blob: 98fbfdc861c6dde266c941dfb07d4003b45b168d [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000016#include "llvm/ADT/SmallPtrSet.h"
Chandler Carruthd9903882015-01-14 11:23:27 +000017#include "llvm/Analysis/AssumptionCache.h"
Dan Gohman949ab782010-12-15 20:10:26 +000018#include "llvm/Analysis/InstructionSimplify.h"
Benjamin Kramerfd4777c2013-09-24 16:37:51 +000019#include "llvm/Analysis/MemoryBuiltins.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000020#include "llvm/Analysis/LoopInfo.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000021#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000022#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000023#include "llvm/IR/Constants.h"
24#include "llvm/IR/DataLayout.h"
Hal Finkel60db0582014-09-07 18:57:58 +000025#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000026#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000027#include "llvm/IR/GlobalAlias.h"
28#include "llvm/IR/GlobalVariable.h"
29#include "llvm/IR/Instructions.h"
30#include "llvm/IR/IntrinsicInst.h"
31#include "llvm/IR/LLVMContext.h"
32#include "llvm/IR/Metadata.h"
33#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000034#include "llvm/IR/PatternMatch.h"
Philip Reames5461d452015-04-23 17:36:48 +000035#include "llvm/IR/Statepoint.h"
Matt Arsenaultf1a7e622014-07-15 01:55:03 +000036#include "llvm/Support/Debug.h"
Chris Lattner965c7692008-06-02 01:18:21 +000037#include "llvm/Support/MathExtras.h"
Chris Lattner64496902008-06-04 04:46:14 +000038#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000039using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000040using namespace llvm::PatternMatch;
41
42const unsigned MaxDepth = 6;
43
Philip Reames1c292272015-03-10 22:43:20 +000044/// Enable an experimental feature to leverage information about dominating
45/// conditions to compute known bits. The individual options below control how
Benjamin Kramerdf005cb2015-08-08 18:27:36 +000046/// hard we search. The defaults are chosen to be fairly aggressive. If you
Philip Reames1c292272015-03-10 22:43:20 +000047/// run into compile time problems when testing, scale them back and report
48/// your findings.
49static cl::opt<bool> EnableDomConditions("value-tracking-dom-conditions",
50 cl::Hidden, cl::init(false));
51
52// This is expensive, so we only do it for the top level query value.
53// (TODO: evaluate cost vs profit, consider higher thresholds)
54static cl::opt<unsigned> DomConditionsMaxDepth("dom-conditions-max-depth",
55 cl::Hidden, cl::init(1));
56
57/// How many dominating blocks should be scanned looking for dominating
58/// conditions?
59static cl::opt<unsigned> DomConditionsMaxDomBlocks("dom-conditions-dom-blocks",
60 cl::Hidden,
61 cl::init(20000));
62
63// Controls the number of uses of the value searched for possible
64// dominating comparisons.
65static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
66 cl::Hidden, cl::init(2000));
67
68// If true, don't consider only compares whose only use is a branch.
69static cl::opt<bool> DomConditionsSingleCmpUse("dom-conditions-single-cmp-use",
70 cl::Hidden, cl::init(false));
71
Sanjay Patelaee84212014-11-04 16:27:42 +000072/// Returns the bitwidth of the given scalar or pointer type (if unknown returns
73/// 0). For vector types, returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000074static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000075 if (unsigned BitWidth = Ty->getScalarSizeInBits())
76 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000077
Mehdi Aminia28d91d2015-03-10 02:37:25 +000078 return DL.getPointerTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000079}
Chris Lattner965c7692008-06-02 01:18:21 +000080
Hal Finkel60db0582014-09-07 18:57:58 +000081// Many of these functions have internal versions that take an assumption
82// exclusion set. This is because of the potential for mutual recursion to
83// cause computeKnownBits to repeatedly visit the same assume intrinsic. The
84// classic case of this is assume(x = y), which will attempt to determine
85// bits in x from bits in y, which will attempt to determine bits in y from
86// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
87// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
88// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so on.
