blob: 90551e4af2292d9413842a1352c37d48d3fde879 [file] [log] [blame]
Chris Lattnere6794492002-08-12 21:17:25 +00001//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnerca081252001-12-14 16:52:21 +00009//
10// InstructionCombining - Combine instructions to form fewer, simple
Dan Gohmand78c4002008-05-13 00:00:25 +000011// instructions. This pass does not modify the CFG. This pass is where
12// algebraic simplification happens.
Chris Lattnerca081252001-12-14 16:52:21 +000013//
14// This pass combines things like:
Chris Lattner07418422007-03-18 22:51:34 +000015// %Y = add i32 %X, 1
16// %Z = add i32 %Y, 1
Chris Lattnerca081252001-12-14 16:52:21 +000017// into:
Chris Lattner07418422007-03-18 22:51:34 +000018// %Z = add i32 %X, 2
Chris Lattnerca081252001-12-14 16:52:21 +000019//
20// This is a simple worklist driven algorithm.
21//
Chris Lattner216c7b82003-09-10 05:29:43 +000022// This pass guarantees that the following canonicalizations are performed on
Chris Lattnerbfb1d032003-07-23 21:41:57 +000023// the program:
24// 1. If a binary operator has a constant operand, it is moved to the RHS
Chris Lattnerdeaa0dd2003-08-12 21:53:41 +000025// 2. Bitwise operators with constant operands are always grouped so that
26// shifts are performed first, then or's, then and's, then xor's.
Reid Spencer266e42b2006-12-23 06:05:41 +000027// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28// 4. All cmp instructions on boolean values are replaced with logical ops
Chris Lattnerede3fe02003-08-13 04:18:28 +000029// 5. add X, X is represented as (X*2) => (X << 1)
30// 6. Multiplies with a power-of-two constant argument are transformed into
31// shifts.
Chris Lattner7515cab2004-11-14 19:13:23 +000032// ... etc.
Chris Lattnerbfb1d032003-07-23 21:41:57 +000033//
Chris Lattnerca081252001-12-14 16:52:21 +000034//===----------------------------------------------------------------------===//
35
Chandler Carruth83ba2692015-01-24 04:19:17 +000036#include "llvm/Transforms/InstCombine/InstCombine.h"
Chandler Carrutha9174582015-01-22 05:25:13 +000037#include "InstCombineInternal.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000038#include "llvm-c/Initialization.h"
39#include "llvm/ADT/SmallPtrSet.h"
40#include "llvm/ADT/Statistic.h"
41#include "llvm/ADT/StringSwitch.h"
Chandler Carruth66b31302015-01-04 12:03:27 +000042#include "llvm/Analysis/AssumptionCache.h"
David Majnemer7e2b9882014-11-03 21:55:12 +000043#include "llvm/Analysis/CFG.h"
Chris Lattner024f4ab2007-01-30 23:46:24 +000044#include "llvm/Analysis/ConstantFolding.h"
Chris Lattnerc1f19072009-11-09 23:28:39 +000045#include "llvm/Analysis/InstructionSimplify.h"
Reid Kleckner4af64152015-01-28 01:17:38 +000046#include "llvm/Analysis/LibCallSemantics.h"
David Majnemer7e2b9882014-11-03 21:55:12 +000047#include "llvm/Analysis/LoopInfo.h"
Victor Hernandezf390e042009-10-27 20:05:49 +000048#include "llvm/Analysis/MemoryBuiltins.h"
Chandler Carruth83ba2692015-01-24 04:19:17 +000049#include "llvm/Analysis/TargetLibraryInfo.h"
Sanjay Patel58814442014-07-09 16:34:54 +000050#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth1305dc32014-03-04 11:45:46 +000051#include "llvm/IR/CFG.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000052#include "llvm/IR/DataLayout.h"
Hal Finkel60db0582014-09-07 18:57:58 +000053#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000054#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000055#include "llvm/IR/IntrinsicInst.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000056#include "llvm/IR/PatternMatch.h"
Chandler Carruth4220e9c2014-03-04 11:17:44 +000057#include "llvm/IR/ValueHandle.h"
Meador Inge193e0352012-11-13 04:16:17 +000058#include "llvm/Support/CommandLine.h"
Chris Lattner39c98bb2004-12-08 23:43:58 +000059#include "llvm/Support/Debug.h"
Benjamin Kramer799003b2015-03-23 19:32:43 +000060#include "llvm/Support/raw_ostream.h"
Chandler Carruth83ba2692015-01-24 04:19:17 +000061#include "llvm/Transforms/Scalar.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000062#include "llvm/Transforms/Utils/Local.h"
Chris Lattner053c0932002-05-14 15:24:07 +000063#include <algorithm>
Torok Edwinab207842008-04-20 08:33:11 +000064#include <climits>
Chris Lattner8427bff2003-12-07 01:24:23 +000065using namespace llvm;
Chris Lattnerd4252a72004-07-30 07:50:03 +000066using namespace llvm::PatternMatch;
Brian Gaeke960707c2003-11-11 22:41:34 +000067
Chandler Carruth964daaa2014-04-22 02:55:47 +000068#define DEBUG_TYPE "instcombine"
69
Chris Lattner79a42ac2006-12-19 21:40:18 +000070STATISTIC(NumCombined , "Number of insts combined");
71STATISTIC(NumConstProp, "Number of constant folds");
72STATISTIC(NumDeadInst , "Number of dead inst eliminated");
Chris Lattner79a42ac2006-12-19 21:40:18 +000073STATISTIC(NumSunkInst , "Number of instructions sunk");
Duncan Sandsfbb9ac32010-12-22 13:36:08 +000074STATISTIC(NumExpand, "Number of expansions");
Duncan Sands3547d2e2010-12-22 09:40:51 +000075STATISTIC(NumFactor , "Number of factorizations");
76STATISTIC(NumReassoc , "Number of reassociations");
Chris Lattnerbf3a0992002-10-01 22:38:41 +000077
Nuno Lopesa2f6cec2012-05-22 17:19:09 +000078Value *InstCombiner::EmitGEPOffset(User *GEP) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +000079 return llvm::EmitGEPOffset(Builder, DL, GEP);
Nuno Lopesa2f6cec2012-05-22 17:19:09 +000080}
81
Chris Lattner1559bed2009-11-10 07:23:37 +000082/// ShouldChangeType - Return true if it is desirable to convert a computation
83/// from 'From' to 'To'. We don't want to convert from a legal to an illegal
84/// type for example, or from a smaller to a larger illegal type.
Chris Lattner229907c2011-07-18 04:54:35 +000085bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
Duncan Sands19d0b472010-02-16 11:11:14 +000086 assert(From->isIntegerTy() && To->isIntegerTy());
Jakub Staszakcfc46f82012-05-06 13:52:31 +000087
Chris Lattner1559bed2009-11-10 07:23:37 +000088 unsigned FromWidth = From->getPrimitiveSizeInBits();
89 unsigned ToWidth = To->getPrimitiveSizeInBits();
Mehdi Aminia28d91d2015-03-10 02:37:25 +000090 bool FromLegal = DL.isLegalInteger(FromWidth);
91 bool ToLegal = DL.isLegalInteger(ToWidth);
Jakub Staszakcfc46f82012-05-06 13:52:31 +000092
Chris Lattner1559bed2009-11-10 07:23:37 +000093 // If this is a legal integer from type, and the result would be an illegal
94 // type, don't do the transformation.
95 if (FromLegal && !ToLegal)
96 return false;
Jakub Staszakcfc46f82012-05-06 13:52:31 +000097
Chris Lattner1559bed2009-11-10 07:23:37 +000098 // Otherwise, if both are illegal, do not increase the size of the result. We
99 // do allow things like i160 -> i64, but not i64 -> i160.
100 if (!FromLegal && !ToLegal && ToWidth > FromWidth)
101 return false;
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000102
Chris Lattner1559bed2009-11-10 07:23:37 +0000103 return true;
104}
105
Nick Lewyckyde492782011-08-14 01:45:19 +0000106// Return true, if No Signed Wrap should be maintained for I.
107// The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
108// where both B and C should be ConstantInts, results in a constant that does
109// not overflow. This function only handles the Add and Sub opcodes. For
110// all other opcodes, the function conservatively returns false.
111static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
112 OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
113 if (!OBO || !OBO->hasNoSignedWrap()) {
114 return false;
115 }
116
117 // We reason about Add and Sub Only.
118 Instruction::BinaryOps Opcode = I.getOpcode();
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000119 if (Opcode != Instruction::Add &&
Nick Lewyckyde492782011-08-14 01:45:19 +0000120 Opcode != Instruction::Sub) {
121 return false;
122 }
123
124 ConstantInt *CB = dyn_cast<ConstantInt>(B);
125 ConstantInt *CC = dyn_cast<ConstantInt>(C);
126
127 if (!CB || !CC) {
128 return false;
129 }
130
131 const APInt &BVal = CB->getValue();
132 const APInt &CVal = CC->getValue();
133 bool Overflow = false;
134
135 if (Opcode == Instruction::Add) {
136 BVal.sadd_ov(CVal, Overflow);
137 } else {
138 BVal.ssub_ov(CVal, Overflow);
139 }
140
141 return !Overflow;
142}
143
Michael Ilseman1dd6f2a2013-02-07 01:40:15 +0000144/// Conservatively clears subclassOptionalData after a reassociation or
145/// commutation. We preserve fast-math flags when applicable as they can be
146/// preserved.
147static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
148 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
149 if (!FPMO) {
150 I.clearSubclassOptionalData();
151 return;
152 }
153
154 FastMathFlags FMF = I.getFastMathFlags();
155 I.clearSubclassOptionalData();
156 I.setFastMathFlags(FMF);
157}
158
Duncan Sands641baf12010-11-13 15:10:37 +0000159/// SimplifyAssociativeOrCommutative - This performs a few simplifications for
160/// operators which are associative or commutative:
161//
162// Commutative operators:
Chris Lattner260ab202002-04-18 17:39:14 +0000163//
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000164// 1. Order operands such that they are listed from right (least complex) to
165// left (most complex). This puts constants before unary operators before
166// binary operators.
167//
Duncan Sands641baf12010-11-13 15:10:37 +0000168// Associative operators:
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000169//
Duncan Sands641baf12010-11-13 15:10:37 +0000170// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
171// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
172//
173// Associative and commutative operators:
174//
175// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
176// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
177// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
178// if C1 and C2 are constants.
179//
180bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000181 Instruction::BinaryOps Opcode = I.getOpcode();
Duncan Sands641baf12010-11-13 15:10:37 +0000182 bool Changed = false;
Chris Lattner7fb29e12003-03-11 00:12:48 +0000183
Duncan Sands641baf12010-11-13 15:10:37 +0000184 do {
185 // Order operands such that they are listed from right (least complex) to
186 // left (most complex). This puts constants before unary operators before
187 // binary operators.
188 if (I.isCommutative() && getComplexity(I.getOperand(0)) <
189 getComplexity(I.getOperand(1)))
190 Changed = !I.swapOperands();
191
192 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
193 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
194
195 if (I.isAssociative()) {
196 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
197 if (Op0 && Op0->getOpcode() == Opcode) {
198 Value *A = Op0->getOperand(0);
199 Value *B = Op0->getOperand(1);
200 Value *C = I.getOperand(1);
201
202 // Does "B op C" simplify?
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000203 if (Value *V = SimplifyBinOp(Opcode, B, C, DL)) {
Duncan Sands641baf12010-11-13 15:10:37 +0000204 // It simplifies to V. Form "A op V".
205 I.setOperand(0, A);
206 I.setOperand(1, V);
Dan Gohmanc6f0bda2011-02-02 02:05:46 +0000207 // Conservatively clear the optional flags, since they may not be
208 // preserved by the reassociation.
Nick Lewyckyae13df62011-08-14 03:41:33 +0000209 if (MaintainNoSignedWrap(I, B, C) &&
Bill Wendlingea6397f2012-07-19 00:11:40 +0000210 (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
Nick Lewyckyae13df62011-08-14 03:41:33 +0000211 // Note: this is only valid because SimplifyBinOp doesn't look at
212 // the operands to Op0.
Nick Lewyckyde492782011-08-14 01:45:19 +0000213 I.clearSubclassOptionalData();
214 I.setHasNoSignedWrap(true);
215 } else {
Michael Ilseman1dd6f2a2013-02-07 01:40:15 +0000216 ClearSubclassDataAfterReassociation(I);
Nick Lewyckyde492782011-08-14 01:45:19 +0000217 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000218
Duncan Sands641baf12010-11-13 15:10:37 +0000219 Changed = true;
Duncan Sands3547d2e2010-12-22 09:40:51 +0000220 ++NumReassoc;
Duncan Sands641baf12010-11-13 15:10:37 +0000221 continue;
Misha Brukmanb1c93172005-04-21 23:48:37 +0000222 }
Duncan Sands641baf12010-11-13 15:10:37 +0000223 }
224
225 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
226 if (Op1 && Op1->getOpcode() == Opcode) {
227 Value *A = I.getOperand(0);
228 Value *B = Op1->getOperand(0);
229 Value *C = Op1->getOperand(1);
230
231 // Does "A op B" simplify?
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000232 if (Value *V = SimplifyBinOp(Opcode, A, B, DL)) {
Duncan Sands641baf12010-11-13 15:10:37 +0000233 // It simplifies to V. Form "V op C".
234 I.setOperand(0, V);
235 I.setOperand(1, C);
Dan Gohmanc6f0bda2011-02-02 02:05:46 +0000236 // Conservatively clear the optional flags, since they may not be
237 // preserved by the reassociation.
Michael Ilseman1dd6f2a2013-02-07 01:40:15 +0000238 ClearSubclassDataAfterReassociation(I);
Duncan Sands641baf12010-11-13 15:10:37 +0000239 Changed = true;
Duncan Sands3547d2e2010-12-22 09:40:51 +0000240 ++NumReassoc;
Duncan Sands641baf12010-11-13 15:10:37 +0000241 continue;
242 }
243 }
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000244 }
Duncan Sands641baf12010-11-13 15:10:37 +0000245
246 if (I.isAssociative() && I.isCommutative()) {
247 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
248 if (Op0 && Op0->getOpcode() == Opcode) {
249 Value *A = Op0->getOperand(0);
250 Value *B = Op0->getOperand(1);
251 Value *C = I.getOperand(1);
252
253 // Does "C op A" simplify?
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000254 if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
Duncan Sands641baf12010-11-13 15:10:37 +0000255 // It simplifies to V. Form "V op B".
256 I.setOperand(0, V);
257 I.setOperand(1, B);
Dan Gohmanc6f0bda2011-02-02 02:05:46 +0000258 // Conservatively clear the optional flags, since they may not be
259 // preserved by the reassociation.
Michael Ilseman1dd6f2a2013-02-07 01:40:15 +0000260 ClearSubclassDataAfterReassociation(I);
Duncan Sands641baf12010-11-13 15:10:37 +0000261 Changed = true;
Duncan Sands3547d2e2010-12-22 09:40:51 +0000262 ++NumReassoc;
Duncan Sands641baf12010-11-13 15:10:37 +0000263 continue;
264 }
265 }
266
267 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
268 if (Op1 && Op1->getOpcode() == Opcode) {
269 Value *A = I.getOperand(0);
270 Value *B = Op1->getOperand(0);
271 Value *C = Op1->getOperand(1);
272
273 // Does "C op A" simplify?
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000274 if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
Duncan Sands641baf12010-11-13 15:10:37 +0000275 // It simplifies to V. Form "B op V".
276 I.setOperand(0, B);
277 I.setOperand(1, V);
Dan Gohmanc6f0bda2011-02-02 02:05:46 +0000278 // Conservatively clear the optional flags, since they may not be
279 // preserved by the reassociation.
Michael Ilseman1dd6f2a2013-02-07 01:40:15 +0000280 ClearSubclassDataAfterReassociation(I);
Duncan Sands641baf12010-11-13 15:10:37 +0000281 Changed = true;
Duncan Sands3547d2e2010-12-22 09:40:51 +0000282 ++NumReassoc;
Duncan Sands641baf12010-11-13 15:10:37 +0000283 continue;
284 }
285 }
286
287 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
288 // if C1 and C2 are constants.
289 if (Op0 && Op1 &&
290 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
291 isa<Constant>(Op0->getOperand(1)) &&
292 isa<Constant>(Op1->getOperand(1)) &&
293 Op0->hasOneUse() && Op1->hasOneUse()) {
294 Value *A = Op0->getOperand(0);
295 Constant *C1 = cast<Constant>(Op0->getOperand(1));
296 Value *B = Op1->getOperand(0);
297 Constant *C2 = cast<Constant>(Op1->getOperand(1));
298
299 Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
Nick Lewyckyde492782011-08-14 01:45:19 +0000300 BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
Owen Anderson1664dc82014-01-20 07:44:53 +0000301 if (isa<FPMathOperator>(New)) {
302 FastMathFlags Flags = I.getFastMathFlags();
303 Flags &= Op0->getFastMathFlags();
304 Flags &= Op1->getFastMathFlags();
305 New->setFastMathFlags(Flags);
306 }
Eli Friedman35211c62011-05-27 00:19:40 +0000307 InsertNewInstWith(New, I);
Eli Friedman41e509a2011-05-18 23:58:37 +0000308 New->takeName(Op1);
Duncan Sands641baf12010-11-13 15:10:37 +0000309 I.setOperand(0, New);
310 I.setOperand(1, Folded);
Dan Gohmanc6f0bda2011-02-02 02:05:46 +0000311 // Conservatively clear the optional flags, since they may not be
312 // preserved by the reassociation.
Michael Ilseman1dd6f2a2013-02-07 01:40:15 +0000313 ClearSubclassDataAfterReassociation(I);
Nick Lewyckyde492782011-08-14 01:45:19 +0000314
Duncan Sands641baf12010-11-13 15:10:37 +0000315 Changed = true;
316 continue;
317 }
318 }
319
320 // No further simplifications.
321 return Changed;
322 } while (1);
Chris Lattner260ab202002-04-18 17:39:14 +0000323}
Chris Lattnerca081252001-12-14 16:52:21 +0000324
Duncan Sandsadc7771f2010-11-23 14:23:47 +0000325/// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to
Duncan Sands22df7412010-11-23 15:25:34 +0000326/// "(X LOp Y) ROp (X LOp Z)".
Duncan Sandsadc7771f2010-11-23 14:23:47 +0000327static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
328 Instruction::BinaryOps ROp) {
329 switch (LOp) {
330 default:
331 return false;
332
333 case Instruction::And:
334 // And distributes over Or and Xor.
335 switch (ROp) {
336 default:
337 return false;
338 case Instruction::Or:
339 case Instruction::Xor:
340 return true;
341 }
342
343 case Instruction::Mul:
344 // Multiplication distributes over addition and subtraction.
345 switch (ROp) {
346 default:
347 return false;
348 case Instruction::Add:
349 case Instruction::Sub:
350 return true;
351 }
352
353 case Instruction::Or:
354 // Or distributes over And.
355 switch (ROp) {
356 default:
357 return false;
358 case Instruction::And:
359 return true;
360 }
361 }
362}
363
364/// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to
365/// "(X ROp Z) LOp (Y ROp Z)".
366static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
367 Instruction::BinaryOps ROp) {
368 if (Instruction::isCommutative(ROp))
369 return LeftDistributesOverRight(ROp, LOp);
Dinesh Dwivedi4919bbe2014-08-26 08:53:32 +0000370
371 switch (LOp) {
372 default:
373 return false;
374 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
375 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
376 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
377 case Instruction::And:
378 case Instruction::Or:
379 case Instruction::Xor:
380 switch (ROp) {
381 default:
382 return false;
383 case Instruction::Shl:
384 case Instruction::LShr:
385 case Instruction::AShr:
386 return true;
387 }
388 }
Duncan Sandsadc7771f2010-11-23 14:23:47 +0000389 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
390 // but this requires knowing that the addition does not overflow and other
391 // such subtleties.
392 return false;
393}
394
Dinesh Dwivedib62e52e2014-06-19 08:29:18 +0000395/// This function returns identity value for given opcode, which can be used to
396/// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
397static Value *getIdentityValue(Instruction::BinaryOps OpCode, Value *V) {
398 if (isa<Constant>(V))
399 return nullptr;
400
401 if (OpCode == Instruction::Mul)
402 return ConstantInt::get(V->getType(), 1);
403
404 // TODO: We can handle other cases e.g. Instruction::And, Instruction::Or etc.
