler Carruth60b2e052018-10-18 00:40:26 +00002356 Instruction &TI = *TerminatorAndInvariants.first;
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002357 ArrayRef<Value *> Invariants = TerminatorAndInvariants.second;
2358 BranchInst *BI = dyn_cast<BranchInst>(&TI);
Chandler Carruth16529962018-06-25 23:32:54 +00002359 int CandidateCost = ComputeUnswitchedCost(
2360 TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 &&
2361 Invariants[0] == BI->getCondition()));
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002362 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002363 << " for unswitch candidate: " << TI << "\n");
Chandler Carruth693eedb2017-11-17 19:58:36 +00002364 if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) {
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002365 BestUnswitchTI = &TI;
Chandler Carruth693eedb2017-11-17 19:58:36 +00002366 BestUnswitchCost = CandidateCost;
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002367 BestUnswitchInvariants = Invariants;
Chandler Carruth693eedb2017-11-17 19:58:36 +00002368 }
2369 }
2370
Chandler Carruth71fd2702018-05-30 02:46:45 +00002371 if (BestUnswitchCost >= UnswitchThreshold) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002372 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: "
2373 << BestUnswitchCost << "\n");
Chandler Carruth71fd2702018-05-30 02:46:45 +00002374 return false;
Chandler Carruth693eedb2017-11-17 19:58:36 +00002375 }
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002376
Chandler Carruth71fd2702018-05-30 02:46:45 +00002377 LLVM_DEBUG(dbgs() << " Trying to unswitch non-trivial (cost = "
Chandler Carruth16529962018-06-25 23:32:54 +00002378 << BestUnswitchCost << ") terminator: " << *BestUnswitchTI
2379 << "\n");
2380 return unswitchNontrivialInvariants(
Chandler Carruth3897ded2018-07-03 09:13:27 +00002381 L, *BestUnswitchTI, BestUnswitchInvariants, DT, LI, AC, UnswitchCB, SE);
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002382}
2383
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002384/// Unswitch control flow predicated on loop invariant conditions.
2385///
2386/// This first hoists all branches or switches which are trivial (IE, do not
2387/// require duplicating any part of the loop) out of the loop body. It then
2388/// looks at other loop invariant control flows and tries to unswitch those as
2389/// well by cloning the loop if the result is small enough.
Chandler Carruth3897ded2018-07-03 09:13:27 +00002390///
2391/// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also
2392/// updated based on the unswitch.
2393///
2394/// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
2395/// true, we will attempt to do non-trivial unswitching as well as trivial
2396/// unswitching.
2397///
2398/// The `UnswitchCB` callback provided will be run after unswitching is
2399/// complete, with the first parameter set to `true` if the provided loop
2400/// remains a loop, and a list of new sibling loops created.
2401///
2402/// If `SE` is non-null, we will update that analysis based on the unswitching
2403/// done.
2404static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI,
2405 AssumptionCache &AC, TargetTransformInfo &TTI,
2406 bool NonTrivial,
2407 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
2408 ScalarEvolution *SE) {
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002409 assert(L.isRecursivelyLCSSAForm(DT, LI) &&
2410 "Loops must be in LCSSA form before unswitching.");
2411 bool Changed = false;
2412
2413 // Must be in loop simplified form: we need a preheader and dedicated exits.
2414 if (!L.isLoopSimplifyForm())
2415 return false;
2416
2417 // Try trivial unswitch first before loop over other basic blocks in the loop.
Chandler Carruth3897ded2018-07-03 09:13:27 +00002418 if (unswitchAllTrivialConditions(L, DT, LI, SE)) {
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002419 // If we unswitched successfully we will want to clean up the loop before
2420 // processing it further so just mark it as unswitched and return.
2421 UnswitchCB(/*CurrentLoopValid*/ true, {});
2422 return true;
2423 }
2424
2425 // If we're not doing non-trivial unswitching, we're done. We both accept
2426 // a parameter but also check a local flag that can be used for testing
2427 // a debugging.
2428 if (!NonTrivial && !EnableNonTrivialUnswitch)
2429 return false;
2430
2431 // For non-trivial unswitching, because it often creates new loops, we rely on
2432 // the pass manager to iterate on the loops rather than trying to immediately
2433 // reach a fixed point. There is no substantial advantage to iterating
2434 // internally, and if any of the new loops are simplified enough to contain
2435 // trivial unswitching we want to prefer those.
2436
2437 // Try to unswitch the best invariant condition. We prefer this full unswitch to
2438 // a partial unswitch when possible below the threshold.
Chandler Carruth3897ded2018-07-03 09:13:27 +00002439 if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE))
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002440 return true;
2441
2442 // No other opportunities to unswitch.
2443 return Changed;
2444}
2445
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002446PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
2447 LoopStandardAnalysisResults &AR,
2448 LPMUpdater &U) {
2449 Function &F = *L.getHeader()->getParent();
2450 (void)F;
2451
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002452 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L
2453 << "\n");
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002454
Chandler Carruth693eedb2017-11-17 19:58:36 +00002455 // Save the current loop name in a variable so that we can report it even
2456 // after it has been deleted.
