blob: 84395c2a1913f7e016edd443287f2fc5933e3f44 [file] [log] [blame]
Jia Liub22310f2012-02-18 12:03:15 +00001//===-- HexagonInstrInfo.cpp - Hexagon Instruction Information ------------===//
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Hexagon implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
Tony Linthicum1213a7a2011-12-12 21:14:40 +000014#include "HexagonInstrInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000015#include "Hexagon.h"
Craig Topperb25fda92012-03-17 18:46:09 +000016#include "HexagonRegisterInfo.h"
Tony Linthicum1213a7a2011-12-12 21:14:40 +000017#include "HexagonSubtarget.h"
Tony Linthicum1213a7a2011-12-12 21:14:40 +000018#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallVector.h"
Benjamin Kramerae87d7b2012-02-06 10:19:29 +000020#include "llvm/CodeGen/DFAPacketizer.h"
Tony Linthicum1213a7a2011-12-12 21:14:40 +000021#include "llvm/CodeGen/MachineFrameInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000022#include "llvm/CodeGen/MachineInstrBuilder.h"
Tony Linthicum1213a7a2011-12-12 21:14:40 +000023#include "llvm/CodeGen/MachineMemOperand.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000024#include "llvm/CodeGen/MachineRegisterInfo.h"
Tony Linthicum1213a7a2011-12-12 21:14:40 +000025#include "llvm/CodeGen/PseudoSourceValue.h"
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +000026#include "llvm/MC/MCAsmInfo.h"
Jyotsna Verma5ed51812013-05-01 21:37:34 +000027#include "llvm/Support/Debug.h"
Benjamin Kramerae87d7b2012-02-06 10:19:29 +000028#include "llvm/Support/MathExtras.h"
Reid Kleckner1c76f1552013-05-03 00:54:56 +000029#include "llvm/Support/raw_ostream.h"
Krzysztof Parzyszekaa935752015-11-24 15:11:13 +000030#include <cctype>
Tony Linthicum1213a7a2011-12-12 21:14:40 +000031
Tony Linthicum1213a7a2011-12-12 21:14:40 +000032using namespace llvm;
33
Chandler Carruthe96dd892014-04-21 22:55:11 +000034#define DEBUG_TYPE "hexagon-instrinfo"
35
Chandler Carruthd174b722014-04-22 02:03:14 +000036#define GET_INSTRINFO_CTOR_DTOR
37#define GET_INSTRMAP_INFO
38#include "HexagonGenInstrInfo.inc"
39#include "HexagonGenDFAPacketizer.inc"
40
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +000041using namespace llvm;
42
Krzysztof Parzyszek56bbf542015-12-16 19:36:12 +000043cl::opt<bool> ScheduleInlineAsm("hexagon-sched-inline-asm", cl::Hidden,
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +000044 cl::init(false), cl::desc("Do not consider inline-asm a scheduling/"
45 "packetization boundary."));
46
47static cl::opt<bool> EnableBranchPrediction("hexagon-enable-branch-prediction",
48 cl::Hidden, cl::init(true), cl::desc("Enable branch prediction"));
49
Krzysztof Parzyszek56bbf542015-12-16 19:36:12 +000050static cl::opt<bool> DisableNVSchedule("disable-hexagon-nv-schedule",
51 cl::Hidden, cl::ZeroOrMore, cl::init(false),
52 cl::desc("Disable schedule adjustment for new value stores."));
53
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +000054static cl::opt<bool> EnableTimingClassLatency(
55 "enable-timing-class-latency", cl::Hidden, cl::init(false),
56 cl::desc("Enable timing class latency"));
57
58static cl::opt<bool> EnableALUForwarding(
59 "enable-alu-forwarding", cl::Hidden, cl::init(true),
60 cl::desc("Enable vec alu forwarding"));
61
62static cl::opt<bool> EnableACCForwarding(
63 "enable-acc-forwarding", cl::Hidden, cl::init(true),
64 cl::desc("Enable vec acc forwarding"));
65
66static cl::opt<bool> BranchRelaxAsmLarge("branch-relax-asm-large",
67 cl::init(true), cl::Hidden, cl::ZeroOrMore, cl::desc("branch relax asm"));
68
Tony Linthicum1213a7a2011-12-12 21:14:40 +000069///
70/// Constants for Hexagon instructions.
71///
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +000072const int Hexagon_MEMV_OFFSET_MAX_128B = 2047; // #s7
73const int Hexagon_MEMV_OFFSET_MIN_128B = -2048; // #s7
74const int Hexagon_MEMV_OFFSET_MAX = 1023; // #s6
75const int Hexagon_MEMV_OFFSET_MIN = -1024; // #s6
Tony Linthicum1213a7a2011-12-12 21:14:40 +000076const int Hexagon_MEMW_OFFSET_MAX = 4095;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +000077const int Hexagon_MEMW_OFFSET_MIN = -4096;
Tony Linthicum1213a7a2011-12-12 21:14:40 +000078const int Hexagon_MEMD_OFFSET_MAX = 8191;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +000079const int Hexagon_MEMD_OFFSET_MIN = -8192;
Tony Linthicum1213a7a2011-12-12 21:14:40 +000080const int Hexagon_MEMH_OFFSET_MAX = 2047;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +000081const int Hexagon_MEMH_OFFSET_MIN = -2048;
Tony Linthicum1213a7a2011-12-12 21:14:40 +000082const int Hexagon_MEMB_OFFSET_MAX = 1023;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +000083const int Hexagon_MEMB_OFFSET_MIN = -1024;
Tony Linthicum1213a7a2011-12-12 21:14:40 +000084const int Hexagon_ADDI_OFFSET_MAX = 32767;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +000085const int Hexagon_ADDI_OFFSET_MIN = -32768;
Tony Linthicum1213a7a2011-12-12 21:14:40 +000086const int Hexagon_MEMD_AUTOINC_MAX = 56;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +000087const int Hexagon_MEMD_AUTOINC_MIN = -64;
Tony Linthicum1213a7a2011-12-12 21:14:40 +000088const int Hexagon_MEMW_AUTOINC_MAX = 28;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +000089const int Hexagon_MEMW_AUTOINC_MIN = -32;
Tony Linthicum1213a7a2011-12-12 21:14:40 +000090const int Hexagon_MEMH_AUTOINC_MAX = 14;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +000091const int Hexagon_MEMH_AUTOINC_MIN = -16;
Tony Linthicum1213a7a2011-12-12 21:14:40 +000092const int Hexagon_MEMB_AUTOINC_MAX = 7;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +000093const int Hexagon_MEMB_AUTOINC_MIN = -8;
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +000094const int Hexagon_MEMV_AUTOINC_MAX = 192;
95const int Hexagon_MEMV_AUTOINC_MIN = -256;
96const int Hexagon_MEMV_AUTOINC_MAX_128B = 384;
97const int Hexagon_MEMV_AUTOINC_MIN_128B = -512;
Tony Linthicum1213a7a2011-12-12 21:14:40 +000098
Juergen Ributzkad12ccbd2013-11-19 00:57:56 +000099// Pin the vtable to this file.
100void HexagonInstrInfo::anchor() {}
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000101
102HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST)
Eric Christopherc4d31402015-03-10 23:45:55 +0000103 : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP),
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000104 RI() {}
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000105
106
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000107static bool isIntRegForSubInst(unsigned Reg) {
108 return (Reg >= Hexagon::R0 && Reg <= Hexagon::R7) ||
109 (Reg >= Hexagon::R16 && Reg <= Hexagon::R23);
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000110}
111
112
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000113static bool isDblRegForSubInst(unsigned Reg, const HexagonRegisterInfo &HRI) {
114 return isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::subreg_loreg)) &&
115 isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::subreg_hireg));
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000116}
117
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000118
119/// Calculate number of instructions excluding the debug instructions.
120static unsigned nonDbgMICount(MachineBasicBlock::const_instr_iterator MIB,
121 MachineBasicBlock::const_instr_iterator MIE) {
122 unsigned Count = 0;
123 for (; MIB != MIE; ++MIB) {
124 if (!MIB->isDebugValue())
125 ++Count;
126 }
127 return Count;
128}
129
130
131/// Find the hardware loop instruction used to set-up the specified loop.
132/// On Hexagon, we have two instructions used to set-up the hardware loop
133/// (LOOP0, LOOP1) with corresponding endloop (ENDLOOP0, ENDLOOP1) instructions
134/// to indicate the end of a loop.
135static MachineInstr *findLoopInstr(MachineBasicBlock *BB, int EndLoopOp,
136 SmallPtrSet<MachineBasicBlock *, 8> &Visited) {
Brendon Cahoondf43e682015-05-08 16:16:29 +0000137 int LOOPi;
138 int LOOPr;
139 if (EndLoopOp == Hexagon::ENDLOOP0) {
140 LOOPi = Hexagon::J2_loop0i;
141 LOOPr = Hexagon::J2_loop0r;
142 } else { // EndLoopOp == Hexagon::EndLOOP1
143 LOOPi = Hexagon::J2_loop1i;
144 LOOPr = Hexagon::J2_loop1r;
145 }
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000146
Brendon Cahoondf43e682015-05-08 16:16:29 +0000147 // The loop set-up instruction will be in a predecessor block
148 for (MachineBasicBlock::pred_iterator PB = BB->pred_begin(),
149 PE = BB->pred_end(); PB != PE; ++PB) {
150 // If this has been visited, already skip it.
151 if (!Visited.insert(*PB).second)
152 continue;
153 if (*PB == BB)
154 continue;
155 for (MachineBasicBlock::reverse_instr_iterator I = (*PB)->instr_rbegin(),
156 E = (*PB)->instr_rend(); I != E; ++I) {
157 int Opc = I->getOpcode();
158 if (Opc == LOOPi || Opc == LOOPr)
159 return &*I;
160 // We've reached a different loop, which means the loop0 has been removed.
161 if (Opc == EndLoopOp)
162 return 0;
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000163 }
Brendon Cahoondf43e682015-05-08 16:16:29 +0000164 // Check the predecessors for the LOOP instruction.
165 MachineInstr *loop = findLoopInstr(*PB, EndLoopOp, Visited);
166 if (loop)
167 return loop;
168 }
169 return 0;
170}
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000171
Brendon Cahoondf43e682015-05-08 16:16:29 +0000172
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000173/// Gather register def/uses from MI.
174/// This treats possible (predicated) defs as actually happening ones
175/// (conservatively).
176static inline void parseOperands(const MachineInstr *MI,
177 SmallVector<unsigned, 4> &Defs, SmallVector<unsigned, 8> &Uses) {
178 Defs.clear();
179 Uses.clear();
Brendon Cahoondf43e682015-05-08 16:16:29 +0000180
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000181 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
182 const MachineOperand &MO = MI->getOperand(i);
Brendon Cahoondf43e682015-05-08 16:16:29 +0000183
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000184 if (!MO.isReg())
185 continue;
Brendon Cahoondf43e682015-05-08 16:16:29 +0000186
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000187 unsigned Reg = MO.getReg();
188 if (!Reg)
189 continue;
190
191 if (MO.isUse())
192 Uses.push_back(MO.getReg());
193
194 if (MO.isDef())
195 Defs.push_back(MO.getReg());
196 }
197}
198
199
200// Position dependent, so check twice for swap.
201static bool isDuplexPairMatch(unsigned Ga, unsigned Gb) {
202 switch (Ga) {
203 case HexagonII::HSIG_None:
204 default:
205 return false;
206 case HexagonII::HSIG_L1:
207 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_A);
208 case HexagonII::HSIG_L2:
209 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
210 Gb == HexagonII::HSIG_A);
211 case HexagonII::HSIG_S1:
212 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
213 Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_A);
214 case HexagonII::HSIG_S2:
215 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
216 Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_S2 ||
217 Gb == HexagonII::HSIG_A);
218 case HexagonII::HSIG_A:
219 return (Gb == HexagonII::HSIG_A);
220 case HexagonII::HSIG_Compound:
221 return (Gb == HexagonII::HSIG_Compound);
222 }
223 return false;
224}
225
226
227
228/// isLoadFromStackSlot - If the specified machine instruction is a direct
229/// load from a stack slot, return the virtual or physical register number of
230/// the destination along with the FrameIndex of the loaded stack slot. If
231/// not, return 0. This predicate must return 0 if the instruction has
232/// any side effects other than loading from the stack slot.
233unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
234 int &FrameIndex) const {
235 switch (MI->getOpcode()) {
236 default: break;
237 case Hexagon::L2_loadri_io:
238 case Hexagon::L2_loadrd_io:
239 case Hexagon::L2_loadrh_io:
240 case Hexagon::L2_loadrb_io:
241 case Hexagon::L2_loadrub_io:
242 if (MI->getOperand(2).isFI() &&
243 MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
244 FrameIndex = MI->getOperand(2).getIndex();
245 return MI->getOperand(0).getReg();
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000246 }
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000247 break;
Brendon Cahoondf43e682015-05-08 16:16:29 +0000248 }
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000249 return 0;
250}
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000251
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000252
253/// isStoreToStackSlot - If the specified machine instruction is a direct
254/// store to a stack slot, return the virtual or physical register number of
255/// the source reg along with the FrameIndex of the loaded stack slot. If
256/// not, return 0. This predicate must return 0 if the instruction has
257/// any side effects other than storing to the stack slot.
258unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
259 int &FrameIndex) const {
260 switch (MI->getOpcode()) {
261 default: break;
262 case Hexagon::S2_storeri_io:
263 case Hexagon::S2_storerd_io:
264 case Hexagon::S2_storerh_io:
265 case Hexagon::S2_storerb_io:
266 if (MI->getOperand(2).isFI() &&
267 MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
268 FrameIndex = MI->getOperand(0).getIndex();
269 return MI->getOperand(2).getReg();
270 }
271 break;
272 }
273 return 0;
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000274}
275
276
Brendon Cahoondf43e682015-05-08 16:16:29 +0000277/// This function can analyze one/two way branching only and should (mostly) be
278/// called by target independent side.
279/// First entry is always the opcode of the branching instruction, except when
280/// the Cond vector is supposed to be empty, e.g., when AnalyzeBranch fails, a
281/// BB with only unconditional jump. Subsequent entries depend upon the opcode,
282/// e.g. Jump_c p will have
283/// Cond[0] = Jump_c
284/// Cond[1] = p
285/// HW-loop ENDLOOP:
286/// Cond[0] = ENDLOOP
287/// Cond[1] = MBB
288/// New value jump:
289/// Cond[0] = Hexagon::CMPEQri_f_Jumpnv_t_V4 -- specific opcode
290/// Cond[1] = R
291/// Cond[2] = Imm
Brendon Cahoondf43e682015-05-08 16:16:29 +0000292///
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000293bool HexagonInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
294 MachineBasicBlock *&TBB,
Brendon Cahoondf43e682015-05-08 16:16:29 +0000295 MachineBasicBlock *&FBB,
296 SmallVectorImpl<MachineOperand> &Cond,
297 bool AllowModify) const {
Craig Topper062a2ba2014-04-25 05:30:21 +0000298 TBB = nullptr;
299 FBB = nullptr;
Brendon Cahoondf43e682015-05-08 16:16:29 +0000300 Cond.clear();
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000301
302 // If the block has no terminators, it just falls into the block after it.
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000303 MachineBasicBlock::instr_iterator I = MBB.instr_end();
304 if (I == MBB.instr_begin())
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000305 return false;
306
307 // A basic block may looks like this:
308 //
309 // [ insn
310 // EH_LABEL
311 // insn
312 // insn
313 // insn
314 // EH_LABEL
315 // insn ]
316 //
317 // It has two succs but does not have a terminator
318 // Don't know how to handle it.
319 do {
320 --I;
321 if (I->isEHLabel())
Brendon Cahoondf43e682015-05-08 16:16:29 +0000322 // Don't analyze EH branches.
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000323 return true;
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000324 } while (I != MBB.instr_begin());
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000325
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000326 I = MBB.instr_end();
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000327 --I;
328
329 while (I->isDebugValue()) {
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000330 if (I == MBB.instr_begin())
331 return false;
332 --I;
333 }
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000334
Colin LeMahieu7b1799c2015-03-09 22:05:21 +0000335 bool JumpToBlock = I->getOpcode() == Hexagon::J2_jump &&
336 I->getOperand(0).isMBB();
Brendon Cahoondf43e682015-05-08 16:16:29 +0000337 // Delete the J2_jump if it's equivalent to a fall-through.
Colin LeMahieu7b1799c2015-03-09 22:05:21 +0000338 if (AllowModify && JumpToBlock &&
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000339 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
340 DEBUG(dbgs()<< "\nErasing the jump to successor block\n";);
341 I->eraseFromParent();
342 I = MBB.instr_end();
343 if (I == MBB.instr_begin())
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000344 return false;
345 --I;
346 }
Duncan P. N. Exon Smitha72c6e22015-10-20 00:46:39 +0000347 if (!isUnpredicatedTerminator(&*I))
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000348 return false;
349
350 // Get the last instruction in the block.
Duncan P. N. Exon Smitha72c6e22015-10-20 00:46:39 +0000351 MachineInstr *LastInst = &*I;
Craig Topper062a2ba2014-04-25 05:30:21 +0000352 MachineInstr *SecondLastInst = nullptr;
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000353 // Find one more terminator if present.
Duncan P. N. Exon Smitha72c6e22015-10-20 00:46:39 +0000354 for (;;) {
355 if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(&*I)) {
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000356 if (!SecondLastInst)
Duncan P. N. Exon Smitha72c6e22015-10-20 00:46:39 +0000357 SecondLastInst = &*I;
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000358 else
359 // This is a third branch.
360 return true;
361 }
362 if (I == MBB.instr_begin())
363 break;
364 --I;
Duncan P. N. Exon Smitha72c6e22015-10-20 00:46:39 +0000365 }
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000366
367 int LastOpcode = LastInst->getOpcode();
Colin LeMahieu7b1799c2015-03-09 22:05:21 +0000368 int SecLastOpcode = SecondLastInst ? SecondLastInst->getOpcode() : 0;
369 // If the branch target is not a basic block, it could be a tail call.
370 // (It is, if the target is a function.)
371 if (LastOpcode == Hexagon::J2_jump && !LastInst->getOperand(0).isMBB())
372 return true;
373 if (SecLastOpcode == Hexagon::J2_jump &&
374 !SecondLastInst->getOperand(0).isMBB())
375 return true;
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000376
377 bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode);
Brendon Cahoondf43e682015-05-08 16:16:29 +0000378 bool LastOpcodeHasNVJump = isNewValueJump(LastInst);
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000379
Krzysztof Parzyszekb28ae102016-01-14 15:05:27 +0000380 if (LastOpcodeHasJMP_c && !LastInst->getOperand(1).isMBB())
381 return true;
382
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000383 // If there is only one terminator instruction, process it.
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000384 if (LastInst && !SecondLastInst) {
Colin LeMahieudb0b13c2014-12-10 21:24:10 +0000385 if (LastOpcode == Hexagon::J2_jump) {
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000386 TBB = LastInst->getOperand(0).getMBB();
387 return false;
388 }
Brendon Cahoondf43e682015-05-08 16:16:29 +0000389 if (isEndLoopN(LastOpcode)) {
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000390 TBB = LastInst->getOperand(0).getMBB();
Brendon Cahoondf43e682015-05-08 16:16:29 +0000391 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000392 Cond.push_back(LastInst->getOperand(0));
393 return false;
394 }
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000395 if (LastOpcodeHasJMP_c) {
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000396 TBB = LastInst->getOperand(1).getMBB();
Brendon Cahoondf43e682015-05-08 16:16:29 +0000397 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000398 Cond.push_back(LastInst->getOperand(0));
399 return false;
400 }
Brendon Cahoondf43e682015-05-08 16:16:29 +0000401 // Only supporting rr/ri versions of new-value jumps.
402 if (LastOpcodeHasNVJump && (LastInst->getNumExplicitOperands() == 3)) {
403 TBB = LastInst->getOperand(2).getMBB();
404 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
405 Cond.push_back(LastInst->getOperand(0));
406 Cond.push_back(LastInst->getOperand(1));
407 return false;
408 }
409 DEBUG(dbgs() << "\nCant analyze BB#" << MBB.getNumber()
410 << " with one jump\n";);
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000411 // Otherwise, don't know what this is.
412 return true;
413 }
414
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000415 bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode);
Brendon Cahoondf43e682015-05-08 16:16:29 +0000416 bool SecLastOpcodeHasNVJump = isNewValueJump(SecondLastInst);
Colin LeMahieudb0b13c2014-12-10 21:24:10 +0000417 if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::J2_jump)) {
Krzysztof Parzyszekb28ae102016-01-14 15:05:27 +0000418 if (!SecondLastInst->getOperand(1).isMBB())
419 return true;
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000420 TBB = SecondLastInst->getOperand(1).getMBB();
Brendon Cahoondf43e682015-05-08 16:16:29 +0000421 Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000422 Cond.push_back(SecondLastInst->getOperand(0));
423 FBB = LastInst->getOperand(0).getMBB();
424 return false;
425 }
426
Brendon Cahoondf43e682015-05-08 16:16:29 +0000427 // Only supporting rr/ri versions of new-value jumps.
428 if (SecLastOpcodeHasNVJump &&
429 (SecondLastInst->getNumExplicitOperands() == 3) &&
430 (LastOpcode == Hexagon::J2_jump)) {
431 TBB = SecondLastInst->getOperand(2).getMBB();
432 Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
433 Cond.push_back(SecondLastInst->getOperand(0));
434 Cond.push_back(SecondLastInst->getOperand(1));
435 FBB = LastInst->getOperand(0).getMBB();
436 return false;
437 }
438
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000439 // If the block ends with two Hexagon:JMPs, handle it. The second one is not
440 // executed, so remove it.
Colin LeMahieudb0b13c2014-12-10 21:24:10 +0000441 if (SecLastOpcode == Hexagon::J2_jump && LastOpcode == Hexagon::J2_jump) {
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000442 TBB = SecondLastInst->getOperand(0).getMBB();
Duncan P. N. Exon Smitha72c6e22015-10-20 00:46:39 +0000443 I = LastInst->getIterator();
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000444 if (AllowModify)
445 I->eraseFromParent();
446 return false;
447 }
448
Brendon Cahoondf43e682015-05-08 16:16:29 +0000449 // If the block ends with an ENDLOOP, and J2_jump, handle it.
450 if (isEndLoopN(SecLastOpcode) && LastOpcode == Hexagon::J2_jump) {
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000451 TBB = SecondLastInst->getOperand(0).getMBB();
Brendon Cahoondf43e682015-05-08 16:16:29 +0000452 Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000453 Cond.push_back(SecondLastInst->getOperand(0));
454 FBB = LastInst->getOperand(0).getMBB();
455 return false;
456 }
Brendon Cahoondf43e682015-05-08 16:16:29 +0000457 DEBUG(dbgs() << "\nCant analyze BB#" << MBB.getNumber()
458 << " with two jumps";);
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000459 // Otherwise, can't handle this.
