blob: 0931eb8d8bfbc7581545b09b556723e94bdcb3ec [file] [log] [blame]
Eugene Zelenko4d060b72017-07-29 00:56:56 +00001//===- HexagonLoopIdiomRecognition.cpp ------------------------------------===//
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#define DEBUG_TYPE "hexagon-lir"
11
Eugene Zelenko4d060b72017-07-29 00:56:56 +000012#include "llvm/ADT/APInt.h"
13#include "llvm/ADT/DenseMap.h"
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +000014#include "llvm/ADT/SetVector.h"
Eugene Zelenko4d060b72017-07-29 00:56:56 +000015#include "llvm/ADT/SmallPtrSet.h"
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +000016#include "llvm/ADT/SmallSet.h"
Eugene Zelenko4d060b72017-07-29 00:56:56 +000017#include "llvm/ADT/SmallVector.h"
18#include "llvm/ADT/StringRef.h"
19#include "llvm/ADT/Triple.h"
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +000020#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/InstructionSimplify.h"
Eugene Zelenko4d060b72017-07-29 00:56:56 +000022#include "llvm/Analysis/LoopInfo.h"
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +000023#include "llvm/Analysis/LoopPass.h"
Eugene Zelenko4d060b72017-07-29 00:56:56 +000024#include "llvm/Analysis/MemoryLocation.h"
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +000025#include "llvm/Analysis/ScalarEvolution.h"
26#include "llvm/Analysis/ScalarEvolutionExpander.h"
27#include "llvm/Analysis/ScalarEvolutionExpressions.h"
28#include "llvm/Analysis/TargetLibraryInfo.h"
29#include "llvm/Analysis/ValueTracking.h"
Eugene Zelenko4d060b72017-07-29 00:56:56 +000030#include "llvm/IR/Attributes.h"
31#include "llvm/IR/BasicBlock.h"
32#include "llvm/IR/Constant.h"
33#include "llvm/IR/Constants.h"
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +000034#include "llvm/IR/DataLayout.h"
Eugene Zelenko4d060b72017-07-29 00:56:56 +000035#include "llvm/IR/DebugLoc.h"
36#include "llvm/IR/DerivedTypes.h"
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +000037#include "llvm/IR/Dominators.h"
Eugene Zelenko4d060b72017-07-29 00:56:56 +000038#include "llvm/IR/Function.h"
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +000039#include "llvm/IR/IRBuilder.h"
Eugene Zelenko4d060b72017-07-29 00:56:56 +000040#include "llvm/IR/InstrTypes.h"
41#include "llvm/IR/Instruction.h"
42#include "llvm/IR/Instructions.h"
43#include "llvm/IR/IntrinsicInst.h"
44#include "llvm/IR/Intrinsics.h"
45#include "llvm/IR/Module.h"
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +000046#include "llvm/IR/PatternMatch.h"
Eugene Zelenko4d060b72017-07-29 00:56:56 +000047#include "llvm/IR/Type.h"
48#include "llvm/IR/User.h"
49#include "llvm/IR/Value.h"
50#include "llvm/Pass.h"
51#include "llvm/Support/Casting.h"
52#include "llvm/Support/CommandLine.h"
53#include "llvm/Support/Compiler.h"
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +000054#include "llvm/Support/Debug.h"
Eugene Zelenko4d060b72017-07-29 00:56:56 +000055#include "llvm/Support/ErrorHandling.h"
Craig Topperb45eabc2017-04-26 16:39:58 +000056#include "llvm/Support/KnownBits.h"
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +000057#include "llvm/Support/raw_ostream.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000058#include "llvm/Transforms/Scalar.h"
59#include "llvm/Transforms/Utils/Local.h"
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +000060#include <algorithm>
61#include <array>
Eugene Zelenko4d060b72017-07-29 00:56:56 +000062#include <cassert>
63#include <cstdint>
64#include <cstdlib>
65#include <deque>
66#include <functional>
67#include <iterator>
68#include <map>
69#include <set>
70#include <utility>
71#include <vector>
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +000072
73using namespace llvm;
74
75static cl::opt<bool> DisableMemcpyIdiom("disable-memcpy-idiom",
76 cl::Hidden, cl::init(false),
77 cl::desc("Disable generation of memcpy in loop idiom recognition"));
78
79static cl::opt<bool> DisableMemmoveIdiom("disable-memmove-idiom",
80 cl::Hidden, cl::init(false),
81 cl::desc("Disable generation of memmove in loop idiom recognition"));
82
83static cl::opt<unsigned> RuntimeMemSizeThreshold("runtime-mem-idiom-threshold",
84 cl::Hidden, cl::init(0), cl::desc("Threshold (in bytes) for the runtime "
85 "check guarding the memmove."));
86
87static cl::opt<unsigned> CompileTimeMemSizeThreshold(
88 "compile-time-mem-idiom-threshold", cl::Hidden, cl::init(64),
89 cl::desc("Threshold (in bytes) to perform the transformation, if the "
90 "runtime loop count (mem transfer size) is known at compile-time."));
91
92static cl::opt<bool> OnlyNonNestedMemmove("only-nonnested-memmove-idiom",
93 cl::Hidden, cl::init(true),
94 cl::desc("Only enable generating memmove in non-nested loops"));
95
96cl::opt<bool> HexagonVolatileMemcpy("disable-hexagon-volatile-memcpy",
97 cl::Hidden, cl::init(false),
98 cl::desc("Enable Hexagon-specific memcpy for volatile destination."));
99
Krzysztof Parzyszek51fd5402017-06-01 18:00:47 +0000100static cl::opt<unsigned> SimplifyLimit("hlir-simplify-limit", cl::init(10000),
101 cl::Hidden, cl::desc("Maximum number of simplification steps in HLIR"));
102
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000103static const char *HexagonVolatileMemcpyName
104 = "hexagon_memcpy_forward_vp4cp4n2";
105
106
107namespace llvm {
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000108
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000109 void initializeHexagonLoopIdiomRecognizePass(PassRegistry&);
110 Pass *createHexagonLoopIdiomPass();
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000111
112} // end namespace llvm
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000113
114namespace {
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000115
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000116 class HexagonLoopIdiomRecognize : public LoopPass {
117 public:
118 static char ID;
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000119
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000120 explicit HexagonLoopIdiomRecognize() : LoopPass(ID) {
121 initializeHexagonLoopIdiomRecognizePass(*PassRegistry::getPassRegistry());
122 }
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000123
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000124 StringRef getPassName() const override {
125 return "Recognize Hexagon-specific loop idioms";
126 }
127
128 void getAnalysisUsage(AnalysisUsage &AU) const override {
129 AU.addRequired<LoopInfoWrapperPass>();
130 AU.addRequiredID(LoopSimplifyID);
131 AU.addRequiredID(LCSSAID);
132 AU.addRequired<AAResultsWrapperPass>();
133 AU.addPreserved<AAResultsWrapperPass>();
134 AU.addRequired<ScalarEvolutionWrapperPass>();
135 AU.addRequired<DominatorTreeWrapperPass>();
136 AU.addRequired<TargetLibraryInfoWrapperPass>();
137 AU.addPreserved<TargetLibraryInfoWrapperPass>();
138 }
139
140 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
141
142 private:
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000143 int getSCEVStride(const SCEVAddRecExpr *StoreEv);
144 bool isLegalStore(Loop *CurLoop, StoreInst *SI);
145 void collectStores(Loop *CurLoop, BasicBlock *BB,
146 SmallVectorImpl<StoreInst*> &Stores);
147 bool processCopyingStore(Loop *CurLoop, StoreInst *SI, const SCEV *BECount);
148 bool coverLoop(Loop *L, SmallVectorImpl<Instruction*> &Insts) const;
149 bool runOnLoopBlock(Loop *CurLoop, BasicBlock *BB, const SCEV *BECount,
150 SmallVectorImpl<BasicBlock*> &ExitBlocks);
151 bool runOnCountableLoop(Loop *L);
152
153 AliasAnalysis *AA;
154 const DataLayout *DL;
155 DominatorTree *DT;
156 LoopInfo *LF;
157 const TargetLibraryInfo *TLI;
158 ScalarEvolution *SE;
159 bool HasMemcpy, HasMemmove;
160 };
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000161
162 struct Simplifier {
Krzysztof Parzyszek385a4e042017-11-07 17:05:54 +0000163 struct Rule {
164 using FuncType = std::function<Value* (Instruction*, LLVMContext&)>;
165 Rule(StringRef N, FuncType F) : Name(N), Fn(F) {}
166 StringRef Name; // For debugging.
167 FuncType Fn;
168 };
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000169
Krzysztof Parzyszek385a4e042017-11-07 17:05:54 +0000170 void addRule(StringRef N, const Rule::FuncType &F) {
171 Rules.push_back(Rule(N, F));
172 }
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000173
174 private:
175 struct WorkListType {
176 WorkListType() = default;
177
178 void push_back(Value* V) {
179 // Do not push back duplicates.
180 if (!S.count(V)) { Q.push_back(V); S.insert(V); }
181 }
182
183 Value *pop_front_val() {
184 Value *V = Q.front(); Q.pop_front(); S.erase(V);
185 return V;
186 }
187
188 bool empty() const { return Q.empty(); }
189
190 private:
191 std::deque<Value*> Q;
192 std::set<Value*> S;
193 };
194
195 using ValueSetType = std::set<Value *>;
196
197 std::vector<Rule> Rules;
198
199 public:
200 struct Context {
201 using ValueMapType = DenseMap<Value *, Value *>;
202
203 Value *Root;
204 ValueSetType Used; // The set of all cloned values used by Root.
205 ValueSetType Clones; // The set of all cloned values.
206 LLVMContext &Ctx;
207
208 Context(Instruction *Exp)
209 : Ctx(Exp->getParent()->getParent()->getContext()) {
210 initialize(Exp);
211 }
212
213 ~Context() { cleanup(); }
214
215 void print(raw_ostream &OS, const Value *V) const;
216 Value *materialize(BasicBlock *B, BasicBlock::iterator At);
217
218 private:
219 friend struct Simplifier;
220
221 void initialize(Instruction *Exp);
222 void cleanup();
223
224 template <typename FuncT> void traverse(Value *V, FuncT F);
225 void record(Value *V);
226 void use(Value *V);
227 void unuse(Value *V);
228
229 bool equal(const Instruction *I, const Instruction *J) const;
230 Value *find(Value *Tree, Value *Sub) const;
231 Value *subst(Value *Tree, Value *OldV, Value *NewV);
232 void replace(Value *OldV, Value *NewV);
233 void link(Instruction *I, BasicBlock *B, BasicBlock::iterator At);
234 };
235
236 Value *simplify(Context &C);
237 };
238
239 struct PE {
240 PE(const Simplifier::Context &c, Value *v = nullptr) : C(c), V(v) {}
241
242 const Simplifier::Context &C;
243 const Value *V;
244 };
245
246 raw_ostream &operator<< (raw_ostream &OS, const PE &P) LLVM_ATTRIBUTE_USED;
247 raw_ostream &operator<< (raw_ostream &OS, const PE &P) {
248 P.C.print(OS, P.V ? P.V : P.C.Root);
249 return OS;
250 }
251
252} // end anonymous namespace
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000253
254char HexagonLoopIdiomRecognize::ID = 0;
255
256INITIALIZE_PASS_BEGIN(HexagonLoopIdiomRecognize, "hexagon-loop-idiom",
257 "Recognize Hexagon-specific loop idioms", false, false)
258INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
259INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
260INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
261INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
262INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
263INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
264INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
265INITIALIZE_PASS_END(HexagonLoopIdiomRecognize, "hexagon-loop-idiom",
266 "Recognize Hexagon-specific loop idioms", false, false)
267
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000268template <typename FuncT>
269void Simplifier::Context::traverse(Value *V, FuncT F) {
270 WorkListType Q;
271 Q.push_back(V);
272
273 while (!Q.empty()) {
Krzysztof Parzyszek10fbac02017-03-23 23:01:22 +0000274 Instruction *U = dyn_cast<Instruction>(Q.pop_front_val());
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000275 if (!U || U->getParent())
276 continue;
277 if (!F(U))
278 continue;
279 for (Value *Op : U->operands())
280 Q.push_back(Op);
281 }
282}
283
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000284void Simplifier::Context::print(raw_ostream &OS, const Value *V) const {
285 const auto *U = dyn_cast<const Instruction>(V);
286 if (!U) {
287 OS << V << '(' << *V << ')';
288 return;
289 }
290
291 if (U->getParent()) {
292 OS << U << '(';
293 U->printAsOperand(OS, true);
294 OS << ')';
295 return;
296 }
297
298 unsigned N = U->getNumOperands();
299 if (N != 0)
300 OS << U << '(';
301 OS << U->getOpcodeName();
302 for (const Value *Op : U->operands()) {
303 OS << ' ';
304 print(OS, Op);
305 }
306 if (N != 0)
307 OS << ')';
308}
309
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000310void Simplifier::Context::initialize(Instruction *Exp) {
311 // Perform a deep clone of the expression, set Root to the root
312 // of the clone, and build a map from the cloned values to the
313 // original ones.