405
406 return nullptr;
407}
408
409/// This function factors binary ops which can be combined using distributive
Dinesh Dwivedi4919bbe2014-08-26 08:53:32 +0000410/// laws. This function tries to transform 'Op' based TopLevelOpcode to enable
411/// factorization e.g for ADD(SHL(X , 2), MUL(X, 5)), When this function called
412/// with TopLevelOpcode == Instruction::Add and Op = SHL(X, 2), transforms
413/// SHL(X, 2) to MUL(X, 4) i.e. returns Instruction::Mul with LHS set to 'X' and
414/// RHS to 4.
Benjamin Kramer6cbe6702014-07-07 14:47:51 +0000415static Instruction::BinaryOps
Dinesh Dwivedi4919bbe2014-08-26 08:53:32 +0000416getBinOpsForFactorization(Instruction::BinaryOps TopLevelOpcode,
417 BinaryOperator *Op, Value *&LHS, Value *&RHS) {
Dinesh Dwivedib62e52e2014-06-19 08:29:18 +0000418 if (!Op)
419 return Instruction::BinaryOpsEnd;
420
Dinesh Dwivedi4919bbe2014-08-26 08:53:32 +0000421 LHS = Op->getOperand(0);
422 RHS = Op->getOperand(1);
423
424 switch (TopLevelOpcode) {
425 default:
426 return Op->getOpcode();
427
428 case Instruction::Add:
429 case Instruction::Sub:
430 if (Op->getOpcode() == Instruction::Shl) {
431 if (Constant *CST = dyn_cast<Constant>(Op->getOperand(1))) {
432 // The multiplier is really 1 << CST.
433 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), CST);
434 return Instruction::Mul;
435 }
Dinesh Dwivedib62e52e2014-06-19 08:29:18 +0000436 }
Dinesh Dwivedi4919bbe2014-08-26 08:53:32 +0000437 return Op->getOpcode();
Dinesh Dwivedib62e52e2014-06-19 08:29:18 +0000438 }
439
440 // TODO: We can add other conversions e.g. shr => div etc.
Dinesh Dwivedib62e52e2014-06-19 08:29:18 +0000441}
442
443/// This tries to simplify binary operations by factorizing out common terms
444/// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
445static Value *tryFactorization(InstCombiner::BuilderTy *Builder,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000446 const DataLayout &DL, BinaryOperator &I,
Dinesh Dwivedib62e52e2014-06-19 08:29:18 +0000447 Instruction::BinaryOps InnerOpcode, Value *A,
448 Value *B, Value *C, Value *D) {
449
450 // If any of A, B, C, D are null, we can not factor I, return early.
451 // Checking A and C should be enough.
452 if (!A || !C || !B || !D)
453 return nullptr;
454
455 Value *SimplifiedInst = nullptr;
456 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
457 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
458
459 // Does "X op' Y" always equal "Y op' X"?
460 bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
461
462 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
463 if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
464 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
465 // commutative case, "(A op' B) op (C op' A)"?
466 if (A == C || (InnerCommutative && A == D)) {
467 if (A != C)
468 std::swap(C, D);
469 // Consider forming "A op' (B op D)".
470 // If "B op D" simplifies then it can be formed with no cost.
471 Value *V = SimplifyBinOp(TopLevelOpcode, B, D, DL);
472 // If "B op D" doesn't simplify then only go on if both of the existing
473 // operations "A op' B" and "C op' D" will be zapped as no longer used.
474 if (!V && LHS->hasOneUse() && RHS->hasOneUse())
475 V = Builder->CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
476 if (V) {
477 SimplifiedInst = Builder->CreateBinOp(InnerOpcode, A, V);
478 }
479 }
480
481 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
482 if (!SimplifiedInst && RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
483 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
484 // commutative case, "(A op' B) op (B op' D)"?
485 if (B == D || (InnerCommutative && B == C)) {
486 if (B != D)
487 std::swap(C, D);
488 // Consider forming "(A op C) op' B".
489 // If "A op C" simplifies then it can be formed with no cost.
490 Value *V = SimplifyBinOp(TopLevelOpcode, A, C, DL);
491
492 // If "A op C" doesn't simplify then only go on if both of the existing
493 // operations "A op' B" and "C op' D" will be zapped as no longer used.
494 if (!V && LHS->hasOneUse() && RHS->hasOneUse())
495 V = Builder->CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
496 if (V) {
497 SimplifiedInst = Builder->CreateBinOp(InnerOpcode, V, B);
498 }
499 }
500
501 if (SimplifiedInst) {
502 ++NumFactor;
503 SimplifiedInst->takeName(&I);
504
505 // Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag.
506 // TODO: Check for NUW.
507 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
508 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
509 bool HasNSW = false;
510 if (isa<OverflowingBinaryOperator>(&I))
511 HasNSW = I.hasNoSignedWrap();
512
513 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
514 if (isa<OverflowingBinaryOperator>(Op0))
515 HasNSW &= Op0->hasNoSignedWrap();
516
517 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
518 if (isa<OverflowingBinaryOperator>(Op1))
519 HasNSW &= Op1->hasNoSignedWrap();
520 BO->setHasNoSignedWrap(HasNSW);
521 }
522 }
523 }
524 return SimplifiedInst;
525}
526
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000527/// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
528/// which some other binary operation distributes over either by factorizing
529/// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
530/// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
531/// a win). Returns the simplified value, or null if it didn't simplify.
532Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
533 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
534 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
535 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
Duncan Sandsadc7771f2010-11-23 14:23:47 +0000536
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000537 // Factorization.
Dinesh Dwivedib62e52e2014-06-19 08:29:18 +0000538 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
Dinesh Dwivedi4919bbe2014-08-26 08:53:32 +0000539 auto TopLevelOpcode = I.getOpcode();
540 auto LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
541 auto RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
Duncan Sandsadc7771f2010-11-23 14:23:47 +0000542
Dinesh Dwivedib62e52e2014-06-19 08:29:18 +0000543 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize
544 // a common term.
545 if (LHSOpcode == RHSOpcode) {
546 if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, C, D))
547 return V;
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000548 }
549
Dinesh Dwivedib62e52e2014-06-19 08:29:18 +0000550 // The instruction has the form "(A op' B) op (C)". Try to factorize common
551 // term.
552 if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, RHS,
553 getIdentityValue(LHSOpcode, RHS)))
554 return V;
555
556 // The instruction has the form "(B) op (C op' D)". Try to factorize common
557 // term.
558 if (Value *V = tryFactorization(Builder, DL, I, RHSOpcode, LHS,
559 getIdentityValue(RHSOpcode, LHS), C, D))
560 return V;
561
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000562 // Expansion.
563 if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
564 // The instruction has the form "(A op' B) op C". See if expanding it out
565 // to "(A op C) op' (B op C)" results in simplifications.
566 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
567 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
568
569 // Do "A op C" and "B op C" both simplify?
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000570 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, DL))
571 if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, DL)) {
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000572 // They do! Return "L op' R".
573 ++NumExpand;
574 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
575 if ((L == A && R == B) ||
576 (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
577 return Op0;
578 // Otherwise return "L op' R" if it simplifies.
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000579 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000580 return V;
581 // Otherwise, create a new instruction.
582 C = Builder->CreateBinOp(InnerOpcode, L, R);
583 C->takeName(&I);
584 return C;
585 }
586 }
587
588 if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
589 // The instruction has the form "A op (B op' C)". See if expanding it out
590 // to "(A op B) op' (A op C)" results in simplifications.
591 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
592 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
593
594 // Do "A op B" and "A op C" both simplify?
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000595 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, DL))
596 if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, DL)) {
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000597 // They do! Return "L op' R".
598 ++NumExpand;
599 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
600 if ((L == B && R == C) ||
601 (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
602 return Op1;
603 // Otherwise return "L op' R" if it simplifies.
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000604 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000605 return V;
606 // Otherwise, create a new instruction.
607 A = Builder->CreateBinOp(InnerOpcode, L, R);
608 A->takeName(&I);
609 return A;
610 }
611 }
Duncan Sandsadc7771f2010-11-23 14:23:47 +0000612
Craig Topperf40110f2014-04-25 05:29:35 +0000613 return nullptr;
Duncan Sandsadc7771f2010-11-23 14:23:47 +0000614}
615
Chris Lattnerbb74e222003-03-10 23:06:50 +0000616// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
617// if the LHS is a constant zero (which is the 'negate' form).
Chris Lattner9fa53de2002-05-06 16:49:18 +0000618//
Chris Lattner2188e402010-01-04 07:37:31 +0000619Value *InstCombiner::dyn_castNegVal(Value *V) const {
Owen Andersonbb2501b2009-07-13 22:18:28 +0000620 if (BinaryOperator::isNeg(V))
Chris Lattnerd6f636a2005-04-24 07:30:14 +0000621 return BinaryOperator::getNegArgument(V);
Chris Lattnerbb74e222003-03-10 23:06:50 +0000622
Chris Lattner9ad0d552004-12-14 20:08:06 +0000623 // Constants can be considered to be negated values if they can be folded.
624 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
Owen Anderson487375e2009-07-29 18:55:55 +0000625 return ConstantExpr::getNeg(C);
Nick Lewycky3bf55122008-05-23 04:54:45 +0000626
Chris Lattner8213c8a2012-02-06 21:56:39 +0000627 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
628 if (C->getType()->getElementType()->isIntegerTy())
Owen Anderson487375e2009-07-29 18:55:55 +0000629 return ConstantExpr::getNeg(C);
Nick Lewycky3bf55122008-05-23 04:54:45 +0000630
Craig Topperf40110f2014-04-25 05:29:35 +0000631 return nullptr;
Chris Lattner9fa53de2002-05-06 16:49:18 +0000632}
633
Dan Gohmana5b96452009-06-04 22:49:04 +0000634// dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
635// instruction if the LHS is a constant negative zero (which is the 'negate'
636// form).
637//
Shuxin Yangf0537ab2013-01-09 00:13:41 +0000638Value *InstCombiner::dyn_castFNegVal(Value *V, bool IgnoreZeroSign) const {
639 if (BinaryOperator::isFNeg(V, IgnoreZeroSign))
Dan Gohmana5b96452009-06-04 22:49:04 +0000640 return BinaryOperator::getFNegArgument(V);
641
642 // Constants can be considered to be negated values if they can be folded.
643 if (ConstantFP *C = dyn_cast<ConstantFP>(V))
Owen Anderson487375e2009-07-29 18:55:55 +0000644 return ConstantExpr::getFNeg(C);
Dan Gohmana5b96452009-06-04 22:49:04 +0000645
Chris Lattner8213c8a2012-02-06 21:56:39 +0000646 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
647 if (C->getType()->getElementType()->isFloatingPointTy())
Owen Anderson487375e2009-07-29 18:55:55 +0000648 return ConstantExpr::getFNeg(C);
Dan Gohmana5b96452009-06-04 22:49:04 +0000649
Craig Topperf40110f2014-04-25 05:29:35 +0000650 return nullptr;
Dan Gohmana5b96452009-06-04 22:49:04 +0000651}
652
Chris Lattner86102b82005-01-01 16:22:27 +0000653static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
Chris Lattner183b3362004-04-09 19:05:30 +0000654 InstCombiner *IC) {
Nick Lewycky6a083cf2011-01-21 02:30:43 +0000655 if (CastInst *CI = dyn_cast<CastInst>(&I)) {
Chris Lattnerc8565392009-08-30 20:01:10 +0000656 return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
Nick Lewycky6a083cf2011-01-21 02:30:43 +0000657 }
Chris Lattner86102b82005-01-01 16:22:27 +0000658
Chris Lattner183b3362004-04-09 19:05:30 +0000659 // Figure out if the constant is the left or the right argument.
Chris Lattner86102b82005-01-01 16:22:27 +0000660 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
661 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
Chris Lattnerb8b97502003-08-13 19:01:45 +0000662
Chris Lattner183b3362004-04-09 19:05:30 +0000663 if (Constant *SOC = dyn_cast<Constant>(SO)) {
664 if (ConstIsRHS)
Owen Anderson487375e2009-07-29 18:55:55 +0000665 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
666 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
Chris Lattner183b3362004-04-09 19:05:30 +0000667 }
668
669 Value *Op0 = SO, *Op1 = ConstOperand;
670 if (!ConstIsRHS)
671 std::swap(Op0, Op1);
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000672
Owen Anderson1664dc82014-01-20 07:44:53 +0000673 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) {
674 Value *RI = IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
Chris Lattner022a5822009-08-30 07:44:24 +0000675 SO->getName()+".op");
Owen Anderson1664dc82014-01-20 07:44:53 +0000676 Instruction *FPInst = dyn_cast<Instruction>(RI);
677 if (FPInst && isa<FPMathOperator>(FPInst))
678 FPInst->copyFastMathFlags(BO);
679 return RI;
680 }
Chris Lattner022a5822009-08-30 07:44:24 +0000681 if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
682 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
683 SO->getName()+".cmp");
684 if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
685 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
686 SO->getName()+".cmp");
687 llvm_unreachable("Unknown binary instruction type!");
Chris Lattner86102b82005-01-01 16:22:27 +0000688}
689
690// FoldOpIntoSelect - Given an instruction with a select as one operand and a
691// constant as the other operand, try to fold the binary operator into the
692// select arguments. This also works for Cast instructions, which obviously do
693// not have a second operand.
Chris Lattner2b295a02010-01-04 07:53:58 +0000694Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
Chris Lattner86102b82005-01-01 16:22:27 +0000695 // Don't modify shared select instructions
Craig Topperf40110f2014-04-25 05:29:35 +0000696 if (!SI->hasOneUse()) return nullptr;
Chris Lattner86102b82005-01-01 16:22:27 +0000697 Value *TV = SI->getOperand(1);
698 Value *FV = SI->getOperand(2);
699
700 if (isa<Constant>(TV) || isa<Constant>(FV)) {
Chris Lattner374e6592005-04-21 05:43:13 +0000701 // Bool selects with constant operands can be folded to logical ops.
Craig Topperf40110f2014-04-25 05:29:35 +0000702 if (SI->getType()->isIntegerTy(1)) return nullptr;
Chris Lattner374e6592005-04-21 05:43:13 +0000703
Nick Lewycky6a083cf2011-01-21 02:30:43 +0000704 // If it's a bitcast involving vectors, make sure it has the same number of
705 // elements on both sides.
706 if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
Chris Lattner229907c2011-07-18 04:54:35 +0000707 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
708 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
Nick Lewycky6a083cf2011-01-21 02:30:43 +0000709
710 // Verify that either both or neither are vectors.
Craig Topperf40110f2014-04-25 05:29:35 +0000711 if ((SrcTy == nullptr) != (DestTy == nullptr)) return nullptr;
Nick Lewycky6a083cf2011-01-21 02:30:43 +0000712 // If vectors, verify that they have the same number of elements.
713 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
Craig Topperf40110f2014-04-25 05:29:35 +0000714 return nullptr;
Nick Lewycky6a083cf2011-01-21 02:30:43 +0000715 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000716
Chris Lattner2b295a02010-01-04 07:53:58 +0000717 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
718 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
Chris Lattner86102b82005-01-01 16:22:27 +0000719
Nick Lewycky6a083cf2011-01-21 02:30:43 +0000720 return SelectInst::Create(SI->getCondition(),
721 SelectTrueVal, SelectFalseVal);
Chris Lattner86102b82005-01-01 16:22:27 +0000722 }
Craig Topperf40110f2014-04-25 05:29:35 +0000723 return nullptr;
Chris Lattner183b3362004-04-09 19:05:30 +0000724}
725
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000726
Chris Lattnerfacb8672009-09-27 19:57:57 +0000727/// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
728/// has a PHI node as operand #0, see if we can fold the instruction into the
729/// PHI (which is only possible if all operands to the PHI are constants).
Chris Lattnerb391e872009-09-27 20:46:36 +0000730///
Chris Lattnerea7131a2011-01-16 05:14:26 +0000731Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000732 PHINode *PN = cast<PHINode>(I.getOperand(0));
Chris Lattner7515cab2004-11-14 19:13:23 +0000733 unsigned NumPHIValues = PN->getNumIncomingValues();
Chris Lattner25ce2802011-01-16 04:37:29 +0000734 if (NumPHIValues == 0)
Craig Topperf40110f2014-04-25 05:29:35 +0000735 return nullptr;
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000736
Chris Lattnerf4ca47b2011-01-21 05:08:26 +0000737 // We normally only transform phis with a single use. However, if a PHI has
738 // multiple uses and they are all the same operation, we can fold *all* of the
739 // uses into the PHI.
Chris Lattnerd55581d2011-01-16 05:28:59 +0000740 if (!PN->hasOneUse()) {
741 // Walk the use list for the instruction, comparing them to I.
Chandler Carruthcdf47882014-03-09 03:16:01 +0000742 for (User *U : PN->users()) {
743 Instruction *UI = cast<Instruction>(U);
744 if (UI != &I && !I.isIdenticalTo(UI))
Craig Topperf40110f2014-04-25 05:29:35 +0000745 return nullptr;
Chris Lattnerb5e15d12011-01-21 05:29:50 +0000746 }
Chris Lattnerd55581d2011-01-16 05:28:59 +0000747 // Otherwise, we can replace *all* users with the new PHI we form.
748 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000749
Chris Lattnerfacb8672009-09-27 19:57:57 +0000750 // Check to see if all of the operands of the PHI are simple constants
751 // (constantint/constantfp/undef). If there is one non-constant value,
Chris Lattnerae289632009-09-27 20:18:49 +0000752 // remember the BB it is in. If there is more than one or if *it* is a PHI,
753 // bail out. We don't do arbitrary constant expressions here because moving
754 // their computation can be expensive without a cost model.
Craig Topperf40110f2014-04-25 05:29:35 +0000755 BasicBlock *NonConstBB = nullptr;
Chris Lattner25ce2802011-01-16 04:37:29 +0000756 for (unsigned i = 0; i != NumPHIValues; ++i) {
757 Value *InVal = PN->getIncomingValue(i);
758 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
759 continue;
760
Craig Topperf40110f2014-04-25 05:29:35 +0000761 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi.
762 if (NonConstBB) return nullptr; // More than one non-const value.
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000763
Chris Lattner25ce2802011-01-16 04:37:29 +0000764 NonConstBB = PN->getIncomingBlock(i);
Chris Lattnerff2e7372011-01-16 05:08:00 +0000765
766 // If the InVal is an invoke at the end of the pred block, then we can't
767 // insert a computation after it without breaking the edge.
768 if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
769 if (II->getParent() == NonConstBB)
Craig Topperf40110f2014-04-25 05:29:35 +0000770 return nullptr;
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000771
Chris Lattnerb5e15d12011-01-21 05:29:50 +0000772 // If the incoming non-constant value is in I's block, we will remove one
773 // instruction, but insert another equivalent one, leading to infinite
774 // instcombine.
Chandler Carruth5175b9a2015-01-20 08:35:24 +0000775 if (isPotentiallyReachable(I.getParent(), NonConstBB, DT, LI))
Craig Topperf40110f2014-04-25 05:29:35 +0000776 return nullptr;
Chris Lattner25ce2802011-01-16 04:37:29 +0000777 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000778
Chris Lattner04689872006-09-09 22:02:56 +0000779 // If there is exactly one non-constant value, we can insert a copy of the
780 // operation in that block. However, if this is a critical edge, we would be
David Majnemer7e2b9882014-11-03 21:55:12 +0000781 // inserting the computation on some other paths (e.g. inside a loop). Only
Chris Lattner04689872006-09-09 22:02:56 +0000782 // do this if the pred block is unconditionally branching into the phi block.
Craig Topperf40110f2014-04-25 05:29:35 +0000783 if (NonConstBB != nullptr) {
Chris Lattner04689872006-09-09 22:02:56 +0000784 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
Craig Topperf40110f2014-04-25 05:29:35 +0000785 if (!BI || !BI->isUnconditional()) return nullptr;
Chris Lattner04689872006-09-09 22:02:56 +0000786 }
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000787
788 // Okay, we can do the transformation: create the new PHI node.
Eli Friedman41e509a2011-05-18 23:58:37 +0000789 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
Chris Lattner966526c2009-10-21 23:41:58 +0000790 InsertNewInstBefore(NewPN, *PN);
791 NewPN->takeName(PN);
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000792
Chris Lattnerff2e7372011-01-16 05:08:00 +0000793 // If we are going to have to insert a new computation, do so right before the
794 // predecessors terminator.
795 if (NonConstBB)
796 Builder->SetInsertPoint(NonConstBB->getTerminator());
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000797
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000798 // Next, add all of the operands to the PHI.
