blob: c70c08dfecd5d126af06dcfe5766b46b610a9547 [file] [log] [blame]
Davide Italiano7e274e02016-12-22 16:03:48 +00001//===---- NewGVN.cpp - Global Value Numbering Pass --------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file implements the new LLVM's Global Value Numbering pass.
11/// GVN partitions values computed by a function into congruence classes.
12/// Values ending up in the same congruence class are guaranteed to be the same
13/// for every execution of the program. In that respect, congruency is a
14/// compile-time approximation of equivalence of values at runtime.
15/// The algorithm implemented here uses a sparse formulation and it's based
16/// on the ideas described in the paper:
17/// "A Sparse Algorithm for Predicated Global Value Numbering" from
18/// Karthik Gargi.
19///
Daniel Berlindb3c7be2017-01-26 21:39:49 +000020/// A brief overview of the algorithm: The algorithm is essentially the same as
21/// the standard RPO value numbering algorithm (a good reference is the paper
22/// "SCC based value numbering" by L. Taylor Simpson) with one major difference:
23/// The RPO algorithm proceeds, on every iteration, to process every reachable
24/// block and every instruction in that block. This is because the standard RPO
25/// algorithm does not track what things have the same value number, it only
26/// tracks what the value number of a given operation is (the mapping is
27/// operation -> value number). Thus, when a value number of an operation
28/// changes, it must reprocess everything to ensure all uses of a value number
29/// get updated properly. In constrast, the sparse algorithm we use *also*
30/// tracks what operations have a given value number (IE it also tracks the
31/// reverse mapping from value number -> operations with that value number), so
32/// that it only needs to reprocess the instructions that are affected when
33/// something's value number changes. The rest of the algorithm is devoted to
34/// performing symbolic evaluation, forward propagation, and simplification of
35/// operations based on the value numbers deduced so far.
36///
37/// We also do not perform elimination by using any published algorithm. All
38/// published algorithms are O(Instructions). Instead, we use a technique that
39/// is O(number of operations with the same value number), enabling us to skip
40/// trying to eliminate things that have unique value numbers.
Davide Italiano7e274e02016-12-22 16:03:48 +000041//===----------------------------------------------------------------------===//
42
43#include "llvm/Transforms/Scalar/NewGVN.h"
44#include "llvm/ADT/BitVector.h"
45#include "llvm/ADT/DenseMap.h"
46#include "llvm/ADT/DenseSet.h"
47#include "llvm/ADT/DepthFirstIterator.h"
48#include "llvm/ADT/Hashing.h"
49#include "llvm/ADT/MapVector.h"
50#include "llvm/ADT/PostOrderIterator.h"
Daniel Berlind7c12ee2016-12-25 22:23:49 +000051#include "llvm/ADT/STLExtras.h"
Davide Italiano7e274e02016-12-22 16:03:48 +000052#include "llvm/ADT/SmallPtrSet.h"
53#include "llvm/ADT/SmallSet.h"
54#include "llvm/ADT/SparseBitVector.h"
55#include "llvm/ADT/Statistic.h"
56#include "llvm/ADT/TinyPtrVector.h"
57#include "llvm/Analysis/AliasAnalysis.h"
58#include "llvm/Analysis/AssumptionCache.h"
59#include "llvm/Analysis/CFG.h"
60#include "llvm/Analysis/CFGPrinter.h"
61#include "llvm/Analysis/ConstantFolding.h"
62#include "llvm/Analysis/GlobalsModRef.h"
63#include "llvm/Analysis/InstructionSimplify.h"
Davide Italiano7e274e02016-12-22 16:03:48 +000064#include "llvm/Analysis/MemoryBuiltins.h"
Davide Italiano7e274e02016-12-22 16:03:48 +000065#include "llvm/Analysis/MemoryLocation.h"
Daniel Berlin2f72b192017-04-14 02:53:37 +000066#include "llvm/Analysis/MemorySSA.h"
Davide Italiano7e274e02016-12-22 16:03:48 +000067#include "llvm/Analysis/TargetLibraryInfo.h"
Davide Italiano7e274e02016-12-22 16:03:48 +000068#include "llvm/IR/DataLayout.h"
69#include "llvm/IR/Dominators.h"
70#include "llvm/IR/GlobalVariable.h"
71#include "llvm/IR/IRBuilder.h"
72#include "llvm/IR/IntrinsicInst.h"
73#include "llvm/IR/LLVMContext.h"
74#include "llvm/IR/Metadata.h"
75#include "llvm/IR/PatternMatch.h"
Davide Italiano7e274e02016-12-22 16:03:48 +000076#include "llvm/IR/Type.h"
77#include "llvm/Support/Allocator.h"
78#include "llvm/Support/CommandLine.h"
79#include "llvm/Support/Debug.h"
Daniel Berlin283a6082017-03-01 19:59:26 +000080#include "llvm/Support/DebugCounter.h"
Davide Italiano7e274e02016-12-22 16:03:48 +000081#include "llvm/Transforms/Scalar.h"
82#include "llvm/Transforms/Scalar/GVNExpression.h"
83#include "llvm/Transforms/Utils/BasicBlockUtils.h"
84#include "llvm/Transforms/Utils/Local.h"
Daniel Berlinf7d95802017-02-18 23:06:50 +000085#include "llvm/Transforms/Utils/PredicateInfo.h"
Daniel Berlin07daac82017-04-02 13:23:44 +000086#include "llvm/Transforms/Utils/VNCoercion.h"
Daniel Berlin1316a942017-04-06 18:52:50 +000087#include <numeric>
Davide Italiano7e274e02016-12-22 16:03:48 +000088#include <unordered_map>
89#include <utility>
90#include <vector>
91using namespace llvm;
92using namespace PatternMatch;
93using namespace llvm::GVNExpression;
Daniel Berlin07daac82017-04-02 13:23:44 +000094using namespace llvm::VNCoercion;
Davide Italiano7e274e02016-12-22 16:03:48 +000095#define DEBUG_TYPE "newgvn"
96
97STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted");
98STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted");
99STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified");
100STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same");
Daniel Berlin04443432017-01-07 03:23:47 +0000101STATISTIC(NumGVNMaxIterations,
102 "Maximum Number of iterations it took to converge GVN");
Daniel Berlinc0431fd2017-01-13 22:40:01 +0000103STATISTIC(NumGVNLeaderChanges, "Number of leader changes");
104STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes");
105STATISTIC(NumGVNAvoidedSortedLeaderChanges,
106 "Number of avoided sorted leader changes");
Daniel Berlin89fea6f2017-01-20 06:38:41 +0000107STATISTIC(NumGVNNotMostDominatingLeader,
108 "Number of times a member dominated it's new classes' leader");
Daniel Berlinc4796862017-01-27 02:37:11 +0000109STATISTIC(NumGVNDeadStores, "Number of redundant/dead stores eliminated");
Daniel Berlin283a6082017-03-01 19:59:26 +0000110DEBUG_COUNTER(VNCounter, "newgvn-vn",
111 "Controls which instructions are value numbered")
Daniel Berlin1316a942017-04-06 18:52:50 +0000112
113// Currently store defining access refinement is too slow due to basicaa being
114// egregiously slow. This flag lets us keep it working while we work on this
115// issue.
116static cl::opt<bool> EnableStoreRefinement("enable-store-refinement",
117 cl::init(false), cl::Hidden);
118
Davide Italiano7e274e02016-12-22 16:03:48 +0000119//===----------------------------------------------------------------------===//
120// GVN Pass
121//===----------------------------------------------------------------------===//
122
123// Anchor methods.
124namespace llvm {
125namespace GVNExpression {
Daniel Berlin85f91b02016-12-26 20:06:58 +0000126Expression::~Expression() = default;
127BasicExpression::~BasicExpression() = default;
128CallExpression::~CallExpression() = default;
129LoadExpression::~LoadExpression() = default;
130StoreExpression::~StoreExpression() = default;
131AggregateValueExpression::~AggregateValueExpression() = default;
132PHIExpression::~PHIExpression() = default;
Davide Italiano7e274e02016-12-22 16:03:48 +0000133}
134}
135
Daniel Berlin2f72b192017-04-14 02:53:37 +0000136// Tarjan's SCC finding algorithm with Nuutila's improvements
137// SCCIterator is actually fairly complex for the simple thing we want.
138// It also wants to hand us SCC's that are unrelated to the phi node we ask
139// about, and have us process them there or risk redoing work.
140// Graph traits over a filter iterator also doesn't work that well here.
Daniel Berlin9d0042b2017-04-18 20:15:47 +0000141// This SCC finder is specialized to walk use-def chains, and only follows
142// instructions,
Daniel Berlin2f72b192017-04-14 02:53:37 +0000143// not generic values (arguments, etc).
144struct TarjanSCC {
145
146 TarjanSCC() : Components(1) {}
147
148 void Start(const Instruction *Start) {
149 if (Root.lookup(Start) == 0)
150 FindSCC(Start);
151 }
152
153 const SmallPtrSetImpl<const Value *> &getComponentFor(const Value *V) const {
154 unsigned ComponentID = ValueToComponent.lookup(V);
155
156 assert(ComponentID > 0 &&
157 "Asking for a component for a value we never processed");
158 return Components[ComponentID];
159 }
160
161private:
162 void FindSCC(const Instruction *I) {
163 Root[I] = ++DFSNum;
164 // Store the DFS Number we had before it possibly gets incremented.
165 unsigned int OurDFS = DFSNum;
166 for (auto &Op : I->operands()) {
167 if (auto *InstOp = dyn_cast<Instruction>(Op)) {
168 if (Root.lookup(Op) == 0)
169 FindSCC(InstOp);
170 if (!InComponent.count(Op))
171 Root[I] = std::min(Root.lookup(I), Root.lookup(Op));
172 }
173 }
Daniel Berlin9d0042b2017-04-18 20:15:47 +0000174 // See if we really were the root of a component, by seeing if we still have
175 // our DFSNumber.
176 // If we do, we are the root of the component, and we have completed a
177 // component. If we do not,
Daniel Berlin2f72b192017-04-14 02:53:37 +0000178 // we are not the root of a component, and belong on the component stack.
179 if (Root.lookup(I) == OurDFS) {
180 unsigned ComponentID = Components.size();
181 Components.resize(Components.size() + 1);
182 auto &Component = Components.back();
183 Component.insert(I);
184 DEBUG(dbgs() << "Component root is " << *I << "\n");
185 InComponent.insert(I);
186 ValueToComponent[I] = ComponentID;
187 // Pop a component off the stack and label it.
188 while (!Stack.empty() && Root.lookup(Stack.back()) >= OurDFS) {
189 auto *Member = Stack.back();
190 DEBUG(dbgs() << "Component member is " << *Member << "\n");
191 Component.insert(Member);
192 InComponent.insert(Member);
193 ValueToComponent[Member] = ComponentID;
194 Stack.pop_back();
195 }
196 } else {
197 // Part of a component, push to stack
198 Stack.push_back(I);
199 }
200 }
201 unsigned int DFSNum = 1;
202 SmallPtrSet<const Value *, 8> InComponent;
203 DenseMap<const Value *, unsigned int> Root;
204 SmallVector<const Value *, 8> Stack;
205 // Store the components as vector of ptr sets, because we need the topo order
206 // of SCC's, but not individual member order
207 SmallVector<SmallPtrSet<const Value *, 8>, 8> Components;
208 DenseMap<const Value *, unsigned> ValueToComponent;
209};
Davide Italiano7e274e02016-12-22 16:03:48 +0000210// Congruence classes represent the set of expressions/instructions
211// that are all the same *during some scope in the function*.
212// That is, because of the way we perform equality propagation, and
213// because of memory value numbering, it is not correct to assume
214// you can willy-nilly replace any member with any other at any
215// point in the function.
216//
217// For any Value in the Member set, it is valid to replace any dominated member
218// with that Value.
219//
Daniel Berlin1316a942017-04-06 18:52:50 +0000220// Every congruence class has a leader, and the leader is used to symbolize
221// instructions in a canonical way (IE every operand of an instruction that is a
222// member of the same congruence class will always be replaced with leader
223// during symbolization). To simplify symbolization, we keep the leader as a
224// constant if class can be proved to be a constant value. Otherwise, the
225// leader is the member of the value set with the smallest DFS number. Each
226// congruence class also has a defining expression, though the expression may be
227// null. If it exists, it can be used for forward propagation and reassociation
228// of values.
229
230// For memory, we also track a representative MemoryAccess, and a set of memory
231// members for MemoryPhis (which have no real instructions). Note that for
232// memory, it seems tempting to try to split the memory members into a
233// MemoryCongruenceClass or something. Unfortunately, this does not work
234// easily. The value numbering of a given memory expression depends on the
235// leader of the memory congruence class, and the leader of memory congruence
236// class depends on the value numbering of a given memory expression. This
237// leads to wasted propagation, and in some cases, missed optimization. For
238// example: If we had value numbered two stores together before, but now do not,
239// we move them to a new value congruence class. This in turn will move at one
240// of the memorydefs to a new memory congruence class. Which in turn, affects
241// the value numbering of the stores we just value numbered (because the memory
242// congruence class is part of the value number). So while theoretically
243// possible to split them up, it turns out to be *incredibly* complicated to get
244// it to work right, because of the interdependency. While structurally
245// slightly messier, it is algorithmically much simpler and faster to do what we
Daniel Berlina8236562017-04-07 18:38:09 +0000246// do here, and track them both at once in the same class.
247// Note: The default iterators for this class iterate over values
248class CongruenceClass {
249public:
250 using MemberType = Value;
251 using MemberSet = SmallPtrSet<MemberType *, 4>;
252 using MemoryMemberType = MemoryPhi;
253 using MemoryMemberSet = SmallPtrSet<const MemoryMemberType *, 2>;
254
255 explicit CongruenceClass(unsigned ID) : ID(ID) {}
256 CongruenceClass(unsigned ID, Value *Leader, const Expression *E)
257 : ID(ID), RepLeader(Leader), DefiningExpr(E) {}
258 unsigned getID() const { return ID; }
259 // True if this class has no members left. This is mainly used for assertion
260 // purposes, and for skipping empty classes.
261 bool isDead() const {
262 // If it's both dead from a value perspective, and dead from a memory
263 // perspective, it's really dead.
264 return empty() && memory_empty();
265 }
266 // Leader functions
267 Value *getLeader() const { return RepLeader; }
268 void setLeader(Value *Leader) { RepLeader = Leader; }
269 const std::pair<Value *, unsigned int> &getNextLeader() const {
270 return NextLeader;
271 }
272 void resetNextLeader() { NextLeader = {nullptr, ~0}; }
273
274 void addPossibleNextLeader(std::pair<Value *, unsigned int> LeaderPair) {
275 if (LeaderPair.second < NextLeader.second)
276 NextLeader = LeaderPair;
277 }
278
279 Value *getStoredValue() const { return RepStoredValue; }
280 void setStoredValue(Value *Leader) { RepStoredValue = Leader; }
281 const MemoryAccess *getMemoryLeader() const { return RepMemoryAccess; }
282 void setMemoryLeader(const MemoryAccess *Leader) { RepMemoryAccess = Leader; }
283
284 // Forward propagation info
285 const Expression *getDefiningExpr() const { return DefiningExpr; }
286 void setDefiningExpr(const Expression *E) { DefiningExpr = E; }
287
288 // Value member set
289 bool empty() const { return Members.empty(); }
290 unsigned size() const { return Members.size(); }
291 MemberSet::const_iterator begin() const { return Members.begin(); }
292 MemberSet::const_iterator end() const { return Members.end(); }
293 void insert(MemberType *M) { Members.insert(M); }
294 void erase(MemberType *M) { Members.erase(M); }
295 void swap(MemberSet &Other) { Members.swap(Other); }
296
297 // Memory member set
298 bool memory_empty() const { return MemoryMembers.empty(); }
299 unsigned memory_size() const { return MemoryMembers.size(); }
300 MemoryMemberSet::const_iterator memory_begin() const {
301 return MemoryMembers.begin();
302 }
303 MemoryMemberSet::const_iterator memory_end() const {
304 return MemoryMembers.end();
305 }
306 iterator_range<MemoryMemberSet::const_iterator> memory() const {
307 return make_range(memory_begin(), memory_end());
308 }
309 void memory_insert(const MemoryMemberType *M) { MemoryMembers.insert(M); }
310 void memory_erase(const MemoryMemberType *M) { MemoryMembers.erase(M); }
311
312 // Store count
313 unsigned getStoreCount() const { return StoreCount; }
314 void incStoreCount() { ++StoreCount; }
315 void decStoreCount() {
316 assert(StoreCount != 0 && "Store count went negative");
317 --StoreCount;
318 }
319
Davide Italianodc435322017-05-10 19:57:43 +0000320 // True if this class has no memory members.
321 bool definesNoMemory() const { return StoreCount == 0 && memory_empty(); }
322
Daniel Berlina8236562017-04-07 18:38:09 +0000323 // Return true if two congruence classes are equivalent to each other. This
324 // means
325 // that every field but the ID number and the dead field are equivalent.
326 bool isEquivalentTo(const CongruenceClass *Other) const {
327 if (!Other)
328 return false;
329 if (this == Other)
330 return true;
331
332 if (std::tie(StoreCount, RepLeader, RepStoredValue, RepMemoryAccess) !=
333 std::tie(Other->StoreCount, Other->RepLeader, Other->RepStoredValue,
334 Other->RepMemoryAccess))
335 return false;
336 if (DefiningExpr != Other->DefiningExpr)
337 if (!DefiningExpr || !Other->DefiningExpr ||
338 *DefiningExpr != *Other->DefiningExpr)
339 return false;
340 // We need some ordered set
341 std::set<Value *> AMembers(Members.begin(), Members.end());
342 std::set<Value *> BMembers(Members.begin(), Members.end());
343 return AMembers == BMembers;
344 }
345
346private:
Davide Italiano7e274e02016-12-22 16:03:48 +0000347 unsigned ID;
348 // Representative leader.
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000349 Value *RepLeader = nullptr;
Daniel Berlina8236562017-04-07 18:38:09 +0000350 // The most dominating leader after our current leader, because the member set
351 // is not sorted and is expensive to keep sorted all the time.
352 std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U};
Daniel Berlin1316a942017-04-06 18:52:50 +0000353 // If this is represented by a store, the value of the store.
Daniel Berlin26addef2017-01-20 21:04:30 +0000354 Value *RepStoredValue = nullptr;
Daniel Berlin1316a942017-04-06 18:52:50 +0000355 // If this class contains MemoryDefs or MemoryPhis, this is the leading memory
356 // access.
357 const MemoryAccess *RepMemoryAccess = nullptr;
Davide Italiano7e274e02016-12-22 16:03:48 +0000358 // Defining Expression.
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000359 const Expression *DefiningExpr = nullptr;
Davide Italiano7e274e02016-12-22 16:03:48 +0000360 // Actual members of this class.
361 MemberSet Members;
Daniel Berlin1316a942017-04-06 18:52:50 +0000362 // This is the set of MemoryPhis that exist in the class. MemoryDefs and
363 // MemoryUses have real instructions representing them, so we only need to
364 // track MemoryPhis here.
365 MemoryMemberSet MemoryMembers;
Daniel Berlinf6eba4b2017-01-11 20:22:36 +0000366 // Number of stores in this congruence class.
367 // This is used so we can detect store equivalence changes properly.
Davide Italianoeac05f62017-01-11 23:41:24 +0000368 int StoreCount = 0;
Davide Italiano7e274e02016-12-22 16:03:48 +0000369};
370
371namespace llvm {
Daniel Berlin85f91b02016-12-26 20:06:58 +0000372template <> struct DenseMapInfo<const Expression *> {
373 static const Expression *getEmptyKey() {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000374 auto Val = static_cast<uintptr_t>(-1);
Daniel Berlin85f91b02016-12-26 20:06:58 +0000375 Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
376 return reinterpret_cast<const Expression *>(Val);
377 }
378 static const Expression *getTombstoneKey() {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000379 auto Val = static_cast<uintptr_t>(~1U);
Daniel Berlin85f91b02016-12-26 20:06:58 +0000380 Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
381 return reinterpret_cast<const Expression *>(Val);
382 }
383 static unsigned getHashValue(const Expression *V) {
384 return static_cast<unsigned>(V->getHashValue());
385 }
386 static bool isEqual(const Expression *LHS, const Expression *RHS) {
387 if (LHS == RHS)
388 return true;
389 if (LHS == getTombstoneKey() || RHS == getTombstoneKey() ||
390 LHS == getEmptyKey() || RHS == getEmptyKey())
391 return false;
392 return *LHS == *RHS;
393 }
394};
Davide Italiano7e274e02016-12-22 16:03:48 +0000395} // end namespace llvm
396
Benjamin Kramerefcf06f2017-02-11 11:06:55 +0000397namespace {
Daniel Berlin64e68992017-03-12 04:46:45 +0000398class NewGVN {
399 Function &F;
Davide Italiano7e274e02016-12-22 16:03:48 +0000400 DominatorTree *DT;
Daniel Berlin64e68992017-03-12 04:46:45 +0000401 const TargetLibraryInfo *TLI;
Davide Italiano7e274e02016-12-22 16:03:48 +0000402 AliasAnalysis *AA;
403 MemorySSA *MSSA;
404 MemorySSAWalker *MSSAWalker;
Daniel Berlin64e68992017-03-12 04:46:45 +0000405 const DataLayout &DL;
Daniel Berlinf7d95802017-02-18 23:06:50 +0000406 std::unique_ptr<PredicateInfo> PredInfo;
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000407
408 // These are the only two things the create* functions should have
409 // side-effects on due to allocating memory.
410 mutable BumpPtrAllocator ExpressionAllocator;
411 mutable ArrayRecycler<Value *> ArgRecycler;
412 mutable TarjanSCC SCCFinder;
Daniel Berlinede130d2017-04-26 20:56:14 +0000413 const SimplifyQuery SQ;
Davide Italiano7e274e02016-12-22 16:03:48 +0000414
Daniel Berlin1c087672017-02-11 15:07:01 +0000415 // Number of function arguments, used by ranking
416 unsigned int NumFuncArgs;
417
Daniel Berlin2f72b192017-04-14 02:53:37 +0000418 // RPOOrdering of basic blocks
419 DenseMap<const DomTreeNode *, unsigned> RPOOrdering;
420
Davide Italiano7e274e02016-12-22 16:03:48 +0000421 // Congruence class info.
Daniel Berlinb79f5362017-02-11 12:48:50 +0000422
423 // This class is called INITIAL in the paper. It is the class everything
424 // startsout in, and represents any value. Being an optimistic analysis,
Daniel Berlin5c338ff2017-03-10 19:05:04 +0000425 // anything in the TOP class has the value TOP, which is indeterminate and
Daniel Berlinb79f5362017-02-11 12:48:50 +0000426 // equivalent to everything.
Daniel Berlin5c338ff2017-03-10 19:05:04 +0000427 CongruenceClass *TOPClass;
Davide Italiano7e274e02016-12-22 16:03:48 +0000428 std::vector<CongruenceClass *> CongruenceClasses;
429 unsigned NextCongruenceNum;
430
431 // Value Mappings.
432 DenseMap<Value *, CongruenceClass *> ValueToClass;
433 DenseMap<Value *, const Expression *> ValueToExpression;
434
Daniel Berlinf7d95802017-02-18 23:06:50 +0000435 // Mapping from predicate info we used to the instructions we used it with.
436 // In order to correctly ensure propagation, we must keep track of what
437 // comparisons we used, so that when the values of the comparisons change, we
438 // propagate the information to the places we used the comparison.
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000439 mutable DenseMap<const Value *, SmallPtrSet<Instruction *, 2>>
440 PredicateToUsers;
Daniel Berlin1316a942017-04-06 18:52:50 +0000441 // the same reasoning as PredicateToUsers. When we skip MemoryAccesses for
442 // stores, we no longer can rely solely on the def-use chains of MemorySSA.
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000443 mutable DenseMap<const MemoryAccess *, SmallPtrSet<MemoryAccess *, 2>>
444 MemoryToUsers;
Daniel Berlinf7d95802017-02-18 23:06:50 +0000445
Daniel Berlind7c12ee2016-12-25 22:23:49 +0000446 // A table storing which memorydefs/phis represent a memory state provably
447 // equivalent to another memory state.
448 // We could use the congruence class machinery, but the MemoryAccess's are
449 // abstract memory states, so they can only ever be equivalent to each other,
450 // and not to constants, etc.
Daniel Berlin1ea5f322017-01-26 22:21:48 +0000451 DenseMap<const MemoryAccess *, CongruenceClass *> MemoryAccessToClass;
Daniel Berlind7c12ee2016-12-25 22:23:49 +0000452
Daniel Berlin1316a942017-04-06 18:52:50 +0000453 // We could, if we wanted, build MemoryPhiExpressions and
454 // MemoryVariableExpressions, etc, and value number them the same way we value
455 // number phi expressions. For the moment, this seems like overkill. They
456 // can only exist in one of three states: they can be TOP (equal to
457 // everything), Equivalent to something else, or unique. Because we do not
458 // create expressions for them, we need to simulate leader change not just
459 // when they change class, but when they change state. Note: We can do the
460 // same thing for phis, and avoid having phi expressions if we wanted, We
461 // should eventually unify in one direction or the other, so this is a little
462 // bit of an experiment in which turns out easier to maintain.
463 enum MemoryPhiState { MPS_Invalid, MPS_TOP, MPS_Equivalent, MPS_Unique };
464 DenseMap<const MemoryPhi *, MemoryPhiState> MemoryPhiState;
465
Daniel Berlin2f72b192017-04-14 02:53:37 +0000466 enum PhiCycleState { PCS_Unknown, PCS_CycleFree, PCS_Cycle };
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000467 mutable DenseMap<const PHINode *, PhiCycleState> PhiCycleState;
Davide Italiano7e274e02016-12-22 16:03:48 +0000468 // Expression to class mapping.
Piotr Padlewskie4047b82016-12-28 19:29:26 +0000469 using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>;
Davide Italiano7e274e02016-12-22 16:03:48 +0000470 ExpressionClassMap ExpressionToClass;
471
472 // Which values have changed as a result of leader changes.
Daniel Berlin3a1bd022017-01-11 20:22:05 +0000473 SmallPtrSet<Value *, 8> LeaderChanges;
Davide Italiano7e274e02016-12-22 16:03:48 +0000474
475 // Reachability info.
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000476 using BlockEdge = BasicBlockEdge;
Davide Italiano7e274e02016-12-22 16:03:48 +0000477 DenseSet<BlockEdge> ReachableEdges;
478 SmallPtrSet<const BasicBlock *, 8> ReachableBlocks;
479
480 // This is a bitvector because, on larger functions, we may have
481 // thousands of touched instructions at once (entire blocks,
482 // instructions with hundreds of uses, etc). Even with optimization
483 // for when we mark whole blocks as touched, when this was a
484 // SmallPtrSet or DenseSet, for some functions, we spent >20% of all
485 // the time in GVN just managing this list. The bitvector, on the
486 // other hand, efficiently supports test/set/clear of both
487 // individual and ranges, as well as "find next element" This
488 // enables us to use it as a worklist with essentially 0 cost.