89typedef SmallPtrSet<const Value *, 8> ExclInvsSet;
90
Benjamin Kramercfd8d902014-09-12 08:56:53 +000091namespace {
Hal Finkel60db0582014-09-07 18:57:58 +000092// Simplifying using an assume can only be done in a particular control-flow
93// context (the context instruction provides that context). If an assume and
94// the context instruction are not in the same block then the DT helps in
95// figuring out if we can use it.
96struct Query {
97 ExclInvsSet ExclInvs;
Chandler Carruth66b31302015-01-04 12:03:27 +000098 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +000099 const Instruction *CxtI;
100 const DominatorTree *DT;
101
Chandler Carruth66b31302015-01-04 12:03:27 +0000102 Query(AssumptionCache *AC = nullptr, const Instruction *CxtI = nullptr,
Hal Finkel60db0582014-09-07 18:57:58 +0000103 const DominatorTree *DT = nullptr)
Chandler Carruth66b31302015-01-04 12:03:27 +0000104 : AC(AC), CxtI(CxtI), DT(DT) {}
Hal Finkel60db0582014-09-07 18:57:58 +0000105
106 Query(const Query &Q, const Value *NewExcl)
Chandler Carruth66b31302015-01-04 12:03:27 +0000107 : ExclInvs(Q.ExclInvs), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000108 ExclInvs.insert(NewExcl);
109 }
110};
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000111} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000112
Sanjay Patel547e9752014-11-04 16:09:50 +0000113// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000114// the preferred context instruction (if any).
115static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
116 // If we've been provided with a context instruction, then use that (provided
117 // it has been inserted).
118 if (CxtI && CxtI->getParent())
119 return CxtI;
120
121 // If the value is really an already-inserted instruction, then use that.
122 CxtI = dyn_cast<Instruction>(V);
123 if (CxtI && CxtI->getParent())
124 return CxtI;
125
126 return nullptr;
127}
128
129static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000130 const DataLayout &DL, unsigned Depth,
131 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000132
133void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000134 const DataLayout &DL, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000135 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000136 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000137 ::computeKnownBits(V, KnownZero, KnownOne, DL, Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000138 Query(AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000139}
140
Jingyue Wuca321902015-05-14 23:53:19 +0000141bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL,
142 AssumptionCache *AC, const Instruction *CxtI,
143 const DominatorTree *DT) {
144 assert(LHS->getType() == RHS->getType() &&
145 "LHS and RHS should have the same type");
146 assert(LHS->getType()->isIntOrIntVectorTy() &&
147 "LHS and RHS should be integers");
148 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
149 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
150 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
151 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
152 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
153 return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
154}
155
Hal Finkel60db0582014-09-07 18:57:58 +0000156static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000157 const DataLayout &DL, unsigned Depth,
158 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000159
160void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000161 const DataLayout &DL, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000162 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000163 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000164 ::ComputeSignBit(V, KnownZero, KnownOne, DL, Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000165 Query(AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000166}
167
168static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000169 const Query &Q, const DataLayout &DL);
Hal Finkel60db0582014-09-07 18:57:58 +0000170
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000171bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero,
Chandler Carruth66b31302015-01-04 12:03:27 +0000172 unsigned Depth, AssumptionCache *AC,
Hal Finkel60db0582014-09-07 18:57:58 +0000173 const Instruction *CxtI,
174 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000175 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
176 Query(AC, safeCxtI(V, CxtI), DT), DL);
177}
178
179static bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
180 const Query &Q);
181
182bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
183 AssumptionCache *AC, const Instruction *CxtI,
184 const DominatorTree *DT) {
185 return ::isKnownNonZero(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT));