Chris Lattnerfacb8672009-09-27 19:57:57 +0000799 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
800 // We only currently try to fold the condition of a select when it is a phi,
801 // not the true/false values.
Chris Lattnerae289632009-09-27 20:18:49 +0000802 Value *TrueV = SI->getTrueValue();
803 Value *FalseV = SI->getFalseValue();
Chris Lattner0261b5d2009-09-28 06:49:44 +0000804 BasicBlock *PhiTransBB = PN->getParent();
Chris Lattnerfacb8672009-09-27 19:57:57 +0000805 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattnerae289632009-09-27 20:18:49 +0000806 BasicBlock *ThisBB = PN->getIncomingBlock(i);
Chris Lattner0261b5d2009-09-28 06:49:44 +0000807 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
808 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
Craig Topperf40110f2014-04-25 05:29:35 +0000809 Value *InV = nullptr;
Duncan P. N. Exon Smithce5f93e2013-12-06 21:48:36 +0000810 // Beware of ConstantExpr: it may eventually evaluate to getNullValue,
811 // even if currently isNullValue gives false.
812 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
813 if (InC && !isa<ConstantExpr>(InC))
Chris Lattnerae289632009-09-27 20:18:49 +0000814 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
Chris Lattnerff2e7372011-01-16 05:08:00 +0000815 else
816 InV = Builder->CreateSelect(PN->getIncomingValue(i),
817 TrueVInPred, FalseVInPred, "phitmp");
Chris Lattnerae289632009-09-27 20:18:49 +0000818 NewPN->addIncoming(InV, ThisBB);
Chris Lattnerfacb8672009-09-27 19:57:57 +0000819 }
Chris Lattnerff2e7372011-01-16 05:08:00 +0000820 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
821 Constant *C = cast<Constant>(I.getOperand(1));
822 for (unsigned i = 0; i != NumPHIValues; ++i) {
Craig Topperf40110f2014-04-25 05:29:35 +0000823 Value *InV = nullptr;
Chris Lattnerff2e7372011-01-16 05:08:00 +0000824 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
825 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
826 else if (isa<ICmpInst>(CI))
827 InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
828 C, "phitmp");
829 else
830 InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
831 C, "phitmp");
832 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
833 }
Chris Lattnerfacb8672009-09-27 19:57:57 +0000834 } else if (I.getNumOperands() == 2) {
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000835 Constant *C = cast<Constant>(I.getOperand(1));
Chris Lattner7515cab2004-11-14 19:13:23 +0000836 for (unsigned i = 0; i != NumPHIValues; ++i) {
Craig Topperf40110f2014-04-25 05:29:35 +0000837 Value *InV = nullptr;
Chris Lattnerff2e7372011-01-16 05:08:00 +0000838 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
839 InV = ConstantExpr::get(I.getOpcode(), InC, C);
840 else
841 InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
842 PN->getIncomingValue(i), C, "phitmp");
Chris Lattner04689872006-09-09 22:02:56 +0000843 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000844 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000845 } else {
Reid Spencer6c38f0b2006-11-27 01:05:10 +0000846 CastInst *CI = cast<CastInst>(&I);
Chris Lattner229907c2011-07-18 04:54:35 +0000847 Type *RetTy = CI->getType();
Chris Lattner7515cab2004-11-14 19:13:23 +0000848 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattner04689872006-09-09 22:02:56 +0000849 Value *InV;
Chris Lattnerff2e7372011-01-16 05:08:00 +0000850 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
Owen Anderson487375e2009-07-29 18:55:55 +0000851 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000852 else
Chris Lattnerff2e7372011-01-16 05:08:00 +0000853 InV = Builder->CreateCast(CI->getOpcode(),
854 PN->getIncomingValue(i), I.getType(), "phitmp");
Chris Lattner04689872006-09-09 22:02:56 +0000855 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000856 }
857 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000858
Chandler Carruthcdf47882014-03-09 03:16:01 +0000859 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
Chris Lattnerd55581d2011-01-16 05:28:59 +0000860 Instruction *User = cast<Instruction>(*UI++);
861 if (User == &I) continue;
862 ReplaceInstUsesWith(*User, NewPN);
863 EraseInstFromFunction(*User);
864 }
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000865 return ReplaceInstUsesWith(I, NewPN);
866}
867
Matt Arsenaultd79f7d92013-08-19 22:17:40 +0000868/// FindElementAtOffset - Given a pointer type and a constant offset, determine
869/// whether or not there is a sequence of GEP indices into the pointed type that
870/// will land us at the specified offset. If so, fill them into NewIndices and
871/// return the resultant element type, otherwise return null.
872Type *InstCombiner::FindElementAtOffset(Type *PtrTy, int64_t Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000873 SmallVectorImpl<Value *> &NewIndices) {
Matt Arsenaultd79f7d92013-08-19 22:17:40 +0000874 assert(PtrTy->isPtrOrPtrVectorTy());
875
Matt Arsenaultd79f7d92013-08-19 22:17:40 +0000876 Type *Ty = PtrTy->getPointerElementType();
877 if (!Ty->isSized())
Craig Topperf40110f2014-04-25 05:29:35 +0000878 return nullptr;
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000879
Chris Lattnerfef138b2009-01-09 05:44:56 +0000880 // Start with the index over the outer type. Note that the type size
881 // might be zero (even if the offset isn't zero) if the indexed type
882 // is something like [0 x {int, int}]
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000883 Type *IntPtrTy = DL.getIntPtrType(PtrTy);
Chris Lattnerfef138b2009-01-09 05:44:56 +0000884 int64_t FirstIdx = 0;
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000885 if (int64_t TySize = DL.getTypeAllocSize(Ty)) {
Chris Lattnerfef138b2009-01-09 05:44:56 +0000886 FirstIdx = Offset/TySize;
Chris Lattnerbd3c7c82009-01-11 20:41:36 +0000887 Offset -= FirstIdx*TySize;
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000888
Benjamin Kramere4c46fe2013-01-23 17:52:29 +0000889 // Handle hosts where % returns negative instead of values [0..TySize).
890 if (Offset < 0) {
891 --FirstIdx;
892 Offset += TySize;
893 assert(Offset >= 0);
894 }
Chris Lattnerfef138b2009-01-09 05:44:56 +0000895 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
896 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000897
Owen Andersonedb4a702009-07-24 23:12:02 +0000898 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000899
Chris Lattnerfef138b2009-01-09 05:44:56 +0000900 // Index into the types. If we fail, set OrigBase to null.
901 while (Offset) {
Chris Lattner171d2d42009-01-11 20:15:20 +0000902 // Indexing into tail padding between struct/array elements.
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000903 if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty))
Craig Topperf40110f2014-04-25 05:29:35 +0000904 return nullptr;
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000905
Chris Lattner229907c2011-07-18 04:54:35 +0000906 if (StructType *STy = dyn_cast<StructType>(Ty)) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000907 const StructLayout *SL = DL.getStructLayout(STy);
Chris Lattner171d2d42009-01-11 20:15:20 +0000908 assert(Offset < (int64_t)SL->getSizeInBytes() &&
909 "Offset must stay within the indexed type");
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000910
Chris Lattnerfef138b2009-01-09 05:44:56 +0000911 unsigned Elt = SL->getElementContainingOffset(Offset);
Chris Lattnerb8906bd2010-01-04 07:02:48 +0000912 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
913 Elt));
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000914
Chris Lattnerfef138b2009-01-09 05:44:56 +0000915 Offset -= SL->getElementOffset(Elt);
916 Ty = STy->getElementType(Elt);
Chris Lattner229907c2011-07-18 04:54:35 +0000917 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000918 uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType());
Chris Lattner171d2d42009-01-11 20:15:20 +0000919 assert(EltSize && "Cannot index into a zero-sized array");
Owen Andersonedb4a702009-07-24 23:12:02 +0000920 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
Chris Lattner171d2d42009-01-11 20:15:20 +0000921 Offset %= EltSize;
Chris Lattnerb1915162009-01-11 20:23:52 +0000922 Ty = AT->getElementType();
Chris Lattnerfef138b2009-01-09 05:44:56 +0000923 } else {
Chris Lattner171d2d42009-01-11 20:15:20 +0000924 // Otherwise, we can't index into the middle of this atomic type, bail.
Craig Topperf40110f2014-04-25 05:29:35 +0000925 return nullptr;
Chris Lattnerfef138b2009-01-09 05:44:56 +0000926 }
927 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000928
Chris Lattner72cd68f2009-01-24 01:00:13 +0000929 return Ty;
Chris Lattnerfef138b2009-01-09 05:44:56 +0000930}
931
Rafael Espindolaa3a44f3f2011-07-31 04:43:41 +0000932static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
933 // If this GEP has only 0 indices, it is the same pointer as
934 // Src. If Src is not a trivial GEP too, don't combine
935 // the indices.
936 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
937 !Src.hasOneUse())
938 return false;
939 return true;
940}
Chris Lattnerbbbdd852002-05-06 18:06:38 +0000941
Duncan Sands533c8ae2012-10-23 08:28:26 +0000942/// Descale - Return a value X such that Val = X * Scale, or null if none. If
943/// the multiplication is known not to overflow then NoSignedWrap is set.
944Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
945 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
946 assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
947 Scale.getBitWidth() && "Scale not compatible with value!");
948
949 // If Val is zero or Scale is one then Val = Val * Scale.
950 if (match(Val, m_Zero()) || Scale == 1) {
951 NoSignedWrap = true;
952 return Val;
953 }
954
955 // If Scale is zero then it does not divide Val.
956 if (Scale.isMinValue())
Craig Topperf40110f2014-04-25 05:29:35 +0000957 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +0000958
959 // Look through chains of multiplications, searching for a constant that is
960 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4
961 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by
962 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore
963 // down from Val:
964 //
965 // Val = M1 * X || Analysis starts here and works down
966 // M1 = M2 * Y || Doesn't descend into terms with more
967 // M2 = Z * 4 \/ than one use
968 //
969 // Then to modify a term at the bottom:
970 //
971 // Val = M1 * X
972 // M1 = Z * Y || Replaced M2 with Z
973 //
974 // Then to work back up correcting nsw flags.
975
976 // Op - the term we are currently analyzing. Starts at Val then drills down.
977 // Replaced with its descaled value before exiting from the drill down loop.
978 Value *Op = Val;
979
980 // Parent - initially null, but after drilling down notes where Op came from.
981 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
982 // 0'th operand of Val.
983 std::pair<Instruction*, unsigned> Parent;
984
985 // RequireNoSignedWrap - Set if the transform requires a descaling at deeper
986 // levels that doesn't overflow.
987 bool RequireNoSignedWrap = false;
988
989 // logScale - log base 2 of the scale. Negative if not a power of 2.
990 int32_t logScale = Scale.exactLogBase2();
991
992 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
993
994 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
995 // If Op is a constant divisible by Scale then descale to the quotient.
996 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
997 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
998 if (!Remainder.isMinValue())
999 // Not divisible by Scale.
Craig Topperf40110f2014-04-25 05:29:35 +00001000 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +00001001 // Replace with the quotient in the parent.
1002 Op = ConstantInt::get(CI->getType(), Quotient);
1003 NoSignedWrap = true;
1004 break;
1005 }
1006
1007 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
1008
1009 if (BO->getOpcode() == Instruction::Mul) {
1010 // Multiplication.
1011 NoSignedWrap = BO->hasNoSignedWrap();
1012 if (RequireNoSignedWrap && !NoSignedWrap)
Craig Topperf40110f2014-04-25 05:29:35 +00001013 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +00001014
1015 // There are three cases for multiplication: multiplication by exactly
1016 // the scale, multiplication by a constant different to the scale, and
1017 // multiplication by something else.
1018 Value *LHS = BO->getOperand(0);
1019 Value *RHS = BO->getOperand(1);
1020
1021 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1022 // Multiplication by a constant.
1023 if (CI->getValue() == Scale) {
1024 // Multiplication by exactly the scale, replace the multiplication
1025 // by its left-hand side in the parent.
1026 Op = LHS;
1027 break;
1028 }
1029
1030 // Otherwise drill down into the constant.
1031 if (!Op->hasOneUse())
Craig Topperf40110f2014-04-25 05:29:35 +00001032 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +00001033
1034 Parent = std::make_pair(BO, 1);
1035 continue;
1036 }
1037
1038 // Multiplication by something else. Drill down into the left-hand side
1039 // since that's where the reassociate pass puts the good stuff.
1040 if (!Op->hasOneUse())
Craig Topperf40110f2014-04-25 05:29:35 +00001041 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +00001042
1043 Parent = std::make_pair(BO, 0);
1044 continue;
1045 }
1046
1047 if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
1048 isa<ConstantInt>(BO->getOperand(1))) {
1049 // Multiplication by a power of 2.
1050 NoSignedWrap = BO->hasNoSignedWrap();
1051 if (RequireNoSignedWrap && !NoSignedWrap)
Craig Topperf40110f2014-04-25 05:29:35 +00001052 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +00001053
1054 Value *LHS = BO->getOperand(0);
1055 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
1056 getLimitedValue(Scale.getBitWidth());
1057 // Op = LHS << Amt.
1058
1059 if (Amt == logScale) {
1060 // Multiplication by exactly the scale, replace the multiplication
1061 // by its left-hand side in the parent.
1062 Op = LHS;
1063 break;
1064 }
1065 if (Amt < logScale || !Op->hasOneUse())
Craig Topperf40110f2014-04-25 05:29:35 +00001066 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +00001067
1068 // Multiplication by more than the scale. Reduce the multiplying amount
1069 // by the scale in the parent.
1070 Parent = std::make_pair(BO, 1);
1071 Op = ConstantInt::get(BO->getType(), Amt - logScale);
1072 break;
1073 }
1074 }
1075
1076 if (!Op->hasOneUse())
Craig Topperf40110f2014-04-25 05:29:35 +00001077 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +00001078
1079 if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
1080 if (Cast->getOpcode() == Instruction::SExt) {
1081 // Op is sign-extended from a smaller type, descale in the smaller type.
1082 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1083 APInt SmallScale = Scale.trunc(SmallSize);
1084 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to
1085 // descale Op as (sext Y) * Scale. In order to have
1086 // sext (Y * SmallScale) = (sext Y) * Scale
1087 // some conditions need to hold however: SmallScale must sign-extend to
1088 // Scale and the multiplication Y * SmallScale should not overflow.
1089 if (SmallScale.sext(Scale.getBitWidth()) != Scale)
1090 // SmallScale does not sign-extend to Scale.
Craig Topperf40110f2014-04-25 05:29:35 +00001091 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +00001092 assert(SmallScale.exactLogBase2() == logScale);
1093 // Require that Y * SmallScale must not overflow.
1094 RequireNoSignedWrap = true;
1095
1096 // Drill down through the cast.
1097 Parent = std::make_pair(Cast, 0);
1098 Scale = SmallScale;
1099 continue;
1100 }
1101
Duncan Sands5ed39002012-10-23 09:07:02 +00001102 if (Cast->getOpcode() == Instruction::Trunc) {
Duncan Sands533c8ae2012-10-23 08:28:26 +00001103 // Op is truncated from a larger type, descale in the larger type.
1104 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then
1105 // trunc (Y * sext Scale) = (trunc Y) * Scale
1106 // always holds. However (trunc Y) * Scale may overflow even if
1107 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1108 // from this point up in the expression (see later).
1109 if (RequireNoSignedWrap)
Craig Topperf40110f2014-04-25 05:29:35 +00001110 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +00001111
1112 // Drill down through the cast.
1113 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1114 Parent = std::make_pair(Cast, 0);
1115 Scale = Scale.sext(LargeSize);
1116 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1117 logScale = -1;
1118 assert(Scale.exactLogBase2() == logScale);
1119 continue;
1120 }
1121 }
1122
1123 // Unsupported expression, bail out.
Craig Topperf40110f2014-04-25 05:29:35 +00001124 return nullptr;
Duncan Sands533c8ae2012-10-23 08:28:26 +00001125 }
1126
Duncan P. N. Exon Smith04934b02014-07-10 17:13:27 +00001127 // If Op is zero then Val = Op * Scale.
1128 if (match(Op, m_Zero())) {
1129 NoSignedWrap = true;
1130 return Op;
1131 }
1132
Duncan Sands533c8ae2012-10-23 08:28:26 +00001133 // We know that we can successfully descale, so from here on we can safely
1134 // modify the IR. Op holds the descaled version of the deepest term in the
1135 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known
1136 // not to overflow.
1137
1138 if (!Parent.first)
1139 // The expression only had one term.
1140 return Op;
1141
1142 // Rewrite the parent using the descaled version of its operand.
1143 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1144 assert(Op != Parent.first->getOperand(Parent.second) &&
1145 "Descaling was a no-op?");
1146 Parent.first->setOperand(Parent.second, Op);
1147 Worklist.Add(Parent.first);
1148
1149 // Now work back up the expression correcting nsw flags. The logic is based
1150 // on the following observation: if X * Y is known not to overflow as a signed
1151 // multiplication, and Y is replaced by a value Z with smaller absolute value,
1152 // then X * Z will not overflow as a signed multiplication either. As we work
1153 // our way up, having NoSignedWrap 'true' means that the descaled value at the
1154 // current level has strictly smaller absolute value than the original.
1155 Instruction *Ancestor = Parent.first;
1156 do {
1157 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1158 // If the multiplication wasn't nsw then we can't say anything about the
1159 // value of the descaled multiplication, and we have to clear nsw flags
1160 // from this point on up.
1161 bool OpNoSignedWrap = BO->hasNoSignedWrap();
1162 NoSignedWrap &= OpNoSignedWrap;
1163 if (NoSignedWrap != OpNoSignedWrap) {
1164 BO->setHasNoSignedWrap(NoSignedWrap);
1165 Worklist.Add(Ancestor);
1166 }
1167 } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1168 // The fact that the descaled input to the trunc has smaller absolute
1169 // value than the original input doesn't tell us anything useful about
1170 // the absolute values of the truncations.
1171 NoSignedWrap = false;
1172 }
1173 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1174 "Failed to keep proper track of nsw flags while drilling down?");
1175
1176 if (Ancestor == Val)
1177 // Got to the top, all done!
1178 return Val;
1179
1180 // Move up one level in the expression.
1181 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
Chandler Carruthcdf47882014-03-09 03:16:01 +00001182 Ancestor = Ancestor->user_back();
Duncan Sands533c8ae2012-10-23 08:28:26 +00001183 } while (1);
1184}
1185
Serge Pavlov9ef66a82014-05-11 08:46:12 +00001186/// \brief Creates node of binary operation with the same attributes as the
1187/// specified one but with other operands.
Serge Pavlove6de9e32014-05-14 09:05:09 +00001188static Value *CreateBinOpAsGiven(BinaryOperator &Inst, Value *LHS, Value *RHS,
1189 InstCombiner::BuilderTy *B) {
1190 Value *BORes = B->CreateBinOp(Inst.getOpcode(), LHS, RHS);
1191 if (BinaryOperator *NewBO = dyn_cast<BinaryOperator>(BORes)) {
1192 if (isa<OverflowingBinaryOperator>(NewBO)) {
1193 NewBO->setHasNoSignedWrap(Inst.hasNoSignedWrap());
1194 NewBO->setHasNoUnsignedWrap(Inst.hasNoUnsignedWrap());
1195 }
1196 if (isa<PossiblyExactOperator>(NewBO))
1197 NewBO->setIsExact(Inst.isExact());
Serge Pavlov9ef66a82014-05-11 08:46:12 +00001198 }
Serge Pavlove6de9e32014-05-14 09:05:09 +00001199 return BORes;
Serge Pavlov9ef66a82014-05-11 08:46:12 +00001200}
1201
1202/// \brief Makes transformation of binary operation specific for vector types.
1203/// \param Inst Binary operator to transform.
1204/// \return Pointer to node that must replace the original binary operator, or
1205/// null pointer if no transformation was made.
1206Value *InstCombiner::SimplifyVectorOp(BinaryOperator &Inst) {
1207 if (!Inst.getType()->isVectorTy()) return nullptr;
1208
Sanjay Patel58814442014-07-09 16:34:54 +00001209 // It may not be safe to reorder shuffles and things like div, urem, etc.
1210 // because we may trap when executing those ops on unknown vector elements.