489 BitVector TouchedInstructions;
490
491 DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange;
Davide Italiano7e274e02016-12-22 16:03:48 +0000492
493#ifndef NDEBUG
494 // Debugging for how many times each block and instruction got processed.
495 DenseMap<const Value *, unsigned> ProcessedCount;
496#endif
497
498 // DFS info.
Davide Italiano71f2d9c2017-01-20 23:29:28 +0000499 // This contains a mapping from Instructions to DFS numbers.
500 // The numbering starts at 1. An instruction with DFS number zero
501 // means that the instruction is dead.
Davide Italiano7e274e02016-12-22 16:03:48 +0000502 DenseMap<const Value *, unsigned> InstrDFS;
Davide Italiano71f2d9c2017-01-20 23:29:28 +0000503
504 // This contains the mapping DFS numbers to instructions.
Daniel Berlin1f31fe522016-12-27 09:20:36 +0000505 SmallVector<Value *, 32> DFSToInstr;
Davide Italiano7e274e02016-12-22 16:03:48 +0000506
507 // Deletion info.
508 SmallPtrSet<Instruction *, 8> InstructionsToErase;
509
510public:
Daniel Berlin64e68992017-03-12 04:46:45 +0000511 NewGVN(Function &F, DominatorTree *DT, AssumptionCache *AC,
512 TargetLibraryInfo *TLI, AliasAnalysis *AA, MemorySSA *MSSA,
513 const DataLayout &DL)
Daniel Berlin4d0fe642017-04-28 19:55:38 +0000514 : F(F), DT(DT), TLI(TLI), AA(AA), MSSA(MSSA), DL(DL),
Daniel Berlinede130d2017-04-26 20:56:14 +0000515 PredInfo(make_unique<PredicateInfo>(F, *DT, *AC)), SQ(DL, TLI, DT, AC) {
516 }
Daniel Berlin64e68992017-03-12 04:46:45 +0000517 bool runGVN();
Davide Italiano7e274e02016-12-22 16:03:48 +0000518
519private:
Davide Italiano7e274e02016-12-22 16:03:48 +0000520 // Expression handling.
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000521 const Expression *createExpression(Instruction *) const;
522 const Expression *createBinaryExpression(unsigned, Type *, Value *,
523 Value *) const;
524 PHIExpression *createPHIExpression(Instruction *, bool &HasBackEdge,
525 bool &AllConstant) const;
526 const VariableExpression *createVariableExpression(Value *) const;
527 const ConstantExpression *createConstantExpression(Constant *) const;
528 const Expression *createVariableOrConstant(Value *V) const;
529 const UnknownExpression *createUnknownExpression(Instruction *) const;
Daniel Berlin1316a942017-04-06 18:52:50 +0000530 const StoreExpression *createStoreExpression(StoreInst *,
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000531 const MemoryAccess *) const;
Davide Italiano7e274e02016-12-22 16:03:48 +0000532 LoadExpression *createLoadExpression(Type *, Value *, LoadInst *,
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000533 const MemoryAccess *) const;
534 const CallExpression *createCallExpression(CallInst *,
535 const MemoryAccess *) const;
536 const AggregateValueExpression *
537 createAggregateValueExpression(Instruction *) const;
538 bool setBasicExpressionInfo(Instruction *, BasicExpression *) const;
Davide Italiano7e274e02016-12-22 16:03:48 +0000539
540 // Congruence class handling.
541 CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000542 auto *result = new CongruenceClass(NextCongruenceNum++, Leader, E);
Piotr Padlewski6c37d292016-12-28 23:24:02 +0000543 CongruenceClasses.emplace_back(result);
Davide Italiano7e274e02016-12-22 16:03:48 +0000544 return result;
545 }
546
Daniel Berlin1316a942017-04-06 18:52:50 +0000547 CongruenceClass *createMemoryClass(MemoryAccess *MA) {
548 auto *CC = createCongruenceClass(nullptr, nullptr);
Daniel Berlina8236562017-04-07 18:38:09 +0000549 CC->setMemoryLeader(MA);
Daniel Berlin1316a942017-04-06 18:52:50 +0000550 return CC;
551 }
552 CongruenceClass *ensureLeaderOfMemoryClass(MemoryAccess *MA) {
553 auto *CC = getMemoryClass(MA);
Daniel Berlina8236562017-04-07 18:38:09 +0000554 if (CC->getMemoryLeader() != MA)
Daniel Berlin1316a942017-04-06 18:52:50 +0000555 CC = createMemoryClass(MA);
556 return CC;
557 }
558
Davide Italiano7e274e02016-12-22 16:03:48 +0000559 CongruenceClass *createSingletonCongruenceClass(Value *Member) {
Davide Italiano0e714802016-12-28 14:00:11 +0000560 CongruenceClass *CClass = createCongruenceClass(Member, nullptr);
Daniel Berlina8236562017-04-07 18:38:09 +0000561 CClass->insert(Member);
Davide Italiano7e274e02016-12-22 16:03:48 +0000562 ValueToClass[Member] = CClass;
563 return CClass;
564 }
565 void initializeCongruenceClasses(Function &F);
566
Daniel Berlind7c12ee2016-12-25 22:23:49 +0000567 // Value number an Instruction or MemoryPhi.
568 void valueNumberMemoryPhi(MemoryPhi *);
569 void valueNumberInstruction(Instruction *);
570
Davide Italiano7e274e02016-12-22 16:03:48 +0000571 // Symbolic evaluation.
572 const Expression *checkSimplificationResults(Expression *, Instruction *,
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000573 Value *) const;
574 const Expression *performSymbolicEvaluation(Value *) const;
Daniel Berlin07daac82017-04-02 13:23:44 +0000575 const Expression *performSymbolicLoadCoercion(Type *, Value *, LoadInst *,
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000576 Instruction *,
577 MemoryAccess *) const;
578 const Expression *performSymbolicLoadEvaluation(Instruction *) const;
579 const Expression *performSymbolicStoreEvaluation(Instruction *) const;
580 const Expression *performSymbolicCallEvaluation(Instruction *) const;
581 const Expression *performSymbolicPHIEvaluation(Instruction *) const;
582 const Expression *performSymbolicAggrValueEvaluation(Instruction *) const;
583 const Expression *performSymbolicCmpEvaluation(Instruction *) const;
584 const Expression *performSymbolicPredicateInfoEvaluation(Instruction *) const;
Davide Italiano7e274e02016-12-22 16:03:48 +0000585
586 // Congruence finding.
Daniel Berlin9d0796e2017-03-24 05:30:34 +0000587 bool someEquivalentDominates(const Instruction *, const Instruction *) const;
Daniel Berlin203f47b2017-01-31 22:31:53 +0000588 Value *lookupOperandLeader(Value *) const;
Daniel Berlinc0431fd2017-01-13 22:40:01 +0000589 void performCongruenceFinding(Instruction *, const Expression *);
Daniel Berlin1316a942017-04-06 18:52:50 +0000590 void moveValueToNewCongruenceClass(Instruction *, const Expression *,
591 CongruenceClass *, CongruenceClass *);
592 void moveMemoryToNewCongruenceClass(Instruction *, MemoryAccess *,
593 CongruenceClass *, CongruenceClass *);
594 Value *getNextValueLeader(CongruenceClass *) const;
595 const MemoryAccess *getNextMemoryLeader(CongruenceClass *) const;
596 bool setMemoryClass(const MemoryAccess *From, CongruenceClass *To);
597 CongruenceClass *getMemoryClass(const MemoryAccess *MA) const;
598 const MemoryAccess *lookupMemoryLeader(const MemoryAccess *) const;
Daniel Berlinc4796862017-01-27 02:37:11 +0000599 bool isMemoryAccessTop(const MemoryAccess *) const;
Daniel Berlin1316a942017-04-06 18:52:50 +0000600
Daniel Berlin1c087672017-02-11 15:07:01 +0000601 // Ranking
602 unsigned int getRank(const Value *) const;
603 bool shouldSwapOperands(const Value *, const Value *) const;
604
Davide Italiano7e274e02016-12-22 16:03:48 +0000605 // Reachability handling.
606 void updateReachableEdge(BasicBlock *, BasicBlock *);
607 void processOutgoingEdges(TerminatorInst *, BasicBlock *);
Daniel Berlin97718e62017-01-31 22:32:03 +0000608 Value *findConditionEquivalence(Value *) const;
Davide Italiano7e274e02016-12-22 16:03:48 +0000609
610 // Elimination.
611 struct ValueDFS;
Daniel Berlina8236562017-04-07 18:38:09 +0000612 void convertClassToDFSOrdered(const CongruenceClass &,
Daniel Berline3e69e12017-03-10 00:32:33 +0000613 SmallVectorImpl<ValueDFS> &,
614 DenseMap<const Value *, unsigned int> &,
Daniel Berlina8236562017-04-07 18:38:09 +0000615 SmallPtrSetImpl<Instruction *> &) const;
616 void convertClassToLoadsAndStores(const CongruenceClass &,
617 SmallVectorImpl<ValueDFS> &) const;
Davide Italiano7e274e02016-12-22 16:03:48 +0000618
619 bool eliminateInstructions(Function &);
620 void replaceInstruction(Instruction *, Value *);
621 void markInstructionForDeletion(Instruction *);
622 void deleteInstructionsInBlock(BasicBlock *);
623
624 // New instruction creation.
625 void handleNewInstruction(Instruction *){};
Daniel Berlin32f8d562017-01-07 16:55:14 +0000626
627 // Various instruction touch utilities
Davide Italiano7e274e02016-12-22 16:03:48 +0000628 void markUsersTouched(Value *);
Daniel Berlin1316a942017-04-06 18:52:50 +0000629 void markMemoryUsersTouched(const MemoryAccess *);
630 void markMemoryDefTouched(const MemoryAccess *);
Daniel Berlinf7d95802017-02-18 23:06:50 +0000631 void markPredicateUsersTouched(Instruction *);
Daniel Berlin1316a942017-04-06 18:52:50 +0000632 void markValueLeaderChangeTouched(CongruenceClass *CC);
633 void markMemoryLeaderChangeTouched(CongruenceClass *CC);
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000634 void addPredicateUsers(const PredicateBase *, Instruction *) const;
635 void addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const;
Davide Italiano7e274e02016-12-22 16:03:48 +0000636
Daniel Berlin06329a92017-03-18 15:41:40 +0000637 // Main loop of value numbering
638 void iterateTouchedInstructions();
639
Davide Italiano7e274e02016-12-22 16:03:48 +0000640 // Utilities.
641 void cleanupTables();
642 std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned);
643 void updateProcessedCount(Value *V);
Daniel Berlinf6eba4b2017-01-11 20:22:36 +0000644 void verifyMemoryCongruency() const;
Daniel Berlin06329a92017-03-18 15:41:40 +0000645 void verifyIterationSettled(Function &F);
Daniel Berlinf6eba4b2017-01-11 20:22:36 +0000646 bool singleReachablePHIPath(const MemoryAccess *, const MemoryAccess *) const;
Daniel Berlin06329a92017-03-18 15:41:40 +0000647 BasicBlock *getBlockForValue(Value *V) const;
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000648 void deleteExpression(const Expression *E) const;
Daniel Berlin21279bd2017-04-06 18:52:58 +0000649 unsigned InstrToDFSNum(const Value *V) const {
Daniel Berlin1316a942017-04-06 18:52:50 +0000650 assert(isa<Instruction>(V) && "This should not be used for MemoryAccesses");
651 return InstrDFS.lookup(V);
652 }
653
Daniel Berlin21279bd2017-04-06 18:52:58 +0000654 unsigned InstrToDFSNum(const MemoryAccess *MA) const {
655 return MemoryToDFSNum(MA);
656 }
657 Value *InstrFromDFSNum(unsigned DFSNum) { return DFSToInstr[DFSNum]; }
658 // Given a MemoryAccess, return the relevant instruction DFS number. Note:
659 // This deliberately takes a value so it can be used with Use's, which will
660 // auto-convert to Value's but not to MemoryAccess's.
661 unsigned MemoryToDFSNum(const Value *MA) const {
662 assert(isa<MemoryAccess>(MA) &&
663 "This should not be used with instructions");
664 return isa<MemoryUseOrDef>(MA)
665 ? InstrToDFSNum(cast<MemoryUseOrDef>(MA)->getMemoryInst())
666 : InstrDFS.lookup(MA);
Daniel Berlin1316a942017-04-06 18:52:50 +0000667 }
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000668 bool isCycleFree(const PHINode *PN) const ;
Daniel Berlin1316a942017-04-06 18:52:50 +0000669 template <class T, class Range> T *getMinDFSOfRange(const Range &) const;
Daniel Berlin06329a92017-03-18 15:41:40 +0000670 // Debug counter info. When verifying, we have to reset the value numbering
671 // debug counter to the same state it started in to get the same results.
672 std::pair<int, int> StartingVNCounter;
Davide Italiano7e274e02016-12-22 16:03:48 +0000673};
Benjamin Kramerefcf06f2017-02-11 11:06:55 +0000674} // end anonymous namespace
Davide Italiano7e274e02016-12-22 16:03:48 +0000675
Davide Italianob1114092016-12-28 13:37:17 +0000676template <typename T>
677static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) {
Daniel Berlin9b498492017-04-01 09:44:29 +0000678 if (!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS))
Davide Italiano7e274e02016-12-22 16:03:48 +0000679 return false;
Daniel Berlin9b498492017-04-01 09:44:29 +0000680 return LHS.MemoryExpression::equals(RHS);
Davide Italiano7e274e02016-12-22 16:03:48 +0000681}
682
Davide Italianob1114092016-12-28 13:37:17 +0000683bool LoadExpression::equals(const Expression &Other) const {
684 return equalsLoadStoreHelper(*this, Other);
685}
Davide Italiano7e274e02016-12-22 16:03:48 +0000686
Davide Italianob1114092016-12-28 13:37:17 +0000687bool StoreExpression::equals(const Expression &Other) const {
Daniel Berlin9b498492017-04-01 09:44:29 +0000688 if (!equalsLoadStoreHelper(*this, Other))
689 return false;
Daniel Berlin26addef2017-01-20 21:04:30 +0000690 // Make sure that store vs store includes the value operand.
Daniel Berlin9b498492017-04-01 09:44:29 +0000691 if (const auto *S = dyn_cast<StoreExpression>(&Other))
692 if (getStoredValue() != S->getStoredValue())
693 return false;
694 return true;
Davide Italiano7e274e02016-12-22 16:03:48 +0000695}
696
697#ifndef NDEBUG
698static std::string getBlockName(const BasicBlock *B) {
Davide Italiano0e714802016-12-28 14:00:11 +0000699 return DOTGraphTraits<const Function *>::getSimpleNodeLabel(B, nullptr);
Davide Italiano7e274e02016-12-22 16:03:48 +0000700}
701#endif
702
Daniel Berlin06329a92017-03-18 15:41:40 +0000703// Get the basic block from an instruction/memory value.
704BasicBlock *NewGVN::getBlockForValue(Value *V) const {
705 if (auto *I = dyn_cast<Instruction>(V))
706 return I->getParent();
707 else if (auto *MP = dyn_cast<MemoryPhi>(V))
708 return MP->getBlock();
709 llvm_unreachable("Should have been able to figure out a block for our value");
710 return nullptr;
711}
712
Daniel Berlin0e900112017-03-24 06:33:48 +0000713// Delete a definitely dead expression, so it can be reused by the expression
714// allocator. Some of these are not in creation functions, so we have to accept
715// const versions.
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000716void NewGVN::deleteExpression(const Expression *E) const {
Daniel Berlin0e900112017-03-24 06:33:48 +0000717 assert(isa<BasicExpression>(E));
718 auto *BE = cast<BasicExpression>(E);
719 const_cast<BasicExpression *>(BE)->deallocateOperands(ArgRecycler);
720 ExpressionAllocator.Deallocate(E);
721}
722
Daniel Berlin2f72b192017-04-14 02:53:37 +0000723PHIExpression *NewGVN::createPHIExpression(Instruction *I, bool &HasBackedge,
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000724 bool &AllConstant) const {
Daniel Berlind92e7f92017-01-07 00:01:42 +0000725 BasicBlock *PHIBlock = I->getParent();
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000726 auto *PN = cast<PHINode>(I);
Daniel Berlind92e7f92017-01-07 00:01:42 +0000727 auto *E =
728 new (ExpressionAllocator) PHIExpression(PN->getNumOperands(), PHIBlock);
Davide Italiano7e274e02016-12-22 16:03:48 +0000729
730 E->allocateOperands(ArgRecycler, ExpressionAllocator);
731 E->setType(I->getType());
732 E->setOpcode(I->getOpcode());
Daniel Berlin85cbc8c2016-12-26 19:57:25 +0000733
Daniel Berlin2f72b192017-04-14 02:53:37 +0000734 unsigned PHIRPO = RPOOrdering.lookup(DT->getNode(PHIBlock));
735
Davide Italianod6bb8ca2017-05-09 16:58:28 +0000736 // NewGVN assumes the operands of a PHI node are in a consistent order across
737 // PHIs. LLVM doesn't seem to always guarantee this. While we need to fix
738 // this in LLVM at some point we don't want GVN to find wrong congruences.
739 // Therefore, here we sort uses in predecessor order.
Davide Italiano63998ec2017-05-09 18:29:37 +0000740 // We're sorting the values by pointer. In theory this might be cause of
741 // non-determinism, but here we don't rely on the ordering for anything
742 // significant, e.g. we don't create new instructions based on it so we're
743 // fine.
Davide Italianod6bb8ca2017-05-09 16:58:28 +0000744 SmallVector<const Use *, 4> PHIOperands;
745 for (const Use &U : PN->operands())
746 PHIOperands.push_back(&U);
747 std::sort(PHIOperands.begin(), PHIOperands.end(),
748 [&](const Use *U1, const Use *U2) {
749 return PN->getIncomingBlock(*U1) < PN->getIncomingBlock(*U2);
750 });
751
Davide Italianob3886dd2017-01-25 23:37:49 +0000752 // Filter out unreachable phi operands.
Davide Italianod6bb8ca2017-05-09 16:58:28 +0000753 auto Filtered = make_filter_range(PHIOperands, [&](const Use *U) {
754 return ReachableEdges.count({PN->getIncomingBlock(*U), PHIBlock});
Davide Italianob3886dd2017-01-25 23:37:49 +0000755 });
Daniel Berlin85cbc8c2016-12-26 19:57:25 +0000756
757 std::transform(Filtered.begin(), Filtered.end(), op_inserter(E),
Davide Italianod6bb8ca2017-05-09 16:58:28 +0000758 [&](const Use *U) -> Value * {
759 auto *BB = PN->getIncomingBlock(*U);
Daniel Berlin2f72b192017-04-14 02:53:37 +0000760 auto *DTN = DT->getNode(BB);
761 if (RPOOrdering.lookup(DTN) >= PHIRPO)
762 HasBackedge = true;
Davide Italianod6bb8ca2017-05-09 16:58:28 +0000763 AllConstant &= isa<UndefValue>(*U) || isa<Constant>(*U);
Daniel Berlin2f72b192017-04-14 02:53:37 +0000764
Daniel Berlind92e7f92017-01-07 00:01:42 +0000765 // Don't try to transform self-defined phis.
Davide Italianod6bb8ca2017-05-09 16:58:28 +0000766 if (*U == PN)
Daniel Berlin85cbc8c2016-12-26 19:57:25 +0000767 return PN;
Davide Italianod6bb8ca2017-05-09 16:58:28 +0000768 return lookupOperandLeader(*U);
Daniel Berlin85cbc8c2016-12-26 19:57:25 +0000769 });
Davide Italiano7e274e02016-12-22 16:03:48 +0000770 return E;
771}
772
773// Set basic expression info (Arguments, type, opcode) for Expression
774// E from Instruction I in block B.
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000775bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E) const {
Davide Italiano7e274e02016-12-22 16:03:48 +0000776 bool AllConstant = true;
777 if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
778 E->setType(GEP->getSourceElementType());
779 else
780 E->setType(I->getType());
781 E->setOpcode(I->getOpcode());
782 E->allocateOperands(ArgRecycler, ExpressionAllocator);
783
Daniel Berlin85cbc8c2016-12-26 19:57:25 +0000784 // Transform the operand array into an operand leader array, and keep track of
785 // whether all members are constant.
786 std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) {
Daniel Berlin203f47b2017-01-31 22:31:53 +0000787 auto Operand = lookupOperandLeader(O);
Daniel Berlin85cbc8c2016-12-26 19:57:25 +0000788 AllConstant &= isa<Constant>(Operand);
789 return Operand;
790 });
791
Davide Italiano7e274e02016-12-22 16:03:48 +0000792 return AllConstant;
793}
794
795const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T,
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000796 Value *Arg1,
797 Value *Arg2) const {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000798 auto *E = new (ExpressionAllocator) BasicExpression(2);
Davide Italiano7e274e02016-12-22 16:03:48 +0000799
800 E->setType(T);
801 E->setOpcode(Opcode);
802 E->allocateOperands(ArgRecycler, ExpressionAllocator);
803 if (Instruction::isCommutative(Opcode)) {
804 // Ensure that commutative instructions that only differ by a permutation
805 // of their operands get the same value number by sorting the operand value
806 // numbers. Since all commutative instructions have two operands it is more
807 // efficient to sort by hand rather than using, say, std::sort.
Daniel Berlin1c087672017-02-11 15:07:01 +0000808 if (shouldSwapOperands(Arg1, Arg2))
Davide Italiano7e274e02016-12-22 16:03:48 +0000809 std::swap(Arg1, Arg2);
810 }
Daniel Berlin203f47b2017-01-31 22:31:53 +0000811 E->op_push_back(lookupOperandLeader(Arg1));
812 E->op_push_back(lookupOperandLeader(Arg2));
Davide Italiano7e274e02016-12-22 16:03:48 +0000813
Daniel Berlinede130d2017-04-26 20:56:14 +0000814 Value *V = SimplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), SQ);
Davide Italiano7e274e02016-12-22 16:03:48 +0000815 if (const Expression *SimplifiedE = checkSimplificationResults(E, nullptr, V))
816 return SimplifiedE;
817 return E;
818}
819
820// Take a Value returned by simplification of Expression E/Instruction
821// I, and see if it resulted in a simpler expression. If so, return
822// that expression.
823// TODO: Once finished, this should not take an Instruction, we only
824// use it for printing.
825const Expression *NewGVN::checkSimplificationResults(Expression *E,
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000826 Instruction *I,
827 Value *V) const {
Davide Italiano7e274e02016-12-22 16:03:48 +0000828 if (!V)
829 return nullptr;
830 if (auto *C = dyn_cast<Constant>(V)) {
831 if (I)
832 DEBUG(dbgs() << "Simplified " << *I << " to "
833 << " constant " << *C << "\n");
834 NumGVNOpsSimplified++;
835 assert(isa<BasicExpression>(E) &&
836 "We should always have had a basic expression here");
Daniel Berlin0e900112017-03-24 06:33:48 +0000837 deleteExpression(E);
Davide Italiano7e274e02016-12-22 16:03:48 +0000838 return createConstantExpression(C);
839 } else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
840 if (I)
841 DEBUG(dbgs() << "Simplified " << *I << " to "
842 << " variable " << *V << "\n");
Daniel Berlin0e900112017-03-24 06:33:48 +0000843 deleteExpression(E);
Davide Italiano7e274e02016-12-22 16:03:48 +0000844 return createVariableExpression(V);
845 }
846
847 CongruenceClass *CC = ValueToClass.lookup(V);
Daniel Berlina8236562017-04-07 18:38:09 +0000848 if (CC && CC->getDefiningExpr()) {
Davide Italiano7e274e02016-12-22 16:03:48 +0000849 if (I)
850 DEBUG(dbgs() << "Simplified " << *I << " to "
851 << " expression " << *V << "\n");
852 NumGVNOpsSimplified++;
Daniel Berlin0e900112017-03-24 06:33:48 +0000853 deleteExpression(E);
Daniel Berlina8236562017-04-07 18:38:09 +0000854 return CC->getDefiningExpr();
Davide Italiano7e274e02016-12-22 16:03:48 +0000855 }
856 return nullptr;
857}
858
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000859const Expression *NewGVN::createExpression(Instruction *I) const {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000860 auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands());
Davide Italiano7e274e02016-12-22 16:03:48 +0000861
Daniel Berlin97718e62017-01-31 22:32:03 +0000862 bool AllConstant = setBasicExpressionInfo(I, E);
Davide Italiano7e274e02016-12-22 16:03:48 +0000863
864 if (I->isCommutative()) {
865 // Ensure that commutative instructions that only differ by a permutation
866 // of their operands get the same value number by sorting the operand value
867 // numbers. Since all commutative instructions have two operands it is more
868 // efficient to sort by hand rather than using, say, std::sort.
869 assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
Daniel Berlin508a1de2017-02-12 23:24:42 +0000870 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1)))
Davide Italiano7e274e02016-12-22 16:03:48 +0000871 E->swapOperands(0, 1);
872 }
873
874 // Perform simplificaiton
875 // TODO: Right now we only check to see if we get a constant result.
876 // We may get a less than constant, but still better, result for
877 // some operations.
878 // IE
879 // add 0, x -> x
880 // and x, x -> x
881 // We should handle this by simply rewriting the expression.
882 if (auto *CI = dyn_cast<CmpInst>(I)) {
883 // Sort the operand value numbers so x<y and y>x get the same value
884 // number.