460 return true;
461}
462
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000463
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000464unsigned HexagonInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
Brendon Cahoondf43e682015-05-08 16:16:29 +0000465 DEBUG(dbgs() << "\nRemoving branches out of BB#" << MBB.getNumber());
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000466 MachineBasicBlock::iterator I = MBB.end();
Brendon Cahoondf43e682015-05-08 16:16:29 +0000467 unsigned Count = 0;
468 while (I != MBB.begin()) {
469 --I;
470 if (I->isDebugValue())
471 continue;
472 // Only removing branches from end of MBB.
473 if (!I->isBranch())
474 return Count;
475 if (Count && (I->getOpcode() == Hexagon::J2_jump))
476 llvm_unreachable("Malformed basic block: unconditional branch not last");
477 MBB.erase(&MBB.back());
478 I = MBB.end();
479 ++Count;
Krzysztof Parzyszek78cc36f2015-03-18 15:56:43 +0000480 }
Brendon Cahoondf43e682015-05-08 16:16:29 +0000481 return Count;
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000482}
483
Krzysztof Parzyszekcfe285e2013-02-11 20:04:29 +0000484
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000485unsigned HexagonInstrInfo::InsertBranch(MachineBasicBlock &MBB,
486 MachineBasicBlock *TBB, MachineBasicBlock *FBB,
487 ArrayRef<MachineOperand> Cond, DebugLoc DL) const {
488 unsigned BOpc = Hexagon::J2_jump;
489 unsigned BccOpc = Hexagon::J2_jumpt;
490 assert(validateBranchCond(Cond) && "Invalid branching condition");
491 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
492
493 // Check if ReverseBranchCondition has asked to reverse this branch
494 // If we want to reverse the branch an odd number of times, we want
495 // J2_jumpf.
496 if (!Cond.empty() && Cond[0].isImm())
497 BccOpc = Cond[0].getImm();
498
499 if (!FBB) {
500 if (Cond.empty()) {
501 // Due to a bug in TailMerging/CFG Optimization, we need to add a
502 // special case handling of a predicated jump followed by an
503 // unconditional jump. If not, Tail Merging and CFG Optimization go
504 // into an infinite loop.
505 MachineBasicBlock *NewTBB, *NewFBB;
506 SmallVector<MachineOperand, 4> Cond;
507 MachineInstr *Term = MBB.getFirstTerminator();
508 if (Term != MBB.end() && isPredicated(Term) &&
509 !AnalyzeBranch(MBB, NewTBB, NewFBB, Cond, false)) {
510 MachineBasicBlock *NextBB = &*++MBB.getIterator();
511 if (NewTBB == NextBB) {
512 ReverseBranchCondition(Cond);
513 RemoveBranch(MBB);
514 return InsertBranch(MBB, TBB, nullptr, Cond, DL);
515 }
516 }
517 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
518 } else if (isEndLoopN(Cond[0].getImm())) {
519 int EndLoopOp = Cond[0].getImm();
520 assert(Cond[1].isMBB());
521 // Since we're adding an ENDLOOP, there better be a LOOP instruction.
522 // Check for it, and change the BB target if needed.
523 SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
524 MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, VisitedBBs);
525 assert(Loop != 0 && "Inserting an ENDLOOP without a LOOP");
526 Loop->getOperand(0).setMBB(TBB);
527 // Add the ENDLOOP after the finding the LOOP0.
528 BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
529 } else if (isNewValueJump(Cond[0].getImm())) {
530 assert((Cond.size() == 3) && "Only supporting rr/ri version of nvjump");
531 // New value jump
532 // (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset)
533 // (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset)
534 unsigned Flags1 = getUndefRegState(Cond[1].isUndef());
535 DEBUG(dbgs() << "\nInserting NVJump for BB#" << MBB.getNumber(););
536 if (Cond[2].isReg()) {
537 unsigned Flags2 = getUndefRegState(Cond[2].isUndef());
538 BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
539 addReg(Cond[2].getReg(), Flags2).addMBB(TBB);
540 } else if(Cond[2].isImm()) {
541 BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
542 addImm(Cond[2].getImm()).addMBB(TBB);
543 } else
544 llvm_unreachable("Invalid condition for branching");
545 } else {
546 assert((Cond.size() == 2) && "Malformed cond vector");
547 const MachineOperand &RO = Cond[1];
548 unsigned Flags = getUndefRegState(RO.isUndef());
549 BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
550 }
551 return 1;
Krzysztof Parzyszekcfe285e2013-02-11 20:04:29 +0000552 }
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000553 assert((!Cond.empty()) &&
554 "Cond. cannot be empty when multiple branchings are required");
555 assert((!isNewValueJump(Cond[0].getImm())) &&
556 "NV-jump cannot be inserted with another branch");
557 // Special case for hardware loops. The condition is a basic block.
558 if (isEndLoopN(Cond[0].getImm())) {
559 int EndLoopOp = Cond[0].getImm();
560 assert(Cond[1].isMBB());
561 // Since we're adding an ENDLOOP, there better be a LOOP instruction.
562 // Check for it, and change the BB target if needed.
563 SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
564 MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, VisitedBBs);
565 assert(Loop != 0 && "Inserting an ENDLOOP without a LOOP");
566 Loop->getOperand(0).setMBB(TBB);
567 // Add the ENDLOOP after the finding the LOOP0.
568 BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
569 } else {
570 const MachineOperand &RO = Cond[1];
571 unsigned Flags = getUndefRegState(RO.isUndef());
572 BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
Krzysztof Parzyszekcfe285e2013-02-11 20:04:29 +0000573 }
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000574 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
Krzysztof Parzyszekcfe285e2013-02-11 20:04:29 +0000575
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000576 return 2;
577}
578
579
580bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &MBB,
581 unsigned NumCycles, unsigned ExtraPredCycles,
582 BranchProbability Probability) const {
583 return nonDbgBBSize(&MBB) <= 3;
584}
585
586
587bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
588 unsigned NumTCycles, unsigned ExtraTCycles, MachineBasicBlock &FMBB,
589 unsigned NumFCycles, unsigned ExtraFCycles, BranchProbability Probability)
590 const {
591 return nonDbgBBSize(&TMBB) <= 3 && nonDbgBBSize(&FMBB) <= 3;
592}
593
594
595bool HexagonInstrInfo::isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
596 unsigned NumInstrs, BranchProbability Probability) const {
597 return NumInstrs <= 4;
Krzysztof Parzyszekcfe285e2013-02-11 20:04:29 +0000598}
599
600
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000601void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000602 MachineBasicBlock::iterator I, DebugLoc DL, unsigned DestReg,
603 unsigned SrcReg, bool KillSrc) const {
604 auto &HRI = getRegisterInfo();
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000605 if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) {
Colin LeMahieu4af437f2014-12-09 20:23:30 +0000606 BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), DestReg).addReg(SrcReg);
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000607 return;
608 }
609 if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) {
Colin LeMahieu4af437f2014-12-09 20:23:30 +0000610 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrp), DestReg).addReg(SrcReg);
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000611 return;
612 }
613 if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) {
614 // Map Pd = Ps to Pd = or(Ps, Ps).
Colin LeMahieu5cf56322014-12-08 23:55:43 +0000615 BuildMI(MBB, I, DL, get(Hexagon::C2_or),
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000616 DestReg).addReg(SrcReg).addReg(SrcReg);
617 return;
618 }
Sirish Pande8bb97452012-05-12 05:54:15 +0000619 if (Hexagon::DoubleRegsRegClass.contains(DestReg) &&
620 Hexagon::IntRegsRegClass.contains(SrcReg)) {
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000621 // We can have an overlap between single and double reg: r1:0 = r0.
622 if(SrcReg == RI.getSubReg(DestReg, Hexagon::subreg_loreg)) {
623 // r1:0 = r0
Colin LeMahieu4af437f2014-12-09 20:23:30 +0000624 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrsi), (RI.getSubReg(DestReg,
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000625 Hexagon::subreg_hireg))).addImm(0);
626 } else {
627 // r1:0 = r1 or no overlap.
Colin LeMahieu4af437f2014-12-09 20:23:30 +0000628 BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), (RI.getSubReg(DestReg,
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000629 Hexagon::subreg_loreg))).addReg(SrcReg);
Colin LeMahieu4af437f2014-12-09 20:23:30 +0000630 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrsi), (RI.getSubReg(DestReg,
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000631 Hexagon::subreg_hireg))).addImm(0);
632 }
633 return;
634 }
Colin LeMahieu402f7722014-12-19 18:56:10 +0000635 if (Hexagon::CtrRegsRegClass.contains(DestReg) &&
Sirish Pande8bb97452012-05-12 05:54:15 +0000636 Hexagon::IntRegsRegClass.contains(SrcReg)) {
Colin LeMahieu0f850bd2014-12-19 20:29:29 +0000637 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg).addReg(SrcReg);
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000638 return;
Sirish Pande30804c22012-02-15 18:52:27 +0000639 }
Anshuman Dasguptae96f8042013-02-13 22:56:34 +0000640 if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
641 Hexagon::IntRegsRegClass.contains(DestReg)) {
Colin LeMahieu30dcb232014-12-09 18:16:49 +0000642 BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg).
Anshuman Dasguptae96f8042013-02-13 22:56:34 +0000643 addReg(SrcReg, getKillRegState(KillSrc));
644 return;
645 }
646 if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
647 Hexagon::PredRegsRegClass.contains(DestReg)) {
Colin LeMahieu30dcb232014-12-09 18:16:49 +0000648 BuildMI(MBB, I, DL, get(Hexagon::C2_tfrrp), DestReg).
Anshuman Dasguptae96f8042013-02-13 22:56:34 +0000649 addReg(SrcReg, getKillRegState(KillSrc));
650 return;
651 }
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000652 if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
653 Hexagon::IntRegsRegClass.contains(DestReg)) {
654 BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg).
655 addReg(SrcReg, getKillRegState(KillSrc));
656 return;
657 }
658 if (Hexagon::VectorRegsRegClass.contains(SrcReg, DestReg)) {
659 BuildMI(MBB, I, DL, get(Hexagon::V6_vassign), DestReg).
660 addReg(SrcReg, getKillRegState(KillSrc));
661 return;
662 }
663 if (Hexagon::VecDblRegsRegClass.contains(SrcReg, DestReg)) {
664 BuildMI(MBB, I, DL, get(Hexagon::V6_vcombine), DestReg).
665 addReg(HRI.getSubReg(SrcReg, Hexagon::subreg_hireg),
666 getKillRegState(KillSrc)).
667 addReg(HRI.getSubReg(SrcReg, Hexagon::subreg_loreg),
668 getKillRegState(KillSrc));
669 return;
670 }
671 if (Hexagon::VecPredRegsRegClass.contains(SrcReg, DestReg)) {
672 BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and), DestReg).
673 addReg(SrcReg).
674 addReg(SrcReg, getKillRegState(KillSrc));
675 return;
676 }
677 if (Hexagon::VecPredRegsRegClass.contains(SrcReg) &&
678 Hexagon::VectorRegsRegClass.contains(DestReg)) {
679 llvm_unreachable("Unimplemented pred to vec");
680 return;
681 }
682 if (Hexagon::VecPredRegsRegClass.contains(DestReg) &&
683 Hexagon::VectorRegsRegClass.contains(SrcReg)) {
684 llvm_unreachable("Unimplemented vec to pred");
685 return;
686 }
687 if (Hexagon::VecPredRegs128BRegClass.contains(SrcReg, DestReg)) {
688 BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and),
689 HRI.getSubReg(DestReg, Hexagon::subreg_hireg)).
690 addReg(HRI.getSubReg(SrcReg, Hexagon::subreg_hireg),
691 getKillRegState(KillSrc));
692 BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and),
693 HRI.getSubReg(DestReg, Hexagon::subreg_loreg)).
694 addReg(HRI.getSubReg(SrcReg, Hexagon::subreg_loreg),
695 getKillRegState(KillSrc));
696 return;
697 }
Sirish Pande30804c22012-02-15 18:52:27 +0000698
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000699#ifndef NDEBUG
700 // Show the invalid registers to ease debugging.
701 dbgs() << "Invalid registers for copy in BB#" << MBB.getNumber()
702 << ": " << PrintReg(DestReg, &HRI)
703 << " = " << PrintReg(SrcReg, &HRI) << '\n';
704#endif
Sirish Pande30804c22012-02-15 18:52:27 +0000705 llvm_unreachable("Unimplemented");
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000706}
707
708
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000709void HexagonInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
710 MachineBasicBlock::iterator I, unsigned SrcReg, bool isKill, int FI,
711 const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const {
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000712 DebugLoc DL = MBB.findDebugLoc(I);
713 MachineFunction &MF = *MBB.getParent();
714 MachineFrameInfo &MFI = *MF.getFrameInfo();
715 unsigned Align = MFI.getObjectAlignment(FI);
716
Alex Lorenze40c8a22015-08-11 23:09:45 +0000717 MachineMemOperand *MMO = MF.getMachineMemOperand(
718 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
719 MFI.getObjectSize(FI), Align);
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000720
Craig Topperc7242e02012-04-20 07:30:17 +0000721 if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
Colin LeMahieubda31b42014-12-29 20:44:51 +0000722 BuildMI(MBB, I, DL, get(Hexagon::S2_storeri_io))
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000723 .addFrameIndex(FI).addImm(0)
724 .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
Craig Topperc7242e02012-04-20 07:30:17 +0000725 } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
Colin LeMahieubda31b42014-12-29 20:44:51 +0000726 BuildMI(MBB, I, DL, get(Hexagon::S2_storerd_io))
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000727 .addFrameIndex(FI).addImm(0)
728 .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
Craig Topperc7242e02012-04-20 07:30:17 +0000729 } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000730 BuildMI(MBB, I, DL, get(Hexagon::STriw_pred))
Krzysztof Parzyszek7b413c62016-01-22 19:15:58 +0000731 .addFrameIndex(FI).addImm(0)
732 .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
733 } else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) {
734 BuildMI(MBB, I, DL, get(Hexagon::STriw_mod))
735 .addFrameIndex(FI).addImm(0)
736 .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000737 } else {
Craig Toppere55c5562012-02-07 02:50:20 +0000738 llvm_unreachable("Unimplemented");
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000739 }
740}
741
742
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000743void HexagonInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
744 MachineBasicBlock::iterator I, unsigned DestReg, int FI,
745 const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const {
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000746 DebugLoc DL = MBB.findDebugLoc(I);
747 MachineFunction &MF = *MBB.getParent();
748 MachineFrameInfo &MFI = *MF.getFrameInfo();
749 unsigned Align = MFI.getObjectAlignment(FI);
750
Alex Lorenze40c8a22015-08-11 23:09:45 +0000751 MachineMemOperand *MMO = MF.getMachineMemOperand(
752 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
753 MFI.getObjectSize(FI), Align);
Krzysztof Parzyszek7b413c62016-01-22 19:15:58 +0000754 if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
Colin LeMahieu026e88d2014-12-23 20:02:16 +0000755 BuildMI(MBB, I, DL, get(Hexagon::L2_loadri_io), DestReg)
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000756 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
Krzysztof Parzyszek7b413c62016-01-22 19:15:58 +0000757 } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
Colin LeMahieu947cd702014-12-23 20:44:59 +0000758 BuildMI(MBB, I, DL, get(Hexagon::L2_loadrd_io), DestReg)
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000759 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
Krzysztof Parzyszek7b413c62016-01-22 19:15:58 +0000760 } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000761 BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg)
Krzysztof Parzyszek7b413c62016-01-22 19:15:58 +0000762 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
763 } else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) {
764 BuildMI(MBB, I, DL, get(Hexagon::LDriw_mod), DestReg)
765 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000766 } else {
Craig Toppere55c5562012-02-07 02:50:20 +0000767 llvm_unreachable("Can't store this register to stack slot");
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000768 }
769}
770
771
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000772/// expandPostRAPseudo - This function is called for all pseudo instructions
773/// that remain after register allocation. Many pseudo instructions are
774/// created to help register allocation. This is the place to convert them
775/// into real instructions. The target can edit MI in place, or it can insert
776/// new instructions and erase MI. The function should return true if
777/// anything was changed.
778bool HexagonInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI)
779 const {
Krzysztof Parzyszekfb338242015-10-06 15:49:14 +0000780 const HexagonRegisterInfo &HRI = getRegisterInfo();
Krzysztof Parzyszek42113342015-03-19 16:33:08 +0000781 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
Krzysztof Parzyszek36ccfa52015-03-18 19:07:53 +0000782 MachineBasicBlock &MBB = *MI->getParent();
783 DebugLoc DL = MI->getDebugLoc();
Colin LeMahieu7b1799c2015-03-09 22:05:21 +0000784 unsigned Opc = MI->getOpcode();
Krzysztof Parzyszek195dc8d2015-11-26 04:33:11 +0000785 const unsigned VecOffset = 1;
786 bool Is128B = false;
Colin LeMahieu7b1799c2015-03-09 22:05:21 +0000787
788 switch (Opc) {
Krzysztof Parzyszek4fa2a9f2015-04-22 16:43:53 +0000789 case Hexagon::ALIGNA:
790 BuildMI(MBB, MI, DL, get(Hexagon::A2_andir), MI->getOperand(0).getReg())
Krzysztof Parzyszekfb338242015-10-06 15:49:14 +0000791 .addReg(HRI.getFrameRegister())
Krzysztof Parzyszek4fa2a9f2015-04-22 16:43:53 +0000792 .addImm(-MI->getOperand(1).getImm());
793 MBB.erase(MI);
794 return true;
Krzysztof Parzyszek4eb6d4d2015-11-26 16:54:33 +0000795 case Hexagon::HEXAGON_V6_vassignp_128B:
796 case Hexagon::HEXAGON_V6_vassignp: {
797 unsigned SrcReg = MI->getOperand(1).getReg();
798 unsigned DstReg = MI->getOperand(0).getReg();
799 if (SrcReg != DstReg)
800 copyPhysReg(MBB, MI, DL, DstReg, SrcReg, MI->getOperand(1).isKill());
801 MBB.erase(MI);
802 return true;
803 }
804 case Hexagon::HEXAGON_V6_lo_128B:
805 case Hexagon::HEXAGON_V6_lo: {
806 unsigned SrcReg = MI->getOperand(1).getReg();
807 unsigned DstReg = MI->getOperand(0).getReg();
808 unsigned SrcSubLo = HRI.getSubReg(SrcReg, Hexagon::subreg_loreg);
809 copyPhysReg(MBB, MI, DL, DstReg, SrcSubLo, MI->getOperand(1).isKill());
810 MBB.erase(MI);
811 MRI.clearKillFlags(SrcSubLo);
812 return true;
813 }
814 case Hexagon::HEXAGON_V6_hi_128B:
815 case Hexagon::HEXAGON_V6_hi: {
816 unsigned SrcReg = MI->getOperand(1).getReg();
817 unsigned DstReg = MI->getOperand(0).getReg();
818 unsigned SrcSubHi = HRI.getSubReg(SrcReg, Hexagon::subreg_hireg);
819 copyPhysReg(MBB, MI, DL, DstReg, SrcSubHi, MI->getOperand(1).isKill());
820 MBB.erase(MI);
821 MRI.clearKillFlags(SrcSubHi);
822 return true;
823 }
Krzysztof Parzyszek195dc8d2015-11-26 04:33:11 +0000824 case Hexagon::STrivv_indexed_128B:
825 Is128B = true;
826 case Hexagon::STrivv_indexed: {
827 unsigned SrcReg = MI->getOperand(2).getReg();
828 unsigned SrcSubHi = HRI.getSubReg(SrcReg, Hexagon::subreg_hireg);
829 unsigned SrcSubLo = HRI.getSubReg(SrcReg, Hexagon::subreg_loreg);
830 unsigned NewOpcd = Is128B ? Hexagon::V6_vS32b_ai_128B
831 : Hexagon::V6_vS32b_ai;
832 unsigned Offset = Is128B ? VecOffset << 7 : VecOffset << 6;
833 MachineInstr *MI1New = BuildMI(MBB, MI, DL, get(NewOpcd))
834 .addOperand(MI->getOperand(0))
835 .addImm(MI->getOperand(1).getImm())
836 .addReg(SrcSubLo)
837 .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
838 MI1New->getOperand(0).setIsKill(false);
839 BuildMI(MBB, MI, DL, get(NewOpcd))
840 .addOperand(MI->getOperand(0))
841 // The Vectors are indexed in multiples of vector size.
842 .addImm(MI->getOperand(1).getImm()+Offset)
843 .addReg(SrcSubHi)
844 .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
845 MBB.erase(MI);
846 return true;
847 }
848 case Hexagon::LDrivv_pseudo_V6_128B:
849 case Hexagon::LDrivv_indexed_128B:
850 Is128B = true;
851 case Hexagon::LDrivv_pseudo_V6:
852 case Hexagon::LDrivv_indexed: {
853 unsigned NewOpcd = Is128B ? Hexagon::V6_vL32b_ai_128B
854 : Hexagon::V6_vL32b_ai;
855 unsigned DstReg = MI->getOperand(0).getReg();
856 unsigned Offset = Is128B ? VecOffset << 7 : VecOffset << 6;
857 MachineInstr *MI1New =
858 BuildMI(MBB, MI, DL, get(NewOpcd),
859 HRI.getSubReg(DstReg, Hexagon::subreg_loreg))
860 .addOperand(MI->getOperand(1))
861 .addImm(MI->getOperand(2).getImm());
862 MI1New->getOperand(1).setIsKill(false);
863 BuildMI(MBB, MI, DL, get(NewOpcd),
864 HRI.getSubReg(DstReg, Hexagon::subreg_hireg))
865 .addOperand(MI->getOperand(1))
866 // The Vectors are indexed in multiples of vector size.