314 ValueMapType M;
315 BasicBlock *Block = Exp->getParent();
316 WorkListType Q;
317 Q.push_back(Exp);
318
319 while (!Q.empty()) {
Krzysztof Parzyszek10fbac02017-03-23 23:01:22 +0000320 Value *V = Q.pop_front_val();
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000321 if (M.find(V) != M.end())
322 continue;
323 if (Instruction *U = dyn_cast<Instruction>(V)) {
324 if (isa<PHINode>(U) || U->getParent() != Block)
325 continue;
326 for (Value *Op : U->operands())
327 Q.push_back(Op);
328 M.insert({U, U->clone()});
329 }
330 }
331
332 for (std::pair<Value*,Value*> P : M) {
333 Instruction *U = cast<Instruction>(P.second);
334 for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) {
335 auto F = M.find(U->getOperand(i));
336 if (F != M.end())
337 U->setOperand(i, F->second);
338 }
339 }
340
341 auto R = M.find(Exp);
342 assert(R != M.end());
343 Root = R->second;
344
345 record(Root);
346 use(Root);
347}
348
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000349void Simplifier::Context::record(Value *V) {
350 auto Record = [this](Instruction *U) -> bool {
351 Clones.insert(U);
352 return true;
353 };
354 traverse(V, Record);
355}
356
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000357void Simplifier::Context::use(Value *V) {
358 auto Use = [this](Instruction *U) -> bool {
359 Used.insert(U);
360 return true;
361 };
362 traverse(V, Use);
363}
364
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000365void Simplifier::Context::unuse(Value *V) {
366 if (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != nullptr)
367 return;
368
369 auto Unuse = [this](Instruction *U) -> bool {
370 if (!U->use_empty())
371 return false;
372 Used.erase(U);
373 return true;
374 };
375 traverse(V, Unuse);
376}
377
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000378Value *Simplifier::Context::subst(Value *Tree, Value *OldV, Value *NewV) {
379 if (Tree == OldV)
380 return NewV;
381 if (OldV == NewV)
382 return Tree;
383
384 WorkListType Q;
385 Q.push_back(Tree);
386 while (!Q.empty()) {
Krzysztof Parzyszek10fbac02017-03-23 23:01:22 +0000387 Instruction *U = dyn_cast<Instruction>(Q.pop_front_val());
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000388 // If U is not an instruction, or it's not a clone, skip it.
389 if (!U || U->getParent())
390 continue;
391 for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) {
392 Value *Op = U->getOperand(i);
393 if (Op == OldV) {
394 U->setOperand(i, NewV);
395 unuse(OldV);
396 } else {
397 Q.push_back(Op);
398 }
399 }
400 }
401 return Tree;
402}
403
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000404void Simplifier::Context::replace(Value *OldV, Value *NewV) {
405 if (Root == OldV) {
406 Root = NewV;
407 use(Root);
408 return;
409 }
410
411 // NewV may be a complex tree that has just been created by one of the
412 // transformation rules. We need to make sure that it is commoned with
413 // the existing Root to the maximum extent possible.
414 // Identify all subtrees of NewV (including NewV itself) that have
415 // equivalent counterparts in Root, and replace those subtrees with
416 // these counterparts.
417 WorkListType Q;
418 Q.push_back(NewV);
419 while (!Q.empty()) {
Krzysztof Parzyszek10fbac02017-03-23 23:01:22 +0000420 Value *V = Q.pop_front_val();
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000421 Instruction *U = dyn_cast<Instruction>(V);
422 if (!U || U->getParent())
423 continue;
424 if (Value *DupV = find(Root, V)) {
425 if (DupV != V)
426 NewV = subst(NewV, V, DupV);
427 } else {
428 for (Value *Op : U->operands())
429 Q.push_back(Op);
430 }
431 }
432
433 // Now, simply replace OldV with NewV in Root.
434 Root = subst(Root, OldV, NewV);
435 use(Root);
436}
437
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000438void Simplifier::Context::cleanup() {
439 for (Value *V : Clones) {
440 Instruction *U = cast<Instruction>(V);
441 if (!U->getParent())
442 U->dropAllReferences();
443 }
444
445 for (Value *V : Clones) {
446 Instruction *U = cast<Instruction>(V);
447 if (!U->getParent())
Reid Kleckner96ab8722017-05-18 17:24:10 +0000448 U->deleteValue();
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000449 }
450}
451
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000452bool Simplifier::Context::equal(const Instruction *I,
453 const Instruction *J) const {
454 if (I == J)
455 return true;
456 if (!I->isSameOperationAs(J))
457 return false;
458 if (isa<PHINode>(I))
459 return I->isIdenticalTo(J);
460
461 for (unsigned i = 0, n = I->getNumOperands(); i != n; ++i) {
462 Value *OpI = I->getOperand(i), *OpJ = J->getOperand(i);
463 if (OpI == OpJ)
464 continue;
465 auto *InI = dyn_cast<const Instruction>(OpI);
466 auto *InJ = dyn_cast<const Instruction>(OpJ);
467 if (InI && InJ) {
468 if (!equal(InI, InJ))
469 return false;
470 } else if (InI != InJ || !InI)
471 return false;
472 }
473 return true;
474}
475
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000476Value *Simplifier::Context::find(Value *Tree, Value *Sub) const {
477 Instruction *SubI = dyn_cast<Instruction>(Sub);
478 WorkListType Q;
479 Q.push_back(Tree);
480
481 while (!Q.empty()) {
Krzysztof Parzyszek10fbac02017-03-23 23:01:22 +0000482 Value *V = Q.pop_front_val();
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000483 if (V == Sub)
484 return V;
485 Instruction *U = dyn_cast<Instruction>(V);
486 if (!U || U->getParent())
487 continue;
488 if (SubI && equal(SubI, U))
489 return U;
490 assert(!isa<PHINode>(U));
491 for (Value *Op : U->operands())
492 Q.push_back(Op);
493 }
494 return nullptr;
495}
496
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000497void Simplifier::Context::link(Instruction *I, BasicBlock *B,
498 BasicBlock::iterator At) {
499 if (I->getParent())
500 return;
501
502 for (Value *Op : I->operands()) {
503 if (Instruction *OpI = dyn_cast<Instruction>(Op))
504 link(OpI, B, At);
505 }
506
507 B->getInstList().insert(At, I);
508}
509
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000510Value *Simplifier::Context::materialize(BasicBlock *B,
511 BasicBlock::iterator At) {
512 if (Instruction *RootI = dyn_cast<Instruction>(Root))
513 link(RootI, B, At);
514 return Root;
515}
516
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000517Value *Simplifier::simplify(Context &C) {
518 WorkListType Q;
519 Q.push_back(C.Root);
Krzysztof Parzyszek10fbac02017-03-23 23:01:22 +0000520 unsigned Count = 0;
Krzysztof Parzyszek51fd5402017-06-01 18:00:47 +0000521 const unsigned Limit = SimplifyLimit;
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000522
523 while (!Q.empty()) {
Krzysztof Parzyszek10fbac02017-03-23 23:01:22 +0000524 if (Count++ >= Limit)
525 break;
526 Instruction *U = dyn_cast<Instruction>(Q.pop_front_val());
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000527 if (!U || U->getParent() || !C.Used.count(U))
528 continue;
529 bool Changed = false;
530 for (Rule &R : Rules) {
Krzysztof Parzyszek385a4e042017-11-07 17:05:54 +0000531 Value *W = R.Fn(U, C.Ctx);
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000532 if (!W)
533 continue;
534 Changed = true;
535 C.record(W);
536 C.replace(U, W);
537 Q.push_back(C.Root);
538 break;
539 }
540 if (!Changed) {
541 for (Value *Op : U->operands())
542 Q.push_back(Op);
543 }
544 }
Krzysztof Parzyszek51fd5402017-06-01 18:00:47 +0000545 return Count < Limit ? C.Root : nullptr;
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000546}
547
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000548//===----------------------------------------------------------------------===//
549//
550// Implementation of PolynomialMultiplyRecognize
551//
552//===----------------------------------------------------------------------===//
553
554namespace {
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000555
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000556 class PolynomialMultiplyRecognize {
557 public:
558 explicit PolynomialMultiplyRecognize(Loop *loop, const DataLayout &dl,
559 const DominatorTree &dt, const TargetLibraryInfo &tli,
560 ScalarEvolution &se)
561 : CurLoop(loop), DL(dl), DT(dt), TLI(tli), SE(se) {}
562
563 bool recognize();
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000564
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000565 private:
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000566 using ValueSeq = SetVector<Value *>;
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000567
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000568 IntegerType *getPmpyType() const {
569 LLVMContext &Ctx = CurLoop->getHeader()->getParent()->getContext();
570 return IntegerType::get(Ctx, 32);
571 }
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000572
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000573 bool isPromotableTo(Value *V, IntegerType *Ty);
574 void promoteTo(Instruction *In, IntegerType *DestTy, BasicBlock *LoopB);
575 bool promoteTypes(BasicBlock *LoopB, BasicBlock *ExitB);
576
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000577 Value *getCountIV(BasicBlock *BB);
578 bool findCycle(Value *Out, Value *In, ValueSeq &Cycle);
579 void classifyCycle(Instruction *DivI, ValueSeq &Cycle, ValueSeq &Early,
580 ValueSeq &Late);
581 bool classifyInst(Instruction *UseI, ValueSeq &Early, ValueSeq &Late);
582 bool commutesWithShift(Instruction *I);
583 bool highBitsAreZero(Value *V, unsigned IterCount);
584 bool keepsHighBitsZero(Value *V, unsigned IterCount);
585 bool isOperandShifted(Instruction *I, Value *Op);
586 bool convertShiftsToLeft(BasicBlock *LoopB, BasicBlock *ExitB,
587 unsigned IterCount);
588 void cleanupLoopBody(BasicBlock *LoopB);
589
590 struct ParsedValues {
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000591 ParsedValues() = default;
592
593 Value *M = nullptr;
594 Value *P = nullptr;
595 Value *Q = nullptr;
596 Value *R = nullptr;
597 Value *X = nullptr;
598 Instruction *Res = nullptr;
599 unsigned IterCount = 0;
600 bool Left = false;
601 bool Inv = false;
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000602 };
603
604 bool matchLeftShift(SelectInst *SelI, Value *CIV, ParsedValues &PV);
605 bool matchRightShift(SelectInst *SelI, ParsedValues &PV);
606 bool scanSelect(SelectInst *SI, BasicBlock *LoopB, BasicBlock *PrehB,
607 Value *CIV, ParsedValues &PV, bool PreScan);
608 unsigned getInverseMxN(unsigned QP);
609 Value *generate(BasicBlock::iterator At, ParsedValues &PV);
610
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000611 void setupSimplifier();
612
613 Simplifier Simp;
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000614 Loop *CurLoop;
615 const DataLayout &DL;
616 const DominatorTree &DT;
617 const TargetLibraryInfo &TLI;
618 ScalarEvolution &SE;
619 };
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000620
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000621} // end anonymous namespace
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000622
623Value *PolynomialMultiplyRecognize::getCountIV(BasicBlock *BB) {
624 pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
625 if (std::distance(PI, PE) != 2)
626 return nullptr;
627 BasicBlock *PB = (*PI == BB) ? *std::next(PI) : *PI;
628
629 for (auto I = BB->begin(), E = BB->end(); I != E && isa<PHINode>(I); ++I) {
630 auto *PN = cast<PHINode>(I);
631 Value *InitV = PN->getIncomingValueForBlock(PB);
632 if (!isa<ConstantInt>(InitV) || !cast<ConstantInt>(InitV)->isZero())
633 continue;
634 Value *IterV = PN->getIncomingValueForBlock(BB);
635 if (!isa<BinaryOperator>(IterV))
636 continue;
637 auto *BO = dyn_cast<BinaryOperator>(IterV);
638 if (BO->getOpcode() != Instruction::Add)
639 continue;
640 Value *IncV = nullptr;
641 if (BO->getOperand(0) == PN)
642 IncV = BO->getOperand(1);
643 else if (BO->getOperand(1) == PN)
644 IncV = BO->getOperand(0);
645 if (IncV == nullptr)
646 continue;
647
648 if (auto *T = dyn_cast<ConstantInt>(IncV))
649 if (T->getZExtValue() == 1)
650 return PN;
651 }
652 return nullptr;
653}
654
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000655static void replaceAllUsesOfWithIn(Value *I, Value *J, BasicBlock *BB) {
656 for (auto UI = I->user_begin(), UE = I->user_end(); UI != UE;) {
657 Use &TheUse = UI.getUse();
658 ++UI;
659 if (auto *II = dyn_cast<Instruction>(TheUse.getUser()))
660 if (BB == II->getParent())
661 II->replaceUsesOfWith(I, J);
662 }
663}
664
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000665bool PolynomialMultiplyRecognize::matchLeftShift(SelectInst *SelI,
666 Value *CIV, ParsedValues &PV) {
667 // Match the following:
668 // select (X & (1 << i)) != 0 ? R ^ (Q << i) : R
669 // select (X & (1 << i)) == 0 ? R : R ^ (Q << i)
670 // The condition may also check for equality with the masked value, i.e
671 // select (X & (1 << i)) == (1 << i) ? R ^ (Q << i) : R
672 // select (X & (1 << i)) != (1 << i) ? R : R ^ (Q << i);
673
674 Value *CondV = SelI->getCondition();
675 Value *TrueV = SelI->getTrueValue();
676 Value *FalseV = SelI->getFalseValue();
677
678 using namespace PatternMatch;
679
680 CmpInst::Predicate P;
681 Value *A = nullptr, *B = nullptr, *C = nullptr;
682
683 if (!match(CondV, m_ICmp(P, m_And(m_Value(A), m_Value(B)), m_Value(C))) &&
684 !match(CondV, m_ICmp(P, m_Value(C), m_And(m_Value(A), m_Value(B)))))
685 return false;
686 if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE)
687 return false;
688 // Matched: select (A & B) == C ? ... : ...
