blob: 7e8fc83e96fa82ac28a44b3a5ad0d0673f4a1808 [file] [log] [blame]
Eugene Zelenkoe4fc6ee2017-07-26 23:20:35 +00001//===- HexagonBitTracker.cpp ----------------------------------------------===//
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +000010#include "HexagonBitTracker.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000011#include "Hexagon.h"
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000012#include "HexagonInstrInfo.h"
13#include "HexagonRegisterInfo.h"
Krzysztof Parzyszek7e604de2017-09-25 19:12:55 +000014#include "HexagonSubtarget.h"
Eugene Zelenkoe4fc6ee2017-07-26 23:20:35 +000015#include "llvm/CodeGen/MachineFrameInfo.h"
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +000016#include "llvm/CodeGen/MachineFunction.h"
17#include "llvm/CodeGen/MachineInstr.h"
18#include "llvm/CodeGen/MachineOperand.h"
19#include "llvm/CodeGen/MachineRegisterInfo.h"
20#include "llvm/IR/Argument.h"
21#include "llvm/IR/Attributes.h"
22#include "llvm/IR/Function.h"
23#include "llvm/IR/Type.h"
Eugene Zelenkoe4fc6ee2017-07-26 23:20:35 +000024#include "llvm/Support/Compiler.h"
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +000025#include "llvm/Support/Debug.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Support/raw_ostream.h"
29#include "llvm/Target/TargetRegisterInfo.h"
30#include <cassert>
31#include <cstddef>
32#include <cstdint>
33#include <cstdlib>
34#include <utility>
35#include <vector>
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000036
37using namespace llvm;
38
Eugene Zelenkoe4fc6ee2017-07-26 23:20:35 +000039using BT = BitTracker;
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000040
Benjamin Kramerd8861512015-07-13 20:38:16 +000041HexagonEvaluator::HexagonEvaluator(const HexagonRegisterInfo &tri,
42 MachineRegisterInfo &mri,
43 const HexagonInstrInfo &tii,
44 MachineFunction &mf)
Matthias Braun941a7052016-07-28 18:40:00 +000045 : MachineEvaluator(tri, mri), MF(mf), MFI(mf.getFrameInfo()), TII(tii) {
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000046 // Populate the VRX map (VR to extension-type).
47 // Go over all the formal parameters of the function. If a given parameter
48 // P is sign- or zero-extended, locate the virtual register holding that
49 // parameter and create an entry in the VRX map indicating the type of ex-
50 // tension (and the source type).
51 // This is a bit complicated to do accurately, since the memory layout in-
52 // formation is necessary to precisely determine whether an aggregate para-
53 // meter will be passed in a register or in memory. What is given in MRI
54 // is the association between the physical register that is live-in (i.e.
55 // holds an argument), and the virtual register that this value will be
56 // copied into. This, by itself, is not sufficient to map back the virtual
57 // register to a formal parameter from Function (since consecutive live-ins
58 // from MRI may not correspond to consecutive formal parameters from Func-
59 // tion). To avoid the complications with in-memory arguments, only consi-
60 // der the initial sequence of formal parameters that are known to be
61 // passed via registers.
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000062 unsigned InVirtReg, InPhysReg = 0;
63 const Function &F = *MF.getFunction();
Eugene Zelenkoe4fc6ee2017-07-26 23:20:35 +000064
65 using arg_iterator = Function::const_arg_iterator;
66
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000067 for (arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000068 const Argument &Arg = *I;
69 Type *ATy = Arg.getType();
70 unsigned Width = 0;
71 if (ATy->isIntegerTy())
72 Width = ATy->getIntegerBitWidth();
73 else if (ATy->isPointerTy())
74 Width = 32;
75 // If pointer size is not set through target data, it will default to
76 // Module::AnyPointerSize.
77 if (Width == 0 || Width > 64)
78 break;
Reid Kleckner6652a522017-04-28 18:37:16 +000079 if (Arg.hasAttribute(Attribute::ByVal))
Krzysztof Parzyszek60f0b512016-08-11 18:15:16 +000080 continue;
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000081 InPhysReg = getNextPhysReg(InPhysReg, Width);
82 if (!InPhysReg)
83 break;
84 InVirtReg = getVirtRegFor(InPhysReg);
85 if (!InVirtReg)
86 continue;
Reid Kleckner6652a522017-04-28 18:37:16 +000087 if (Arg.hasAttribute(Attribute::SExt))
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000088 VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::SExt, Width)));
Reid Kleckner6652a522017-04-28 18:37:16 +000089 else if (Arg.hasAttribute(Attribute::ZExt))
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000090 VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::ZExt, Width)));
91 }
92}
93
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000094BT::BitMask HexagonEvaluator::mask(unsigned Reg, unsigned Sub) const {
95 if (Sub == 0)
96 return MachineEvaluator::mask(Reg, 0);
Krzysztof Parzyszekd72bd832017-09-25 18:49:42 +000097 const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
98 unsigned ID = RC.getID();
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000099 uint16_t RW = getRegBitWidth(RegisterRef(Reg, Sub));
Krzysztof Parzyszeka5409972016-11-09 16:19:08 +0000100 auto &HRI = static_cast<const HexagonRegisterInfo&>(TRI);
101 bool IsSubLo = (Sub == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo));
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000102 switch (ID) {
Krzysztof Parzyszek7e604de2017-09-25 19:12:55 +0000103 case Hexagon::DoubleRegsRegClassID:
104 case Hexagon::HvxWRRegClassID:
Krzysztof Parzyszeka5409972016-11-09 16:19:08 +0000105 return IsSubLo ? BT::BitMask(0, RW-1)
106 : BT::BitMask(RW, 2*RW-1);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000107 default:
108 break;
109 }
110#ifndef NDEBUG
Krzysztof Parzyszekd72bd832017-09-25 18:49:42 +0000111 dbgs() << PrintReg(Reg, &TRI, Sub) << " in reg class "
112 << TRI.getRegClassName(&RC) << '\n';
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000113#endif
114 llvm_unreachable("Unexpected register/subregister");
115}
116
Krzysztof Parzyszek7e604de2017-09-25 19:12:55 +0000117uint16_t HexagonEvaluator::getPhysRegBitWidth(unsigned Reg) const {
118 assert(TargetRegisterInfo::isPhysicalRegister(Reg));
119
120 using namespace Hexagon;
121 for (auto &RC : {HvxVRRegClass, HvxWRRegClass, HvxQRRegClass})
122 if (RC.contains(Reg))
123 return TRI.getRegSizeInBits(RC);
124 // Default treatment for other physical registers.