867 .addImm(MI->getOperand(2).getImm() + Offset)
868 .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
869 MBB.erase(MI);
870 return true;
871 }
872 case Hexagon::LDriv_pseudo_V6_128B:
873 Is128B = true;
874 case Hexagon::LDriv_pseudo_V6: {
875 unsigned DstReg = MI->getOperand(0).getReg();
876 unsigned NewOpc = Is128B ? Hexagon::V6_vL32b_ai_128B
877 : Hexagon::V6_vL32b_ai;
878 int32_t Off = MI->getOperand(2).getImm();
879 int32_t Idx = Off;
880 BuildMI(MBB, MI, DL, get(NewOpc), DstReg)
881 .addOperand(MI->getOperand(1))
882 .addImm(Idx)
883 .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
884 MBB.erase(MI);
885 return true;
886 }
887 case Hexagon::STriv_pseudo_V6_128B:
888 Is128B = true;
889 case Hexagon::STriv_pseudo_V6: {
890 unsigned NewOpc = Is128B ? Hexagon::V6_vS32b_ai_128B
891 : Hexagon::V6_vS32b_ai;
892 int32_t Off = MI->getOperand(1).getImm();
893 int32_t Idx = Is128B ? (Off >> 7) : (Off >> 6);
894 BuildMI(MBB, MI, DL, get(NewOpc))
895 .addOperand(MI->getOperand(0))
896 .addImm(Idx)
897 .addOperand(MI->getOperand(2))
898 .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
899 MBB.erase(MI);
900 return true;
901 }
Krzysztof Parzyszek36ccfa52015-03-18 19:07:53 +0000902 case Hexagon::TFR_PdTrue: {
903 unsigned Reg = MI->getOperand(0).getReg();
904 BuildMI(MBB, MI, DL, get(Hexagon::C2_orn), Reg)
905 .addReg(Reg, RegState::Undef)
906 .addReg(Reg, RegState::Undef);
907 MBB.erase(MI);
908 return true;
909 }
910 case Hexagon::TFR_PdFalse: {
911 unsigned Reg = MI->getOperand(0).getReg();
912 BuildMI(MBB, MI, DL, get(Hexagon::C2_andn), Reg)
913 .addReg(Reg, RegState::Undef)
914 .addReg(Reg, RegState::Undef);
915 MBB.erase(MI);
916 return true;
917 }
Krzysztof Parzyszek42113342015-03-19 16:33:08 +0000918 case Hexagon::VMULW: {
919 // Expand a 64-bit vector multiply into 2 32-bit scalar multiplies.
920 unsigned DstReg = MI->getOperand(0).getReg();
921 unsigned Src1Reg = MI->getOperand(1).getReg();
922 unsigned Src2Reg = MI->getOperand(2).getReg();
Krzysztof Parzyszekfb338242015-10-06 15:49:14 +0000923 unsigned Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::subreg_hireg);
924 unsigned Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::subreg_loreg);
925 unsigned Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::subreg_hireg);
926 unsigned Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::subreg_loreg);
Krzysztof Parzyszek42113342015-03-19 16:33:08 +0000927 BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_mpyi),
Krzysztof Parzyszekfb338242015-10-06 15:49:14 +0000928 HRI.getSubReg(DstReg, Hexagon::subreg_hireg)).addReg(Src1SubHi)
Krzysztof Parzyszek42113342015-03-19 16:33:08 +0000929 .addReg(Src2SubHi);
930 BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_mpyi),
Krzysztof Parzyszekfb338242015-10-06 15:49:14 +0000931 HRI.getSubReg(DstReg, Hexagon::subreg_loreg)).addReg(Src1SubLo)
Krzysztof Parzyszek42113342015-03-19 16:33:08 +0000932 .addReg(Src2SubLo);
933 MBB.erase(MI);
934 MRI.clearKillFlags(Src1SubHi);
935 MRI.clearKillFlags(Src1SubLo);
936 MRI.clearKillFlags(Src2SubHi);
937 MRI.clearKillFlags(Src2SubLo);
938 return true;
939 }
940 case Hexagon::VMULW_ACC: {
941 // Expand 64-bit vector multiply with addition into 2 scalar multiplies.
942 unsigned DstReg = MI->getOperand(0).getReg();
943 unsigned Src1Reg = MI->getOperand(1).getReg();
944 unsigned Src2Reg = MI->getOperand(2).getReg();
945 unsigned Src3Reg = MI->getOperand(3).getReg();
Krzysztof Parzyszekfb338242015-10-06 15:49:14 +0000946 unsigned Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::subreg_hireg);
947 unsigned Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::subreg_loreg);
948 unsigned Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::subreg_hireg);
949 unsigned Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::subreg_loreg);
950 unsigned Src3SubHi = HRI.getSubReg(Src3Reg, Hexagon::subreg_hireg);
951 unsigned Src3SubLo = HRI.getSubReg(Src3Reg, Hexagon::subreg_loreg);
Krzysztof Parzyszek42113342015-03-19 16:33:08 +0000952 BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_maci),
Krzysztof Parzyszekfb338242015-10-06 15:49:14 +0000953 HRI.getSubReg(DstReg, Hexagon::subreg_hireg)).addReg(Src1SubHi)
Krzysztof Parzyszek42113342015-03-19 16:33:08 +0000954 .addReg(Src2SubHi).addReg(Src3SubHi);
955 BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_maci),
Krzysztof Parzyszekfb338242015-10-06 15:49:14 +0000956 HRI.getSubReg(DstReg, Hexagon::subreg_loreg)).addReg(Src1SubLo)
Krzysztof Parzyszek42113342015-03-19 16:33:08 +0000957 .addReg(Src2SubLo).addReg(Src3SubLo);
958 MBB.erase(MI);
959 MRI.clearKillFlags(Src1SubHi);
960 MRI.clearKillFlags(Src1SubLo);
961 MRI.clearKillFlags(Src2SubHi);
962 MRI.clearKillFlags(Src2SubLo);
963 MRI.clearKillFlags(Src3SubHi);
964 MRI.clearKillFlags(Src3SubLo);
965 return true;
966 }
Krzysztof Parzyszek237b9612016-01-14 15:37:16 +0000967 case Hexagon::Insert4: {
968 unsigned DstReg = MI->getOperand(0).getReg();
969 unsigned Src1Reg = MI->getOperand(1).getReg();
970 unsigned Src2Reg = MI->getOperand(2).getReg();
971 unsigned Src3Reg = MI->getOperand(3).getReg();
972 unsigned Src4Reg = MI->getOperand(4).getReg();
973 unsigned Src1RegIsKill = getKillRegState(MI->getOperand(1).isKill());
974 unsigned Src2RegIsKill = getKillRegState(MI->getOperand(2).isKill());
975 unsigned Src3RegIsKill = getKillRegState(MI->getOperand(3).isKill());
976 unsigned Src4RegIsKill = getKillRegState(MI->getOperand(4).isKill());
977 unsigned DstSubHi = HRI.getSubReg(DstReg, Hexagon::subreg_hireg);
978 unsigned DstSubLo = HRI.getSubReg(DstReg, Hexagon::subreg_loreg);
979 BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::S2_insert),
980 HRI.getSubReg(DstReg, Hexagon::subreg_loreg)).addReg(DstSubLo)
981 .addReg(Src1Reg, Src1RegIsKill).addImm(16).addImm(0);
982 BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::S2_insert),
983 HRI.getSubReg(DstReg, Hexagon::subreg_loreg)).addReg(DstSubLo)
984 .addReg(Src2Reg, Src2RegIsKill).addImm(16).addImm(16);
985 BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::S2_insert),
986 HRI.getSubReg(DstReg, Hexagon::subreg_hireg)).addReg(DstSubHi)
987 .addReg(Src3Reg, Src3RegIsKill).addImm(16).addImm(0);
988 BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::S2_insert),
989 HRI.getSubReg(DstReg, Hexagon::subreg_hireg)).addReg(DstSubHi)
990 .addReg(Src4Reg, Src4RegIsKill).addImm(16).addImm(16);
991 MBB.erase(MI);
992 MRI.clearKillFlags(DstReg);
993 MRI.clearKillFlags(DstSubHi);
994 MRI.clearKillFlags(DstSubLo);
995 return true;
996 }
Krzysztof Parzyszekfb338242015-10-06 15:49:14 +0000997 case Hexagon::MUX64_rr: {
998 const MachineOperand &Op0 = MI->getOperand(0);
999 const MachineOperand &Op1 = MI->getOperand(1);
1000 const MachineOperand &Op2 = MI->getOperand(2);
1001 const MachineOperand &Op3 = MI->getOperand(3);
1002 unsigned Rd = Op0.getReg();
1003 unsigned Pu = Op1.getReg();
1004 unsigned Rs = Op2.getReg();
1005 unsigned Rt = Op3.getReg();
1006 DebugLoc DL = MI->getDebugLoc();
1007 unsigned K1 = getKillRegState(Op1.isKill());
1008 unsigned K2 = getKillRegState(Op2.isKill());
1009 unsigned K3 = getKillRegState(Op3.isKill());
1010 if (Rd != Rs)
1011 BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpt), Rd)
1012 .addReg(Pu, (Rd == Rt) ? K1 : 0)
1013 .addReg(Rs, K2);
1014 if (Rd != Rt)
1015 BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpf), Rd)
1016 .addReg(Pu, K1)
1017 .addReg(Rt, K3);
1018 MBB.erase(MI);
1019 return true;
1020 }
Colin LeMahieu7b1799c2015-03-09 22:05:21 +00001021 case Hexagon::TCRETURNi:
1022 MI->setDesc(get(Hexagon::J2_jump));
1023 return true;
1024 case Hexagon::TCRETURNr:
1025 MI->setDesc(get(Hexagon::J2_jumpr));
1026 return true;
Krzysztof Parzyszek70a134d2015-11-25 21:40:03 +00001027 case Hexagon::TFRI_f:
1028 case Hexagon::TFRI_cPt_f:
1029 case Hexagon::TFRI_cNotPt_f: {
1030 unsigned Opx = (Opc == Hexagon::TFRI_f) ? 1 : 2;
1031 APFloat FVal = MI->getOperand(Opx).getFPImm()->getValueAPF();
1032 APInt IVal = FVal.bitcastToAPInt();
1033 MI->RemoveOperand(Opx);
1034 unsigned NewOpc = (Opc == Hexagon::TFRI_f) ? Hexagon::A2_tfrsi :
1035 (Opc == Hexagon::TFRI_cPt_f) ? Hexagon::C2_cmoveit :
1036 Hexagon::C2_cmoveif;
1037 MI->setDesc(get(NewOpc));
1038 MI->addOperand(MachineOperand::CreateImm(IVal.getZExtValue()));
1039 return true;
1040 }
Colin LeMahieu7b1799c2015-03-09 22:05:21 +00001041 }
1042
1043 return false;
1044}
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001045
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001046
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001047// We indicate that we want to reverse the branch by
1048// inserting the reversed branching opcode.
1049bool HexagonInstrInfo::ReverseBranchCondition(
1050 SmallVectorImpl<MachineOperand> &Cond) const {
1051 if (Cond.empty())
Jyotsna Vermaf1214a82013-03-05 18:51:42 +00001052 return true;
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001053 assert(Cond[0].isImm() && "First entry in the cond vector not imm-val");
1054 unsigned opcode = Cond[0].getImm();
1055 //unsigned temp;
1056 assert(get(opcode).isBranch() && "Should be a branching condition.");
1057 if (isEndLoopN(opcode))
Jyotsna Vermaf1214a82013-03-05 18:51:42 +00001058 return true;
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001059 unsigned NewOpcode = getInvertedPredicatedOpcode(opcode);
1060 Cond[0].setImm(NewOpcode);
Jyotsna Vermaf1214a82013-03-05 18:51:42 +00001061 return false;
1062}
1063
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001064
1065void HexagonInstrInfo::insertNoop(MachineBasicBlock &MBB,
1066 MachineBasicBlock::iterator MI) const {
1067 DebugLoc DL;
1068 BuildMI(MBB, MI, DL, get(Hexagon::A2_nop));
1069}
1070
1071
1072// Returns true if an instruction is predicated irrespective of the predicate
1073// sense. For example, all of the following will return true.
1074// if (p0) R1 = add(R2, R3)
1075// if (!p0) R1 = add(R2, R3)
1076// if (p0.new) R1 = add(R2, R3)
1077// if (!p0.new) R1 = add(R2, R3)
1078// Note: New-value stores are not included here as in the current
1079// implementation, we don't need to check their predicate sense.
1080bool HexagonInstrInfo::isPredicated(const MachineInstr *MI) const {
Brendon Cahoondf43e682015-05-08 16:16:29 +00001081 const uint64_t F = MI->getDesc().TSFlags;
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001082 return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask;
Brendon Cahoondf43e682015-05-08 16:16:29 +00001083}
1084
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001085
1086bool HexagonInstrInfo::PredicateInstruction(MachineInstr *MI,
1087 ArrayRef<MachineOperand> Cond) const {
1088 if (Cond.empty() || isNewValueJump(Cond[0].getImm()) ||
1089 isEndLoopN(Cond[0].getImm())) {
1090 DEBUG(dbgs() << "\nCannot predicate:"; MI->dump(););
1091 return false;
1092 }
1093 int Opc = MI->getOpcode();
1094 assert (isPredicable(MI) && "Expected predicable instruction");
1095 bool invertJump = predOpcodeHasNot(Cond);
1096
1097 // We have to predicate MI "in place", i.e. after this function returns,
1098 // MI will need to be transformed into a predicated form. To avoid com-
1099 // plicated manipulations with the operands (handling tied operands,
1100 // etc.), build a new temporary instruction, then overwrite MI with it.
1101
1102 MachineBasicBlock &B = *MI->getParent();
1103 DebugLoc DL = MI->getDebugLoc();
1104 unsigned PredOpc = getCondOpcode(Opc, invertJump);
1105 MachineInstrBuilder T = BuildMI(B, MI, DL, get(PredOpc));
1106 unsigned NOp = 0, NumOps = MI->getNumOperands();
1107 while (NOp < NumOps) {
1108 MachineOperand &Op = MI->getOperand(NOp);
1109 if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
1110 break;
1111 T.addOperand(Op);
1112 NOp++;
1113 }
1114
1115 unsigned PredReg, PredRegPos, PredRegFlags;
1116 bool GotPredReg = getPredReg(Cond, PredReg, PredRegPos, PredRegFlags);
1117 (void)GotPredReg;
1118 assert(GotPredReg);
1119 T.addReg(PredReg, PredRegFlags);
1120 while (NOp < NumOps)
1121 T.addOperand(MI->getOperand(NOp++));
1122
1123 MI->setDesc(get(PredOpc));
1124 while (unsigned n = MI->getNumOperands())
1125 MI->RemoveOperand(n-1);
1126 for (unsigned i = 0, n = T->getNumOperands(); i < n; ++i)
1127 MI->addOperand(T->getOperand(i));
1128
1129 MachineBasicBlock::instr_iterator TI = T->getIterator();
1130 B.erase(TI);
1131
1132 MachineRegisterInfo &MRI = B.getParent()->getRegInfo();
1133 MRI.clearKillFlags(PredReg);
1134 return true;
Brendon Cahoondf43e682015-05-08 16:16:29 +00001135}
1136
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001137
1138bool HexagonInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1139 ArrayRef<MachineOperand> Pred2) const {
1140 // TODO: Fix this
1141 return false;
1142}
1143
1144
1145bool HexagonInstrInfo::DefinesPredicate(MachineInstr *MI,
1146 std::vector<MachineOperand> &Pred) const {
1147 auto &HRI = getRegisterInfo();
1148 for (unsigned oper = 0; oper < MI->getNumOperands(); ++oper) {
1149 MachineOperand MO = MI->getOperand(oper);
1150 if (MO.isReg() && MO.isDef()) {
1151 const TargetRegisterClass* RC = HRI.getMinimalPhysRegClass(MO.getReg());
1152 if (RC == &Hexagon::PredRegsRegClass) {
1153 Pred.push_back(MO);
1154 return true;
1155 }
1156 }
1157 }
1158 return false;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +00001159}
Andrew Trickd06df962012-02-01 22:13:57 +00001160
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001161bool HexagonInstrInfo::isPredicable(MachineInstr *MI) const {
1162 bool isPred = MI->getDesc().isPredicable();
1163
1164 if (!isPred)
1165 return false;
1166
1167 const int Opc = MI->getOpcode();
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001168 int NumOperands = MI->getNumOperands();
1169
1170 // Keep a flag for upto 4 operands in the instructions, to indicate if
1171 // that operand has been constant extended.
1172 bool OpCExtended[4];
1173 if (NumOperands > 4)
1174 NumOperands = 4;
1175
1176 for (int i = 0; i < NumOperands; i++)
1177 OpCExtended[i] = (isOperandExtended(MI, i) && isConstExtended(MI));
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001178
1179 switch(Opc) {
Colin LeMahieu4af437f2014-12-09 20:23:30 +00001180 case Hexagon::A2_tfrsi:
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001181 return (isOperandExtended(MI, 1) && isConstExtended(MI)) ||
1182 isInt<12>(MI->getOperand(1).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001183
Colin LeMahieubda31b42014-12-29 20:44:51 +00001184 case Hexagon::S2_storerd_io:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001185 return isShiftedUInt<6,3>(MI->getOperand(1).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001186
Colin LeMahieubda31b42014-12-29 20:44:51 +00001187 case Hexagon::S2_storeri_io:
Colin LeMahieu90148902014-12-30 22:28:31 +00001188 case Hexagon::S2_storerinew_io:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001189 return isShiftedUInt<6,2>(MI->getOperand(1).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001190
Colin LeMahieubda31b42014-12-29 20:44:51 +00001191 case Hexagon::S2_storerh_io:
Colin LeMahieu90148902014-12-30 22:28:31 +00001192 case Hexagon::S2_storerhnew_io:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001193 return isShiftedUInt<6,1>(MI->getOperand(1).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001194
Colin LeMahieubda31b42014-12-29 20:44:51 +00001195 case Hexagon::S2_storerb_io:
Colin LeMahieu90148902014-12-30 22:28:31 +00001196 case Hexagon::S2_storerbnew_io:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001197 return isUInt<6>(MI->getOperand(1).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001198
Colin LeMahieu947cd702014-12-23 20:44:59 +00001199 case Hexagon::L2_loadrd_io:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001200 return isShiftedUInt<6,3>(MI->getOperand(2).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001201
Colin LeMahieu026e88d2014-12-23 20:02:16 +00001202 case Hexagon::L2_loadri_io:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001203 return isShiftedUInt<6,2>(MI->getOperand(2).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001204
Colin LeMahieu8e39cad2014-12-23 17:25:57 +00001205 case Hexagon::L2_loadrh_io:
Colin LeMahieua9386d22014-12-23 16:42:57 +00001206 case Hexagon::L2_loadruh_io:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001207 return isShiftedUInt<6,1>(MI->getOperand(2).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001208
Colin LeMahieu4b1eac42014-12-22 21:40:43 +00001209 case Hexagon::L2_loadrb_io:
Colin LeMahieuaf1e5de2014-12-22 21:20:03 +00001210 case Hexagon::L2_loadrub_io:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001211 return isUInt<6>(MI->getOperand(2).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001212
Colin LeMahieuc83cbbf2014-12-26 19:31:46 +00001213 case Hexagon::L2_loadrd_pi:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001214 return isShiftedInt<4,3>(MI->getOperand(3).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001215
Colin LeMahieuc83cbbf2014-12-26 19:31:46 +00001216 case Hexagon::L2_loadri_pi:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001217 return isShiftedInt<4,2>(MI->getOperand(3).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001218
Colin LeMahieuc83cbbf2014-12-26 19:31:46 +00001219 case Hexagon::L2_loadrh_pi:
1220 case Hexagon::L2_loadruh_pi:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001221 return isShiftedInt<4,1>(MI->getOperand(3).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001222
Colin LeMahieu96976a12014-12-26 18:57:13 +00001223 case Hexagon::L2_loadrb_pi:
Colin LeMahieufe9612e2014-12-26 19:12:11 +00001224 case Hexagon::L2_loadrub_pi:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001225 return isInt<4>(MI->getOperand(3).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001226
Colin LeMahieu2bad4a72014-12-30 21:01:38 +00001227 case Hexagon::S4_storeirb_io:
1228 case Hexagon::S4_storeirh_io:
1229 case Hexagon::S4_storeiri_io:
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001230 return (OpCExtended[1] || isUInt<6>(MI->getOperand(1).getImm())) &&
1231 (OpCExtended[2] || isInt<6>(MI->getOperand(2).getImm()));
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001232
Colin LeMahieuf297dbe2015-02-05 17:49:13 +00001233 case Hexagon::A2_addi:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001234 return isInt<8>(MI->getOperand(2).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001235
Colin LeMahieu3b3197e2014-11-24 17:44:19 +00001236 case Hexagon::A2_aslh:
Colin LeMahieu397a25e2014-11-24 18:04:42 +00001237 case Hexagon::A2_asrh:
Colin LeMahieu91ffec92014-11-21 21:35:52 +00001238 case Hexagon::A2_sxtb:
Colin LeMahieu310991c2014-11-21 21:54:59 +00001239 case Hexagon::A2_sxth:
Colin LeMahieubb7d6f52014-11-24 16:48:43 +00001240 case Hexagon::A2_zxtb:
Colin LeMahieu098256c2014-11-24 17:11:34 +00001241 case Hexagon::A2_zxth:
Colin LeMahieu4fd203d2015-02-09 21:56:37 +00001242 return true;
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001243 }
1244
1245 return true;
1246}
1247
Jyotsna Verma84c47102013-05-06 18:49:23 +00001248
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001249bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
1250 const MachineBasicBlock *MBB, const MachineFunction &MF) const {
1251 // Debug info is never a scheduling boundary. It's necessary to be explicit
1252 // due to the special treatment of IT instructions below, otherwise a
1253 // dbg_value followed by an IT will result in the IT instruction being
1254 // considered a scheduling hazard, which is wrong. It should be the actual
1255 // instruction preceding the dbg_value instruction(s), just like it is
1256 // when debug info is not present.
1257 if (MI->isDebugValue())
Brendon Cahoondf43e682015-05-08 16:16:29 +00001258 return false;
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001259
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001260 // Throwing call is a boundary.
1261 if (MI->isCall()) {
1262 // If any of the block's successors is a landing pad, this could be a
1263 // throwing call.
1264 for (auto I : MBB->successors())
1265 if (I->isEHPad())
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001266 return true;
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001267 }
1268
1269 // Don't mess around with no return calls.
1270 if (MI->getOpcode() == Hexagon::CALLv3nr)
1271 return true;
1272
1273 // Terminators and labels can't be scheduled around.
1274 if (MI->getDesc().isTerminator() || MI->isPosition())
1275 return true;
1276
1277 if (MI->isInlineAsm() && !ScheduleInlineAsm)
1278 return true;
1279
1280 return false;
1281}
1282
1283
1284/// Measure the specified inline asm to determine an approximation of its
1285/// length.
1286/// Comments (which run till the next SeparatorString or newline) do not
1287/// count as an instruction.
1288/// Any other non-whitespace text is considered an instruction, with
1289/// multiple instructions separated by SeparatorString or newlines.
1290/// Variable-length instructions are not handled here; this function
1291/// may be overloaded in the target code to do that.
1292/// Hexagon counts the number of ##'s and adjust for that many
1293/// constant exenders.
1294unsigned HexagonInstrInfo::getInlineAsmLength(const char *Str,
1295 const MCAsmInfo &MAI) const {
1296 StringRef AStr(Str);
1297 // Count the number of instructions in the asm.