186}
187
Jingyue Wu10fcea52015-08-20 18:27:04 +0000188bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth,
189 AssumptionCache *AC, const Instruction *CxtI,
190 const DominatorTree *DT) {
191 bool NonNegative, Negative;
192 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
193 return NonNegative;
194}
195
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000196static bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
197 unsigned Depth, const Query &Q);
198
199bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
200 unsigned Depth, AssumptionCache *AC,
201 const Instruction *CxtI, const DominatorTree *DT) {
202 return ::MaskedValueIsZero(V, Mask, DL, Depth,
203 Query(AC, safeCxtI(V, CxtI), DT));
204}
205
206static unsigned ComputeNumSignBits(Value *V, const DataLayout &DL,
207 unsigned Depth, const Query &Q);
208
209unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL,
210 unsigned Depth, AssumptionCache *AC,
211 const Instruction *CxtI,
212 const DominatorTree *DT) {
213 return ::ComputeNumSignBits(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000214}
215
Jay Foada0653a32014-05-14 21:14:37 +0000216static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
217 APInt &KnownZero, APInt &KnownOne,
218 APInt &KnownZero2, APInt &KnownOne2,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000219 const DataLayout &DL, unsigned Depth,
Hal Finkel60db0582014-09-07 18:57:58 +0000220 const Query &Q) {
221 if (!Add) {
222 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
223 // We know that the top bits of C-X are clear if X contains less bits
224 // than C (i.e. no wrap-around can happen). For example, 20-X is
225 // positive if we can prove that X is >= 0 and < 16.
226 if (!CLHS->getValue().isNegative()) {
227 unsigned BitWidth = KnownZero.getBitWidth();
228 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
229 // NLZ can't be BitWidth with no sign bit
230 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000231 computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000232
233 // If all of the MaskV bits are known to be zero, then we know the
234 // output top bits are zero, because we now know that the output is
235 // from [0-C].
236 if ((KnownZero2 & MaskV) == MaskV) {
237 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
238 // Top bits known zero.
239 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
240 }
241 }
242 }
243 }
244
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000245 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000246
David Majnemer97ddca32014-08-22 00:40:43 +0000247 // If an initial sequence of bits in the result is not needed, the
248 // corresponding bits in the operands are not needed.
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000249 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000250 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, DL, Depth + 1, Q);
251 computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000252
David Majnemer97ddca32014-08-22 00:40:43 +0000253 // Carry in a 1 for a subtract, rather than a 0.
254 APInt CarryIn(BitWidth, 0);
255 if (!Add) {
256 // Sum = LHS + ~RHS + 1
257 std::swap(KnownZero2, KnownOne2);
258 CarryIn.setBit(0);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000259 }
260
David Majnemer97ddca32014-08-22 00:40:43 +0000261 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
262 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
263
264 // Compute known bits of the carry.
265 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
266 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
267
268 // Compute set of known bits (where all three relevant bits are known).
269 APInt LHSKnown = LHSKnownZero | LHSKnownOne;
270 APInt RHSKnown = KnownZero2 | KnownOne2;
271 APInt CarryKnown = CarryKnownZero | CarryKnownOne;
272 APInt Known = LHSKnown & RHSKnown & CarryKnown;
273
274 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
275 "known bits of sum differ");
276
277 // Compute known bits of the result.
278 KnownZero = ~PossibleSumOne & Known;
279 KnownOne = PossibleSumOne & Known;
280
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000281 // Are we still trying to solve for the sign bit?
David Majnemer97ddca32014-08-22 00:40:43 +0000282 if (!Known.isNegative()) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000283 if (NSW) {
David Majnemer97ddca32014-08-22 00:40:43 +0000284 // Adding two non-negative numbers, or subtracting a negative number from
285 // a non-negative one, can't wrap into negative.
286 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
287 KnownZero |= APInt::getSignBit(BitWidth);
288 // Adding two negative numbers, or subtracting a non-negative number from
289 // a negative one, can't wrap into non-negative.