2457 std::string LoopName = L.getName();
2458
Chandler Carruth71fd2702018-05-30 02:46:45 +00002459 auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
2460 ArrayRef<Loop *> NewLoops) {
Chandler Carruth693eedb2017-11-17 19:58:36 +00002461 // If we did a non-trivial unswitch, we have added new (cloned) loops.
Chandler Carruth71fd2702018-05-30 02:46:45 +00002462 if (!NewLoops.empty())
2463 U.addSiblingLoops(NewLoops);
Chandler Carruth693eedb2017-11-17 19:58:36 +00002464
2465 // If the current loop remains valid, we should revisit it to catch any
2466 // other unswitch opportunities. Otherwise, we need to mark it as deleted.
2467 if (CurrentLoopValid)
2468 U.revisitCurrentLoop();
2469 else
2470 U.markLoopAsDeleted(L, LoopName);
2471 };
2472
Chandler Carruth3897ded2018-07-03 09:13:27 +00002473 if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB,
2474 &AR.SE))
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002475 return PreservedAnalyses::all();
2476
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002477 // Historically this pass has had issues with the dominator tree so verify it
2478 // in asserts builds.
David Green7c35de12018-02-28 11:00:08 +00002479 assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002480 return getLoopPassPreservedAnalyses();
2481}
2482
2483namespace {
Eugene Zelenkoa369a452017-05-16 23:10:25 +00002484
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002485class SimpleLoopUnswitchLegacyPass : public LoopPass {
Chandler Carruth693eedb2017-11-17 19:58:36 +00002486 bool NonTrivial;
2487
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002488public:
2489 static char ID; // Pass ID, replacement for typeid
Eugene Zelenkoa369a452017-05-16 23:10:25 +00002490
Chandler Carruth693eedb2017-11-17 19:58:36 +00002491 explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
2492 : LoopPass(ID), NonTrivial(NonTrivial) {
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002493 initializeSimpleLoopUnswitchLegacyPassPass(
2494 *PassRegistry::getPassRegistry());
2495 }
2496
2497 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
2498
2499 void getAnalysisUsage(AnalysisUsage &AU) const override {
2500 AU.addRequired<AssumptionCacheTracker>();
Chandler Carruth693eedb2017-11-17 19:58:36 +00002501 AU.addRequired<TargetTransformInfoWrapperPass>();
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002502 getLoopAnalysisUsage(AU);
2503 }
2504};
Eugene Zelenkoa369a452017-05-16 23:10:25 +00002505
2506} // end anonymous namespace
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002507
2508bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
2509 if (skipLoop(L))
2510 return false;
2511
2512 Function &F = *L->getHeader()->getParent();
2513
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002514 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L
2515 << "\n");
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002516
2517 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2518 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2519 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
Chandler Carruth693eedb2017-11-17 19:58:36 +00002520 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002521
Chandler Carruth3897ded2018-07-03 09:13:27 +00002522 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
2523 auto *SE = SEWP ? &SEWP->getSE() : nullptr;
2524
Chandler Carruth71fd2702018-05-30 02:46:45 +00002525 auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid,
2526 ArrayRef<Loop *> NewLoops) {
Chandler Carruth693eedb2017-11-17 19:58:36 +00002527 // If we did a non-trivial unswitch, we have added new (cloned) loops.
2528 for (auto *NewL : NewLoops)
2529 LPM.addLoop(*NewL);
2530
2531 // If the current loop remains valid, re-add it to the queue. This is
2532 // a little wasteful as we'll finish processing the current loop as well,
2533 // but it is the best we can do in the old PM.
2534 if (CurrentLoopValid)
2535 LPM.addLoop(*L);
2536 else
2537 LPM.markLoopAsDeleted(*L);
2538 };
2539
Chandler Carruth3897ded2018-07-03 09:13:27 +00002540 bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE);
Chandler Carruth693eedb2017-11-17 19:58:36 +00002541
2542 // If anything was unswitched, also clear any cached information about this
2543 // loop.
2544 LPM.deleteSimpleAnalysisLoop(L);
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002545
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002546 // Historically this pass has had issues with the dominator tree so verify it
2547 // in asserts builds.
David Green7c35de12018-02-28 11:00:08 +00002548 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2549
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002550 return Changed;
2551}
2552
2553char SimpleLoopUnswitchLegacyPass::ID = 0;
2554INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
2555 "Simple unswitch loops", false, false)
2556INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
Chandler Carruth693eedb2017-11-17 19:58:36 +00002557INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2558INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002559INITIALIZE_PASS_DEPENDENCY(LoopPass)
2560INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
2561INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
2562 "Simple unswitch loops", false, false)
2563
Chandler Carruth693eedb2017-11-17 19:58:36 +00002564Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
2565 return new SimpleLoopUnswitchLegacyPass(NonTrivial);
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002566}