1298 bool atInsnStart = true;
1299 unsigned Length = 0;
1300 for (; *Str; ++Str) {
1301 if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
1302 strlen(MAI.getSeparatorString())) == 0)
1303 atInsnStart = true;
1304 if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
1305 Length += MAI.getMaxInstLength();
1306 atInsnStart = false;
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001307 }
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001308 if (atInsnStart && strncmp(Str, MAI.getCommentString(),
1309 strlen(MAI.getCommentString())) == 0)
1310 atInsnStart = false;
1311 }
1312
1313 // Add to size number of constant extenders seen * 4.
1314 StringRef Occ("##");
1315 Length += AStr.count(Occ)*4;
1316 return Length;
1317}
1318
1319
1320ScheduleHazardRecognizer*
1321HexagonInstrInfo::CreateTargetPostRAHazardRecognizer(
1322 const InstrItineraryData *II, const ScheduleDAG *DAG) const {
1323 return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
1324}
1325
1326
1327/// \brief For a comparison instruction, return the source registers in
1328/// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
1329/// compares against in CmpValue. Return true if the comparison instruction
1330/// can be analyzed.
1331bool HexagonInstrInfo::analyzeCompare(const MachineInstr *MI,
1332 unsigned &SrcReg, unsigned &SrcReg2, int &Mask, int &Value) const {
1333 unsigned Opc = MI->getOpcode();
1334
1335 // Set mask and the first source register.
1336 switch (Opc) {
1337 case Hexagon::C2_cmpeq:
1338 case Hexagon::C2_cmpeqp:
1339 case Hexagon::C2_cmpgt:
1340 case Hexagon::C2_cmpgtp:
1341 case Hexagon::C2_cmpgtu:
1342 case Hexagon::C2_cmpgtup:
1343 case Hexagon::C4_cmpneq:
1344 case Hexagon::C4_cmplte:
1345 case Hexagon::C4_cmplteu:
1346 case Hexagon::C2_cmpeqi:
1347 case Hexagon::C2_cmpgti:
1348 case Hexagon::C2_cmpgtui:
1349 case Hexagon::C4_cmpneqi:
1350 case Hexagon::C4_cmplteui:
1351 case Hexagon::C4_cmpltei:
1352 SrcReg = MI->getOperand(1).getReg();
1353 Mask = ~0;
1354 break;
1355 case Hexagon::A4_cmpbeq:
1356 case Hexagon::A4_cmpbgt:
1357 case Hexagon::A4_cmpbgtu:
1358 case Hexagon::A4_cmpbeqi:
1359 case Hexagon::A4_cmpbgti:
1360 case Hexagon::A4_cmpbgtui:
1361 SrcReg = MI->getOperand(1).getReg();
1362 Mask = 0xFF;
1363 break;
1364 case Hexagon::A4_cmpheq:
1365 case Hexagon::A4_cmphgt:
1366 case Hexagon::A4_cmphgtu:
1367 case Hexagon::A4_cmpheqi:
1368 case Hexagon::A4_cmphgti:
1369 case Hexagon::A4_cmphgtui:
1370 SrcReg = MI->getOperand(1).getReg();
1371 Mask = 0xFFFF;
1372 break;
1373 }
1374
1375 // Set the value/second source register.
1376 switch (Opc) {
1377 case Hexagon::C2_cmpeq:
1378 case Hexagon::C2_cmpeqp:
1379 case Hexagon::C2_cmpgt:
1380 case Hexagon::C2_cmpgtp:
1381 case Hexagon::C2_cmpgtu:
1382 case Hexagon::C2_cmpgtup:
1383 case Hexagon::A4_cmpbeq:
1384 case Hexagon::A4_cmpbgt:
1385 case Hexagon::A4_cmpbgtu:
1386 case Hexagon::A4_cmpheq:
1387 case Hexagon::A4_cmphgt:
1388 case Hexagon::A4_cmphgtu:
1389 case Hexagon::C4_cmpneq:
1390 case Hexagon::C4_cmplte:
1391 case Hexagon::C4_cmplteu:
1392 SrcReg2 = MI->getOperand(2).getReg();
1393 return true;
1394
1395 case Hexagon::C2_cmpeqi:
1396 case Hexagon::C2_cmpgtui:
1397 case Hexagon::C2_cmpgti:
1398 case Hexagon::C4_cmpneqi:
1399 case Hexagon::C4_cmplteui:
1400 case Hexagon::C4_cmpltei:
1401 case Hexagon::A4_cmpbeqi:
1402 case Hexagon::A4_cmpbgti:
1403 case Hexagon::A4_cmpbgtui:
1404 case Hexagon::A4_cmpheqi:
1405 case Hexagon::A4_cmphgti:
1406 case Hexagon::A4_cmphgtui:
1407 SrcReg2 = 0;
1408 Value = MI->getOperand(2).getImm();
1409 return true;
1410 }
1411
1412 return false;
1413}
1414
1415
1416unsigned HexagonInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1417 const MachineInstr *MI, unsigned *PredCost) const {
1418 return getInstrTimingClassLatency(ItinData, MI);
1419}
1420
1421
1422DFAPacketizer *HexagonInstrInfo::CreateTargetScheduleState(
1423 const TargetSubtargetInfo &STI) const {
1424 const InstrItineraryData *II = STI.getInstrItineraryData();
1425 return static_cast<const HexagonSubtarget&>(STI).createDFAPacketizer(II);
1426}
1427
1428
1429// Inspired by this pair:
1430// %R13<def> = L2_loadri_io %R29, 136; mem:LD4[FixedStack0]
1431// S2_storeri_io %R29, 132, %R1<kill>; flags: mem:ST4[FixedStack1]
1432// Currently AA considers the addresses in these instructions to be aliasing.
1433bool HexagonInstrInfo::areMemAccessesTriviallyDisjoint(MachineInstr *MIa,
1434 MachineInstr *MIb, AliasAnalysis *AA) const {
1435 int OffsetA = 0, OffsetB = 0;
1436 unsigned SizeA = 0, SizeB = 0;
1437
1438 if (MIa->hasUnmodeledSideEffects() || MIb->hasUnmodeledSideEffects() ||
1439 MIa->hasOrderedMemoryRef() || MIa->hasOrderedMemoryRef())
1440 return false;
1441
1442 // Instructions that are pure loads, not loads and stores like memops are not
1443 // dependent.
1444 if (MIa->mayLoad() && !isMemOp(MIa) && MIb->mayLoad() && !isMemOp(MIb))
1445 return true;
1446
1447 // Get base, offset, and access size in MIa.
1448 unsigned BaseRegA = getBaseAndOffset(MIa, OffsetA, SizeA);
1449 if (!BaseRegA || !SizeA)
1450 return false;
1451
1452 // Get base, offset, and access size in MIb.
1453 unsigned BaseRegB = getBaseAndOffset(MIb, OffsetB, SizeB);
1454 if (!BaseRegB || !SizeB)
1455 return false;
1456
1457 if (BaseRegA != BaseRegB)
1458 return false;
1459
1460 // This is a mem access with the same base register and known offsets from it.
1461 // Reason about it.
1462 if (OffsetA > OffsetB) {
1463 uint64_t offDiff = (uint64_t)((int64_t)OffsetA - (int64_t)OffsetB);
1464 return (SizeB <= offDiff);
1465 } else if (OffsetA < OffsetB) {
1466 uint64_t offDiff = (uint64_t)((int64_t)OffsetB - (int64_t)OffsetA);
1467 return (SizeA <= offDiff);
1468 }
1469
1470 return false;
1471}
1472
1473
1474unsigned HexagonInstrInfo::createVR(MachineFunction* MF, MVT VT) const {
1475 MachineRegisterInfo &MRI = MF->getRegInfo();
1476 const TargetRegisterClass *TRC;
1477 if (VT == MVT::i1) {
1478 TRC = &Hexagon::PredRegsRegClass;
1479 } else if (VT == MVT::i32 || VT == MVT::f32) {
1480 TRC = &Hexagon::IntRegsRegClass;
1481 } else if (VT == MVT::i64 || VT == MVT::f64) {
1482 TRC = &Hexagon::DoubleRegsRegClass;
1483 } else {
1484 llvm_unreachable("Cannot handle this register class");
1485 }
1486
1487 unsigned NewReg = MRI.createVirtualRegister(TRC);
1488 return NewReg;
1489}
1490
1491
1492bool HexagonInstrInfo::isAbsoluteSet(const MachineInstr* MI) const {
1493 return (getAddrMode(MI) == HexagonII::AbsoluteSet);
1494}
1495
1496
1497bool HexagonInstrInfo::isAccumulator(const MachineInstr *MI) const {
1498 const uint64_t F = MI->getDesc().TSFlags;
1499 return((F >> HexagonII::AccumulatorPos) & HexagonII::AccumulatorMask);
1500}
1501
1502
1503bool HexagonInstrInfo::isComplex(const MachineInstr *MI) const {
1504 const MachineFunction *MF = MI->getParent()->getParent();
1505 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1506 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
1507
1508 if (!(isTC1(MI))
1509 && !(QII->isTC2Early(MI))
1510 && !(MI->getDesc().mayLoad())
1511 && !(MI->getDesc().mayStore())
1512 && (MI->getDesc().getOpcode() != Hexagon::S2_allocframe)
1513 && (MI->getDesc().getOpcode() != Hexagon::L2_deallocframe)
1514 && !(QII->isMemOp(MI))
1515 && !(MI->isBranch())
1516 && !(MI->isReturn())
1517 && !MI->isCall())
1518 return true;
1519
1520 return false;
1521}
1522
1523
Sanjay Patele4b9f502015-12-07 19:21:39 +00001524// Return true if the instruction is a compund branch instruction.
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001525bool HexagonInstrInfo::isCompoundBranchInstr(const MachineInstr *MI) const {
1526 return (getType(MI) == HexagonII::TypeCOMPOUND && MI->isBranch());
1527}
1528
1529
1530bool HexagonInstrInfo::isCondInst(const MachineInstr *MI) const {
1531 return (MI->isBranch() && isPredicated(MI)) ||
1532 isConditionalTransfer(MI) ||
1533 isConditionalALU32(MI) ||
1534 isConditionalLoad(MI) ||
1535 // Predicated stores which don't have a .new on any operands.
1536 (MI->mayStore() && isPredicated(MI) && !isNewValueStore(MI) &&
1537 !isPredicatedNew(MI));
1538}
1539
1540
1541bool HexagonInstrInfo::isConditionalALU32(const MachineInstr* MI) const {
1542 switch (MI->getOpcode()) {
1543 case Hexagon::A2_paddf:
1544 case Hexagon::A2_paddfnew:
1545 case Hexagon::A2_paddif:
1546 case Hexagon::A2_paddifnew:
1547 case Hexagon::A2_paddit:
1548 case Hexagon::A2_padditnew:
1549 case Hexagon::A2_paddt:
1550 case Hexagon::A2_paddtnew:
1551 case Hexagon::A2_pandf:
1552 case Hexagon::A2_pandfnew:
1553 case Hexagon::A2_pandt:
1554 case Hexagon::A2_pandtnew:
1555 case Hexagon::A2_porf:
1556 case Hexagon::A2_porfnew:
1557 case Hexagon::A2_port:
1558 case Hexagon::A2_portnew:
1559 case Hexagon::A2_psubf:
1560 case Hexagon::A2_psubfnew:
1561 case Hexagon::A2_psubt:
1562 case Hexagon::A2_psubtnew:
1563 case Hexagon::A2_pxorf:
1564 case Hexagon::A2_pxorfnew:
1565 case Hexagon::A2_pxort:
1566 case Hexagon::A2_pxortnew:
1567 case Hexagon::A4_paslhf:
1568 case Hexagon::A4_paslhfnew:
1569 case Hexagon::A4_paslht:
1570 case Hexagon::A4_paslhtnew:
1571 case Hexagon::A4_pasrhf:
1572 case Hexagon::A4_pasrhfnew:
1573 case Hexagon::A4_pasrht:
1574 case Hexagon::A4_pasrhtnew:
1575 case Hexagon::A4_psxtbf:
1576 case Hexagon::A4_psxtbfnew:
1577 case Hexagon::A4_psxtbt:
1578 case Hexagon::A4_psxtbtnew:
1579 case Hexagon::A4_psxthf:
1580 case Hexagon::A4_psxthfnew:
1581 case Hexagon::A4_psxtht:
1582 case Hexagon::A4_psxthtnew:
1583 case Hexagon::A4_pzxtbf:
1584 case Hexagon::A4_pzxtbfnew:
1585 case Hexagon::A4_pzxtbt:
1586 case Hexagon::A4_pzxtbtnew:
1587 case Hexagon::A4_pzxthf:
1588 case Hexagon::A4_pzxthfnew:
1589 case Hexagon::A4_pzxtht:
1590 case Hexagon::A4_pzxthtnew:
1591 case Hexagon::C2_ccombinewf:
1592 case Hexagon::C2_ccombinewt:
1593 return true;
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001594 }
1595 return false;
1596}
1597
1598
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001599// FIXME - Function name and it's functionality don't match.
1600// It should be renamed to hasPredNewOpcode()
1601bool HexagonInstrInfo::isConditionalLoad(const MachineInstr* MI) const {
1602 if (!MI->getDesc().mayLoad() || !isPredicated(MI))
1603 return false;
1604
1605 int PNewOpcode = Hexagon::getPredNewOpcode(MI->getOpcode());
1606 // Instruction with valid predicated-new opcode can be promoted to .new.
1607 return PNewOpcode >= 0;
1608}
1609
1610
1611// Returns true if an instruction is a conditional store.
1612//
1613// Note: It doesn't include conditional new-value stores as they can't be
1614// converted to .new predicate.
1615bool HexagonInstrInfo::isConditionalStore(const MachineInstr* MI) const {
1616 switch (MI->getOpcode()) {
1617 default: return false;
1618 case Hexagon::S4_storeirbt_io:
1619 case Hexagon::S4_storeirbf_io:
1620 case Hexagon::S4_pstorerbt_rr:
1621 case Hexagon::S4_pstorerbf_rr:
1622 case Hexagon::S2_pstorerbt_io:
1623 case Hexagon::S2_pstorerbf_io:
1624 case Hexagon::S2_pstorerbt_pi:
1625 case Hexagon::S2_pstorerbf_pi:
1626 case Hexagon::S2_pstorerdt_io:
1627 case Hexagon::S2_pstorerdf_io:
1628 case Hexagon::S4_pstorerdt_rr:
1629 case Hexagon::S4_pstorerdf_rr:
1630 case Hexagon::S2_pstorerdt_pi:
1631 case Hexagon::S2_pstorerdf_pi:
1632 case Hexagon::S2_pstorerht_io:
1633 case Hexagon::S2_pstorerhf_io:
1634 case Hexagon::S4_storeirht_io:
1635 case Hexagon::S4_storeirhf_io:
1636 case Hexagon::S4_pstorerht_rr:
1637 case Hexagon::S4_pstorerhf_rr:
1638 case Hexagon::S2_pstorerht_pi:
1639 case Hexagon::S2_pstorerhf_pi:
1640 case Hexagon::S2_pstorerit_io:
1641 case Hexagon::S2_pstorerif_io:
1642 case Hexagon::S4_storeirit_io:
1643 case Hexagon::S4_storeirif_io:
1644 case Hexagon::S4_pstorerit_rr:
1645 case Hexagon::S4_pstorerif_rr:
1646 case Hexagon::S2_pstorerit_pi:
1647 case Hexagon::S2_pstorerif_pi:
1648
1649 // V4 global address store before promoting to dot new.
1650 case Hexagon::S4_pstorerdt_abs:
1651 case Hexagon::S4_pstorerdf_abs:
1652 case Hexagon::S4_pstorerbt_abs:
1653 case Hexagon::S4_pstorerbf_abs:
1654 case Hexagon::S4_pstorerht_abs:
1655 case Hexagon::S4_pstorerhf_abs:
1656 case Hexagon::S4_pstorerit_abs:
1657 case Hexagon::S4_pstorerif_abs:
1658 return true;
1659
1660 // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
1661 // from the "Conditional Store" list. Because a predicated new value store
1662 // would NOT be promoted to a double dot new store.
1663 // This function returns yes for those stores that are predicated but not
1664 // yet promoted to predicate dot new instructions.
1665 }
1666}
1667
1668
1669bool HexagonInstrInfo::isConditionalTransfer(const MachineInstr *MI) const {
1670 switch (MI->getOpcode()) {
1671 case Hexagon::A2_tfrt:
1672 case Hexagon::A2_tfrf:
1673 case Hexagon::C2_cmoveit:
1674 case Hexagon::C2_cmoveif:
1675 case Hexagon::A2_tfrtnew:
1676 case Hexagon::A2_tfrfnew:
1677 case Hexagon::C2_cmovenewit:
1678 case Hexagon::C2_cmovenewif:
1679 case Hexagon::A2_tfrpt:
1680 case Hexagon::A2_tfrpf:
1681 return true;
1682
1683 default:
1684 return false;
1685 }
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001686 return false;
1687}
1688
1689
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001690// TODO: In order to have isExtendable for fpimm/f32Ext, we need to handle
1691// isFPImm and later getFPImm as well.
1692bool HexagonInstrInfo::isConstExtended(const MachineInstr *MI) const {
1693 const uint64_t F = MI->getDesc().TSFlags;
1694 unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
1695 if (isExtended) // Instruction must be extended.
Krzysztof Parzyszekc6f19332015-03-19 15:18:57 +00001696 return true;
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001697
1698 unsigned isExtendable =
1699 (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
1700 if (!isExtendable)
1701 return false;
1702
1703 if (MI->isCall())
1704 return false;
1705
1706 short ExtOpNum = getCExtOpNum(MI);
1707 const MachineOperand &MO = MI->getOperand(ExtOpNum);
1708 // Use MO operand flags to determine if MO
1709 // has the HMOTF_ConstExtended flag set.
1710 if (MO.getTargetFlags() && HexagonII::HMOTF_ConstExtended)
Brendon Cahoondf43e682015-05-08 16:16:29 +00001711 return true;
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001712 // If this is a Machine BB address we are talking about, and it is
1713 // not marked as extended, say so.
1714 if (MO.isMBB())
1715 return false;
1716
1717 // We could be using an instruction with an extendable immediate and shoehorn
1718 // a global address into it. If it is a global address it will be constant
1719 // extended. We do this for COMBINE.
1720 // We currently only handle isGlobal() because it is the only kind of
1721 // object we are going to end up with here for now.
1722 // In the future we probably should add isSymbol(), etc.
1723 if (MO.isGlobal() || MO.isSymbol() || MO.isBlockAddress() ||
1724 MO.isJTI() || MO.isCPI())
1725 return true;
1726
1727 // If the extendable operand is not 'Immediate' type, the instruction should
1728 // have 'isExtended' flag set.
1729 assert(MO.isImm() && "Extendable operand must be Immediate type");
1730
1731 int MinValue = getMinValue(MI);
1732 int MaxValue = getMaxValue(MI);
1733 int ImmValue = MO.getImm();
1734
1735 return (ImmValue < MinValue || ImmValue > MaxValue);
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001736}
1737
1738
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001739bool HexagonInstrInfo::isDeallocRet(const MachineInstr *MI) const {
1740 switch (MI->getOpcode()) {
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001741 case Hexagon::L4_return :
1742 case Hexagon::L4_return_t :
1743 case Hexagon::L4_return_f :
1744 case Hexagon::L4_return_tnew_pnt :
1745 case Hexagon::L4_return_fnew_pnt :
1746 case Hexagon::L4_return_tnew_pt :
1747 case Hexagon::L4_return_fnew_pt :
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001748 return true;
1749 }
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001750 return false;
1751}
1752
1753
1754// Return true when ConsMI uses a register defined by ProdMI.
1755bool HexagonInstrInfo::isDependent(const MachineInstr *ProdMI,
1756 const MachineInstr *ConsMI) const {
1757 const MCInstrDesc &ProdMCID = ProdMI->getDesc();
1758 if (!ProdMCID.getNumDefs())
1759 return false;
1760
1761 auto &HRI = getRegisterInfo();
1762
1763 SmallVector<unsigned, 4> DefsA;
1764 SmallVector<unsigned, 4> DefsB;
1765 SmallVector<unsigned, 8> UsesA;
1766 SmallVector<unsigned, 8> UsesB;
1767
1768 parseOperands(ProdMI, DefsA, UsesA);
1769 parseOperands(ConsMI, DefsB, UsesB);
1770
1771 for (auto &RegA : DefsA)
1772 for (auto &RegB : UsesB) {
1773 // True data dependency.
1774 if (RegA == RegB)
1775 return true;
1776
1777 if (Hexagon::DoubleRegsRegClass.contains(RegA))
1778 for (MCSubRegIterator SubRegs(RegA, &HRI); SubRegs.isValid(); ++SubRegs)
1779 if (RegB == *SubRegs)
1780 return true;
1781
1782 if (Hexagon::DoubleRegsRegClass.contains(RegB))
1783 for (MCSubRegIterator SubRegs(RegB, &HRI); SubRegs.isValid(); ++SubRegs)
1784 if (RegA == *SubRegs)
1785 return true;
1786 }
1787
1788 return false;
1789}
1790
1791
1792// Returns true if the instruction is alread a .cur.
1793bool HexagonInstrInfo::isDotCurInst(const MachineInstr* MI) const {
1794 switch (MI->getOpcode()) {
1795 case Hexagon::V6_vL32b_cur_pi:
1796 case Hexagon::V6_vL32b_cur_ai:
1797 case Hexagon::V6_vL32b_cur_pi_128B:
1798 case Hexagon::V6_vL32b_cur_ai_128B:
1799 return true;
1800 }
1801 return false;
1802}
1803
1804
1805// Returns true, if any one of the operands is a dot new
1806// insn, whether it is predicated dot new or register dot new.
1807bool HexagonInstrInfo::isDotNewInst(const MachineInstr* MI) const {
1808 if (isNewValueInst(MI) ||
1809 (isPredicated(MI) && isPredicatedNew(MI)))
1810 return true;
1811
1812 return false;
1813}
1814
1815
1816/// Symmetrical. See if these two instructions are fit for duplex pair.
