blob: b1e12e0590d5e665cb1c8b7e99c7d4078bd8f123 [file] [log] [blame]
Rui Ueyama0b289522016-02-25 18:43:51 +00001//===- ICF.cpp ------------------------------------------------------------===//
2//
3// The LLVM Linker
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000010// ICF is short for Identical Code Folding. This is a size optimization to
Rui Ueyama91ae8612016-12-01 19:45:22 +000011// identify and merge two or more read-only sections (typically functions)
12// that happened to have the same contents. It usually reduces output size
13// by a few percent.
Rui Ueyama0b289522016-02-25 18:43:51 +000014//
Rui Ueyama91ae8612016-12-01 19:45:22 +000015// In ICF, two sections are considered identical if they have the same
16// section flags, section data, and relocations. Relocations are tricky,
17// because two relocations are considered the same if they have the same
18// relocation types, values, and if they point to the same sections *in
19// terms of ICF*.
Rui Ueyama0b289522016-02-25 18:43:51 +000020//
Rui Ueyama91ae8612016-12-01 19:45:22 +000021// Here is an example. If foo and bar defined below are compiled to the
22// same machine instructions, ICF can and should merge the two, although
23// their relocations point to each other.
Rui Ueyama0b289522016-02-25 18:43:51 +000024//
25// void foo() { bar(); }
26// void bar() { foo(); }
27//
Rui Ueyama91ae8612016-12-01 19:45:22 +000028// If you merge the two, their relocations point to the same section and
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000029// thus you know they are mergeable, but how do you know they are
30// mergeable in the first place? This is not an easy problem to solve.
Rui Ueyama91ae8612016-12-01 19:45:22 +000031//
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000032// What we are doing in LLD is to partition sections into equivalence
33// classes. Sections in the same equivalence class when the algorithm
34// terminates are considered identical. Here are details:
Rui Ueyama91ae8612016-12-01 19:45:22 +000035//
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000036// 1. First, we partition sections using their hash values as keys. Hash
37// values contain section types, section contents and numbers of
38// relocations. During this step, relocation targets are not taken into
39// account. We just put sections that apparently differ into different
40// equivalence classes.
Rui Ueyama91ae8612016-12-01 19:45:22 +000041//
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000042// 2. Next, for each equivalence class, we visit sections to compare
43// relocation targets. Relocation targets are considered equivalent if
44// their targets are in the same equivalence class. Sections with
45// different relocation targets are put into different equivalence
46// clases.
Rui Ueyama91ae8612016-12-01 19:45:22 +000047//
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000048// 3. If we split an equivalence class in step 2, two relocations
49// previously target the same equivalence class may now target
50// different equivalence classes. Therefore, we repeat step 2 until a
51// convergence is obtained.
Rui Ueyama91ae8612016-12-01 19:45:22 +000052//
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000053// 4. For each equivalence class C, pick an arbitrary section in C, and
54// merge all the other sections in C with it.
Rui Ueyama91ae8612016-12-01 19:45:22 +000055//
56// For small programs, this algorithm needs 3-5 iterations. For large
57// programs such as Chromium, it takes more than 20 iterations.
58//
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000059// This algorithm was mentioned as an "optimistic algorithm" in [1],
60// though gold implements a different algorithm than this.
61//
Rui Ueyama91ae8612016-12-01 19:45:22 +000062// We parallelize each step so that multiple threads can work on different
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000063// equivalence classes concurrently. That gave us a large performance
64// boost when applying ICF on large programs. For example, MSVC link.exe
65// or GNU gold takes 10-20 seconds to apply ICF on Chromium, whose output
66// size is about 1.5 GB, but LLD can finish it in less than 2 seconds on a
67// 2.8 GHz 40 core machine. Even without threading, LLD's ICF is still
68// faster than MSVC or gold though.