290 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
291 KnownOne |= APInt::getSignBit(BitWidth);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000292 }
293 }
294}
295
Jay Foada0653a32014-05-14 21:14:37 +0000296static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
297 APInt &KnownZero, APInt &KnownOne,
298 APInt &KnownZero2, APInt &KnownOne2,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000299 const DataLayout &DL, unsigned Depth,
Hal Finkel60db0582014-09-07 18:57:58 +0000300 const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000301 unsigned BitWidth = KnownZero.getBitWidth();
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000302 computeKnownBits(Op1, KnownZero, KnownOne, DL, Depth + 1, Q);
303 computeKnownBits(Op0, KnownZero2, KnownOne2, DL, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000304
305 bool isKnownNegative = false;
306 bool isKnownNonNegative = false;
307 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000308 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000309 if (Op0 == Op1) {
310 // The product of a number with itself is non-negative.
311 isKnownNonNegative = true;
312 } else {
313 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
314 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
315 bool isKnownNegativeOp1 = KnownOne.isNegative();
316 bool isKnownNegativeOp0 = KnownOne2.isNegative();
317 // The product of two numbers with the same sign is non-negative.
318 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
319 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
320 // The product of a negative number and a non-negative number is either
321 // negative or zero.
322 if (!isKnownNonNegative)
323 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000324 isKnownNonZero(Op0, DL, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000325 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000326 isKnownNonZero(Op1, DL, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000327 }
328 }
329
330 // If low bits are zero in either operand, output low known-0 bits.
Sanjay Patel5dd66c32015-09-17 20:51:50 +0000331 // Also compute a conservative estimate for high known-0 bits.
Nick Lewyckyfa306072012-03-18 23:28:48 +0000332 // More trickiness is possible, but this is sufficient for the
333 // interesting case of alignment computation.
334 KnownOne.clearAllBits();
335 unsigned TrailZ = KnownZero.countTrailingOnes() +
336 KnownZero2.countTrailingOnes();
337 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
338 KnownZero2.countLeadingOnes(),
339 BitWidth) - BitWidth;
340
341 TrailZ = std::min(TrailZ, BitWidth);
342 LeadZ = std::min(LeadZ, BitWidth);
343 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
344 APInt::getHighBitsSet(BitWidth, LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000345
346 // Only make use of no-wrap flags if we failed to compute the sign bit
347 // directly. This matters if the multiplication always overflows, in
348 // which case we prefer to follow the result of the direct computation,
349 // though as the program is invoking undefined behaviour we can choose
350 // whatever we like here.
351 if (isKnownNonNegative && !KnownOne.isNegative())
352 KnownZero.setBit(BitWidth - 1);
353 else if (isKnownNegative && !KnownZero.isNegative())
354 KnownOne.setBit(BitWidth - 1);
355}
356
Jingyue Wu37fcb592014-06-19 16:50:16 +0000357void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
358 APInt &KnownZero) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000359 unsigned BitWidth = KnownZero.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000360 unsigned NumRanges = Ranges.getNumOperands() / 2;
361 assert(NumRanges >= 1);
362
363 // Use the high end of the ranges to find leading zeros.
364 unsigned MinLeadingZeros = BitWidth;
365 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000366 ConstantInt *Lower =
367 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
368 ConstantInt *Upper =
369 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000370 ConstantRange Range(Lower->getValue(), Upper->getValue());
371 if (Range.isWrappedSet())
372 MinLeadingZeros = 0; // -1 has no zeros
373 unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros();
374 MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros);
375 }
376
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000377 KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
Rafael Espindola53190532012-03-30 15:52:11 +0000378}
Jay Foad5a29c362014-05-15 12:12:55 +0000379
Hal Finkel60db0582014-09-07 18:57:58 +0000380static bool isEphemeralValueOf(Instruction *I, const Value *E) {
381 SmallVector<const Value *, 16> WorkSet(1, I);
382 SmallPtrSet<const Value *, 32> Visited;
383 SmallPtrSet<const Value *, 16> EphValues;
384
385 while (!WorkSet.empty()) {
386 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000387 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000388 continue;
389
390 // If all uses of this value are ephemeral, then so is this value.