1817bool HexagonInstrInfo::isDuplexPair(const MachineInstr *MIa,
1818 const MachineInstr *MIb) const {
1819 HexagonII::SubInstructionGroup MIaG = getDuplexCandidateGroup(MIa);
1820 HexagonII::SubInstructionGroup MIbG = getDuplexCandidateGroup(MIb);
1821 return (isDuplexPairMatch(MIaG, MIbG) || isDuplexPairMatch(MIbG, MIaG));
1822}
1823
1824
Krzysztof Parzyszek5e6f2bd2015-12-14 21:32:25 +00001825bool HexagonInstrInfo::isEarlySourceInstr(const MachineInstr *MI) const {
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001826 if (!MI)
1827 return false;
1828
1829 if (MI->mayLoad() || MI->mayStore() || MI->isCompare())
1830 return true;
1831
1832 // Multiply
1833 unsigned SchedClass = MI->getDesc().getSchedClass();
1834 if (SchedClass == Hexagon::Sched::M_tc_3or4x_SLOT23)
1835 return true;
1836 return false;
1837}
1838
1839
1840bool HexagonInstrInfo::isEndLoopN(unsigned Opcode) const {
1841 return (Opcode == Hexagon::ENDLOOP0 ||
1842 Opcode == Hexagon::ENDLOOP1);
1843}
1844
1845
1846bool HexagonInstrInfo::isExpr(unsigned OpType) const {
1847 switch(OpType) {
1848 case MachineOperand::MO_MachineBasicBlock:
1849 case MachineOperand::MO_GlobalAddress:
1850 case MachineOperand::MO_ExternalSymbol:
1851 case MachineOperand::MO_JumpTableIndex:
1852 case MachineOperand::MO_ConstantPoolIndex:
1853 case MachineOperand::MO_BlockAddress:
1854 return true;
1855 default:
1856 return false;
1857 }
1858}
1859
1860
1861bool HexagonInstrInfo::isExtendable(const MachineInstr *MI) const {
1862 const MCInstrDesc &MID = MI->getDesc();
1863 const uint64_t F = MID.TSFlags;
1864 if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask)
1865 return true;
1866
1867 // TODO: This is largely obsolete now. Will need to be removed
1868 // in consecutive patches.
1869 switch(MI->getOpcode()) {
1870 // TFR_FI Remains a special case.
1871 case Hexagon::TFR_FI:
1872 return true;
1873 default:
1874 return false;
1875 }
1876 return false;
1877}
1878
1879
1880// This returns true in two cases:
1881// - The OP code itself indicates that this is an extended instruction.
1882// - One of MOs has been marked with HMOTF_ConstExtended flag.
1883bool HexagonInstrInfo::isExtended(const MachineInstr *MI) const {
1884 // First check if this is permanently extended op code.
1885 const uint64_t F = MI->getDesc().TSFlags;
1886 if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask)
1887 return true;
1888 // Use MO operand flags to determine if one of MI's operands
1889 // has HMOTF_ConstExtended flag set.
1890 for (MachineInstr::const_mop_iterator I = MI->operands_begin(),
1891 E = MI->operands_end(); I != E; ++I) {
1892 if (I->getTargetFlags() && HexagonII::HMOTF_ConstExtended)
1893 return true;
1894 }
1895 return false;
1896}
1897
1898
Krzysztof Parzyszek5e6f2bd2015-12-14 21:32:25 +00001899bool HexagonInstrInfo::isFloat(const MachineInstr *MI) const {
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001900 unsigned Opcode = MI->getOpcode();
1901 const uint64_t F = get(Opcode).TSFlags;
1902 return (F >> HexagonII::FPPos) & HexagonII::FPMask;
1903}
1904
1905
Krzysztof Parzyszek56bbf542015-12-16 19:36:12 +00001906// No V60 HVX VMEM with A_INDIRECT.
1907bool HexagonInstrInfo::isHVXMemWithAIndirect(const MachineInstr *I,
1908 const MachineInstr *J) const {
1909 if (!isV60VectorInstruction(I))
1910 return false;
1911 if (!I->mayLoad() && !I->mayStore())
1912 return false;
1913 return J->isIndirectBranch() || isIndirectCall(J) || isIndirectL4Return(J);
1914}
1915
1916
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001917bool HexagonInstrInfo::isIndirectCall(const MachineInstr *MI) const {
1918 switch (MI->getOpcode()) {
1919 case Hexagon::J2_callr :
1920 case Hexagon::J2_callrf :
1921 case Hexagon::J2_callrt :
1922 return true;
1923 }
1924 return false;
1925}
1926
1927
1928bool HexagonInstrInfo::isIndirectL4Return(const MachineInstr *MI) const {
1929 switch (MI->getOpcode()) {
1930 case Hexagon::L4_return :
1931 case Hexagon::L4_return_t :
1932 case Hexagon::L4_return_f :
1933 case Hexagon::L4_return_fnew_pnt :
1934 case Hexagon::L4_return_fnew_pt :
1935 case Hexagon::L4_return_tnew_pnt :
1936 case Hexagon::L4_return_tnew_pt :
1937 return true;
1938 }
1939 return false;
1940}
1941
1942
1943bool HexagonInstrInfo::isJumpR(const MachineInstr *MI) const {
1944 switch (MI->getOpcode()) {
1945 case Hexagon::J2_jumpr :
1946 case Hexagon::J2_jumprt :
1947 case Hexagon::J2_jumprf :
1948 case Hexagon::J2_jumprtnewpt :
1949 case Hexagon::J2_jumprfnewpt :
1950 case Hexagon::J2_jumprtnew :
1951 case Hexagon::J2_jumprfnew :
1952 return true;
1953 }
1954 return false;
1955}
1956
1957
1958// Return true if a given MI can accomodate given offset.
1959// Use abs estimate as oppose to the exact number.
1960// TODO: This will need to be changed to use MC level
1961// definition of instruction extendable field size.
1962bool HexagonInstrInfo::isJumpWithinBranchRange(const MachineInstr *MI,
1963 unsigned offset) const {
1964 // This selection of jump instructions matches to that what
1965 // AnalyzeBranch can parse, plus NVJ.
1966 if (isNewValueJump(MI)) // r9:2
1967 return isInt<11>(offset);
1968
1969 switch (MI->getOpcode()) {
1970 // Still missing Jump to address condition on register value.
1971 default:
1972 return false;
1973 case Hexagon::J2_jump: // bits<24> dst; // r22:2
1974 case Hexagon::J2_call:
1975 case Hexagon::CALLv3nr:
1976 return isInt<24>(offset);
1977 case Hexagon::J2_jumpt: //bits<17> dst; // r15:2
1978 case Hexagon::J2_jumpf:
1979 case Hexagon::J2_jumptnew:
1980 case Hexagon::J2_jumptnewpt:
1981 case Hexagon::J2_jumpfnew:
1982 case Hexagon::J2_jumpfnewpt:
1983 case Hexagon::J2_callt:
1984 case Hexagon::J2_callf:
1985 return isInt<17>(offset);
1986 case Hexagon::J2_loop0i:
1987 case Hexagon::J2_loop0iext:
1988 case Hexagon::J2_loop0r:
1989 case Hexagon::J2_loop0rext:
1990 case Hexagon::J2_loop1i:
1991 case Hexagon::J2_loop1iext:
1992 case Hexagon::J2_loop1r:
1993 case Hexagon::J2_loop1rext:
1994 return isInt<9>(offset);
1995 // TODO: Add all the compound branches here. Can we do this in Relation model?
1996 case Hexagon::J4_cmpeqi_tp0_jump_nt:
1997 case Hexagon::J4_cmpeqi_tp1_jump_nt:
1998 return isInt<11>(offset);
1999 }
2000}
2001
2002
Krzysztof Parzyszek5e6f2bd2015-12-14 21:32:25 +00002003bool HexagonInstrInfo::isLateInstrFeedsEarlyInstr(const MachineInstr *LRMI,
2004 const MachineInstr *ESMI) const {
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002005 if (!LRMI || !ESMI)
2006 return false;
2007
2008 bool isLate = isLateResultInstr(LRMI);
2009 bool isEarly = isEarlySourceInstr(ESMI);
2010
2011 DEBUG(dbgs() << "V60" << (isLate ? "-LR " : " -- "));
2012 DEBUG(LRMI->dump());
2013 DEBUG(dbgs() << "V60" << (isEarly ? "-ES " : " -- "));
2014 DEBUG(ESMI->dump());
2015
2016 if (isLate && isEarly) {
2017 DEBUG(dbgs() << "++Is Late Result feeding Early Source\n");
2018 return true;
2019 }
2020
2021 return false;
2022}
2023
2024
Krzysztof Parzyszek5e6f2bd2015-12-14 21:32:25 +00002025bool HexagonInstrInfo::isLateResultInstr(const MachineInstr *MI) const {
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002026 if (!MI)
2027 return false;
2028
2029 switch (MI->getOpcode()) {
2030 case TargetOpcode::EXTRACT_SUBREG:
2031 case TargetOpcode::INSERT_SUBREG:
2032 case TargetOpcode::SUBREG_TO_REG:
2033 case TargetOpcode::REG_SEQUENCE:
2034 case TargetOpcode::IMPLICIT_DEF:
2035 case TargetOpcode::COPY:
2036 case TargetOpcode::INLINEASM:
2037 case TargetOpcode::PHI:
2038 return false;
2039 default:
2040 break;
2041 }
2042
2043 unsigned SchedClass = MI->getDesc().getSchedClass();
2044
2045 switch (SchedClass) {
2046 case Hexagon::Sched::ALU32_2op_tc_1_SLOT0123:
2047 case Hexagon::Sched::ALU32_3op_tc_1_SLOT0123:
2048 case Hexagon::Sched::ALU32_ADDI_tc_1_SLOT0123:
2049 case Hexagon::Sched::ALU64_tc_1_SLOT23:
2050 case Hexagon::Sched::EXTENDER_tc_1_SLOT0123:
2051 case Hexagon::Sched::S_2op_tc_1_SLOT23:
2052 case Hexagon::Sched::S_3op_tc_1_SLOT23:
2053 case Hexagon::Sched::V2LDST_tc_ld_SLOT01:
2054 case Hexagon::Sched::V2LDST_tc_st_SLOT0:
2055 case Hexagon::Sched::V2LDST_tc_st_SLOT01:
2056 case Hexagon::Sched::V4LDST_tc_ld_SLOT01:
2057 case Hexagon::Sched::V4LDST_tc_st_SLOT0:
2058 case Hexagon::Sched::V4LDST_tc_st_SLOT01:
2059 return false;
2060 }
2061 return true;
2062}
2063
2064
2065bool HexagonInstrInfo::isLateSourceInstr(const MachineInstr *MI) const {
2066 if (!MI)
2067 return false;
2068
2069 // Instructions with iclass A_CVI_VX and attribute A_CVI_LATE uses a multiply
2070 // resource, but all operands can be received late like an ALU instruction.
2071 return MI->getDesc().getSchedClass() == Hexagon::Sched::CVI_VX_LATE;
2072}
2073
2074
Krzysztof Parzyszek5e6f2bd2015-12-14 21:32:25 +00002075bool HexagonInstrInfo::isLoopN(const MachineInstr *MI) const {
2076 unsigned Opcode = MI->getOpcode();
2077 return Opcode == Hexagon::J2_loop0i ||
2078 Opcode == Hexagon::J2_loop0r ||
2079 Opcode == Hexagon::J2_loop0iext ||
2080 Opcode == Hexagon::J2_loop0rext ||
2081 Opcode == Hexagon::J2_loop1i ||
2082 Opcode == Hexagon::J2_loop1r ||
2083 Opcode == Hexagon::J2_loop1iext ||
2084 Opcode == Hexagon::J2_loop1rext;
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002085}
2086
2087
2088bool HexagonInstrInfo::isMemOp(const MachineInstr *MI) const {
2089 switch (MI->getOpcode()) {
2090 default: return false;
2091 case Hexagon::L4_iadd_memopw_io :
2092 case Hexagon::L4_isub_memopw_io :
2093 case Hexagon::L4_add_memopw_io :
2094 case Hexagon::L4_sub_memopw_io :
2095 case Hexagon::L4_and_memopw_io :
2096 case Hexagon::L4_or_memopw_io :
2097 case Hexagon::L4_iadd_memoph_io :
2098 case Hexagon::L4_isub_memoph_io :
2099 case Hexagon::L4_add_memoph_io :
2100 case Hexagon::L4_sub_memoph_io :
2101 case Hexagon::L4_and_memoph_io :
2102 case Hexagon::L4_or_memoph_io :
2103 case Hexagon::L4_iadd_memopb_io :
2104 case Hexagon::L4_isub_memopb_io :
2105 case Hexagon::L4_add_memopb_io :
2106 case Hexagon::L4_sub_memopb_io :
2107 case Hexagon::L4_and_memopb_io :
2108 case Hexagon::L4_or_memopb_io :
2109 case Hexagon::L4_ior_memopb_io:
2110 case Hexagon::L4_ior_memoph_io:
2111 case Hexagon::L4_ior_memopw_io:
2112 case Hexagon::L4_iand_memopb_io:
2113 case Hexagon::L4_iand_memoph_io:
2114 case Hexagon::L4_iand_memopw_io:
2115 return true;
2116 }
2117 return false;
2118}
2119
2120
2121bool HexagonInstrInfo::isNewValue(const MachineInstr* MI) const {
2122 const uint64_t F = MI->getDesc().TSFlags;
2123 return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask;
2124}
2125
2126
2127bool HexagonInstrInfo::isNewValue(unsigned Opcode) const {
2128 const uint64_t F = get(Opcode).TSFlags;
2129 return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask;
2130}
2131
2132
2133bool HexagonInstrInfo::isNewValueInst(const MachineInstr *MI) const {
2134 return isNewValueJump(MI) || isNewValueStore(MI);
2135}
2136
2137
2138bool HexagonInstrInfo::isNewValueJump(const MachineInstr *MI) const {
2139 return isNewValue(MI) && MI->isBranch();
2140}
2141
2142
2143bool HexagonInstrInfo::isNewValueJump(unsigned Opcode) const {
2144 return isNewValue(Opcode) && get(Opcode).isBranch() && isPredicated(Opcode);
2145}
2146
2147
2148bool HexagonInstrInfo::isNewValueStore(const MachineInstr *MI) const {
2149 const uint64_t F = MI->getDesc().TSFlags;
2150 return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask;
2151}
2152
2153
2154bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const {
2155 const uint64_t F = get(Opcode).TSFlags;
2156 return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask;
2157}
2158
2159
2160// Returns true if a particular operand is extendable for an instruction.
2161bool HexagonInstrInfo::isOperandExtended(const MachineInstr *MI,
2162 unsigned OperandNum) const {
2163 const uint64_t F = MI->getDesc().TSFlags;
2164 return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask)
2165 == OperandNum;
2166}
2167
2168
2169bool HexagonInstrInfo::isPostIncrement(const MachineInstr* MI) const {
2170 return getAddrMode(MI) == HexagonII::PostInc;
2171}
2172
2173
2174bool HexagonInstrInfo::isPredicatedNew(const MachineInstr *MI) const {
2175 const uint64_t F = MI->getDesc().TSFlags;
2176 assert(isPredicated(MI));
2177 return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask;
2178}
2179
2180
2181bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const {
2182 const uint64_t F = get(Opcode).TSFlags;
2183 assert(isPredicated(Opcode));
2184 return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask;
2185}
2186
2187
2188bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr *MI) const {
2189 const uint64_t F = MI->getDesc().TSFlags;
2190 return !((F >> HexagonII::PredicatedFalsePos) &
2191 HexagonII::PredicatedFalseMask);
2192}
2193
2194
2195bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const {
2196 const uint64_t F = get(Opcode).TSFlags;
2197 // Make sure that the instruction is predicated.
2198 assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
2199 return !((F >> HexagonII::PredicatedFalsePos) &
2200 HexagonII::PredicatedFalseMask);
2201}
2202
2203
2204bool HexagonInstrInfo::isPredicated(unsigned Opcode) const {
2205 const uint64_t F = get(Opcode).TSFlags;
2206 return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask;
2207}
2208
2209
2210bool HexagonInstrInfo::isPredicateLate(unsigned Opcode) const {
2211 const uint64_t F = get(Opcode).TSFlags;
2212 return ~(F >> HexagonII::PredicateLatePos) & HexagonII::PredicateLateMask;
2213}
2214
2215
2216bool HexagonInstrInfo::isPredictedTaken(unsigned Opcode) const {
2217 const uint64_t F = get(Opcode).TSFlags;
2218 assert(get(Opcode).isBranch() &&
2219 (isPredicatedNew(Opcode) || isNewValue(Opcode)));
2220 return (F >> HexagonII::TakenPos) & HexagonII::TakenMask;
2221}
2222
2223
2224bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr *MI) const {
2225 return MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4 ||
2226 MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT;
2227}
2228
2229
2230bool HexagonInstrInfo::isSolo(const MachineInstr* MI) const {
2231 const uint64_t F = MI->getDesc().TSFlags;
2232 return (F >> HexagonII::SoloPos) & HexagonII::SoloMask;
2233}
2234
2235
2236bool HexagonInstrInfo::isSpillPredRegOp(const MachineInstr *MI) const {
2237 switch (MI->getOpcode()) {
2238 case Hexagon::STriw_pred :
2239 case Hexagon::LDriw_pred :
2240 return true;
2241 default:
2242 return false;
2243 }
2244}
2245
2246
2247// Returns true when SU has a timing class TC1.
2248bool HexagonInstrInfo::isTC1(const MachineInstr *MI) const {
2249 unsigned SchedClass = MI->getDesc().getSchedClass();
2250 switch (SchedClass) {
2251 case Hexagon::Sched::ALU32_2op_tc_1_SLOT0123:
2252 case Hexagon::Sched::ALU32_3op_tc_1_SLOT0123:
2253 case Hexagon::Sched::ALU32_ADDI_tc_1_SLOT0123:
2254 case Hexagon::Sched::ALU64_tc_1_SLOT23:
2255 case Hexagon::Sched::EXTENDER_tc_1_SLOT0123:
2256 //case Hexagon::Sched::M_tc_1_SLOT23:
2257 case Hexagon::Sched::S_2op_tc_1_SLOT23:
2258 case Hexagon::Sched::S_3op_tc_1_SLOT23:
2259 return true;
2260
2261 default:
2262 return false;
2263 }
2264}
2265
2266
2267bool HexagonInstrInfo::isTC2(const MachineInstr *MI) const {
2268 unsigned SchedClass = MI->getDesc().getSchedClass();
2269 switch (SchedClass) {
2270 case Hexagon::Sched::ALU32_3op_tc_2_SLOT0123:
2271 case Hexagon::Sched::ALU64_tc_2_SLOT23:
2272 case Hexagon::Sched::CR_tc_2_SLOT3:
2273 case Hexagon::Sched::M_tc_2_SLOT23:
2274 case Hexagon::Sched::S_2op_tc_2_SLOT23:
2275 case Hexagon::Sched::S_3op_tc_2_SLOT23:
2276 return true;
2277
2278 default:
2279 return false;
2280 }
2281}
2282
2283
2284bool HexagonInstrInfo::isTC2Early(const MachineInstr *MI) const {
2285 unsigned SchedClass = MI->getDesc().getSchedClass();
2286 switch (SchedClass) {
2287 case Hexagon::Sched::ALU32_2op_tc_2early_SLOT0123:
2288 case Hexagon::Sched::ALU32_3op_tc_2early_SLOT0123:
2289 case Hexagon::Sched::ALU64_tc_2early_SLOT23:
2290 case Hexagon::Sched::CR_tc_2early_SLOT23:
2291 case Hexagon::Sched::CR_tc_2early_SLOT3:
2292 case Hexagon::Sched::J_tc_2early_SLOT0123:
2293 case Hexagon::Sched::J_tc_2early_SLOT2:
2294 case Hexagon::Sched::J_tc_2early_SLOT23:
2295 case Hexagon::Sched::S_2op_tc_2early_SLOT23:
2296 case Hexagon::Sched::S_3op_tc_2early_SLOT23:
2297 return true;
2298
2299 default:
2300 return false;
2301 }
2302}
2303
2304
2305bool HexagonInstrInfo::isTC4x(const MachineInstr *MI) const {
2306 if (!MI)
2307 return false;
2308
2309 unsigned SchedClass = MI->getDesc().getSchedClass();
2310 return SchedClass == Hexagon::Sched::M_tc_3or4x_SLOT23;
2311}
2312
2313
2314bool HexagonInstrInfo::isV60VectorInstruction(const MachineInstr *MI) const {
2315 if (!MI)
2316 return false;
2317
2318 const uint64_t V = getType(MI);
2319 return HexagonII::TypeCVI_FIRST <= V && V <= HexagonII::TypeCVI_LAST;
2320}
2321
2322
2323// Check if the Offset is a valid auto-inc imm by Load/Store Type.
2324//
2325bool HexagonInstrInfo::isValidAutoIncImm(const EVT VT, const int Offset) const {
2326 if (VT == MVT::v16i32 || VT == MVT::v8i64 ||
2327 VT == MVT::v32i16 || VT == MVT::v64i8) {
2328 return (Offset >= Hexagon_MEMV_AUTOINC_MIN &&
2329 Offset <= Hexagon_MEMV_AUTOINC_MAX &&
2330 (Offset & 0x3f) == 0);
2331 }
2332 // 128B
2333 if (VT == MVT::v32i32 || VT == MVT::v16i64 ||
2334 VT == MVT::v64i16 || VT == MVT::v128i8) {
2335 return (Offset >= Hexagon_MEMV_AUTOINC_MIN_128B &&
2336 Offset <= Hexagon_MEMV_AUTOINC_MAX_128B &&
2337 (Offset & 0x7f) == 0);
2338 }
2339 if (VT == MVT::i64) {
2340 return (Offset >= Hexagon_MEMD_AUTOINC_MIN &&
2341 Offset <= Hexagon_MEMD_AUTOINC_MAX &&
2342 (Offset & 0x7) == 0);
2343 }
2344 if (VT == MVT::i32) {
2345 return (Offset >= Hexagon_MEMW_AUTOINC_MIN &&
2346 Offset <= Hexagon_MEMW_AUTOINC_MAX &&
2347 (Offset & 0x3) == 0);
2348 }
2349 if (VT == MVT::i16) {
2350 return (Offset >= Hexagon_MEMH_AUTOINC_MIN &&
2351 Offset <= Hexagon_MEMH_AUTOINC_MAX &&
2352 (Offset & 0x1) == 0);
2353 }
2354 if (VT == MVT::i8) {
2355 return (Offset >= Hexagon_MEMB_AUTOINC_MIN &&
2356 Offset <= Hexagon_MEMB_AUTOINC_MAX);
2357 }
2358 llvm_unreachable("Not an auto-inc opc!");
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002359}
2360
2361
Krzysztof Parzyszek05902162015-04-22 17:51:26 +00002362bool HexagonInstrInfo::isValidOffset(unsigned Opcode, int Offset,
2363 bool Extend) const {
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002364 // This function is to check whether the "Offset" is in the correct range of
Krzysztof Parzyszek05902162015-04-22 17:51:26 +00002365 // the given "Opcode". If "Offset" is not in the correct range, "A2_addi" is
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002366 // inserted to calculate the final address. Due to this reason, the function
2367 // assumes that the "Offset" has correct alignment.
Jyotsna Vermaec613662013-03-14 19:08:03 +00002368 // We used to assert if the offset was not properly aligned, however,
2369 // there are cases where a misaligned pointer recast can cause this
2370 // problem, and we need to allow for it. The front end warns of such
2371 // misaligns with respect to load size.