689 // select (A & B) != C ? ... : ...
690
691 Value *X = nullptr, *Sh1 = nullptr;
692 // Check (A & B) for (X & (1 << i)):
693 if (match(A, m_Shl(m_One(), m_Specific(CIV)))) {
694 Sh1 = A;
695 X = B;
696 } else if (match(B, m_Shl(m_One(), m_Specific(CIV)))) {
697 Sh1 = B;
698 X = A;
699 } else {
700 // TODO: Could also check for an induction variable containing single
701 // bit shifted left by 1 in each iteration.
702 return false;
703 }
704
705 bool TrueIfZero;
706
707 // Check C against the possible values for comparison: 0 and (1 << i):
708 if (match(C, m_Zero()))
709 TrueIfZero = (P == CmpInst::ICMP_EQ);
710 else if (C == Sh1)
711 TrueIfZero = (P == CmpInst::ICMP_NE);
712 else
713 return false;
714
715 // So far, matched:
716 // select (X & (1 << i)) ? ... : ...
717 // including variations of the check against zero/non-zero value.
718
719 Value *ShouldSameV = nullptr, *ShouldXoredV = nullptr;
720 if (TrueIfZero) {
721 ShouldSameV = TrueV;
722 ShouldXoredV = FalseV;
723 } else {
724 ShouldSameV = FalseV;
725 ShouldXoredV = TrueV;
726 }
727
728 Value *Q = nullptr, *R = nullptr, *Y = nullptr, *Z = nullptr;
729 Value *T = nullptr;
730 if (match(ShouldXoredV, m_Xor(m_Value(Y), m_Value(Z)))) {
731 // Matched: select +++ ? ... : Y ^ Z
732 // select +++ ? Y ^ Z : ...
733 // where +++ denotes previously checked matches.
734 if (ShouldSameV == Y)
735 T = Z;
736 else if (ShouldSameV == Z)
737 T = Y;
738 else
739 return false;
740 R = ShouldSameV;
741 // Matched: select +++ ? R : R ^ T
742 // select +++ ? R ^ T : R
743 // depending on TrueIfZero.
744
745 } else if (match(ShouldSameV, m_Zero())) {
746 // Matched: select +++ ? 0 : ...
747 // select +++ ? ... : 0
748 if (!SelI->hasOneUse())
749 return false;
750 T = ShouldXoredV;
751 // Matched: select +++ ? 0 : T
752 // select +++ ? T : 0
753
754 Value *U = *SelI->user_begin();
755 if (!match(U, m_Xor(m_Specific(SelI), m_Value(R))) &&
756 !match(U, m_Xor(m_Value(R), m_Specific(SelI))))
757 return false;
758 // Matched: xor (select +++ ? 0 : T), R
759 // xor (select +++ ? T : 0), R
760 } else
761 return false;
762
763 // The xor input value T is isolated into its own match so that it could
764 // be checked against an induction variable containing a shifted bit
765 // (todo).
766 // For now, check against (Q << i).
767 if (!match(T, m_Shl(m_Value(Q), m_Specific(CIV))) &&
768 !match(T, m_Shl(m_ZExt(m_Value(Q)), m_ZExt(m_Specific(CIV)))))
769 return false;
770 // Matched: select +++ ? R : R ^ (Q << i)
771 // select +++ ? R ^ (Q << i) : R
772
773 PV.X = X;
774 PV.Q = Q;
775 PV.R = R;
776 PV.Left = true;
777 return true;
778}
779
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000780bool PolynomialMultiplyRecognize::matchRightShift(SelectInst *SelI,
781 ParsedValues &PV) {
782 // Match the following:
783 // select (X & 1) != 0 ? (R >> 1) ^ Q : (R >> 1)
784 // select (X & 1) == 0 ? (R >> 1) : (R >> 1) ^ Q
785 // The condition may also check for equality with the masked value, i.e
786 // select (X & 1) == 1 ? (R >> 1) ^ Q : (R >> 1)
787 // select (X & 1) != 1 ? (R >> 1) : (R >> 1) ^ Q
788
789 Value *CondV = SelI->getCondition();
790 Value *TrueV = SelI->getTrueValue();
791 Value *FalseV = SelI->getFalseValue();
792
793 using namespace PatternMatch;
794
795 Value *C = nullptr;
796 CmpInst::Predicate P;
797 bool TrueIfZero;
798
799 if (match(CondV, m_ICmp(P, m_Value(C), m_Zero())) ||
800 match(CondV, m_ICmp(P, m_Zero(), m_Value(C)))) {
801 if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE)
802 return false;
803 // Matched: select C == 0 ? ... : ...
804 // select C != 0 ? ... : ...
805 TrueIfZero = (P == CmpInst::ICMP_EQ);
806 } else if (match(CondV, m_ICmp(P, m_Value(C), m_One())) ||
807 match(CondV, m_ICmp(P, m_One(), m_Value(C)))) {
808 if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE)
809 return false;
810 // Matched: select C == 1 ? ... : ...
811 // select C != 1 ? ... : ...
812 TrueIfZero = (P == CmpInst::ICMP_NE);
813 } else
814 return false;
815
816 Value *X = nullptr;
817 if (!match(C, m_And(m_Value(X), m_One())) &&
818 !match(C, m_And(m_One(), m_Value(X))))
819 return false;
820 // Matched: select (X & 1) == +++ ? ... : ...
821 // select (X & 1) != +++ ? ... : ...
822
823 Value *R = nullptr, *Q = nullptr;
824 if (TrueIfZero) {
825 // The select's condition is true if the tested bit is 0.
826 // TrueV must be the shift, FalseV must be the xor.
827 if (!match(TrueV, m_LShr(m_Value(R), m_One())))
828 return false;
829 // Matched: select +++ ? (R >> 1) : ...
830 if (!match(FalseV, m_Xor(m_Specific(TrueV), m_Value(Q))) &&
831 !match(FalseV, m_Xor(m_Value(Q), m_Specific(TrueV))))
832 return false;
833 // Matched: select +++ ? (R >> 1) : (R >> 1) ^ Q
834 // with commuting ^.
835 } else {
836 // The select's condition is true if the tested bit is 1.
837 // TrueV must be the xor, FalseV must be the shift.
838 if (!match(FalseV, m_LShr(m_Value(R), m_One())))
839 return false;
840 // Matched: select +++ ? ... : (R >> 1)
841 if (!match(TrueV, m_Xor(m_Specific(FalseV), m_Value(Q))) &&
842 !match(TrueV, m_Xor(m_Value(Q), m_Specific(FalseV))))
843 return false;
844 // Matched: select +++ ? (R >> 1) ^ Q : (R >> 1)
845 // with commuting ^.
846 }
847
848 PV.X = X;
849 PV.Q = Q;
850 PV.R = R;
851 PV.Left = false;
852 return true;
853}
854
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000855bool PolynomialMultiplyRecognize::scanSelect(SelectInst *SelI,
856 BasicBlock *LoopB, BasicBlock *PrehB, Value *CIV, ParsedValues &PV,
857 bool PreScan) {
858 using namespace PatternMatch;
Eugene Zelenko4d060b72017-07-29 00:56:56 +0000859
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +0000860 // The basic pattern for R = P.Q is:
861 // for i = 0..31
862 // R = phi (0, R')
863 // if (P & (1 << i)) ; test-bit(P, i)
864 // R' = R ^ (Q << i)
865 //
866 // Similarly, the basic pattern for R = (P/Q).Q - P
867 // for i = 0..31
868 // R = phi(P, R')
869 // if (R & (1 << i))
870 // R' = R ^ (Q << i)
871
872 // There exist idioms, where instead of Q being shifted left, P is shifted
873 // right. This produces a result that is shifted right by 32 bits (the
874 // non-shifted result is 64-bit).
875 //
876 // For R = P.Q, this would be:
877 // for i = 0..31
878 // R = phi (0, R')
879 // if ((P >> i) & 1)
880 // R' = (R >> 1) ^ Q ; R is cycled through the loop, so it must
881 // else ; be shifted by 1, not i.
882 // R' = R >> 1
883 //
884 // And for the inverse:
885 // for i = 0..31
886 // R = phi (P, R')
887 // if (R & 1)
888 // R' = (R >> 1) ^ Q
889 // else
890 // R' = R >> 1
891
892 // The left-shifting idioms share the same pattern:
893 // select (X & (1 << i)) ? R ^ (Q << i) : R
894 // Similarly for right-shifting idioms:
895 // select (X & 1) ? (R >> 1) ^ Q
896
897 if (matchLeftShift(SelI, CIV, PV)) {
898 // If this is a pre-scan, getting this far is sufficient.
899 if (PreScan)
900 return true;
901
902 // Need to make sure that the SelI goes back into R.
903 auto *RPhi = dyn_cast<PHINode>(PV.R);
904 if (!RPhi)
905 return false;
906 if (SelI != RPhi->getIncomingValueForBlock(LoopB))
907 return false;
908 PV.Res = SelI;
909
910 // If X is loop invariant, it must be the input polynomial, and the
911 // idiom is the basic polynomial multiply.
912 if (CurLoop->isLoopInvariant(PV.X)) {
913 PV.P = PV.X;
914 PV.Inv = false;
915 } else {
916 // X is not loop invariant. If X == R, this is the inverse pmpy.
917 // Otherwise, check for an xor with an invariant value. If the
918 // variable argument to the xor is R, then this is still a valid
919 // inverse pmpy.
920 PV.Inv = true;
921 if (PV.X != PV.R) {
922 Value *Var = nullptr, *Inv = nullptr, *X1 = nullptr, *X2 = nullptr;
923 if (!match(PV.X, m_Xor(m_Value(X1), m_Value(X2))))
924 return false;
925 auto *I1 = dyn_cast<Instruction>(X1);
926 auto *I2 = dyn_cast<Instruction>(X2);
927 if (!I1 || I1->getParent() != LoopB) {
928 Var = X2;
929 Inv = X1;
930 } else if (!I2 || I2->getParent() != LoopB) {
931 Var = X1;
932 Inv = X2;
933 } else
934 return false;
935 if (Var != PV.R)
936 return false;
937 PV.M = Inv;
938 }
939 // The input polynomial P still needs to be determined. It will be
940 // the entry value of R.
941 Value *EntryP = RPhi->getIncomingValueForBlock(PrehB);
942 PV.P = EntryP;
943 }
944
945 return true;
946 }
947
948 if (matchRightShift(SelI, PV)) {
949 // If this is an inverse pattern, the Q polynomial must be known at
950 // compile time.
951 if (PV.Inv && !isa<ConstantInt>(PV.Q))
952 return false;
953 if (PreScan)
954 return true;
955 // There is no exact matching of right-shift pmpy.
956 return false;
957 }
958
959 return false;
960}
961
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000962bool PolynomialMultiplyRecognize::isPromotableTo(Value *Val,
963 IntegerType *DestTy) {
964 IntegerType *T = dyn_cast<IntegerType>(Val->getType());
965 if (!T || T->getBitWidth() > DestTy->getBitWidth())
966 return false;
967 if (T->getBitWidth() == DestTy->getBitWidth())
968 return true;
969 // Non-instructions are promotable. The reason why an instruction may not
970 // be promotable is that it may produce a different result if its operands
971 // and the result are promoted, for example, it may produce more non-zero
972 // bits. While it would still be possible to represent the proper result
973 // in a wider type, it may require adding additional instructions (which
974 // we don't want to do).