69//
70// [1] Safe ICF: Pointer Safe and Unwinding aware Identical Code Folding
71// in the Gold Linker
72// http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36912.pdf
Rui Ueyama0b289522016-02-25 18:43:51 +000073//
74//===----------------------------------------------------------------------===//
75
76#include "ICF.h"
77#include "Config.h"
Rui Ueyama0b289522016-02-25 18:43:51 +000078#include "SymbolTable.h"
Rafael Espindolad26b52f2017-12-09 16:56:18 +000079#include "Symbols.h"
Bob Haarman4f5c8c22017-10-13 18:22:55 +000080#include "lld/Common/Threads.h"
Rui Ueyama0b289522016-02-25 18:43:51 +000081#include "llvm/ADT/Hashing.h"
Zachary Turner264b5d92017-06-07 03:48:56 +000082#include "llvm/BinaryFormat/ELF.h"
Rui Ueyama0b289522016-02-25 18:43:51 +000083#include "llvm/Object/ELF.h"
Rui Ueyamaa05134e2016-11-19 20:15:55 +000084#include <algorithm>
Rui Ueyama1b6bab02016-12-02 05:35:46 +000085#include <atomic>
Rui Ueyama0b289522016-02-25 18:43:51 +000086
87using namespace lld;
Rafael Espindolae0df00b2016-02-28 00:25:54 +000088using namespace lld::elf;
Rui Ueyama0b289522016-02-25 18:43:51 +000089using namespace llvm;
90using namespace llvm::ELF;
91using namespace llvm::object;
92
Rui Ueyamabd1f0632016-11-20 02:39:59 +000093namespace {
Rui Ueyama0b289522016-02-25 18:43:51 +000094template <class ELFT> class ICF {
Rui Ueyama0b289522016-02-25 18:43:51 +000095public:
Rui Ueyama4f8d21f2016-05-02 19:30:42 +000096 void run();
Rui Ueyama0b289522016-02-25 18:43:51 +000097
98private:
Rui Ueyama1b6bab02016-12-02 05:35:46 +000099 void segregate(size_t Begin, size_t End, bool Constant);
Rui Ueyama0b289522016-02-25 18:43:51 +0000100
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000101 template <class RelTy>
Peter Collingbournebfd51132017-06-12 00:05:54 +0000102 bool constantEq(const InputSection *A, ArrayRef<RelTy> RelsA,
103 const InputSection *B, ArrayRef<RelTy> RelsB);
Rui Ueyama0b289522016-02-25 18:43:51 +0000104
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000105 template <class RelTy>
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000106 bool variableEq(const InputSection *A, ArrayRef<RelTy> RelsA,
107 const InputSection *B, ArrayRef<RelTy> RelsB);
Rui Ueyama0b289522016-02-25 18:43:51 +0000108
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000109 bool equalsConstant(const InputSection *A, const InputSection *B);
110 bool equalsVariable(const InputSection *A, const InputSection *B);
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000111
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000112 size_t findBoundary(size_t Begin, size_t End);
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000113
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000114 void forEachClassRange(size_t Begin, size_t End,
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000115 std::function<void(size_t, size_t)> Fn);
116
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000117 void forEachClass(std::function<void(size_t, size_t)> Fn);
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000118
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000119 std::vector<InputSection *> Sections;
Rui Ueyama045d8282016-12-04 16:33:13 +0000120
121 // We repeat the main loop while `Repeat` is true.
122 std::atomic<bool> Repeat;
123
124 // The main loop counter.
Rui Ueyamac1835312016-12-01 17:09:04 +0000125 int Cnt = 0;
Rui Ueyama045d8282016-12-04 16:33:13 +0000126
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000127 // We have two locations for equivalence classes. On the first iteration
128 // of the main loop, Class[0] has a valid value, and Class[1] contains
129 // garbage. We read equivalence classes from slot 0 and write to slot 1.
130 // So, Class[0] represents the current class, and Class[1] represents
131 // the next class. On each iteration, we switch their roles and use them
132 // alternately.
Rui Ueyama045d8282016-12-04 16:33:13 +0000133 //
134 // Why are we doing this? Recall that other threads may be working on
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000135 // other equivalence classes in parallel. They may read sections that we
136 // are updating. We cannot update equivalence classes in place because
137 // it breaks the invariance that all possibly-identical sections must be
138 // in the same equivalence class at any moment. In other words, the for
139 // loop to update equivalence classes is not atomic, and that is
140 // observable from other threads. By writing new classes to other
141 // places, we can keep the invariance.
Rui Ueyama045d8282016-12-04 16:33:13 +0000142 //
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000143 // Below, `Current` has the index of the current class, and `Next` has
144 // the index of the next class. If threading is enabled, they are either
145 // (0, 1) or (1, 0).
Rui Ueyama045d8282016-12-04 16:33:13 +0000146 //
147 // Note on single-thread: if that's the case, they are always (0, 0)
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000148 // because we can safely read the next class without worrying about race
Rui Ueyama045d8282016-12-04 16:33:13 +0000149 // conditions. Using the same location makes this algorithm converge
150 // faster because it uses results of the same iteration earlier.