885 CmpInst::Predicate Predicate = CI->getPredicate();
Daniel Berlin1c087672017-02-11 15:07:01 +0000886 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) {
Davide Italiano7e274e02016-12-22 16:03:48 +0000887 E->swapOperands(0, 1);
888 Predicate = CmpInst::getSwappedPredicate(Predicate);
889 }
890 E->setOpcode((CI->getOpcode() << 8) | Predicate);
891 // TODO: 25% of our time is spent in SimplifyCmpInst with pointer operands
Davide Italiano7e274e02016-12-22 16:03:48 +0000892 assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() &&
893 "Wrong types on cmp instruction");
Daniel Berlin97718e62017-01-31 22:32:03 +0000894 assert((E->getOperand(0)->getType() == I->getOperand(0)->getType() &&
895 E->getOperand(1)->getType() == I->getOperand(1)->getType()));
Daniel Berlinede130d2017-04-26 20:56:14 +0000896 Value *V =
897 SimplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1), SQ);
Daniel Berlinff12c922017-01-31 22:32:01 +0000898 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
899 return SimplifiedE;
Davide Italiano7e274e02016-12-22 16:03:48 +0000900 } else if (isa<SelectInst>(I)) {
901 if (isa<Constant>(E->getOperand(0)) ||
Daniel Berlin97718e62017-01-31 22:32:03 +0000902 E->getOperand(0) == E->getOperand(1)) {
903 assert(E->getOperand(1)->getType() == I->getOperand(1)->getType() &&
904 E->getOperand(2)->getType() == I->getOperand(2)->getType());
Davide Italiano7e274e02016-12-22 16:03:48 +0000905 Value *V = SimplifySelectInst(E->getOperand(0), E->getOperand(1),
Daniel Berlinede130d2017-04-26 20:56:14 +0000906 E->getOperand(2), SQ);
Davide Italiano7e274e02016-12-22 16:03:48 +0000907 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
908 return SimplifiedE;
909 }
910 } else if (I->isBinaryOp()) {
Daniel Berlinede130d2017-04-26 20:56:14 +0000911 Value *V =
912 SimplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1), SQ);
Davide Italiano7e274e02016-12-22 16:03:48 +0000913 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
914 return SimplifiedE;
915 } else if (auto *BI = dyn_cast<BitCastInst>(I)) {
Daniel Berlin4d0fe642017-04-28 19:55:38 +0000916 Value *V =
917 SimplifyCastInst(BI->getOpcode(), BI->getOperand(0), BI->getType(), SQ);
Davide Italiano7e274e02016-12-22 16:03:48 +0000918 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
919 return SimplifiedE;
920 } else if (isa<GetElementPtrInst>(I)) {
Daniel Berlinede130d2017-04-26 20:56:14 +0000921 Value *V = SimplifyGEPInst(
922 E->getType(), ArrayRef<Value *>(E->op_begin(), E->op_end()), SQ);
Davide Italiano7e274e02016-12-22 16:03:48 +0000923 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
924 return SimplifiedE;
925 } else if (AllConstant) {
926 // We don't bother trying to simplify unless all of the operands
927 // were constant.
928 // TODO: There are a lot of Simplify*'s we could call here, if we
929 // wanted to. The original motivating case for this code was a
930 // zext i1 false to i8, which we don't have an interface to
931 // simplify (IE there is no SimplifyZExt).
932
933 SmallVector<Constant *, 8> C;
934 for (Value *Arg : E->operands())
Piotr Padlewski6c37d292016-12-28 23:24:02 +0000935 C.emplace_back(cast<Constant>(Arg));
Davide Italiano7e274e02016-12-22 16:03:48 +0000936
Daniel Berlin64e68992017-03-12 04:46:45 +0000937 if (Value *V = ConstantFoldInstOperands(I, C, DL, TLI))
Davide Italiano7e274e02016-12-22 16:03:48 +0000938 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
939 return SimplifiedE;
940 }
941 return E;
942}
943
944const AggregateValueExpression *
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000945NewGVN::createAggregateValueExpression(Instruction *I) const {
Davide Italiano7e274e02016-12-22 16:03:48 +0000946 if (auto *II = dyn_cast<InsertValueInst>(I)) {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000947 auto *E = new (ExpressionAllocator)
Davide Italiano7e274e02016-12-22 16:03:48 +0000948 AggregateValueExpression(I->getNumOperands(), II->getNumIndices());
Daniel Berlin97718e62017-01-31 22:32:03 +0000949 setBasicExpressionInfo(I, E);
Davide Italiano7e274e02016-12-22 16:03:48 +0000950 E->allocateIntOperands(ExpressionAllocator);
Daniel Berlin85cbc8c2016-12-26 19:57:25 +0000951 std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E));
Davide Italiano7e274e02016-12-22 16:03:48 +0000952 return E;
Davide Italiano7e274e02016-12-22 16:03:48 +0000953 } else if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000954 auto *E = new (ExpressionAllocator)
Davide Italiano7e274e02016-12-22 16:03:48 +0000955 AggregateValueExpression(I->getNumOperands(), EI->getNumIndices());
Daniel Berlin97718e62017-01-31 22:32:03 +0000956 setBasicExpressionInfo(EI, E);
Davide Italiano7e274e02016-12-22 16:03:48 +0000957 E->allocateIntOperands(ExpressionAllocator);
Daniel Berlin85cbc8c2016-12-26 19:57:25 +0000958 std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E));
Davide Italiano7e274e02016-12-22 16:03:48 +0000959 return E;
960 }
961 llvm_unreachable("Unhandled type of aggregate value operation");
962}
963
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000964const VariableExpression *NewGVN::createVariableExpression(Value *V) const {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000965 auto *E = new (ExpressionAllocator) VariableExpression(V);
Davide Italiano7e274e02016-12-22 16:03:48 +0000966 E->setOpcode(V->getValueID());
967 return E;
968}
969
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000970const Expression *NewGVN::createVariableOrConstant(Value *V) const {
Daniel Berlinf7d95802017-02-18 23:06:50 +0000971 if (auto *C = dyn_cast<Constant>(V))
972 return createConstantExpression(C);
973 return createVariableExpression(V);
974}
975
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000976const ConstantExpression *NewGVN::createConstantExpression(Constant *C) const {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000977 auto *E = new (ExpressionAllocator) ConstantExpression(C);
Davide Italiano7e274e02016-12-22 16:03:48 +0000978 E->setOpcode(C->getValueID());
979 return E;
980}
981
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000982const UnknownExpression *NewGVN::createUnknownExpression(Instruction *I) const {
Daniel Berlin02c6b172017-01-02 18:00:53 +0000983 auto *E = new (ExpressionAllocator) UnknownExpression(I);
984 E->setOpcode(I->getOpcode());
985 return E;
986}
987
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000988const CallExpression *
989NewGVN::createCallExpression(CallInst *CI, const MemoryAccess *MA) const {
Davide Italiano7e274e02016-12-22 16:03:48 +0000990 // FIXME: Add operand bundles for calls.
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000991 auto *E =
Daniel Berlin1316a942017-04-06 18:52:50 +0000992 new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, MA);
Daniel Berlin97718e62017-01-31 22:32:03 +0000993 setBasicExpressionInfo(CI, E);
Davide Italiano7e274e02016-12-22 16:03:48 +0000994 return E;
995}
996
Daniel Berlin9d0796e2017-03-24 05:30:34 +0000997// Return true if some equivalent of instruction Inst dominates instruction U.
998bool NewGVN::someEquivalentDominates(const Instruction *Inst,
999 const Instruction *U) const {
1000 auto *CC = ValueToClass.lookup(Inst);
Daniel Berlinffc30782017-03-24 06:33:51 +00001001 // This must be an instruction because we are only called from phi nodes
1002 // in the case that the value it needs to check against is an instruction.
1003
1004 // The most likely candiates for dominance are the leader and the next leader.
1005 // The leader or nextleader will dominate in all cases where there is an
1006 // equivalent that is higher up in the dom tree.
1007 // We can't *only* check them, however, because the
1008 // dominator tree could have an infinite number of non-dominating siblings
1009 // with instructions that are in the right congruence class.
1010 // A
1011 // B C D E F G
1012 // |
1013 // H
1014 // Instruction U could be in H, with equivalents in every other sibling.
1015 // Depending on the rpo order picked, the leader could be the equivalent in
1016 // any of these siblings.
1017 if (!CC)
1018 return false;
Daniel Berlina8236562017-04-07 18:38:09 +00001019 if (DT->dominates(cast<Instruction>(CC->getLeader()), U))
Daniel Berlinffc30782017-03-24 06:33:51 +00001020 return true;
Daniel Berlina8236562017-04-07 18:38:09 +00001021 if (CC->getNextLeader().first &&
1022 DT->dominates(cast<Instruction>(CC->getNextLeader().first), U))
Daniel Berlinffc30782017-03-24 06:33:51 +00001023 return true;
Daniel Berlina8236562017-04-07 18:38:09 +00001024 return llvm::any_of(*CC, [&](const Value *Member) {
1025 return Member != CC->getLeader() &&
Daniel Berlinffc30782017-03-24 06:33:51 +00001026 DT->dominates(cast<Instruction>(Member), U);
1027 });
Daniel Berlin9d0796e2017-03-24 05:30:34 +00001028}
1029
Davide Italiano7e274e02016-12-22 16:03:48 +00001030// See if we have a congruence class and leader for this operand, and if so,
1031// return it. Otherwise, return the operand itself.
Daniel Berlin203f47b2017-01-31 22:31:53 +00001032Value *NewGVN::lookupOperandLeader(Value *V) const {
Davide Italiano7e274e02016-12-22 16:03:48 +00001033 CongruenceClass *CC = ValueToClass.lookup(V);
Daniel Berlinb79f5362017-02-11 12:48:50 +00001034 if (CC) {
Daniel Berlin5c338ff2017-03-10 19:05:04 +00001035 // Everything in TOP is represneted by undef, as it can be any value.
Daniel Berlinb79f5362017-02-11 12:48:50 +00001036 // We do have to make sure we get the type right though, so we can't set the
1037 // RepLeader to undef.
Daniel Berlin5c338ff2017-03-10 19:05:04 +00001038 if (CC == TOPClass)
Daniel Berlinb79f5362017-02-11 12:48:50 +00001039 return UndefValue::get(V->getType());
Daniel Berlina8236562017-04-07 18:38:09 +00001040 return CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
Daniel Berlinb79f5362017-02-11 12:48:50 +00001041 }
1042
Davide Italiano7e274e02016-12-22 16:03:48 +00001043 return V;
1044}
1045
Daniel Berlin1316a942017-04-06 18:52:50 +00001046const MemoryAccess *NewGVN::lookupMemoryLeader(const MemoryAccess *MA) const {
1047 auto *CC = getMemoryClass(MA);
Daniel Berlina8236562017-04-07 18:38:09 +00001048 assert(CC->getMemoryLeader() &&
Davide Italianob60f6e02017-05-12 15:25:56 +00001049 "Every MemoryAccess should be mapped to a congruence class with a "
1050 "representative memory access");
Daniel Berlina8236562017-04-07 18:38:09 +00001051 return CC->getMemoryLeader();
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001052}
1053
Daniel Berlinc4796862017-01-27 02:37:11 +00001054// Return true if the MemoryAccess is really equivalent to everything. This is
1055// equivalent to the lattice value "TOP" in most lattices. This is the initial
Daniel Berlin1316a942017-04-06 18:52:50 +00001056// state of all MemoryAccesses.
Daniel Berlinc4796862017-01-27 02:37:11 +00001057bool NewGVN::isMemoryAccessTop(const MemoryAccess *MA) const {
Daniel Berlin1316a942017-04-06 18:52:50 +00001058 return getMemoryClass(MA) == TOPClass;
1059}
1060
Davide Italiano7e274e02016-12-22 16:03:48 +00001061LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp,
Daniel Berlin1316a942017-04-06 18:52:50 +00001062 LoadInst *LI,
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001063 const MemoryAccess *MA) const {
Daniel Berlin1316a942017-04-06 18:52:50 +00001064 auto *E =
1065 new (ExpressionAllocator) LoadExpression(1, LI, lookupMemoryLeader(MA));
Davide Italiano7e274e02016-12-22 16:03:48 +00001066 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1067 E->setType(LoadType);
1068
1069 // Give store and loads same opcode so they value number together.
1070 E->setOpcode(0);
Daniel Berlin1316a942017-04-06 18:52:50 +00001071 E->op_push_back(PointerOp);
Davide Italiano7e274e02016-12-22 16:03:48 +00001072 if (LI)
1073 E->setAlignment(LI->getAlignment());
1074
1075 // TODO: Value number heap versions. We may be able to discover
1076 // things alias analysis can't on it's own (IE that a store and a
1077 // load have the same value, and thus, it isn't clobbering the load).
1078 return E;
1079}
1080
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001081const StoreExpression *
1082NewGVN::createStoreExpression(StoreInst *SI, const MemoryAccess *MA) const {
Daniel Berlin203f47b2017-01-31 22:31:53 +00001083 auto *StoredValueLeader = lookupOperandLeader(SI->getValueOperand());
Daniel Berlin26addef2017-01-20 21:04:30 +00001084 auto *E = new (ExpressionAllocator)
Daniel Berlin1316a942017-04-06 18:52:50 +00001085 StoreExpression(SI->getNumOperands(), SI, StoredValueLeader, MA);
Davide Italiano7e274e02016-12-22 16:03:48 +00001086 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1087 E->setType(SI->getValueOperand()->getType());
1088
1089 // Give store and loads same opcode so they value number together.
1090 E->setOpcode(0);
Daniel Berlin203f47b2017-01-31 22:31:53 +00001091 E->op_push_back(lookupOperandLeader(SI->getPointerOperand()));
Davide Italiano7e274e02016-12-22 16:03:48 +00001092
1093 // TODO: Value number heap versions. We may be able to discover
1094 // things alias analysis can't on it's own (IE that a store and a
1095 // load have the same value, and thus, it isn't clobbering the load).
1096 return E;
1097}
1098
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001099const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I) const {
Daniel Berlin589cecc2017-01-02 18:00:46 +00001100 // Unlike loads, we never try to eliminate stores, so we do not check if they
1101 // are simple and avoid value numbering them.
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00001102 auto *SI = cast<StoreInst>(I);
Daniel Berlin1316a942017-04-06 18:52:50 +00001103 auto *StoreAccess = MSSA->getMemoryAccess(SI);
Daniel Berlinc4796862017-01-27 02:37:11 +00001104 // Get the expression, if any, for the RHS of the MemoryDef.
Daniel Berlin1316a942017-04-06 18:52:50 +00001105 const MemoryAccess *StoreRHS = StoreAccess->getDefiningAccess();
1106 if (EnableStoreRefinement)
1107 StoreRHS = MSSAWalker->getClobberingMemoryAccess(StoreAccess);
1108 // If we bypassed the use-def chains, make sure we add a use.
1109 if (StoreRHS != StoreAccess->getDefiningAccess())
1110 addMemoryUsers(StoreRHS, StoreAccess);
1111
1112 StoreRHS = lookupMemoryLeader(StoreRHS);
Daniel Berlinc4796862017-01-27 02:37:11 +00001113 // If we are defined by ourselves, use the live on entry def.
1114 if (StoreRHS == StoreAccess)
1115 StoreRHS = MSSA->getLiveOnEntryDef();
1116
Daniel Berlin589cecc2017-01-02 18:00:46 +00001117 if (SI->isSimple()) {
Daniel Berlinc4796862017-01-27 02:37:11 +00001118 // See if we are defined by a previous store expression, it already has a
1119 // value, and it's the same value as our current store. FIXME: Right now, we
1120 // only do this for simple stores, we should expand to cover memcpys, etc.
Daniel Berlin1316a942017-04-06 18:52:50 +00001121 const auto *LastStore = createStoreExpression(SI, StoreRHS);
1122 const auto *LastCC = ExpressionToClass.lookup(LastStore);
Daniel Berlinb755aea2017-01-09 05:34:29 +00001123 // Basically, check if the congruence class the store is in is defined by a
1124 // store that isn't us, and has the same value. MemorySSA takes care of
1125 // ensuring the store has the same memory state as us already.
Daniel Berlin26addef2017-01-20 21:04:30 +00001126 // The RepStoredValue gets nulled if all the stores disappear in a class, so
1127 // we don't need to check if the class contains a store besides us.
Daniel Berlin1316a942017-04-06 18:52:50 +00001128 if (LastCC &&
Daniel Berlina8236562017-04-07 18:38:09 +00001129 LastCC->getStoredValue() == lookupOperandLeader(SI->getValueOperand()))
Daniel Berlin1316a942017-04-06 18:52:50 +00001130 return LastStore;
1131 deleteExpression(LastStore);
Daniel Berlinc4796862017-01-27 02:37:11 +00001132 // Also check if our value operand is defined by a load of the same memory
Daniel Berlin1316a942017-04-06 18:52:50 +00001133 // location, and the memory state is the same as it was then (otherwise, it
1134 // could have been overwritten later. See test32 in
1135 // transforms/DeadStoreElimination/simple.ll).
1136 if (auto *LI =
1137 dyn_cast<LoadInst>(lookupOperandLeader(SI->getValueOperand()))) {
Daniel Berlin203f47b2017-01-31 22:31:53 +00001138 if ((lookupOperandLeader(LI->getPointerOperand()) ==
1139 lookupOperandLeader(SI->getPointerOperand())) &&
Daniel Berlin1316a942017-04-06 18:52:50 +00001140 (lookupMemoryLeader(MSSA->getMemoryAccess(LI)->getDefiningAccess()) ==
1141 StoreRHS))
Daniel Berlinc4796862017-01-27 02:37:11 +00001142 return createVariableExpression(LI);
1143 }
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001144 }
Daniel Berlin1316a942017-04-06 18:52:50 +00001145
1146 // If the store is not equivalent to anything, value number it as a store that
1147 // produces a unique memory state (instead of using it's MemoryUse, we use
1148 // it's MemoryDef).
Daniel Berlin97718e62017-01-31 22:32:03 +00001149 return createStoreExpression(SI, StoreAccess);
Davide Italiano7e274e02016-12-22 16:03:48 +00001150}
1151
Daniel Berlin07daac82017-04-02 13:23:44 +00001152// See if we can extract the value of a loaded pointer from a load, a store, or
1153// a memory instruction.
1154const Expression *
1155NewGVN::performSymbolicLoadCoercion(Type *LoadType, Value *LoadPtr,
1156 LoadInst *LI, Instruction *DepInst,
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001157 MemoryAccess *DefiningAccess) const {
Daniel Berlin07daac82017-04-02 13:23:44 +00001158 assert((!LI || LI->isSimple()) && "Not a simple load");
1159 if (auto *DepSI = dyn_cast<StoreInst>(DepInst)) {
1160 // Can't forward from non-atomic to atomic without violating memory model.
1161 // Also don't need to coerce if they are the same type, we will just
1162 // propogate..
1163 if (LI->isAtomic() > DepSI->isAtomic() ||
1164 LoadType == DepSI->getValueOperand()->getType())
1165 return nullptr;
1166 int Offset = analyzeLoadFromClobberingStore(LoadType, LoadPtr, DepSI, DL);
1167 if (Offset >= 0) {
1168 if (auto *C = dyn_cast<Constant>(
1169 lookupOperandLeader(DepSI->getValueOperand()))) {
1170 DEBUG(dbgs() << "Coercing load from store " << *DepSI << " to constant "
1171 << *C << "\n");
1172 return createConstantExpression(
1173 getConstantStoreValueForLoad(C, Offset, LoadType, DL));
1174 }
1175 }
1176
1177 } else if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1178 // Can't forward from non-atomic to atomic without violating memory model.
1179 if (LI->isAtomic() > DepLI->isAtomic())
1180 return nullptr;
1181 int Offset = analyzeLoadFromClobberingLoad(LoadType, LoadPtr, DepLI, DL);
1182 if (Offset >= 0) {
1183 // We can coerce a constant load into a load
1184 if (auto *C = dyn_cast<Constant>(lookupOperandLeader(DepLI)))
1185 if (auto *PossibleConstant =
1186 getConstantLoadValueForLoad(C, Offset, LoadType, DL)) {
1187 DEBUG(dbgs() << "Coercing load from load " << *LI << " to constant "
1188 << *PossibleConstant << "\n");
1189 return createConstantExpression(PossibleConstant);
1190 }
1191 }
1192
1193 } else if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
1194 int Offset = analyzeLoadFromClobberingMemInst(LoadType, LoadPtr, DepMI, DL);
1195 if (Offset >= 0) {
1196 if (auto *PossibleConstant =
1197 getConstantMemInstValueForLoad(DepMI, Offset, LoadType, DL)) {
1198 DEBUG(dbgs() << "Coercing load from meminst " << *DepMI
1199 << " to constant " << *PossibleConstant << "\n");
1200 return createConstantExpression(PossibleConstant);
1201 }
1202 }
1203 }
1204
1205 // All of the below are only true if the loaded pointer is produced
1206 // by the dependent instruction.
1207 if (LoadPtr != lookupOperandLeader(DepInst) &&
1208 !AA->isMustAlias(LoadPtr, DepInst))
1209 return nullptr;
1210 // If this load really doesn't depend on anything, then we must be loading an
1211 // undef value. This can happen when loading for a fresh allocation with no
1212 // intervening stores, for example. Note that this is only true in the case
1213 // that the result of the allocation is pointer equal to the load ptr.
1214 if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI)) {
1215 return createConstantExpression(UndefValue::get(LoadType));
1216 }
1217 // If this load occurs either right after a lifetime begin,
1218 // then the loaded value is undefined.
1219 else if (auto *II = dyn_cast<IntrinsicInst>(DepInst)) {
1220 if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1221 return createConstantExpression(UndefValue::get(LoadType));
1222 }
1223 // If this load follows a calloc (which zero initializes memory),
1224 // then the loaded value is zero
1225 else if (isCallocLikeFn(DepInst, TLI)) {
1226 return createConstantExpression(Constant::getNullValue(LoadType));
1227 }
1228
1229 return nullptr;
1230}
1231
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001232const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I) const {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00001233 auto *LI = cast<LoadInst>(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00001234
1235 // We can eliminate in favor of non-simple loads, but we won't be able to
Daniel Berlin589cecc2017-01-02 18:00:46 +00001236 // eliminate the loads themselves.
Davide Italiano7e274e02016-12-22 16:03:48 +00001237 if (!LI->isSimple())
1238 return nullptr;
1239
Daniel Berlin203f47b2017-01-31 22:31:53 +00001240 Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand());
Davide Italiano7e274e02016-12-22 16:03:48 +00001241 // Load of undef is undef.
1242 if (isa<UndefValue>(LoadAddressLeader))
1243 return createConstantExpression(UndefValue::get(LI->getType()));
1244
1245 MemoryAccess *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(I);
1246
1247 if (!MSSA->isLiveOnEntryDef(DefiningAccess)) {
1248 if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) {
1249 Instruction *DefiningInst = MD->getMemoryInst();
1250 // If the defining instruction is not reachable, replace with undef.
1251 if (!ReachableBlocks.count(DefiningInst->getParent()))
1252 return createConstantExpression(UndefValue::get(LI->getType()));
Daniel Berlin07daac82017-04-02 13:23:44 +00001253 // This will handle stores and memory insts. We only do if it the
1254 // defining access has a different type, or it is a pointer produced by
1255 // certain memory operations that cause the memory to have a fixed value
1256 // (IE things like calloc).
Daniel Berlin5845e052017-04-06 18:52:53 +00001257 if (const auto *CoercionResult =
1258 performSymbolicLoadCoercion(LI->getType(), LoadAddressLeader, LI,
1259 DefiningInst, DefiningAccess))
Daniel Berlin07daac82017-04-02 13:23:44 +00001260 return CoercionResult;
Davide Italiano7e274e02016-12-22 16:03:48 +00001261 }
1262 }
1263
Daniel Berlin1316a942017-04-06 18:52:50 +00001264 const Expression *E = createLoadExpression(LI->getType(), LoadAddressLeader,
1265 LI, DefiningAccess);
Davide Italiano7e274e02016-12-22 16:03:48 +00001266 return E;
1267}
1268
Daniel Berlinf7d95802017-02-18 23:06:50 +00001269const Expression *
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001270NewGVN::performSymbolicPredicateInfoEvaluation(Instruction *I) const {
Daniel Berlinf7d95802017-02-18 23:06:50 +00001271 auto *PI = PredInfo->getPredicateInfoFor(I);
1272 if (!PI)
1273 return nullptr;
1274
1275 DEBUG(dbgs() << "Found predicate info from instruction !\n");
Daniel Berlinfccbda92017-02-22 22:20:58 +00001276
1277 auto *PWC = dyn_cast<PredicateWithCondition>(PI);
1278 if (!PWC)
Daniel Berlinf7d95802017-02-18 23:06:50 +00001279 return nullptr;
1280
Daniel Berlinfccbda92017-02-22 22:20:58 +00001281 auto *CopyOf = I->getOperand(0);
1282 auto *Cond = PWC->Condition;
1283
Daniel Berlinf7d95802017-02-18 23:06:50 +00001284 // If this a copy of the condition, it must be either true or false depending
1285 // on the predicate info type and edge
1286 if (CopyOf == Cond) {
Daniel Berlinfccbda92017-02-22 22:20:58 +00001287 // We should not need to add predicate users because the predicate info is
1288 // already a use of this operand.
Daniel Berlinf7d95802017-02-18 23:06:50 +00001289 if (isa<PredicateAssume>(PI))
1290 return createConstantExpression(ConstantInt::getTrue(Cond->getType()));
1291 if (auto *PBranch = dyn_cast<PredicateBranch>(PI)) {
1292 if (PBranch->TrueEdge)
1293 return createConstantExpression(ConstantInt::getTrue(Cond->getType()));
1294 return createConstantExpression(ConstantInt::getFalse(Cond->getType()));
1295 }
Daniel Berlinfccbda92017-02-22 22:20:58 +00001296 if (auto *PSwitch = dyn_cast<PredicateSwitch>(PI))
1297 return createConstantExpression(cast<Constant>(PSwitch->CaseValue));
Daniel Berlinf7d95802017-02-18 23:06:50 +00001298 }
Daniel Berlinfccbda92017-02-22 22:20:58 +00001299
Daniel Berlinf7d95802017-02-18 23:06:50 +00001300 // Not a copy of the condition, so see what the predicates tell us about this
1301 // value. First, though, we check to make sure the value is actually a copy
1302 // of one of the condition operands. It's possible, in certain cases, for it
1303 // to be a copy of a predicateinfo copy. In particular, if two branch
1304 // operations use the same condition, and one branch dominates the other, we
1305 // will end up with a copy of a copy. This is currently a small deficiency in
Daniel Berlinfccbda92017-02-22 22:20:58 +00001306 // predicateinfo. What will end up happening here is that we will value
Daniel Berlinf7d95802017-02-18 23:06:50 +00001307 // number both copies the same anyway.
Daniel Berlinfccbda92017-02-22 22:20:58 +00001308
1309 // Everything below relies on the condition being a comparison.
1310 auto *Cmp = dyn_cast<CmpInst>(Cond);
1311 if (!Cmp)
1312 return nullptr;
1313
1314 if (CopyOf != Cmp->getOperand(0) && CopyOf != Cmp->getOperand(1)) {
Davide Italianoc43a9f82017-05-12 15:28:12 +00001315 DEBUG(dbgs() << "Copy is not of any condition operands!\n");
Daniel Berlinf7d95802017-02-18 23:06:50 +00001316 return nullptr;
1317 }
Daniel Berlinfccbda92017-02-22 22:20:58 +00001318 Value *FirstOp = lookupOperandLeader(Cmp->getOperand(0));
1319 Value *SecondOp = lookupOperandLeader(Cmp->getOperand(1));
Daniel Berlinf7d95802017-02-18 23:06:50 +00001320 bool SwappedOps = false;
1321 // Sort the ops
1322 if (shouldSwapOperands(FirstOp, SecondOp)) {
1323 std::swap(FirstOp, SecondOp);
1324 SwappedOps = true;
1325 }
Daniel Berlinf7d95802017-02-18 23:06:50 +00001326 CmpInst::Predicate Predicate =
1327 SwappedOps ? Cmp->getSwappedPredicate() : Cmp->getPredicate();
1328
1329 if (isa<PredicateAssume>(PI)) {
1330 // If the comparison is true when the operands are equal, then we know the
1331 // operands are equal, because assumes must always be true.