125 if (const TargetRegisterClass *RC = TRI.getMinimalPhysRegClass(Reg))
126 return TRI.getRegSizeInBits(*RC);
127
128 StringRef E = "Unhandled physical register";
129 llvm_unreachable((Twine(E) + TRI.getName(Reg)).str().c_str());
130}
131
132const TargetRegisterClass &HexagonEvaluator::composeWithSubRegIndex(
133 const TargetRegisterClass &RC, unsigned Idx) const {
134 if (Idx == 0)
135 return RC;
136
137 const auto &HRI = static_cast<const HexagonRegisterInfo&>(TRI);
138 bool IsSubLo = (Idx == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo));
139 bool IsSubHi = (Idx == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi));
140 assert(IsSubLo != IsSubHi && "Must refer to either low or high subreg");
141
142 switch (RC.getID()) {
143 case Hexagon::DoubleRegsRegClassID:
144 return Hexagon::IntRegsRegClass;
145 case Hexagon::HvxWRRegClassID:
146 return Hexagon::HvxVRRegClass;
147 default:
148 break;
149 }
150#ifndef DEBUG
151 dbgs() << "Reg class id: " << RC.getID() << " idx: " << Idx << '\n';
152#endif
153 llvm_unreachable("Unimplemented combination of reg class/subreg idx");
154}
155
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000156namespace {
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000157
Benjamin Kramer9a5d7882015-07-18 17:43:23 +0000158class RegisterRefs {
159 std::vector<BT::RegisterRef> Vector;
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000160
Benjamin Kramer9a5d7882015-07-18 17:43:23 +0000161public:
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000162 RegisterRefs(const MachineInstr &MI) : Vector(MI.getNumOperands()) {
Benjamin Kramer9a5d7882015-07-18 17:43:23 +0000163 for (unsigned i = 0, n = Vector.size(); i < n; ++i) {
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000164 const MachineOperand &MO = MI.getOperand(i);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000165 if (MO.isReg())
Benjamin Kramer9a5d7882015-07-18 17:43:23 +0000166 Vector[i] = BT::RegisterRef(MO);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000167 // For indices that don't correspond to registers, the entry will
168 // remain constructed via the default constructor.
169 }
170 }
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000171
Benjamin Kramer9a5d7882015-07-18 17:43:23 +0000172 size_t size() const { return Vector.size(); }
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000173
Benjamin Kramer9a5d7882015-07-18 17:43:23 +0000174 const BT::RegisterRef &operator[](unsigned n) const {
175 // The main purpose of this operator is to assert with bad argument.
176 assert(n < Vector.size());
177 return Vector[n];
178 }
179};
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000180
181} // end anonymous namespace
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000182
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000183bool HexagonEvaluator::evaluate(const MachineInstr &MI,
184 const CellMapType &Inputs,
185 CellMapType &Outputs) const {
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000186 using namespace Hexagon;
187
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000188 unsigned NumDefs = 0;
189
190 // Sanity verification: there should not be any defs with subregisters.
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000191 for (unsigned i = 0, n = MI.getNumOperands(); i < n; ++i) {
192 const MachineOperand &MO = MI.getOperand(i);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000193 if (!MO.isReg() || !MO.isDef())
194 continue;
195 NumDefs++;
196 assert(MO.getSubReg() == 0);
197 }
198
199 if (NumDefs == 0)
200 return false;
201
Krzysztof Parzyszek1adca302016-07-26 18:30:11 +0000202 unsigned Opc = MI.getOpcode();
203
204 if (MI.mayLoad()) {
205 switch (Opc) {
206 // These instructions may be marked as mayLoad, but they are generating
207 // immediate values, so skip them.
208 case CONST32:
Krzysztof Parzyszeka3386502016-08-10 16:46:36 +0000209 case CONST64:
Krzysztof Parzyszek1adca302016-07-26 18:30:11 +0000210 break;
211 default:
212 return evaluateLoad(MI, Inputs, Outputs);
213 }
214 }
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000215
216 // Check COPY instructions that copy formal parameters into virtual
217 // registers. Such parameters can be sign- or zero-extended at the
218 // call site, and we should take advantage of this knowledge. The MRI
219 // keeps a list of pairs of live-in physical and virtual registers,
220 // which provides information about which virtual registers will hold
221 // the argument values. The function will still contain instructions
222 // defining those virtual registers, and in practice those are COPY
223 // instructions from a physical to a virtual register. In such cases,
224 // applying the argument extension to the virtual register can be seen
225 // as simply mirroring the extension that had already been applied to
226 // the physical register at the call site. If the defining instruction
227 // was not a COPY, it would not be clear how to mirror that extension
228 // on the callee's side. For that reason, only check COPY instructions
229 // for potential extensions.
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000230 if (MI.isCopy()) {
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000231 if (evaluateFormalCopy(MI, Inputs, Outputs))
232 return true;
233 }
234
235 // Beyond this point, if any operand is a global, skip that instruction.
236 // The reason is that certain instructions that can take an immediate
237 // operand can also have a global symbol in that operand. To avoid
238 // checking what kind of operand a given instruction has individually
239 // for each instruction, do it here. Global symbols as operands gene-
240 // rally do not provide any useful information.
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000241 for (unsigned i = 0, n = MI.getNumOperands(); i < n; ++i) {
242 const MachineOperand &MO = MI.getOperand(i);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000243 if (MO.isGlobal() || MO.isBlockAddress() || MO.isSymbol() || MO.isJTI() ||
244 MO.isCPI())
245 return false;
246 }
247
248 RegisterRefs Reg(MI);
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000249#define op(i) MI.getOperand(i)
250#define rc(i) RegisterCell::ref(getCell(Reg[i], Inputs))
251#define im(i) MI.getOperand(i).getImm()
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000252
253 // If the instruction has no register operands, skip it.
254 if (Reg.size() == 0)
255 return false;
256
257 // Record result for register in operand 0.
258 auto rr0 = [this,Reg] (const BT::RegisterCell &Val, CellMapType &Outputs)
259 -> bool {
260 putCell(Reg[0], Val, Outputs);
261 return true;
262 };
263 // Get the cell corresponding to the N-th operand.
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000264 auto cop = [this, &Reg, &MI, &Inputs](unsigned N,
265 uint16_t W) -> BT::RegisterCell {
266 const MachineOperand &Op = MI.getOperand(N);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000267 if (Op.isImm())
268 return eIMM(Op.getImm(), W);
269 if (!Op.isReg())
270 return RegisterCell::self(0, W);
Krzysztof Parzyszeka45971a2015-07-07 16:02:11 +0000271 assert(getRegBitWidth(Reg[N]) == W && "Register width mismatch");
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000272 return rc(N);
273 };
274 // Extract RW low bits of the cell.
275 auto lo = [this] (const BT::RegisterCell &RC, uint16_t RW)
276 -> BT::RegisterCell {
Krzysztof Parzyszeka45971a2015-07-07 16:02:11 +0000277 assert(RW <= RC.width());
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000278 return eXTR(RC, 0, RW);
279 };
280 // Extract RW high bits of the cell.