975 Instruction *In = dyn_cast<Instruction>(Val);
976 if (!In)
977 return true;
978 // The bitwidth of the source type is smaller than the destination.
979 // Check if the individual operation can be promoted.
980 switch (In->getOpcode()) {
981 case Instruction::PHI:
982 case Instruction::ZExt:
983 case Instruction::And:
984 case Instruction::Or:
985 case Instruction::Xor:
986 case Instruction::LShr: // Shift right is ok.
987 case Instruction::Select:
988 return true;
989 case Instruction::ICmp:
990 if (CmpInst *CI = cast<CmpInst>(In))
991 return CI->isEquality() || CI->isUnsigned();
992 llvm_unreachable("Cast failed unexpectedly");
993 case Instruction::Add:
994 return In->hasNoSignedWrap() && In->hasNoUnsignedWrap();
995 }
996 return false;
997}
998
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +0000999void PolynomialMultiplyRecognize::promoteTo(Instruction *In,
1000 IntegerType *DestTy, BasicBlock *LoopB) {
1001 // Leave boolean values alone.
1002 if (!In->getType()->isIntegerTy(1))
1003 In->mutateType(DestTy);
1004 unsigned DestBW = DestTy->getBitWidth();
1005
1006 // Handle PHIs.
1007 if (PHINode *P = dyn_cast<PHINode>(In)) {
1008 unsigned N = P->getNumIncomingValues();
1009 for (unsigned i = 0; i != N; ++i) {
1010 BasicBlock *InB = P->getIncomingBlock(i);
1011 if (InB == LoopB)
1012 continue;
1013 Value *InV = P->getIncomingValue(i);
1014 IntegerType *Ty = cast<IntegerType>(InV->getType());
1015 // Do not promote values in PHI nodes of type i1.
1016 if (Ty != P->getType()) {
1017 // If the value type does not match the PHI type, the PHI type
1018 // must have been promoted.
1019 assert(Ty->getBitWidth() < DestBW);
1020 InV = IRBuilder<>(InB->getTerminator()).CreateZExt(InV, DestTy);
1021 P->setIncomingValue(i, InV);
1022 }
1023 }
1024 } else if (ZExtInst *Z = dyn_cast<ZExtInst>(In)) {
1025 Value *Op = Z->getOperand(0);
1026 if (Op->getType() == Z->getType())
1027 Z->replaceAllUsesWith(Op);
1028 Z->eraseFromParent();
1029 return;
1030 }
1031
1032 // Promote immediates.
1033 for (unsigned i = 0, n = In->getNumOperands(); i != n; ++i) {
1034 if (ConstantInt *CI = dyn_cast<ConstantInt>(In->getOperand(i)))
1035 if (CI->getType()->getBitWidth() < DestBW)
1036 In->setOperand(i, ConstantInt::get(DestTy, CI->getZExtValue()));
1037 }
1038}
1039
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001040bool PolynomialMultiplyRecognize::promoteTypes(BasicBlock *LoopB,
1041 BasicBlock *ExitB) {
1042 assert(LoopB);
1043 // Skip loops where the exit block has more than one predecessor. The values
1044 // coming from the loop block will be promoted to another type, and so the
1045 // values coming into the exit block from other predecessors would also have
1046 // to be promoted.
1047 if (!ExitB || (ExitB->getSinglePredecessor() != LoopB))
1048 return false;
1049 IntegerType *DestTy = getPmpyType();
1050 // Check if the exit values have types that are no wider than the type
1051 // that we want to promote to.
1052 unsigned DestBW = DestTy->getBitWidth();
1053 for (Instruction &In : *ExitB) {
1054 PHINode *P = dyn_cast<PHINode>(&In);
1055 if (!P)
1056 break;
1057 if (P->getNumIncomingValues() != 1)
1058 return false;
1059 assert(P->getIncomingBlock(0) == LoopB);
1060 IntegerType *T = dyn_cast<IntegerType>(P->getType());
1061 if (!T || T->getBitWidth() > DestBW)
1062 return false;
1063 }
1064
1065 // Check all instructions in the loop.
1066 for (Instruction &In : *LoopB)
1067 if (!In.isTerminator() && !isPromotableTo(&In, DestTy))
1068 return false;
1069
1070 // Perform the promotion.
1071 std::vector<Instruction*> LoopIns;
1072 std::transform(LoopB->begin(), LoopB->end(), std::back_inserter(LoopIns),
1073 [](Instruction &In) { return &In; });
1074 for (Instruction *In : LoopIns)
1075 promoteTo(In, DestTy, LoopB);
1076
1077 // Fix up the PHI nodes in the exit block.
1078 Instruction *EndI = ExitB->getFirstNonPHI();
1079 BasicBlock::iterator End = EndI ? EndI->getIterator() : ExitB->end();
1080 for (auto I = ExitB->begin(); I != End; ++I) {
1081 PHINode *P = dyn_cast<PHINode>(I);
1082 if (!P)
1083 break;
1084 Type *Ty0 = P->getIncomingValue(0)->getType();
1085 Type *PTy = P->getType();
1086 if (PTy != Ty0) {
1087 assert(Ty0 == DestTy);
1088 // In order to create the trunc, P must have the promoted type.
1089 P->mutateType(Ty0);
1090 Value *T = IRBuilder<>(ExitB, End).CreateTrunc(P, PTy);
1091 // In order for the RAUW to work, the types of P and T must match.
1092 P->mutateType(PTy);
1093 P->replaceAllUsesWith(T);
1094 // Final update of the P's type.
1095 P->mutateType(Ty0);
1096 cast<Instruction>(T)->setOperand(0, P);
1097 }
1098 }
1099
1100 return true;
1101}
1102
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001103bool PolynomialMultiplyRecognize::findCycle(Value *Out, Value *In,
1104 ValueSeq &Cycle) {
1105 // Out = ..., In, ...
1106 if (Out == In)
1107 return true;
1108
1109 auto *BB = cast<Instruction>(Out)->getParent();
1110 bool HadPhi = false;
1111
1112 for (auto U : Out->users()) {
1113 auto *I = dyn_cast<Instruction>(&*U);
1114 if (I == nullptr || I->getParent() != BB)
1115 continue;
1116 // Make sure that there are no multi-iteration cycles, e.g.
1117 // p1 = phi(p2)
1118 // p2 = phi(p1)
1119 // The cycle p1->p2->p1 would span two loop iterations.
1120 // Check that there is only one phi in the cycle.
1121 bool IsPhi = isa<PHINode>(I);
1122 if (IsPhi && HadPhi)
1123 return false;
1124 HadPhi |= IsPhi;
1125 if (Cycle.count(I))
1126 return false;
1127 Cycle.insert(I);
1128 if (findCycle(I, In, Cycle))
1129 break;
1130 Cycle.remove(I);
1131 }
1132 return !Cycle.empty();
1133}
1134
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001135void PolynomialMultiplyRecognize::classifyCycle(Instruction *DivI,
1136 ValueSeq &Cycle, ValueSeq &Early, ValueSeq &Late) {
1137 // All the values in the cycle that are between the phi node and the
1138 // divider instruction will be classified as "early", all other values
1139 // will be "late".
1140
1141 bool IsE = true;
1142 unsigned I, N = Cycle.size();
1143 for (I = 0; I < N; ++I) {
1144 Value *V = Cycle[I];
1145 if (DivI == V)
1146 IsE = false;
1147 else if (!isa<PHINode>(V))
1148 continue;
1149 // Stop if found either.
1150 break;
1151 }
1152 // "I" is the index of either DivI or the phi node, whichever was first.
1153 // "E" is "false" or "true" respectively.
1154 ValueSeq &First = !IsE ? Early : Late;
1155 for (unsigned J = 0; J < I; ++J)
1156 First.insert(Cycle[J]);
1157
1158 ValueSeq &Second = IsE ? Early : Late;
1159 Second.insert(Cycle[I]);
1160 for (++I; I < N; ++I) {
1161 Value *V = Cycle[I];
1162 if (DivI == V || isa<PHINode>(V))
1163 break;
1164 Second.insert(V);
1165 }
1166
1167 for (; I < N; ++I)
1168 First.insert(Cycle[I]);
1169}
1170
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001171bool PolynomialMultiplyRecognize::classifyInst(Instruction *UseI,
1172 ValueSeq &Early, ValueSeq &Late) {
1173 // Select is an exception, since the condition value does not have to be
1174 // classified in the same way as the true/false values. The true/false
1175 // values do have to be both early or both late.
1176 if (UseI->getOpcode() == Instruction::Select) {
1177 Value *TV = UseI->getOperand(1), *FV = UseI->getOperand(2);
1178 if (Early.count(TV) || Early.count(FV)) {
1179 if (Late.count(TV) || Late.count(FV))
1180 return false;
1181 Early.insert(UseI);
1182 } else if (Late.count(TV) || Late.count(FV)) {
1183 if (Early.count(TV) || Early.count(FV))
1184 return false;
1185 Late.insert(UseI);
1186 }
1187 return true;
1188 }
1189
1190 // Not sure what would be the example of this, but the code below relies
1191 // on having at least one operand.
1192 if (UseI->getNumOperands() == 0)
1193 return true;
1194
1195 bool AE = true, AL = true;
1196 for (auto &I : UseI->operands()) {
1197 if (Early.count(&*I))
1198 AL = false;
1199 else if (Late.count(&*I))
1200 AE = false;
1201 }
1202 // If the operands appear "all early" and "all late" at the same time,
1203 // then it means that none of them are actually classified as either.
1204 // This is harmless.
1205 if (AE && AL)
1206 return true;
1207 // Conversely, if they are neither "all early" nor "all late", then
1208 // we have a mixture of early and late operands that is not a known
1209 // exception.
1210 if (!AE && !AL)
1211 return false;
1212
1213 // Check that we have covered the two special cases.
1214 assert(AE != AL);
1215
1216 if (AE)
1217 Early.insert(UseI);
1218 else
1219 Late.insert(UseI);
1220 return true;
1221}
1222
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001223bool PolynomialMultiplyRecognize::commutesWithShift(Instruction *I) {
1224 switch (I->getOpcode()) {
1225 case Instruction::And:
1226 case Instruction::Or:
1227 case Instruction::Xor:
1228 case Instruction::LShr:
1229 case Instruction::Shl:
1230 case Instruction::Select:
1231 case Instruction::ICmp:
1232 case Instruction::PHI:
1233 break;
1234 default:
1235 return false;
1236 }
1237 return true;
1238}
1239
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001240bool PolynomialMultiplyRecognize::highBitsAreZero(Value *V,
1241 unsigned IterCount) {
1242 auto *T = dyn_cast<IntegerType>(V->getType());
1243 if (!T)
1244 return false;
1245
Craig Topperb45eabc2017-04-26 16:39:58 +00001246 KnownBits Known(T->getBitWidth());
1247 computeKnownBits(V, Known, DL);
Craig Topper8df66c62017-05-12 17:20:30 +00001248 return Known.countMinLeadingZeros() >= IterCount;
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001249}
1250
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001251bool PolynomialMultiplyRecognize::keepsHighBitsZero(Value *V,
1252 unsigned IterCount) {
1253 // Assume that all inputs to the value have the high bits zero.
1254 // Check if the value itself preserves the zeros in the high bits.
1255 if (auto *C = dyn_cast<ConstantInt>(V))
1256 return C->getValue().countLeadingZeros() >= IterCount;
1257
1258 if (auto *I = dyn_cast<Instruction>(V)) {
1259 switch (I->getOpcode()) {
1260 case Instruction::And:
1261 case Instruction::Or:
1262 case Instruction::Xor:
1263 case Instruction::LShr:
1264 case Instruction::Select:
1265 case Instruction::ICmp:
1266 case Instruction::PHI:
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001267 case Instruction::ZExt:
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001268 return true;
1269 }
1270 }
1271
1272 return false;
1273}
1274
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001275bool PolynomialMultiplyRecognize::isOperandShifted(Instruction *I, Value *Op) {
1276 unsigned Opc = I->getOpcode();
1277 if (Opc == Instruction::Shl || Opc == Instruction::LShr)
1278 return Op != I->getOperand(1);
1279 return true;
1280}
1281
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001282bool PolynomialMultiplyRecognize::convertShiftsToLeft(BasicBlock *LoopB,
1283 BasicBlock *ExitB, unsigned IterCount) {
1284 Value *CIV = getCountIV(LoopB);
1285 if (CIV == nullptr)
1286 return false;
1287 auto *CIVTy = dyn_cast<IntegerType>(CIV->getType());
1288 if (CIVTy == nullptr)
1289 return false;
1290
1291 ValueSeq RShifts;
1292 ValueSeq Early, Late, Cycled;
1293
1294 // Find all value cycles that contain logical right shifts by 1.