1332 if (CmpInst::isTrueWhenEqual(Predicate)) {
1333 addPredicateUsers(PI, I);
1334 return createVariableOrConstant(FirstOp);
1335 }
1336 }
1337 if (const auto *PBranch = dyn_cast<PredicateBranch>(PI)) {
1338 // If we are *not* a copy of the comparison, we may equal to the other
1339 // operand when the predicate implies something about equality of
1340 // operations. In particular, if the comparison is true/false when the
1341 // operands are equal, and we are on the right edge, we know this operation
1342 // is equal to something.
1343 if ((PBranch->TrueEdge && Predicate == CmpInst::ICMP_EQ) ||
1344 (!PBranch->TrueEdge && Predicate == CmpInst::ICMP_NE)) {
1345 addPredicateUsers(PI, I);
1346 return createVariableOrConstant(FirstOp);
1347 }
1348 // Handle the special case of floating point.
1349 if (((PBranch->TrueEdge && Predicate == CmpInst::FCMP_OEQ) ||
1350 (!PBranch->TrueEdge && Predicate == CmpInst::FCMP_UNE)) &&
1351 isa<ConstantFP>(FirstOp) && !cast<ConstantFP>(FirstOp)->isZero()) {
1352 addPredicateUsers(PI, I);
1353 return createConstantExpression(cast<Constant>(FirstOp));
1354 }
1355 }
1356 return nullptr;
1357}
1358
Davide Italiano7e274e02016-12-22 16:03:48 +00001359// Evaluate read only and pure calls, and create an expression result.
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001360const Expression *NewGVN::performSymbolicCallEvaluation(Instruction *I) const {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00001361 auto *CI = cast<CallInst>(I);
Daniel Berlinf7d95802017-02-18 23:06:50 +00001362 if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1363 // Instrinsics with the returned attribute are copies of arguments.
1364 if (auto *ReturnedValue = II->getReturnedArgOperand()) {
1365 if (II->getIntrinsicID() == Intrinsic::ssa_copy)
1366 if (const auto *Result = performSymbolicPredicateInfoEvaluation(I))
1367 return Result;
1368 return createVariableOrConstant(ReturnedValue);
1369 }
1370 }
1371 if (AA->doesNotAccessMemory(CI)) {
Daniel Berlina8236562017-04-07 18:38:09 +00001372 return createCallExpression(CI, TOPClass->getMemoryLeader());
Daniel Berlinf7d95802017-02-18 23:06:50 +00001373 } else if (AA->onlyReadsMemory(CI)) {
Daniel Berlin85cbc8c2016-12-26 19:57:25 +00001374 MemoryAccess *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(CI);
Daniel Berlin1316a942017-04-06 18:52:50 +00001375 return createCallExpression(CI, DefiningAccess);
Davide Italianob2225492016-12-27 18:15:39 +00001376 }
1377 return nullptr;
Davide Italiano7e274e02016-12-22 16:03:48 +00001378}
1379
Daniel Berlin1316a942017-04-06 18:52:50 +00001380// Retrieve the memory class for a given MemoryAccess.
1381CongruenceClass *NewGVN::getMemoryClass(const MemoryAccess *MA) const {
1382
1383 auto *Result = MemoryAccessToClass.lookup(MA);
1384 assert(Result && "Should have found memory class");
1385 return Result;
1386}
1387
1388// Update the MemoryAccess equivalence table to say that From is equal to To,
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001389// and return true if this is different from what already existed in the table.
Daniel Berlin1316a942017-04-06 18:52:50 +00001390bool NewGVN::setMemoryClass(const MemoryAccess *From,
1391 CongruenceClass *NewClass) {
1392 assert(NewClass &&
1393 "Every MemoryAccess should be getting mapped to a non-null class");
Daniel Berlin1ea5f322017-01-26 22:21:48 +00001394 DEBUG(dbgs() << "Setting " << *From);
Daniel Berlin1316a942017-04-06 18:52:50 +00001395 DEBUG(dbgs() << " equivalent to congruence class ");
Daniel Berlina8236562017-04-07 18:38:09 +00001396 DEBUG(dbgs() << NewClass->getID() << " with current MemoryAccess leader ");
Davide Italianob7a66982017-05-09 20:02:48 +00001397 DEBUG(dbgs() << *NewClass->getMemoryLeader() << "\n");
Daniel Berlin1ea5f322017-01-26 22:21:48 +00001398
1399 auto LookupResult = MemoryAccessToClass.find(From);
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001400 bool Changed = false;
1401 // If it's already in the table, see if the value changed.
Daniel Berlin1ea5f322017-01-26 22:21:48 +00001402 if (LookupResult != MemoryAccessToClass.end()) {
Daniel Berlin1316a942017-04-06 18:52:50 +00001403 auto *OldClass = LookupResult->second;
1404 if (OldClass != NewClass) {
1405 // If this is a phi, we have to handle memory member updates.
1406 if (auto *MP = dyn_cast<MemoryPhi>(From)) {
Daniel Berlina8236562017-04-07 18:38:09 +00001407 OldClass->memory_erase(MP);
1408 NewClass->memory_insert(MP);
Daniel Berlin1316a942017-04-06 18:52:50 +00001409 // This may have killed the class if it had no non-memory members
Daniel Berlina8236562017-04-07 18:38:09 +00001410 if (OldClass->getMemoryLeader() == From) {
Davide Italiano41f5c7b2017-05-12 15:22:45 +00001411 if (OldClass->definesNoMemory()) {
Daniel Berlina8236562017-04-07 18:38:09 +00001412 OldClass->setMemoryLeader(nullptr);
Daniel Berlin1316a942017-04-06 18:52:50 +00001413 } else {
Daniel Berlina8236562017-04-07 18:38:09 +00001414 OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
Daniel Berlin1316a942017-04-06 18:52:50 +00001415 DEBUG(dbgs() << "Memory class leader change for class "
Daniel Berlina8236562017-04-07 18:38:09 +00001416 << OldClass->getID() << " to "
1417 << *OldClass->getMemoryLeader()
Daniel Berlin1316a942017-04-06 18:52:50 +00001418 << " due to removal of a memory member " << *From
1419 << "\n");
1420 markMemoryLeaderChangeTouched(OldClass);
1421 }
1422 }
1423 }
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001424 // It wasn't equivalent before, and now it is.
Daniel Berlin1316a942017-04-06 18:52:50 +00001425 LookupResult->second = NewClass;
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001426 Changed = true;
1427 }
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001428 }
Daniel Berlin589cecc2017-01-02 18:00:46 +00001429
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001430 return Changed;
1431}
Daniel Berlin0e900112017-03-24 06:33:48 +00001432
Daniel Berlin2f72b192017-04-14 02:53:37 +00001433// Determine if a phi is cycle-free. That means the values in the phi don't
1434// depend on any expressions that can change value as a result of the phi.
1435// For example, a non-cycle free phi would be v = phi(0, v+1).
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001436bool NewGVN::isCycleFree(const PHINode *PN) const {
Daniel Berlin2f72b192017-04-14 02:53:37 +00001437 // In order to compute cycle-freeness, we do SCC finding on the phi, and see
1438 // what kind of SCC it ends up in. If it is a singleton, it is cycle-free.
1439 // If it is not in a singleton, it is only cycle free if the other members are
1440 // all phi nodes (as they do not compute anything, they are copies). TODO:
1441 // There are likely a few other intrinsics or expressions that could be
1442 // included here, but this happens so infrequently already that it is not
1443 // likely to be worth it.
1444 auto PCS = PhiCycleState.lookup(PN);
1445 if (PCS == PCS_Unknown) {
1446 SCCFinder.Start(PN);
1447 auto &SCC = SCCFinder.getComponentFor(PN);
1448 // It's cycle free if it's size 1 or or the SCC is *only* phi nodes.
1449 if (SCC.size() == 1)
1450 PhiCycleState.insert({PN, PCS_CycleFree});
1451 else {
1452 bool AllPhis =
1453 llvm::all_of(SCC, [](const Value *V) { return isa<PHINode>(V); });
1454 PCS = AllPhis ? PCS_CycleFree : PCS_Cycle;
1455 for (auto *Member : SCC)
1456 if (auto *MemberPhi = dyn_cast<PHINode>(Member))
1457 PhiCycleState.insert({MemberPhi, PCS});
1458 }
1459 }
1460 if (PCS == PCS_Cycle)
1461 return false;
1462 return true;
1463}
1464
Davide Italiano7e274e02016-12-22 16:03:48 +00001465// Evaluate PHI nodes symbolically, and create an expression result.
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001466const Expression *NewGVN::performSymbolicPHIEvaluation(Instruction *I) const {
Daniel Berlin2f72b192017-04-14 02:53:37 +00001467 // True if one of the incoming phi edges is a backedge.
1468 bool HasBackedge = false;
1469 // All constant tracks the state of whether all the *original* phi operands
Davide Italiano839c7e62017-05-02 21:11:40 +00001470 // were constant. This is really shorthand for "this phi cannot cycle due
1471 // to forward propagation", as any change in value of the phi is guaranteed
1472 // not to later change the value of the phi.
Daniel Berlin2f72b192017-04-14 02:53:37 +00001473 // IE it can't be v = phi(undef, v+1)
1474 bool AllConstant = true;
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001475 auto *E = cast<PHIExpression>(createPHIExpression(I, HasBackedge, AllConstant));
Daniel Berlind92e7f92017-01-07 00:01:42 +00001476 // We match the semantics of SimplifyPhiNode from InstructionSimplify here.
Davide Italiano839c7e62017-05-02 21:11:40 +00001477 // See if all arguments are the same.
Daniel Berlind92e7f92017-01-07 00:01:42 +00001478 // We track if any were undef because they need special handling.
1479 bool HasUndef = false;
1480 auto Filtered = make_filter_range(E->operands(), [&](const Value *Arg) {
1481 if (Arg == I)
1482 return false;
1483 if (isa<UndefValue>(Arg)) {
1484 HasUndef = true;
1485 return false;
1486 }
1487 return true;
1488 });
1489 // If we are left with no operands, it's undef
1490 if (Filtered.begin() == Filtered.end()) {
Davide Italiano7e274e02016-12-22 16:03:48 +00001491 DEBUG(dbgs() << "Simplified PHI node " << *I << " to undef"
1492 << "\n");
Daniel Berlin0e900112017-03-24 06:33:48 +00001493 deleteExpression(E);
Davide Italiano7e274e02016-12-22 16:03:48 +00001494 return createConstantExpression(UndefValue::get(I->getType()));
1495 }
Daniel Berlin2f72b192017-04-14 02:53:37 +00001496 unsigned NumOps = 0;
Daniel Berlind92e7f92017-01-07 00:01:42 +00001497 Value *AllSameValue = *(Filtered.begin());
1498 ++Filtered.begin();
1499 // Can't use std::equal here, sadly, because filter.begin moves.
Daniel Berlin2f72b192017-04-14 02:53:37 +00001500 if (llvm::all_of(Filtered, [AllSameValue, &NumOps](const Value *V) {
1501 ++NumOps;
Daniel Berlind92e7f92017-01-07 00:01:42 +00001502 return V == AllSameValue;
1503 })) {
1504 // In LLVM's non-standard representation of phi nodes, it's possible to have
1505 // phi nodes with cycles (IE dependent on other phis that are .... dependent
1506 // on the original phi node), especially in weird CFG's where some arguments
1507 // are unreachable, or uninitialized along certain paths. This can cause
1508 // infinite loops during evaluation. We work around this by not trying to
1509 // really evaluate them independently, but instead using a variable
1510 // expression to say if one is equivalent to the other.
1511 // We also special case undef, so that if we have an undef, we can't use the
1512 // common value unless it dominates the phi block.
1513 if (HasUndef) {
Daniel Berlin2f72b192017-04-14 02:53:37 +00001514 // If we have undef and at least one other value, this is really a
1515 // multivalued phi, and we need to know if it's cycle free in order to
1516 // evaluate whether we can ignore the undef. The other parts of this are
1517 // just shortcuts. If there is no backedge, or all operands are
1518 // constants, or all operands are ignored but the undef, it also must be
1519 // cycle free.
1520 if (!AllConstant && HasBackedge && NumOps > 0 &&
1521 !isa<UndefValue>(AllSameValue) && !isCycleFree(cast<PHINode>(I)))
1522 return E;
1523
Daniel Berlind92e7f92017-01-07 00:01:42 +00001524 // Only have to check for instructions
Davide Italiano1b97fc32017-01-07 02:05:50 +00001525 if (auto *AllSameInst = dyn_cast<Instruction>(AllSameValue))
Daniel Berlin9d0796e2017-03-24 05:30:34 +00001526 if (!someEquivalentDominates(AllSameInst, I))
Daniel Berlind92e7f92017-01-07 00:01:42 +00001527 return E;
Davide Italiano7e274e02016-12-22 16:03:48 +00001528 }
1529
Davide Italiano7e274e02016-12-22 16:03:48 +00001530 NumGVNPhisAllSame++;
1531 DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue
1532 << "\n");
Daniel Berlin0e900112017-03-24 06:33:48 +00001533 deleteExpression(E);
Daniel Berlinf7d95802017-02-18 23:06:50 +00001534 return createVariableOrConstant(AllSameValue);
Davide Italiano7e274e02016-12-22 16:03:48 +00001535 }
1536 return E;
1537}
1538
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001539const Expression *
1540NewGVN::performSymbolicAggrValueEvaluation(Instruction *I) const {
Davide Italiano7e274e02016-12-22 16:03:48 +00001541 if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1542 auto *II = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
1543 if (II && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) {
1544 unsigned Opcode = 0;
1545 // EI might be an extract from one of our recognised intrinsics. If it
1546 // is we'll synthesize a semantically equivalent expression instead on
1547 // an extract value expression.
1548 switch (II->getIntrinsicID()) {
1549 case Intrinsic::sadd_with_overflow:
1550 case Intrinsic::uadd_with_overflow:
1551 Opcode = Instruction::Add;
1552 break;
1553 case Intrinsic::ssub_with_overflow:
1554 case Intrinsic::usub_with_overflow:
1555 Opcode = Instruction::Sub;
1556 break;
1557 case Intrinsic::smul_with_overflow:
1558 case Intrinsic::umul_with_overflow:
1559 Opcode = Instruction::Mul;
1560 break;
1561 default:
1562 break;
1563 }
1564
1565 if (Opcode != 0) {
1566 // Intrinsic recognized. Grab its args to finish building the
1567 // expression.
1568 assert(II->getNumArgOperands() == 2 &&
1569 "Expect two args for recognised intrinsics.");
Daniel Berlinb79f5362017-02-11 12:48:50 +00001570 return createBinaryExpression(
1571 Opcode, EI->getType(), II->getArgOperand(0), II->getArgOperand(1));
Davide Italiano7e274e02016-12-22 16:03:48 +00001572 }
1573 }
1574 }
1575
Daniel Berlin97718e62017-01-31 22:32:03 +00001576 return createAggregateValueExpression(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00001577}
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001578const Expression *NewGVN::performSymbolicCmpEvaluation(Instruction *I) const {
Daniel Berlinf7d95802017-02-18 23:06:50 +00001579 auto *CI = dyn_cast<CmpInst>(I);
1580 // See if our operands are equal to those of a previous predicate, and if so,
1581 // if it implies true or false.
Daniel Berlinc22aafe2017-01-31 22:31:58 +00001582 auto Op0 = lookupOperandLeader(CI->getOperand(0));
1583 auto Op1 = lookupOperandLeader(CI->getOperand(1));
Daniel Berlinf7d95802017-02-18 23:06:50 +00001584 auto OurPredicate = CI->getPredicate();
Daniel Berlin0350a872017-03-04 00:44:43 +00001585 if (shouldSwapOperands(Op0, Op1)) {
Daniel Berlinf7d95802017-02-18 23:06:50 +00001586 std::swap(Op0, Op1);
1587 OurPredicate = CI->getSwappedPredicate();
1588 }
1589
1590 // Avoid processing the same info twice
1591 const PredicateBase *LastPredInfo = nullptr;
Daniel Berlinf7d95802017-02-18 23:06:50 +00001592 // See if we know something about the comparison itself, like it is the target
1593 // of an assume.
1594 auto *CmpPI = PredInfo->getPredicateInfoFor(I);
1595 if (dyn_cast_or_null<PredicateAssume>(CmpPI))
1596 return createConstantExpression(ConstantInt::getTrue(CI->getType()));
1597
Daniel Berlinc22aafe2017-01-31 22:31:58 +00001598 if (Op0 == Op1) {
Daniel Berlinf7d95802017-02-18 23:06:50 +00001599 // This condition does not depend on predicates, no need to add users
Daniel Berlinc22aafe2017-01-31 22:31:58 +00001600 if (CI->isTrueWhenEqual())
1601 return createConstantExpression(ConstantInt::getTrue(CI->getType()));
1602 else if (CI->isFalseWhenEqual())
1603 return createConstantExpression(ConstantInt::getFalse(CI->getType()));
1604 }
Daniel Berlinf7d95802017-02-18 23:06:50 +00001605
1606 // NOTE: Because we are comparing both operands here and below, and using
1607 // previous comparisons, we rely on fact that predicateinfo knows to mark
1608 // comparisons that use renamed operands as users of the earlier comparisons.
1609 // It is *not* enough to just mark predicateinfo renamed operands as users of
1610 // the earlier comparisons, because the *other* operand may have changed in a
1611 // previous iteration.
1612 // Example:
1613 // icmp slt %a, %b
1614 // %b.0 = ssa.copy(%b)
1615 // false branch:
1616 // icmp slt %c, %b.0
1617
1618 // %c and %a may start out equal, and thus, the code below will say the second
1619 // %icmp is false. c may become equal to something else, and in that case the
1620 // %second icmp *must* be reexamined, but would not if only the renamed
1621 // %operands are considered users of the icmp.
1622
1623 // *Currently* we only check one level of comparisons back, and only mark one
1624 // level back as touched when changes appen . If you modify this code to look
1625 // back farther through comparisons, you *must* mark the appropriate
1626 // comparisons as users in PredicateInfo.cpp, or you will cause bugs. See if
1627 // we know something just from the operands themselves
1628
1629 // See if our operands have predicate info, so that we may be able to derive
1630 // something from a previous comparison.
1631 for (const auto &Op : CI->operands()) {
1632 auto *PI = PredInfo->getPredicateInfoFor(Op);
1633 if (const auto *PBranch = dyn_cast_or_null<PredicateBranch>(PI)) {
1634 if (PI == LastPredInfo)
1635 continue;
1636 LastPredInfo = PI;
Daniel Berlinfccbda92017-02-22 22:20:58 +00001637
Daniel Berlinf7d95802017-02-18 23:06:50 +00001638 // TODO: Along the false edge, we may know more things too, like icmp of
1639 // same operands is false.
1640 // TODO: We only handle actual comparison conditions below, not and/or.
1641 auto *BranchCond = dyn_cast<CmpInst>(PBranch->Condition);
1642 if (!BranchCond)
1643 continue;
1644 auto *BranchOp0 = lookupOperandLeader(BranchCond->getOperand(0));
1645 auto *BranchOp1 = lookupOperandLeader(BranchCond->getOperand(1));
1646 auto BranchPredicate = BranchCond->getPredicate();
Daniel Berlin0350a872017-03-04 00:44:43 +00001647 if (shouldSwapOperands(BranchOp0, BranchOp1)) {
Daniel Berlinf7d95802017-02-18 23:06:50 +00001648 std::swap(BranchOp0, BranchOp1);
1649 BranchPredicate = BranchCond->getSwappedPredicate();
1650 }
1651 if (BranchOp0 == Op0 && BranchOp1 == Op1) {
1652 if (PBranch->TrueEdge) {
1653 // If we know the previous predicate is true and we are in the true
1654 // edge then we may be implied true or false.
Davide Italiano2dfd46b2017-05-01 22:26:28 +00001655 if (CmpInst::isImpliedTrueByMatchingCmp(BranchPredicate,
1656 OurPredicate)) {
Daniel Berlinf7d95802017-02-18 23:06:50 +00001657 addPredicateUsers(PI, I);
1658 return createConstantExpression(
1659 ConstantInt::getTrue(CI->getType()));
1660 }
1661
Davide Italiano2dfd46b2017-05-01 22:26:28 +00001662 if (CmpInst::isImpliedFalseByMatchingCmp(BranchPredicate,
1663 OurPredicate)) {
Daniel Berlinf7d95802017-02-18 23:06:50 +00001664 addPredicateUsers(PI, I);
1665 return createConstantExpression(
1666 ConstantInt::getFalse(CI->getType()));
1667 }
1668
1669 } else {
1670 // Just handle the ne and eq cases, where if we have the same
1671 // operands, we may know something.
1672 if (BranchPredicate == OurPredicate) {
1673 addPredicateUsers(PI, I);
1674 // Same predicate, same ops,we know it was false, so this is false.
1675 return createConstantExpression(
1676 ConstantInt::getFalse(CI->getType()));
1677 } else if (BranchPredicate ==
1678 CmpInst::getInversePredicate(OurPredicate)) {
1679 addPredicateUsers(PI, I);
1680 // Inverse predicate, we know the other was false, so this is true.
Daniel Berlinf7d95802017-02-18 23:06:50 +00001681 return createConstantExpression(
1682 ConstantInt::getTrue(CI->getType()));
1683 }
1684 }
1685 }
1686 }
1687 }
1688 // Create expression will take care of simplifyCmpInst
Daniel Berlin97718e62017-01-31 22:32:03 +00001689 return createExpression(I);
Daniel Berlinc22aafe2017-01-31 22:31:58 +00001690}
Davide Italiano7e274e02016-12-22 16:03:48 +00001691
1692// Substitute and symbolize the value before value numbering.
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001693const Expression *NewGVN::performSymbolicEvaluation(Value *V) const {
Davide Italiano0e714802016-12-28 14:00:11 +00001694 const Expression *E = nullptr;
Davide Italiano7e274e02016-12-22 16:03:48 +00001695 if (auto *C = dyn_cast<Constant>(V))
1696 E = createConstantExpression(C);
1697 else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
1698 E = createVariableExpression(V);
1699 } else {
1700 // TODO: memory intrinsics.
1701 // TODO: Some day, we should do the forward propagation and reassociation
1702 // parts of the algorithm.
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00001703 auto *I = cast<Instruction>(V);
Davide Italiano7e274e02016-12-22 16:03:48 +00001704 switch (I->getOpcode()) {
1705 case Instruction::ExtractValue:
1706 case Instruction::InsertValue:
Daniel Berlin97718e62017-01-31 22:32:03 +00001707 E = performSymbolicAggrValueEvaluation(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00001708 break;
1709 case Instruction::PHI:
Daniel Berlin97718e62017-01-31 22:32:03 +00001710 E = performSymbolicPHIEvaluation(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00001711 break;
1712 case Instruction::Call:
Daniel Berlin97718e62017-01-31 22:32:03 +00001713 E = performSymbolicCallEvaluation(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00001714 break;
1715 case Instruction::Store:
Daniel Berlin97718e62017-01-31 22:32:03 +00001716 E = performSymbolicStoreEvaluation(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00001717 break;
1718 case Instruction::Load:
Daniel Berlin97718e62017-01-31 22:32:03 +00001719 E = performSymbolicLoadEvaluation(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00001720 break;
1721 case Instruction::BitCast: {
Daniel Berlin97718e62017-01-31 22:32:03 +00001722 E = createExpression(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00001723 } break;
Daniel Berlinc22aafe2017-01-31 22:31:58 +00001724 case Instruction::ICmp:
1725 case Instruction::FCmp: {
Daniel Berlin97718e62017-01-31 22:32:03 +00001726 E = performSymbolicCmpEvaluation(I);
Daniel Berlinc22aafe2017-01-31 22:31:58 +00001727 } break;
Davide Italiano7e274e02016-12-22 16:03:48 +00001728 case Instruction::Add:
1729 case Instruction::FAdd:
1730 case Instruction::Sub:
1731 case Instruction::FSub:
1732 case Instruction::Mul:
1733 case Instruction::FMul:
1734 case Instruction::UDiv:
1735 case Instruction::SDiv:
1736 case Instruction::FDiv:
1737 case Instruction::URem:
1738 case Instruction::SRem:
1739 case Instruction::FRem:
1740 case Instruction::Shl:
1741 case Instruction::LShr:
1742 case Instruction::AShr:
1743 case Instruction::And:
1744 case Instruction::Or:
1745 case Instruction::Xor:
Davide Italiano7e274e02016-12-22 16:03:48 +00001746 case Instruction::Trunc:
1747 case Instruction::ZExt:
1748 case Instruction::SExt:
1749 case Instruction::FPToUI:
1750 case Instruction::FPToSI:
1751 case Instruction::UIToFP:
1752 case Instruction::SIToFP:
1753 case Instruction::FPTrunc:
1754 case Instruction::FPExt:
1755 case Instruction::PtrToInt:
1756 case Instruction::IntToPtr:
1757 case Instruction::Select:
1758 case Instruction::ExtractElement:
1759 case Instruction::InsertElement:
1760 case Instruction::ShuffleVector:
1761 case Instruction::GetElementPtr:
Daniel Berlin97718e62017-01-31 22:32:03 +00001762 E = createExpression(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00001763 break;
1764 default:
1765 return nullptr;
1766 }
1767 }
Davide Italiano7e274e02016-12-22 16:03:48 +00001768 return E;
1769}
1770
Davide Italiano7e274e02016-12-22 16:03:48 +00001771void NewGVN::markUsersTouched(Value *V) {
1772 // Now mark the users as touched.
Daniel Berline0bd37e2016-12-29 22:15:12 +00001773 for (auto *User : V->users()) {
1774 assert(isa<Instruction>(User) && "Use of value not within an instruction?");
Daniel Berlin21279bd2017-04-06 18:52:58 +00001775 TouchedInstructions.set(InstrToDFSNum(User));
Davide Italiano7e274e02016-12-22 16:03:48 +00001776 }
1777}
1778
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001779void NewGVN::addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const {
Daniel Berlin1316a942017-04-06 18:52:50 +00001780 DEBUG(dbgs() << "Adding memory user " << *U << " to " << *To << "\n");
1781 MemoryToUsers[To].insert(U);
1782}
1783
1784void NewGVN::markMemoryDefTouched(const MemoryAccess *MA) {
Daniel Berlin21279bd2017-04-06 18:52:58 +00001785 TouchedInstructions.set(MemoryToDFSNum(MA));
Daniel Berlin1316a942017-04-06 18:52:50 +00001786}
1787
1788void NewGVN::markMemoryUsersTouched(const MemoryAccess *MA) {
1789 if (isa<MemoryUse>(MA))
1790 return;
1791 for (auto U : MA->users())
Daniel Berlin21279bd2017-04-06 18:52:58 +00001792 TouchedInstructions.set(MemoryToDFSNum(U));
Daniel Berlin1316a942017-04-06 18:52:50 +00001793 const auto Result = MemoryToUsers.find(MA);
1794 if (Result != MemoryToUsers.end()) {
1795 for (auto *User : Result->second)
Daniel Berlin21279bd2017-04-06 18:52:58 +00001796 TouchedInstructions.set(MemoryToDFSNum(User));
Daniel Berlin1316a942017-04-06 18:52:50 +00001797 MemoryToUsers.erase(Result);
Davide Italiano7e274e02016-12-22 16:03:48 +00001798 }
1799}
1800
Daniel Berlinf7d95802017-02-18 23:06:50 +00001801// Add I to the set of users of a given predicate.