281 auto hi = [this] (const BT::RegisterCell &RC, uint16_t RW)
282 -> BT::RegisterCell {
283 uint16_t W = RC.width();
284 assert(RW <= W);
285 return eXTR(RC, W-RW, W);
286 };
287 // Extract N-th halfword (counting from the least significant position).
288 auto half = [this] (const BT::RegisterCell &RC, unsigned N)
289 -> BT::RegisterCell {
Krzysztof Parzyszeka45971a2015-07-07 16:02:11 +0000290 assert(N*16+16 <= RC.width());
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000291 return eXTR(RC, N*16, N*16+16);
292 };
293 // Shuffle bits (pick even/odd from cells and merge into result).
294 auto shuffle = [this] (const BT::RegisterCell &Rs, const BT::RegisterCell &Rt,
295 uint16_t BW, bool Odd) -> BT::RegisterCell {
296 uint16_t I = Odd, Ws = Rs.width();
297 assert(Ws == Rt.width());
298 RegisterCell RC = eXTR(Rt, I*BW, I*BW+BW).cat(eXTR(Rs, I*BW, I*BW+BW));
299 I += 2;
300 while (I*BW < Ws) {
301 RC.cat(eXTR(Rt, I*BW, I*BW+BW)).cat(eXTR(Rs, I*BW, I*BW+BW));
302 I += 2;
303 }
304 return RC;
305 };
306
307 // The bitwidth of the 0th operand. In most (if not all) of the
308 // instructions below, the 0th operand is the defined register.
309 // Pre-compute the bitwidth here, because it is needed in many cases
310 // cases below.
311 uint16_t W0 = (Reg[0].Reg != 0) ? getRegBitWidth(Reg[0]) : 0;
312
Krzysztof Parzyszek128e1912017-02-23 22:11:52 +0000313 // Register id of the 0th operand. It can be 0.
314 unsigned Reg0 = Reg[0].Reg;
315
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000316 switch (Opc) {
317 // Transfer immediate:
318
319 case A2_tfrsi:
320 case A2_tfrpi:
321 case CONST32:
Krzysztof Parzyszeka3386502016-08-10 16:46:36 +0000322 case CONST64:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000323 return rr0(eIMM(im(1), W0), Outputs);
Krzysztof Parzyszek1d01a792016-08-16 18:08:40 +0000324 case PS_false:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000325 return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::Zero), Outputs);
Krzysztof Parzyszek1d01a792016-08-16 18:08:40 +0000326 case PS_true:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000327 return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::One), Outputs);
Krzysztof Parzyszek1d01a792016-08-16 18:08:40 +0000328 case PS_fi: {
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000329 int FI = op(1).getIndex();
330 int Off = op(2).getImm();
331 unsigned A = MFI.getObjectAlignment(FI) + std::abs(Off);
332 unsigned L = Log2_32(A);
333 RegisterCell RC = RegisterCell::self(Reg[0].Reg, W0);
334 RC.fill(0, L, BT::BitValue::Zero);
335 return rr0(RC, Outputs);
336 }
337
338 // Transfer register:
339
340 case A2_tfr:
341 case A2_tfrp:
342 case C2_pxfer_map:
343 return rr0(rc(1), Outputs);
344 case C2_tfrpr: {
345 uint16_t RW = W0;
346 uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
347 assert(PW <= RW);
348 RegisterCell PC = eXTR(rc(1), 0, PW);
349 RegisterCell RC = RegisterCell(RW).insert(PC, BT::BitMask(0, PW-1));
350 RC.fill(PW, RW, BT::BitValue::Zero);
351 return rr0(RC, Outputs);
352 }
353 case C2_tfrrp: {
354 RegisterCell RC = RegisterCell::self(Reg[0].Reg, W0);
355 W0 = 8; // XXX Pred size
356 return rr0(eINS(RC, eXTR(rc(1), 0, W0), 0), Outputs);
357 }
358
359 // Arithmetic:
360
361 case A2_abs:
362 case A2_absp:
363 // TODO
364 break;
365
366 case A2_addsp: {
367 uint16_t W1 = getRegBitWidth(Reg[1]);
368 assert(W0 == 64 && W1 == 32);
369 RegisterCell CW = RegisterCell(W0).insert(rc(1), BT::BitMask(0, W1-1));
370 RegisterCell RC = eADD(eSXT(CW, W1), rc(2));
371 return rr0(RC, Outputs);
372 }
373 case A2_add:
374 case A2_addp:
375 return rr0(eADD(rc(1), rc(2)), Outputs);
376 case A2_addi:
377 return rr0(eADD(rc(1), eIMM(im(2), W0)), Outputs);
378 case S4_addi_asl_ri: {
379 RegisterCell RC = eADD(eIMM(im(1), W0), eASL(rc(2), im(3)));
380 return rr0(RC, Outputs);
381 }
382 case S4_addi_lsr_ri: {
383 RegisterCell RC = eADD(eIMM(im(1), W0), eLSR(rc(2), im(3)));
384 return rr0(RC, Outputs);
385 }
386 case S4_addaddi: {
387 RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
388 return rr0(RC, Outputs);
389 }
390 case M4_mpyri_addi: {
391 RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
392 RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
393 return rr0(RC, Outputs);
394 }
395 case M4_mpyrr_addi: {
396 RegisterCell M = eMLS(rc(2), rc(3));
397 RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
398 return rr0(RC, Outputs);
399 }
400 case M4_mpyri_addr_u2: {
401 RegisterCell M = eMLS(eIMM(im(2), W0), rc(3));
402 RegisterCell RC = eADD(rc(1), lo(M, W0));
403 return rr0(RC, Outputs);
404 }
405 case M4_mpyri_addr: {
406 RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
407 RegisterCell RC = eADD(rc(1), lo(M, W0));
408 return rr0(RC, Outputs);
409 }
410 case M4_mpyrr_addr: {
411 RegisterCell M = eMLS(rc(2), rc(3));
412 RegisterCell RC = eADD(rc(1), lo(M, W0));
413 return rr0(RC, Outputs);
414 }
415 case S4_subaddi: {
416 RegisterCell RC = eADD(rc(1), eSUB(eIMM(im(2), W0), rc(3)));
417 return rr0(RC, Outputs);
418 }
419 case M2_accii: {
420 RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
421 return rr0(RC, Outputs);
422 }
423 case M2_acci: {
424 RegisterCell RC = eADD(rc(1), eADD(rc(2), rc(3)));
425 return rr0(RC, Outputs);
426 }
427 case M2_subacc: {
428 RegisterCell RC = eADD(rc(1), eSUB(rc(2), rc(3)));
429 return rr0(RC, Outputs);
430 }
431 case S2_addasl_rrri: {
432 RegisterCell RC = eADD(rc(1), eASL(rc(2), im(3)));
433 return rr0(RC, Outputs);
434 }
435 case C4_addipc: {
436 RegisterCell RPC = RegisterCell::self(Reg[0].Reg, W0);
437 RPC.fill(0, 2, BT::BitValue::Zero);
438 return rr0(eADD(RPC, eIMM(im(2), W0)), Outputs);
439 }
440 case A2_sub:
441 case A2_subp:
442 return rr0(eSUB(rc(1), rc(2)), Outputs);
443 case A2_subri:
444 return rr0(eSUB(eIMM(im(1), W0), rc(2)), Outputs);
445 case S4_subi_asl_ri: {
446 RegisterCell RC = eSUB(eIMM(im(1), W0), eASL(rc(2), im(3)));
447 return rr0(RC, Outputs);
448 }
449 case S4_subi_lsr_ri: {
450 RegisterCell RC = eSUB(eIMM(im(1), W0), eLSR(rc(2), im(3)));