1295 for (Instruction &I : *LoopB) {
1296 using namespace PatternMatch;
Eugene Zelenko4d060b72017-07-29 00:56:56 +00001297
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001298 Value *V = nullptr;
1299 if (!match(&I, m_LShr(m_Value(V), m_One())))
1300 continue;
1301 ValueSeq C;
1302 if (!findCycle(&I, V, C))
1303 continue;
1304
1305 // Found a cycle.
1306 C.insert(&I);
1307 classifyCycle(&I, C, Early, Late);
1308 Cycled.insert(C.begin(), C.end());
1309 RShifts.insert(&I);
1310 }
1311
1312 // Find the set of all values affected by the shift cycles, i.e. all
1313 // cycled values, and (recursively) all their users.
1314 ValueSeq Users(Cycled.begin(), Cycled.end());
1315 for (unsigned i = 0; i < Users.size(); ++i) {
1316 Value *V = Users[i];
1317 if (!isa<IntegerType>(V->getType()))
1318 return false;
1319 auto *R = cast<Instruction>(V);
1320 // If the instruction does not commute with shifts, the loop cannot
1321 // be unshifted.
1322 if (!commutesWithShift(R))
1323 return false;
1324 for (auto I = R->user_begin(), E = R->user_end(); I != E; ++I) {
1325 auto *T = cast<Instruction>(*I);
1326 // Skip users from outside of the loop. They will be handled later.
1327 // Also, skip the right-shifts and phi nodes, since they mix early
1328 // and late values.
1329 if (T->getParent() != LoopB || RShifts.count(T) || isa<PHINode>(T))
1330 continue;
1331
1332 Users.insert(T);
1333 if (!classifyInst(T, Early, Late))
1334 return false;
1335 }
1336 }
1337
Eugene Zelenko4d060b72017-07-29 00:56:56 +00001338 if (Users.empty())
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001339 return false;
1340
1341 // Verify that high bits remain zero.
1342 ValueSeq Internal(Users.begin(), Users.end());
1343 ValueSeq Inputs;
1344 for (unsigned i = 0; i < Internal.size(); ++i) {
1345 auto *R = dyn_cast<Instruction>(Internal[i]);
1346 if (!R)
1347 continue;
1348 for (Value *Op : R->operands()) {
1349 auto *T = dyn_cast<Instruction>(Op);
1350 if (T && T->getParent() != LoopB)
1351 Inputs.insert(Op);
1352 else
1353 Internal.insert(Op);
1354 }
1355 }
1356 for (Value *V : Inputs)
1357 if (!highBitsAreZero(V, IterCount))
1358 return false;
1359 for (Value *V : Internal)
1360 if (!keepsHighBitsZero(V, IterCount))
1361 return false;
1362
1363 // Finally, the work can be done. Unshift each user.
1364 IRBuilder<> IRB(LoopB);
1365 std::map<Value*,Value*> ShiftMap;
Eugene Zelenko4d060b72017-07-29 00:56:56 +00001366
1367 using CastMapType = std::map<std::pair<Value *, Type *>, Value *>;
1368
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001369 CastMapType CastMap;
1370
1371 auto upcast = [] (CastMapType &CM, IRBuilder<> &IRB, Value *V,
1372 IntegerType *Ty) -> Value* {
1373 auto H = CM.find(std::make_pair(V, Ty));
1374 if (H != CM.end())
1375 return H->second;
1376 Value *CV = IRB.CreateIntCast(V, Ty, false);
1377 CM.insert(std::make_pair(std::make_pair(V, Ty), CV));
1378 return CV;
1379 };
1380
1381 for (auto I = LoopB->begin(), E = LoopB->end(); I != E; ++I) {
Eugene Zelenko4d060b72017-07-29 00:56:56 +00001382 using namespace PatternMatch;
1383
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001384 if (isa<PHINode>(I) || !Users.count(&*I))
1385 continue;
Eugene Zelenko4d060b72017-07-29 00:56:56 +00001386
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001387 // Match lshr x, 1.
1388 Value *V = nullptr;
1389 if (match(&*I, m_LShr(m_Value(V), m_One()))) {
1390 replaceAllUsesOfWithIn(&*I, V, LoopB);
1391 continue;
1392 }
1393 // For each non-cycled operand, replace it with the corresponding
1394 // value shifted left.
1395 for (auto &J : I->operands()) {
1396 Value *Op = J.get();
1397 if (!isOperandShifted(&*I, Op))
1398 continue;
1399 if (Users.count(Op))
1400 continue;
1401 // Skip shifting zeros.
1402 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
1403 continue;
1404 // Check if we have already generated a shift for this value.
1405 auto F = ShiftMap.find(Op);
1406 Value *W = (F != ShiftMap.end()) ? F->second : nullptr;
1407 if (W == nullptr) {
1408 IRB.SetInsertPoint(&*I);
1409 // First, the shift amount will be CIV or CIV+1, depending on
1410 // whether the value is early or late. Instead of creating CIV+1,
1411 // do a single shift of the value.
1412 Value *ShAmt = CIV, *ShVal = Op;
1413 auto *VTy = cast<IntegerType>(ShVal->getType());
1414 auto *ATy = cast<IntegerType>(ShAmt->getType());
1415 if (Late.count(&*I))
1416 ShVal = IRB.CreateShl(Op, ConstantInt::get(VTy, 1));
1417 // Second, the types of the shifted value and the shift amount
1418 // must match.
1419 if (VTy != ATy) {
1420 if (VTy->getBitWidth() < ATy->getBitWidth())
1421 ShVal = upcast(CastMap, IRB, ShVal, ATy);
1422 else
1423 ShAmt = upcast(CastMap, IRB, ShAmt, VTy);
1424 }
1425 // Ready to generate the shift and memoize it.
1426 W = IRB.CreateShl(ShVal, ShAmt);
1427 ShiftMap.insert(std::make_pair(Op, W));
1428 }
1429 I->replaceUsesOfWith(Op, W);
1430 }
1431 }
1432
1433 // Update the users outside of the loop to account for having left
1434 // shifts. They would normally be shifted right in the loop, so shift
1435 // them right after the loop exit.
1436 // Take advantage of the loop-closed SSA form, which has all the post-
1437 // loop values in phi nodes.
1438 IRB.SetInsertPoint(ExitB, ExitB->getFirstInsertionPt());
1439 for (auto P = ExitB->begin(), Q = ExitB->end(); P != Q; ++P) {
1440 if (!isa<PHINode>(P))
1441 break;
1442 auto *PN = cast<PHINode>(P);
1443 Value *U = PN->getIncomingValueForBlock(LoopB);
1444 if (!Users.count(U))
1445 continue;
1446 Value *S = IRB.CreateLShr(PN, ConstantInt::get(PN->getType(), IterCount));
1447 PN->replaceAllUsesWith(S);
1448 // The above RAUW will create
1449 // S = lshr S, IterCount
1450 // so we need to fix it back into
1451 // S = lshr PN, IterCount
1452 cast<User>(S)->replaceUsesOfWith(S, PN);
1453 }
1454
1455 return true;
1456}
1457
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001458void PolynomialMultiplyRecognize::cleanupLoopBody(BasicBlock *LoopB) {
1459 for (auto &I : *LoopB)
Daniel Berlin4d0fe642017-04-28 19:55:38 +00001460 if (Value *SV = SimplifyInstruction(&I, {DL, &TLI, &DT}))
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001461 I.replaceAllUsesWith(SV);
1462
1463 for (auto I = LoopB->begin(), N = I; I != LoopB->end(); I = N) {
1464 N = std::next(I);
1465 RecursivelyDeleteTriviallyDeadInstructions(&*I, &TLI);
1466 }
1467}
1468
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001469unsigned PolynomialMultiplyRecognize::getInverseMxN(unsigned QP) {
1470 // Arrays of coefficients of Q and the inverse, C.
1471 // Q[i] = coefficient at x^i.
1472 std::array<char,32> Q, C;
1473
1474 for (unsigned i = 0; i < 32; ++i) {
1475 Q[i] = QP & 1;
1476 QP >>= 1;
1477 }
1478 assert(Q[0] == 1);
1479
1480 // Find C, such that
1481 // (Q[n]*x^n + ... + Q[1]*x + Q[0]) * (C[n]*x^n + ... + C[1]*x + C[0]) = 1
1482 //
1483 // For it to have a solution, Q[0] must be 1. Since this is Z2[x], the
1484 // operations * and + are & and ^ respectively.
1485 //
1486 // Find C[i] recursively, by comparing i-th coefficient in the product
1487 // with 0 (or 1 for i=0).
1488 //
1489 // C[0] = 1, since C[0] = Q[0], and Q[0] = 1.
1490 C[0] = 1;
1491 for (unsigned i = 1; i < 32; ++i) {
1492 // Solve for C[i] in:
1493 // C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] ^ C[i]Q[0] = 0
1494 // This is equivalent to
1495 // C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] ^ C[i] = 0
1496 // which is
1497 // C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] = C[i]
1498 unsigned T = 0;
1499 for (unsigned j = 0; j < i; ++j)
1500 T = T ^ (C[j] & Q[i-j]);
1501 C[i] = T;
1502 }
1503
1504 unsigned QV = 0;
1505 for (unsigned i = 0; i < 32; ++i)
1506 if (C[i])
1507 QV |= (1 << i);
1508
1509 return QV;
1510}
1511
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001512Value *PolynomialMultiplyRecognize::generate(BasicBlock::iterator At,
1513 ParsedValues &PV) {
1514 IRBuilder<> B(&*At);
1515 Module *M = At->getParent()->getParent()->getParent();
1516 Value *PMF = Intrinsic::getDeclaration(M, Intrinsic::hexagon_M4_pmpyw);
1517
1518 Value *P = PV.P, *Q = PV.Q, *P0 = P;
1519 unsigned IC = PV.IterCount;
1520
1521 if (PV.M != nullptr)
1522 P0 = P = B.CreateXor(P, PV.M);
1523
1524 // Create a bit mask to clear the high bits beyond IterCount.
1525 auto *BMI = ConstantInt::get(P->getType(), APInt::getLowBitsSet(32, IC));
1526
1527 if (PV.IterCount != 32)
1528 P = B.CreateAnd(P, BMI);
1529
1530 if (PV.Inv) {
1531 auto *QI = dyn_cast<ConstantInt>(PV.Q);
1532 assert(QI && QI->getBitWidth() <= 32);
1533
1534 // Again, clearing bits beyond IterCount.
1535 unsigned M = (1 << PV.IterCount) - 1;
1536 unsigned Tmp = (QI->getZExtValue() | 1) & M;
1537 unsigned QV = getInverseMxN(Tmp) & M;
1538 auto *QVI = ConstantInt::get(QI->getType(), QV);
1539 P = B.CreateCall(PMF, {P, QVI});
1540 P = B.CreateTrunc(P, QI->getType());
1541 if (IC != 32)
1542 P = B.CreateAnd(P, BMI);
1543 }
1544
1545 Value *R = B.CreateCall(PMF, {P, Q});
1546
1547 if (PV.M != nullptr)
1548 R = B.CreateXor(R, B.CreateIntCast(P0, R->getType(), false));
1549
1550 return R;
1551}
1552
Krzysztof Parzyszek385a4e042017-11-07 17:05:54 +00001553static bool hasZeroSignBit(const Value *V) {
1554 if (const auto *CI = dyn_cast<const ConstantInt>(V))
1555 return (CI->getType()->getSignBit() & CI->getSExtValue()) == 0;
1556 const Instruction *I = dyn_cast<const Instruction>(V);
1557 if (!I)
1558 return false;
1559 switch (I->getOpcode()) {
1560 case Instruction::LShr:
1561 if (const auto SI = dyn_cast<const ConstantInt>(I->getOperand(1)))
1562 return SI->getZExtValue() > 0;
1563 return false;
1564 case Instruction::Or:
1565 case Instruction::Xor:
1566 return hasZeroSignBit(I->getOperand(0)) &&
1567 hasZeroSignBit(I->getOperand(1));
1568 case Instruction::And:
1569 return hasZeroSignBit(I->getOperand(0)) ||
1570 hasZeroSignBit(I->getOperand(1));
1571 }
1572 return false;
1573}
1574
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001575void PolynomialMultiplyRecognize::setupSimplifier() {
Krzysztof Parzyszek385a4e042017-11-07 17:05:54 +00001576 Simp.addRule("sink-zext",
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001577 // Sink zext past bitwise operations.