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001802void NewGVN::addPredicateUsers(const PredicateBase *PB, Instruction *I) const {
Daniel Berlinf7d95802017-02-18 23:06:50 +00001803 if (auto *PBranch = dyn_cast<PredicateBranch>(PB))
1804 PredicateToUsers[PBranch->Condition].insert(I);
1805 else if (auto *PAssume = dyn_cast<PredicateBranch>(PB))
1806 PredicateToUsers[PAssume->Condition].insert(I);
1807}
1808
1809// Touch all the predicates that depend on this instruction.
1810void NewGVN::markPredicateUsersTouched(Instruction *I) {
1811 const auto Result = PredicateToUsers.find(I);
Daniel Berlin46b72e62017-03-19 00:07:32 +00001812 if (Result != PredicateToUsers.end()) {
Daniel Berlinf7d95802017-02-18 23:06:50 +00001813 for (auto *User : Result->second)
Daniel Berlin21279bd2017-04-06 18:52:58 +00001814 TouchedInstructions.set(InstrToDFSNum(User));
Daniel Berlin46b72e62017-03-19 00:07:32 +00001815 PredicateToUsers.erase(Result);
1816 }
Daniel Berlinf7d95802017-02-18 23:06:50 +00001817}
1818
Daniel Berlin1316a942017-04-06 18:52:50 +00001819// Mark users affected by a memory leader change.
1820void NewGVN::markMemoryLeaderChangeTouched(CongruenceClass *CC) {
Daniel Berlina8236562017-04-07 18:38:09 +00001821 for (auto M : CC->memory())
Daniel Berlin1316a942017-04-06 18:52:50 +00001822 markMemoryDefTouched(M);
1823}
1824
Daniel Berlin32f8d562017-01-07 16:55:14 +00001825// Touch the instructions that need to be updated after a congruence class has a
1826// leader change, and mark changed values.
Daniel Berlin1316a942017-04-06 18:52:50 +00001827void NewGVN::markValueLeaderChangeTouched(CongruenceClass *CC) {
Daniel Berlina8236562017-04-07 18:38:09 +00001828 for (auto M : *CC) {
Daniel Berlin32f8d562017-01-07 16:55:14 +00001829 if (auto *I = dyn_cast<Instruction>(M))
Daniel Berlin21279bd2017-04-06 18:52:58 +00001830 TouchedInstructions.set(InstrToDFSNum(I));
Daniel Berlin3a1bd022017-01-11 20:22:05 +00001831 LeaderChanges.insert(M);
1832 }
1833}
1834
Daniel Berlin1316a942017-04-06 18:52:50 +00001835// Give a range of things that have instruction DFS numbers, this will return
1836// the member of the range with the smallest dfs number.
1837template <class T, class Range>
1838T *NewGVN::getMinDFSOfRange(const Range &R) const {
1839 std::pair<T *, unsigned> MinDFS = {nullptr, ~0U};
1840 for (const auto X : R) {
Daniel Berlin21279bd2017-04-06 18:52:58 +00001841 auto DFSNum = InstrToDFSNum(X);
Daniel Berlin1316a942017-04-06 18:52:50 +00001842 if (DFSNum < MinDFS.second)
1843 MinDFS = {X, DFSNum};
1844 }
1845 return MinDFS.first;
1846}
1847
1848// This function returns the MemoryAccess that should be the next leader of
1849// congruence class CC, under the assumption that the current leader is going to
1850// disappear.
1851const MemoryAccess *NewGVN::getNextMemoryLeader(CongruenceClass *CC) const {
1852 // TODO: If this ends up to slow, we can maintain a next memory leader like we
1853 // do for regular leaders.
1854 // Make sure there will be a leader to find
Davide Italianodc435322017-05-10 19:57:43 +00001855 assert(!CC->definesNoMemory() && "Can't get next leader if there is none");
Daniel Berlina8236562017-04-07 18:38:09 +00001856 if (CC->getStoreCount() > 0) {
1857 if (auto *NL = dyn_cast_or_null<StoreInst>(CC->getNextLeader().first))
Daniel Berlin1316a942017-04-06 18:52:50 +00001858 return MSSA->getMemoryAccess(NL);
1859 // Find the store with the minimum DFS number.
1860 auto *V = getMinDFSOfRange<Value>(make_filter_range(
Daniel Berlina8236562017-04-07 18:38:09 +00001861 *CC, [&](const Value *V) { return isa<StoreInst>(V); }));
Daniel Berlin1316a942017-04-06 18:52:50 +00001862 return MSSA->getMemoryAccess(cast<StoreInst>(V));
1863 }
Daniel Berlina8236562017-04-07 18:38:09 +00001864 assert(CC->getStoreCount() == 0);
Daniel Berlin1316a942017-04-06 18:52:50 +00001865
1866 // Given our assertion, hitting this part must mean
Daniel Berlina8236562017-04-07 18:38:09 +00001867 // !OldClass->memory_empty()
1868 if (CC->memory_size() == 1)
1869 return *CC->memory_begin();
1870 return getMinDFSOfRange<const MemoryPhi>(CC->memory());
Daniel Berlin1316a942017-04-06 18:52:50 +00001871}
1872
1873// This function returns the next value leader of a congruence class, under the
1874// assumption that the current leader is going away. This should end up being
1875// the next most dominating member.
1876Value *NewGVN::getNextValueLeader(CongruenceClass *CC) const {
1877 // We don't need to sort members if there is only 1, and we don't care about
1878 // sorting the TOP class because everything either gets out of it or is
1879 // unreachable.
1880
Daniel Berlina8236562017-04-07 18:38:09 +00001881 if (CC->size() == 1 || CC == TOPClass) {
1882 return *(CC->begin());
1883 } else if (CC->getNextLeader().first) {
Daniel Berlin1316a942017-04-06 18:52:50 +00001884 ++NumGVNAvoidedSortedLeaderChanges;
Daniel Berlina8236562017-04-07 18:38:09 +00001885 return CC->getNextLeader().first;
Daniel Berlin1316a942017-04-06 18:52:50 +00001886 } else {
1887 ++NumGVNSortedLeaderChanges;
1888 // NOTE: If this ends up to slow, we can maintain a dual structure for
1889 // member testing/insertion, or keep things mostly sorted, and sort only
1890 // here, or use SparseBitVector or ....
Daniel Berlina8236562017-04-07 18:38:09 +00001891 return getMinDFSOfRange<Value>(*CC);
Daniel Berlin1316a942017-04-06 18:52:50 +00001892 }
1893}
1894
1895// Move a MemoryAccess, currently in OldClass, to NewClass, including updates to
1896// the memory members, etc for the move.
1897//
1898// The invariants of this function are:
1899//
1900// I must be moving to NewClass from OldClass The StoreCount of OldClass and
1901// NewClass is expected to have been updated for I already if it is is a store.
1902// The OldClass memory leader has not been updated yet if I was the leader.
1903void NewGVN::moveMemoryToNewCongruenceClass(Instruction *I,
1904 MemoryAccess *InstMA,
1905 CongruenceClass *OldClass,
1906 CongruenceClass *NewClass) {
1907 // If the leader is I, and we had a represenative MemoryAccess, it should
1908 // be the MemoryAccess of OldClass.
Davide Italianof58a30232017-04-10 23:08:35 +00001909 assert((!InstMA || !OldClass->getMemoryLeader() ||
1910 OldClass->getLeader() != I ||
1911 OldClass->getMemoryLeader() == InstMA) &&
1912 "Representative MemoryAccess mismatch");
Daniel Berlin1316a942017-04-06 18:52:50 +00001913 // First, see what happens to the new class
Daniel Berlina8236562017-04-07 18:38:09 +00001914 if (!NewClass->getMemoryLeader()) {
Daniel Berlin1316a942017-04-06 18:52:50 +00001915 // Should be a new class, or a store becoming a leader of a new class.
Daniel Berlina8236562017-04-07 18:38:09 +00001916 assert(NewClass->size() == 1 ||
1917 (isa<StoreInst>(I) && NewClass->getStoreCount() == 1));
1918 NewClass->setMemoryLeader(InstMA);
Daniel Berlin1316a942017-04-06 18:52:50 +00001919 // Mark it touched if we didn't just create a singleton
Daniel Berlina8236562017-04-07 18:38:09 +00001920 DEBUG(dbgs() << "Memory class leader change for class " << NewClass->getID()
Daniel Berlin1316a942017-04-06 18:52:50 +00001921 << " due to new memory instruction becoming leader\n");
1922 markMemoryLeaderChangeTouched(NewClass);
1923 }
1924 setMemoryClass(InstMA, NewClass);
1925 // Now, fixup the old class if necessary
Daniel Berlina8236562017-04-07 18:38:09 +00001926 if (OldClass->getMemoryLeader() == InstMA) {
Davide Italianodc435322017-05-10 19:57:43 +00001927 if (!OldClass->definesNoMemory()) {
Daniel Berlina8236562017-04-07 18:38:09 +00001928 OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
1929 DEBUG(dbgs() << "Memory class leader change for class "
1930 << OldClass->getID() << " to "
1931 << *OldClass->getMemoryLeader()
Daniel Berlin1316a942017-04-06 18:52:50 +00001932 << " due to removal of old leader " << *InstMA << "\n");
1933 markMemoryLeaderChangeTouched(OldClass);
1934 } else
Daniel Berlina8236562017-04-07 18:38:09 +00001935 OldClass->setMemoryLeader(nullptr);
Daniel Berlin1316a942017-04-06 18:52:50 +00001936 }
1937}
1938
Daniel Berlin3a1bd022017-01-11 20:22:05 +00001939// Move a value, currently in OldClass, to be part of NewClass
Daniel Berlin1316a942017-04-06 18:52:50 +00001940// Update OldClass and NewClass for the move (including changing leaders, etc).
1941void NewGVN::moveValueToNewCongruenceClass(Instruction *I, const Expression *E,
Daniel Berlinc0431fd2017-01-13 22:40:01 +00001942 CongruenceClass *OldClass,
Daniel Berlin3a1bd022017-01-11 20:22:05 +00001943 CongruenceClass *NewClass) {
Daniel Berlina8236562017-04-07 18:38:09 +00001944 if (I == OldClass->getNextLeader().first)
1945 OldClass->resetNextLeader();
Daniel Berlinc0431fd2017-01-13 22:40:01 +00001946
Daniel Berlin89fea6f2017-01-20 06:38:41 +00001947 // It's possible, though unlikely, for us to discover equivalences such
1948 // that the current leader does not dominate the old one.
1949 // This statistic tracks how often this happens.
1950 // We assert on phi nodes when this happens, currently, for debugging, because
1951 // we want to make sure we name phi node cycles properly.
Daniel Berlina8236562017-04-07 18:38:09 +00001952 if (isa<Instruction>(NewClass->getLeader()) && NewClass->getLeader() &&
1953 I != NewClass->getLeader()) {
Daniel Berlinffc30782017-03-24 06:33:51 +00001954 auto *IBB = I->getParent();
Daniel Berlina8236562017-04-07 18:38:09 +00001955 auto *NCBB = cast<Instruction>(NewClass->getLeader())->getParent();
Daniel Berlin21279bd2017-04-06 18:52:58 +00001956 bool Dominated =
Daniel Berlina8236562017-04-07 18:38:09 +00001957 IBB == NCBB && InstrToDFSNum(I) < InstrToDFSNum(NewClass->getLeader());
Daniel Berlinffc30782017-03-24 06:33:51 +00001958 Dominated = Dominated || DT->properlyDominates(IBB, NCBB);
1959 if (Dominated) {
1960 ++NumGVNNotMostDominatingLeader;
1961 assert(
1962 !isa<PHINode>(I) &&
1963 "New class for instruction should not be dominated by instruction");
1964 }
Daniel Berlin89fea6f2017-01-20 06:38:41 +00001965 }
Daniel Berlinc0431fd2017-01-13 22:40:01 +00001966
Daniel Berlina8236562017-04-07 18:38:09 +00001967 if (NewClass->getLeader() != I)
1968 NewClass->addPossibleNextLeader({I, InstrToDFSNum(I)});
Daniel Berlinc0431fd2017-01-13 22:40:01 +00001969
Daniel Berlina8236562017-04-07 18:38:09 +00001970 OldClass->erase(I);
1971 NewClass->insert(I);
Daniel Berlin1316a942017-04-06 18:52:50 +00001972 // Handle our special casing of stores.
Daniel Berlin1ea5f322017-01-26 22:21:48 +00001973 if (auto *SI = dyn_cast<StoreInst>(I)) {
Daniel Berlina8236562017-04-07 18:38:09 +00001974 OldClass->decStoreCount();
1975 // Okay, so when do we want to make a store a leader of a class?
1976 // If we have a store defined by an earlier load, we want the earlier load
1977 // to lead the class.
1978 // If we have a store defined by something else, we want the store to lead
1979 // the class so everything else gets the "something else" as a value.
Daniel Berlin1316a942017-04-06 18:52:50 +00001980 // If we have a store as the single member of the class, we want the store
Daniel Berlina8236562017-04-07 18:38:09 +00001981 // as the leader
1982 if (NewClass->getStoreCount() == 0 && !NewClass->getStoredValue()) {
Daniel Berlin1316a942017-04-06 18:52:50 +00001983 // If it's a store expression we are using, it means we are not equivalent
1984 // to something earlier.
1985 if (isa<StoreExpression>(E)) {
1986 assert(lookupOperandLeader(SI->getValueOperand()) !=
Daniel Berlina8236562017-04-07 18:38:09 +00001987 NewClass->getLeader());
1988 NewClass->setStoredValue(lookupOperandLeader(SI->getValueOperand()));
Daniel Berlin1316a942017-04-06 18:52:50 +00001989 markValueLeaderChangeTouched(NewClass);
1990 // Shift the new class leader to be the store
Daniel Berlina8236562017-04-07 18:38:09 +00001991 DEBUG(dbgs() << "Changing leader of congruence class "
1992 << NewClass->getID() << " from " << *NewClass->getLeader()
1993 << " to " << *SI << " because store joined class\n");
Daniel Berlin1316a942017-04-06 18:52:50 +00001994 // If we changed the leader, we have to mark it changed because we don't
1995 // know what it will do to symbolic evlauation.
Daniel Berlina8236562017-04-07 18:38:09 +00001996 NewClass->setLeader(SI);
Daniel Berlin1316a942017-04-06 18:52:50 +00001997 }
1998 // We rely on the code below handling the MemoryAccess change.
1999 }
Daniel Berlina8236562017-04-07 18:38:09 +00002000 NewClass->incStoreCount();
Daniel Berlin3a1bd022017-01-11 20:22:05 +00002001 }
Daniel Berlin1316a942017-04-06 18:52:50 +00002002 // True if there is no memory instructions left in a class that had memory
2003 // instructions before.
Daniel Berlin3a1bd022017-01-11 20:22:05 +00002004
Daniel Berlin1316a942017-04-06 18:52:50 +00002005 // If it's not a memory use, set the MemoryAccess equivalence
2006 auto *InstMA = dyn_cast_or_null<MemoryDef>(MSSA->getMemoryAccess(I));
Daniel Berlina8236562017-04-07 18:38:09 +00002007 bool InstWasMemoryLeader = InstMA && OldClass->getMemoryLeader() == InstMA;
Daniel Berlin1316a942017-04-06 18:52:50 +00002008 if (InstMA)
2009 moveMemoryToNewCongruenceClass(I, InstMA, OldClass, NewClass);
Daniel Berlinc0431fd2017-01-13 22:40:01 +00002010 ValueToClass[I] = NewClass;
Daniel Berlin3a1bd022017-01-11 20:22:05 +00002011 // See if we destroyed the class or need to swap leaders.
Daniel Berlina8236562017-04-07 18:38:09 +00002012 if (OldClass->empty() && OldClass != TOPClass) {
2013 if (OldClass->getDefiningExpr()) {
2014 DEBUG(dbgs() << "Erasing expression " << OldClass->getDefiningExpr()
Daniel Berlin3a1bd022017-01-11 20:22:05 +00002015 << " from table\n");
Daniel Berlina8236562017-04-07 18:38:09 +00002016 ExpressionToClass.erase(OldClass->getDefiningExpr());
Daniel Berlin3a1bd022017-01-11 20:22:05 +00002017 }
Daniel Berlina8236562017-04-07 18:38:09 +00002018 } else if (OldClass->getLeader() == I) {
Daniel Berlin3a1bd022017-01-11 20:22:05 +00002019 // When the leader changes, the value numbering of
2020 // everything may change due to symbolization changes, so we need to
2021 // reprocess.
Daniel Berlina8236562017-04-07 18:38:09 +00002022 DEBUG(dbgs() << "Value class leader change for class " << OldClass->getID()
Daniel Berlin1316a942017-04-06 18:52:50 +00002023 << "\n");
Daniel Berlinc0431fd2017-01-13 22:40:01 +00002024 ++NumGVNLeaderChanges;
Daniel Berlin26addef2017-01-20 21:04:30 +00002025 // Destroy the stored value if there are no more stores to represent it.
Daniel Berlin1316a942017-04-06 18:52:50 +00002026 // Note that this is basically clean up for the expression removal that
2027 // happens below. If we remove stores from a class, we may leave it as a
2028 // class of equivalent memory phis.
Daniel Berlina8236562017-04-07 18:38:09 +00002029 if (OldClass->getStoreCount() == 0) {
2030 if (OldClass->getStoredValue())
2031 OldClass->setStoredValue(nullptr);
Daniel Berlin1ea5f322017-01-26 22:21:48 +00002032 }
Daniel Berlin1316a942017-04-06 18:52:50 +00002033 // If we destroy the old access leader and it's a store, we have to
2034 // effectively destroy the congruence class. When it comes to scalars,
2035 // anything with the same value is as good as any other. That means that
2036 // one leader is as good as another, and as long as you have some leader for
2037 // the value, you are good.. When it comes to *memory states*, only one
2038 // particular thing really represents the definition of a given memory
2039 // state. Once it goes away, we need to re-evaluate which pieces of memory
2040 // are really still equivalent. The best way to do this is to re-value
2041 // number things. The only way to really make that happen is to destroy the
2042 // rest of the class. In order to effectively destroy the class, we reset
2043 // ExpressionToClass for each by using the ValueToExpression mapping. The
2044 // members later get marked as touched due to the leader change. We will
2045 // create new congruence classes, and the pieces that are still equivalent
2046 // will end back together in a new class. If this becomes too expensive, it
2047 // is possible to use a versioning scheme for the congruence classes to
2048 // avoid the expressions finding this old class. Note that the situation is
2049 // different for memory phis, becuase they are evaluated anew each time, and
2050 // they become equal not by hashing, but by seeing if all operands are the
2051 // same (or only one is reachable).
Daniel Berlina8236562017-04-07 18:38:09 +00002052 if (OldClass->getStoreCount() > 0 && InstWasMemoryLeader) {
2053 DEBUG(dbgs() << "Kicking everything out of class " << OldClass->getID()
Daniel Berlin1316a942017-04-06 18:52:50 +00002054 << " because MemoryAccess leader changed");
Daniel Berlina8236562017-04-07 18:38:09 +00002055 for (auto Member : *OldClass)
Daniel Berlin1ea5f322017-01-26 22:21:48 +00002056 ExpressionToClass.erase(ValueToExpression.lookup(Member));
2057 }
Daniel Berlina8236562017-04-07 18:38:09 +00002058 OldClass->setLeader(getNextValueLeader(OldClass));
2059 OldClass->resetNextLeader();
Daniel Berlin1316a942017-04-06 18:52:50 +00002060 markValueLeaderChangeTouched(OldClass);
Daniel Berlin32f8d562017-01-07 16:55:14 +00002061 }
2062}
2063
Davide Italiano7e274e02016-12-22 16:03:48 +00002064// Perform congruence finding on a given value numbering expression.
Daniel Berlinc0431fd2017-01-13 22:40:01 +00002065void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) {
2066 ValueToExpression[I] = E;
Davide Italiano7e274e02016-12-22 16:03:48 +00002067 // This is guaranteed to return something, since it will at least find
Daniel Berlinb79f5362017-02-11 12:48:50 +00002068 // TOP.
Daniel Berlin32f8d562017-01-07 16:55:14 +00002069
Daniel Berlinc0431fd2017-01-13 22:40:01 +00002070 CongruenceClass *IClass = ValueToClass[I];
2071 assert(IClass && "Should have found a IClass");
Davide Italiano7e274e02016-12-22 16:03:48 +00002072 // Dead classes should have been eliminated from the mapping.
Daniel Berlin1316a942017-04-06 18:52:50 +00002073 assert(!IClass->isDead() && "Found a dead class");
Davide Italiano7e274e02016-12-22 16:03:48 +00002074
2075 CongruenceClass *EClass;
Daniel Berlin02c6b172017-01-02 18:00:53 +00002076 if (const auto *VE = dyn_cast<VariableExpression>(E)) {
Davide Italiano7e274e02016-12-22 16:03:48 +00002077 EClass = ValueToClass[VE->getVariableValue()];
2078 } else {
2079 auto lookupResult = ExpressionToClass.insert({E, nullptr});
2080
2081 // If it's not in the value table, create a new congruence class.
2082 if (lookupResult.second) {
Davide Italiano0e714802016-12-28 14:00:11 +00002083 CongruenceClass *NewClass = createCongruenceClass(nullptr, E);
Davide Italiano7e274e02016-12-22 16:03:48 +00002084 auto place = lookupResult.first;
2085 place->second = NewClass;
2086
2087 // Constants and variables should always be made the leader.
Daniel Berlin32f8d562017-01-07 16:55:14 +00002088 if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
Daniel Berlina8236562017-04-07 18:38:09 +00002089 NewClass->setLeader(CE->getConstantValue());
Daniel Berlin32f8d562017-01-07 16:55:14 +00002090 } else if (const auto *SE = dyn_cast<StoreExpression>(E)) {
2091 StoreInst *SI = SE->getStoreInst();
Daniel Berlina8236562017-04-07 18:38:09 +00002092 NewClass->setLeader(SI);
2093 NewClass->setStoredValue(lookupOperandLeader(SI->getValueOperand()));
Daniel Berlin1ea5f322017-01-26 22:21:48 +00002094 // The RepMemoryAccess field will be filled in properly by the
2095 // moveValueToNewCongruenceClass call.
Daniel Berlin32f8d562017-01-07 16:55:14 +00002096 } else {
Daniel Berlina8236562017-04-07 18:38:09 +00002097 NewClass->setLeader(I);
Daniel Berlin32f8d562017-01-07 16:55:14 +00002098 }
2099 assert(!isa<VariableExpression>(E) &&
2100 "VariableExpression should have been handled already");
Davide Italiano7e274e02016-12-22 16:03:48 +00002101
2102 EClass = NewClass;
Daniel Berlinc0431fd2017-01-13 22:40:01 +00002103 DEBUG(dbgs() << "Created new congruence class for " << *I
Daniel Berlina8236562017-04-07 18:38:09 +00002104 << " using expression " << *E << " at " << NewClass->getID()
2105 << " and leader " << *(NewClass->getLeader()));
2106 if (NewClass->getStoredValue())
2107 DEBUG(dbgs() << " and stored value " << *(NewClass->getStoredValue()));
Daniel Berlin26addef2017-01-20 21:04:30 +00002108 DEBUG(dbgs() << "\n");
Davide Italiano7e274e02016-12-22 16:03:48 +00002109 } else {
2110 EClass = lookupResult.first->second;
Daniel Berlin589cecc2017-01-02 18:00:46 +00002111 if (isa<ConstantExpression>(E))
Davide Italianof58a30232017-04-10 23:08:35 +00002112 assert((isa<Constant>(EClass->getLeader()) ||
2113 (EClass->getStoredValue() &&
2114 isa<Constant>(EClass->getStoredValue()))) &&
2115 "Any class with a constant expression should have a "
2116 "constant leader");
Daniel Berlin589cecc2017-01-02 18:00:46 +00002117
Davide Italiano7e274e02016-12-22 16:03:48 +00002118 assert(EClass && "Somehow don't have an eclass");
2119
Daniel Berlin1316a942017-04-06 18:52:50 +00002120 assert(!EClass->isDead() && "We accidentally looked up a dead class");
Davide Italiano7e274e02016-12-22 16:03:48 +00002121 }
2122 }
Daniel Berlinc0431fd2017-01-13 22:40:01 +00002123 bool ClassChanged = IClass != EClass;
2124 bool LeaderChanged = LeaderChanges.erase(I);
Daniel Berlin3a1bd022017-01-11 20:22:05 +00002125 if (ClassChanged || LeaderChanged) {
Daniel Berlina8236562017-04-07 18:38:09 +00002126 DEBUG(dbgs() << "New class " << EClass->getID() << " for expression " << *E
Davide Italiano7e274e02016-12-22 16:03:48 +00002127 << "\n");
Daniel Berlin3a1bd022017-01-11 20:22:05 +00002128 if (ClassChanged)
Daniel Berlin1316a942017-04-06 18:52:50 +00002129 moveValueToNewCongruenceClass(I, E, IClass, EClass);
Daniel Berlinc0431fd2017-01-13 22:40:01 +00002130 markUsersTouched(I);
Daniel Berlin1ea5f322017-01-26 22:21:48 +00002131 if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
Daniel Berlinc0431fd2017-01-13 22:40:01 +00002132 markMemoryUsersTouched(MA);
Daniel Berlinf7d95802017-02-18 23:06:50 +00002133 if (auto *CI = dyn_cast<CmpInst>(I))
2134 markPredicateUsersTouched(CI);
Davide Italiano7e274e02016-12-22 16:03:48 +00002135 }
2136}
2137
2138// Process the fact that Edge (from, to) is reachable, including marking
2139// any newly reachable blocks and instructions for processing.
2140void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) {
2141 // Check if the Edge was reachable before.
2142 if (ReachableEdges.insert({From, To}).second) {
2143 // If this block wasn't reachable before, all instructions are touched.
2144 if (ReachableBlocks.insert(To).second) {
2145 DEBUG(dbgs() << "Block " << getBlockName(To) << " marked reachable\n");
2146 const auto &InstRange = BlockInstRange.lookup(To);
2147 TouchedInstructions.set(InstRange.first, InstRange.second);
2148 } else {
2149 DEBUG(dbgs() << "Block " << getBlockName(To)
2150 << " was reachable, but new edge {" << getBlockName(From)
2151 << "," << getBlockName(To) << "} to it found\n");
2152
2153 // We've made an edge reachable to an existing block, which may
2154 // impact predicates. Otherwise, only mark the phi nodes as touched, as
2155 // they are the only thing that depend on new edges. Anything using their
2156 // values will get propagated to if necessary.