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002372
Krzysztof Parzyszek05902162015-04-22 17:51:26 +00002373 switch (Opcode) {
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002374 case Hexagon::STriq_pred_V6:
2375 case Hexagon::STriq_pred_vec_V6:
2376 case Hexagon::STriv_pseudo_V6:
2377 case Hexagon::STrivv_pseudo_V6:
2378 case Hexagon::LDriq_pred_V6:
2379 case Hexagon::LDriq_pred_vec_V6:
2380 case Hexagon::LDriv_pseudo_V6:
2381 case Hexagon::LDrivv_pseudo_V6:
2382 case Hexagon::LDrivv_indexed:
2383 case Hexagon::STrivv_indexed:
2384 case Hexagon::V6_vL32b_ai:
2385 case Hexagon::V6_vS32b_ai:
2386 case Hexagon::V6_vL32Ub_ai:
2387 case Hexagon::V6_vS32Ub_ai:
2388 return (Offset >= Hexagon_MEMV_OFFSET_MIN) &&
2389 (Offset <= Hexagon_MEMV_OFFSET_MAX);
2390
2391 case Hexagon::STriq_pred_V6_128B:
2392 case Hexagon::STriq_pred_vec_V6_128B:
2393 case Hexagon::STriv_pseudo_V6_128B:
2394 case Hexagon::STrivv_pseudo_V6_128B:
2395 case Hexagon::LDriq_pred_V6_128B:
2396 case Hexagon::LDriq_pred_vec_V6_128B:
2397 case Hexagon::LDriv_pseudo_V6_128B:
2398 case Hexagon::LDrivv_pseudo_V6_128B:
2399 case Hexagon::LDrivv_indexed_128B:
2400 case Hexagon::STrivv_indexed_128B:
2401 case Hexagon::V6_vL32b_ai_128B:
2402 case Hexagon::V6_vS32b_ai_128B:
2403 case Hexagon::V6_vL32Ub_ai_128B:
2404 case Hexagon::V6_vS32Ub_ai_128B:
2405 return (Offset >= Hexagon_MEMV_OFFSET_MIN_128B) &&
2406 (Offset <= Hexagon_MEMV_OFFSET_MAX_128B);
2407
Krzysztof Parzyszek05902162015-04-22 17:51:26 +00002408 case Hexagon::J2_loop0i:
2409 case Hexagon::J2_loop1i:
2410 return isUInt<10>(Offset);
2411 }
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002412
Krzysztof Parzyszek05902162015-04-22 17:51:26 +00002413 if (Extend)
2414 return true;
2415
2416 switch (Opcode) {
Colin LeMahieu026e88d2014-12-23 20:02:16 +00002417 case Hexagon::L2_loadri_io:
Colin LeMahieubda31b42014-12-29 20:44:51 +00002418 case Hexagon::S2_storeri_io:
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002419 return (Offset >= Hexagon_MEMW_OFFSET_MIN) &&
2420 (Offset <= Hexagon_MEMW_OFFSET_MAX);
2421
Colin LeMahieu947cd702014-12-23 20:44:59 +00002422 case Hexagon::L2_loadrd_io:
Colin LeMahieubda31b42014-12-29 20:44:51 +00002423 case Hexagon::S2_storerd_io:
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002424 return (Offset >= Hexagon_MEMD_OFFSET_MIN) &&
2425 (Offset <= Hexagon_MEMD_OFFSET_MAX);
2426
Colin LeMahieu8e39cad2014-12-23 17:25:57 +00002427 case Hexagon::L2_loadrh_io:
Colin LeMahieua9386d22014-12-23 16:42:57 +00002428 case Hexagon::L2_loadruh_io:
Colin LeMahieubda31b42014-12-29 20:44:51 +00002429 case Hexagon::S2_storerh_io:
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002430 return (Offset >= Hexagon_MEMH_OFFSET_MIN) &&
2431 (Offset <= Hexagon_MEMH_OFFSET_MAX);
2432
Colin LeMahieu4b1eac42014-12-22 21:40:43 +00002433 case Hexagon::L2_loadrb_io:
Colin LeMahieuaf1e5de2014-12-22 21:20:03 +00002434 case Hexagon::L2_loadrub_io:
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002435 case Hexagon::S2_storerb_io:
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002436 return (Offset >= Hexagon_MEMB_OFFSET_MIN) &&
2437 (Offset <= Hexagon_MEMB_OFFSET_MAX);
2438
Colin LeMahieuf297dbe2015-02-05 17:49:13 +00002439 case Hexagon::A2_addi:
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002440 return (Offset >= Hexagon_ADDI_OFFSET_MIN) &&
2441 (Offset <= Hexagon_ADDI_OFFSET_MAX);
2442
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002443 case Hexagon::L4_iadd_memopw_io :
2444 case Hexagon::L4_isub_memopw_io :
2445 case Hexagon::L4_add_memopw_io :
2446 case Hexagon::L4_sub_memopw_io :
2447 case Hexagon::L4_and_memopw_io :
2448 case Hexagon::L4_or_memopw_io :
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002449 return (0 <= Offset && Offset <= 255);
2450
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002451 case Hexagon::L4_iadd_memoph_io :
2452 case Hexagon::L4_isub_memoph_io :
2453 case Hexagon::L4_add_memoph_io :
2454 case Hexagon::L4_sub_memoph_io :
2455 case Hexagon::L4_and_memoph_io :
2456 case Hexagon::L4_or_memoph_io :
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002457 return (0 <= Offset && Offset <= 127);
2458
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002459 case Hexagon::L4_iadd_memopb_io :
2460 case Hexagon::L4_isub_memopb_io :
2461 case Hexagon::L4_add_memopb_io :
2462 case Hexagon::L4_sub_memopb_io :
2463 case Hexagon::L4_and_memopb_io :
2464 case Hexagon::L4_or_memopb_io :
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002465 return (0 <= Offset && Offset <= 63);
2466
2467 // LDri_pred and STriw_pred are pseudo operations, so it has to take offset of
2468 // any size. Later pass knows how to handle it.
2469 case Hexagon::STriw_pred:
2470 case Hexagon::LDriw_pred:
Krzysztof Parzyszek7b413c62016-01-22 19:15:58 +00002471 case Hexagon::STriw_mod:
2472 case Hexagon::LDriw_mod:
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002473 return true;
2474
Krzysztof Parzyszek05902162015-04-22 17:51:26 +00002475 case Hexagon::TFR_FI:
2476 case Hexagon::TFR_FIA:
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002477 case Hexagon::INLINEASM:
2478 return true;
Krzysztof Parzyszekfb338242015-10-06 15:49:14 +00002479
2480 case Hexagon::L2_ploadrbt_io:
2481 case Hexagon::L2_ploadrbf_io:
2482 case Hexagon::L2_ploadrubt_io:
2483 case Hexagon::L2_ploadrubf_io:
2484 case Hexagon::S2_pstorerbt_io:
2485 case Hexagon::S2_pstorerbf_io:
2486 case Hexagon::S4_storeirb_io:
2487 case Hexagon::S4_storeirbt_io:
2488 case Hexagon::S4_storeirbf_io:
2489 return isUInt<6>(Offset);
2490
2491 case Hexagon::L2_ploadrht_io:
2492 case Hexagon::L2_ploadrhf_io:
2493 case Hexagon::L2_ploadruht_io:
2494 case Hexagon::L2_ploadruhf_io:
2495 case Hexagon::S2_pstorerht_io:
2496 case Hexagon::S2_pstorerhf_io:
2497 case Hexagon::S4_storeirh_io:
2498 case Hexagon::S4_storeirht_io:
2499 case Hexagon::S4_storeirhf_io:
2500 return isShiftedUInt<6,1>(Offset);
2501
2502 case Hexagon::L2_ploadrit_io:
2503 case Hexagon::L2_ploadrif_io:
2504 case Hexagon::S2_pstorerit_io:
2505 case Hexagon::S2_pstorerif_io:
2506 case Hexagon::S4_storeiri_io:
2507 case Hexagon::S4_storeirit_io:
2508 case Hexagon::S4_storeirif_io:
2509 return isShiftedUInt<6,2>(Offset);
2510
2511 case Hexagon::L2_ploadrdt_io:
2512 case Hexagon::L2_ploadrdf_io:
2513 case Hexagon::S2_pstorerdt_io:
2514 case Hexagon::S2_pstorerdf_io:
2515 return isShiftedUInt<6,3>(Offset);
2516 } // switch
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002517
Benjamin Kramerb6684012011-12-27 11:41:05 +00002518 llvm_unreachable("No offset range is defined for this opcode. "
2519 "Please define it in the above switch statement!");
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002520}
2521
2522
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002523bool HexagonInstrInfo::isVecAcc(const MachineInstr *MI) const {
2524 return MI && isV60VectorInstruction(MI) && isAccumulator(MI);
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002525}
2526
2527
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002528bool HexagonInstrInfo::isVecALU(const MachineInstr *MI) const {
2529 if (!MI)
Andrew Trickd06df962012-02-01 22:13:57 +00002530 return false;
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002531 const uint64_t F = get(MI->getOpcode()).TSFlags;
2532 const uint64_t V = ((F >> HexagonII::TypePos) & HexagonII::TypeMask);
2533 return
2534 V == HexagonII::TypeCVI_VA ||
2535 V == HexagonII::TypeCVI_VA_DV;
2536}
Andrew Trickd06df962012-02-01 22:13:57 +00002537
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002538
2539bool HexagonInstrInfo::isVecUsableNextPacket(const MachineInstr *ProdMI,
2540 const MachineInstr *ConsMI) const {
2541 if (EnableACCForwarding && isVecAcc(ProdMI) && isVecAcc(ConsMI))
2542 return true;
2543
2544 if (EnableALUForwarding && (isVecALU(ConsMI) || isLateSourceInstr(ConsMI)))
2545 return true;
2546
2547 if (mayBeNewStore(ConsMI))
Andrew Trickd06df962012-02-01 22:13:57 +00002548 return true;
2549
2550 return false;
2551}
Jyotsna Verma84256432013-03-01 17:37:13 +00002552
Jyotsna Verma84256432013-03-01 17:37:13 +00002553
Krzysztof Parzyszek56bbf542015-12-16 19:36:12 +00002554/// \brief Can these instructions execute at the same time in a bundle.
2555bool HexagonInstrInfo::canExecuteInBundle(const MachineInstr *First,
2556 const MachineInstr *Second) const {
2557 if (DisableNVSchedule)
2558 return false;
2559 if (mayBeNewStore(Second)) {
2560 // Make sure the definition of the first instruction is the value being
2561 // stored.
2562 const MachineOperand &Stored =
2563 Second->getOperand(Second->getNumOperands() - 1);
2564 if (!Stored.isReg())
2565 return false;
2566 for (unsigned i = 0, e = First->getNumOperands(); i < e; ++i) {
2567 const MachineOperand &Op = First->getOperand(i);
2568 if (Op.isReg() && Op.isDef() && Op.getReg() == Stored.getReg())
2569 return true;
2570 }
2571 }
2572 return false;
2573}
2574
2575
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002576bool HexagonInstrInfo::hasEHLabel(const MachineBasicBlock *B) const {
2577 for (auto &I : *B)
2578 if (I.isEHLabel())
2579 return true;
2580 return false;
Jyotsna Verma84256432013-03-01 17:37:13 +00002581}
2582
Jyotsna Verma84256432013-03-01 17:37:13 +00002583
2584// Returns true if an instruction can be converted into a non-extended
2585// equivalent instruction.
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002586bool HexagonInstrInfo::hasNonExtEquivalent(const MachineInstr *MI) const {
Jyotsna Verma84256432013-03-01 17:37:13 +00002587 short NonExtOpcode;
2588 // Check if the instruction has a register form that uses register in place
2589 // of the extended operand, if so return that as the non-extended form.
2590 if (Hexagon::getRegForm(MI->getOpcode()) >= 0)
2591 return true;
2592
2593 if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
Alp Tokercb402912014-01-24 17:20:08 +00002594 // Check addressing mode and retrieve non-ext equivalent instruction.
Jyotsna Verma84256432013-03-01 17:37:13 +00002595
2596 switch (getAddrMode(MI)) {
2597 case HexagonII::Absolute :
2598 // Load/store with absolute addressing mode can be converted into
2599 // base+offset mode.
Krzysztof Parzyszek02579052015-10-20 19:21:05 +00002600 NonExtOpcode = Hexagon::getBaseWithImmOffset(MI->getOpcode());
Jyotsna Verma84256432013-03-01 17:37:13 +00002601 break;
2602 case HexagonII::BaseImmOffset :
2603 // Load/store with base+offset addressing mode can be converted into
2604 // base+register offset addressing mode. However left shift operand should
2605 // be set to 0.
2606 NonExtOpcode = Hexagon::getBaseWithRegOffset(MI->getOpcode());
2607 break;
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002608 case HexagonII::BaseLongOffset:
2609 NonExtOpcode = Hexagon::getRegShlForm(MI->getOpcode());
2610 break;
Jyotsna Verma84256432013-03-01 17:37:13 +00002611 default:
2612 return false;
2613 }
2614 if (NonExtOpcode < 0)
2615 return false;
2616 return true;
2617 }
2618 return false;
2619}
2620
Jyotsna Verma84256432013-03-01 17:37:13 +00002621
Krzysztof Parzyszek5e6f2bd2015-12-14 21:32:25 +00002622bool HexagonInstrInfo::hasPseudoInstrPair(const MachineInstr *MI) const {
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002623 return Hexagon::getRealHWInstr(MI->getOpcode(),
2624 Hexagon::InstrType_Pseudo) >= 0;
2625}
2626
2627
2628bool HexagonInstrInfo::hasUncondBranch(const MachineBasicBlock *B)
2629 const {
2630 MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end();
2631 while (I != E) {
2632 if (I->isBarrier())
2633 return true;
2634 ++I;
2635 }
2636 return false;
2637}
2638
2639
2640// Returns true, if a LD insn can be promoted to a cur load.
2641bool HexagonInstrInfo::mayBeCurLoad(const MachineInstr *MI) const {
2642 auto &HST = MI->getParent()->getParent()->getSubtarget<HexagonSubtarget>();
2643 const uint64_t F = MI->getDesc().TSFlags;
2644 return ((F >> HexagonII::mayCVLoadPos) & HexagonII::mayCVLoadMask) &&
2645 HST.hasV60TOps();
2646}
2647
2648
2649// Returns true, if a ST insn can be promoted to a new-value store.
2650bool HexagonInstrInfo::mayBeNewStore(const MachineInstr *MI) const {
2651 const uint64_t F = MI->getDesc().TSFlags;
2652 return (F >> HexagonII::mayNVStorePos) & HexagonII::mayNVStoreMask;
2653}
2654
2655
2656bool HexagonInstrInfo::producesStall(const MachineInstr *ProdMI,
2657 const MachineInstr *ConsMI) const {
2658 // There is no stall when ProdMI is not a V60 vector.
2659 if (!isV60VectorInstruction(ProdMI))
2660 return false;
2661
2662 // There is no stall when ProdMI and ConsMI are not dependent.
2663 if (!isDependent(ProdMI, ConsMI))
2664 return false;
2665
2666 // When Forward Scheduling is enabled, there is no stall if ProdMI and ConsMI
2667 // are scheduled in consecutive packets.
2668 if (isVecUsableNextPacket(ProdMI, ConsMI))
2669 return false;
2670
2671 return true;
2672}
2673
2674
2675bool HexagonInstrInfo::producesStall(const MachineInstr *MI,
2676 MachineBasicBlock::const_instr_iterator BII) const {
2677 // There is no stall when I is not a V60 vector.
2678 if (!isV60VectorInstruction(MI))
2679 return false;
2680
2681 MachineBasicBlock::const_instr_iterator MII = BII;
2682 MachineBasicBlock::const_instr_iterator MIE = MII->getParent()->instr_end();
2683
2684 if (!(*MII).isBundle()) {
2685 const MachineInstr *J = &*MII;
2686 if (!isV60VectorInstruction(J))
2687 return false;
2688 else if (isVecUsableNextPacket(J, MI))
2689 return false;
2690 return true;
2691 }
2692
2693 for (++MII; MII != MIE && MII->isInsideBundle(); ++MII) {
2694 const MachineInstr *J = &*MII;
2695 if (producesStall(J, MI))
2696 return true;
2697 }
2698 return false;
2699}
2700
2701
Krzysztof Parzyszek5e6f2bd2015-12-14 21:32:25 +00002702bool HexagonInstrInfo::predCanBeUsedAsDotNew(const MachineInstr *MI,
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002703 unsigned PredReg) const {
2704 for (unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++) {
Krzysztof Parzyszek5e6f2bd2015-12-14 21:32:25 +00002705 const MachineOperand &MO = MI->getOperand(opNum);
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002706 if (MO.isReg() && MO.isDef() && MO.isImplicit() && (MO.getReg() == PredReg))
2707 return false; // Predicate register must be explicitly defined.
2708 }
2709
2710 // Hexagon Programmer's Reference says that decbin, memw_locked, and
2711 // memd_locked cannot be used as .new as well,
2712 // but we don't seem to have these instructions defined.
2713 return MI->getOpcode() != Hexagon::A4_tlbmatch;
2714}
2715
2716
2717bool HexagonInstrInfo::PredOpcodeHasJMP_c(unsigned Opcode) const {
2718 return (Opcode == Hexagon::J2_jumpt) ||
2719 (Opcode == Hexagon::J2_jumpf) ||
2720 (Opcode == Hexagon::J2_jumptnew) ||
2721 (Opcode == Hexagon::J2_jumpfnew) ||
2722 (Opcode == Hexagon::J2_jumptnewpt) ||
2723 (Opcode == Hexagon::J2_jumpfnewpt);
2724}
2725
2726
2727bool HexagonInstrInfo::predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const {
2728 if (Cond.empty() || !isPredicated(Cond[0].getImm()))
2729 return false;
2730 return !isPredicatedTrue(Cond[0].getImm());
2731}
2732
2733
2734unsigned HexagonInstrInfo::getAddrMode(const MachineInstr* MI) const {
2735 const uint64_t F = MI->getDesc().TSFlags;
2736 return (F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask;
2737}
2738
2739
2740// Returns the base register in a memory access (load/store). The offset is
2741// returned in Offset and the access size is returned in AccessSize.
2742unsigned HexagonInstrInfo::getBaseAndOffset(const MachineInstr *MI,
2743 int &Offset, unsigned &AccessSize) const {
2744 // Return if it is not a base+offset type instruction or a MemOp.
2745 if (getAddrMode(MI) != HexagonII::BaseImmOffset &&
2746 getAddrMode(MI) != HexagonII::BaseLongOffset &&
2747 !isMemOp(MI) && !isPostIncrement(MI))
2748 return 0;
2749
2750 // Since it is a memory access instruction, getMemAccessSize() should never
2751 // return 0.
2752 assert (getMemAccessSize(MI) &&
2753 "BaseImmOffset or BaseLongOffset or MemOp without accessSize");
2754
2755 // Return Values of getMemAccessSize() are
2756 // 0 - Checked in the assert above.
2757 // 1, 2, 3, 4 & 7, 8 - The statement below is correct for all these.
2758 // MemAccessSize is represented as 1+log2(N) where N is size in bits.
2759 AccessSize = (1U << (getMemAccessSize(MI) - 1));
2760
2761 unsigned basePos = 0, offsetPos = 0;
2762 if (!getBaseAndOffsetPosition(MI, basePos, offsetPos))
2763 return 0;
2764
2765 // Post increment updates its EA after the mem access,
2766 // so we need to treat its offset as zero.
2767 if (isPostIncrement(MI))
2768 Offset = 0;
2769 else {
2770 Offset = MI->getOperand(offsetPos).getImm();
2771 }
2772
2773 return MI->getOperand(basePos).getReg();
2774}
2775
2776
2777/// Return the position of the base and offset operands for this instruction.
2778bool HexagonInstrInfo::getBaseAndOffsetPosition(const MachineInstr *MI,
2779 unsigned &BasePos, unsigned &OffsetPos) const {
2780 // Deal with memops first.
2781 if (isMemOp(MI)) {
2782 assert (MI->getOperand(0).isReg() && MI->getOperand(1).isImm() &&
2783 "Bad Memop.");
2784 BasePos = 0;
2785 OffsetPos = 1;
2786 } else if (MI->mayStore()) {
2787 BasePos = 0;
2788 OffsetPos = 1;
2789 } else if (MI->mayLoad()) {
2790 BasePos = 1;
2791 OffsetPos = 2;
2792 } else
2793 return false;
2794
2795 if (isPredicated(MI)) {
2796 BasePos++;
2797 OffsetPos++;
2798 }
2799 if (isPostIncrement(MI)) {
2800 BasePos++;
2801 OffsetPos++;
2802 }
2803
2804 if (!MI->getOperand(BasePos).isReg() || !MI->getOperand(OffsetPos).isImm())
2805 return false;
2806
2807 return true;
2808}
2809
2810
2811// Inserts branching instructions in reverse order of their occurence.
2812// e.g. jump_t t1 (i1)
2813// jump t2 (i2)
2814// Jumpers = {i2, i1}
2815SmallVector<MachineInstr*, 2> HexagonInstrInfo::getBranchingInstrs(
2816 MachineBasicBlock& MBB) const {
2817 SmallVector<MachineInstr*, 2> Jumpers;
2818 // If the block has no terminators, it just falls into the block after it.
2819 MachineBasicBlock::instr_iterator I = MBB.instr_end();
2820 if (I == MBB.instr_begin())
2821 return Jumpers;
2822
2823 // A basic block may looks like this:
2824 //
2825 // [ insn
2826 // EH_LABEL
2827 // insn
2828 // insn
2829 // insn
2830 // EH_LABEL
2831 // insn ]
2832 //
2833 // It has two succs but does not have a terminator
2834 // Don't know how to handle it.
2835 do {
2836 --I;
2837 if (I->isEHLabel())
2838 return Jumpers;
2839 } while (I != MBB.instr_begin());
2840
2841 I = MBB.instr_end();
2842 --I;
2843
2844 while (I->isDebugValue()) {
2845 if (I == MBB.instr_begin())
2846 return Jumpers;
2847 --I;
2848 }
2849 if (!isUnpredicatedTerminator(&*I))
2850 return Jumpers;
2851
2852 // Get the last instruction in the block.
2853 MachineInstr *LastInst = &*I;
2854 Jumpers.push_back(LastInst);
2855 MachineInstr *SecondLastInst = nullptr;
2856 // Find one more terminator if present.
2857 do {
2858 if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(&*I)) {
2859 if (!SecondLastInst) {
2860 SecondLastInst = &*I;
2861 Jumpers.push_back(SecondLastInst);
2862 } else // This is a third branch.