451 return rr0(RC, Outputs);
452 }
453 case M2_naccii: {
454 RegisterCell RC = eSUB(rc(1), eADD(rc(2), eIMM(im(3), W0)));
455 return rr0(RC, Outputs);
456 }
457 case M2_nacci: {
458 RegisterCell RC = eSUB(rc(1), eADD(rc(2), rc(3)));
459 return rr0(RC, Outputs);
460 }
461 // 32-bit negation is done by "Rd = A2_subri 0, Rs"
462 case A2_negp:
463 return rr0(eSUB(eIMM(0, W0), rc(1)), Outputs);
464
465 case M2_mpy_up: {
466 RegisterCell M = eMLS(rc(1), rc(2));
467 return rr0(hi(M, W0), Outputs);
468 }
469 case M2_dpmpyss_s0:
470 return rr0(eMLS(rc(1), rc(2)), Outputs);
471 case M2_dpmpyss_acc_s0:
472 return rr0(eADD(rc(1), eMLS(rc(2), rc(3))), Outputs);
473 case M2_dpmpyss_nac_s0:
474 return rr0(eSUB(rc(1), eMLS(rc(2), rc(3))), Outputs);
475 case M2_mpyi: {
476 RegisterCell M = eMLS(rc(1), rc(2));
477 return rr0(lo(M, W0), Outputs);
478 }
479 case M2_macsip: {
480 RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
481 RegisterCell RC = eADD(rc(1), lo(M, W0));
482 return rr0(RC, Outputs);
483 }
484 case M2_macsin: {
485 RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
486 RegisterCell RC = eSUB(rc(1), lo(M, W0));
487 return rr0(RC, Outputs);
488 }
489 case M2_maci: {
490 RegisterCell M = eMLS(rc(2), rc(3));
491 RegisterCell RC = eADD(rc(1), lo(M, W0));
492 return rr0(RC, Outputs);
493 }
494 case M2_mpysmi: {
495 RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
496 return rr0(lo(M, 32), Outputs);
497 }
498 case M2_mpysin: {
499 RegisterCell M = eMLS(rc(1), eIMM(-im(2), W0));
500 return rr0(lo(M, 32), Outputs);
501 }
502 case M2_mpysip: {
503 RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
504 return rr0(lo(M, 32), Outputs);
505 }
506 case M2_mpyu_up: {
507 RegisterCell M = eMLU(rc(1), rc(2));
508 return rr0(hi(M, W0), Outputs);
509 }
510 case M2_dpmpyuu_s0:
511 return rr0(eMLU(rc(1), rc(2)), Outputs);
512 case M2_dpmpyuu_acc_s0:
513 return rr0(eADD(rc(1), eMLU(rc(2), rc(3))), Outputs);
514 case M2_dpmpyuu_nac_s0:
515 return rr0(eSUB(rc(1), eMLU(rc(2), rc(3))), Outputs);
516 //case M2_mpysu_up:
517
518 // Logical/bitwise:
519
520 case A2_andir:
521 return rr0(eAND(rc(1), eIMM(im(2), W0)), Outputs);
522 case A2_and:
523 case A2_andp:
524 return rr0(eAND(rc(1), rc(2)), Outputs);
525 case A4_andn:
526 case A4_andnp:
527 return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
528 case S4_andi_asl_ri: {
529 RegisterCell RC = eAND(eIMM(im(1), W0), eASL(rc(2), im(3)));
530 return rr0(RC, Outputs);
531 }
532 case S4_andi_lsr_ri: {
533 RegisterCell RC = eAND(eIMM(im(1), W0), eLSR(rc(2), im(3)));
534 return rr0(RC, Outputs);
535 }
536 case M4_and_and:
537 return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
538 case M4_and_andn:
539 return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
540 case M4_and_or:
541 return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
542 case M4_and_xor:
543 return rr0(eAND(rc(1), eXOR(rc(2), rc(3))), Outputs);
544 case A2_orir:
545 return rr0(eORL(rc(1), eIMM(im(2), W0)), Outputs);
546 case A2_or:
547 case A2_orp:
548 return rr0(eORL(rc(1), rc(2)), Outputs);
549 case A4_orn:
550 case A4_ornp:
551 return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
552 case S4_ori_asl_ri: {
553 RegisterCell RC = eORL(eIMM(im(1), W0), eASL(rc(2), im(3)));
554 return rr0(RC, Outputs);
555 }
556 case S4_ori_lsr_ri: {
557 RegisterCell RC = eORL(eIMM(im(1), W0), eLSR(rc(2), im(3)));
558 return rr0(RC, Outputs);
559 }
560 case M4_or_and:
561 return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
562 case M4_or_andn:
563 return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
564 case S4_or_andi:
565 case S4_or_andix: {
566 RegisterCell RC = eORL(rc(1), eAND(rc(2), eIMM(im(3), W0)));
567 return rr0(RC, Outputs);
568 }
569 case S4_or_ori: {
570 RegisterCell RC = eORL(rc(1), eORL(rc(2), eIMM(im(3), W0)));
571 return rr0(RC, Outputs);
572 }
573 case M4_or_or:
574 return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
575 case M4_or_xor:
576 return rr0(eORL(rc(1), eXOR(rc(2), rc(3))), Outputs);
577 case A2_xor:
578 case A2_xorp:
579 return rr0(eXOR(rc(1), rc(2)), Outputs);
580 case M4_xor_and:
581 return rr0(eXOR(rc(1), eAND(rc(2), rc(3))), Outputs);
582 case M4_xor_andn:
583 return rr0(eXOR(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
584 case M4_xor_or:
585 return rr0(eXOR(rc(1), eORL(rc(2), rc(3))), Outputs);
586 case M4_xor_xacc:
587 return rr0(eXOR(rc(1), eXOR(rc(2), rc(3))), Outputs);
588 case A2_not:
589 case A2_notp:
590 return rr0(eNOT(rc(1)), Outputs);
591
592 case S2_asl_i_r:
593 case S2_asl_i_p:
594 return rr0(eASL(rc(1), im(2)), Outputs);
595 case A2_aslh:
596 return rr0(eASL(rc(1), 16), Outputs);
597 case S2_asl_i_r_acc:
598 case S2_asl_i_p_acc:
599 return rr0(eADD(rc(1), eASL(rc(2), im(3))), Outputs);
600 case S2_asl_i_r_nac:
601 case S2_asl_i_p_nac:
602 return rr0(eSUB(rc(1), eASL(rc(2), im(3))), Outputs);
603 case S2_asl_i_r_and:
604 case S2_asl_i_p_and:
605 return rr0(eAND(rc(1), eASL(rc(2), im(3))), Outputs);
606 case S2_asl_i_r_or:
607 case S2_asl_i_p_or:
608 return rr0(eORL(rc(1), eASL(rc(2), im(3))), Outputs);
609 case S2_asl_i_r_xacc:
610 case S2_asl_i_p_xacc:
611 return rr0(eXOR(rc(1), eASL(rc(2), im(3))), Outputs);
612 case S2_asl_i_vh:
613 case S2_asl_i_vw:
614 // TODO
615 break;
616
617 case S2_asr_i_r:
618 case S2_asr_i_p:
619 return rr0(eASR(rc(1), im(2)), Outputs);
620 case A2_asrh:
621 return rr0(eASR(rc(1), 16), Outputs);
622 case S2_asr_i_r_acc:
623 case S2_asr_i_p_acc:
624 return rr0(eADD(rc(1), eASR(rc(2), im(3))), Outputs);
625 case S2_asr_i_r_nac:
626 case S2_asr_i_p_nac:
627 return rr0(eSUB(rc(1), eASR(rc(2), im(3))), Outputs);
628 case S2_asr_i_r_and:
629 case S2_asr_i_p_and:
630 return rr0(eAND(rc(1), eASR(rc(2), im(3))), Outputs);
631 case S2_asr_i_r_or:
632 case S2_asr_i_p_or:
633 return rr0(eORL(rc(1), eASR(rc(2), im(3))), Outputs);
634 case S2_asr_i_r_rnd: {
635 // The input is first sign-extended to 64 bits, then the output
636 // is truncated back to 32 bits.