Daniel Berlin589cecc2017-01-02 18:00:46 +00002157 if (MemoryAccess *MemPhi = MSSA->getMemoryAccess(To))
Daniel Berlin21279bd2017-04-06 18:52:58 +00002158 TouchedInstructions.set(InstrToDFSNum(MemPhi));
Daniel Berlin589cecc2017-01-02 18:00:46 +00002159
Davide Italiano7e274e02016-12-22 16:03:48 +00002160 auto BI = To->begin();
2161 while (isa<PHINode>(BI)) {
Daniel Berlin21279bd2017-04-06 18:52:58 +00002162 TouchedInstructions.set(InstrToDFSNum(&*BI));
Davide Italiano7e274e02016-12-22 16:03:48 +00002163 ++BI;
2164 }
2165 }
2166 }
2167}
2168
2169// Given a predicate condition (from a switch, cmp, or whatever) and a block,
2170// see if we know some constant value for it already.
Daniel Berlin97718e62017-01-31 22:32:03 +00002171Value *NewGVN::findConditionEquivalence(Value *Cond) const {
Daniel Berlin203f47b2017-01-31 22:31:53 +00002172 auto Result = lookupOperandLeader(Cond);
Davide Italiano7e274e02016-12-22 16:03:48 +00002173 if (isa<Constant>(Result))
2174 return Result;
2175 return nullptr;
2176}
2177
2178// Process the outgoing edges of a block for reachability.
2179void NewGVN::processOutgoingEdges(TerminatorInst *TI, BasicBlock *B) {
2180 // Evaluate reachability of terminator instruction.
2181 BranchInst *BR;
2182 if ((BR = dyn_cast<BranchInst>(TI)) && BR->isConditional()) {
2183 Value *Cond = BR->getCondition();
Daniel Berlin97718e62017-01-31 22:32:03 +00002184 Value *CondEvaluated = findConditionEquivalence(Cond);
Davide Italiano7e274e02016-12-22 16:03:48 +00002185 if (!CondEvaluated) {
2186 if (auto *I = dyn_cast<Instruction>(Cond)) {
Daniel Berlin97718e62017-01-31 22:32:03 +00002187 const Expression *E = createExpression(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00002188 if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
2189 CondEvaluated = CE->getConstantValue();
2190 }
2191 } else if (isa<ConstantInt>(Cond)) {
2192 CondEvaluated = Cond;
2193 }
2194 }
2195 ConstantInt *CI;
2196 BasicBlock *TrueSucc = BR->getSuccessor(0);
2197 BasicBlock *FalseSucc = BR->getSuccessor(1);
2198 if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) {
2199 if (CI->isOne()) {
2200 DEBUG(dbgs() << "Condition for Terminator " << *TI
2201 << " evaluated to true\n");
2202 updateReachableEdge(B, TrueSucc);
2203 } else if (CI->isZero()) {
2204 DEBUG(dbgs() << "Condition for Terminator " << *TI
2205 << " evaluated to false\n");
2206 updateReachableEdge(B, FalseSucc);
2207 }
2208 } else {
2209 updateReachableEdge(B, TrueSucc);
2210 updateReachableEdge(B, FalseSucc);
2211 }
2212 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
2213 // For switches, propagate the case values into the case
2214 // destinations.
2215
2216 // Remember how many outgoing edges there are to every successor.
2217 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
2218
Davide Italiano7e274e02016-12-22 16:03:48 +00002219 Value *SwitchCond = SI->getCondition();
Daniel Berlin97718e62017-01-31 22:32:03 +00002220 Value *CondEvaluated = findConditionEquivalence(SwitchCond);
Davide Italiano7e274e02016-12-22 16:03:48 +00002221 // See if we were able to turn this switch statement into a constant.
2222 if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00002223 auto *CondVal = cast<ConstantInt>(CondEvaluated);
Davide Italiano7e274e02016-12-22 16:03:48 +00002224 // We should be able to get case value for this.
Chandler Carruth927d8e62017-04-12 07:27:28 +00002225 auto Case = *SI->findCaseValue(CondVal);
2226 if (Case.getCaseSuccessor() == SI->getDefaultDest()) {
Davide Italiano7e274e02016-12-22 16:03:48 +00002227 // We proved the value is outside of the range of the case.
2228 // We can't do anything other than mark the default dest as reachable,
2229 // and go home.
2230 updateReachableEdge(B, SI->getDefaultDest());
2231 return;
2232 }
2233 // Now get where it goes and mark it reachable.
Chandler Carruth927d8e62017-04-12 07:27:28 +00002234 BasicBlock *TargetBlock = Case.getCaseSuccessor();
Davide Italiano7e274e02016-12-22 16:03:48 +00002235 updateReachableEdge(B, TargetBlock);
Davide Italiano7e274e02016-12-22 16:03:48 +00002236 } else {
2237 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
2238 BasicBlock *TargetBlock = SI->getSuccessor(i);
2239 ++SwitchEdges[TargetBlock];
2240 updateReachableEdge(B, TargetBlock);
2241 }
2242 }
2243 } else {
2244 // Otherwise this is either unconditional, or a type we have no
2245 // idea about. Just mark successors as reachable.
2246 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
2247 BasicBlock *TargetBlock = TI->getSuccessor(i);
2248 updateReachableEdge(B, TargetBlock);
2249 }
Daniel Berlin589cecc2017-01-02 18:00:46 +00002250
2251 // This also may be a memory defining terminator, in which case, set it
Daniel Berlin1316a942017-04-06 18:52:50 +00002252 // equivalent only to itself.
2253 //
2254 auto *MA = MSSA->getMemoryAccess(TI);
2255 if (MA && !isa<MemoryUse>(MA)) {
2256 auto *CC = ensureLeaderOfMemoryClass(MA);
2257 if (setMemoryClass(MA, CC))
2258 markMemoryUsersTouched(MA);
2259 }
Davide Italiano7e274e02016-12-22 16:03:48 +00002260 }
2261}
2262
Daniel Berlin5c338ff2017-03-10 19:05:04 +00002263// The algorithm initially places the values of the routine in the TOP
2264// congruence class. The leader of TOP is the undetermined value `undef`.
2265// When the algorithm has finished, values still in TOP are unreachable.
Davide Italiano7e274e02016-12-22 16:03:48 +00002266void NewGVN::initializeCongruenceClasses(Function &F) {
Daniel Berlin1316a942017-04-06 18:52:50 +00002267 NextCongruenceNum = 0;
2268
2269 // Note that even though we use the live on entry def as a representative
2270 // MemoryAccess, it is *not* the same as the actual live on entry def. We
2271 // have no real equivalemnt to undef for MemoryAccesses, and so we really
2272 // should be checking whether the MemoryAccess is top if we want to know if it
2273 // is equivalent to everything. Otherwise, what this really signifies is that
2274 // the access "it reaches all the way back to the beginning of the function"
2275
Daniel Berlin5c338ff2017-03-10 19:05:04 +00002276 // Initialize all other instructions to be in TOP class.
Daniel Berlin5c338ff2017-03-10 19:05:04 +00002277 TOPClass = createCongruenceClass(nullptr, nullptr);
Daniel Berlina8236562017-04-07 18:38:09 +00002278 TOPClass->setMemoryLeader(MSSA->getLiveOnEntryDef());
Daniel Berlin1316a942017-04-06 18:52:50 +00002279 // The live on entry def gets put into it's own class
2280 MemoryAccessToClass[MSSA->getLiveOnEntryDef()] =
2281 createMemoryClass(MSSA->getLiveOnEntryDef());
Daniel Berlin589cecc2017-01-02 18:00:46 +00002282
Daniel Berlinec9deb72017-04-18 17:06:11 +00002283 for (auto DTN : nodes(DT)) {
2284 BasicBlock *BB = DTN->getBlock();
Daniel Berlin1316a942017-04-06 18:52:50 +00002285 // All MemoryAccesses are equivalent to live on entry to start. They must
2286 // be initialized to something so that initial changes are noticed. For
2287 // the maximal answer, we initialize them all to be the same as
2288 // liveOnEntry.
Daniel Berlinec9deb72017-04-18 17:06:11 +00002289 auto *MemoryBlockDefs = MSSA->getBlockDefs(BB);
Daniel Berlin1316a942017-04-06 18:52:50 +00002290 if (MemoryBlockDefs)
2291 for (const auto &Def : *MemoryBlockDefs) {
2292 MemoryAccessToClass[&Def] = TOPClass;
2293 auto *MD = dyn_cast<MemoryDef>(&Def);
2294 // Insert the memory phis into the member list.
2295 if (!MD) {
2296 const MemoryPhi *MP = cast<MemoryPhi>(&Def);
Daniel Berlina8236562017-04-07 18:38:09 +00002297 TOPClass->memory_insert(MP);
Daniel Berlin1316a942017-04-06 18:52:50 +00002298 MemoryPhiState.insert({MP, MPS_TOP});
2299 }
2300
2301 if (MD && isa<StoreInst>(MD->getMemoryInst()))
Daniel Berlina8236562017-04-07 18:38:09 +00002302 TOPClass->incStoreCount();
Daniel Berlin1316a942017-04-06 18:52:50 +00002303 }
Daniel Berlinec9deb72017-04-18 17:06:11 +00002304 for (auto &I : *BB) {
Daniel Berlin22a4a012017-02-11 15:20:15 +00002305 // Don't insert void terminators into the class. We don't value number
Daniel Berlin5c338ff2017-03-10 19:05:04 +00002306 // them, and they just end up sitting in TOP.
Daniel Berlin22a4a012017-02-11 15:20:15 +00002307 if (isa<TerminatorInst>(I) && I.getType()->isVoidTy())
2308 continue;
Daniel Berlina8236562017-04-07 18:38:09 +00002309 TOPClass->insert(&I);
Daniel Berlin5c338ff2017-03-10 19:05:04 +00002310 ValueToClass[&I] = TOPClass;
Daniel Berlin85cbc8c2016-12-26 19:57:25 +00002311 }
Daniel Berlin589cecc2017-01-02 18:00:46 +00002312 }
Davide Italiano7e274e02016-12-22 16:03:48 +00002313
2314 // Initialize arguments to be in their own unique congruence classes
2315 for (auto &FA : F.args())
2316 createSingletonCongruenceClass(&FA);
2317}
2318
2319void NewGVN::cleanupTables() {
2320 for (unsigned i = 0, e = CongruenceClasses.size(); i != e; ++i) {
Daniel Berlina8236562017-04-07 18:38:09 +00002321 DEBUG(dbgs() << "Congruence class " << CongruenceClasses[i]->getID()
2322 << " has " << CongruenceClasses[i]->size() << " members\n");
Davide Italiano7e274e02016-12-22 16:03:48 +00002323 // Make sure we delete the congruence class (probably worth switching to
2324 // a unique_ptr at some point.
2325 delete CongruenceClasses[i];
Davide Italiano0e714802016-12-28 14:00:11 +00002326 CongruenceClasses[i] = nullptr;
Davide Italiano7e274e02016-12-22 16:03:48 +00002327 }
2328
2329 ValueToClass.clear();
2330 ArgRecycler.clear(ExpressionAllocator);
2331 ExpressionAllocator.Reset();
2332 CongruenceClasses.clear();
2333 ExpressionToClass.clear();
2334 ValueToExpression.clear();
2335 ReachableBlocks.clear();
2336 ReachableEdges.clear();
2337#ifndef NDEBUG
2338 ProcessedCount.clear();
2339#endif
Davide Italiano7e274e02016-12-22 16:03:48 +00002340 InstrDFS.clear();
2341 InstructionsToErase.clear();
Davide Italiano7e274e02016-12-22 16:03:48 +00002342 DFSToInstr.clear();
2343 BlockInstRange.clear();
2344 TouchedInstructions.clear();
Daniel Berlin1ea5f322017-01-26 22:21:48 +00002345 MemoryAccessToClass.clear();
Daniel Berlinf7d95802017-02-18 23:06:50 +00002346 PredicateToUsers.clear();
Daniel Berlin1316a942017-04-06 18:52:50 +00002347 MemoryToUsers.clear();
Davide Italiano7e274e02016-12-22 16:03:48 +00002348}
2349
2350std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B,
2351 unsigned Start) {
2352 unsigned End = Start;
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002353 if (MemoryAccess *MemPhi = MSSA->getMemoryAccess(B)) {
2354 InstrDFS[MemPhi] = End++;
Piotr Padlewski6c37d292016-12-28 23:24:02 +00002355 DFSToInstr.emplace_back(MemPhi);
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002356 }
2357
Davide Italiano7e274e02016-12-22 16:03:48 +00002358 for (auto &I : *B) {
Daniel Berlin856fa142017-03-06 18:42:27 +00002359 // There's no need to call isInstructionTriviallyDead more than once on
2360 // an instruction. Therefore, once we know that an instruction is dead
2361 // we change its DFS number so that it doesn't get value numbered.
2362 if (isInstructionTriviallyDead(&I, TLI)) {
2363 InstrDFS[&I] = 0;
2364 DEBUG(dbgs() << "Skipping trivially dead instruction " << I << "\n");
2365 markInstructionForDeletion(&I);
2366 continue;
2367 }
2368
Davide Italiano7e274e02016-12-22 16:03:48 +00002369 InstrDFS[&I] = End++;
Piotr Padlewski6c37d292016-12-28 23:24:02 +00002370 DFSToInstr.emplace_back(&I);
Davide Italiano7e274e02016-12-22 16:03:48 +00002371 }
2372
2373 // All of the range functions taken half-open ranges (open on the end side).
2374 // So we do not subtract one from count, because at this point it is one
2375 // greater than the last instruction.
2376 return std::make_pair(Start, End);
2377}
2378
2379void NewGVN::updateProcessedCount(Value *V) {
2380#ifndef NDEBUG
2381 if (ProcessedCount.count(V) == 0) {
2382 ProcessedCount.insert({V, 1});
2383 } else {
Davide Italiano7cf29dc2017-01-14 20:13:18 +00002384 ++ProcessedCount[V];
Davide Italiano7e274e02016-12-22 16:03:48 +00002385 assert(ProcessedCount[V] < 100 &&
Davide Italiano75e39f92016-12-30 15:01:17 +00002386 "Seem to have processed the same Value a lot");
Davide Italiano7e274e02016-12-22 16:03:48 +00002387 }
2388#endif
2389}
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002390// Evaluate MemoryPhi nodes symbolically, just like PHI nodes
2391void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) {
2392 // If all the arguments are the same, the MemoryPhi has the same value as the
2393 // argument.
Daniel Berlinc4796862017-01-27 02:37:11 +00002394 // Filter out unreachable blocks and self phis from our operands.
Daniel Berlin41b39162017-03-18 15:41:36 +00002395 const BasicBlock *PHIBlock = MP->getBlock();
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002396 auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) {
Daniel Berlin1316a942017-04-06 18:52:50 +00002397 return lookupMemoryLeader(cast<MemoryAccess>(U)) != MP &&
Daniel Berlinc4796862017-01-27 02:37:11 +00002398 !isMemoryAccessTop(cast<MemoryAccess>(U)) &&
Daniel Berlin41b39162017-03-18 15:41:36 +00002399 ReachableEdges.count({MP->getIncomingBlock(U), PHIBlock});
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002400 });
Daniel Berlinc4796862017-01-27 02:37:11 +00002401 // If all that is left is nothing, our memoryphi is undef. We keep it as
2402 // InitialClass. Note: The only case this should happen is if we have at
2403 // least one self-argument.
2404 if (Filtered.begin() == Filtered.end()) {
Daniel Berlin1316a942017-04-06 18:52:50 +00002405 if (setMemoryClass(MP, TOPClass))
Daniel Berlinc4796862017-01-27 02:37:11 +00002406 markMemoryUsersTouched(MP);
2407 return;
2408 }
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002409
2410 // Transform the remaining operands into operand leaders.
2411 // FIXME: mapped_iterator should have a range version.
2412 auto LookupFunc = [&](const Use &U) {
Daniel Berlin1316a942017-04-06 18:52:50 +00002413 return lookupMemoryLeader(cast<MemoryAccess>(U));
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002414 };
2415 auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc);
2416 auto MappedEnd = map_iterator(Filtered.end(), LookupFunc);
2417
2418 // and now check if all the elements are equal.
2419 // Sadly, we can't use std::equals since these are random access iterators.
Daniel Berlin1316a942017-04-06 18:52:50 +00002420 const auto *AllSameValue = *MappedBegin;
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002421 ++MappedBegin;
2422 bool AllEqual = std::all_of(
2423 MappedBegin, MappedEnd,
2424 [&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; });
2425
2426 if (AllEqual)
2427 DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue << "\n");
2428 else
2429 DEBUG(dbgs() << "Memory Phi value numbered to itself\n");
Daniel Berlin1316a942017-04-06 18:52:50 +00002430 // If it's equal to something, it's in that class. Otherwise, it has to be in
2431 // a class where it is the leader (other things may be equivalent to it, but
2432 // it needs to start off in its own class, which means it must have been the
2433 // leader, and it can't have stopped being the leader because it was never
2434 // removed).
2435 CongruenceClass *CC =
2436 AllEqual ? getMemoryClass(AllSameValue) : ensureLeaderOfMemoryClass(MP);
2437 auto OldState = MemoryPhiState.lookup(MP);
2438 assert(OldState != MPS_Invalid && "Invalid memory phi state");
2439 auto NewState = AllEqual ? MPS_Equivalent : MPS_Unique;
2440 MemoryPhiState[MP] = NewState;
2441 if (setMemoryClass(MP, CC) || OldState != NewState)
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002442 markMemoryUsersTouched(MP);
2443}
2444
2445// Value number a single instruction, symbolically evaluating, performing
2446// congruence finding, and updating mappings.
2447void NewGVN::valueNumberInstruction(Instruction *I) {
2448 DEBUG(dbgs() << "Processing instruction " << *I << "\n");
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002449 if (!I->isTerminator()) {
Daniel Berlin283a6082017-03-01 19:59:26 +00002450 const Expression *Symbolized = nullptr;
2451 if (DebugCounter::shouldExecute(VNCounter)) {
2452 Symbolized = performSymbolicEvaluation(I);
2453 } else {
Daniel Berlin343576a2017-03-06 18:42:39 +00002454 // Mark the instruction as unused so we don't value number it again.
2455 InstrDFS[I] = 0;
Daniel Berlin283a6082017-03-01 19:59:26 +00002456 }
Daniel Berlin02c6b172017-01-02 18:00:53 +00002457 // If we couldn't come up with a symbolic expression, use the unknown
2458 // expression
Daniel Berlin1316a942017-04-06 18:52:50 +00002459 if (Symbolized == nullptr) {
Daniel Berlin02c6b172017-01-02 18:00:53 +00002460 Symbolized = createUnknownExpression(I);
Daniel Berlin1316a942017-04-06 18:52:50 +00002461 }
2462
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002463 performCongruenceFinding(I, Symbolized);
2464 } else {
Daniel Berlin02c6b172017-01-02 18:00:53 +00002465 // Handle terminators that return values. All of them produce values we
Daniel Berlinb79f5362017-02-11 12:48:50 +00002466 // don't currently understand. We don't place non-value producing
2467 // terminators in a class.
Daniel Berlin25f05b02017-01-02 18:22:38 +00002468 if (!I->getType()->isVoidTy()) {
Daniel Berlin02c6b172017-01-02 18:00:53 +00002469 auto *Symbolized = createUnknownExpression(I);
2470 performCongruenceFinding(I, Symbolized);
2471 }
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002472 processOutgoingEdges(dyn_cast<TerminatorInst>(I), I->getParent());
2473 }
2474}
Davide Italiano7e274e02016-12-22 16:03:48 +00002475
Daniel Berlinf6eba4b2017-01-11 20:22:36 +00002476// Check if there is a path, using single or equal argument phi nodes, from
2477// First to Second.
2478bool NewGVN::singleReachablePHIPath(const MemoryAccess *First,
2479 const MemoryAccess *Second) const {
2480 if (First == Second)
2481 return true;
Daniel Berlin871ecd92017-04-01 09:44:24 +00002482 if (MSSA->isLiveOnEntryDef(First))
Daniel Berlinf6eba4b2017-01-11 20:22:36 +00002483 return false;
Daniel Berlin1316a942017-04-06 18:52:50 +00002484
Daniel Berlin871ecd92017-04-01 09:44:24 +00002485 const auto *EndDef = First;
Daniel Berlin3082b8e2017-04-05 17:26:25 +00002486 for (auto *ChainDef : optimized_def_chain(First)) {
Daniel Berlin871ecd92017-04-01 09:44:24 +00002487 if (ChainDef == Second)
2488 return true;
2489 if (MSSA->isLiveOnEntryDef(ChainDef))
2490 return false;
2491 EndDef = ChainDef;
Daniel Berlinf6eba4b2017-01-11 20:22:36 +00002492 }
Daniel Berlin871ecd92017-04-01 09:44:24 +00002493 auto *MP = cast<MemoryPhi>(EndDef);
2494 auto ReachableOperandPred = [&](const Use &U) {
2495 return ReachableEdges.count({MP->getIncomingBlock(U), MP->getBlock()});
2496 };
2497 auto FilteredPhiArgs =
2498 make_filter_range(MP->operands(), ReachableOperandPred);
2499 SmallVector<const Value *, 32> OperandList;
2500 std::copy(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
2501 std::back_inserter(OperandList));
2502 bool Okay = OperandList.size() == 1;
2503 if (!Okay)
2504 Okay =
2505 std::equal(OperandList.begin(), OperandList.end(), OperandList.begin());
2506 if (Okay)
2507 return singleReachablePHIPath(cast<MemoryAccess>(OperandList[0]), Second);
2508 return false;
Daniel Berlinf6eba4b2017-01-11 20:22:36 +00002509}
2510
Daniel Berlin589cecc2017-01-02 18:00:46 +00002511// Verify the that the memory equivalence table makes sense relative to the
Daniel Berlinf6eba4b2017-01-11 20:22:36 +00002512// congruence classes. Note that this checking is not perfect, and is currently
Davide Italianoed67f192017-01-14 20:15:04 +00002513// subject to very rare false negatives. It is only useful for
2514// testing/debugging.
Daniel Berlinf6eba4b2017-01-11 20:22:36 +00002515void NewGVN::verifyMemoryCongruency() const {
Davide Italianoe9781e72017-03-25 02:40:02 +00002516#ifndef NDEBUG
Daniel Berlin1316a942017-04-06 18:52:50 +00002517 // Verify that the memory table equivalence and memory member set match
2518 for (const auto *CC : CongruenceClasses) {
2519 if (CC == TOPClass || CC->isDead())
2520 continue;
Daniel Berlina8236562017-04-07 18:38:09 +00002521 if (CC->getStoreCount() != 0) {
Davide Italianof58a30232017-04-10 23:08:35 +00002522 assert((CC->getStoredValue() || !isa<StoreInst>(CC->getLeader())) &&
Davide Italiano94bf7842017-05-04 17:26:15 +00002523 "Any class with a store as a leader should have a "
2524 "representative stored value");
Daniel Berlina8236562017-04-07 18:38:09 +00002525 assert(CC->getMemoryLeader() &&
Davide Italiano94bf7842017-05-04 17:26:15 +00002526 "Any congruence class with a store should have a "
2527 "representative access");
Daniel Berlin1316a942017-04-06 18:52:50 +00002528 }
2529
Daniel Berlina8236562017-04-07 18:38:09 +00002530 if (CC->getMemoryLeader())
2531 assert(MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC &&
Daniel Berlin1316a942017-04-06 18:52:50 +00002532 "Representative MemoryAccess does not appear to be reverse "
2533 "mapped properly");
Daniel Berlina8236562017-04-07 18:38:09 +00002534 for (auto M : CC->memory())
Daniel Berlin1316a942017-04-06 18:52:50 +00002535 assert(MemoryAccessToClass.lookup(M) == CC &&
2536 "Memory member does not appear to be reverse mapped properly");
2537 }
2538
2539 // Anything equivalent in the MemoryAccess table should be in the same
Daniel Berlin589cecc2017-01-02 18:00:46 +00002540 // congruence class.
2541
2542 // Filter out the unreachable and trivially dead entries, because they may
2543 // never have been updated if the instructions were not processed.
2544 auto ReachableAccessPred =
Daniel Berlin1ea5f322017-01-26 22:21:48 +00002545 [&](const std::pair<const MemoryAccess *, CongruenceClass *> Pair) {
Daniel Berlin589cecc2017-01-02 18:00:46 +00002546 bool Result = ReachableBlocks.count(Pair.first->getBlock());
Daniel Berlin9d0042b2017-04-18 20:15:47 +00002547 if (!Result || MSSA->isLiveOnEntryDef(Pair.first) ||
2548 MemoryToDFSNum(Pair.first) == 0)
Daniel Berlin589cecc2017-01-02 18:00:46 +00002549 return false;
2550 if (auto *MemDef = dyn_cast<MemoryDef>(Pair.first))
2551 return !isInstructionTriviallyDead(MemDef->getMemoryInst());
Davide Italiano6e7a2122017-05-15 18:50:53 +00002552
2553 // We could have phi nodes which operands are all trivially dead,
2554 // so we don't process them.
2555 if (auto *MemPHI = dyn_cast<MemoryPhi>(Pair.first)) {
2556 for (auto &U : MemPHI->incoming_values()) {
2557 if (Instruction *I = dyn_cast<Instruction>(U.get())) {
2558 if (!isInstructionTriviallyDead(I))
2559 return true;
2560 }
2561 }
2562 return false;
2563 }
2564
Daniel Berlin589cecc2017-01-02 18:00:46 +00002565 return true;
2566 };
2567
Daniel Berlin1ea5f322017-01-26 22:21:48 +00002568 auto Filtered = make_filter_range(MemoryAccessToClass, ReachableAccessPred);
Daniel Berlin589cecc2017-01-02 18:00:46 +00002569 for (auto KV : Filtered) {
Daniel Berlin1316a942017-04-06 18:52:50 +00002570 assert(KV.second != TOPClass &&
2571 "Memory not unreachable but ended up in TOP");
Daniel Berlin589cecc2017-01-02 18:00:46 +00002572 if (auto *FirstMUD = dyn_cast<MemoryUseOrDef>(KV.first)) {
Daniel Berlina8236562017-04-07 18:38:09 +00002573 auto *SecondMUD = dyn_cast<MemoryUseOrDef>(KV.second->getMemoryLeader());
Davide Italiano67ada752017-01-02 19:03:16 +00002574 if (FirstMUD && SecondMUD)
Davide Italianoff694052017-01-11 21:58:42 +00002575 assert((singleReachablePHIPath(FirstMUD, SecondMUD) ||
Davide Italianoed67f192017-01-14 20:15:04 +00002576 ValueToClass.lookup(FirstMUD->getMemoryInst()) ==
2577 ValueToClass.lookup(SecondMUD->getMemoryInst())) &&
2578 "The instructions for these memory operations should have "
2579 "been in the same congruence class or reachable through"
2580 "a single argument phi");
Daniel Berlin589cecc2017-01-02 18:00:46 +00002581 } else if (auto *FirstMP = dyn_cast<MemoryPhi>(KV.first)) {
Daniel Berlin589cecc2017-01-02 18:00:46 +00002582 // We can only sanely verify that MemoryDefs in the operand list all have
2583 // the same class.