1211 // See PR20059.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001212 if (!isSafeToSpeculativelyExecute(&Inst))
1213 return nullptr;
Sanjay Patel58814442014-07-09 16:34:54 +00001214
Serge Pavlov9ef66a82014-05-11 08:46:12 +00001215 unsigned VWidth = cast<VectorType>(Inst.getType())->getNumElements();
1216 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1217 assert(cast<VectorType>(LHS->getType())->getNumElements() == VWidth);
1218 assert(cast<VectorType>(RHS->getType())->getNumElements() == VWidth);
1219
1220 // If both arguments of binary operation are shuffles, which use the same
1221 // mask and shuffle within a single vector, it is worthwhile to move the
1222 // shuffle after binary operation:
1223 // Op(shuffle(v1, m), shuffle(v2, m)) -> shuffle(Op(v1, v2), m)
1224 if (isa<ShuffleVectorInst>(LHS) && isa<ShuffleVectorInst>(RHS)) {
1225 ShuffleVectorInst *LShuf = cast<ShuffleVectorInst>(LHS);
1226 ShuffleVectorInst *RShuf = cast<ShuffleVectorInst>(RHS);
1227 if (isa<UndefValue>(LShuf->getOperand(1)) &&
1228 isa<UndefValue>(RShuf->getOperand(1)) &&
Serge Pavlov05811092014-05-12 05:44:53 +00001229 LShuf->getOperand(0)->getType() == RShuf->getOperand(0)->getType() &&
Serge Pavlov9ef66a82014-05-11 08:46:12 +00001230 LShuf->getMask() == RShuf->getMask()) {
Serge Pavlove6de9e32014-05-14 09:05:09 +00001231 Value *NewBO = CreateBinOpAsGiven(Inst, LShuf->getOperand(0),
Serge Pavlov9ef66a82014-05-11 08:46:12 +00001232 RShuf->getOperand(0), Builder);
1233 Value *Res = Builder->CreateShuffleVector(NewBO,
Serge Pavlov02ff6202014-05-12 10:11:27 +00001234 UndefValue::get(NewBO->getType()), LShuf->getMask());
Serge Pavlov9ef66a82014-05-11 08:46:12 +00001235 return Res;
1236 }
1237 }
1238
1239 // If one argument is a shuffle within one vector, the other is a constant,
1240 // try moving the shuffle after the binary operation.
1241 ShuffleVectorInst *Shuffle = nullptr;
1242 Constant *C1 = nullptr;
1243 if (isa<ShuffleVectorInst>(LHS)) Shuffle = cast<ShuffleVectorInst>(LHS);
1244 if (isa<ShuffleVectorInst>(RHS)) Shuffle = cast<ShuffleVectorInst>(RHS);
1245 if (isa<Constant>(LHS)) C1 = cast<Constant>(LHS);
1246 if (isa<Constant>(RHS)) C1 = cast<Constant>(RHS);
Benjamin Kramer6de78662014-06-24 10:38:10 +00001247 if (Shuffle && C1 &&
1248 (isa<ConstantVector>(C1) || isa<ConstantDataVector>(C1)) &&
1249 isa<UndefValue>(Shuffle->getOperand(1)) &&
Serge Pavlov9ef66a82014-05-11 08:46:12 +00001250 Shuffle->getType() == Shuffle->getOperand(0)->getType()) {
1251 SmallVector<int, 16> ShMask = Shuffle->getShuffleMask();
1252 // Find constant C2 that has property:
1253 // shuffle(C2, ShMask) = C1
1254 // If such constant does not exist (example: ShMask=<0,0> and C1=<1,2>)
1255 // reorder is not possible.
1256 SmallVector<Constant*, 16> C2M(VWidth,
1257 UndefValue::get(C1->getType()->getScalarType()));
1258 bool MayChange = true;
1259 for (unsigned I = 0; I < VWidth; ++I) {
1260 if (ShMask[I] >= 0) {
1261 assert(ShMask[I] < (int)VWidth);
1262 if (!isa<UndefValue>(C2M[ShMask[I]])) {
1263 MayChange = false;
1264 break;
1265 }
1266 C2M[ShMask[I]] = C1->getAggregateElement(I);
1267 }
1268 }
1269 if (MayChange) {
1270 Constant *C2 = ConstantVector::get(C2M);
1271 Value *NewLHS, *NewRHS;
1272 if (isa<Constant>(LHS)) {
1273 NewLHS = C2;
1274 NewRHS = Shuffle->getOperand(0);
1275 } else {
1276 NewLHS = Shuffle->getOperand(0);
1277 NewRHS = C2;
1278 }
Serge Pavlove6de9e32014-05-14 09:05:09 +00001279 Value *NewBO = CreateBinOpAsGiven(Inst, NewLHS, NewRHS, Builder);
Serge Pavlov9ef66a82014-05-11 08:46:12 +00001280 Value *Res = Builder->CreateShuffleVector(NewBO,
1281 UndefValue::get(Inst.getType()), Shuffle->getMask());
1282 return Res;
1283 }
1284 }
1285
1286 return nullptr;
1287}
1288
Chris Lattner113f4f42002-06-25 16:13:24 +00001289Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
Chris Lattner8574aba2009-11-27 00:29:05 +00001290 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
1291
Chandler Carruth66b31302015-01-04 12:03:27 +00001292 if (Value *V = SimplifyGEPInst(Ops, DL, TLI, DT, AC))
Chris Lattner8574aba2009-11-27 00:29:05 +00001293 return ReplaceInstUsesWith(GEP, V);
1294
Chris Lattner5f667a62004-05-07 22:09:22 +00001295 Value *PtrOp = GEP.getOperand(0);
Chris Lattner8d0bacb2004-02-22 05:25:17 +00001296
Duncan Sandsc133c542010-11-22 16:32:50 +00001297 // Eliminate unneeded casts for indices, and replace indices which displace
1298 // by multiples of a zero size type with zero.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001299 bool MadeChange = false;
1300 Type *IntPtrTy = DL.getIntPtrType(GEP.getPointerOperandType());
Duncan Sandsc133c542010-11-22 16:32:50 +00001301
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001302 gep_type_iterator GTI = gep_type_begin(GEP);
1303 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
1304 ++I, ++GTI) {
1305 // Skip indices into struct types.
1306 SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
1307 if (!SeqTy)
1308 continue;
Duncan Sandsc133c542010-11-22 16:32:50 +00001309
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001310 // If the element type has zero size then any index over it is equivalent
1311 // to an index of zero, so replace it with zero if it is not zero already.
1312 if (SeqTy->getElementType()->isSized() &&
1313 DL.getTypeAllocSize(SeqTy->getElementType()) == 0)
1314 if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
1315 *I = Constant::getNullValue(IntPtrTy);
Duncan Sandsc133c542010-11-22 16:32:50 +00001316 MadeChange = true;
1317 }
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001318
1319 Type *IndexTy = (*I)->getType();
1320 if (IndexTy != IntPtrTy) {
1321 // If we are using a wider index than needed for this platform, shrink
1322 // it to what we need. If narrower, sign-extend it to what we need.
1323 // This explicit cast can make subsequent optimizations more obvious.
1324 *I = Builder->CreateIntCast(*I, IntPtrTy, true);
1325 MadeChange = true;
Chris Lattner69193f92004-04-05 01:30:19 +00001326 }
Chris Lattner9bf53ff2007-03-25 20:43:09 +00001327 }
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001328 if (MadeChange)
1329 return &GEP;
Chris Lattner69193f92004-04-05 01:30:19 +00001330
Louis Gerbargc6b506a2014-05-29 20:29:47 +00001331 // Check to see if the inputs to the PHI node are getelementptr instructions.
1332 if (PHINode *PN = dyn_cast<PHINode>(PtrOp)) {
1333 GetElementPtrInst *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
1334 if (!Op1)
1335 return nullptr;
1336
Daniel Jasper5add63f2015-03-19 11:05:08 +00001337 // Don't fold a GEP into itself through a PHI node. This can only happen
1338 // through the back-edge of a loop. Folding a GEP into itself means that
1339 // the value of the previous iteration needs to be stored in the meantime,
1340 // thus requiring an additional register variable to be live, but not
1341 // actually achieving anything (the GEP still needs to be executed once per
1342 // loop iteration).
1343 if (Op1 == &GEP)
1344 return nullptr;
1345
Louis Gerbargc6b506a2014-05-29 20:29:47 +00001346 signed DI = -1;
1347
1348 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
1349 GetElementPtrInst *Op2 = dyn_cast<GetElementPtrInst>(*I);
1350 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
1351 return nullptr;
1352
Daniel Jasper5add63f2015-03-19 11:05:08 +00001353 // As for Op1 above, don't try to fold a GEP into itself.
1354 if (Op2 == &GEP)
1355 return nullptr;
1356
Chandler Carruth3012a1b2014-05-29 23:05:52 +00001357 // Keep track of the type as we walk the GEP.
1358 Type *CurTy = Op1->getOperand(0)->getType()->getScalarType();
1359
Louis Gerbargc6b506a2014-05-29 20:29:47 +00001360 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
1361 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
1362 return nullptr;
1363
1364 if (Op1->getOperand(J) != Op2->getOperand(J)) {
1365 if (DI == -1) {
1366 // We have not seen any differences yet in the GEPs feeding the
1367 // PHI yet, so we record this one if it is allowed to be a
1368 // variable.
1369
1370 // The first two arguments can vary for any GEP, the rest have to be
1371 // static for struct slots
Chandler Carruth3012a1b2014-05-29 23:05:52 +00001372 if (J > 1 && CurTy->isStructTy())
1373 return nullptr;
Louis Gerbargc6b506a2014-05-29 20:29:47 +00001374
1375 DI = J;
1376 } else {
1377 // The GEP is different by more than one input. While this could be
1378 // extended to support GEPs that vary by more than one variable it
1379 // doesn't make sense since it greatly increases the complexity and
1380 // would result in an R+R+R addressing mode which no backend
1381 // directly supports and would need to be broken into several
1382 // simpler instructions anyway.
1383 return nullptr;
1384 }
1385 }
Chandler Carruthfdc0e0b2014-05-29 23:21:12 +00001386
1387 // Sink down a layer of the type for the next iteration.
1388 if (J > 0) {
1389 if (CompositeType *CT = dyn_cast<CompositeType>(CurTy)) {
1390 CurTy = CT->getTypeAtIndex(Op1->getOperand(J));
1391 } else {
1392 CurTy = nullptr;
1393 }
1394 }
Louis Gerbargc6b506a2014-05-29 20:29:47 +00001395 }
1396 }
1397
1398 GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(Op1->clone());
1399
1400 if (DI == -1) {
1401 // All the GEPs feeding the PHI are identical. Clone one down into our
1402 // BB so that it can be merged with the current GEP.
Akira Hatanaka1defd5a2015-02-18 03:30:11 +00001403 GEP.getParent()->getInstList().insert(
1404 GEP.getParent()->getFirstInsertionPt(), NewGEP);
Louis Gerbargc6b506a2014-05-29 20:29:47 +00001405 } else {
1406 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
1407 // into the current block so it can be merged, and create a new PHI to
1408 // set that index.
1409 Instruction *InsertPt = Builder->GetInsertPoint();
1410 Builder->SetInsertPoint(PN);
1411 PHINode *NewPN = Builder->CreatePHI(Op1->getOperand(DI)->getType(),
1412 PN->getNumOperands());
1413 Builder->SetInsertPoint(InsertPt);
1414
1415 for (auto &I : PN->operands())
1416 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
1417 PN->getIncomingBlock(I));
1418
1419 NewGEP->setOperand(DI, NewPN);
Akira Hatanaka1defd5a2015-02-18 03:30:11 +00001420 GEP.getParent()->getInstList().insert(
1421 GEP.getParent()->getFirstInsertionPt(), NewGEP);
Louis Gerbargc6b506a2014-05-29 20:29:47 +00001422 NewGEP->setOperand(DI, NewPN);
1423 }
1424
1425 GEP.setOperand(0, NewGEP);
1426 PtrOp = NewGEP;
1427 }
1428
Chris Lattnerae7a0d32002-08-02 19:29:35 +00001429 // Combine Indices - If the source pointer to this getelementptr instruction
1430 // is a getelementptr instruction, combine the indices of the two
1431 // getelementptr instructions into a single instruction.
1432 //
Dan Gohman31a9b982009-07-28 01:40:03 +00001433 if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
Rafael Espindolaa3a44f3f2011-07-31 04:43:41 +00001434 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
Craig Topperf40110f2014-04-25 05:29:35 +00001435 return nullptr;
Rafael Espindola40325672011-07-11 03:43:47 +00001436
Duncan Sands533c8ae2012-10-23 08:28:26 +00001437 // Note that if our source is a gep chain itself then we wait for that
Chris Lattner5f667a62004-05-07 22:09:22 +00001438 // chain to be resolved before we perform this transformation. This
1439 // avoids us creating a TON of code in some cases.
Rafael Espindolaa3a44f3f2011-07-31 04:43:41 +00001440 if (GEPOperator *SrcGEP =
1441 dyn_cast<GEPOperator>(Src->getOperand(0)))
1442 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
Craig Topperf40110f2014-04-25 05:29:35 +00001443 return nullptr; // Wait until our source is folded to completion.
Chris Lattner5f667a62004-05-07 22:09:22 +00001444
Chris Lattneraf6094f2007-02-15 22:48:32 +00001445 SmallVector<Value*, 8> Indices;
Chris Lattner5f667a62004-05-07 22:09:22 +00001446
1447 // Find out whether the last index in the source GEP is a sequential idx.
1448 bool EndsWithSequential = false;
Chris Lattnerb2995e12009-08-30 05:30:55 +00001449 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
1450 I != E; ++I)
Duncan Sands19d0b472010-02-16 11:11:14 +00001451 EndsWithSequential = !(*I)->isStructTy();
Misha Brukmanb1c93172005-04-21 23:48:37 +00001452
Chris Lattnerae7a0d32002-08-02 19:29:35 +00001453 // Can we combine the two pointer arithmetics offsets?
Chris Lattner5f667a62004-05-07 22:09:22 +00001454 if (EndsWithSequential) {
Chris Lattner235af562003-03-05 22:33:14 +00001455 // Replace: gep (gep %P, long B), long A, ...
1456 // With: T = long A+B; gep %P, T, ...
1457 //
Chris Lattner06c687b2009-08-30 05:08:50 +00001458 Value *Sum;
1459 Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
1460 Value *GO1 = GEP.getOperand(1);
Owen Anderson5a1acd92009-07-31 20:28:14 +00001461 if (SO1 == Constant::getNullValue(SO1->getType())) {
Chris Lattner69193f92004-04-05 01:30:19 +00001462 Sum = GO1;
Owen Anderson5a1acd92009-07-31 20:28:14 +00001463 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
Chris Lattner69193f92004-04-05 01:30:19 +00001464 Sum = SO1;
1465 } else {
Chris Lattnerb2995e12009-08-30 05:30:55 +00001466 // If they aren't the same type, then the input hasn't been processed
1467 // by the loop above yet (which canonicalizes sequential index types to
1468 // intptr_t). Just avoid transforming this until the input has been
1469 // normalized.
1470 if (SO1->getType() != GO1->getType())
Craig Topperf40110f2014-04-25 05:29:35 +00001471 return nullptr;
Chris Lattner59663412009-08-30 18:50:58 +00001472 Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
Chris Lattner69193f92004-04-05 01:30:19 +00001473 }
Chris Lattner5f667a62004-05-07 22:09:22 +00001474
Chris Lattnerb2995e12009-08-30 05:30:55 +00001475 // Update the GEP in place if possible.
Chris Lattner06c687b2009-08-30 05:08:50 +00001476 if (Src->getNumOperands() == 2) {
1477 GEP.setOperand(0, Src->getOperand(0));
Chris Lattner5f667a62004-05-07 22:09:22 +00001478 GEP.setOperand(1, Sum);
1479 return &GEP;
Chris Lattner5f667a62004-05-07 22:09:22 +00001480 }
Chris Lattnerb2995e12009-08-30 05:30:55 +00001481 Indices.append(Src->op_begin()+1, Src->op_end()-1);
Chris Lattnerd7b6e912009-08-30 04:49:01 +00001482 Indices.push_back(Sum);
Chris Lattnerb2995e12009-08-30 05:30:55 +00001483 Indices.append(GEP.op_begin()+2, GEP.op_end());
Misha Brukmanb1c93172005-04-21 23:48:37 +00001484 } else if (isa<Constant>(*GEP.idx_begin()) &&
Chris Lattner69193f92004-04-05 01:30:19 +00001485 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
Chris Lattner06c687b2009-08-30 05:08:50 +00001486 Src->getNumOperands() != 1) {
Chris Lattnerae7a0d32002-08-02 19:29:35 +00001487 // Otherwise we can do the fold if the first index of the GEP is a zero
Chris Lattnerb2995e12009-08-30 05:30:55 +00001488 Indices.append(Src->op_begin()+1, Src->op_end());
1489 Indices.append(GEP.idx_begin()+1, GEP.idx_end());
Chris Lattnerae7a0d32002-08-02 19:29:35 +00001490 }
1491
Dan Gohman1b849082009-09-07 23:54:19 +00001492 if (!Indices.empty())
David Blaikie096b1da2015-03-14 19:53:33 +00001493 return GEP.isInBounds() && Src->isInBounds()
1494 ? GetElementPtrInst::CreateInBounds(
1495 Src->getSourceElementType(), Src->getOperand(0), Indices,
1496 GEP.getName())
1497 : GetElementPtrInst::Create(Src->getSourceElementType(),
1498 Src->getOperand(0), Indices,
1499 GEP.getName());
Chris Lattnere26bf172009-08-30 05:00:50 +00001500 }
Nadav Rotema069c6c2011-04-05 14:29:52 +00001501
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001502 if (GEP.getNumIndices() == 1) {
Matt Arsenaultbfa37e52013-10-03 18:15:57 +00001503 unsigned AS = GEP.getPointerAddressSpace();
David Majnemerd2df5012014-09-01 21:10:02 +00001504 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001505 DL.getPointerSizeInBits(AS)) {
David Majnemerd2df5012014-09-01 21:10:02 +00001506 Type *PtrTy = GEP.getPointerOperandType();
1507 Type *Ty = PtrTy->getPointerElementType();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001508 uint64_t TyAllocSize = DL.getTypeAllocSize(Ty);
David Majnemerd2df5012014-09-01 21:10:02 +00001509
1510 bool Matched = false;
1511 uint64_t C;
1512 Value *V = nullptr;
1513 if (TyAllocSize == 1) {
1514 V = GEP.getOperand(1);
1515 Matched = true;
1516 } else if (match(GEP.getOperand(1),
1517 m_AShr(m_Value(V), m_ConstantInt(C)))) {
1518 if (TyAllocSize == 1ULL << C)
1519 Matched = true;
1520 } else if (match(GEP.getOperand(1),
1521 m_SDiv(m_Value(V), m_ConstantInt(C)))) {
1522 if (TyAllocSize == C)
1523 Matched = true;
1524 }
1525
1526 if (Matched) {
1527 // Canonicalize (gep i8* X, -(ptrtoint Y))
1528 // to (inttoptr (sub (ptrtoint X), (ptrtoint Y)))
1529 // The GEP pattern is emitted by the SCEV expander for certain kinds of
1530 // pointer arithmetic.
1531 if (match(V, m_Neg(m_PtrToInt(m_Value())))) {
1532 Operator *Index = cast<Operator>(V);
1533 Value *PtrToInt = Builder->CreatePtrToInt(PtrOp, Index->getType());
1534 Value *NewSub = Builder->CreateSub(PtrToInt, Index->getOperand(1));
1535 return CastInst::Create(Instruction::IntToPtr, NewSub, GEP.getType());
1536 }
1537 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X))
1538 // to (bitcast Y)
1539 Value *Y;
1540 if (match(V, m_Sub(m_PtrToInt(m_Value(Y)),
1541 m_PtrToInt(m_Specific(GEP.getOperand(0)))))) {
1542 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y,
1543 GEP.getType());
1544 }
1545 }
Matt Arsenaultbfa37e52013-10-03 18:15:57 +00001546 }
Benjamin Kramere6461e32013-09-20 14:38:44 +00001547 }
1548
Chris Lattner06c687b2009-08-30 05:08:50 +00001549 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
Chris Lattnere903f382010-01-05 07:42:10 +00001550 Value *StrippedPtr = PtrOp->stripPointerCasts();
Nadav Roteme63e59c2012-03-26 20:39:18 +00001551 PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType());
1552
Nadav Rotema8f35622012-03-26 21:00:53 +00001553 // We do not handle pointer-vector geps here.