637 assert(W0 == 32);
638 RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
639 RegisterCell RC = eASR(eADD(eASR(XC, im(2)), eIMM(1, 2*W0)), 1);
640 return rr0(eXTR(RC, 0, W0), Outputs);
641 }
642 case S2_asr_i_r_rnd_goodsyntax: {
643 int64_t S = im(2);
644 if (S == 0)
645 return rr0(rc(1), Outputs);
646 // Result: S2_asr_i_r_rnd Rs, u5-1
647 RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
648 RegisterCell RC = eLSR(eADD(eASR(XC, S-1), eIMM(1, 2*W0)), 1);
649 return rr0(eXTR(RC, 0, W0), Outputs);
650 }
651 case S2_asr_r_vh:
652 case S2_asr_i_vw:
653 case S2_asr_i_svw_trun:
654 // TODO
655 break;
656
657 case S2_lsr_i_r:
658 case S2_lsr_i_p:
659 return rr0(eLSR(rc(1), im(2)), Outputs);
660 case S2_lsr_i_r_acc:
661 case S2_lsr_i_p_acc:
662 return rr0(eADD(rc(1), eLSR(rc(2), im(3))), Outputs);
663 case S2_lsr_i_r_nac:
664 case S2_lsr_i_p_nac:
665 return rr0(eSUB(rc(1), eLSR(rc(2), im(3))), Outputs);
666 case S2_lsr_i_r_and:
667 case S2_lsr_i_p_and:
668 return rr0(eAND(rc(1), eLSR(rc(2), im(3))), Outputs);
669 case S2_lsr_i_r_or:
670 case S2_lsr_i_p_or:
671 return rr0(eORL(rc(1), eLSR(rc(2), im(3))), Outputs);
672 case S2_lsr_i_r_xacc:
673 case S2_lsr_i_p_xacc:
674 return rr0(eXOR(rc(1), eLSR(rc(2), im(3))), Outputs);
675
676 case S2_clrbit_i: {
677 RegisterCell RC = rc(1);
678 RC[im(2)] = BT::BitValue::Zero;
679 return rr0(RC, Outputs);
680 }
681 case S2_setbit_i: {
682 RegisterCell RC = rc(1);
683 RC[im(2)] = BT::BitValue::One;
684 return rr0(RC, Outputs);
685 }
686 case S2_togglebit_i: {
687 RegisterCell RC = rc(1);
688 uint16_t BX = im(2);
689 RC[BX] = RC[BX].is(0) ? BT::BitValue::One
690 : RC[BX].is(1) ? BT::BitValue::Zero
691 : BT::BitValue::self();
692 return rr0(RC, Outputs);
693 }
694
695 case A4_bitspliti: {
696 uint16_t W1 = getRegBitWidth(Reg[1]);
697 uint16_t BX = im(2);
698 // Res.uw[1] = Rs[bx+1:], Res.uw[0] = Rs[0:bx]
699 const BT::BitValue Zero = BT::BitValue::Zero;
700 RegisterCell RZ = RegisterCell(W0).fill(BX, W1, Zero)
701 .fill(W1+(W1-BX), W0, Zero);
702 RegisterCell BF1 = eXTR(rc(1), 0, BX), BF2 = eXTR(rc(1), BX, W1);
703 RegisterCell RC = eINS(eINS(RZ, BF1, 0), BF2, W1);
704 return rr0(RC, Outputs);
705 }
706 case S4_extract:
707 case S4_extractp:
708 case S2_extractu:
709 case S2_extractup: {
710 uint16_t Wd = im(2), Of = im(3);
711 assert(Wd <= W0);
712 if (Wd == 0)
713 return rr0(eIMM(0, W0), Outputs);
714 // If the width extends beyond the register size, pad the register
715 // with 0 bits.
716 RegisterCell Pad = (Wd+Of > W0) ? rc(1).cat(eIMM(0, Wd+Of-W0)) : rc(1);
717 RegisterCell Ext = eXTR(Pad, Of, Wd+Of);
718 // Ext is short, need to extend it with 0s or sign bit.
719 RegisterCell RC = RegisterCell(W0).insert(Ext, BT::BitMask(0, Wd-1));
720 if (Opc == S2_extractu || Opc == S2_extractup)
721 return rr0(eZXT(RC, Wd), Outputs);
722 return rr0(eSXT(RC, Wd), Outputs);
723 }
724 case S2_insert:
725 case S2_insertp: {
726 uint16_t Wd = im(3), Of = im(4);
727 assert(Wd < W0 && Of < W0);
728 // If Wd+Of exceeds W0, the inserted bits are truncated.