2863 return Jumpers;
2864 }
2865 if (I == MBB.instr_begin())
2866 break;
2867 --I;
2868 } while (true);
2869 return Jumpers;
2870}
2871
2872
2873// Returns Operand Index for the constant extended instruction.
2874unsigned HexagonInstrInfo::getCExtOpNum(const MachineInstr *MI) const {
2875 const uint64_t F = MI->getDesc().TSFlags;
2876 return (F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask;
2877}
2878
2879// See if instruction could potentially be a duplex candidate.
2880// If so, return its group. Zero otherwise.
2881HexagonII::CompoundGroup HexagonInstrInfo::getCompoundCandidateGroup(
2882 const MachineInstr *MI) const {
2883 unsigned DstReg, SrcReg, Src1Reg, Src2Reg;
2884
2885 switch (MI->getOpcode()) {
2886 default:
2887 return HexagonII::HCG_None;
2888 //
2889 // Compound pairs.
2890 // "p0=cmp.eq(Rs16,Rt16); if (p0.new) jump:nt #r9:2"
2891 // "Rd16=#U6 ; jump #r9:2"
2892 // "Rd16=Rs16 ; jump #r9:2"
2893 //
2894 case Hexagon::C2_cmpeq:
2895 case Hexagon::C2_cmpgt:
2896 case Hexagon::C2_cmpgtu:
2897 DstReg = MI->getOperand(0).getReg();
2898 Src1Reg = MI->getOperand(1).getReg();
2899 Src2Reg = MI->getOperand(2).getReg();
2900 if (Hexagon::PredRegsRegClass.contains(DstReg) &&
2901 (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
2902 isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg))
2903 return HexagonII::HCG_A;
2904 break;
2905 case Hexagon::C2_cmpeqi:
2906 case Hexagon::C2_cmpgti:
2907 case Hexagon::C2_cmpgtui:
2908 // P0 = cmp.eq(Rs,#u2)
2909 DstReg = MI->getOperand(0).getReg();
2910 SrcReg = MI->getOperand(1).getReg();
2911 if (Hexagon::PredRegsRegClass.contains(DstReg) &&
2912 (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
2913 isIntRegForSubInst(SrcReg) && MI->getOperand(2).isImm() &&
2914 ((isUInt<5>(MI->getOperand(2).getImm())) ||
2915 (MI->getOperand(2).getImm() == -1)))
2916 return HexagonII::HCG_A;
2917 break;
2918 case Hexagon::A2_tfr:
2919 // Rd = Rs
2920 DstReg = MI->getOperand(0).getReg();
2921 SrcReg = MI->getOperand(1).getReg();
2922 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
2923 return HexagonII::HCG_A;
2924 break;
2925 case Hexagon::A2_tfrsi:
2926 // Rd = #u6
2927 // Do not test for #u6 size since the const is getting extended
2928 // regardless and compound could be formed.
2929 DstReg = MI->getOperand(0).getReg();
2930 if (isIntRegForSubInst(DstReg))
2931 return HexagonII::HCG_A;
2932 break;
2933 case Hexagon::S2_tstbit_i:
2934 DstReg = MI->getOperand(0).getReg();
2935 Src1Reg = MI->getOperand(1).getReg();
2936 if (Hexagon::PredRegsRegClass.contains(DstReg) &&
2937 (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
2938 MI->getOperand(2).isImm() &&
2939 isIntRegForSubInst(Src1Reg) && (MI->getOperand(2).getImm() == 0))
2940 return HexagonII::HCG_A;
2941 break;
2942 // The fact that .new form is used pretty much guarantees
2943 // that predicate register will match. Nevertheless,
2944 // there could be some false positives without additional
2945 // checking.
2946 case Hexagon::J2_jumptnew:
2947 case Hexagon::J2_jumpfnew:
2948 case Hexagon::J2_jumptnewpt:
2949 case Hexagon::J2_jumpfnewpt:
2950 Src1Reg = MI->getOperand(0).getReg();
2951 if (Hexagon::PredRegsRegClass.contains(Src1Reg) &&
2952 (Hexagon::P0 == Src1Reg || Hexagon::P1 == Src1Reg))
2953 return HexagonII::HCG_B;
2954 break;
2955 // Transfer and jump:
2956 // Rd=#U6 ; jump #r9:2
2957 // Rd=Rs ; jump #r9:2
2958 // Do not test for jump range here.
2959 case Hexagon::J2_jump:
2960 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
2961 return HexagonII::HCG_C;
2962 break;
2963 }
2964
2965 return HexagonII::HCG_None;
2966}
2967
2968
2969// Returns -1 when there is no opcode found.
2970unsigned HexagonInstrInfo::getCompoundOpcode(const MachineInstr *GA,
2971 const MachineInstr *GB) const {
2972 assert(getCompoundCandidateGroup(GA) == HexagonII::HCG_A);
2973 assert(getCompoundCandidateGroup(GB) == HexagonII::HCG_B);
2974 if ((GA->getOpcode() != Hexagon::C2_cmpeqi) ||
2975 (GB->getOpcode() != Hexagon::J2_jumptnew))
2976 return -1;
2977 unsigned DestReg = GA->getOperand(0).getReg();
2978 if (!GB->readsRegister(DestReg))
2979 return -1;
2980 if (DestReg == Hexagon::P0)
2981 return Hexagon::J4_cmpeqi_tp0_jump_nt;
2982 if (DestReg == Hexagon::P1)
2983 return Hexagon::J4_cmpeqi_tp1_jump_nt;
2984 return -1;
2985}
2986
2987
2988int HexagonInstrInfo::getCondOpcode(int Opc, bool invertPredicate) const {
2989 enum Hexagon::PredSense inPredSense;
2990 inPredSense = invertPredicate ? Hexagon::PredSense_false :
2991 Hexagon::PredSense_true;
2992 int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense);
2993 if (CondOpcode >= 0) // Valid Conditional opcode/instruction
2994 return CondOpcode;
2995
2996 // This switch case will be removed once all the instructions have been
2997 // modified to use relation maps.
2998 switch(Opc) {
2999 case Hexagon::TFRI_f:
3000 return !invertPredicate ? Hexagon::TFRI_cPt_f :
3001 Hexagon::TFRI_cNotPt_f;
3002 }
3003
3004 llvm_unreachable("Unexpected predicable instruction");
3005}
3006
3007
3008// Return the cur value instruction for a given store.
3009int HexagonInstrInfo::getDotCurOp(const MachineInstr* MI) const {
3010 switch (MI->getOpcode()) {
3011 default: llvm_unreachable("Unknown .cur type");
3012 case Hexagon::V6_vL32b_pi:
3013 return Hexagon::V6_vL32b_cur_pi;
3014 case Hexagon::V6_vL32b_ai:
3015 return Hexagon::V6_vL32b_cur_ai;
3016 //128B
3017 case Hexagon::V6_vL32b_pi_128B:
3018 return Hexagon::V6_vL32b_cur_pi_128B;
3019 case Hexagon::V6_vL32b_ai_128B:
3020 return Hexagon::V6_vL32b_cur_ai_128B;
3021 }
3022 return 0;
3023}
3024
3025
3026
3027// The diagram below shows the steps involved in the conversion of a predicated
3028// store instruction to its .new predicated new-value form.
3029//
3030// p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
3031// ^ ^
3032// / \ (not OK. it will cause new-value store to be
3033// / X conditional on p0.new while R2 producer is
3034// / \ on p0)
3035// / \.
3036// p.new store p.old NV store
3037// [if(p0.new)memw(R0+#0)=R2] [if(p0)memw(R0+#0)=R2.new]
3038// ^ ^
3039// \ /
3040// \ /
3041// \ /
3042// p.old store
3043// [if (p0)memw(R0+#0)=R2]
3044//
3045//
3046// The following set of instructions further explains the scenario where
3047// conditional new-value store becomes invalid when promoted to .new predicate
3048// form.
3049//
3050// { 1) if (p0) r0 = add(r1, r2)
3051// 2) p0 = cmp.eq(r3, #0) }
3052//
3053// 3) if (p0) memb(r1+#0) = r0 --> this instruction can't be grouped with
3054// the first two instructions because in instr 1, r0 is conditional on old value
3055// of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
3056// is not valid for new-value stores.
3057// Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
3058// from the "Conditional Store" list. Because a predicated new value store
3059// would NOT be promoted to a double dot new store. See diagram below:
3060// This function returns yes for those stores that are predicated but not
3061// yet promoted to predicate dot new instructions.
3062//
3063// +---------------------+
3064// /-----| if (p0) memw(..)=r0 |---------\~
3065// || +---------------------+ ||
3066// promote || /\ /\ || promote
3067// || /||\ /||\ ||
3068// \||/ demote || \||/
3069// \/ || || \/
3070// +-------------------------+ || +-------------------------+
3071// | if (p0.new) memw(..)=r0 | || | if (p0) memw(..)=r0.new |
3072// +-------------------------+ || +-------------------------+
3073// || || ||
3074// || demote \||/
3075// promote || \/ NOT possible
3076// || || /\~
3077// \||/ || /||\~
3078// \/ || ||
3079// +-----------------------------+
3080// | if (p0.new) memw(..)=r0.new |
3081// +-----------------------------+
3082// Double Dot New Store
3083//
3084// Returns the most basic instruction for the .new predicated instructions and
3085// new-value stores.
3086// For example, all of the following instructions will be converted back to the
3087// same instruction:
3088// 1) if (p0.new) memw(R0+#0) = R1.new --->
3089// 2) if (p0) memw(R0+#0)= R1.new -------> if (p0) memw(R0+#0) = R1
3090// 3) if (p0.new) memw(R0+#0) = R1 --->
3091//
3092// To understand the translation of instruction 1 to its original form, consider
3093// a packet with 3 instructions.
3094// { p0 = cmp.eq(R0,R1)
3095// if (p0.new) R2 = add(R3, R4)
3096// R5 = add (R3, R1)
3097// }
3098// if (p0) memw(R5+#0) = R2 <--- trying to include it in the previous packet
3099//
3100// This instruction can be part of the previous packet only if both p0 and R2
3101// are promoted to .new values. This promotion happens in steps, first
3102// predicate register is promoted to .new and in the next iteration R2 is
3103// promoted. Therefore, in case of dependence check failure (due to R5) during
3104// next iteration, it should be converted back to its most basic form.
3105
3106
3107// Return the new value instruction for a given store.
3108int HexagonInstrInfo::getDotNewOp(const MachineInstr* MI) const {
3109 int NVOpcode = Hexagon::getNewValueOpcode(MI->getOpcode());
3110 if (NVOpcode >= 0) // Valid new-value store instruction.
3111 return NVOpcode;
3112
3113 switch (MI->getOpcode()) {
3114 default: llvm_unreachable("Unknown .new type");
3115 case Hexagon::S4_storerb_ur:
3116 return Hexagon::S4_storerbnew_ur;
3117
3118 case Hexagon::S2_storerb_pci:
3119 return Hexagon::S2_storerb_pci;
3120
3121 case Hexagon::S2_storeri_pci:
3122 return Hexagon::S2_storeri_pci;
3123
3124 case Hexagon::S2_storerh_pci:
3125 return Hexagon::S2_storerh_pci;
3126
3127 case Hexagon::S2_storerd_pci:
3128 return Hexagon::S2_storerd_pci;
3129
3130 case Hexagon::S2_storerf_pci:
3131 return Hexagon::S2_storerf_pci;
3132
3133 case Hexagon::V6_vS32b_ai:
3134 return Hexagon::V6_vS32b_new_ai;
3135
3136 case Hexagon::V6_vS32b_pi:
3137 return Hexagon::V6_vS32b_new_pi;
3138
3139 // 128B
3140 case Hexagon::V6_vS32b_ai_128B:
3141 return Hexagon::V6_vS32b_new_ai_128B;
3142
3143 case Hexagon::V6_vS32b_pi_128B:
3144 return Hexagon::V6_vS32b_new_pi_128B;
3145 }
3146 return 0;
3147}
3148
3149// Returns the opcode to use when converting MI, which is a conditional jump,
3150// into a conditional instruction which uses the .new value of the predicate.
3151// We also use branch probabilities to add a hint to the jump.
Krzysztof Parzyszek5e6f2bd2015-12-14 21:32:25 +00003152int HexagonInstrInfo::getDotNewPredJumpOp(const MachineInstr *MI,
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00003153 const MachineBranchProbabilityInfo *MBPI) const {
3154 // We assume that block can have at most two successors.
3155 bool taken = false;
Krzysztof Parzyszek5e6f2bd2015-12-14 21:32:25 +00003156 const MachineBasicBlock *Src = MI->getParent();
3157 const MachineOperand *BrTarget = &MI->getOperand(1);
3158 const MachineBasicBlock *Dst = BrTarget->getMBB();
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00003159
3160 const BranchProbability Prediction = MBPI->getEdgeProbability(Src, Dst);
3161 if (Prediction >= BranchProbability(1,2))
3162 taken = true;
3163
3164 switch (MI->getOpcode()) {
3165 case Hexagon::J2_jumpt:
3166 return taken ? Hexagon::J2_jumptnewpt : Hexagon::J2_jumptnew;
3167 case Hexagon::J2_jumpf:
3168 return taken ? Hexagon::J2_jumpfnewpt : Hexagon::J2_jumpfnew;
3169
3170 default:
3171 llvm_unreachable("Unexpected jump instruction.");
3172 }
3173}
3174
3175
3176// Return .new predicate version for an instruction.
Krzysztof Parzyszek5e6f2bd2015-12-14 21:32:25 +00003177int HexagonInstrInfo::getDotNewPredOp(const MachineInstr *MI,
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00003178 const MachineBranchProbabilityInfo *MBPI) const {
3179 int NewOpcode = Hexagon::getPredNewOpcode(MI->getOpcode());
3180 if (NewOpcode >= 0) // Valid predicate new instruction
3181 return NewOpcode;
3182
3183 switch (MI->getOpcode()) {
3184 // Condtional Jumps
3185 case Hexagon::J2_jumpt:
3186 case Hexagon::J2_jumpf:
3187 return getDotNewPredJumpOp(MI, MBPI);
3188
3189 default:
3190 assert(0 && "Unknown .new type");
3191 }
3192 return 0;
3193}
3194
3195
3196int HexagonInstrInfo::getDotOldOp(const int opc) const {
3197 int NewOp = opc;
3198 if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form
3199 NewOp = Hexagon::getPredOldOpcode(NewOp);
3200 assert(NewOp >= 0 &&
3201 "Couldn't change predicate new instruction to its old form.");
3202 }
3203
3204 if (isNewValueStore(NewOp)) { // Convert into non-new-value format
3205 NewOp = Hexagon::getNonNVStore(NewOp);
3206 assert(NewOp >= 0 && "Couldn't change new-value store to its old form.");
3207 }
3208 return NewOp;
3209}
3210
3211
3212// See if instruction could potentially be a duplex candidate.
3213// If so, return its group. Zero otherwise.
3214HexagonII::SubInstructionGroup HexagonInstrInfo::getDuplexCandidateGroup(
3215 const MachineInstr *MI) const {
3216 unsigned DstReg, SrcReg, Src1Reg, Src2Reg;
3217 auto &HRI = getRegisterInfo();
3218
3219 switch (MI->getOpcode()) {
3220 default:
3221 return HexagonII::HSIG_None;
3222 //
3223 // Group L1:
3224 //
3225 // Rd = memw(Rs+#u4:2)
3226 // Rd = memub(Rs+#u4:0)
3227 case Hexagon::L2_loadri_io:
3228 DstReg = MI->getOperand(0).getReg();
3229 SrcReg = MI->getOperand(1).getReg();
3230 // Special case this one from Group L2.
3231 // Rd = memw(r29+#u5:2)
3232 if (isIntRegForSubInst(DstReg)) {
3233 if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
3234 HRI.getStackRegister() == SrcReg &&
3235 MI->getOperand(2).isImm() &&
3236 isShiftedUInt<5,2>(MI->getOperand(2).getImm()))
3237 return HexagonII::HSIG_L2;
3238 // Rd = memw(Rs+#u4:2)
3239 if (isIntRegForSubInst(SrcReg) &&
3240 (MI->getOperand(2).isImm() &&
3241 isShiftedUInt<4,2>(MI->getOperand(2).getImm())))
3242 return HexagonII::HSIG_L1;
3243 }
3244 break;
3245 case Hexagon::L2_loadrub_io:
3246 // Rd = memub(Rs+#u4:0)
3247 DstReg = MI->getOperand(0).getReg();
3248 SrcReg = MI->getOperand(1).getReg();
3249 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3250 MI->getOperand(2).isImm() && isUInt<4>(MI->getOperand(2).getImm()))
3251 return HexagonII::HSIG_L1;
3252 break;
3253 //
3254 // Group L2:
3255 //
3256 // Rd = memh/memuh(Rs+#u3:1)
3257 // Rd = memb(Rs+#u3:0)
3258 // Rd = memw(r29+#u5:2) - Handled above.
3259 // Rdd = memd(r29+#u5:3)
3260 // deallocframe
3261 // [if ([!]p0[.new])] dealloc_return
3262 // [if ([!]p0[.new])] jumpr r31
3263 case Hexagon::L2_loadrh_io:
3264 case Hexagon::L2_loadruh_io:
3265 // Rd = memh/memuh(Rs+#u3:1)
3266 DstReg = MI->getOperand(0).getReg();
3267 SrcReg = MI->getOperand(1).getReg();
3268 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3269 MI->getOperand(2).isImm() &&
3270 isShiftedUInt<3,1>(MI->getOperand(2).getImm()))
3271 return HexagonII::HSIG_L2;
3272 break;
3273 case Hexagon::L2_loadrb_io:
3274 // Rd = memb(Rs+#u3:0)
3275 DstReg = MI->getOperand(0).getReg();
3276 SrcReg = MI->getOperand(1).getReg();
3277 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3278 MI->getOperand(2).isImm() &&
3279 isUInt<3>(MI->getOperand(2).getImm()))
3280 return HexagonII::HSIG_L2;
3281 break;
3282 case Hexagon::L2_loadrd_io:
3283 // Rdd = memd(r29+#u5:3)
3284 DstReg = MI->getOperand(0).getReg();
3285 SrcReg = MI->getOperand(1).getReg();
3286 if (isDblRegForSubInst(DstReg, HRI) &&
3287 Hexagon::IntRegsRegClass.contains(SrcReg) &&
3288 HRI.getStackRegister() == SrcReg &&
3289 MI->getOperand(2).isImm() &&
3290 isShiftedUInt<5,3>(MI->getOperand(2).getImm()))
3291 return HexagonII::HSIG_L2;
3292 break;
3293 // dealloc_return is not documented in Hexagon Manual, but marked
3294 // with A_SUBINSN attribute in iset_v4classic.py.
3295 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
3296 case Hexagon::L4_return:
3297 case Hexagon::L2_deallocframe:
3298 return HexagonII::HSIG_L2;
3299 case Hexagon::EH_RETURN_JMPR:
3300 case Hexagon::JMPret :
3301 // jumpr r31
3302 // Actual form JMPR %PC<imp-def>, %R31<imp-use>, %R0<imp-use,internal>.
3303 DstReg = MI->getOperand(0).getReg();
3304 if (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg))
3305 return HexagonII::HSIG_L2;
3306 break;
3307 case Hexagon::JMPrett:
3308 case Hexagon::JMPretf:
3309 case Hexagon::JMPrettnewpt:
3310 case Hexagon::JMPretfnewpt :
3311 case Hexagon::JMPrettnew :
3312 case Hexagon::JMPretfnew :
3313 DstReg = MI->getOperand(1).getReg();
3314 SrcReg = MI->getOperand(0).getReg();
3315 // [if ([!]p0[.new])] jumpr r31
3316 if ((Hexagon::PredRegsRegClass.contains(SrcReg) &&
3317 (Hexagon::P0 == SrcReg)) &&
3318 (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg)))
3319 return HexagonII::HSIG_L2;
3320 break;
3321 case Hexagon::L4_return_t :
3322 case Hexagon::L4_return_f :
3323 case Hexagon::L4_return_tnew_pnt :
3324 case Hexagon::L4_return_fnew_pnt :
3325 case Hexagon::L4_return_tnew_pt :
3326 case Hexagon::L4_return_fnew_pt :
3327 // [if ([!]p0[.new])] dealloc_return
3328 SrcReg = MI->getOperand(0).getReg();
3329 if (Hexagon::PredRegsRegClass.contains(SrcReg) && (Hexagon::P0 == SrcReg))
3330 return HexagonII::HSIG_L2;
3331 break;
3332 //
3333 // Group S1:
3334 //
3335 // memw(Rs+#u4:2) = Rt
3336 // memb(Rs+#u4:0) = Rt
3337 case Hexagon::S2_storeri_io:
3338 // Special case this one from Group S2.