1554 if (!StrippedPtrTy)
Craig Topperf40110f2014-04-25 05:29:35 +00001555 return nullptr;
Nadav Rotema8f35622012-03-26 21:00:53 +00001556
Matt Arsenaultaa689f52014-02-14 00:49:12 +00001557 if (StrippedPtr != PtrOp) {
Chris Lattner8574aba2009-11-27 00:29:05 +00001558 bool HasZeroPointerIndex = false;
1559 if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
1560 HasZeroPointerIndex = C->isZero();
Nadav Rotema069c6c2011-04-05 14:29:52 +00001561
Chris Lattnerc2f2cf82009-08-30 20:36:46 +00001562 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
1563 // into : GEP [10 x i8]* X, i32 0, ...
1564 //
1565 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
1566 // into : GEP i8* X, ...
Nadav Rotema069c6c2011-04-05 14:29:52 +00001567 //
Chris Lattnerc2f2cf82009-08-30 20:36:46 +00001568 // This occurs when the program declares an array extern like "int X[];"
Chris Lattnere26bf172009-08-30 05:00:50 +00001569 if (HasZeroPointerIndex) {
Chris Lattner229907c2011-07-18 04:54:35 +00001570 PointerType *CPTy = cast<PointerType>(PtrOp->getType());
1571 if (ArrayType *CATy =
Duncan Sands5795a602009-03-02 09:18:21 +00001572 dyn_cast<ArrayType>(CPTy->getElementType())) {
1573 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
Chris Lattnere903f382010-01-05 07:42:10 +00001574 if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
Duncan Sands5795a602009-03-02 09:18:21 +00001575 // -> GEP i8* X, ...
Chris Lattnere903f382010-01-05 07:42:10 +00001576 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
David Blaikie096b1da2015-03-14 19:53:33 +00001577 GetElementPtrInst *Res = GetElementPtrInst::Create(
1578 StrippedPtrTy->getElementType(), StrippedPtr, Idx, GEP.getName());
Chris Lattnere903f382010-01-05 07:42:10 +00001579 Res->setIsInBounds(GEP.isInBounds());
Eli Bendersky9966b262014-04-03 17:51:58 +00001580 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
1581 return Res;
1582 // Insert Res, and create an addrspacecast.
1583 // e.g.,
1584 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
1585 // ->
1586 // %0 = GEP i8 addrspace(1)* X, ...
1587 // addrspacecast i8 addrspace(1)* %0 to i8*
1588 return new AddrSpaceCastInst(Builder->Insert(Res), GEP.getType());
Chris Lattnerc2f2cf82009-08-30 20:36:46 +00001589 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00001590
Chris Lattner229907c2011-07-18 04:54:35 +00001591 if (ArrayType *XATy =
Chris Lattnere903f382010-01-05 07:42:10 +00001592 dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
Duncan Sands5795a602009-03-02 09:18:21 +00001593 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
Chris Lattner567b81f2005-09-13 00:40:14 +00001594 if (CATy->getElementType() == XATy->getElementType()) {
Duncan Sands5795a602009-03-02 09:18:21 +00001595 // -> GEP [10 x i8]* X, i32 0, ...
Chris Lattner567b81f2005-09-13 00:40:14 +00001596 // At this point, we know that the cast source type is a pointer
1597 // to an array of the same type as the destination pointer
1598 // array. Because the array type is never stepped over (there
1599 // is a leading zero) we can fold the cast into this GEP.
Eli Bendersky9966b262014-04-03 17:51:58 +00001600 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
1601 GEP.setOperand(0, StrippedPtr);
1602 return &GEP;
1603 }
1604 // Cannot replace the base pointer directly because StrippedPtr's
1605 // address space is different. Instead, create a new GEP followed by
1606 // an addrspacecast.
1607 // e.g.,
1608 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
1609 // i32 0, ...
1610 // ->
1611 // %0 = GEP [10 x i8] addrspace(1)* X, ...
1612 // addrspacecast i8 addrspace(1)* %0 to i8*
1613 SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end());
David Blaikie68d535c2015-03-24 22:38:16 +00001614 Value *NewGEP =
1615 GEP.isInBounds()
1616 ? Builder->CreateInBoundsGEP(StrippedPtr, Idx,
1617 GEP.getName())
1618 : Builder->CreateGEP(StrippedPtrTy->getElementType(),
1619 StrippedPtr, Idx, GEP.getName());
Eli Bendersky9966b262014-04-03 17:51:58 +00001620 return new AddrSpaceCastInst(NewGEP, GEP.getType());
Chris Lattner567b81f2005-09-13 00:40:14 +00001621 }
Duncan Sands5795a602009-03-02 09:18:21 +00001622 }
1623 }
Chris Lattner567b81f2005-09-13 00:40:14 +00001624 } else if (GEP.getNumOperands() == 2) {
1625 // Transform things like:
Wojciech Matyjewicz309e5a72007-12-12 15:21:32 +00001626 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
1627 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
Chris Lattner229907c2011-07-18 04:54:35 +00001628 Type *SrcElTy = StrippedPtrTy->getElementType();
Matt Arsenaultfc00f7e2013-08-14 00:24:34 +00001629 Type *ResElTy = PtrOp->getType()->getPointerElementType();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001630 if (SrcElTy->isArrayTy() &&
1631 DL.getTypeAllocSize(SrcElTy->getArrayElementType()) ==
1632 DL.getTypeAllocSize(ResElTy)) {
1633 Type *IdxType = DL.getIntPtrType(GEP.getType());
Matt Arsenault9e3a6ca2013-08-14 00:24:38 +00001634 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
David Blaikie68d535c2015-03-24 22:38:16 +00001635 Value *NewGEP =
1636 GEP.isInBounds()
1637 ? Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName())
1638 : Builder->CreateGEP(StrippedPtrTy->getElementType(),
1639 StrippedPtr, Idx, GEP.getName());
Matt Arsenaultaa689f52014-02-14 00:49:12 +00001640
Reid Spencer6c38f0b2006-11-27 01:05:10 +00001641 // V and GEP are both pointer types --> BitCast
Manuel Jacob405fb182014-07-16 20:13:45 +00001642 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
1643 GEP.getType());
Chris Lattner8d0bacb2004-02-22 05:25:17 +00001644 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00001645
Chris Lattner2a893292005-09-13 18:36:04 +00001646 // Transform things like:
Duncan Sands533c8ae2012-10-23 08:28:26 +00001647 // %V = mul i64 %N, 4
1648 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
1649 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001650 if (ResElTy->isSized() && SrcElTy->isSized()) {
Duncan Sands533c8ae2012-10-23 08:28:26 +00001651 // Check that changing the type amounts to dividing the index by a scale
1652 // factor.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001653 uint64_t ResSize = DL.getTypeAllocSize(ResElTy);
1654 uint64_t SrcSize = DL.getTypeAllocSize(SrcElTy);
Duncan Sands533c8ae2012-10-23 08:28:26 +00001655 if (ResSize && SrcSize % ResSize == 0) {
1656 Value *Idx = GEP.getOperand(1);
1657 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1658 uint64_t Scale = SrcSize / ResSize;
1659
1660 // Earlier transforms ensure that the index has type IntPtrType, which
1661 // considerably simplifies the logic by eliminating implicit casts.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001662 assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) &&
Duncan Sands533c8ae2012-10-23 08:28:26 +00001663 "Index not cast to pointer width?");
1664
1665 bool NSW;
1666 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1667 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1668 // If the multiplication NewIdx * Scale may overflow then the new
1669 // GEP may not be "inbounds".
David Blaikie68d535c2015-03-24 22:38:16 +00001670 Value *NewGEP =
1671 GEP.isInBounds() && NSW
1672 ? Builder->CreateInBoundsGEP(StrippedPtr, NewIdx,
1673 GEP.getName())
1674 : Builder->CreateGEP(StrippedPtrTy->getElementType(),
1675 StrippedPtr, NewIdx, GEP.getName());
Matt Arsenaultaa689f52014-02-14 00:49:12 +00001676
Duncan Sands533c8ae2012-10-23 08:28:26 +00001677 // The NewGEP must be pointer typed, so must the old one -> BitCast
Manuel Jacob405fb182014-07-16 20:13:45 +00001678 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
1679 GEP.getType());
Duncan Sands533c8ae2012-10-23 08:28:26 +00001680 }
1681 }
1682 }
1683
1684 // Similarly, transform things like:
Wojciech Matyjewicz309e5a72007-12-12 15:21:32 +00001685 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
Chris Lattner2a893292005-09-13 18:36:04 +00001686 // (where tmp = 8*tmp2) into:
Wojciech Matyjewicz309e5a72007-12-12 15:21:32 +00001687 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001688 if (ResElTy->isSized() && SrcElTy->isSized() && SrcElTy->isArrayTy()) {
Duncan Sands533c8ae2012-10-23 08:28:26 +00001689 // Check that changing to the array element type amounts to dividing the
1690 // index by a scale factor.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001691 uint64_t ResSize = DL.getTypeAllocSize(ResElTy);
1692 uint64_t ArrayEltSize =
1693 DL.getTypeAllocSize(SrcElTy->getArrayElementType());
Duncan Sands533c8ae2012-10-23 08:28:26 +00001694 if (ResSize && ArrayEltSize % ResSize == 0) {
1695 Value *Idx = GEP.getOperand(1);
1696 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1697 uint64_t Scale = ArrayEltSize / ResSize;
Jakub Staszakcfc46f82012-05-06 13:52:31 +00001698
Duncan Sands533c8ae2012-10-23 08:28:26 +00001699 // Earlier transforms ensure that the index has type IntPtrType, which
1700 // considerably simplifies the logic by eliminating implicit casts.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001701 assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) &&
Duncan Sands533c8ae2012-10-23 08:28:26 +00001702 "Index not cast to pointer width?");
1703
1704 bool NSW;
1705 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1706 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1707 // If the multiplication NewIdx * Scale may overflow then the new
1708 // GEP may not be "inbounds".
Matt Arsenault9e3a6ca2013-08-14 00:24:38 +00001709 Value *Off[2] = {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001710 Constant::getNullValue(DL.getIntPtrType(GEP.getType())),
1711 NewIdx};
Matt Arsenault9e3a6ca2013-08-14 00:24:38 +00001712
Duncan Sands533c8ae2012-10-23 08:28:26 +00001713 Value *NewGEP = GEP.isInBounds() && NSW ?
1714 Builder->CreateInBoundsGEP(StrippedPtr, Off, GEP.getName()) :
David Blaikie68d535c2015-03-24 22:38:16 +00001715 Builder->CreateGEP(SrcElTy, StrippedPtr, Off, GEP.getName());
Duncan Sands533c8ae2012-10-23 08:28:26 +00001716 // The NewGEP must be pointer typed, so must the old one -> BitCast
Manuel Jacob405fb182014-07-16 20:13:45 +00001717 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
1718 GEP.getType());
Chris Lattner2a893292005-09-13 18:36:04 +00001719 }
1720 }
Chris Lattner2a893292005-09-13 18:36:04 +00001721 }
Chris Lattner8d0bacb2004-02-22 05:25:17 +00001722 }
Chris Lattnerca081252001-12-14 16:52:21 +00001723 }
Nadav Rotema069c6c2011-04-05 14:29:52 +00001724
Matt Arsenault4815f092014-08-12 19:46:13 +00001725 // addrspacecast between types is canonicalized as a bitcast, then an
1726 // addrspacecast. To take advantage of the below bitcast + struct GEP, look
1727 // through the addrspacecast.
1728 if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
1729 // X = bitcast A addrspace(1)* to B addrspace(1)*
1730 // Y = addrspacecast A addrspace(1)* to B addrspace(2)*
1731 // Z = gep Y, <...constant indices...>
1732 // Into an addrspacecasted GEP of the struct.
1733 if (BitCastInst *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
1734 PtrOp = BC;
1735 }
1736
Chris Lattnerfef138b2009-01-09 05:44:56 +00001737 /// See if we can simplify:
Chris Lattner97fd3592009-08-30 05:55:36 +00001738 /// X = bitcast A* to B*
Chris Lattnerfef138b2009-01-09 05:44:56 +00001739 /// Y = gep X, <...constant indices...>
1740 /// into a gep of the original struct. This is important for SROA and alias
1741 /// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
Chris Lattnera784a2c2009-01-09 04:53:57 +00001742 if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
Matt Arsenault98f34e32013-08-19 22:17:34 +00001743 Value *Operand = BCI->getOperand(0);
1744 PointerType *OpType = cast<PointerType>(Operand->getType());
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001745 unsigned OffsetBits = DL.getPointerTypeSizeInBits(GEP.getType());
Matt Arsenault98f34e32013-08-19 22:17:34 +00001746 APInt Offset(OffsetBits, 0);
1747 if (!isa<BitCastInst>(Operand) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001748 GEP.accumulateConstantOffset(DL, Offset)) {
Nadav Rotema069c6c2011-04-05 14:29:52 +00001749
Chris Lattnerfef138b2009-01-09 05:44:56 +00001750 // If this GEP instruction doesn't move the pointer, just replace the GEP
1751 // with a bitcast of the real input to the dest type.
Nuno Lopesb6ad9822012-12-30 16:25:48 +00001752 if (!Offset) {
Chris Lattnerfef138b2009-01-09 05:44:56 +00001753 // If the bitcast is of an allocation, and the allocation will be
1754 // converted to match the type of the cast, don't touch this.
Matt Arsenault98f34e32013-08-19 22:17:34 +00001755 if (isa<AllocaInst>(Operand) || isAllocationFn(Operand, TLI)) {
Chris Lattnerfef138b2009-01-09 05:44:56 +00001756 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
1757 if (Instruction *I = visitBitCast(*BCI)) {
1758 if (I != BCI) {
1759 I->takeName(BCI);
1760 BCI->getParent()->getInstList().insert(BCI, I);
1761 ReplaceInstUsesWith(*BCI, I);
1762 }
1763 return &GEP;
Chris Lattnera784a2c2009-01-09 04:53:57 +00001764 }
Chris Lattnera784a2c2009-01-09 04:53:57 +00001765 }
Matt Arsenault4815f092014-08-12 19:46:13 +00001766
1767 if (Operand->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
1768 return new AddrSpaceCastInst(Operand, GEP.getType());
Matt Arsenault98f34e32013-08-19 22:17:34 +00001769 return new BitCastInst(Operand, GEP.getType());
Chris Lattnera784a2c2009-01-09 04:53:57 +00001770 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00001771
Chris Lattnerfef138b2009-01-09 05:44:56 +00001772 // Otherwise, if the offset is non-zero, we need to find out if there is a
1773 // field at Offset in 'A's type. If so, we can pull the cast through the
1774 // GEP.
1775 SmallVector<Value*, 8> NewIndices;
Matt Arsenaultd79f7d92013-08-19 22:17:40 +00001776 if (FindElementAtOffset(OpType, Offset.getSExtValue(), NewIndices)) {
Chris Lattnere903f382010-01-05 07:42:10 +00001777 Value *NGEP = GEP.isInBounds() ?
Matt Arsenault98f34e32013-08-19 22:17:34 +00001778 Builder->CreateInBoundsGEP(Operand, NewIndices) :
David Blaikie68d535c2015-03-24 22:38:16 +00001779 Builder->CreateGEP(OpType->getElementType(), Operand, NewIndices);
Jakub Staszakcfc46f82012-05-06 13:52:31 +00001780
Chris Lattner59663412009-08-30 18:50:58 +00001781 if (NGEP->getType() == GEP.getType())
1782 return ReplaceInstUsesWith(GEP, NGEP);
Chris Lattnerfef138b2009-01-09 05:44:56 +00001783 NGEP->takeName(&GEP);
Matt Arsenault4815f092014-08-12 19:46:13 +00001784
1785 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
1786 return new AddrSpaceCastInst(NGEP, GEP.getType());
Chris Lattnerfef138b2009-01-09 05:44:56 +00001787 return new BitCastInst(NGEP, GEP.getType());
1788 }
Chris Lattnera784a2c2009-01-09 04:53:57 +00001789 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00001790 }
1791
Craig Topperf40110f2014-04-25 05:29:35 +00001792 return nullptr;
Chris Lattnerca081252001-12-14 16:52:21 +00001793}
1794
Nuno Lopes95cc4f32012-07-09 18:38:20 +00001795static bool
Benjamin Kramer8bcc9712012-08-29 15:32:21 +00001796isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users,
1797 const TargetLibraryInfo *TLI) {
Nuno Lopes95cc4f32012-07-09 18:38:20 +00001798 SmallVector<Instruction*, 4> Worklist;
1799 Worklist.push_back(AI);
Nick Lewyckye8ae02d2011-08-02 22:08:01 +00001800
Nuno Lopes95cc4f32012-07-09 18:38:20 +00001801 do {
1802 Instruction *PI = Worklist.pop_back_val();
Chandler Carruthcdf47882014-03-09 03:16:01 +00001803 for (User *U : PI->users()) {
1804 Instruction *I = cast<Instruction>(U);
Nuno Lopes95cc4f32012-07-09 18:38:20 +00001805 switch (I->getOpcode()) {
1806 default:
1807 // Give up the moment we see something we can't handle.
Nuno Lopesfa0dffc2012-07-06 23:09:25 +00001808 return false;
Nuno Lopes95cc4f32012-07-09 18:38:20 +00001809
1810 case Instruction::BitCast:
1811 case Instruction::GetElementPtr:
1812 Users.push_back(I);
1813 Worklist.push_back(I);
1814 continue;
1815
1816 case Instruction::ICmp: {
1817 ICmpInst *ICI = cast<ICmpInst>(I);
1818 // We can fold eq/ne comparisons with null to false/true, respectively.
1819 if (!ICI->isEquality() || !isa<ConstantPointerNull>(ICI->getOperand(1)))
1820 return false;
1821 Users.push_back(I);
1822 continue;
1823 }
1824
1825 case Instruction::Call:
1826 // Ignore no-op and store intrinsics.
1827 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1828 switch (II->getIntrinsicID()) {
1829 default:
1830 return false;
1831
1832 case Intrinsic::memmove:
1833 case Intrinsic::memcpy:
1834 case Intrinsic::memset: {
1835 MemIntrinsic *MI = cast<MemIntrinsic>(II);
1836 if (MI->isVolatile() || MI->getRawDest() != PI)
1837 return false;
1838 }
1839 // fall through
1840 case Intrinsic::dbg_declare:
1841 case Intrinsic::dbg_value:
1842 case Intrinsic::invariant_start:
1843 case Intrinsic::invariant_end:
1844 case Intrinsic::lifetime_start:
1845 case Intrinsic::lifetime_end:
1846 case Intrinsic::objectsize:
1847 Users.push_back(I);
1848 continue;
1849 }
1850 }
1851
Benjamin Kramer8bcc9712012-08-29 15:32:21 +00001852 if (isFreeCall(I, TLI)) {
Nuno Lopes95cc4f32012-07-09 18:38:20 +00001853 Users.push_back(I);
1854 continue;
1855 }
1856 return false;
1857
1858 case Instruction::Store: {
1859 StoreInst *SI = cast<StoreInst>(I);
1860 if (SI->isVolatile() || SI->getPointerOperand() != PI)
1861 return false;
1862 Users.push_back(I);
1863 continue;
1864 }
1865 }
1866 llvm_unreachable("missing a return?");
Nuno Lopesfa0dffc2012-07-06 23:09:25 +00001867 }
Nuno Lopes95cc4f32012-07-09 18:38:20 +00001868 } while (!Worklist.empty());
Duncan Sandsf162eac2010-05-27 19:09:06 +00001869 return true;
1870}
1871
Nuno Lopes95cc4f32012-07-09 18:38:20 +00001872Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
Duncan Sandsf162eac2010-05-27 19:09:06 +00001873 // If we have a malloc call which is only used in any amount of comparisons
1874 // to null and free calls, delete the calls and replace the comparisons with
1875 // true or false as appropriate.