151 int Current = 0;
152 int Next = 0;
Rui Ueyama0b289522016-02-25 18:43:51 +0000153};
154}
Rui Ueyama0b289522016-02-25 18:43:51 +0000155
Rui Ueyama0b289522016-02-25 18:43:51 +0000156// Returns a hash value for S. Note that the information about
157// relocation targets is not included in the hash value.
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000158template <class ELFT> static uint32_t getHash(InputSection *S) {
Rui Ueyama274aa2f2017-10-02 01:21:07 +0000159 return hash_combine(S->Flags, S->getSize(), S->NumRelocations, S->Data);
Rui Ueyama0b289522016-02-25 18:43:51 +0000160}
161
Rui Ueyamabd1f0632016-11-20 02:39:59 +0000162// Returns true if section S is subject of ICF.
Rui Ueyama536a2672017-02-27 02:32:08 +0000163static bool isEligible(InputSection *S) {
Rafael Espindola814ece62017-12-12 01:36:24 +0000164 // Don't merge read only data sections unless --icf-data was passed.
165 if (!(S->Flags & SHF_EXECINSTR) && !Config->ICFData)
166 return false;
167
Rui Ueyama0b289522016-02-25 18:43:51 +0000168 // .init and .fini contains instructions that must be executed to
169 // initialize and finalize the process. They cannot and should not
170 // be merged.
Rafael Espindola814ece62017-12-12 01:36:24 +0000171 return S->Live && (S->Flags & SHF_ALLOC) && !(S->Flags & SHF_WRITE) &&
172 S->Name != ".init" && S->Name != ".fini";
Rui Ueyama0b289522016-02-25 18:43:51 +0000173}
174
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000175// Split an equivalence class into smaller classes.
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000176template <class ELFT>
177void ICF<ELFT>::segregate(size_t Begin, size_t End, bool Constant) {
178 // This loop rearranges sections in [Begin, End) so that all sections
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000179 // that are equal in terms of equals{Constant,Variable} are contiguous
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000180 // in [Begin, End).
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000181 //
182 // The algorithm is quadratic in the worst case, but that is not an
183 // issue in practice because the number of the distinct sections in
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000184 // each range is usually very small.
Rui Ueyamac1835312016-12-01 17:09:04 +0000185
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000186 while (Begin < End) {
187 // Divide [Begin, End) into two. Let Mid be the start index of the
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000188 // second group.
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000189 auto Bound =
190 std::stable_partition(Sections.begin() + Begin + 1,
191 Sections.begin() + End, [&](InputSection *S) {
192 if (Constant)
193 return equalsConstant(Sections[Begin], S);
194 return equalsVariable(Sections[Begin], S);
195 });
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000196 size_t Mid = Bound - Sections.begin();
Rui Ueyama0b289522016-02-25 18:43:51 +0000197
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000198 // Now we split [Begin, End) into [Begin, Mid) and [Mid, End) by
Rui Ueyamac9df1722017-01-15 02:34:42 +0000199 // updating the sections in [Begin, Mid). We use Mid as an equivalence
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000200 // class ID because every group ends with a unique index.
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000201 for (size_t I = Begin; I < Mid; ++I)
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000202 Sections[I]->Class[Next] = Mid;
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000203
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000204 // If we created a group, we need to iterate the main loop again.
205 if (Mid != End)
206 Repeat = true;
207
208 Begin = Mid;
Rui Ueyama0b289522016-02-25 18:43:51 +0000209 }
210}
211
212// Compare two lists of relocations.