729 if (Wd+Of > W0)
730 Wd = W0-Of;
731 if (Wd == 0)
732 return rr0(rc(1), Outputs);
733 return rr0(eINS(rc(1), eXTR(rc(2), 0, Wd), Of), Outputs);
734 }
735
736 // Bit permutations:
737
738 case A2_combineii:
739 case A4_combineii:
740 case A4_combineir:
741 case A4_combineri:
742 case A2_combinew:
Krzysztof Parzyszek23ee12e2016-08-03 18:35:48 +0000743 case V6_vcombine:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000744 assert(W0 % 2 == 0);
745 return rr0(cop(2, W0/2).cat(cop(1, W0/2)), Outputs);
746 case A2_combine_ll:
747 case A2_combine_lh:
748 case A2_combine_hl:
749 case A2_combine_hh: {
750 assert(W0 == 32);
751 assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
752 // Low half in the output is 0 for _ll and _hl, 1 otherwise:
753 unsigned LoH = !(Opc == A2_combine_ll || Opc == A2_combine_hl);
754 // High half in the output is 0 for _ll and _lh, 1 otherwise:
755 unsigned HiH = !(Opc == A2_combine_ll || Opc == A2_combine_lh);
756 RegisterCell R1 = rc(1);
757 RegisterCell R2 = rc(2);
758 RegisterCell RC = half(R2, LoH).cat(half(R1, HiH));
759 return rr0(RC, Outputs);
760 }
761 case S2_packhl: {
762 assert(W0 == 64);
763 assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
764 RegisterCell R1 = rc(1);
765 RegisterCell R2 = rc(2);
766 RegisterCell RC = half(R2, 0).cat(half(R1, 0)).cat(half(R2, 1))
767 .cat(half(R1, 1));
768 return rr0(RC, Outputs);
769 }
770 case S2_shuffeb: {
771 RegisterCell RC = shuffle(rc(1), rc(2), 8, false);
772 return rr0(RC, Outputs);
773 }
774 case S2_shuffeh: {
775 RegisterCell RC = shuffle(rc(1), rc(2), 16, false);
776 return rr0(RC, Outputs);
777 }
778 case S2_shuffob: {
779 RegisterCell RC = shuffle(rc(1), rc(2), 8, true);
780 return rr0(RC, Outputs);
781 }
782 case S2_shuffoh: {
783 RegisterCell RC = shuffle(rc(1), rc(2), 16, true);
784 return rr0(RC, Outputs);
785 }
786 case C2_mask: {
787 uint16_t WR = W0;
788 uint16_t WP = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
789 assert(WR == 64 && WP == 8);
790 RegisterCell R1 = rc(1);
791 RegisterCell RC(WR);
792 for (uint16_t i = 0; i < WP; ++i) {
793 const BT::BitValue &V = R1[i];
794 BT::BitValue F = (V.is(0) || V.is(1)) ? V : BT::BitValue::self();
795 RC.fill(i*8, i*8+8, F);
796 }
797 return rr0(RC, Outputs);
798 }
799
800 // Mux:
801
802 case C2_muxii:
803 case C2_muxir:
804 case C2_muxri:
805 case C2_mux: {
806 BT::BitValue PC0 = rc(1)[0];
807 RegisterCell R2 = cop(2, W0);
808 RegisterCell R3 = cop(3, W0);
809 if (PC0.is(0) || PC0.is(1))
810 return rr0(RegisterCell::ref(PC0 ? R2 : R3), Outputs);
811 R2.meet(R3, Reg[0].Reg);
812 return rr0(R2, Outputs);
813 }
814 case C2_vmux:
815 // TODO
816 break;
817
818 // Sign- and zero-extension:
819
820 case A2_sxtb:
821 return rr0(eSXT(rc(1), 8), Outputs);
822 case A2_sxth:
823 return rr0(eSXT(rc(1), 16), Outputs);
824 case A2_sxtw: {
825 uint16_t W1 = getRegBitWidth(Reg[1]);
826 assert(W0 == 64 && W1 == 32);
827 RegisterCell RC = eSXT(rc(1).cat(eIMM(0, W1)), W1);
828 return rr0(RC, Outputs);
829 }
830 case A2_zxtb:
831 return rr0(eZXT(rc(1), 8), Outputs);
832 case A2_zxth:
833 return rr0(eZXT(rc(1), 16), Outputs);
834
Krzysztof Parzyszek128e1912017-02-23 22:11:52 +0000835 // Saturations
836
837 case A2_satb:
838 return rr0(eSXT(RegisterCell::self(0, W0).regify(Reg0), 8), Outputs);
839 case A2_sath:
840 return rr0(eSXT(RegisterCell::self(0, W0).regify(Reg0), 16), Outputs);
841 case A2_satub:
842 return rr0(eZXT(RegisterCell::self(0, W0).regify(Reg0), 8), Outputs);
843 case A2_satuh:
844 return rr0(eZXT(RegisterCell::self(0, W0).regify(Reg0), 16), Outputs);
845
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000846 // Bit count:
847
848 case S2_cl0:
849 case S2_cl0p:
850 // Always produce a 32-bit result.
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000851 return rr0(eCLB(rc(1), false/*bit*/, 32), Outputs);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000852 case S2_cl1:
853 case S2_cl1p:
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000854 return rr0(eCLB(rc(1), true/*bit*/, 32), Outputs);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000855 case S2_clb:
856 case S2_clbp: {
857 uint16_t W1 = getRegBitWidth(Reg[1]);
858 RegisterCell R1 = rc(1);
859 BT::BitValue TV = R1[W1-1];
860 if (TV.is(0) || TV.is(1))
861 return rr0(eCLB(R1, TV, 32), Outputs);
862 break;
863 }
864 case S2_ct0:
865 case S2_ct0p:
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000866 return rr0(eCTB(rc(1), false/*bit*/, 32), Outputs);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000867 case S2_ct1:
868 case S2_ct1p:
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000869 return rr0(eCTB(rc(1), true/*bit*/, 32), Outputs);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000870 case S5_popcountp:
871 // TODO
872 break;
873
874 case C2_all8: {
875 RegisterCell P1 = rc(1);
876 bool Has0 = false, All1 = true;
877 for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
878 if (!P1[i].is(1))
879 All1 = false;
880 if (!P1[i].is(0))
881 continue;
882 Has0 = true;
883 break;
884 }
885 if (!Has0 && !All1)
886 break;
887 RegisterCell RC(W0);
888 RC.fill(0, W0, (All1 ? BT::BitValue::One : BT::BitValue::Zero));
889 return rr0(RC, Outputs);
890 }
891 case C2_any8: {
892 RegisterCell P1 = rc(1);
893 bool Has1 = false, All0 = true;
894 for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
895 if (!P1[i].is(0))
896 All0 = false;
897 if (!P1[i].is(1))
898 continue;
899 Has1 = true;
900 break;
901 }
902 if (!Has1 && !All0)
903 break;
904 RegisterCell RC(W0);
905 RC.fill(0, W0, (Has1 ? BT::BitValue::One : BT::BitValue::Zero));
906 return rr0(RC, Outputs);
907 }
908 case C2_and:
909 return rr0(eAND(rc(1), rc(2)), Outputs);
910 case C2_andn:
911 return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
912 case C2_not:
913 return rr0(eNOT(rc(1)), Outputs);
914 case C2_or:
915 return rr0(eORL(rc(1), rc(2)), Outputs);
916 case C2_orn:
917 return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
918 case C2_xor:
919 return rr0(eXOR(rc(1), rc(2)), Outputs);
920 case C4_and_and:
921 return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
922 case C4_and_andn:
923 return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
924 case C4_and_or:
925 return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
926 case C4_and_orn:
927 return rr0(eAND(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
928 case C4_or_and:
929 return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
930 case C4_or_andn:
931 return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
932 case C4_or_or:
933 return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
934 case C4_or_orn:
935 return rr0(eORL(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
936 case C2_bitsclr:
937 case C2_bitsclri:
938 case C2_bitsset:
939 case C4_nbitsclr:
940 case C4_nbitsclri:
941 case C4_nbitsset:
942 // TODO
943 break;
944 case S2_tstbit_i:
945 case S4_ntstbit_i: {
946 BT::BitValue V = rc(1)[im(2)];
947 if (V.is(0) || V.is(1)) {
948 // If instruction is S2_tstbit_i, test for 1, otherwise test for 0.