Nick Lewycky50f49662011-08-03 00:43:35 +00001876 SmallVector<WeakVH, 64> Users;
Benjamin Kramer8bcc9712012-08-29 15:32:21 +00001877 if (isAllocSiteRemovable(&MI, Users, TLI)) {
Nick Lewycky50f49662011-08-03 00:43:35 +00001878 for (unsigned i = 0, e = Users.size(); i != e; ++i) {
1879 Instruction *I = cast_or_null<Instruction>(&*Users[i]);
1880 if (!I) continue;
Duncan Sandsf162eac2010-05-27 19:09:06 +00001881
Nick Lewycky50f49662011-08-03 00:43:35 +00001882 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
Nick Lewyckye8ae02d2011-08-02 22:08:01 +00001883 ReplaceInstUsesWith(*C,
1884 ConstantInt::get(Type::getInt1Ty(C->getContext()),
1885 C->isFalseWhenEqual()));
Nick Lewycky50f49662011-08-03 00:43:35 +00001886 } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
Nick Lewyckye8ae02d2011-08-02 22:08:01 +00001887 ReplaceInstUsesWith(*I, UndefValue::get(I->getType()));
Nuno Lopesfa0dffc2012-07-06 23:09:25 +00001888 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1889 if (II->getIntrinsicID() == Intrinsic::objectsize) {
1890 ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
1891 uint64_t DontKnow = CI->isZero() ? -1ULL : 0;
1892 ReplaceInstUsesWith(*I, ConstantInt::get(I->getType(), DontKnow));
1893 }
Duncan Sandsf162eac2010-05-27 19:09:06 +00001894 }
Nick Lewycky50f49662011-08-03 00:43:35 +00001895 EraseInstFromFunction(*I);
Duncan Sandsf162eac2010-05-27 19:09:06 +00001896 }
Nuno Lopesdc6085e2012-06-21 21:25:05 +00001897
1898 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
Nuno Lopes9ac46612012-06-28 22:31:24 +00001899 // Replace invoke with a NOP intrinsic to maintain the original CFG
Nuno Lopes07594cb2012-06-25 17:11:47 +00001900 Module *M = II->getParent()->getParent()->getParent();
Nuno Lopes9ac46612012-06-28 22:31:24 +00001901 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
1902 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
Dmitri Gribenko3238fb72013-05-05 00:40:33 +00001903 None, "", II->getParent());
Nuno Lopesdc6085e2012-06-21 21:25:05 +00001904 }
Duncan Sandsf162eac2010-05-27 19:09:06 +00001905 return EraseInstFromFunction(MI);
1906 }
Craig Topperf40110f2014-04-25 05:29:35 +00001907 return nullptr;
Duncan Sandsf162eac2010-05-27 19:09:06 +00001908}
1909
Quentin Colombet3b2db0b2013-01-07 18:37:41 +00001910/// \brief Move the call to free before a NULL test.
1911///
1912/// Check if this free is accessed after its argument has been test
1913/// against NULL (property 0).
1914/// If yes, it is legal to move this call in its predecessor block.
1915///
1916/// The move is performed only if the block containing the call to free
1917/// will be removed, i.e.:
1918/// 1. it has only one predecessor P, and P has two successors
1919/// 2. it contains the call and an unconditional branch
1920/// 3. its successor is the same as its predecessor's successor
1921///
1922/// The profitability is out-of concern here and this function should
1923/// be called only if the caller knows this transformation would be
1924/// profitable (e.g., for code size).
1925static Instruction *
1926tryToMoveFreeBeforeNullTest(CallInst &FI) {
1927 Value *Op = FI.getArgOperand(0);
1928 BasicBlock *FreeInstrBB = FI.getParent();
1929 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
1930
1931 // Validate part of constraint #1: Only one predecessor
1932 // FIXME: We can extend the number of predecessor, but in that case, we
1933 // would duplicate the call to free in each predecessor and it may
1934 // not be profitable even for code size.
1935 if (!PredBB)
Craig Topperf40110f2014-04-25 05:29:35 +00001936 return nullptr;
Quentin Colombet3b2db0b2013-01-07 18:37:41 +00001937
1938 // Validate constraint #2: Does this block contains only the call to
1939 // free and an unconditional branch?
1940 // FIXME: We could check if we can speculate everything in the
1941 // predecessor block
1942 if (FreeInstrBB->size() != 2)
Craig Topperf40110f2014-04-25 05:29:35 +00001943 return nullptr;
Quentin Colombet3b2db0b2013-01-07 18:37:41 +00001944 BasicBlock *SuccBB;
1945 if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB)))
Craig Topperf40110f2014-04-25 05:29:35 +00001946 return nullptr;
Quentin Colombet3b2db0b2013-01-07 18:37:41 +00001947
1948 // Validate the rest of constraint #1 by matching on the pred branch.
1949 TerminatorInst *TI = PredBB->getTerminator();
1950 BasicBlock *TrueBB, *FalseBB;
1951 ICmpInst::Predicate Pred;
1952 if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB)))
Craig Topperf40110f2014-04-25 05:29:35 +00001953 return nullptr;
Quentin Colombet3b2db0b2013-01-07 18:37:41 +00001954 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
Craig Topperf40110f2014-04-25 05:29:35 +00001955 return nullptr;
Quentin Colombet3b2db0b2013-01-07 18:37:41 +00001956
1957 // Validate constraint #3: Ensure the null case just falls through.
1958 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
Craig Topperf40110f2014-04-25 05:29:35 +00001959 return nullptr;
Quentin Colombet3b2db0b2013-01-07 18:37:41 +00001960 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
1961 "Broken CFG: missing edge from predecessor to successor");
1962
1963 FI.moveBefore(TI);
1964 return &FI;
1965}
Duncan Sandsf162eac2010-05-27 19:09:06 +00001966
1967
Gabor Greif75f69432010-06-24 12:21:15 +00001968Instruction *InstCombiner::visitFree(CallInst &FI) {
1969 Value *Op = FI.getArgOperand(0);
Victor Hernandeze2971492009-10-24 04:23:03 +00001970
1971 // free undef -> unreachable.
1972 if (isa<UndefValue>(Op)) {
1973 // Insert a new store to null because we cannot modify the CFG here.
Eli Friedman41e509a2011-05-18 23:58:37 +00001974 Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
1975 UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
Victor Hernandeze2971492009-10-24 04:23:03 +00001976 return EraseInstFromFunction(FI);
1977 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00001978
Victor Hernandeze2971492009-10-24 04:23:03 +00001979 // If we have 'free null' delete the instruction. This can happen in stl code
1980 // when lots of inlining happens.
1981 if (isa<ConstantPointerNull>(Op))
1982 return EraseInstFromFunction(FI);
1983
Quentin Colombet3b2db0b2013-01-07 18:37:41 +00001984 // If we optimize for code size, try to move the call to free before the null
1985 // test so that simplify cfg can remove the empty block and dead code
1986 // elimination the branch. I.e., helps to turn something like:
1987 // if (foo) free(foo);
1988 // into
1989 // free(foo);
1990 if (MinimizeSize)
1991 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI))
1992 return I;
1993
Craig Topperf40110f2014-04-25 05:29:35 +00001994 return nullptr;
Victor Hernandeze2971492009-10-24 04:23:03 +00001995}
Chris Lattner8427bff2003-12-07 01:24:23 +00001996
Hal Finkel93873cc12014-09-07 21:28:34 +00001997Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) {
1998 if (RI.getNumOperands() == 0) // ret void
1999 return nullptr;
Chris Lattner14a251b2007-04-15 00:07:55 +00002000
Hal Finkel93873cc12014-09-07 21:28:34 +00002001 Value *ResultOp = RI.getOperand(0);
2002 Type *VTy = ResultOp->getType();
2003 if (!VTy->isIntegerTy())
2004 return nullptr;
2005
2006 // There might be assume intrinsics dominating this return that completely
2007 // determine the value. If so, constant fold it.
2008 unsigned BitWidth = VTy->getPrimitiveSizeInBits();
2009 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2010 computeKnownBits(ResultOp, KnownZero, KnownOne, 0, &RI);
2011 if ((KnownZero|KnownOne).isAllOnesValue())
2012 RI.setOperand(0, Constant::getIntegerValue(VTy, KnownOne));
2013
2014 return nullptr;
2015}
Chris Lattner31f486c2005-01-31 05:36:43 +00002016
Chris Lattner9eef8a72003-06-04 04:46:00 +00002017Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
2018 // Change br (not X), label True, label False to: br X, label False, True
Craig Topperf40110f2014-04-25 05:29:35 +00002019 Value *X = nullptr;
Chris Lattnerd4252a72004-07-30 07:50:03 +00002020 BasicBlock *TrueDest;
2021 BasicBlock *FalseDest;
Dan Gohman5476cfd2009-08-12 16:23:25 +00002022 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
Chris Lattnerd4252a72004-07-30 07:50:03 +00002023 !isa<Constant>(X)) {
2024 // Swap Destinations and condition...
2025 BI.setCondition(X);
Chandler Carruth3e8aa652011-10-17 01:11:57 +00002026 BI.swapSuccessors();
Chris Lattnerd4252a72004-07-30 07:50:03 +00002027 return &BI;
2028 }
2029
Philip Reames71c40352015-03-10 22:52:37 +00002030 // If the condition is irrelevant, remove the use so that other
2031 // transforms on the condition become more effective.
2032 if (BI.isConditional() &&
2033 BI.getSuccessor(0) == BI.getSuccessor(1) &&
2034 !isa<UndefValue>(BI.getCondition())) {
2035 BI.setCondition(UndefValue::get(BI.getCondition()->getType()));
2036 return &BI;
2037 }
2038
Alp Tokercb402912014-01-24 17:20:08 +00002039 // Canonicalize fcmp_one -> fcmp_oeq
Reid Spencer266e42b2006-12-23 06:05:41 +00002040 FCmpInst::Predicate FPred; Value *Y;
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002041 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
Chris Lattner905976b2009-08-30 06:13:40 +00002042 TrueDest, FalseDest)) &&
2043 BI.getCondition()->hasOneUse())
2044 if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
2045 FPred == FCmpInst::FCMP_OGE) {
2046 FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
2047 Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002048
Chris Lattner905976b2009-08-30 06:13:40 +00002049 // Swap Destinations and condition.
Chandler Carruth3e8aa652011-10-17 01:11:57 +00002050 BI.swapSuccessors();
Chris Lattner905976b2009-08-30 06:13:40 +00002051 Worklist.Add(Cond);
Reid Spencer266e42b2006-12-23 06:05:41 +00002052 return &BI;
2053 }
2054
Alp Tokercb402912014-01-24 17:20:08 +00002055 // Canonicalize icmp_ne -> icmp_eq
Reid Spencer266e42b2006-12-23 06:05:41 +00002056 ICmpInst::Predicate IPred;
2057 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
Chris Lattner905976b2009-08-30 06:13:40 +00002058 TrueDest, FalseDest)) &&
2059 BI.getCondition()->hasOneUse())
2060 if (IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
2061 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
2062 IPred == ICmpInst::ICMP_SGE) {
2063 ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
2064 Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
2065 // Swap Destinations and condition.
Chandler Carruth3e8aa652011-10-17 01:11:57 +00002066 BI.swapSuccessors();
Chris Lattner905976b2009-08-30 06:13:40 +00002067 Worklist.Add(Cond);
Chris Lattnere967b342003-06-04 05:10:11 +00002068 return &BI;
2069 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00002070
Craig Topperf40110f2014-04-25 05:29:35 +00002071 return nullptr;
Chris Lattner9eef8a72003-06-04 04:46:00 +00002072}
Chris Lattner1085bdf2002-11-04 16:18:53 +00002073
Chris Lattner4c9c20a2004-07-03 00:26:11 +00002074Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
2075 Value *Cond = SI.getCondition();
Akira Hatanaka5c221ef2014-10-16 06:00:46 +00002076 unsigned BitWidth = cast<IntegerType>(Cond->getType())->getBitWidth();
2077 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002078 computeKnownBits(Cond, KnownZero, KnownOne, 0, &SI);
Akira Hatanaka5c221ef2014-10-16 06:00:46 +00002079 unsigned LeadingKnownZeros = KnownZero.countLeadingOnes();
2080 unsigned LeadingKnownOnes = KnownOne.countLeadingOnes();
2081
2082 // Compute the number of leading bits we can ignore.
2083 for (auto &C : SI.cases()) {
2084 LeadingKnownZeros = std::min(
2085 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
2086 LeadingKnownOnes = std::min(
2087 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
2088 }
2089
2090 unsigned NewWidth = BitWidth - std::max(LeadingKnownZeros, LeadingKnownOnes);
2091
2092 // Truncate the condition operand if the new type is equal to or larger than
2093 // the largest legal integer type. We need to be conservative here since
2094 // x86 generates redundant zero-extenstion instructions if the operand is
2095 // truncated to i8 or i16.
Bruno Cardoso Lopesf6cf8ad2014-12-19 17:12:35 +00002096 bool TruncCond = false;
Owen Anderson58364dc2015-03-10 06:51:39 +00002097 if (NewWidth > 0 && BitWidth > NewWidth &&
2098 NewWidth >= DL.getLargestLegalIntTypeSize()) {
Bruno Cardoso Lopesf6cf8ad2014-12-19 17:12:35 +00002099 TruncCond = true;
Akira Hatanaka5c221ef2014-10-16 06:00:46 +00002100 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
2101 Builder->SetInsertPoint(&SI);
2102 Value *NewCond = Builder->CreateTrunc(SI.getCondition(), Ty, "trunc");
2103 SI.setCondition(NewCond);
2104
2105 for (auto &C : SI.cases())
2106 static_cast<SwitchInst::CaseIt *>(&C)->setValue(ConstantInt::get(
2107 SI.getContext(), C.getCaseValue()->getValue().trunc(NewWidth)));
2108 }
2109
Chris Lattner4c9c20a2004-07-03 00:26:11 +00002110 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
2111 if (I->getOpcode() == Instruction::Add)
2112 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
2113 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
Eli Friedman95031ed2011-09-29 20:21:17 +00002114 // Skip the first item since that's the default case.
Stepan Dyatkovskiy97b02fc2012-03-11 06:09:17 +00002115 for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end();
Stepan Dyatkovskiy5b648af2012-03-08 07:06:20 +00002116 i != e; ++i) {
2117 ConstantInt* CaseVal = i.getCaseValue();
Bruno Cardoso Lopesf6cf8ad2014-12-19 17:12:35 +00002118 Constant *LHS = CaseVal;
2119 if (TruncCond)
2120 LHS = LeadingKnownZeros
2121 ? ConstantExpr::getZExt(CaseVal, Cond->getType())
2122 : ConstantExpr::getSExt(CaseVal, Cond->getType());
2123 Constant* NewCaseVal = ConstantExpr::getSub(LHS, AddRHS);
Eli Friedman95031ed2011-09-29 20:21:17 +00002124 assert(isa<ConstantInt>(NewCaseVal) &&
2125 "Result of expression should be constant");
Stepan Dyatkovskiy5b648af2012-03-08 07:06:20 +00002126 i.setValue(cast<ConstantInt>(NewCaseVal));
Eli Friedman95031ed2011-09-29 20:21:17 +00002127 }
2128 SI.setCondition(I->getOperand(0));
Chris Lattner905976b2009-08-30 06:13:40 +00002129 Worklist.Add(I);
Chris Lattner4c9c20a2004-07-03 00:26:11 +00002130 return &SI;
2131 }
2132 }
Bruno Cardoso Lopesf6cf8ad2014-12-19 17:12:35 +00002133
2134 return TruncCond ? &SI : nullptr;
Chris Lattner4c9c20a2004-07-03 00:26:11 +00002135}
2136
Matthijs Kooijmanb2fc72b2008-06-11 14:05:05 +00002137Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00002138 Value *Agg = EV.getAggregateOperand();
Matthijs Kooijmanb2fc72b2008-06-11 14:05:05 +00002139
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00002140 if (!EV.hasIndices())
2141 return ReplaceInstUsesWith(EV, Agg);
2142
2143 if (Constant *C = dyn_cast<Constant>(Agg)) {
Chris Lattnerfa775002012-01-26 02:32:04 +00002144 if (Constant *C2 = C->getAggregateElement(*EV.idx_begin())) {
2145 if (EV.getNumIndices() == 0)
2146 return ReplaceInstUsesWith(EV, C2);
2147 // Extract the remaining indices out of the constant indexed by the
2148 // first index
2149 return ExtractValueInst::Create(C2, EV.getIndices().slice(1));
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00002150 }
Craig Topperf40110f2014-04-25 05:29:35 +00002151 return nullptr; // Can't handle other constants
Chris Lattnerfa775002012-01-26 02:32:04 +00002152 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002153
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00002154 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
2155 // We're extracting from an insertvalue instruction, compare the indices
2156 const unsigned *exti, *exte, *insi, *inse;
2157 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
2158 exte = EV.idx_end(), inse = IV->idx_end();
2159 exti != exte && insi != inse;
2160 ++exti, ++insi) {
2161 if (*insi != *exti)
2162 // The insert and extract both reference distinctly different elements.
2163 // This means the extract is not influenced by the insert, and we can
2164 // replace the aggregate operand of the extract with the aggregate
2165 // operand of the insert. i.e., replace
2166 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2167 // %E = extractvalue { i32, { i32 } } %I, 0
2168 // with
2169 // %E = extractvalue { i32, { i32 } } %A, 0
2170 return ExtractValueInst::Create(IV->getAggregateOperand(),
Jay Foad57aa6362011-07-13 10:26:04 +00002171 EV.getIndices());
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00002172 }
2173 if (exti == exte && insi == inse)
2174 // Both iterators are at the end: Index lists are identical. Replace
2175 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2176 // %C = extractvalue { i32, { i32 } } %B, 1, 0
2177 // with "i32 42"
2178 return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
2179 if (exti == exte) {
2180 // The extract list is a prefix of the insert list. i.e. replace
2181 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2182 // %E = extractvalue { i32, { i32 } } %I, 1
2183 // with
2184 // %X = extractvalue { i32, { i32 } } %A, 1
2185 // %E = insertvalue { i32 } %X, i32 42, 0
2186 // by switching the order of the insert and extract (though the
2187 // insertvalue should be left in, since it may have other uses).
Chris Lattner59663412009-08-30 18:50:58 +00002188 Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
Jay Foad57aa6362011-07-13 10:26:04 +00002189 EV.getIndices());
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00002190 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002191 makeArrayRef(insi, inse));
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00002192 }
2193 if (insi == inse)
2194 // The insert list is a prefix of the extract list
2195 // We can simply remove the common indices from the extract and make it
2196 // operate on the inserted value instead of the insertvalue result.
2197 // i.e., replace
2198 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2199 // %E = extractvalue { i32, { i32 } } %I, 1, 0
2200 // with
2201 // %E extractvalue { i32 } { i32 42 }, 0
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002202 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002203 makeArrayRef(exti, exte));
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00002204 }
Chris Lattner39c07b22009-11-09 07:07:56 +00002205 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
2206 // We're extracting from an intrinsic, see if we're the only user, which
2207 // allows us to simplify multiple result intrinsics to simpler things that
Gabor Greif75f69432010-06-24 12:21:15 +00002208 // just get one value.
Chris Lattner39c07b22009-11-09 07:07:56 +00002209 if (II->hasOneUse()) {
2210 // Check if we're grabbing the overflow bit or the result of a 'with
2211 // overflow' intrinsic. If it's the latter we can remove the intrinsic
2212 // and replace it with a traditional binary instruction.
2213 switch (II->getIntrinsicID()) {
2214 case Intrinsic::uadd_with_overflow:
2215 case Intrinsic::sadd_with_overflow:
2216 if (*EV.idx_begin() == 0) { // Normal result.
Gabor Greif75f69432010-06-24 12:21:15 +00002217 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
Eli Friedmanb9ed18f2011-05-18 00:32:01 +00002218 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
Chris Lattner39c07b22009-11-09 07:07:56 +00002219 EraseInstFromFunction(*II);
2220 return BinaryOperator::CreateAdd(LHS, RHS);
2221 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002222
Chris Lattner3e635d22010-12-19 19:43:52 +00002223 // If the normal result of the add is dead, and the RHS is a constant,
2224 // we can transform this into a range comparison.
2225 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3
Chris Lattner4fb9dd42010-12-19 23:24:04 +00002226 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
2227 if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
2228 return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
2229 ConstantExpr::getNot(CI));
Chris Lattner39c07b22009-11-09 07:07:56 +00002230 break;
2231 case Intrinsic::usub_with_overflow:
2232 case Intrinsic::ssub_with_overflow:
2233 if (*EV.idx_begin() == 0) { // Normal result.
Gabor Greif75f69432010-06-24 12:21:15 +00002234 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
Eli Friedmanb9ed18f2011-05-18 00:32:01 +00002235 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
Chris Lattner39c07b22009-11-09 07:07:56 +00002236 EraseInstFromFunction(*II);
2237 return BinaryOperator::CreateSub(LHS, RHS);
2238 }
2239 break;
2240 case Intrinsic::umul_with_overflow:
2241 case Intrinsic::smul_with_overflow:
2242 if (*EV.idx_begin() == 0) { // Normal result.