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000213template <class ELFT>
214template <class RelTy>
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000215bool ICF<ELFT>::constantEq(const InputSection *SecA, ArrayRef<RelTy> RA,
216 const InputSection *SecB, ArrayRef<RelTy> RB) {
217 if (RA.size() != RB.size())
218 return false;
Peter Collingbournebfd51132017-06-12 00:05:54 +0000219
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000220 for (size_t I = 0; I < RA.size(); ++I) {
221 if (RA[I].r_offset != RB[I].r_offset ||
222 RA[I].getType(Config->IsMips64EL) != RB[I].getType(Config->IsMips64EL))
223 return false;
224
225 uint64_t AddA = getAddend<ELFT>(RA[I]);
226 uint64_t AddB = getAddend<ELFT>(RB[I]);
227
Rui Ueyamaf52496e2017-11-03 21:21:47 +0000228 Symbol &SA = SecA->template getFile<ELFT>()->getRelocTargetSym(RA[I]);
229 Symbol &SB = SecB->template getFile<ELFT>()->getRelocTargetSym(RB[I]);
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000230 if (&SA == &SB) {
231 if (AddA == AddB)
232 continue;
233 return false;
234 }
Peter Collingbournebfd51132017-06-12 00:05:54 +0000235
Peter Collingbournee9a9e0a2017-11-06 04:35:31 +0000236 auto *DA = dyn_cast<Defined>(&SA);
237 auto *DB = dyn_cast<Defined>(&SB);
Peter Collingbournebfd51132017-06-12 00:05:54 +0000238 if (!DA || !DB)
239 return false;
240
241 // Relocations referring to absolute symbols are constant-equal if their
242 // values are equal.
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000243 if (!DA->Section && !DB->Section && DA->Value + AddA == DB->Value + AddB)
244 continue;
Peter Collingbournebfd51132017-06-12 00:05:54 +0000245 if (!DA->Section || !DB->Section)
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000246 return false;
Peter Collingbournebfd51132017-06-12 00:05:54 +0000247
248 if (DA->Section->kind() != DB->Section->kind())
249 return false;
250
251 // Relocations referring to InputSections are constant-equal if their
252 // section offsets are equal.
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000253 if (isa<InputSection>(DA->Section)) {
254 if (DA->Value + AddA == DB->Value + AddB)
255 continue;
256 return false;
257 }
Peter Collingbournebfd51132017-06-12 00:05:54 +0000258
259 // Relocations referring to MergeInputSections are constant-equal if their
260 // offsets in the output section are equal.
261 auto *X = dyn_cast<MergeInputSection>(DA->Section);
262 if (!X)
263 return false;
264 auto *Y = cast<MergeInputSection>(DB->Section);
265 if (X->getParent() != Y->getParent())
266 return false;
267
268 uint64_t OffsetA =
269 SA.isSection() ? X->getOffset(AddA) : X->getOffset(DA->Value) + AddA;
270 uint64_t OffsetB =
271 SB.isSection() ? Y->getOffset(AddB) : Y->getOffset(DB->Value) + AddB;
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000272 if (OffsetA != OffsetB)
273 return false;
274 }
Rui Ueyamaa05134e2016-11-19 20:15:55 +0000275
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000276 return true;
Rui Ueyama0b289522016-02-25 18:43:51 +0000277}
278
279// Compare "non-moving" part of two InputSections, namely everything
280// except relocation targets.
281template <class ELFT>
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000282bool ICF<ELFT>::equalsConstant(const InputSection *A, const InputSection *B) {
Rui Ueyamabd1f0632016-11-20 02:39:59 +0000283 if (A->NumRelocations != B->NumRelocations || A->Flags != B->Flags ||
Rafael Espindola76b6bd32017-03-08 15:44:30 +0000284 A->getSize() != B->getSize() || A->Data != B->Data)
Rui Ueyama0b289522016-02-25 18:43:51 +0000285 return false;
286
Rui Ueyamabd1f0632016-11-20 02:39:59 +0000287 if (A->AreRelocsRela)
Peter Collingbournebfd51132017-06-12 00:05:54 +0000288 return constantEq(A, A->template relas<ELFT>(), B,
289 B->template relas<ELFT>());
290 return constantEq(A, A->template rels<ELFT>(), B, B->template rels<ELFT>());
Rui Ueyama0b289522016-02-25 18:43:51 +0000291}
292
Rui Ueyama7bed9ee2016-11-20 23:15:54 +0000293// Compare two lists of relocations. Returns true if all pairs of
294// relocations point to the same section in terms of ICF.
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000295template <class ELFT>
296template <class RelTy>
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000297bool ICF<ELFT>::variableEq(const InputSection *SecA, ArrayRef<RelTy> RA,
298 const InputSection *SecB, ArrayRef<RelTy> RB) {
299 assert(RA.size() == RB.size());
300
301 for (size_t I = 0; I < RA.size(); ++I) {
Rui Ueyama91ae8612016-12-01 19:45:22 +0000302 // The two sections must be identical.