1578 [](Instruction *I, LLVMContext &Ctx) -> Value* {
1579 if (I->getOpcode() != Instruction::ZExt)
1580 return nullptr;
1581 Instruction *T = dyn_cast<Instruction>(I->getOperand(0));
1582 if (!T)
1583 return nullptr;
1584 switch (T->getOpcode()) {
1585 case Instruction::And:
1586 case Instruction::Or:
1587 case Instruction::Xor:
1588 break;
1589 default:
1590 return nullptr;
1591 }
1592 IRBuilder<> B(Ctx);
1593 return B.CreateBinOp(cast<BinaryOperator>(T)->getOpcode(),
1594 B.CreateZExt(T->getOperand(0), I->getType()),
1595 B.CreateZExt(T->getOperand(1), I->getType()));
1596 });
Krzysztof Parzyszek385a4e042017-11-07 17:05:54 +00001597 Simp.addRule("xor/and -> and/xor",
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001598 // (xor (and x a) (and y a)) -> (and (xor x y) a)
1599 [](Instruction *I, LLVMContext &Ctx) -> Value* {
1600 if (I->getOpcode() != Instruction::Xor)
1601 return nullptr;
1602 Instruction *And0 = dyn_cast<Instruction>(I->getOperand(0));
1603 Instruction *And1 = dyn_cast<Instruction>(I->getOperand(1));
1604 if (!And0 || !And1)
1605 return nullptr;
1606 if (And0->getOpcode() != Instruction::And ||
1607 And1->getOpcode() != Instruction::And)
1608 return nullptr;
1609 if (And0->getOperand(1) != And1->getOperand(1))
1610 return nullptr;
1611 IRBuilder<> B(Ctx);
1612 return B.CreateAnd(B.CreateXor(And0->getOperand(0), And1->getOperand(0)),
1613 And0->getOperand(1));
1614 });
Krzysztof Parzyszek385a4e042017-11-07 17:05:54 +00001615 Simp.addRule("sink binop into select",
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001616 // (Op (select c x y) z) -> (select c (Op x z) (Op y z))
1617 // (Op x (select c y z)) -> (select c (Op x y) (Op x z))
1618 [](Instruction *I, LLVMContext &Ctx) -> Value* {
1619 BinaryOperator *BO = dyn_cast<BinaryOperator>(I);
1620 if (!BO)
1621 return nullptr;
1622 Instruction::BinaryOps Op = BO->getOpcode();
1623 if (SelectInst *Sel = dyn_cast<SelectInst>(BO->getOperand(0))) {
1624 IRBuilder<> B(Ctx);
1625 Value *X = Sel->getTrueValue(), *Y = Sel->getFalseValue();
1626 Value *Z = BO->getOperand(1);
1627 return B.CreateSelect(Sel->getCondition(),
1628 B.CreateBinOp(Op, X, Z),
1629 B.CreateBinOp(Op, Y, Z));
1630 }
1631 if (SelectInst *Sel = dyn_cast<SelectInst>(BO->getOperand(1))) {
1632 IRBuilder<> B(Ctx);
1633 Value *X = BO->getOperand(0);
1634 Value *Y = Sel->getTrueValue(), *Z = Sel->getFalseValue();
1635 return B.CreateSelect(Sel->getCondition(),
1636 B.CreateBinOp(Op, X, Y),
1637 B.CreateBinOp(Op, X, Z));
1638 }
1639 return nullptr;
1640 });
Krzysztof Parzyszek385a4e042017-11-07 17:05:54 +00001641 Simp.addRule("fold select-select",
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001642 // (select c (select c x y) z) -> (select c x z)
1643 // (select c x (select c y z)) -> (select c x z)
1644 [](Instruction *I, LLVMContext &Ctx) -> Value* {
1645 SelectInst *Sel = dyn_cast<SelectInst>(I);
1646 if (!Sel)
1647 return nullptr;
1648 IRBuilder<> B(Ctx);
1649 Value *C = Sel->getCondition();
1650 if (SelectInst *Sel0 = dyn_cast<SelectInst>(Sel->getTrueValue())) {
1651 if (Sel0->getCondition() == C)
1652 return B.CreateSelect(C, Sel0->getTrueValue(), Sel->getFalseValue());
1653 }
1654 if (SelectInst *Sel1 = dyn_cast<SelectInst>(Sel->getFalseValue())) {
1655 if (Sel1->getCondition() == C)
1656 return B.CreateSelect(C, Sel->getTrueValue(), Sel1->getFalseValue());
1657 }
1658 return nullptr;
1659 });
Krzysztof Parzyszek385a4e042017-11-07 17:05:54 +00001660 Simp.addRule("or-signbit -> xor-signbit",
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001661 // (or (lshr x 1) 0x800.0) -> (xor (lshr x 1) 0x800.0)
1662 [](Instruction *I, LLVMContext &Ctx) -> Value* {
1663 if (I->getOpcode() != Instruction::Or)
1664 return nullptr;
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001665 ConstantInt *Msb = dyn_cast<ConstantInt>(I->getOperand(1));
1666 if (!Msb || Msb->getZExtValue() != Msb->getType()->getSignBit())
1667 return nullptr;
Krzysztof Parzyszek385a4e042017-11-07 17:05:54 +00001668 if (!hasZeroSignBit(I->getOperand(0)))
1669 return nullptr;
1670 return IRBuilder<>(Ctx).CreateXor(I->getOperand(0), Msb);
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001671 });
Krzysztof Parzyszek385a4e042017-11-07 17:05:54 +00001672 Simp.addRule("sink lshr into binop",
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001673 // (lshr (BitOp x y) c) -> (BitOp (lshr x c) (lshr y c))
1674 [](Instruction *I, LLVMContext &Ctx) -> Value* {
1675 if (I->getOpcode() != Instruction::LShr)
1676 return nullptr;
1677 BinaryOperator *BitOp = dyn_cast<BinaryOperator>(I->getOperand(0));
1678 if (!BitOp)
1679 return nullptr;
1680 switch (BitOp->getOpcode()) {
1681 case Instruction::And:
1682 case Instruction::Or:
1683 case Instruction::Xor:
1684 break;
1685 default:
1686 return nullptr;
1687 }
1688 IRBuilder<> B(Ctx);
1689 Value *S = I->getOperand(1);
1690 return B.CreateBinOp(BitOp->getOpcode(),
1691 B.CreateLShr(BitOp->getOperand(0), S),
1692 B.CreateLShr(BitOp->getOperand(1), S));
1693 });
Krzysztof Parzyszek385a4e042017-11-07 17:05:54 +00001694 Simp.addRule("expose bitop-const",
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001695 // (BitOp1 (BitOp2 x a) b) -> (BitOp2 x (BitOp1 a b))
1696 [](Instruction *I, LLVMContext &Ctx) -> Value* {
1697 auto IsBitOp = [](unsigned Op) -> bool {
1698 switch (Op) {
1699 case Instruction::And:
1700 case Instruction::Or:
1701 case Instruction::Xor:
1702 return true;
1703 }
1704 return false;
1705 };
1706 BinaryOperator *BitOp1 = dyn_cast<BinaryOperator>(I);
1707 if (!BitOp1 || !IsBitOp(BitOp1->getOpcode()))
1708 return nullptr;
1709 BinaryOperator *BitOp2 = dyn_cast<BinaryOperator>(BitOp1->getOperand(0));
1710 if (!BitOp2 || !IsBitOp(BitOp2->getOpcode()))
1711 return nullptr;
1712 ConstantInt *CA = dyn_cast<ConstantInt>(BitOp2->getOperand(1));
1713 ConstantInt *CB = dyn_cast<ConstantInt>(BitOp1->getOperand(1));
1714 if (!CA || !CB)
1715 return nullptr;
1716 IRBuilder<> B(Ctx);
1717 Value *X = BitOp2->getOperand(0);
1718 return B.CreateBinOp(BitOp2->getOpcode(), X,
1719 B.CreateBinOp(BitOp1->getOpcode(), CA, CB));
1720 });
1721}
1722
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001723bool PolynomialMultiplyRecognize::recognize() {
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001724 DEBUG(dbgs() << "Starting PolynomialMultiplyRecognize on loop\n"
1725 << *CurLoop << '\n');
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001726 // Restrictions:
1727 // - The loop must consist of a single block.
1728 // - The iteration count must be known at compile-time.
1729 // - The loop must have an induction variable starting from 0, and
1730 // incremented in each iteration of the loop.
1731 BasicBlock *LoopB = CurLoop->getHeader();
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001732 DEBUG(dbgs() << "Loop header:\n" << *LoopB);
1733
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001734 if (LoopB != CurLoop->getLoopLatch())
1735 return false;
1736 BasicBlock *ExitB = CurLoop->getExitBlock();
1737 if (ExitB == nullptr)
1738 return false;
1739 BasicBlock *EntryB = CurLoop->getLoopPreheader();
1740 if (EntryB == nullptr)
1741 return false;
1742
1743 unsigned IterCount = 0;
1744 const SCEV *CT = SE.getBackedgeTakenCount(CurLoop);
1745 if (isa<SCEVCouldNotCompute>(CT))
1746 return false;
1747 if (auto *CV = dyn_cast<SCEVConstant>(CT))
1748 IterCount = CV->getValue()->getZExtValue() + 1;
1749
1750 Value *CIV = getCountIV(LoopB);
1751 ParsedValues PV;
1752 PV.IterCount = IterCount;
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001753 DEBUG(dbgs() << "Loop IV: " << *CIV << "\nIterCount: " << IterCount << '\n');
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001754
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001755 setupSimplifier();
1756
1757 // Perform a preliminary scan of select instructions to see if any of them
1758 // looks like a generator of the polynomial multiply steps. Assume that a
1759 // loop can only contain a single transformable operation, so stop the
1760 // traversal after the first reasonable candidate was found.
1761 // XXX: Currently this approach can modify the loop before being 100% sure
1762 // that the transformation can be carried out.
1763 bool FoundPreScan = false;
Krzysztof Parzyszek385a4e042017-11-07 17:05:54 +00001764 auto FeedsPHI = [LoopB](const Value *V) -> bool {
1765 for (const Value *U : V->users()) {
1766 if (const auto *P = dyn_cast<const PHINode>(U))
1767 if (P->getParent() == LoopB)
1768 return true;
1769 }
1770 return false;
1771 };
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001772 for (Instruction &In : *LoopB) {
1773 SelectInst *SI = dyn_cast<SelectInst>(&In);
Krzysztof Parzyszek385a4e042017-11-07 17:05:54 +00001774 if (!SI || !FeedsPHI(SI))
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001775 continue;
1776
1777 Simplifier::Context C(SI);
1778 Value *T = Simp.simplify(C);
1779 SelectInst *SelI = (T && isa<SelectInst>(T)) ? cast<SelectInst>(T) : SI;
1780 DEBUG(dbgs() << "scanSelect(pre-scan): " << PE(C, SelI) << '\n');
1781 if (scanSelect(SelI, LoopB, EntryB, CIV, PV, true)) {
1782 FoundPreScan = true;
1783 if (SelI != SI) {
1784 Value *NewSel = C.materialize(LoopB, SI->getIterator());
1785 SI->replaceAllUsesWith(NewSel);
1786 RecursivelyDeleteTriviallyDeadInstructions(SI, &TLI);
1787 }
1788 break;
1789 }
1790 }
1791
1792 if (!FoundPreScan) {
1793 DEBUG(dbgs() << "Have not found candidates for pmpy\n");
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001794 return false;
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001795 }
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001796
1797 if (!PV.Left) {
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001798 // The right shift version actually only returns the higher bits of
1799 // the result (each iteration discards the LSB). If we want to convert it
1800 // to a left-shifting loop, the working data type must be at least as
1801 // wide as the target's pmpy instruction.
1802 if (!promoteTypes(LoopB, ExitB))
1803 return false;
Krzysztof Parzyszek9bd4d912017-06-13 13:51:49 +00001804 if (!convertShiftsToLeft(LoopB, ExitB, IterCount))
1805 return false;
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001806 cleanupLoopBody(LoopB);
1807 }
1808
Krzysztof Parzyszekd033d1f2017-03-21 17:09:27 +00001809 // Scan the loop again, find the generating select instruction.
1810 bool FoundScan = false;
1811 for (Instruction &In : *LoopB) {
1812 SelectInst *SelI = dyn_cast<SelectInst>(&In);
1813 if (!SelI)
1814 continue;
1815 DEBUG(dbgs() << "scanSelect: " << *SelI << '\n');
1816 FoundScan = scanSelect(SelI, LoopB, EntryB, CIV, PV, false);
1817 if (FoundScan)
1818 break;
1819 }
1820 assert(FoundScan);
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001821
1822 DEBUG({
1823 StringRef PP = (PV.M ? "(P+M)" : "P");
1824 if (!PV.Inv)
1825 dbgs() << "Found pmpy idiom: R = " << PP << ".Q\n";
1826 else
1827 dbgs() << "Found inverse pmpy idiom: R = (" << PP << "/Q).Q) + "
1828 << PP << "\n";
1829 dbgs() << " Res:" << *PV.Res << "\n P:" << *PV.P << "\n";
1830 if (PV.M)
1831 dbgs() << " M:" << *PV.M << "\n";
1832 dbgs() << " Q:" << *PV.Q << "\n";
1833 dbgs() << " Iteration count:" << PV.IterCount << "\n";
1834 });
1835
1836 BasicBlock::iterator At(EntryB->getTerminator());
1837 Value *PM = generate(At, PV);
1838 if (PM == nullptr)
1839 return false;
1840
1841 if (PM->getType() != PV.Res->getType())
1842 PM = IRBuilder<>(&*At).CreateIntCast(PM, PV.Res->getType(), false);
1843
1844 PV.Res->replaceAllUsesWith(PM);
1845 PV.Res->eraseFromParent();
1846 return true;
1847}
1848
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001849int HexagonLoopIdiomRecognize::getSCEVStride(const SCEVAddRecExpr *S) {
1850 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(1)))
1851 return SC->getAPInt().getSExtValue();
1852 return 0;
1853}
1854
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001855bool HexagonLoopIdiomRecognize::isLegalStore(Loop *CurLoop, StoreInst *SI) {
Krzysztof Parzyszek35ce5da2017-01-27 20:40:14 +00001856 // Allow volatile stores if HexagonVolatileMemcpy is enabled.