Gabor Greif75f69432010-06-24 12:21:15 +00002243 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
Eli Friedmanb9ed18f2011-05-18 00:32:01 +00002244 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
Chris Lattner39c07b22009-11-09 07:07:56 +00002245 EraseInstFromFunction(*II);
2246 return BinaryOperator::CreateMul(LHS, RHS);
2247 }
2248 break;
2249 default:
2250 break;
2251 }
2252 }
2253 }
Frits van Bommel28218aa2010-11-29 21:56:20 +00002254 if (LoadInst *L = dyn_cast<LoadInst>(Agg))
2255 // If the (non-volatile) load only has one use, we can rewrite this to a
2256 // load from a GEP. This reduces the size of the load.
2257 // FIXME: If a load is used only by extractvalue instructions then this
2258 // could be done regardless of having multiple uses.
Eli Friedman8bc586e2011-08-15 22:09:40 +00002259 if (L->isSimple() && L->hasOneUse()) {
Frits van Bommel28218aa2010-11-29 21:56:20 +00002260 // extractvalue has integer indices, getelementptr has Value*s. Convert.
2261 SmallVector<Value*, 4> Indices;
2262 // Prefix an i32 0 since we need the first element.
2263 Indices.push_back(Builder->getInt32(0));
2264 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
2265 I != E; ++I)
2266 Indices.push_back(Builder->getInt32(*I));
2267
2268 // We need to insert these at the location of the old load, not at that of
2269 // the extractvalue.
2270 Builder->SetInsertPoint(L->getParent(), L);
Jay Foad040dd822011-07-22 08:16:57 +00002271 Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(), Indices);
Frits van Bommel28218aa2010-11-29 21:56:20 +00002272 // Returning the load directly will cause the main loop to insert it in
2273 // the wrong spot, so use ReplaceInstUsesWith().
2274 return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP));
2275 }
2276 // We could simplify extracts from other values. Note that nested extracts may
2277 // already be simplified implicitly by the above: extract (extract (insert) )
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00002278 // will be translated into extract ( insert ( extract ) ) first and then just
Frits van Bommel28218aa2010-11-29 21:56:20 +00002279 // the value inserted, if appropriate. Similarly for extracts from single-use
2280 // loads: extract (extract (load)) will be translated to extract (load (gep))
2281 // and if again single-use then via load (gep (gep)) to load (gep).
2282 // However, double extracts from e.g. function arguments or return values
2283 // aren't handled yet.
Craig Topperf40110f2014-04-25 05:29:35 +00002284 return nullptr;
Matthijs Kooijmanb2fc72b2008-06-11 14:05:05 +00002285}
2286
Duncan Sands5c055792011-09-30 13:12:16 +00002287/// isCatchAll - Return 'true' if the given typeinfo will match anything.
Reid Kleckner4af64152015-01-28 01:17:38 +00002288static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
Duncan Sands5c055792011-09-30 13:12:16 +00002289 switch (Personality) {
Reid Kleckner4af64152015-01-28 01:17:38 +00002290 case EHPersonality::GNU_C:
2291 // The GCC C EH personality only exists to support cleanups, so it's not
2292 // clear what the semantics of catch clauses are.
Duncan Sands5c055792011-09-30 13:12:16 +00002293 return false;
Reid Kleckner4af64152015-01-28 01:17:38 +00002294 case EHPersonality::Unknown:
2295 return false;
2296 case EHPersonality::GNU_Ada:
Duncan Sands5c055792011-09-30 13:12:16 +00002297 // While __gnat_all_others_value will match any Ada exception, it doesn't
2298 // match foreign exceptions (or didn't, before gcc-4.7).
2299 return false;
Reid Kleckner4af64152015-01-28 01:17:38 +00002300 case EHPersonality::GNU_CXX:
2301 case EHPersonality::GNU_ObjC:
Reid Kleckner96d01132015-02-11 01:23:16 +00002302 case EHPersonality::MSVC_X86SEH:
Reid Kleckner4af64152015-01-28 01:17:38 +00002303 case EHPersonality::MSVC_Win64SEH:
2304 case EHPersonality::MSVC_CXX:
Duncan Sands5c055792011-09-30 13:12:16 +00002305 return TypeInfo->isNullValue();
2306 }
Reid Kleckner4af64152015-01-28 01:17:38 +00002307 llvm_unreachable("invalid enum");
Duncan Sands5c055792011-09-30 13:12:16 +00002308}
2309
2310static bool shorter_filter(const Value *LHS, const Value *RHS) {
2311 return
2312 cast<ArrayType>(LHS->getType())->getNumElements()
2313 <
2314 cast<ArrayType>(RHS->getType())->getNumElements();
2315}
2316
2317Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
2318 // The logic here should be correct for any real-world personality function.
2319 // However if that turns out not to be true, the offending logic can always
2320 // be conditioned on the personality function, like the catch-all logic is.
Reid Kleckner96d01132015-02-11 01:23:16 +00002321 EHPersonality Personality = classifyEHPersonality(LI.getPersonalityFn());
Duncan Sands5c055792011-09-30 13:12:16 +00002322
2323 // Simplify the list of clauses, eg by removing repeated catch clauses
2324 // (these are often created by inlining).
2325 bool MakeNewInstruction = false; // If true, recreate using the following:
Rafael Espindola4dc5dfc2014-06-04 18:51:31 +00002326 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
Duncan Sands5c055792011-09-30 13:12:16 +00002327 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup.
2328
2329 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
2330 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
2331 bool isLastClause = i + 1 == e;
2332 if (LI.isCatch(i)) {
2333 // A catch clause.
Rafael Espindola4dc5dfc2014-06-04 18:51:31 +00002334 Constant *CatchClause = LI.getClause(i);
Rafael Espindola78598d92014-06-04 19:01:48 +00002335 Constant *TypeInfo = CatchClause->stripPointerCasts();
Duncan Sands5c055792011-09-30 13:12:16 +00002336
2337 // If we already saw this clause, there is no point in having a second
2338 // copy of it.
David Blaikie70573dc2014-11-19 07:49:26 +00002339 if (AlreadyCaught.insert(TypeInfo).second) {
Duncan Sands5c055792011-09-30 13:12:16 +00002340 // This catch clause was not already seen.
2341 NewClauses.push_back(CatchClause);
2342 } else {
2343 // Repeated catch clause - drop the redundant copy.
2344 MakeNewInstruction = true;
2345 }
2346
2347 // If this is a catch-all then there is no point in keeping any following
2348 // clauses or marking the landingpad as having a cleanup.
2349 if (isCatchAll(Personality, TypeInfo)) {
2350 if (!isLastClause)
2351 MakeNewInstruction = true;
2352 CleanupFlag = false;
2353 break;
2354 }
2355 } else {
2356 // A filter clause. If any of the filter elements were already caught
2357 // then they can be dropped from the filter. It is tempting to try to
2358 // exploit the filter further by saying that any typeinfo that does not
2359 // occur in the filter can't be caught later (and thus can be dropped).
2360 // However this would be wrong, since typeinfos can match without being
2361 // equal (for example if one represents a C++ class, and the other some
2362 // class derived from it).
2363 assert(LI.isFilter(i) && "Unsupported landingpad clause!");
Rafael Espindola4dc5dfc2014-06-04 18:51:31 +00002364 Constant *FilterClause = LI.getClause(i);
Duncan Sands5c055792011-09-30 13:12:16 +00002365 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
2366 unsigned NumTypeInfos = FilterType->getNumElements();
2367
2368 // An empty filter catches everything, so there is no point in keeping any
2369 // following clauses or marking the landingpad as having a cleanup. By
2370 // dealing with this case here the following code is made a bit simpler.
2371 if (!NumTypeInfos) {
2372 NewClauses.push_back(FilterClause);
2373 if (!isLastClause)
2374 MakeNewInstruction = true;
2375 CleanupFlag = false;
2376 break;
2377 }
2378
2379 bool MakeNewFilter = false; // If true, make a new filter.
2380 SmallVector<Constant *, 16> NewFilterElts; // New elements.
2381 if (isa<ConstantAggregateZero>(FilterClause)) {
2382 // Not an empty filter - it contains at least one null typeinfo.
2383 assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
2384 Constant *TypeInfo =
2385 Constant::getNullValue(FilterType->getElementType());
2386 // If this typeinfo is a catch-all then the filter can never match.
2387 if (isCatchAll(Personality, TypeInfo)) {
2388 // Throw the filter away.
2389 MakeNewInstruction = true;
2390 continue;
2391 }
2392
2393 // There is no point in having multiple copies of this typeinfo, so
2394 // discard all but the first copy if there is more than one.
2395 NewFilterElts.push_back(TypeInfo);
2396 if (NumTypeInfos > 1)
2397 MakeNewFilter = true;
2398 } else {
2399 ConstantArray *Filter = cast<ConstantArray>(FilterClause);
2400 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
2401 NewFilterElts.reserve(NumTypeInfos);
2402
2403 // Remove any filter elements that were already caught or that already
2404 // occurred in the filter. While there, see if any of the elements are
2405 // catch-alls. If so, the filter can be discarded.
2406 bool SawCatchAll = false;
2407 for (unsigned j = 0; j != NumTypeInfos; ++j) {
Rafael Espindola78598d92014-06-04 19:01:48 +00002408 Constant *Elt = Filter->getOperand(j);
2409 Constant *TypeInfo = Elt->stripPointerCasts();
Duncan Sands5c055792011-09-30 13:12:16 +00002410 if (isCatchAll(Personality, TypeInfo)) {
2411 // This element is a catch-all. Bail out, noting this fact.
2412 SawCatchAll = true;
2413 break;
2414 }
2415 if (AlreadyCaught.count(TypeInfo))
2416 // Already caught by an earlier clause, so having it in the filter
2417 // is pointless.
2418 continue;
2419 // There is no point in having multiple copies of the same typeinfo in
2420 // a filter, so only add it if we didn't already.
David Blaikie70573dc2014-11-19 07:49:26 +00002421 if (SeenInFilter.insert(TypeInfo).second)
Duncan Sands5c055792011-09-30 13:12:16 +00002422 NewFilterElts.push_back(cast<Constant>(Elt));
2423 }
2424 // A filter containing a catch-all cannot match anything by definition.
2425 if (SawCatchAll) {
2426 // Throw the filter away.
2427 MakeNewInstruction = true;
2428 continue;
2429 }
2430
2431 // If we dropped something from the filter, make a new one.
2432 if (NewFilterElts.size() < NumTypeInfos)
2433 MakeNewFilter = true;
2434 }
2435 if (MakeNewFilter) {
2436 FilterType = ArrayType::get(FilterType->getElementType(),
2437 NewFilterElts.size());
2438 FilterClause = ConstantArray::get(FilterType, NewFilterElts);
2439 MakeNewInstruction = true;
2440 }
2441
2442 NewClauses.push_back(FilterClause);
2443
2444 // If the new filter is empty then it will catch everything so there is
2445 // no point in keeping any following clauses or marking the landingpad
2446 // as having a cleanup. The case of the original filter being empty was
2447 // already handled above.
2448 if (MakeNewFilter && !NewFilterElts.size()) {
2449 assert(MakeNewInstruction && "New filter but not a new instruction!");
2450 CleanupFlag = false;
2451 break;
2452 }
2453 }
2454 }
2455
2456 // If several filters occur in a row then reorder them so that the shortest
2457 // filters come first (those with the smallest number of elements). This is
2458 // advantageous because shorter filters are more likely to match, speeding up
2459 // unwinding, but mostly because it increases the effectiveness of the other
2460 // filter optimizations below.
2461 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
2462 unsigned j;
2463 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
2464 for (j = i; j != e; ++j)
2465 if (!isa<ArrayType>(NewClauses[j]->getType()))
2466 break;
2467
2468 // Check whether the filters are already sorted by length. We need to know
2469 // if sorting them is actually going to do anything so that we only make a
2470 // new landingpad instruction if it does.
2471 for (unsigned k = i; k + 1 < j; ++k)
2472 if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
2473 // Not sorted, so sort the filters now. Doing an unstable sort would be
2474 // correct too but reordering filters pointlessly might confuse users.
2475 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
2476 shorter_filter);
2477 MakeNewInstruction = true;
2478 break;
2479 }
2480
2481 // Look for the next batch of filters.
2482 i = j + 1;
2483 }
2484
2485 // If typeinfos matched if and only if equal, then the elements of a filter L
2486 // that occurs later than a filter F could be replaced by the intersection of
2487 // the elements of F and L. In reality two typeinfos can match without being
2488 // equal (for example if one represents a C++ class, and the other some class
2489 // derived from it) so it would be wrong to perform this transform in general.
2490 // However the transform is correct and useful if F is a subset of L. In that
2491 // case L can be replaced by F, and thus removed altogether since repeating a
2492 // filter is pointless. So here we look at all pairs of filters F and L where
2493 // L follows F in the list of clauses, and remove L if every element of F is
2494 // an element of L. This can occur when inlining C++ functions with exception
2495 // specifications.
2496 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
2497 // Examine each filter in turn.
2498 Value *Filter = NewClauses[i];
2499 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
2500 if (!FTy)
2501 // Not a filter - skip it.
2502 continue;
2503 unsigned FElts = FTy->getNumElements();
2504 // Examine each filter following this one. Doing this backwards means that
2505 // we don't have to worry about filters disappearing under us when removed.
2506 for (unsigned j = NewClauses.size() - 1; j != i; --j) {
2507 Value *LFilter = NewClauses[j];
2508 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
2509 if (!LTy)
2510 // Not a filter - skip it.
2511 continue;
2512 // If Filter is a subset of LFilter, i.e. every element of Filter is also
2513 // an element of LFilter, then discard LFilter.
Rafael Espindola4dc5dfc2014-06-04 18:51:31 +00002514 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
Duncan Sands5c055792011-09-30 13:12:16 +00002515 // If Filter is empty then it is a subset of LFilter.
2516 if (!FElts) {
2517 // Discard LFilter.
2518 NewClauses.erase(J);
2519 MakeNewInstruction = true;
2520 // Move on to the next filter.
2521 continue;
2522 }
2523 unsigned LElts = LTy->getNumElements();
2524 // If Filter is longer than LFilter then it cannot be a subset of it.
2525 if (FElts > LElts)
2526 // Move on to the next filter.
2527 continue;
2528 // At this point we know that LFilter has at least one element.
2529 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00002530 // Filter is a subset of LFilter iff Filter contains only zeros (as we
Duncan Sands5c055792011-09-30 13:12:16 +00002531 // already know that Filter is not longer than LFilter).
2532 if (isa<ConstantAggregateZero>(Filter)) {
2533 assert(FElts <= LElts && "Should have handled this case earlier!");
2534 // Discard LFilter.
2535 NewClauses.erase(J);
2536 MakeNewInstruction = true;
2537 }
2538 // Move on to the next filter.
2539 continue;
2540 }
2541 ConstantArray *LArray = cast<ConstantArray>(LFilter);
2542 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
2543 // Since Filter is non-empty and contains only zeros, it is a subset of
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00002544 // LFilter iff LFilter contains a zero.
Duncan Sands5c055792011-09-30 13:12:16 +00002545 assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
2546 for (unsigned l = 0; l != LElts; ++l)
2547 if (LArray->getOperand(l)->isNullValue()) {
2548 // LFilter contains a zero - discard it.
2549 NewClauses.erase(J);
2550 MakeNewInstruction = true;
2551 break;
2552 }
2553 // Move on to the next filter.
2554 continue;
2555 }
2556 // At this point we know that both filters are ConstantArrays. Loop over
2557 // operands to see whether every element of Filter is also an element of
2558 // LFilter. Since filters tend to be short this is probably faster than
2559 // using a method that scales nicely.
2560 ConstantArray *FArray = cast<ConstantArray>(Filter);
2561 bool AllFound = true;
2562 for (unsigned f = 0; f != FElts; ++f) {
2563 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
2564 AllFound = false;
2565 for (unsigned l = 0; l != LElts; ++l) {
2566 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
2567 if (LTypeInfo == FTypeInfo) {
2568 AllFound = true;
2569 break;
2570 }
2571 }
2572 if (!AllFound)
2573 break;
2574 }
2575 if (AllFound) {
2576 // Discard LFilter.
2577 NewClauses.erase(J);
2578 MakeNewInstruction = true;
2579 }
2580 // Move on to the next filter.
2581 }
2582 }
2583
2584 // If we changed any of the clauses, replace the old landingpad instruction
2585 // with a new one.
2586 if (MakeNewInstruction) {
2587 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
2588 LI.getPersonalityFn(),
2589 NewClauses.size());
2590 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
2591 NLI->addClause(NewClauses[i]);
2592 // A landing pad with no clauses must have the cleanup flag set. It is
2593 // theoretically possible, though highly unlikely, that we eliminated all
2594 // clauses. If so, force the cleanup flag to true.
2595 if (NewClauses.empty())
2596 CleanupFlag = true;
2597 NLI->setCleanup(CleanupFlag);
2598 return NLI;
2599 }
2600
2601 // Even if none of the clauses changed, we may nonetheless have understood
2602 // that the cleanup flag is pointless. Clear it if so.
2603 if (LI.isCleanup() != CleanupFlag) {
2604 assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
2605 LI.setCleanup(CleanupFlag);
2606 return &LI;
2607 }
2608
Craig Topperf40110f2014-04-25 05:29:35 +00002609 return nullptr;
Duncan Sands5c055792011-09-30 13:12:16 +00002610}
2611
Chris Lattner39c98bb2004-12-08 23:43:58 +00002612/// TryToSinkInstruction - Try to move the specified instruction from its
2613/// current block into the beginning of DestBlock, which can only happen if it's
2614/// safe to move the instruction past all of the instructions between it and the
2615/// end of its block.
2616static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
2617 assert(I->hasOneUse() && "Invariants didn't hold!");
2618
Bill Wendlinge86965e2011-08-15 21:14:31 +00002619 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
Bill Wendlinga9ee09f2011-08-17 20:36:44 +00002620 if (isa<PHINode>(I) || isa<LandingPadInst>(I) || I->mayHaveSideEffects() ||
2621 isa<TerminatorInst>(I))
Chris Lattnera4ee1f52008-05-09 15:07:33 +00002622 return false;
Misha Brukmanb1c93172005-04-21 23:48:37 +00002623
Chris Lattner39c98bb2004-12-08 23:43:58 +00002624 // Do not sink alloca instructions out of the entry block.
Dan Gohmandcb291f2007-03-22 16:38:57 +00002625 if (isa<AllocaInst>(I) && I->getParent() ==
2626 &DestBlock->getParent()->getEntryBlock())
Chris Lattner39c98bb2004-12-08 23:43:58 +00002627 return false;
2628
Chris Lattnerf17a2fb2004-12-09 07:14:34 +00002629 // We can only sink load instructions if there is nothing between the load and
2630 // the end of block that could change the value.
Chris Lattner49a594e2008-05-08 17:37:37 +00002631 if (I->mayReadFromMemory()) {
2632 for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
Chris Lattnerf17a2fb2004-12-09 07:14:34 +00002633 Scan != E; ++Scan)
2634 if (Scan->mayWriteToMemory())
2635 return false;
Chris Lattnerf17a2fb2004-12-09 07:14:34 +00002636 }
Chris Lattner39c98bb2004-12-08 23:43:58 +00002637
Bill Wendling8ddfc092011-08-16 20:45:24 +00002638 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
Chris Lattner9f269e42005-08-08 19:11:57 +00002639 I->moveBefore(InsertPos);
Chris Lattner39c98bb2004-12-08 23:43:58 +00002640 ++NumSunkInst;
2641 return true;
2642}
2643
Chandler Carruthdf5747a2015-01-21 11:38:17 +00002644bool InstCombiner::run() {
Chris Lattner97fd3592009-08-30 05:55:36 +00002645 while (!Worklist.isEmpty()) {
2646 Instruction *I = Worklist.RemoveOne();
Craig Topperf40110f2014-04-25 05:29:35 +00002647 if (I == nullptr) continue; // skip null values.
Chris Lattnerca081252001-12-14 16:52:21 +00002648
Chris Lattner1443bc52006-05-11 17:11:52 +00002649 // Check to see if we can DCE the instruction.