Rui Ueyamaf52496e2017-11-03 21:21:47 +0000303 Symbol &SA = SecA->template getFile<ELFT>()->getRelocTargetSym(RA[I]);
304 Symbol &SB = SecB->template getFile<ELFT>()->getRelocTargetSym(RB[I]);
Rafael Espindola67d72c02016-03-11 12:06:30 +0000305 if (&SA == &SB)
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000306 continue;
Rui Ueyama0b289522016-02-25 18:43:51 +0000307
Peter Collingbournee9a9e0a2017-11-06 04:35:31 +0000308 auto *DA = cast<Defined>(&SA);
309 auto *DB = cast<Defined>(&SB);
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000310
Peter Collingbournebfd51132017-06-12 00:05:54 +0000311 // We already dealt with absolute and non-InputSection symbols in
312 // constantEq, and for InputSections we have already checked everything
313 // except the equivalence class.
314 if (!DA->Section)
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000315 continue;
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000316 auto *X = dyn_cast<InputSection>(DA->Section);
Peter Collingbournebfd51132017-06-12 00:05:54 +0000317 if (!X)
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000318 continue;
Peter Collingbournebfd51132017-06-12 00:05:54 +0000319 auto *Y = cast<InputSection>(DB->Section);
Rui Ueyamac1835312016-12-01 17:09:04 +0000320
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000321 // Ineligible sections are in the special equivalence class 0.
322 // They can never be the same in terms of the equivalence class.
323 if (X->Class[Current] == 0)
Rui Ueyama83ec6812016-12-02 17:23:58 +0000324 return false;
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000325 if (X->Class[Current] != Y->Class[Current])
326 return false;
Rui Ueyamaa05134e2016-11-19 20:15:55 +0000327 };
328
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000329 return true;
Rui Ueyama0b289522016-02-25 18:43:51 +0000330}
331
332// Compare "moving" part of two InputSections, namely relocation targets.
333template <class ELFT>
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000334bool ICF<ELFT>::equalsVariable(const InputSection *A, const InputSection *B) {
Rafael Espindola9f0c4bb2016-11-10 14:53:24 +0000335 if (A->AreRelocsRela)
Rafael Espindolab4c9b812017-02-23 02:28:28 +0000336 return variableEq(A, A->template relas<ELFT>(), B,
337 B->template relas<ELFT>());
338 return variableEq(A, A->template rels<ELFT>(), B, B->template rels<ELFT>());
Rui Ueyama0b289522016-02-25 18:43:51 +0000339}
340
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000341template <class ELFT> size_t ICF<ELFT>::findBoundary(size_t Begin, size_t End) {
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000342 uint32_t Class = Sections[Begin]->Class[Current];
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000343 for (size_t I = Begin + 1; I < End; ++I)
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000344 if (Class != Sections[I]->Class[Current])
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000345 return I;
346 return End;
347}
348
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000349// Sections in the same equivalence class are contiguous in Sections
350// vector. Therefore, Sections vector can be considered as contiguous
351// groups of sections, grouped by the class.
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000352//
353// This function calls Fn on every group that starts within [Begin, End).
Rui Ueyamac9df1722017-01-15 02:34:42 +0000354// Note that a group must start in that range but doesn't necessarily
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000355// have to end before End.
356template <class ELFT>
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000357void ICF<ELFT>::forEachClassRange(size_t Begin, size_t End,
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000358 std::function<void(size_t, size_t)> Fn) {
359 if (Begin > 0)
360 Begin = findBoundary(Begin - 1, End);
361
362 while (Begin < End) {
363 size_t Mid = findBoundary(Begin, Sections.size());
364 Fn(Begin, Mid);
365 Begin = Mid;
366 }
367}
368
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000369// Call Fn on each equivalence class.
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000370template <class ELFT>
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000371void ICF<ELFT>::forEachClass(std::function<void(size_t, size_t)> Fn) {
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000372 // If threading is disabled or the number of sections are
373 // too small to use threading, call Fn sequentially.
Bob Haarman4f5c8c22017-10-13 18:22:55 +0000374 if (!ThreadsEnabled || Sections.size() < 1024) {
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000375 forEachClassRange(0, Sections.size(), Fn);
Rui Ueyama045d8282016-12-04 16:33:13 +0000376 ++Cnt;
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000377 return;
378 }
379
Rui Ueyama045d8282016-12-04 16:33:13 +0000380 Current = Cnt % 2;
381 Next = (Cnt + 1) % 2;
382
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000383 // Split sections into 256 shards and call Fn in parallel.