1857 if (!(SI->isVolatile() && HexagonVolatileMemcpy) && !SI->isSimple())
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001858 return false;
1859
1860 Value *StoredVal = SI->getValueOperand();
1861 Value *StorePtr = SI->getPointerOperand();
1862
1863 // Reject stores that are so large that they overflow an unsigned.
1864 uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
1865 if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
1866 return false;
1867
1868 // See if the pointer expression is an AddRec like {base,+,1} on the current
1869 // loop, which indicates a strided store. If we have something else, it's a
1870 // random store we can't handle.
1871 auto *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
1872 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
1873 return false;
1874
1875 // Check to see if the stride matches the size of the store. If so, then we
1876 // know that every byte is touched in the loop.
1877 int Stride = getSCEVStride(StoreEv);
1878 if (Stride == 0)
1879 return false;
Jonas Paulssonf0ff20f2017-11-28 14:44:32 +00001880 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001881 if (StoreSize != unsigned(std::abs(Stride)))
1882 return false;
1883
1884 // The store must be feeding a non-volatile load.
1885 LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
1886 if (!LI || !LI->isSimple())
1887 return false;
1888
1889 // See if the pointer expression is an AddRec like {base,+,1} on the current
1890 // loop, which indicates a strided load. If we have something else, it's a
1891 // random load we can't handle.
1892 Value *LoadPtr = LI->getPointerOperand();
1893 auto *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LoadPtr));
1894 if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
1895 return false;
1896
1897 // The store and load must share the same stride.
1898 if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
1899 return false;
1900
1901 // Success. This store can be converted into a memcpy.
1902 return true;
1903}
1904
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001905/// mayLoopAccessLocation - Return true if the specified loop might access the
1906/// specified pointer location, which is a loop-strided access. The 'Access'
1907/// argument specifies what the verboten forms of access are (read or write).
1908static bool
1909mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
1910 const SCEV *BECount, unsigned StoreSize,
1911 AliasAnalysis &AA,
1912 SmallPtrSetImpl<Instruction *> &Ignored) {
1913 // Get the location that may be stored across the loop. Since the access
1914 // is strided positively through memory, we say that the modified location
1915 // starts at the pointer and has infinite size.
1916 uint64_t AccessSize = MemoryLocation::UnknownSize;
1917
1918 // If the loop iterates a fixed number of times, we can refine the access
1919 // size to be exactly the size of the memset, which is (BECount+1)*StoreSize
1920 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
1921 AccessSize = (BECst->getValue()->getZExtValue() + 1) * StoreSize;
1922
1923 // TODO: For this to be really effective, we have to dive into the pointer
1924 // operand in the store. Store to &A[i] of 100 will always return may alias
1925 // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
1926 // which will then no-alias a store to &A[100].
1927 MemoryLocation StoreLoc(Ptr, AccessSize);
1928
1929 for (auto *B : L->blocks())
1930 for (auto &I : *B)
Alina Sbirlea63d22502017-12-05 20:12:23 +00001931 if (Ignored.count(&I) == 0 &&
1932 intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access))
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001933 return true;
1934
1935 return false;
1936}
1937
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001938void HexagonLoopIdiomRecognize::collectStores(Loop *CurLoop, BasicBlock *BB,
1939 SmallVectorImpl<StoreInst*> &Stores) {
1940 Stores.clear();
1941 for (Instruction &I : *BB)
1942 if (StoreInst *SI = dyn_cast<StoreInst>(&I))
1943 if (isLegalStore(CurLoop, SI))
1944 Stores.push_back(SI);
1945}
1946
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001947bool HexagonLoopIdiomRecognize::processCopyingStore(Loop *CurLoop,
1948 StoreInst *SI, const SCEV *BECount) {
Michael Kupersteine18aad32017-01-31 22:48:45 +00001949 assert((SI->isSimple() || (SI->isVolatile() && HexagonVolatileMemcpy)) &&
1950 "Expected only non-volatile stores, or Hexagon-specific memcpy"
1951 "to volatile destination.");
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001952
1953 Value *StorePtr = SI->getPointerOperand();
1954 auto *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
1955 unsigned Stride = getSCEVStride(StoreEv);
Jonas Paulssonf0ff20f2017-11-28 14:44:32 +00001956 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00001957 if (Stride != StoreSize)
1958 return false;
1959
1960 // See if the pointer expression is an AddRec like {base,+,1} on the current
1961 // loop, which indicates a strided load. If we have something else, it's a
1962 // random load we can't handle.
1963 LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
1964 auto *LoadEv = cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
1965
1966 // The trip count of the loop and the base pointer of the addrec SCEV is
1967 // guaranteed to be loop invariant, which means that it should dominate the
1968 // header. This allows us to insert code for it in the preheader.
1969 BasicBlock *Preheader = CurLoop->getLoopPreheader();
1970 Instruction *ExpPt = Preheader->getTerminator();
1971 IRBuilder<> Builder(ExpPt);
1972 SCEVExpander Expander(*SE, *DL, "hexagon-loop-idiom");
1973
1974 Type *IntPtrTy = Builder.getIntPtrTy(*DL, SI->getPointerAddressSpace());
1975
1976 // Okay, we have a strided store "p[i]" of a loaded value. We can turn
1977 // this into a memcpy/memmove in the loop preheader now if we want. However,
1978 // this would be unsafe to do if there is anything else in the loop that may
1979 // read or write the memory region we're storing to. For memcpy, this
1980 // includes the load that feeds the stores. Check for an alias by generating
1981 // the base address and checking everything.
1982 Value *StoreBasePtr = Expander.expandCodeFor(StoreEv->getStart(),
1983 Builder.getInt8PtrTy(SI->getPointerAddressSpace()), ExpPt);
1984 Value *LoadBasePtr = nullptr;
1985
1986 bool Overlap = false;
1987 bool DestVolatile = SI->isVolatile();
1988 Type *BECountTy = BECount->getType();
1989
1990 if (DestVolatile) {
1991 // The trip count must fit in i32, since it is the type of the "num_words"
1992 // argument to hexagon_memcpy_forward_vp4cp4n2.
1993 if (StoreSize != 4 || DL->getTypeSizeInBits(BECountTy) > 32) {
1994CleanupAndExit:
1995 // If we generated new code for the base pointer, clean up.
1996 Expander.clear();
1997 if (StoreBasePtr && (LoadBasePtr != StoreBasePtr)) {
1998 RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
1999 StoreBasePtr = nullptr;
2000 }
2001 if (LoadBasePtr) {
2002 RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI);
2003 LoadBasePtr = nullptr;
2004 }
2005 return false;
2006 }
2007 }
2008
2009 SmallPtrSet<Instruction*, 2> Ignore1;
2010 Ignore1.insert(SI);
2011 if (mayLoopAccessLocation(StoreBasePtr, MRI_ModRef, CurLoop, BECount,
2012 StoreSize, *AA, Ignore1)) {
2013 // Check if the load is the offending instruction.
2014 Ignore1.insert(LI);
2015 if (mayLoopAccessLocation(StoreBasePtr, MRI_ModRef, CurLoop, BECount,
2016 StoreSize, *AA, Ignore1)) {
2017 // Still bad. Nothing we can do.
2018 goto CleanupAndExit;
2019 }
2020 // It worked with the load ignored.
2021 Overlap = true;
2022 }
2023
2024 if (!Overlap) {
2025 if (DisableMemcpyIdiom || !HasMemcpy)
2026 goto CleanupAndExit;
2027 } else {
2028 // Don't generate memmove if this function will be inlined. This is
2029 // because the caller will undergo this transformation after inlining.
2030 Function *Func = CurLoop->getHeader()->getParent();
2031 if (Func->hasFnAttribute(Attribute::AlwaysInline))
2032 goto CleanupAndExit;
2033
2034 // In case of a memmove, the call to memmove will be executed instead
2035 // of the loop, so we need to make sure that there is nothing else in
2036 // the loop than the load, store and instructions that these two depend
2037 // on.
2038 SmallVector<Instruction*,2> Insts;
2039 Insts.push_back(SI);
2040 Insts.push_back(LI);
2041 if (!coverLoop(CurLoop, Insts))
2042 goto CleanupAndExit;
2043
2044 if (DisableMemmoveIdiom || !HasMemmove)
2045 goto CleanupAndExit;
Eugene Zelenko4d060b72017-07-29 00:56:56 +00002046 bool IsNested = CurLoop->getParentLoop() != nullptr;
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00002047 if (IsNested && OnlyNonNestedMemmove)
2048 goto CleanupAndExit;
2049 }
2050
2051 // For a memcpy, we have to make sure that the input array is not being
2052 // mutated by the loop.
2053 LoadBasePtr = Expander.expandCodeFor(LoadEv->getStart(),
2054 Builder.getInt8PtrTy(LI->getPointerAddressSpace()), ExpPt);
2055
2056 SmallPtrSet<Instruction*, 2> Ignore2;
2057 Ignore2.insert(SI);
2058 if (mayLoopAccessLocation(LoadBasePtr, MRI_Mod, CurLoop, BECount, StoreSize,
2059 *AA, Ignore2))
2060 goto CleanupAndExit;
2061
2062 // Check the stride.
2063 bool StridePos = getSCEVStride(LoadEv) >= 0;
2064
2065 // Currently, the volatile memcpy only emulates traversing memory forward.
2066 if (!StridePos && DestVolatile)
2067 goto CleanupAndExit;
2068
2069 bool RuntimeCheck = (Overlap || DestVolatile);
2070
2071 BasicBlock *ExitB;
2072 if (RuntimeCheck) {
2073 // The runtime check needs a single exit block.
2074 SmallVector<BasicBlock*, 8> ExitBlocks;
2075 CurLoop->getUniqueExitBlocks(ExitBlocks);
2076 if (ExitBlocks.size() != 1)
2077 goto CleanupAndExit;
2078 ExitB = ExitBlocks[0];
2079 }
2080
2081 // The # stored bytes is (BECount+1)*Size. Expand the trip count out to
2082 // pointer size if it isn't already.
2083 LLVMContext &Ctx = SI->getContext();
2084 BECount = SE->getTruncateOrZeroExtend(BECount, IntPtrTy);
2085 unsigned Alignment = std::min(SI->getAlignment(), LI->getAlignment());
2086 DebugLoc DLoc = SI->getDebugLoc();
2087
2088 const SCEV *NumBytesS =
2089 SE->getAddExpr(BECount, SE->getOne(IntPtrTy), SCEV::FlagNUW);
2090 if (StoreSize != 1)
2091 NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtrTy, StoreSize),
2092 SCEV::FlagNUW);
2093 Value *NumBytes = Expander.expandCodeFor(NumBytesS, IntPtrTy, ExpPt);
2094 if (Instruction *In = dyn_cast<Instruction>(NumBytes))
Daniel Berlin4d0fe642017-04-28 19:55:38 +00002095 if (Value *Simp = SimplifyInstruction(In, {*DL, TLI, DT}))
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00002096 NumBytes = Simp;
2097
2098 CallInst *NewCall;
2099
2100 if (RuntimeCheck) {
2101 unsigned Threshold = RuntimeMemSizeThreshold;
2102 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes)) {
2103 uint64_t C = CI->getZExtValue();
2104 if (Threshold != 0 && C < Threshold)
2105 goto CleanupAndExit;
2106 if (C < CompileTimeMemSizeThreshold)
2107 goto CleanupAndExit;
2108 }
2109
2110 BasicBlock *Header = CurLoop->getHeader();
2111 Function *Func = Header->getParent();
2112 Loop *ParentL = LF->getLoopFor(Preheader);
2113 StringRef HeaderName = Header->getName();
2114
2115 // Create a new (empty) preheader, and update the PHI nodes in the
2116 // header to use the new preheader.