2584 auto ReachableOperandPred = [&](const Use &U) {
Daniel Berlin41b39162017-03-18 15:41:36 +00002585 return ReachableEdges.count(
2586 {FirstMP->getIncomingBlock(U), FirstMP->getBlock()}) &&
Daniel Berlin589cecc2017-01-02 18:00:46 +00002587 isa<MemoryDef>(U);
2588
2589 };
2590 // All arguments should in the same class, ignoring unreachable arguments
2591 auto FilteredPhiArgs =
2592 make_filter_range(FirstMP->operands(), ReachableOperandPred);
2593 SmallVector<const CongruenceClass *, 16> PhiOpClasses;
2594 std::transform(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
2595 std::back_inserter(PhiOpClasses), [&](const Use &U) {
2596 const MemoryDef *MD = cast<MemoryDef>(U);
2597 return ValueToClass.lookup(MD->getMemoryInst());
2598 });
2599 assert(std::equal(PhiOpClasses.begin(), PhiOpClasses.end(),
2600 PhiOpClasses.begin()) &&
2601 "All MemoryPhi arguments should be in the same class");
2602 }
2603 }
Davide Italianoe9781e72017-03-25 02:40:02 +00002604#endif
Daniel Berlin589cecc2017-01-02 18:00:46 +00002605}
2606
Daniel Berlin06329a92017-03-18 15:41:40 +00002607// Verify that the sparse propagation we did actually found the maximal fixpoint
2608// We do this by storing the value to class mapping, touching all instructions,
2609// and redoing the iteration to see if anything changed.
2610void NewGVN::verifyIterationSettled(Function &F) {
Daniel Berlinf7d95802017-02-18 23:06:50 +00002611#ifndef NDEBUG
Daniel Berlin1316a942017-04-06 18:52:50 +00002612 DEBUG(dbgs() << "Beginning iteration verification\n");
Daniel Berlin06329a92017-03-18 15:41:40 +00002613 if (DebugCounter::isCounterSet(VNCounter))
2614 DebugCounter::setCounterValue(VNCounter, StartingVNCounter);
2615
2616 // Note that we have to store the actual classes, as we may change existing
2617 // classes during iteration. This is because our memory iteration propagation
2618 // is not perfect, and so may waste a little work. But it should generate
2619 // exactly the same congruence classes we have now, with different IDs.
2620 std::map<const Value *, CongruenceClass> BeforeIteration;
2621
2622 for (auto &KV : ValueToClass) {
2623 if (auto *I = dyn_cast<Instruction>(KV.first))
2624 // Skip unused/dead instructions.
Daniel Berlin21279bd2017-04-06 18:52:58 +00002625 if (InstrToDFSNum(I) == 0)
Daniel Berlinf7d95802017-02-18 23:06:50 +00002626 continue;
Daniel Berlin06329a92017-03-18 15:41:40 +00002627 BeforeIteration.insert({KV.first, *KV.second});
2628 }
2629
2630 TouchedInstructions.set();
2631 TouchedInstructions.reset(0);
2632 iterateTouchedInstructions();
2633 DenseSet<std::pair<const CongruenceClass *, const CongruenceClass *>>
2634 EqualClasses;
2635 for (const auto &KV : ValueToClass) {
2636 if (auto *I = dyn_cast<Instruction>(KV.first))
2637 // Skip unused/dead instructions.
Daniel Berlin21279bd2017-04-06 18:52:58 +00002638 if (InstrToDFSNum(I) == 0)
Daniel Berlin06329a92017-03-18 15:41:40 +00002639 continue;
2640 // We could sink these uses, but i think this adds a bit of clarity here as
2641 // to what we are comparing.
2642 auto *BeforeCC = &BeforeIteration.find(KV.first)->second;
2643 auto *AfterCC = KV.second;
2644 // Note that the classes can't change at this point, so we memoize the set
2645 // that are equal.
2646 if (!EqualClasses.count({BeforeCC, AfterCC})) {
Daniel Berlina8236562017-04-07 18:38:09 +00002647 assert(BeforeCC->isEquivalentTo(AfterCC) &&
Daniel Berlin06329a92017-03-18 15:41:40 +00002648 "Value number changed after main loop completed!");
2649 EqualClasses.insert({BeforeCC, AfterCC});
Daniel Berlinf7d95802017-02-18 23:06:50 +00002650 }
2651 }
2652#endif
2653}
2654
Daniel Berlin06329a92017-03-18 15:41:40 +00002655// This is the main value numbering loop, it iterates over the initial touched
2656// instruction set, propagating value numbers, marking things touched, etc,
2657// until the set of touched instructions is completely empty.
2658void NewGVN::iterateTouchedInstructions() {
2659 unsigned int Iterations = 0;
2660 // Figure out where touchedinstructions starts
2661 int FirstInstr = TouchedInstructions.find_first();
2662 // Nothing set, nothing to iterate, just return.
2663 if (FirstInstr == -1)
2664 return;
Daniel Berlin21279bd2017-04-06 18:52:58 +00002665 BasicBlock *LastBlock = getBlockForValue(InstrFromDFSNum(FirstInstr));
Daniel Berlin06329a92017-03-18 15:41:40 +00002666 while (TouchedInstructions.any()) {
2667 ++Iterations;
2668 // Walk through all the instructions in all the blocks in RPO.
2669 // TODO: As we hit a new block, we should push and pop equalities into a
2670 // table lookupOperandLeader can use, to catch things PredicateInfo
2671 // might miss, like edge-only equivalences.
2672 for (int InstrNum = TouchedInstructions.find_first(); InstrNum != -1;
2673 InstrNum = TouchedInstructions.find_next(InstrNum)) {
2674
2675 // This instruction was found to be dead. We don't bother looking
2676 // at it again.
2677 if (InstrNum == 0) {
2678 TouchedInstructions.reset(InstrNum);
2679 continue;
2680 }
2681
Daniel Berlin21279bd2017-04-06 18:52:58 +00002682 Value *V = InstrFromDFSNum(InstrNum);
Daniel Berlin06329a92017-03-18 15:41:40 +00002683 BasicBlock *CurrBlock = getBlockForValue(V);
2684
2685 // If we hit a new block, do reachability processing.
2686 if (CurrBlock != LastBlock) {
2687 LastBlock = CurrBlock;
2688 bool BlockReachable = ReachableBlocks.count(CurrBlock);
2689 const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock);
2690
2691 // If it's not reachable, erase any touched instructions and move on.
2692 if (!BlockReachable) {
2693 TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second);
2694 DEBUG(dbgs() << "Skipping instructions in block "
2695 << getBlockName(CurrBlock)
2696 << " because it is unreachable\n");
2697 continue;
2698 }
2699 updateProcessedCount(CurrBlock);
2700 }
2701
2702 if (auto *MP = dyn_cast<MemoryPhi>(V)) {
2703 DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n");
2704 valueNumberMemoryPhi(MP);
2705 } else if (auto *I = dyn_cast<Instruction>(V)) {
2706 valueNumberInstruction(I);
2707 } else {
2708 llvm_unreachable("Should have been a MemoryPhi or Instruction");
2709 }
2710 updateProcessedCount(V);
2711 // Reset after processing (because we may mark ourselves as touched when
2712 // we propagate equalities).
2713 TouchedInstructions.reset(InstrNum);
2714 }
2715 }
2716 NumGVNMaxIterations = std::max(NumGVNMaxIterations.getValue(), Iterations);
2717}
2718
Daniel Berlin85f91b02016-12-26 20:06:58 +00002719// This is the main transformation entry point.
Daniel Berlin64e68992017-03-12 04:46:45 +00002720bool NewGVN::runGVN() {
Daniel Berlin06329a92017-03-18 15:41:40 +00002721 if (DebugCounter::isCounterSet(VNCounter))
2722 StartingVNCounter = DebugCounter::getCounterValue(VNCounter);
Davide Italiano7e274e02016-12-22 16:03:48 +00002723 bool Changed = false;
Daniel Berlin1529bb92017-02-11 15:13:49 +00002724 NumFuncArgs = F.arg_size();
Davide Italiano7e274e02016-12-22 16:03:48 +00002725 MSSAWalker = MSSA->getWalker();
2726
2727 // Count number of instructions for sizing of hash tables, and come
2728 // up with a global dfs numbering for instructions.
Daniel Berline0bd37e2016-12-29 22:15:12 +00002729 unsigned ICount = 1;
2730 // Add an empty instruction to account for the fact that we start at 1
2731 DFSToInstr.emplace_back(nullptr);
Daniel Berlinf7d95802017-02-18 23:06:50 +00002732 // Note: We want ideal RPO traversal of the blocks, which is not quite the
2733 // same as dominator tree order, particularly with regard whether backedges
2734 // get visited first or second, given a block with multiple successors.
Davide Italiano7e274e02016-12-22 16:03:48 +00002735 // If we visit in the wrong order, we will end up performing N times as many
2736 // iterations.
Daniel Berlin6658cc92016-12-29 01:12:36 +00002737 // The dominator tree does guarantee that, for a given dom tree node, it's
2738 // parent must occur before it in the RPO ordering. Thus, we only need to sort
2739 // the siblings.
Davide Italiano7e274e02016-12-22 16:03:48 +00002740 ReversePostOrderTraversal<Function *> RPOT(&F);
Daniel Berlin6658cc92016-12-29 01:12:36 +00002741 unsigned Counter = 0;
Davide Italiano7e274e02016-12-22 16:03:48 +00002742 for (auto &B : RPOT) {
Daniel Berlin6658cc92016-12-29 01:12:36 +00002743 auto *Node = DT->getNode(B);
2744 assert(Node && "RPO and Dominator tree should have same reachability");
2745 RPOOrdering[Node] = ++Counter;
2746 }
2747 // Sort dominator tree children arrays into RPO.
2748 for (auto &B : RPOT) {
2749 auto *Node = DT->getNode(B);
2750 if (Node->getChildren().size() > 1)
2751 std::sort(Node->begin(), Node->end(),
Daniel Berlin2f72b192017-04-14 02:53:37 +00002752 [&](const DomTreeNode *A, const DomTreeNode *B) {
Daniel Berlin6658cc92016-12-29 01:12:36 +00002753 return RPOOrdering[A] < RPOOrdering[B];
2754 });
2755 }
2756
2757 // Now a standard depth first ordering of the domtree is equivalent to RPO.
Daniel Berlinec9deb72017-04-18 17:06:11 +00002758 for (auto DTN : depth_first(DT->getRootNode())) {
2759 BasicBlock *B = DTN->getBlock();
Davide Italiano7e274e02016-12-22 16:03:48 +00002760 const auto &BlockRange = assignDFSNumbers(B, ICount);
2761 BlockInstRange.insert({B, BlockRange});
2762 ICount += BlockRange.second - BlockRange.first;
2763 }
2764
Daniel Berline0bd37e2016-12-29 22:15:12 +00002765 TouchedInstructions.resize(ICount);
Davide Italiano7e274e02016-12-22 16:03:48 +00002766 // Ensure we don't end up resizing the expressionToClass map, as
2767 // that can be quite expensive. At most, we have one expression per
2768 // instruction.
Daniel Berline0bd37e2016-12-29 22:15:12 +00002769 ExpressionToClass.reserve(ICount);
Davide Italiano7e274e02016-12-22 16:03:48 +00002770
2771 // Initialize the touched instructions to include the entry block.
2772 const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock());
2773 TouchedInstructions.set(InstRange.first, InstRange.second);
2774 ReachableBlocks.insert(&F.getEntryBlock());
2775
2776 initializeCongruenceClasses(F);
Daniel Berlin06329a92017-03-18 15:41:40 +00002777 iterateTouchedInstructions();
Daniel Berlin589cecc2017-01-02 18:00:46 +00002778 verifyMemoryCongruency();
Daniel Berlin06329a92017-03-18 15:41:40 +00002779 verifyIterationSettled(F);
Daniel Berlinf7d95802017-02-18 23:06:50 +00002780
Davide Italiano7e274e02016-12-22 16:03:48 +00002781 Changed |= eliminateInstructions(F);
2782
2783 // Delete all instructions marked for deletion.
2784 for (Instruction *ToErase : InstructionsToErase) {
2785 if (!ToErase->use_empty())
2786 ToErase->replaceAllUsesWith(UndefValue::get(ToErase->getType()));
2787
2788 ToErase->eraseFromParent();
2789 }
2790
2791 // Delete all unreachable blocks.
Daniel Berlin85f91b02016-12-26 20:06:58 +00002792 auto UnreachableBlockPred = [&](const BasicBlock &BB) {
2793 return !ReachableBlocks.count(&BB);
2794 };
Daniel Berlin85cbc8c2016-12-26 19:57:25 +00002795
2796 for (auto &BB : make_filter_range(F, UnreachableBlockPred)) {
2797 DEBUG(dbgs() << "We believe block " << getBlockName(&BB)
Daniel Berlin85f91b02016-12-26 20:06:58 +00002798 << " is unreachable\n");
Daniel Berlin85cbc8c2016-12-26 19:57:25 +00002799 deleteInstructionsInBlock(&BB);
2800 Changed = true;
Davide Italiano7e274e02016-12-22 16:03:48 +00002801 }
2802
2803 cleanupTables();
2804 return Changed;
2805}
2806
Davide Italiano7e274e02016-12-22 16:03:48 +00002807// Return true if V is a value that will always be available (IE can
2808// be placed anywhere) in the function. We don't do globals here
2809// because they are often worse to put in place.
2810// TODO: Separate cost from availability
2811static bool alwaysAvailable(Value *V) {
2812 return isa<Constant>(V) || isa<Argument>(V);
2813}
2814
Davide Italiano7e274e02016-12-22 16:03:48 +00002815struct NewGVN::ValueDFS {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00002816 int DFSIn = 0;
2817 int DFSOut = 0;
2818 int LocalNum = 0;
Daniel Berlinc0e008d2017-03-10 00:32:26 +00002819 // Only one of Def and U will be set.
Daniel Berlin9a9c9ff2017-04-01 09:44:33 +00002820 // The bool in the Def tells us whether the Def is the stored value of a
2821 // store.
2822 PointerIntPair<Value *, 1, bool> Def;
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00002823 Use *U = nullptr;
Davide Italiano7e274e02016-12-22 16:03:48 +00002824 bool operator<(const ValueDFS &Other) const {
2825 // It's not enough that any given field be less than - we have sets
2826 // of fields that need to be evaluated together to give a proper ordering.
2827 // For example, if you have;
2828 // DFS (1, 3)
2829 // Val 0
2830 // DFS (1, 2)
2831 // Val 50
2832 // We want the second to be less than the first, but if we just go field
2833 // by field, we will get to Val 0 < Val 50 and say the first is less than
2834 // the second. We only want it to be less than if the DFS orders are equal.
2835 //
2836 // Each LLVM instruction only produces one value, and thus the lowest-level
2837 // differentiator that really matters for the stack (and what we use as as a
2838 // replacement) is the local dfs number.
Daniel Berlin85f91b02016-12-26 20:06:58 +00002839 // Everything else in the structure is instruction level, and only affects
2840 // the order in which we will replace operands of a given instruction.
Davide Italiano7e274e02016-12-22 16:03:48 +00002841 //
2842 // For a given instruction (IE things with equal dfsin, dfsout, localnum),
2843 // the order of replacement of uses does not matter.
2844 // IE given,
2845 // a = 5
2846 // b = a + a
Daniel Berlin85f91b02016-12-26 20:06:58 +00002847 // When you hit b, you will have two valuedfs with the same dfsin, out, and
2848 // localnum.
Davide Italiano7e274e02016-12-22 16:03:48 +00002849 // The .val will be the same as well.
2850 // The .u's will be different.
Daniel Berlin85f91b02016-12-26 20:06:58 +00002851 // You will replace both, and it does not matter what order you replace them
2852 // in (IE whether you replace operand 2, then operand 1, or operand 1, then
2853 // operand 2).
2854 // Similarly for the case of same dfsin, dfsout, localnum, but different
2855 // .val's
Davide Italiano7e274e02016-12-22 16:03:48 +00002856 // a = 5
2857 // b = 6
2858 // c = a + b
Daniel Berlin85f91b02016-12-26 20:06:58 +00002859 // in c, we will a valuedfs for a, and one for b,with everything the same
2860 // but .val and .u.
Davide Italiano7e274e02016-12-22 16:03:48 +00002861 // It does not matter what order we replace these operands in.
2862 // You will always end up with the same IR, and this is guaranteed.
Daniel Berlinc0e008d2017-03-10 00:32:26 +00002863 return std::tie(DFSIn, DFSOut, LocalNum, Def, U) <
2864 std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Def,
Davide Italiano7e274e02016-12-22 16:03:48 +00002865 Other.U);
2866 }
2867};
2868
Daniel Berlinc4796862017-01-27 02:37:11 +00002869// This function converts the set of members for a congruence class from values,
Daniel Berlinc0e008d2017-03-10 00:32:26 +00002870// to sets of defs and uses with associated DFS info. The total number of
Daniel Berline3e69e12017-03-10 00:32:33 +00002871// reachable uses for each value is stored in UseCount, and instructions that
2872// seem
2873// dead (have no non-dead uses) are stored in ProbablyDead.
2874void NewGVN::convertClassToDFSOrdered(
Daniel Berlina8236562017-04-07 18:38:09 +00002875 const CongruenceClass &Dense, SmallVectorImpl<ValueDFS> &DFSOrderedSet,
Daniel Berline3e69e12017-03-10 00:32:33 +00002876 DenseMap<const Value *, unsigned int> &UseCounts,
Daniel Berlina8236562017-04-07 18:38:09 +00002877 SmallPtrSetImpl<Instruction *> &ProbablyDead) const {
Davide Italiano7e274e02016-12-22 16:03:48 +00002878 for (auto D : Dense) {
2879 // First add the value.
2880 BasicBlock *BB = getBlockForValue(D);
2881 // Constants are handled prior to ever calling this function, so
2882 // we should only be left with instructions as members.
Chandler Carruthee086762016-12-23 01:38:06 +00002883 assert(BB && "Should have figured out a basic block for value");
Daniel Berlinc0e008d2017-03-10 00:32:26 +00002884 ValueDFS VDDef;
Daniel Berlinb66164c2017-01-14 00:24:23 +00002885 DomTreeNode *DomNode = DT->getNode(BB);
Daniel Berlinc0e008d2017-03-10 00:32:26 +00002886 VDDef.DFSIn = DomNode->getDFSNumIn();
2887 VDDef.DFSOut = DomNode->getDFSNumOut();
Daniel Berlin9a9c9ff2017-04-01 09:44:33 +00002888 // If it's a store, use the leader of the value operand, if it's always
2889 // available, or the value operand. TODO: We could do dominance checks to
2890 // find a dominating leader, but not worth it ATM.
Daniel Berlin26addef2017-01-20 21:04:30 +00002891 if (auto *SI = dyn_cast<StoreInst>(D)) {
Daniel Berlin808e3ff2017-01-31 22:31:56 +00002892 auto Leader = lookupOperandLeader(SI->getValueOperand());
Daniel Berlin9a9c9ff2017-04-01 09:44:33 +00002893 if (alwaysAvailable(Leader)) {
2894 VDDef.Def.setPointer(Leader);
2895 } else {
2896 VDDef.Def.setPointer(SI->getValueOperand());
2897 VDDef.Def.setInt(true);
2898 }
Daniel Berlin26addef2017-01-20 21:04:30 +00002899 } else {
Daniel Berlin9a9c9ff2017-04-01 09:44:33 +00002900 VDDef.Def.setPointer(D);
Daniel Berlin26addef2017-01-20 21:04:30 +00002901 }
Daniel Berlinc0e008d2017-03-10 00:32:26 +00002902 assert(isa<Instruction>(D) &&
2903 "The dense set member should always be an instruction");
Daniel Berlin21279bd2017-04-06 18:52:58 +00002904 VDDef.LocalNum = InstrToDFSNum(D);
Daniel Berlinc0e008d2017-03-10 00:32:26 +00002905 DFSOrderedSet.emplace_back(VDDef);
Daniel Berline3e69e12017-03-10 00:32:33 +00002906 Instruction *Def = cast<Instruction>(D);
2907 unsigned int UseCount = 0;
Daniel Berlinb66164c2017-01-14 00:24:23 +00002908 // Now add the uses.
Daniel Berline3e69e12017-03-10 00:32:33 +00002909 for (auto &U : Def->uses()) {
Davide Italiano7e274e02016-12-22 16:03:48 +00002910 if (auto *I = dyn_cast<Instruction>(U.getUser())) {
Daniel Berline3e69e12017-03-10 00:32:33 +00002911 // Don't try to replace into dead uses
2912 if (InstructionsToErase.count(I))
2913 continue;
Daniel Berlinc0e008d2017-03-10 00:32:26 +00002914 ValueDFS VDUse;
Davide Italiano7e274e02016-12-22 16:03:48 +00002915 // Put the phi node uses in the incoming block.
2916 BasicBlock *IBlock;
2917 if (auto *P = dyn_cast<PHINode>(I)) {
2918 IBlock = P->getIncomingBlock(U);
2919 // Make phi node users appear last in the incoming block
2920 // they are from.
Daniel Berlinc0e008d2017-03-10 00:32:26 +00002921 VDUse.LocalNum = InstrDFS.size() + 1;
Davide Italiano7e274e02016-12-22 16:03:48 +00002922 } else {
2923 IBlock = I->getParent();
Daniel Berlin21279bd2017-04-06 18:52:58 +00002924 VDUse.LocalNum = InstrToDFSNum(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00002925 }
Davide Italianoccbbc832017-01-26 00:42:42 +00002926
2927 // Skip uses in unreachable blocks, as we're going
2928 // to delete them.
2929 if (ReachableBlocks.count(IBlock) == 0)
2930 continue;
2931
Daniel Berlinb66164c2017-01-14 00:24:23 +00002932 DomTreeNode *DomNode = DT->getNode(IBlock);
Daniel Berlinc0e008d2017-03-10 00:32:26 +00002933 VDUse.DFSIn = DomNode->getDFSNumIn();
2934 VDUse.DFSOut = DomNode->getDFSNumOut();
2935 VDUse.U = &U;
Daniel Berline3e69e12017-03-10 00:32:33 +00002936 ++UseCount;
Daniel Berlinc0e008d2017-03-10 00:32:26 +00002937 DFSOrderedSet.emplace_back(VDUse);
Davide Italiano7e274e02016-12-22 16:03:48 +00002938 }
2939 }
Daniel Berline3e69e12017-03-10 00:32:33 +00002940
2941 // If there are no uses, it's probably dead (but it may have side-effects,
2942 // so not definitely dead. Otherwise, store the number of uses so we can
2943 // track if it becomes dead later).
2944 if (UseCount == 0)
2945 ProbablyDead.insert(Def);
2946 else
2947 UseCounts[Def] = UseCount;
Davide Italiano7e274e02016-12-22 16:03:48 +00002948 }
2949}
2950
Daniel Berlinc4796862017-01-27 02:37:11 +00002951// This function converts the set of members for a congruence class from values,
2952// to the set of defs for loads and stores, with associated DFS info.
Daniel Berline3e69e12017-03-10 00:32:33 +00002953void NewGVN::convertClassToLoadsAndStores(
Daniel Berlina8236562017-04-07 18:38:09 +00002954 const CongruenceClass &Dense,
2955 SmallVectorImpl<ValueDFS> &LoadsAndStores) const {
Daniel Berlinc4796862017-01-27 02:37:11 +00002956 for (auto D : Dense) {
2957 if (!isa<LoadInst>(D) && !isa<StoreInst>(D))
2958 continue;
2959
2960 BasicBlock *BB = getBlockForValue(D);
2961 ValueDFS VD;
2962 DomTreeNode *DomNode = DT->getNode(BB);
2963 VD.DFSIn = DomNode->getDFSNumIn();
2964 VD.DFSOut = DomNode->getDFSNumOut();
Daniel Berlin9a9c9ff2017-04-01 09:44:33 +00002965 VD.Def.setPointer(D);
Daniel Berlinc4796862017-01-27 02:37:11 +00002966
2967 // If it's an instruction, use the real local dfs number.
2968 if (auto *I = dyn_cast<Instruction>(D))
Daniel Berlin21279bd2017-04-06 18:52:58 +00002969 VD.LocalNum = InstrToDFSNum(I);
Daniel Berlinc4796862017-01-27 02:37:11 +00002970 else
2971 llvm_unreachable("Should have been an instruction");
2972
2973 LoadsAndStores.emplace_back(VD);
2974 }
2975}
2976
Davide Italiano7e274e02016-12-22 16:03:48 +00002977static void patchReplacementInstruction(Instruction *I, Value *Repl) {
Daniel Berlin4d547962017-02-12 23:24:45 +00002978 auto *ReplInst = dyn_cast<Instruction>(Repl);
Daniel Berlin86eab152017-02-12 22:25:20 +00002979 if (!ReplInst)
2980 return;
2981
Davide Italiano7e274e02016-12-22 16:03:48 +00002982 // Patch the replacement so that it is not more restrictive than the value
2983 // being replaced.
Daniel Berlin86eab152017-02-12 22:25:20 +00002984 // Note that if 'I' is a load being replaced by some operation,
2985 // for example, by an arithmetic operation, then andIRFlags()
2986 // would just erase all math flags from the original arithmetic
2987 // operation, which is clearly not wanted and not needed.
2988 if (!isa<LoadInst>(I))
2989 ReplInst->andIRFlags(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00002990
Daniel Berlin86eab152017-02-12 22:25:20 +00002991 // FIXME: If both the original and replacement value are part of the
2992 // same control-flow region (meaning that the execution of one
2993 // guarantees the execution of the other), then we can combine the
2994 // noalias scopes here and do better than the general conservative
2995 // answer used in combineMetadata().
Davide Italiano7e274e02016-12-22 16:03:48 +00002996
Daniel Berlin86eab152017-02-12 22:25:20 +00002997 // In general, GVN unifies expressions over different control-flow
2998 // regions, and so we need a conservative combination of the noalias
2999 // scopes.
3000 static const unsigned KnownIDs[] = {
3001 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
3002 LLVMContext::MD_noalias, LLVMContext::MD_range,
3003 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load,
3004 LLVMContext::MD_invariant_group};
3005 combineMetadata(ReplInst, I, KnownIDs);
Davide Italiano7e274e02016-12-22 16:03:48 +00003006}
3007
3008static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
3009 patchReplacementInstruction(I, Repl);
3010 I->replaceAllUsesWith(Repl);
3011}
3012
3013void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) {
3014 DEBUG(dbgs() << " BasicBlock Dead:" << *BB);
3015 ++NumGVNBlocksDeleted;
3016
Daniel Berline19f0e02017-01-30 17:06:55 +00003017 // Delete the instructions backwards, as it has a reduced likelihood of having
3018 // to update as many def-use and use-def chains. Start after the terminator.