Benjamin Kramer8bcc9712012-08-29 15:32:21 +00002650 if (isInstructionTriviallyDead(I, TLI)) {
Matt Arsenaulte6db7602013-09-05 19:48:28 +00002651 DEBUG(dbgs() << "IC: DCE: " << *I << '\n');
Chris Lattner905976b2009-08-30 06:13:40 +00002652 EraseInstFromFunction(*I);
2653 ++NumDeadInst;
Chris Lattnerff5f1e42009-08-31 06:57:37 +00002654 MadeIRChange = true;
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00002655 continue;
2656 }
Chris Lattner99f48c62002-09-02 04:59:56 +00002657
Chris Lattner1443bc52006-05-11 17:11:52 +00002658 // Instruction isn't dead, see if we can constant propagate it.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002659 if (!I->use_empty() && isa<Constant>(I->getOperand(0))) {
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002660 if (Constant *C = ConstantFoldInstruction(I, DL, TLI)) {
Matt Arsenaulte6db7602013-09-05 19:48:28 +00002661 DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
Chris Lattnercd517ff2005-01-28 19:32:01 +00002662
Chris Lattnerdd1f68a2009-10-15 04:13:44 +00002663 // Add operands to the worklist.
2664 ReplaceInstUsesWith(*I, C);
2665 ++NumConstProp;
2666 EraseInstFromFunction(*I);
2667 MadeIRChange = true;
2668 continue;
2669 }
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002670 }
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00002671
Chris Lattner39c98bb2004-12-08 23:43:58 +00002672 // See if we can trivially sink this instruction to a successor basic block.
Dan Gohmanfa1211f2008-07-23 00:34:11 +00002673 if (I->hasOneUse()) {
Chris Lattner39c98bb2004-12-08 23:43:58 +00002674 BasicBlock *BB = I->getParent();
Chandler Carruthcdf47882014-03-09 03:16:01 +00002675 Instruction *UserInst = cast<Instruction>(*I->user_begin());
Chris Lattner6b9044d2009-10-14 15:21:58 +00002676 BasicBlock *UserParent;
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002677
Chris Lattner6b9044d2009-10-14 15:21:58 +00002678 // Get the block the use occurs in.
2679 if (PHINode *PN = dyn_cast<PHINode>(UserInst))
Chandler Carruthcdf47882014-03-09 03:16:01 +00002680 UserParent = PN->getIncomingBlock(*I->use_begin());
Chris Lattner6b9044d2009-10-14 15:21:58 +00002681 else
2682 UserParent = UserInst->getParent();
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002683
Chris Lattner39c98bb2004-12-08 23:43:58 +00002684 if (UserParent != BB) {
2685 bool UserIsSuccessor = false;
2686 // See if the user is one of our successors.
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00002687 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
2688 if (*SI == UserParent) {
Chris Lattner39c98bb2004-12-08 23:43:58 +00002689 UserIsSuccessor = true;
2690 break;
2691 }
2692
2693 // If the user is one of our immediate successors, and if that successor
2694 // only has us as a predecessors (we'd have to split the critical edge
2695 // otherwise), we can keep going.
Aditya Nandakumar0b5a6742014-07-11 21:49:39 +00002696 if (UserIsSuccessor && UserParent->getSinglePredecessor()) {
Chris Lattner39c98bb2004-12-08 23:43:58 +00002697 // Okay, the CFG is simple enough, try to sink this instruction.
Aditya Nandakumar0b5a6742014-07-11 21:49:39 +00002698 if (TryToSinkInstruction(I, UserParent)) {
2699 MadeIRChange = true;
2700 // We'll add uses of the sunk instruction below, but since sinking
2701 // can expose opportunities for it's *operands* add them to the
2702 // worklist
2703 for (Use &U : I->operands())
2704 if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
2705 Worklist.Add(OpI);
2706 }
2707 }
Chris Lattner39c98bb2004-12-08 23:43:58 +00002708 }
2709 }
2710
Chris Lattner022a5822009-08-30 07:44:24 +00002711 // Now that we have an instruction, try combining it to simplify it.
2712 Builder->SetInsertPoint(I->getParent(), I);
Eli Friedman96254a02011-05-18 01:28:27 +00002713 Builder->SetCurrentDebugLocation(I->getDebugLoc());
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002714
Reid Spencer755d0e72007-03-26 17:44:01 +00002715#ifndef NDEBUG
2716 std::string OrigI;
2717#endif
Chris Lattnerb25de3f2009-08-23 04:37:46 +00002718 DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
Matt Arsenaulte6db7602013-09-05 19:48:28 +00002719 DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
Jeffrey Yasskindafd08e2009-10-08 00:12:24 +00002720
Chris Lattnerae7a0d32002-08-02 19:29:35 +00002721 if (Instruction *Result = visit(*I)) {
Chris Lattner0b18c1d2002-05-10 15:38:35 +00002722 ++NumCombined;
Chris Lattner260ab202002-04-18 17:39:14 +00002723 // Should we replace the old instruction with a new one?
Chris Lattner053c0932002-05-14 15:24:07 +00002724 if (Result != I) {
Matt Arsenaulte6db7602013-09-05 19:48:28 +00002725 DEBUG(dbgs() << "IC: Old = " << *I << '\n'
Jim Grosbach8f9acfa2011-10-05 20:44:29 +00002726 << " New = " << *Result << '\n');
2727
Eli Friedman35211c62011-05-27 00:19:40 +00002728 if (!I->getDebugLoc().isUnknown())
2729 Result->setDebugLoc(I->getDebugLoc());
Chris Lattner396dbfe2004-06-09 05:08:07 +00002730 // Everything uses the new instruction now.
2731 I->replaceAllUsesWith(Result);
2732
Jim Grosbache7abae02011-10-05 20:53:43 +00002733 // Move the name to the new instruction first.
2734 Result->takeName(I);
2735
Jim Grosbach8f9acfa2011-10-05 20:44:29 +00002736 // Push the new instruction and any users onto the worklist.
2737 Worklist.Add(Result);
2738 Worklist.AddUsersToWorkList(*Result);
2739
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00002740 // Insert the new instruction into the basic block...
2741 BasicBlock *InstParent = I->getParent();
Chris Lattner7515cab2004-11-14 19:13:23 +00002742 BasicBlock::iterator InsertPos = I;
2743
Eli Friedmana49b8282011-11-01 04:49:29 +00002744 // If we replace a PHI with something that isn't a PHI, fix up the
2745 // insertion point.
2746 if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
2747 InsertPos = InstParent->getFirstInsertionPt();
Chris Lattner7515cab2004-11-14 19:13:23 +00002748
2749 InstParent->getInstList().insert(InsertPos, Result);
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00002750
Chris Lattner905976b2009-08-30 06:13:40 +00002751 EraseInstFromFunction(*I);
Chris Lattner113f4f42002-06-25 16:13:24 +00002752 } else {
Evan Chenga4ed8a52007-03-27 16:44:48 +00002753#ifndef NDEBUG
Matt Arsenaulte6db7602013-09-05 19:48:28 +00002754 DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
Chris Lattnerb25de3f2009-08-23 04:37:46 +00002755 << " New = " << *I << '\n');
Evan Chenga4ed8a52007-03-27 16:44:48 +00002756#endif
Chris Lattner7d2a5392004-03-13 23:54:27 +00002757
Chris Lattnerae7a0d32002-08-02 19:29:35 +00002758 // If the instruction was modified, it's possible that it is now dead.
2759 // if so, remove it.
Benjamin Kramer8bcc9712012-08-29 15:32:21 +00002760 if (isInstructionTriviallyDead(I, TLI)) {
Chris Lattner905976b2009-08-30 06:13:40 +00002761 EraseInstFromFunction(*I);
Chris Lattner396dbfe2004-06-09 05:08:07 +00002762 } else {
Chris Lattner905976b2009-08-30 06:13:40 +00002763 Worklist.Add(I);
Chris Lattnerbacd05c2009-08-30 06:22:51 +00002764 Worklist.AddUsersToWorkList(*I);
Chris Lattnerae7a0d32002-08-02 19:29:35 +00002765 }
Chris Lattner053c0932002-05-14 15:24:07 +00002766 }
Chris Lattnerff5f1e42009-08-31 06:57:37 +00002767 MadeIRChange = true;
Chris Lattnerca081252001-12-14 16:52:21 +00002768 }
2769 }
2770
Chris Lattner97fd3592009-08-30 05:55:36 +00002771 Worklist.Zap();
Chris Lattnerff5f1e42009-08-31 06:57:37 +00002772 return MadeIRChange;
Chris Lattner04805fa2002-02-26 21:46:54 +00002773}
2774
Chandler Carruthdf5747a2015-01-21 11:38:17 +00002775/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
2776/// all reachable code to the worklist.
2777///
2778/// This has a couple of tricks to make the code faster and more powerful. In
2779/// particular, we constant fold and DCE instructions as we go, to avoid adding
2780/// them to the worklist (this significantly speeds up instcombine on code where
2781/// many instructions are dead or constant). Additionally, if we find a branch
2782/// whose condition is a known constant, we only visit the reachable successors.
2783///
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002784static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL,
2785 SmallPtrSetImpl<BasicBlock *> &Visited,
Chandler Carruthdf5747a2015-01-21 11:38:17 +00002786 InstCombineWorklist &ICWorklist,
Chandler Carruthdf5747a2015-01-21 11:38:17 +00002787 const TargetLibraryInfo *TLI) {
2788 bool MadeIRChange = false;
2789 SmallVector<BasicBlock*, 256> Worklist;
2790 Worklist.push_back(BB);
Hal Finkel60db0582014-09-07 18:57:58 +00002791
Chandler Carruthdf5747a2015-01-21 11:38:17 +00002792 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
2793 DenseMap<ConstantExpr*, Constant*> FoldedConstants;
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002794
Chandler Carruthdf5747a2015-01-21 11:38:17 +00002795 do {
2796 BB = Worklist.pop_back_val();
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002797
Chandler Carruthdf5747a2015-01-21 11:38:17 +00002798 // We have now visited this block! If we've already been here, ignore it.
2799 if (!Visited.insert(BB).second)
2800 continue;
Chris Lattner960a5432007-03-03 02:04:50 +00002801
Chandler Carruthdf5747a2015-01-21 11:38:17 +00002802 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
2803 Instruction *Inst = BBI++;
Devang Patelaad34d82011-03-17 22:18:16 +00002804
Chandler Carruthdf5747a2015-01-21 11:38:17 +00002805 // DCE instruction if trivially dead.
2806 if (isInstructionTriviallyDead(Inst, TLI)) {
2807 ++NumDeadInst;
2808 DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
2809 Inst->eraseFromParent();
2810 continue;
2811 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002812
Chandler Carruthdf5747a2015-01-21 11:38:17 +00002813 // ConstantProp instruction if trivially constant.
2814 if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
2815 if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
2816 DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: "
2817 << *Inst << '\n');
2818 Inst->replaceAllUsesWith(C);
2819 ++NumConstProp;
2820 Inst->eraseFromParent();
2821 continue;
2822 }
2823
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002824 // See if we can constant fold its operands.
2825 for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end(); i != e;
2826 ++i) {
2827 ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
2828 if (CE == nullptr)
2829 continue;
Chandler Carruthdf5747a2015-01-21 11:38:17 +00002830
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002831 Constant *&FoldRes = FoldedConstants[CE];
2832 if (!FoldRes)
2833 FoldRes = ConstantFoldConstantExpression(CE, DL, TLI);
2834 if (!FoldRes)
2835 FoldRes = CE;
Chandler Carruthdf5747a2015-01-21 11:38:17 +00002836
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002837 if (FoldRes != CE) {
2838 *i = FoldRes;
2839 MadeIRChange = true;
Chandler Carruthdf5747a2015-01-21 11:38:17 +00002840 }
2841 }
2842
2843 InstrsForInstCombineWorklist.push_back(Inst);
2844 }
2845
2846 // Recursively visit successors. If this is a branch or switch on a
2847 // constant, only visit the reachable successor.
2848 TerminatorInst *TI = BB->getTerminator();
2849 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2850 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
2851 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
2852 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
2853 Worklist.push_back(ReachableBB);
2854 continue;
2855 }
2856 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2857 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
2858 // See if this is an explicit destination.
2859 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2860 i != e; ++i)
2861 if (i.getCaseValue() == Cond) {
2862 BasicBlock *ReachableBB = i.getCaseSuccessor();
2863 Worklist.push_back(ReachableBB);
2864 continue;
2865 }
2866
2867 // Otherwise it is the default destination.
2868 Worklist.push_back(SI->getDefaultDest());
2869 continue;
2870 }
2871 }
2872
2873 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
2874 Worklist.push_back(TI->getSuccessor(i));
2875 } while (!Worklist.empty());
2876
2877 // Once we've found all of the instructions to add to instcombine's worklist,
2878 // add them in reverse order. This way instcombine will visit from the top
2879 // of the function down. This jives well with the way that it adds all uses
2880 // of instructions to the worklist after doing a transformation, thus avoiding
2881 // some N^2 behavior in pathological cases.
2882 ICWorklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
2883 InstrsForInstCombineWorklist.size());
2884
2885 return MadeIRChange;
2886}
2887
2888/// \brief Populate the IC worklist from a function, and prune any dead basic
2889/// blocks discovered in the process.
2890///
2891/// This also does basic constant propagation and other forward fixing to make
2892/// the combiner itself run much faster.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002893static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
Chandler Carruthdf5747a2015-01-21 11:38:17 +00002894 TargetLibraryInfo *TLI,
2895 InstCombineWorklist &ICWorklist) {
2896 bool MadeIRChange = false;
2897
2898 // Do a depth-first traversal of the function, populate the worklist with
2899 // the reachable instructions. Ignore blocks that are not reachable. Keep
2900 // track of which blocks we visit.
2901 SmallPtrSet<BasicBlock *, 64> Visited;
2902 MadeIRChange |=
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002903 AddReachableCodeToWorklist(F.begin(), DL, Visited, ICWorklist, TLI);
Chandler Carruthdf5747a2015-01-21 11:38:17 +00002904
2905 // Do a quick scan over the function. If we find any blocks that are
2906 // unreachable, remove any instructions inside of them. This prevents
2907 // the instcombine code from having to deal with some bad special cases.
2908 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2909 if (Visited.count(BB))
2910 continue;
2911
2912 // Delete the instructions backwards, as it has a reduced likelihood of
2913 // having to update as many def-use and use-def chains.
2914 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
2915 while (EndInst != BB->begin()) {
2916 // Delete the next to last instruction.
2917 BasicBlock::iterator I = EndInst;
2918 Instruction *Inst = --I;
2919 if (!Inst->use_empty())
2920 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
2921 if (isa<LandingPadInst>(Inst)) {
2922 EndInst = Inst;
2923 continue;
2924 }
2925 if (!isa<DbgInfoIntrinsic>(Inst)) {
2926 ++NumDeadInst;
2927 MadeIRChange = true;
2928 }
2929 Inst->eraseFromParent();
2930 }
2931 }
2932
2933 return MadeIRChange;
Chris Lattner960a5432007-03-03 02:04:50 +00002934}
2935
Mehdi Amini46a43552015-03-04 18:43:29 +00002936static bool
2937combineInstructionsOverFunction(Function &F, InstCombineWorklist &Worklist,
2938 AssumptionCache &AC, TargetLibraryInfo &TLI,
2939 DominatorTree &DT, LoopInfo *LI = nullptr) {
Chandler Carruth83ba2692015-01-24 04:19:17 +00002940 // Minimizing size?
Duncan P. N. Exon Smith2c79ad92015-02-14 01:11:29 +00002941 bool MinimizeSize = F.hasFnAttribute(Attribute::MinSize);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002942 auto &DL = F.getParent()->getDataLayout();
Chandler Carruth83ba2692015-01-24 04:19:17 +00002943
2944 /// Builder - This is an IRBuilder that automatically inserts new
2945 /// instructions into the worklist when they are created.
2946 IRBuilder<true, TargetFolder, InstCombineIRInserter> Builder(
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002947 F.getContext(), TargetFolder(DL), InstCombineIRInserter(Worklist, &AC));
Chandler Carruth83ba2692015-01-24 04:19:17 +00002948
2949 // Lower dbg.declare intrinsics otherwise their value may be clobbered
2950 // by instcombiner.
2951 bool DbgDeclaresChanged = LowerDbgDeclare(F);
2952
2953 // Iterate while there is work to do.
2954 int Iteration = 0;
2955 for (;;) {
2956 ++Iteration;
2957 DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
2958 << F.getName() << "\n");
2959
2960 bool Changed = false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002961 if (prepareICWorklistFromFunction(F, DL, &TLI, Worklist))
Chandler Carruth83ba2692015-01-24 04:19:17 +00002962 Changed = true;
2963
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002964 InstCombiner IC(Worklist, &Builder, MinimizeSize, &AC, &TLI, &DT, DL, LI);
Chandler Carruth83ba2692015-01-24 04:19:17 +00002965 if (IC.run())
2966 Changed = true;
2967
2968 if (!Changed)
2969 break;
2970 }
2971
2972 return DbgDeclaresChanged || Iteration > 1;
2973}
2974
2975PreservedAnalyses InstCombinePass::run(Function &F,
2976 AnalysisManager<Function> *AM) {
Chandler Carruth83ba2692015-01-24 04:19:17 +00002977 auto &AC = AM->getResult<AssumptionAnalysis>(F);
2978 auto &DT = AM->getResult<DominatorTreeAnalysis>(F);
2979 auto &TLI = AM->getResult<TargetLibraryAnalysis>(F);
2980
2981 auto *LI = AM->getCachedResult<LoopAnalysis>(F);
2982
Mehdi Amini46a43552015-03-04 18:43:29 +00002983 if (!combineInstructionsOverFunction(F, Worklist, AC, TLI, DT, LI))
Chandler Carruth83ba2692015-01-24 04:19:17 +00002984 // No changes, all analyses are preserved.
2985 return PreservedAnalyses::all();
2986
2987 // Mark all the analyses that instcombine updates as preserved.
2988 // FIXME: Need a way to preserve CFG analyses here!
2989 PreservedAnalyses PA;
2990 PA.preserve<DominatorTreeAnalysis>();
2991 return PA;
2992}
2993
Chandler Carruth1edb9d62015-01-20 22:44:35 +00002994namespace {
2995/// \brief The legacy pass manager's instcombine pass.
2996///
2997/// This is a basic whole-function wrapper around the instcombine utility. It
2998/// will try to combine all instructions in the function.
2999class InstructionCombiningPass : public FunctionPass {
Chandler Carruthdf5747a2015-01-21 11:38:17 +00003000 InstCombineWorklist Worklist;
Chandler Carruth1edb9d62015-01-20 22:44:35 +00003001
3002public:
3003 static char ID; // Pass identification, replacement for typeid
3004
3005 InstructionCombiningPass() : FunctionPass(ID) {
3006 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
3007 }
3008
3009 void getAnalysisUsage(AnalysisUsage &AU) const override;
3010 bool runOnFunction(Function &F) override;
3011};
3012}
3013
3014void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
3015 AU.setPreservesCFG();
3016 AU.addRequired<AssumptionCacheTracker>();
3017 AU.addRequired<TargetLibraryInfoWrapperPass>();
3018 AU.addRequired<DominatorTreeWrapperPass>();
3019 AU.addPreserved<DominatorTreeWrapperPass>();
3020}
3021
3022bool InstructionCombiningPass::runOnFunction(Function &F) {
3023 if (skipOptnoneFunction(F))
3024 return false;
3025
Chandler Carruthdf5747a2015-01-21 11:38:17 +00003026 // Required analyses.
Chandler Carruth1edb9d62015-01-20 22:44:35 +00003027 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
Chandler Carruth1edb9d62015-01-20 22:44:35 +00003028 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
3029 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
Chandler Carruthdf5747a2015-01-21 11:38:17 +00003030
3031 // Optional analyses.
Chandler Carruth1edb9d62015-01-20 22:44:35 +00003032 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
3033 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
3034
Mehdi Amini46a43552015-03-04 18:43:29 +00003035 return combineInstructionsOverFunction(F, Worklist, AC, TLI, DT, LI);
Chandler Carruth1edb9d62015-01-20 22:44:35 +00003036}
3037
3038char InstructionCombiningPass::ID = 0;
3039INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
3040 "Combine redundant instructions", false, false)
3041INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3042INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3043INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3044INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
3045 "Combine redundant instructions", false, false)
3046
3047// Initialization Routines
3048void llvm::initializeInstCombine(PassRegistry &Registry) {
3049 initializeInstructionCombiningPassPass(Registry);
3050}
3051
3052void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
3053 initializeInstructionCombiningPassPass(*unwrap(R));
3054}
3055
Brian Gaeke38b79e82004-07-27 17:43:21 +00003056FunctionPass *llvm::createInstructionCombiningPass() {
Chandler Carruth1edb9d62015-01-20 22:44:35 +00003057 return new InstructionCombiningPass();
Chris Lattner04805fa2002-02-26 21:46:54 +00003058}