2117 BasicBlock *NewPreheader = BasicBlock::Create(Ctx, HeaderName+".rtli.ph",
2118 Func, Header);
2119 if (ParentL)
2120 ParentL->addBasicBlockToLoop(NewPreheader, *LF);
2121 IRBuilder<>(NewPreheader).CreateBr(Header);
2122 for (auto &In : *Header) {
2123 PHINode *PN = dyn_cast<PHINode>(&In);
2124 if (!PN)
2125 break;
2126 int bx = PN->getBasicBlockIndex(Preheader);
2127 if (bx >= 0)
2128 PN->setIncomingBlock(bx, NewPreheader);
2129 }
2130 DT->addNewBlock(NewPreheader, Preheader);
2131 DT->changeImmediateDominator(Header, NewPreheader);
2132
2133 // Check for safe conditions to execute memmove.
2134 // If stride is positive, copying things from higher to lower addresses
2135 // is equivalent to memmove. For negative stride, it's the other way
2136 // around. Copying forward in memory with positive stride may not be
2137 // same as memmove since we may be copying values that we just stored
2138 // in some previous iteration.
2139 Value *LA = Builder.CreatePtrToInt(LoadBasePtr, IntPtrTy);
2140 Value *SA = Builder.CreatePtrToInt(StoreBasePtr, IntPtrTy);
2141 Value *LowA = StridePos ? SA : LA;
2142 Value *HighA = StridePos ? LA : SA;
2143 Value *CmpA = Builder.CreateICmpULT(LowA, HighA);
2144 Value *Cond = CmpA;
2145
Krzysztof Parzyszekc09a14e2017-08-24 11:59:53 +00002146 // Check for distance between pointers. Since the case LowA < HighA
2147 // is checked for above, assume LowA >= HighA.
2148 Value *Dist = Builder.CreateSub(LowA, HighA);
2149 Value *CmpD = Builder.CreateICmpSLE(NumBytes, Dist);
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00002150 Value *CmpEither = Builder.CreateOr(Cond, CmpD);
2151 Cond = CmpEither;
2152
2153 if (Threshold != 0) {
2154 Type *Ty = NumBytes->getType();
2155 Value *Thr = ConstantInt::get(Ty, Threshold);
2156 Value *CmpB = Builder.CreateICmpULT(Thr, NumBytes);
2157 Value *CmpBoth = Builder.CreateAnd(Cond, CmpB);
2158 Cond = CmpBoth;
2159 }
2160 BasicBlock *MemmoveB = BasicBlock::Create(Ctx, Header->getName()+".rtli",
2161 Func, NewPreheader);
2162 if (ParentL)
2163 ParentL->addBasicBlockToLoop(MemmoveB, *LF);
2164 Instruction *OldT = Preheader->getTerminator();
2165 Builder.CreateCondBr(Cond, MemmoveB, NewPreheader);
2166 OldT->eraseFromParent();
2167 Preheader->setName(Preheader->getName()+".old");
2168 DT->addNewBlock(MemmoveB, Preheader);
2169 // Find the new immediate dominator of the exit block.
2170 BasicBlock *ExitD = Preheader;
2171 for (auto PI = pred_begin(ExitB), PE = pred_end(ExitB); PI != PE; ++PI) {
2172 BasicBlock *PB = *PI;
2173 ExitD = DT->findNearestCommonDominator(ExitD, PB);
2174 if (!ExitD)
2175 break;
2176 }
2177 // If the prior immediate dominator of ExitB was dominated by the
2178 // old preheader, then the old preheader becomes the new immediate
2179 // dominator. Otherwise don't change anything (because the newly
2180 // added blocks are dominated by the old preheader).
2181 if (ExitD && DT->dominates(Preheader, ExitD)) {
2182 DomTreeNode *BN = DT->getNode(ExitB);
2183 DomTreeNode *DN = DT->getNode(ExitD);
2184 BN->setIDom(DN);
2185 }
2186
2187 // Add a call to memmove to the conditional block.
2188 IRBuilder<> CondBuilder(MemmoveB);
2189 CondBuilder.CreateBr(ExitB);
2190 CondBuilder.SetInsertPoint(MemmoveB->getTerminator());
2191
2192 if (DestVolatile) {
2193 Type *Int32Ty = Type::getInt32Ty(Ctx);
2194 Type *Int32PtrTy = Type::getInt32PtrTy(Ctx);
2195 Type *VoidTy = Type::getVoidTy(Ctx);
2196 Module *M = Func->getParent();
2197 Constant *CF = M->getOrInsertFunction(HexagonVolatileMemcpyName, VoidTy,
Serge Guelton59a2d7b2017-04-11 15:01:18 +00002198 Int32PtrTy, Int32PtrTy, Int32Ty);
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00002199 Function *Fn = cast<Function>(CF);
2200 Fn->setLinkage(Function::ExternalLinkage);
2201
2202 const SCEV *OneS = SE->getConstant(Int32Ty, 1);
2203 const SCEV *BECount32 = SE->getTruncateOrZeroExtend(BECount, Int32Ty);
2204 const SCEV *NumWordsS = SE->getAddExpr(BECount32, OneS, SCEV::FlagNUW);
2205 Value *NumWords = Expander.expandCodeFor(NumWordsS, Int32Ty,
2206 MemmoveB->getTerminator());
2207 if (Instruction *In = dyn_cast<Instruction>(NumWords))
Daniel Berlin4d0fe642017-04-28 19:55:38 +00002208 if (Value *Simp = SimplifyInstruction(In, {*DL, TLI, DT}))
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00002209 NumWords = Simp;
2210
2211 Value *Op0 = (StoreBasePtr->getType() == Int32PtrTy)
2212 ? StoreBasePtr
2213 : CondBuilder.CreateBitCast(StoreBasePtr, Int32PtrTy);
2214 Value *Op1 = (LoadBasePtr->getType() == Int32PtrTy)
2215 ? LoadBasePtr
2216 : CondBuilder.CreateBitCast(LoadBasePtr, Int32PtrTy);
2217 NewCall = CondBuilder.CreateCall(Fn, {Op0, Op1, NumWords});
2218 } else {
2219 NewCall = CondBuilder.CreateMemMove(StoreBasePtr, LoadBasePtr,
2220 NumBytes, Alignment);
2221 }
2222 } else {
2223 NewCall = Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr,
2224 NumBytes, Alignment);
2225 // Okay, the memcpy has been formed. Zap the original store and
2226 // anything that feeds into it.
2227 RecursivelyDeleteTriviallyDeadInstructions(SI, TLI);
2228 }
2229
2230 NewCall->setDebugLoc(DLoc);
2231
2232 DEBUG(dbgs() << " Formed " << (Overlap ? "memmove: " : "memcpy: ")
2233 << *NewCall << "\n"
2234 << " from load ptr=" << *LoadEv << " at: " << *LI << "\n"
2235 << " from store ptr=" << *StoreEv << " at: " << *SI << "\n");
2236
2237 return true;
2238}
2239
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00002240// \brief Check if the instructions in Insts, together with their dependencies
2241// cover the loop in the sense that the loop could be safely eliminated once
2242// the instructions in Insts are removed.
2243bool HexagonLoopIdiomRecognize::coverLoop(Loop *L,
2244 SmallVectorImpl<Instruction*> &Insts) const {
2245 SmallSet<BasicBlock*,8> LoopBlocks;
2246 for (auto *B : L->blocks())
2247 LoopBlocks.insert(B);
2248
2249 SetVector<Instruction*> Worklist(Insts.begin(), Insts.end());
2250
2251 // Collect all instructions from the loop that the instructions in Insts
2252 // depend on (plus their dependencies, etc.). These instructions will
2253 // constitute the expression trees that feed those in Insts, but the trees
2254 // will be limited only to instructions contained in the loop.
2255 for (unsigned i = 0; i < Worklist.size(); ++i) {
2256 Instruction *In = Worklist[i];
2257 for (auto I = In->op_begin(), E = In->op_end(); I != E; ++I) {
2258 Instruction *OpI = dyn_cast<Instruction>(I);
2259 if (!OpI)
2260 continue;
2261 BasicBlock *PB = OpI->getParent();
2262 if (!LoopBlocks.count(PB))
2263 continue;
2264 Worklist.insert(OpI);
2265 }
2266 }
2267
2268 // Scan all instructions in the loop, if any of them have a user outside
2269 // of the loop, or outside of the expressions collected above, then either
2270 // the loop has a side-effect visible outside of it, or there are
2271 // instructions in it that are not involved in the original set Insts.
2272 for (auto *B : L->blocks()) {
2273 for (auto &In : *B) {
2274 if (isa<BranchInst>(In) || isa<DbgInfoIntrinsic>(In))
2275 continue;
2276 if (!Worklist.count(&In) && In.mayHaveSideEffects())
2277 return false;
2278 for (const auto &K : In.users()) {
2279 Instruction *UseI = dyn_cast<Instruction>(K);
2280 if (!UseI)
2281 continue;
2282 BasicBlock *UseB = UseI->getParent();
2283 if (LF->getLoopFor(UseB) != L)
2284 return false;
2285 }
2286 }
2287 }
2288
2289 return true;
2290}
2291
2292/// runOnLoopBlock - Process the specified block, which lives in a counted loop
2293/// with the specified backedge count. This block is known to be in the current
2294/// loop and not in any subloops.
2295bool HexagonLoopIdiomRecognize::runOnLoopBlock(Loop *CurLoop, BasicBlock *BB,
2296 const SCEV *BECount, SmallVectorImpl<BasicBlock*> &ExitBlocks) {
2297 // We can only promote stores in this block if they are unconditionally
2298 // executed in the loop. For a block to be unconditionally executed, it has
2299 // to dominate all the exit blocks of the loop. Verify this now.
2300 auto DominatedByBB = [this,BB] (BasicBlock *EB) -> bool {
2301 return DT->dominates(BB, EB);
2302 };
2303 if (!std::all_of(ExitBlocks.begin(), ExitBlocks.end(), DominatedByBB))
2304 return false;
2305
2306 bool MadeChange = false;
2307 // Look for store instructions, which may be optimized to memset/memcpy.
2308 SmallVector<StoreInst*,8> Stores;
2309 collectStores(CurLoop, BB, Stores);
2310
2311 // Optimize the store into a memcpy, if it feeds an similarly strided load.
2312 for (auto &SI : Stores)
2313 MadeChange |= processCopyingStore(CurLoop, SI, BECount);
2314
2315 return MadeChange;
2316}
2317
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00002318bool HexagonLoopIdiomRecognize::runOnCountableLoop(Loop *L) {
2319 PolynomialMultiplyRecognize PMR(L, *DL, *DT, *TLI, *SE);
2320 if (PMR.recognize())
2321 return true;
2322
2323 if (!HasMemcpy && !HasMemmove)
2324 return false;
2325
2326 const SCEV *BECount = SE->getBackedgeTakenCount(L);
2327 assert(!isa<SCEVCouldNotCompute>(BECount) &&
2328 "runOnCountableLoop() called on a loop without a predictable"
2329 "backedge-taken count");
2330
2331 SmallVector<BasicBlock *, 8> ExitBlocks;
2332 L->getUniqueExitBlocks(ExitBlocks);
2333
2334 bool Changed = false;
2335
2336 // Scan all the blocks in the loop that are not in subloops.
2337 for (auto *BB : L->getBlocks()) {
2338 // Ignore blocks in subloops.
2339 if (LF->getLoopFor(BB) != L)
2340 continue;
2341 Changed |= runOnLoopBlock(L, BB, BECount, ExitBlocks);
2342 }
2343
2344 return Changed;
2345}
2346
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00002347bool HexagonLoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
2348 const Module &M = *L->getHeader()->getParent()->getParent();
2349 if (Triple(M.getTargetTriple()).getArch() != Triple::hexagon)
2350 return false;
2351
2352 if (skipLoop(L))
2353 return false;
2354
2355 // If the loop could not be converted to canonical form, it must have an
2356 // indirectbr in it, just give up.
2357 if (!L->getLoopPreheader())
2358 return false;
2359
2360 // Disable loop idiom recognition if the function's name is a common idiom.
2361 StringRef Name = L->getHeader()->getParent()->getName();
2362 if (Name == "memset" || Name == "memcpy" || Name == "memmove")
2363 return false;
2364
2365 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2366 DL = &L->getHeader()->getModule()->getDataLayout();
2367 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2368 LF = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2369 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
2370 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2371
2372 HasMemcpy = TLI->has(LibFunc_memcpy);
2373 HasMemmove = TLI->has(LibFunc_memmove);
2374
2375 if (SE->hasLoopInvariantBackedgeTakenCount(L))
2376 return runOnCountableLoop(L);
2377 return false;
2378}
2379
Krzysztof Parzyszekc8b94382017-01-26 21:41:10 +00002380Pass *llvm::createHexagonLoopIdiomPass() {
2381 return new HexagonLoopIdiomRecognize();
2382}