3019 auto StartPoint = BB->rbegin();
3020 ++StartPoint;
3021 // Note that we explicitly recalculate BB->rend() on each iteration,
3022 // as it may change when we remove the first instruction.
3023 for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) {
3024 Instruction &Inst = *I++;
3025 if (!Inst.use_empty())
3026 Inst.replaceAllUsesWith(UndefValue::get(Inst.getType()));
3027 if (isa<LandingPadInst>(Inst))
3028 continue;
3029
3030 Inst.eraseFromParent();
3031 ++NumGVNInstrDeleted;
3032 }
Daniel Berlina53a7222017-01-30 18:12:56 +00003033 // Now insert something that simplifycfg will turn into an unreachable.
3034 Type *Int8Ty = Type::getInt8Ty(BB->getContext());
3035 new StoreInst(UndefValue::get(Int8Ty),
3036 Constant::getNullValue(Int8Ty->getPointerTo()),
3037 BB->getTerminator());
Davide Italiano7e274e02016-12-22 16:03:48 +00003038}
3039
3040void NewGVN::markInstructionForDeletion(Instruction *I) {
3041 DEBUG(dbgs() << "Marking " << *I << " for deletion\n");
3042 InstructionsToErase.insert(I);
3043}
3044
3045void NewGVN::replaceInstruction(Instruction *I, Value *V) {
3046
3047 DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n");
3048 patchAndReplaceAllUsesWith(I, V);
3049 // We save the actual erasing to avoid invalidating memory
3050 // dependencies until we are done with everything.
3051 markInstructionForDeletion(I);
3052}
3053
3054namespace {
3055
3056// This is a stack that contains both the value and dfs info of where
3057// that value is valid.
3058class ValueDFSStack {
3059public:
3060 Value *back() const { return ValueStack.back(); }
3061 std::pair<int, int> dfs_back() const { return DFSStack.back(); }
3062
3063 void push_back(Value *V, int DFSIn, int DFSOut) {
Piotr Padlewski6c37d292016-12-28 23:24:02 +00003064 ValueStack.emplace_back(V);
Davide Italiano7e274e02016-12-22 16:03:48 +00003065 DFSStack.emplace_back(DFSIn, DFSOut);
3066 }
3067 bool empty() const { return DFSStack.empty(); }
3068 bool isInScope(int DFSIn, int DFSOut) const {
3069 if (empty())
3070 return false;
3071 return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second;
3072 }
3073
3074 void popUntilDFSScope(int DFSIn, int DFSOut) {
3075
3076 // These two should always be in sync at this point.
3077 assert(ValueStack.size() == DFSStack.size() &&
3078 "Mismatch between ValueStack and DFSStack");
3079 while (
3080 !DFSStack.empty() &&
3081 !(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) {
3082 DFSStack.pop_back();
3083 ValueStack.pop_back();
3084 }
3085 }
3086
3087private:
3088 SmallVector<Value *, 8> ValueStack;
3089 SmallVector<std::pair<int, int>, 8> DFSStack;
3090};
3091}
Daniel Berlin04443432017-01-07 03:23:47 +00003092
Davide Italiano7e274e02016-12-22 16:03:48 +00003093bool NewGVN::eliminateInstructions(Function &F) {
3094 // This is a non-standard eliminator. The normal way to eliminate is
3095 // to walk the dominator tree in order, keeping track of available
3096 // values, and eliminating them. However, this is mildly
3097 // pointless. It requires doing lookups on every instruction,
3098 // regardless of whether we will ever eliminate it. For
Daniel Berlin85cbc8c2016-12-26 19:57:25 +00003099 // instructions part of most singleton congruence classes, we know we
3100 // will never eliminate them.
Davide Italiano7e274e02016-12-22 16:03:48 +00003101
3102 // Instead, this eliminator looks at the congruence classes directly, sorts
3103 // them into a DFS ordering of the dominator tree, and then we just
Daniel Berlin85cbc8c2016-12-26 19:57:25 +00003104 // perform elimination straight on the sets by walking the congruence
Davide Italiano7e274e02016-12-22 16:03:48 +00003105 // class member uses in order, and eliminate the ones dominated by the
Daniel Berlin85cbc8c2016-12-26 19:57:25 +00003106 // last member. This is worst case O(E log E) where E = number of
3107 // instructions in a single congruence class. In theory, this is all
3108 // instructions. In practice, it is much faster, as most instructions are
3109 // either in singleton congruence classes or can't possibly be eliminated
3110 // anyway (if there are no overlapping DFS ranges in class).
Davide Italiano7e274e02016-12-22 16:03:48 +00003111 // When we find something not dominated, it becomes the new leader
Daniel Berlin85cbc8c2016-12-26 19:57:25 +00003112 // for elimination purposes.
3113 // TODO: If we wanted to be faster, We could remove any members with no
3114 // overlapping ranges while sorting, as we will never eliminate anything
3115 // with those members, as they don't dominate anything else in our set.
3116
Davide Italiano7e274e02016-12-22 16:03:48 +00003117 bool AnythingReplaced = false;
3118
3119 // Since we are going to walk the domtree anyway, and we can't guarantee the
3120 // DFS numbers are updated, we compute some ourselves.
3121 DT->updateDFSNumbers();
3122
3123 for (auto &B : F) {
3124 if (!ReachableBlocks.count(&B)) {
3125 for (const auto S : successors(&B)) {
3126 for (auto II = S->begin(); isa<PHINode>(II); ++II) {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00003127 auto &Phi = cast<PHINode>(*II);
Davide Italiano7e274e02016-12-22 16:03:48 +00003128 DEBUG(dbgs() << "Replacing incoming value of " << *II << " for block "
3129 << getBlockName(&B)
3130 << " with undef due to it being unreachable\n");
3131 for (auto &Operand : Phi.incoming_values())
3132 if (Phi.getIncomingBlock(Operand) == &B)
3133 Operand.set(UndefValue::get(Phi.getType()));
3134 }
3135 }
3136 }
Davide Italiano7e274e02016-12-22 16:03:48 +00003137 }
3138
Daniel Berline3e69e12017-03-10 00:32:33 +00003139 // Map to store the use counts
3140 DenseMap<const Value *, unsigned int> UseCounts;
Daniel Berlin4d547962017-02-12 23:24:45 +00003141 for (CongruenceClass *CC : reverse(CongruenceClasses)) {
Daniel Berlinc4796862017-01-27 02:37:11 +00003142 // Track the equivalent store info so we can decide whether to try
3143 // dead store elimination.
3144 SmallVector<ValueDFS, 8> PossibleDeadStores;
Daniel Berline3e69e12017-03-10 00:32:33 +00003145 SmallPtrSet<Instruction *, 8> ProbablyDead;
Daniel Berlina8236562017-04-07 18:38:09 +00003146 if (CC->isDead() || CC->empty())
Davide Italiano7e274e02016-12-22 16:03:48 +00003147 continue;
Daniel Berlin5c338ff2017-03-10 19:05:04 +00003148 // Everything still in the TOP class is unreachable or dead.
3149 if (CC == TOPClass) {
Daniel Berlinb79f5362017-02-11 12:48:50 +00003150#ifndef NDEBUG
Daniel Berlina8236562017-04-07 18:38:09 +00003151 for (auto M : *CC)
Daniel Berlinb79f5362017-02-11 12:48:50 +00003152 assert((!ReachableBlocks.count(cast<Instruction>(M)->getParent()) ||
3153 InstructionsToErase.count(cast<Instruction>(M))) &&
Daniel Berlin5c338ff2017-03-10 19:05:04 +00003154 "Everything in TOP should be unreachable or dead at this "
Daniel Berlinb79f5362017-02-11 12:48:50 +00003155 "point");
3156#endif
3157 continue;
3158 }
3159
Daniel Berlina8236562017-04-07 18:38:09 +00003160 assert(CC->getLeader() && "We should have had a leader");
Davide Italiano7e274e02016-12-22 16:03:48 +00003161 // If this is a leader that is always available, and it's a
3162 // constant or has no equivalences, just replace everything with
3163 // it. We then update the congruence class with whatever members
3164 // are left.
Daniel Berlina8236562017-04-07 18:38:09 +00003165 Value *Leader =
3166 CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
Daniel Berlin26addef2017-01-20 21:04:30 +00003167 if (alwaysAvailable(Leader)) {
Daniel Berlin08fe6e02017-04-06 18:52:55 +00003168 CongruenceClass::MemberSet MembersLeft;
Daniel Berlina8236562017-04-07 18:38:09 +00003169 for (auto M : *CC) {
Davide Italiano7e274e02016-12-22 16:03:48 +00003170 Value *Member = M;
Davide Italiano7e274e02016-12-22 16:03:48 +00003171 // Void things have no uses we can replace.
Daniel Berlin08fe6e02017-04-06 18:52:55 +00003172 if (Member == Leader || !isa<Instruction>(Member) ||
3173 Member->getType()->isVoidTy()) {
Davide Italiano7e274e02016-12-22 16:03:48 +00003174 MembersLeft.insert(Member);
3175 continue;
3176 }
Daniel Berlin26addef2017-01-20 21:04:30 +00003177 DEBUG(dbgs() << "Found replacement " << *(Leader) << " for " << *Member
3178 << "\n");
Daniel Berlin08fe6e02017-04-06 18:52:55 +00003179 auto *I = cast<Instruction>(Member);
3180 assert(Leader != I && "About to accidentally remove our leader");
3181 replaceInstruction(I, Leader);
3182 AnythingReplaced = true;
Davide Italiano7e274e02016-12-22 16:03:48 +00003183 }
Daniel Berlina8236562017-04-07 18:38:09 +00003184 CC->swap(MembersLeft);
Davide Italiano7e274e02016-12-22 16:03:48 +00003185 } else {
Daniel Berlina8236562017-04-07 18:38:09 +00003186 DEBUG(dbgs() << "Eliminating in congruence class " << CC->getID()
3187 << "\n");
Davide Italiano7e274e02016-12-22 16:03:48 +00003188 // If this is a singleton, we can skip it.
Daniel Berlina8236562017-04-07 18:38:09 +00003189 if (CC->size() != 1) {
Davide Italiano7e274e02016-12-22 16:03:48 +00003190 // This is a stack because equality replacement/etc may place
3191 // constants in the middle of the member list, and we want to use
3192 // those constant values in preference to the current leader, over
3193 // the scope of those constants.
3194 ValueDFSStack EliminationStack;
3195
3196 // Convert the members to DFS ordered sets and then merge them.
Daniel Berlin2f1fbcc2017-01-09 05:34:19 +00003197 SmallVector<ValueDFS, 8> DFSOrderedSet;
Daniel Berlina8236562017-04-07 18:38:09 +00003198 convertClassToDFSOrdered(*CC, DFSOrderedSet, UseCounts, ProbablyDead);
Davide Italiano7e274e02016-12-22 16:03:48 +00003199
3200 // Sort the whole thing.
Daniel Berlin2f1fbcc2017-01-09 05:34:19 +00003201 std::sort(DFSOrderedSet.begin(), DFSOrderedSet.end());
Daniel Berlin2f1fbcc2017-01-09 05:34:19 +00003202 for (auto &VD : DFSOrderedSet) {
3203 int MemberDFSIn = VD.DFSIn;
3204 int MemberDFSOut = VD.DFSOut;
Daniel Berlin9a9c9ff2017-04-01 09:44:33 +00003205 Value *Def = VD.Def.getPointer();
3206 bool FromStore = VD.Def.getInt();
Daniel Berline3e69e12017-03-10 00:32:33 +00003207 Use *U = VD.U;
Daniel Berlinc4796862017-01-27 02:37:11 +00003208 // We ignore void things because we can't get a value from them.
Daniel Berline3e69e12017-03-10 00:32:33 +00003209 if (Def && Def->getType()->isVoidTy())
Daniel Berlinc4796862017-01-27 02:37:11 +00003210 continue;
Davide Italiano7e274e02016-12-22 16:03:48 +00003211
3212 if (EliminationStack.empty()) {
3213 DEBUG(dbgs() << "Elimination Stack is empty\n");
3214 } else {
3215 DEBUG(dbgs() << "Elimination Stack Top DFS numbers are ("
3216 << EliminationStack.dfs_back().first << ","
3217 << EliminationStack.dfs_back().second << ")\n");
3218 }
Davide Italiano7e274e02016-12-22 16:03:48 +00003219
3220 DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << ","
3221 << MemberDFSOut << ")\n");
3222 // First, we see if we are out of scope or empty. If so,
3223 // and there equivalences, we try to replace the top of
3224 // stack with equivalences (if it's on the stack, it must
3225 // not have been eliminated yet).
3226 // Then we synchronize to our current scope, by
3227 // popping until we are back within a DFS scope that
3228 // dominates the current member.
3229 // Then, what happens depends on a few factors
3230 // If the stack is now empty, we need to push
3231 // If we have a constant or a local equivalence we want to
3232 // start using, we also push.
3233 // Otherwise, we walk along, processing members who are
3234 // dominated by this scope, and eliminate them.
Daniel Berline3e69e12017-03-10 00:32:33 +00003235 bool ShouldPush = Def && EliminationStack.empty();
Davide Italiano7e274e02016-12-22 16:03:48 +00003236 bool OutOfScope =
3237 !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut);
3238
3239 if (OutOfScope || ShouldPush) {
3240 // Sync to our current scope.
3241 EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
Daniel Berline3e69e12017-03-10 00:32:33 +00003242 bool ShouldPush = Def && EliminationStack.empty();
Davide Italiano7e274e02016-12-22 16:03:48 +00003243 if (ShouldPush) {
Daniel Berline3e69e12017-03-10 00:32:33 +00003244 EliminationStack.push_back(Def, MemberDFSIn, MemberDFSOut);
Davide Italiano7e274e02016-12-22 16:03:48 +00003245 }
3246 }
3247
Daniel Berline3e69e12017-03-10 00:32:33 +00003248 // Skip the Def's, we only want to eliminate on their uses. But mark
3249 // dominated defs as dead.
3250 if (Def) {
3251 // For anything in this case, what and how we value number
3252 // guarantees that any side-effets that would have occurred (ie
3253 // throwing, etc) can be proven to either still occur (because it's
3254 // dominated by something that has the same side-effects), or never
3255 // occur. Otherwise, we would not have been able to prove it value
3256 // equivalent to something else. For these things, we can just mark
3257 // it all dead. Note that this is different from the "ProbablyDead"
3258 // set, which may not be dominated by anything, and thus, are only
Daniel Berlin9a9c9ff2017-04-01 09:44:33 +00003259 // easy to prove dead if they are also side-effect free. Note that
3260 // because stores are put in terms of the stored value, we skip
3261 // stored values here. If the stored value is really dead, it will
3262 // still be marked for deletion when we process it in its own class.
Daniel Berline3e69e12017-03-10 00:32:33 +00003263 if (!EliminationStack.empty() && Def != EliminationStack.back() &&
Daniel Berlin9a9c9ff2017-04-01 09:44:33 +00003264 isa<Instruction>(Def) && !FromStore)
Daniel Berline3e69e12017-03-10 00:32:33 +00003265 markInstructionForDeletion(cast<Instruction>(Def));
3266 continue;
3267 }
3268 // At this point, we know it is a Use we are trying to possibly
3269 // replace.
3270
3271 assert(isa<Instruction>(U->get()) &&
3272 "Current def should have been an instruction");
3273 assert(isa<Instruction>(U->getUser()) &&
3274 "Current user should have been an instruction");
3275
3276 // If the thing we are replacing into is already marked to be dead,
3277 // this use is dead. Note that this is true regardless of whether
3278 // we have anything dominating the use or not. We do this here
3279 // because we are already walking all the uses anyway.
3280 Instruction *InstUse = cast<Instruction>(U->getUser());
3281 if (InstructionsToErase.count(InstUse)) {
3282 auto &UseCount = UseCounts[U->get()];
3283 if (--UseCount == 0) {
3284 ProbablyDead.insert(cast<Instruction>(U->get()));
3285 }
Daniel Berlinc0e008d2017-03-10 00:32:26 +00003286 }
3287
Davide Italiano7e274e02016-12-22 16:03:48 +00003288 // If we get to this point, and the stack is empty we must have a use
Daniel Berline3e69e12017-03-10 00:32:33 +00003289 // with nothing we can use to eliminate this use, so just skip it.
Davide Italiano7e274e02016-12-22 16:03:48 +00003290 if (EliminationStack.empty())
3291 continue;
3292
Daniel Berlinc0e008d2017-03-10 00:32:26 +00003293 Value *DominatingLeader = EliminationStack.back();
Davide Italiano7e274e02016-12-22 16:03:48 +00003294
Daniel Berlind92e7f92017-01-07 00:01:42 +00003295 // Don't replace our existing users with ourselves.
Daniel Berline3e69e12017-03-10 00:32:33 +00003296 if (U->get() == DominatingLeader)
Davide Italiano7e274e02016-12-22 16:03:48 +00003297 continue;
Daniel Berlinc0e008d2017-03-10 00:32:26 +00003298 DEBUG(dbgs() << "Found replacement " << *DominatingLeader << " for "
Daniel Berline3e69e12017-03-10 00:32:33 +00003299 << *U->get() << " in " << *(U->getUser()) << "\n");
Davide Italiano7e274e02016-12-22 16:03:48 +00003300
3301 // If we replaced something in an instruction, handle the patching of
Daniel Berline3e69e12017-03-10 00:32:33 +00003302 // metadata. Skip this if we are replacing predicateinfo with its
3303 // original operand, as we already know we can just drop it.
3304 auto *ReplacedInst = cast<Instruction>(U->get());
Daniel Berlinc0e008d2017-03-10 00:32:26 +00003305 auto *PI = PredInfo->getPredicateInfoFor(ReplacedInst);
3306 if (!PI || DominatingLeader != PI->OriginalOp)
3307 patchReplacementInstruction(ReplacedInst, DominatingLeader);
Daniel Berline3e69e12017-03-10 00:32:33 +00003308 U->set(DominatingLeader);
3309 // This is now a use of the dominating leader, which means if the
3310 // dominating leader was dead, it's now live!
3311 auto &LeaderUseCount = UseCounts[DominatingLeader];
3312 // It's about to be alive again.
3313 if (LeaderUseCount == 0 && isa<Instruction>(DominatingLeader))
3314 ProbablyDead.erase(cast<Instruction>(DominatingLeader));
3315 ++LeaderUseCount;
Davide Italiano7e274e02016-12-22 16:03:48 +00003316 AnythingReplaced = true;
3317 }
3318 }
3319 }
3320
Daniel Berline3e69e12017-03-10 00:32:33 +00003321 // At this point, anything still in the ProbablyDead set is actually dead if
3322 // would be trivially dead.
3323 for (auto *I : ProbablyDead)
3324 if (wouldInstructionBeTriviallyDead(I))
3325 markInstructionForDeletion(I);
3326
Davide Italiano7e274e02016-12-22 16:03:48 +00003327 // Cleanup the congruence class.
Daniel Berlin08fe6e02017-04-06 18:52:55 +00003328 CongruenceClass::MemberSet MembersLeft;
Daniel Berlina8236562017-04-07 18:38:09 +00003329 for (auto *Member : *CC)
Daniel Berlin08fe6e02017-04-06 18:52:55 +00003330 if (!isa<Instruction>(Member) ||
3331 !InstructionsToErase.count(cast<Instruction>(Member)))
Davide Italiano7e274e02016-12-22 16:03:48 +00003332 MembersLeft.insert(Member);
Daniel Berlina8236562017-04-07 18:38:09 +00003333 CC->swap(MembersLeft);
Daniel Berlinc4796862017-01-27 02:37:11 +00003334
3335 // If we have possible dead stores to look at, try to eliminate them.
Daniel Berlina8236562017-04-07 18:38:09 +00003336 if (CC->getStoreCount() > 0) {
3337 convertClassToLoadsAndStores(*CC, PossibleDeadStores);
Daniel Berlinc4796862017-01-27 02:37:11 +00003338 std::sort(PossibleDeadStores.begin(), PossibleDeadStores.end());
3339 ValueDFSStack EliminationStack;
3340 for (auto &VD : PossibleDeadStores) {
3341 int MemberDFSIn = VD.DFSIn;
3342 int MemberDFSOut = VD.DFSOut;
Daniel Berlin9a9c9ff2017-04-01 09:44:33 +00003343 Instruction *Member = cast<Instruction>(VD.Def.getPointer());
Daniel Berlinc4796862017-01-27 02:37:11 +00003344 if (EliminationStack.empty() ||
3345 !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut)) {
3346 // Sync to our current scope.
3347 EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
3348 if (EliminationStack.empty()) {
3349 EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut);
3350 continue;
3351 }
3352 }
3353 // We already did load elimination, so nothing to do here.
3354 if (isa<LoadInst>(Member))
3355 continue;
3356 assert(!EliminationStack.empty());
3357 Instruction *Leader = cast<Instruction>(EliminationStack.back());
Richard Trieu0b79aa32017-01-27 06:06:05 +00003358 (void)Leader;
Daniel Berlinc4796862017-01-27 02:37:11 +00003359 assert(DT->dominates(Leader->getParent(), Member->getParent()));
3360 // Member is dominater by Leader, and thus dead
3361 DEBUG(dbgs() << "Marking dead store " << *Member
3362 << " that is dominated by " << *Leader << "\n");
3363 markInstructionForDeletion(Member);
Daniel Berlina8236562017-04-07 18:38:09 +00003364 CC->erase(Member);
Daniel Berlinc4796862017-01-27 02:37:11 +00003365 ++NumGVNDeadStores;
3366 }
3367 }
Davide Italiano7e274e02016-12-22 16:03:48 +00003368 }
3369
3370 return AnythingReplaced;
3371}
Daniel Berlin1c087672017-02-11 15:07:01 +00003372
3373// This function provides global ranking of operations so that we can place them
3374// in a canonical order. Note that rank alone is not necessarily enough for a
3375// complete ordering, as constants all have the same rank. However, generally,
3376// we will simplify an operation with all constants so that it doesn't matter
3377// what order they appear in.
3378unsigned int NewGVN::getRank(const Value *V) const {
Daniel Berlinb355c4f2017-02-18 23:06:47 +00003379 // Prefer undef to anything else
3380 if (isa<UndefValue>(V))
Daniel Berlin1c087672017-02-11 15:07:01 +00003381 return 0;
Daniel Berlinb355c4f2017-02-18 23:06:47 +00003382 if (isa<Constant>(V))
3383 return 1;
Daniel Berlin1c087672017-02-11 15:07:01 +00003384 else if (auto *A = dyn_cast<Argument>(V))
Daniel Berlinb355c4f2017-02-18 23:06:47 +00003385 return 2 + A->getArgNo();
Daniel Berlin1c087672017-02-11 15:07:01 +00003386
Daniel Berlinb355c4f2017-02-18 23:06:47 +00003387 // Need to shift the instruction DFS by number of arguments + 3 to account for
Daniel Berlin1c087672017-02-11 15:07:01 +00003388 // the constant and argument ranking above.
Daniel Berlin21279bd2017-04-06 18:52:58 +00003389 unsigned Result = InstrToDFSNum(V);
Daniel Berlin1c087672017-02-11 15:07:01 +00003390 if (Result > 0)
Daniel Berlinb355c4f2017-02-18 23:06:47 +00003391 return 3 + NumFuncArgs + Result;
Daniel Berlin1c087672017-02-11 15:07:01 +00003392 // Unreachable or something else, just return a really large number.
3393 return ~0;
3394}
3395
3396// This is a function that says whether two commutative operations should
3397// have their order swapped when canonicalizing.
3398bool NewGVN::shouldSwapOperands(const Value *A, const Value *B) const {
3399 // Because we only care about a total ordering, and don't rewrite expressions
3400 // in this order, we order by rank, which will give a strict weak ordering to
Daniel Berlinb355c4f2017-02-18 23:06:47 +00003401 // everything but constants, and then we order by pointer address.
Daniel Berlinf7d95802017-02-18 23:06:50 +00003402 return std::make_pair(getRank(A), A) > std::make_pair(getRank(B), B);
Daniel Berlin1c087672017-02-11 15:07:01 +00003403}
Daniel Berlin64e68992017-03-12 04:46:45 +00003404
3405class NewGVNLegacyPass : public FunctionPass {
3406public:
3407 static char ID; // Pass identification, replacement for typeid.
3408 NewGVNLegacyPass() : FunctionPass(ID) {
3409 initializeNewGVNLegacyPassPass(*PassRegistry::getPassRegistry());
3410 }
3411 bool runOnFunction(Function &F) override;
3412
3413private:
3414 void getAnalysisUsage(AnalysisUsage &AU) const override {
3415 AU.addRequired<AssumptionCacheTracker>();
3416 AU.addRequired<DominatorTreeWrapperPass>();
3417 AU.addRequired<TargetLibraryInfoWrapperPass>();
3418 AU.addRequired<MemorySSAWrapperPass>();
3419 AU.addRequired<AAResultsWrapperPass>();
3420 AU.addPreserved<DominatorTreeWrapperPass>();
3421 AU.addPreserved<GlobalsAAWrapperPass>();
3422 }
3423};
3424
3425bool NewGVNLegacyPass::runOnFunction(Function &F) {
3426 if (skipFunction(F))
3427 return false;
3428 return NewGVN(F, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
3429 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
3430 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
3431 &getAnalysis<AAResultsWrapperPass>().getAAResults(),
3432 &getAnalysis<MemorySSAWrapperPass>().getMSSA(),
3433 F.getParent()->getDataLayout())
3434 .runGVN();
3435}
3436
3437INITIALIZE_PASS_BEGIN(NewGVNLegacyPass, "newgvn", "Global Value Numbering",
3438 false, false)
3439INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3440INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
3441INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3442INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3443INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
3444INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
3445INITIALIZE_PASS_END(NewGVNLegacyPass, "newgvn", "Global Value Numbering", false,
3446 false)
3447
3448char NewGVNLegacyPass::ID = 0;
3449
3450// createGVNPass - The public interface to this file.
3451FunctionPass *llvm::createNewGVNPass() { return new NewGVNLegacyPass(); }
3452
3453PreservedAnalyses NewGVNPass::run(Function &F, AnalysisManager<Function> &AM) {
3454 // Apparently the order in which we get these results matter for
3455 // the old GVN (see Chandler's comment in GVN.cpp). I'll keep
3456 // the same order here, just in case.
3457 auto &AC = AM.getResult<AssumptionAnalysis>(F);
3458 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
3459 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
3460 auto &AA = AM.getResult<AAManager>(F);
3461 auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
3462 bool Changed =
3463 NewGVN(F, &DT, &AC, &TLI, &AA, &MSSA, F.getParent()->getDataLayout())
3464 .runGVN();
3465 if (!Changed)
3466 return PreservedAnalyses::all();
3467 PreservedAnalyses PA;
3468 PA.preserve<DominatorTreeAnalysis>();
3469 PA.preserve<GlobalsAA>();
3470 return PA;
3471}