949 bool TV = (Opc == S2_tstbit_i);
950 BT::BitValue F = V.is(TV) ? BT::BitValue::One : BT::BitValue::Zero;
951 return rr0(RegisterCell(W0).fill(0, W0, F), Outputs);
952 }
953 break;
954 }
955
956 default:
957 return MachineEvaluator::evaluate(MI, Inputs, Outputs);
958 }
959 #undef im
960 #undef rc
961 #undef op
962 return false;
963}
964
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000965bool HexagonEvaluator::evaluate(const MachineInstr &BI,
966 const CellMapType &Inputs,
967 BranchTargetList &Targets,
968 bool &FallsThru) const {
Krzysztof Parzyszeka5409972016-11-09 16:19:08 +0000969 // We need to evaluate one branch at a time. TII::analyzeBranch checks
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000970 // all the branches in a basic block at once, so we cannot use it.
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000971 unsigned Opc = BI.getOpcode();
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000972 bool SimpleBranch = false;
973 bool Negated = false;
974 switch (Opc) {
975 case Hexagon::J2_jumpf:
Krzysztof Parzyszeka243adf2016-08-19 14:14:09 +0000976 case Hexagon::J2_jumpfpt:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000977 case Hexagon::J2_jumpfnew:
978 case Hexagon::J2_jumpfnewpt:
979 Negated = true;
Simon Pilgrim087e87d2017-07-07 13:21:43 +0000980 LLVM_FALLTHROUGH;
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000981 case Hexagon::J2_jumpt:
Krzysztof Parzyszeka243adf2016-08-19 14:14:09 +0000982 case Hexagon::J2_jumptpt:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000983 case Hexagon::J2_jumptnew:
984 case Hexagon::J2_jumptnewpt:
985 // Simple branch: if([!]Pn) jump ...
986 // i.e. Op0 = predicate, Op1 = branch target.
987 SimpleBranch = true;
988 break;
989 case Hexagon::J2_jump:
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000990 Targets.insert(BI.getOperand(0).getMBB());
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000991 FallsThru = false;
992 return true;
993 default:
994 // If the branch is of unknown type, assume that all successors are
995 // executable.
996 return false;
997 }
998
999 if (!SimpleBranch)
1000 return false;
1001
1002 // BI is a conditional branch if we got here.
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +00001003 RegisterRef PR = BI.getOperand(0);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001004 RegisterCell PC = getCell(PR, Inputs);
1005 const BT::BitValue &Test = PC[0];
1006
1007 // If the condition is neither true nor false, then it's unknown.
1008 if (!Test.is(0) && !Test.is(1))
1009 return false;
1010
1011 // "Test.is(!Negated)" means "branch condition is true".
1012 if (!Test.is(!Negated)) {
1013 // Condition known to be false.
1014 FallsThru = true;
1015 return true;
1016 }
1017
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +00001018 Targets.insert(BI.getOperand(1).getMBB());
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001019 FallsThru = false;
1020 return true;
1021}
1022
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +00001023bool HexagonEvaluator::evaluateLoad(const MachineInstr &MI,
1024 const CellMapType &Inputs,
1025 CellMapType &Outputs) const {
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +00001026 using namespace Hexagon;
1027
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +00001028 if (TII.isPredicated(MI))
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001029 return false;
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +00001030 assert(MI.mayLoad() && "A load that mayn't?");
1031 unsigned Opc = MI.getOpcode();
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001032
1033 uint16_t BitNum;
1034 bool SignEx;
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001035
1036 switch (Opc) {
1037 default:
1038 return false;
1039
1040#if 0
1041 // memb_fifo
1042 case L2_loadalignb_pbr:
1043 case L2_loadalignb_pcr:
1044 case L2_loadalignb_pi:
1045 // memh_fifo
1046 case L2_loadalignh_pbr:
1047 case L2_loadalignh_pcr:
1048 case L2_loadalignh_pi:
1049 // membh
1050 case L2_loadbsw2_pbr:
1051 case L2_loadbsw2_pci:
1052 case L2_loadbsw2_pcr:
1053 case L2_loadbsw2_pi:
1054 case L2_loadbsw4_pbr:
1055 case L2_loadbsw4_pci:
1056 case L2_loadbsw4_pcr:
1057 case L2_loadbsw4_pi:
1058 // memubh
1059 case L2_loadbzw2_pbr:
1060 case L2_loadbzw2_pci:
1061 case L2_loadbzw2_pcr:
1062 case L2_loadbzw2_pi:
1063 case L2_loadbzw4_pbr:
1064 case L2_loadbzw4_pci:
1065 case L2_loadbzw4_pcr:
1066 case L2_loadbzw4_pi:
1067#endif
1068
1069 case L2_loadrbgp:
1070 case L2_loadrb_io:
1071 case L2_loadrb_pbr:
1072 case L2_loadrb_pci:
1073 case L2_loadrb_pcr:
1074 case L2_loadrb_pi:
Colin LeMahieu9675de52016-10-06 23:02:11 +00001075 case PS_loadrbabs:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001076 case L4_loadrb_ap:
1077 case L4_loadrb_rr:
1078 case L4_loadrb_ur:
1079 BitNum = 8;
1080 SignEx = true;
1081 break;
1082
1083 case L2_loadrubgp:
1084 case L2_loadrub_io:
1085 case L2_loadrub_pbr:
1086 case L2_loadrub_pci:
1087 case L2_loadrub_pcr:
1088 case L2_loadrub_pi:
Colin LeMahieu9675de52016-10-06 23:02:11 +00001089 case PS_loadrubabs:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001090 case L4_loadrub_ap:
1091 case L4_loadrub_rr:
1092 case L4_loadrub_ur:
1093 BitNum = 8;
1094 SignEx = false;
1095 break;
1096
1097 case L2_loadrhgp:
1098 case L2_loadrh_io:
1099 case L2_loadrh_pbr:
1100 case L2_loadrh_pci:
1101 case L2_loadrh_pcr:
1102 case L2_loadrh_pi:
Colin LeMahieu9675de52016-10-06 23:02:11 +00001103 case PS_loadrhabs:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001104 case L4_loadrh_ap:
1105 case L4_loadrh_rr:
1106 case L4_loadrh_ur:
1107 BitNum = 16;
1108 SignEx = true;
1109 break;
1110
1111 case L2_loadruhgp:
1112 case L2_loadruh_io:
1113 case L2_loadruh_pbr:
1114 case L2_loadruh_pci:
1115 case L2_loadruh_pcr:
1116 case L2_loadruh_pi:
1117 case L4_loadruh_rr:
Colin LeMahieu9675de52016-10-06 23:02:11 +00001118 case PS_loadruhabs:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001119 case L4_loadruh_ap:
1120 case L4_loadruh_ur:
1121 BitNum = 16;
1122 SignEx = false;
1123 break;
1124
1125 case L2_loadrigp:
1126 case L2_loadri_io:
1127 case L2_loadri_pbr:
1128 case L2_loadri_pci:
1129 case L2_loadri_pcr:
1130 case L2_loadri_pi:
1131 case L2_loadw_locked:
Colin LeMahieu9675de52016-10-06 23:02:11 +00001132 case PS_loadriabs:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001133 case L4_loadri_ap:
1134 case L4_loadri_rr:
1135 case L4_loadri_ur:
1136 case LDriw_pred:
1137 BitNum = 32;
1138 SignEx = true;
1139 break;
1140
1141 case L2_loadrdgp:
1142 case L2_loadrd_io:
1143 case L2_loadrd_pbr:
1144 case L2_loadrd_pci:
1145 case L2_loadrd_pcr:
1146 case L2_loadrd_pi:
1147 case L4_loadd_locked:
Colin LeMahieu9675de52016-10-06 23:02:11 +00001148 case PS_loadrdabs:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001149 case L4_loadrd_ap:
1150 case L4_loadrd_rr:
1151 case L4_loadrd_ur:
1152 BitNum = 64;
1153 SignEx = true;
1154 break;
1155 }
1156
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +00001157 const MachineOperand &MD = MI.getOperand(0);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001158 assert(MD.isReg() && MD.isDef());
1159 RegisterRef RD = MD;
1160
1161 uint16_t W = getRegBitWidth(RD);
1162 assert(W >= BitNum && BitNum > 0);
1163 RegisterCell Res(W);
1164
1165 for (uint16_t i = 0; i < BitNum; ++i)
1166 Res[i] = BT::BitValue::self(BT::BitRef(RD.Reg, i));
1167
1168 if (SignEx) {
1169 const BT::BitValue &Sign = Res[BitNum-1];
1170 for (uint16_t i = BitNum; i < W; ++i)
1171 Res[i] = BT::BitValue::ref(Sign);
1172 } else {
1173 for (uint16_t i = BitNum; i < W; ++i)
1174 Res[i] = BT::BitValue::Zero;
1175 }
1176
1177 putCell(RD, Res, Outputs);
1178 return true;
1179}
1180
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +00001181bool HexagonEvaluator::evaluateFormalCopy(const MachineInstr &MI,
1182 const CellMapType &Inputs,
1183 CellMapType &Outputs) const {
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001184 // If MI defines a formal parameter, but is not a copy (loads are handled
1185 // in evaluateLoad), then it's not clear what to do.
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +00001186 assert(MI.isCopy());
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001187
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +00001188 RegisterRef RD = MI.getOperand(0);
1189 RegisterRef RS = MI.getOperand(1);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001190 assert(RD.Sub == 0);
1191 if (!TargetRegisterInfo::isPhysicalRegister(RS.Reg))
1192 return false;
1193 RegExtMap::const_iterator F = VRX.find(RD.Reg);
1194 if (F == VRX.end())
1195 return false;
1196
1197 uint16_t EW = F->second.Width;
1198 // Store RD's cell into the map. This will associate the cell with a virtual
1199 // register, and make zero-/sign-extends possible (otherwise we would be ex-
1200 // tending "self" bit values, which will have no effect, since "self" values
1201 // cannot be references to anything).
1202 putCell(RD, getCell(RS, Inputs), Outputs);
1203
1204 RegisterCell Res;
1205 // Read RD's cell from the outputs instead of RS's cell from the inputs:
1206 if (F->second.Type == ExtType::SExt)
1207 Res = eSXT(getCell(RD, Outputs), EW);
1208 else if (F->second.Type == ExtType::ZExt)
1209 Res = eZXT(getCell(RD, Outputs), EW);
1210
1211 putCell(RD, Res, Outputs);
1212 return true;
1213}
1214
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001215unsigned HexagonEvaluator::getNextPhysReg(unsigned PReg, unsigned Width) const {
1216 using namespace Hexagon;
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +00001217
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001218 bool Is64 = DoubleRegsRegClass.contains(PReg);
1219 assert(PReg == 0 || Is64 || IntRegsRegClass.contains(PReg));
1220
1221 static const unsigned Phys32[] = { R0, R1, R2, R3, R4, R5 };
1222 static const unsigned Phys64[] = { D0, D1, D2 };
1223 const unsigned Num32 = sizeof(Phys32)/sizeof(unsigned);
1224 const unsigned Num64 = sizeof(Phys64)/sizeof(unsigned);
1225
1226 // Return the first parameter register of the required width.
1227 if (PReg == 0)
1228 return (Width <= 32) ? Phys32[0] : Phys64[0];
1229
1230 // Set Idx32, Idx64 in such a way that Idx+1 would give the index of the
1231 // next register.
1232 unsigned Idx32 = 0, Idx64 = 0;
1233 if (!Is64) {
1234 while (Idx32 < Num32) {
1235 if (Phys32[Idx32] == PReg)
1236 break;
1237 Idx32++;
1238 }
1239 Idx64 = Idx32/2;
1240 } else {
1241 while (Idx64 < Num64) {
1242 if (Phys64[Idx64] == PReg)
1243 break;
1244 Idx64++;
1245 }
1246 Idx32 = Idx64*2+1;
1247 }
1248
1249 if (Width <= 32)
1250 return (Idx32+1 < Num32) ? Phys32[Idx32+1] : 0;
1251 return (Idx64+1 < Num64) ? Phys64[Idx64+1] : 0;
1252}
1253
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001254unsigned HexagonEvaluator::getVirtRegFor(unsigned PReg) const {
Eugene Zelenkoe4fc6ee2017-07-26 23:20:35 +00001255 using iterator = MachineRegisterInfo::livein_iterator;
1256
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001257 for (iterator I = MRI.livein_begin(), E = MRI.livein_end(); I != E; ++I) {
1258 if (I->first == PReg)
1259 return I->second;
1260 }
1261 return 0;
1262}