384 size_t NumShards = 256;
385 size_t Step = Sections.size() / NumShards;
Rui Ueyama33d903d2017-05-10 20:02:19 +0000386 parallelForEachN(0, NumShards, [&](size_t I) {
Rui Ueyamaf04c0482017-05-24 19:22:34 +0000387 size_t End = (I == NumShards - 1) ? Sections.size() : (I + 1) * Step;
388 forEachClassRange(I * Step, End, Fn);
Rui Ueyama4995afd2017-03-22 23:03:35 +0000389 });
Rui Ueyama045d8282016-12-04 16:33:13 +0000390 ++Cnt;
Rui Ueyamac1835312016-12-01 17:09:04 +0000391}
392
Rui Ueyama0b289522016-02-25 18:43:51 +0000393// The main function of ICF.
Rui Ueyama4f8d21f2016-05-02 19:30:42 +0000394template <class ELFT> void ICF<ELFT>::run() {
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000395 // Collect sections to merge.
Rui Ueyama536a2672017-02-27 02:32:08 +0000396 for (InputSectionBase *Sec : InputSections)
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000397 if (auto *S = dyn_cast<InputSection>(Sec))
Rui Ueyama536a2672017-02-27 02:32:08 +0000398 if (isEligible(S))
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000399 Sections.push_back(S);
400
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000401 // Initially, we use hash values to partition sections.
Rui Ueyama274aa2f2017-10-02 01:21:07 +0000402 parallelForEach(Sections, [&](InputSection *S) {
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000403 // Set MSB to 1 to avoid collisions with non-hash IDs.
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000404 S->Class[0] = getHash<ELFT>(S) | (1 << 31);
Rui Ueyama274aa2f2017-10-02 01:21:07 +0000405 });
Rui Ueyama0b289522016-02-25 18:43:51 +0000406
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000407 // From now on, sections in Sections vector are ordered so that sections
408 // in the same equivalence class are consecutive in the vector.
Rui Ueyamae2dfbc12016-11-19 23:14:23 +0000409 std::stable_sort(Sections.begin(), Sections.end(),
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000410 [](InputSection *A, InputSection *B) {
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000411 return A->Class[0] < B->Class[0];
Rui Ueyama0b289522016-02-25 18:43:51 +0000412 });
413
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000414 // Compare static contents and assign unique IDs for each static content.
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000415 forEachClass([&](size_t Begin, size_t End) { segregate(Begin, End, true); });
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000416
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000417 // Split groups by comparing relocations until convergence is obtained.
418 do {
419 Repeat = false;
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000420 forEachClass(
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000421 [&](size_t Begin, size_t End) { segregate(Begin, End, false); });
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000422 } while (Repeat);
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000423
424 log("ICF needed " + Twine(Cnt) + " iterations");
Rui Ueyama0b289522016-02-25 18:43:51 +0000425
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000426 // Merge sections by the equivalence class.
427 forEachClass([&](size_t Begin, size_t End) {
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000428 if (End - Begin == 1)
429 return;
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000430
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000431 log("selected " + Sections[Begin]->Name);
432 for (size_t I = Begin + 1; I < End; ++I) {
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000433 log(" removed " + Sections[I]->Name);
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000434 Sections[Begin]->replace(Sections[I]);
Rui Ueyama0b289522016-02-25 18:43:51 +0000435 }
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000436 });
Peter Smithcec1e262017-04-13 08:52:58 +0000437
438 // Mark ARM Exception Index table sections that refer to folded code
439 // sections as not live. These sections have an implict dependency
440 // via the link order dependency.
441 if (Config->EMachine == EM_ARM)
442 for (InputSectionBase *Sec : InputSections)
443 if (auto *S = dyn_cast<InputSection>(Sec))
444 if (S->Flags & SHF_LINK_ORDER)
445 S->Live = S->getLinkOrderDep()->Live;
Rui Ueyama0b289522016-02-25 18:43:51 +0000446}
447
448// ICF entry point function.
Rui Ueyama4f8d21f2016-05-02 19:30:42 +0000449template <class ELFT> void elf::doIcf() { ICF<ELFT>().run(); }
Rui Ueyama0b289522016-02-25 18:43:51 +0000450
Rui Ueyama4f8d21f2016-05-02 19:30:42 +0000451template void elf::doIcf<ELF32LE>();
452template void elf::doIcf<ELF32BE>();
453template void elf::doIcf<ELF64LE>();
454template void elf::doIcf<ELF64BE>();