3339 // memw(r29+#u5:2) = Rt
3340 Src1Reg = MI->getOperand(0).getReg();
3341 Src2Reg = MI->getOperand(2).getReg();
3342 if (Hexagon::IntRegsRegClass.contains(Src1Reg) &&
3343 isIntRegForSubInst(Src2Reg) &&
3344 HRI.getStackRegister() == Src1Reg && MI->getOperand(1).isImm() &&
3345 isShiftedUInt<5,2>(MI->getOperand(1).getImm()))
3346 return HexagonII::HSIG_S2;
3347 // memw(Rs+#u4:2) = Rt
3348 if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
3349 MI->getOperand(1).isImm() &&
3350 isShiftedUInt<4,2>(MI->getOperand(1).getImm()))
3351 return HexagonII::HSIG_S1;
3352 break;
3353 case Hexagon::S2_storerb_io:
3354 // memb(Rs+#u4:0) = Rt
3355 Src1Reg = MI->getOperand(0).getReg();
3356 Src2Reg = MI->getOperand(2).getReg();
3357 if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
3358 MI->getOperand(1).isImm() && isUInt<4>(MI->getOperand(1).getImm()))
3359 return HexagonII::HSIG_S1;
3360 break;
3361 //
3362 // Group S2:
3363 //
3364 // memh(Rs+#u3:1) = Rt
3365 // memw(r29+#u5:2) = Rt
3366 // memd(r29+#s6:3) = Rtt
3367 // memw(Rs+#u4:2) = #U1
3368 // memb(Rs+#u4) = #U1
3369 // allocframe(#u5:3)
3370 case Hexagon::S2_storerh_io:
3371 // memh(Rs+#u3:1) = Rt
3372 Src1Reg = MI->getOperand(0).getReg();
3373 Src2Reg = MI->getOperand(2).getReg();
3374 if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
3375 MI->getOperand(1).isImm() &&
3376 isShiftedUInt<3,1>(MI->getOperand(1).getImm()))
3377 return HexagonII::HSIG_S1;
3378 break;
3379 case Hexagon::S2_storerd_io:
3380 // memd(r29+#s6:3) = Rtt
3381 Src1Reg = MI->getOperand(0).getReg();
3382 Src2Reg = MI->getOperand(2).getReg();
3383 if (isDblRegForSubInst(Src2Reg, HRI) &&
3384 Hexagon::IntRegsRegClass.contains(Src1Reg) &&
3385 HRI.getStackRegister() == Src1Reg && MI->getOperand(1).isImm() &&
3386 isShiftedInt<6,3>(MI->getOperand(1).getImm()))
3387 return HexagonII::HSIG_S2;
3388 break;
3389 case Hexagon::S4_storeiri_io:
3390 // memw(Rs+#u4:2) = #U1
3391 Src1Reg = MI->getOperand(0).getReg();
3392 if (isIntRegForSubInst(Src1Reg) && MI->getOperand(1).isImm() &&
3393 isShiftedUInt<4,2>(MI->getOperand(1).getImm()) &&
3394 MI->getOperand(2).isImm() && isUInt<1>(MI->getOperand(2).getImm()))
3395 return HexagonII::HSIG_S2;
3396 break;
3397 case Hexagon::S4_storeirb_io:
3398 // memb(Rs+#u4) = #U1
3399 Src1Reg = MI->getOperand(0).getReg();
3400 if (isIntRegForSubInst(Src1Reg) && MI->getOperand(1).isImm() &&
3401 isUInt<4>(MI->getOperand(1).getImm()) && MI->getOperand(2).isImm() &&
3402 MI->getOperand(2).isImm() && isUInt<1>(MI->getOperand(2).getImm()))
3403 return HexagonII::HSIG_S2;
3404 break;
3405 case Hexagon::S2_allocframe:
3406 if (MI->getOperand(0).isImm() &&
3407 isShiftedUInt<5,3>(MI->getOperand(0).getImm()))
3408 return HexagonII::HSIG_S1;
3409 break;
3410 //
3411 // Group A:
3412 //
3413 // Rx = add(Rx,#s7)
3414 // Rd = Rs
3415 // Rd = #u6
3416 // Rd = #-1
3417 // if ([!]P0[.new]) Rd = #0
3418 // Rd = add(r29,#u6:2)
3419 // Rx = add(Rx,Rs)
3420 // P0 = cmp.eq(Rs,#u2)
3421 // Rdd = combine(#0,Rs)
3422 // Rdd = combine(Rs,#0)
3423 // Rdd = combine(#u2,#U2)
3424 // Rd = add(Rs,#1)
3425 // Rd = add(Rs,#-1)
3426 // Rd = sxth/sxtb/zxtb/zxth(Rs)
3427 // Rd = and(Rs,#1)
3428 case Hexagon::A2_addi:
3429 DstReg = MI->getOperand(0).getReg();
3430 SrcReg = MI->getOperand(1).getReg();
3431 if (isIntRegForSubInst(DstReg)) {
3432 // Rd = add(r29,#u6:2)
3433 if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
3434 HRI.getStackRegister() == SrcReg && MI->getOperand(2).isImm() &&
3435 isShiftedUInt<6,2>(MI->getOperand(2).getImm()))
3436 return HexagonII::HSIG_A;
3437 // Rx = add(Rx,#s7)
3438 if ((DstReg == SrcReg) && MI->getOperand(2).isImm() &&
3439 isInt<7>(MI->getOperand(2).getImm()))
3440 return HexagonII::HSIG_A;
3441 // Rd = add(Rs,#1)
3442 // Rd = add(Rs,#-1)
3443 if (isIntRegForSubInst(SrcReg) && MI->getOperand(2).isImm() &&
3444 ((MI->getOperand(2).getImm() == 1) ||
3445 (MI->getOperand(2).getImm() == -1)))
3446 return HexagonII::HSIG_A;
3447 }
3448 break;
3449 case Hexagon::A2_add:
3450 // Rx = add(Rx,Rs)
3451 DstReg = MI->getOperand(0).getReg();
3452 Src1Reg = MI->getOperand(1).getReg();
3453 Src2Reg = MI->getOperand(2).getReg();
3454 if (isIntRegForSubInst(DstReg) && (DstReg == Src1Reg) &&
3455 isIntRegForSubInst(Src2Reg))
3456 return HexagonII::HSIG_A;
3457 break;
3458 case Hexagon::A2_andir:
3459 // Same as zxtb.
3460 // Rd16=and(Rs16,#255)
3461 // Rd16=and(Rs16,#1)
3462 DstReg = MI->getOperand(0).getReg();
3463 SrcReg = MI->getOperand(1).getReg();
3464 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3465 MI->getOperand(2).isImm() &&
3466 ((MI->getOperand(2).getImm() == 1) ||
3467 (MI->getOperand(2).getImm() == 255)))
3468 return HexagonII::HSIG_A;
3469 break;
3470 case Hexagon::A2_tfr:
3471 // Rd = Rs
3472 DstReg = MI->getOperand(0).getReg();
3473 SrcReg = MI->getOperand(1).getReg();
3474 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
3475 return HexagonII::HSIG_A;
3476 break;
3477 case Hexagon::A2_tfrsi:
3478 // Rd = #u6
3479 // Do not test for #u6 size since the const is getting extended
3480 // regardless and compound could be formed.
3481 // Rd = #-1
3482 DstReg = MI->getOperand(0).getReg();
3483 if (isIntRegForSubInst(DstReg))
3484 return HexagonII::HSIG_A;
3485 break;
3486 case Hexagon::C2_cmoveit:
3487 case Hexagon::C2_cmovenewit:
3488 case Hexagon::C2_cmoveif:
3489 case Hexagon::C2_cmovenewif:
3490 // if ([!]P0[.new]) Rd = #0
3491 // Actual form:
3492 // %R16<def> = C2_cmovenewit %P0<internal>, 0, %R16<imp-use,undef>;
3493 DstReg = MI->getOperand(0).getReg();
3494 SrcReg = MI->getOperand(1).getReg();
3495 if (isIntRegForSubInst(DstReg) &&
3496 Hexagon::PredRegsRegClass.contains(SrcReg) && Hexagon::P0 == SrcReg &&
3497 MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0)
3498 return HexagonII::HSIG_A;
3499 break;
3500 case Hexagon::C2_cmpeqi:
3501 // P0 = cmp.eq(Rs,#u2)
3502 DstReg = MI->getOperand(0).getReg();
3503 SrcReg = MI->getOperand(1).getReg();
3504 if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3505 Hexagon::P0 == DstReg && isIntRegForSubInst(SrcReg) &&
3506 MI->getOperand(2).isImm() && isUInt<2>(MI->getOperand(2).getImm()))
3507 return HexagonII::HSIG_A;
3508 break;
3509 case Hexagon::A2_combineii:
3510 case Hexagon::A4_combineii:
3511 // Rdd = combine(#u2,#U2)
3512 DstReg = MI->getOperand(0).getReg();
3513 if (isDblRegForSubInst(DstReg, HRI) &&
3514 ((MI->getOperand(1).isImm() && isUInt<2>(MI->getOperand(1).getImm())) ||
3515 (MI->getOperand(1).isGlobal() &&
3516 isUInt<2>(MI->getOperand(1).getOffset()))) &&
3517 ((MI->getOperand(2).isImm() && isUInt<2>(MI->getOperand(2).getImm())) ||
3518 (MI->getOperand(2).isGlobal() &&
3519 isUInt<2>(MI->getOperand(2).getOffset()))))
3520 return HexagonII::HSIG_A;
3521 break;
3522 case Hexagon::A4_combineri:
3523 // Rdd = combine(Rs,#0)
3524 DstReg = MI->getOperand(0).getReg();
3525 SrcReg = MI->getOperand(1).getReg();
3526 if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
3527 ((MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0) ||
3528 (MI->getOperand(2).isGlobal() && MI->getOperand(2).getOffset() == 0)))
3529 return HexagonII::HSIG_A;
3530 break;
3531 case Hexagon::A4_combineir:
3532 // Rdd = combine(#0,Rs)
3533 DstReg = MI->getOperand(0).getReg();
3534 SrcReg = MI->getOperand(2).getReg();
3535 if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
3536 ((MI->getOperand(1).isImm() && MI->getOperand(1).getImm() == 0) ||
3537 (MI->getOperand(1).isGlobal() && MI->getOperand(1).getOffset() == 0)))
3538 return HexagonII::HSIG_A;
3539 break;
3540 case Hexagon::A2_sxtb:
3541 case Hexagon::A2_sxth:
3542 case Hexagon::A2_zxtb:
3543 case Hexagon::A2_zxth:
3544 // Rd = sxth/sxtb/zxtb/zxth(Rs)
3545 DstReg = MI->getOperand(0).getReg();
3546 SrcReg = MI->getOperand(1).getReg();
3547 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
3548 return HexagonII::HSIG_A;
3549 break;
3550 }
3551
3552 return HexagonII::HSIG_None;
3553}
3554
3555
Krzysztof Parzyszek5e6f2bd2015-12-14 21:32:25 +00003556short HexagonInstrInfo::getEquivalentHWInstr(const MachineInstr *MI) const {
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00003557 return Hexagon::getRealHWInstr(MI->getOpcode(), Hexagon::InstrType_Real);
3558}
3559
3560
3561// Return first non-debug instruction in the basic block.
3562MachineInstr *HexagonInstrInfo::getFirstNonDbgInst(MachineBasicBlock *BB)
3563 const {
3564 for (auto MII = BB->instr_begin(), End = BB->instr_end(); MII != End; MII++) {
3565 MachineInstr *MI = &*MII;
3566 if (MI->isDebugValue())
3567 continue;
3568 return MI;
3569 }
3570 return nullptr;
3571}
3572
3573
3574unsigned HexagonInstrInfo::getInstrTimingClassLatency(
3575 const InstrItineraryData *ItinData, const MachineInstr *MI) const {
3576 // Default to one cycle for no itinerary. However, an "empty" itinerary may
3577 // still have a MinLatency property, which getStageLatency checks.
3578 if (!ItinData)
3579 return getInstrLatency(ItinData, MI);
3580
3581 // Get the latency embedded in the itinerary. If we're not using timing class
3582 // latencies or if we using BSB scheduling, then restrict the maximum latency
3583 // to 1 (that is, either 0 or 1).
3584 if (MI->isTransient())
3585 return 0;
3586 unsigned Latency = ItinData->getStageLatency(MI->getDesc().getSchedClass());
3587 if (!EnableTimingClassLatency ||
3588 MI->getParent()->getParent()->getSubtarget<HexagonSubtarget>().
3589 useBSBScheduling())
3590 if (Latency > 1)
3591 Latency = 1;
3592 return Latency;
3593}
3594
3595
3596// inverts the predication logic.
3597// p -> NotP
3598// NotP -> P
3599bool HexagonInstrInfo::getInvertedPredSense(
3600 SmallVectorImpl<MachineOperand> &Cond) const {
3601 if (Cond.empty())
3602 return false;
3603 unsigned Opc = getInvertedPredicatedOpcode(Cond[0].getImm());
3604 Cond[0].setImm(Opc);
3605 return true;
3606}
3607
3608
3609unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const {
3610 int InvPredOpcode;
3611 InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc)
3612 : Hexagon::getTruePredOpcode(Opc);
3613 if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate.
3614 return InvPredOpcode;
3615
3616 llvm_unreachable("Unexpected predicated instruction");
3617}
3618
3619
3620// Returns the max value that doesn't need to be extended.
3621int HexagonInstrInfo::getMaxValue(const MachineInstr *MI) const {
3622 const uint64_t F = MI->getDesc().TSFlags;
3623 unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
3624 & HexagonII::ExtentSignedMask;
3625 unsigned bits = (F >> HexagonII::ExtentBitsPos)
3626 & HexagonII::ExtentBitsMask;
3627
3628 if (isSigned) // if value is signed
3629 return ~(-1U << (bits - 1));
3630 else
3631 return ~(-1U << bits);
3632}
3633
3634
3635unsigned HexagonInstrInfo::getMemAccessSize(const MachineInstr* MI) const {
3636 const uint64_t F = MI->getDesc().TSFlags;
3637 return (F >> HexagonII::MemAccessSizePos) & HexagonII::MemAccesSizeMask;
3638}
3639
3640
3641// Returns the min value that doesn't need to be extended.
3642int HexagonInstrInfo::getMinValue(const MachineInstr *MI) const {
3643 const uint64_t F = MI->getDesc().TSFlags;
3644 unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
3645 & HexagonII::ExtentSignedMask;
3646 unsigned bits = (F >> HexagonII::ExtentBitsPos)
3647 & HexagonII::ExtentBitsMask;
3648
3649 if (isSigned) // if value is signed
3650 return -1U << (bits - 1);
3651 else
3652 return 0;
3653}
3654
3655
3656// Returns opcode of the non-extended equivalent instruction.
3657short HexagonInstrInfo::getNonExtOpcode(const MachineInstr *MI) const {
Jyotsna Verma84256432013-03-01 17:37:13 +00003658 // Check if the instruction has a register form that uses register in place
3659 // of the extended operand, if so return that as the non-extended form.
3660 short NonExtOpcode = Hexagon::getRegForm(MI->getOpcode());
3661 if (NonExtOpcode >= 0)
3662 return NonExtOpcode;
3663
3664 if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
Alp Tokercb402912014-01-24 17:20:08 +00003665 // Check addressing mode and retrieve non-ext equivalent instruction.
Jyotsna Verma84256432013-03-01 17:37:13 +00003666 switch (getAddrMode(MI)) {
3667 case HexagonII::Absolute :
Krzysztof Parzyszek02579052015-10-20 19:21:05 +00003668 return Hexagon::getBaseWithImmOffset(MI->getOpcode());
Jyotsna Verma84256432013-03-01 17:37:13 +00003669 case HexagonII::BaseImmOffset :
3670 return Hexagon::getBaseWithRegOffset(MI->getOpcode());
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00003671 case HexagonII::BaseLongOffset:
3672 return Hexagon::getRegShlForm(MI->getOpcode());
3673
Jyotsna Verma84256432013-03-01 17:37:13 +00003674 default:
3675 return -1;
3676 }
3677 }
3678 return -1;
3679}
Jyotsna Verma5ed51812013-05-01 21:37:34 +00003680
Brendon Cahoondf43e682015-05-08 16:16:29 +00003681
Ahmed Bougachac88bf542015-06-11 19:30:37 +00003682bool HexagonInstrInfo::getPredReg(ArrayRef<MachineOperand> Cond,
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00003683 unsigned &PredReg, unsigned &PredRegPos, unsigned &PredRegFlags) const {
Brendon Cahoondf43e682015-05-08 16:16:29 +00003684 if (Cond.empty())
3685 return false;
3686 assert(Cond.size() == 2);
3687 if (isNewValueJump(Cond[0].getImm()) || Cond[1].isMBB()) {
3688 DEBUG(dbgs() << "No predregs for new-value jumps/endloop");
3689 return false;
3690 }
3691 PredReg = Cond[1].getReg();
3692 PredRegPos = 1;
3693 // See IfConversion.cpp why we add RegState::Implicit | RegState::Undef
3694 PredRegFlags = 0;
3695 if (Cond[1].isImplicit())
3696 PredRegFlags = RegState::Implicit;
3697 if (Cond[1].isUndef())
3698 PredRegFlags |= RegState::Undef;
3699 return true;
3700}
3701
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00003702
Krzysztof Parzyszek5e6f2bd2015-12-14 21:32:25 +00003703short HexagonInstrInfo::getPseudoInstrPair(const MachineInstr *MI) const {
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00003704 return Hexagon::getRealHWInstr(MI->getOpcode(), Hexagon::InstrType_Pseudo);
3705}
3706
3707
3708short HexagonInstrInfo::getRegForm(const MachineInstr *MI) const {
3709 return Hexagon::getRegForm(MI->getOpcode());
3710}
3711
3712
3713// Return the number of bytes required to encode the instruction.
3714// Hexagon instructions are fixed length, 4 bytes, unless they
3715// use a constant extender, which requires another 4 bytes.
3716// For debug instructions and prolog labels, return 0.
3717unsigned HexagonInstrInfo::getSize(const MachineInstr *MI) const {
3718 if (MI->isDebugValue() || MI->isPosition())
3719 return 0;
3720
3721 unsigned Size = MI->getDesc().getSize();
3722 if (!Size)
3723 // Assume the default insn size in case it cannot be determined
3724 // for whatever reason.
3725 Size = HEXAGON_INSTR_SIZE;
3726
3727 if (isConstExtended(MI) || isExtended(MI))
3728 Size += HEXAGON_INSTR_SIZE;
3729
3730 // Try and compute number of instructions in asm.
3731 if (BranchRelaxAsmLarge && MI->getOpcode() == Hexagon::INLINEASM) {
3732 const MachineBasicBlock &MBB = *MI->getParent();
3733 const MachineFunction *MF = MBB.getParent();
3734 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
3735
3736 // Count the number of register definitions to find the asm string.
3737 unsigned NumDefs = 0;
3738 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
3739 ++NumDefs)
3740 assert(NumDefs != MI->getNumOperands()-2 && "No asm string?");
3741
3742 assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
3743 // Disassemble the AsmStr and approximate number of instructions.
3744 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
3745 Size = getInlineAsmLength(AsmStr, *MAI);
3746 }
3747
3748 return Size;
3749}
3750
3751
3752uint64_t HexagonInstrInfo::getType(const MachineInstr* MI) const {
3753 const uint64_t F = MI->getDesc().TSFlags;
3754 return (F >> HexagonII::TypePos) & HexagonII::TypeMask;
3755}
3756
3757
3758unsigned HexagonInstrInfo::getUnits(const MachineInstr* MI) const {
3759 const TargetSubtargetInfo &ST = MI->getParent()->getParent()->getSubtarget();
3760 const InstrItineraryData &II = *ST.getInstrItineraryData();
3761 const InstrStage &IS = *II.beginStage(MI->getDesc().getSchedClass());
3762
3763 return IS.getUnits();
3764}
3765
3766
3767unsigned HexagonInstrInfo::getValidSubTargets(const unsigned Opcode) const {
3768 const uint64_t F = get(Opcode).TSFlags;
3769 return (F >> HexagonII::validSubTargetPos) & HexagonII::validSubTargetMask;
3770}
3771
3772
3773// Calculate size of the basic block without debug instructions.
3774unsigned HexagonInstrInfo::nonDbgBBSize(const MachineBasicBlock *BB) const {
3775 return nonDbgMICount(BB->instr_begin(), BB->instr_end());
3776}
3777
3778
3779unsigned HexagonInstrInfo::nonDbgBundleSize(
3780 MachineBasicBlock::const_iterator BundleHead) const {
3781 assert(BundleHead->isBundle() && "Not a bundle header");
3782 auto MII = BundleHead.getInstrIterator();
3783 // Skip the bundle header.
3784 return nonDbgMICount(++MII, getBundleEnd(BundleHead));
3785}
3786
3787
3788/// immediateExtend - Changes the instruction in place to one using an immediate
3789/// extender.
3790void HexagonInstrInfo::immediateExtend(MachineInstr *MI) const {
3791 assert((isExtendable(MI)||isConstExtended(MI)) &&
3792 "Instruction must be extendable");
3793 // Find which operand is extendable.
3794 short ExtOpNum = getCExtOpNum(MI);
3795 MachineOperand &MO = MI->getOperand(ExtOpNum);
3796 // This needs to be something we understand.
3797 assert((MO.isMBB() || MO.isImm()) &&
3798 "Branch with unknown extendable field type");
3799 // Mark given operand as extended.
3800 MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
3801}
3802
3803
3804bool HexagonInstrInfo::invertAndChangeJumpTarget(
3805 MachineInstr* MI, MachineBasicBlock* NewTarget) const {
3806 DEBUG(dbgs() << "\n[invertAndChangeJumpTarget] to BB#"
3807 << NewTarget->getNumber(); MI->dump(););
3808 assert(MI->isBranch());
3809 unsigned NewOpcode = getInvertedPredicatedOpcode(MI->getOpcode());
3810 int TargetPos = MI->getNumOperands() - 1;
3811 // In general branch target is the last operand,
3812 // but some implicit defs added at the end might change it.
3813 while ((TargetPos > -1) && !MI->getOperand(TargetPos).isMBB())
3814 --TargetPos;
3815 assert((TargetPos >= 0) && MI->getOperand(TargetPos).isMBB());
3816 MI->getOperand(TargetPos).setMBB(NewTarget);
3817 if (EnableBranchPrediction && isPredicatedNew(MI)) {
3818 NewOpcode = reversePrediction(NewOpcode);
3819 }
3820 MI->setDesc(get(NewOpcode));
3821 return true;
3822}
3823
3824
3825void HexagonInstrInfo::genAllInsnTimingClasses(MachineFunction &MF) const {
3826 /* +++ The code below is used to generate complete set of Hexagon Insn +++ */
3827 MachineFunction::iterator A = MF.begin();
3828 MachineBasicBlock &B = *A;
3829 MachineBasicBlock::iterator I = B.begin();
3830 MachineInstr *MI = &*I;
3831 DebugLoc DL = MI->getDebugLoc();
3832 MachineInstr *NewMI;
3833
3834 for (unsigned insn = TargetOpcode::GENERIC_OP_END+1;
3835 insn < Hexagon::INSTRUCTION_LIST_END; ++insn) {
3836 NewMI = BuildMI(B, MI, DL, get(insn));
3837 DEBUG(dbgs() << "\n" << getName(NewMI->getOpcode()) <<
3838 " Class: " << NewMI->getDesc().getSchedClass());
3839 NewMI->eraseFromParent();
3840 }
3841 /* --- The code above is used to generate complete set of Hexagon Insn --- */
3842}
3843
3844
3845// inverts the predication logic.
3846// p -> NotP
3847// NotP -> P
3848bool HexagonInstrInfo::reversePredSense(MachineInstr* MI) const {
3849 DEBUG(dbgs() << "\nTrying to reverse pred. sense of:"; MI->dump());
3850 MI->setDesc(get(getInvertedPredicatedOpcode(MI->getOpcode())));
3851 return true;
3852}
3853
3854
3855// Reverse the branch prediction.
3856unsigned HexagonInstrInfo::reversePrediction(unsigned Opcode) const {
3857 int PredRevOpcode = -1;
3858 if (isPredictedTaken(Opcode))
3859 PredRevOpcode = Hexagon::notTakenBranchPrediction(Opcode);
3860 else
3861 PredRevOpcode = Hexagon::takenBranchPrediction(Opcode);
3862 assert(PredRevOpcode > 0);
3863 return PredRevOpcode;
3864}
3865
3866
3867// TODO: Add more rigorous validation.
3868bool HexagonInstrInfo::validateBranchCond(const ArrayRef<MachineOperand> &Cond)
3869 const {
3870 return Cond.empty() || (Cond[0].isImm() && (Cond.size() != 1));
3871}
3872