391 bool FoundNEUse = false;
392 for (const User *I : V->users())
393 if (!EphValues.count(I)) {
394 FoundNEUse = true;
395 break;
396 }
397
398 if (!FoundNEUse) {
399 if (V == E)
400 return true;
401
402 EphValues.insert(V);
403 if (const User *U = dyn_cast<User>(V))
404 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
405 J != JE; ++J) {
406 if (isSafeToSpeculativelyExecute(*J))
407 WorkSet.push_back(*J);
408 }
409 }
410 }
411
412 return false;
413}
414
415// Is this an intrinsic that cannot be speculated but also cannot trap?
416static bool isAssumeLikeIntrinsic(const Instruction *I) {
417 if (const CallInst *CI = dyn_cast<CallInst>(I))
418 if (Function *F = CI->getCalledFunction())
419 switch (F->getIntrinsicID()) {
420 default: break;
421 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
422 case Intrinsic::assume:
423 case Intrinsic::dbg_declare:
424 case Intrinsic::dbg_value:
425 case Intrinsic::invariant_start:
426 case Intrinsic::invariant_end:
427 case Intrinsic::lifetime_start:
428 case Intrinsic::lifetime_end:
429 case Intrinsic::objectsize:
430 case Intrinsic::ptr_annotation:
431 case Intrinsic::var_annotation:
432 return true;
433 }
434
435 return false;
436}
437
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000438static bool isValidAssumeForContext(Value *V, const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000439 Instruction *Inv = cast<Instruction>(V);
440
441 // There are two restrictions on the use of an assume:
442 // 1. The assume must dominate the context (or the control flow must
443 // reach the assume whenever it reaches the context).
444 // 2. The context must not be in the assume's set of ephemeral values
445 // (otherwise we will use the assume to prove that the condition
446 // feeding the assume is trivially true, thus causing the removal of
447 // the assume).
448
449 if (Q.DT) {
450 if (Q.DT->dominates(Inv, Q.CxtI)) {
451 return true;
452 } else if (Inv->getParent() == Q.CxtI->getParent()) {
453 // The context comes first, but they're both in the same block. Make sure
454 // there is nothing in between that might interrupt the control flow.
455 for (BasicBlock::const_iterator I =
456 std::next(BasicBlock::const_iterator(Q.CxtI)),
457 IE(Inv); I != IE; ++I)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000458 if (!isSafeToSpeculativelyExecute(I) && !isAssumeLikeIntrinsic(I))
Hal Finkel60db0582014-09-07 18:57:58 +0000459 return false;
460
461 return !isEphemeralValueOf(Inv, Q.CxtI);
462 }
463
464 return false;
465 }
466
467 // When we don't have a DT, we do a limited search...
468 if (Inv->getParent() == Q.CxtI->getParent()->getSinglePredecessor()) {
469 return true;
470 } else if (Inv->getParent() == Q.CxtI->getParent()) {
471 // Search forward from the assume until we reach the context (or the end
472 // of the block); the common case is that the assume will come first.
473 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)),
474 IE = Inv->getParent()->end(); I != IE; ++I)
475 if (I == Q.CxtI)
476 return true;
477
478 // The context must come first...
479 for (BasicBlock::const_iterator I =
480 std::next(BasicBlock::const_iterator(Q.CxtI)),
481 IE(Inv); I != IE; ++I)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000482 if (!isSafeToSpeculativelyExecute(I) && !isAssumeLikeIntrinsic(I))
Hal Finkel60db0582014-09-07 18:57:58 +0000483 return false;
484
485 return !isEphemeralValueOf(Inv, Q.CxtI);
486 }
487
488 return false;
489}
490
491bool llvm::isValidAssumeForContext(const Instruction *I,
492 const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000493 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000494 return ::isValidAssumeForContext(const_cast<Instruction *>(I),
495 Query(nullptr, CxtI, DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000496}
497
498template<typename LHS, typename RHS>
499inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>,
500 CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>>
501m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
502 return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L));
503}
504
505template<typename LHS, typename RHS>
506inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>,
507 BinaryOp_match<RHS, LHS, Instruction::And>>
508m_c_And(const LHS &L, const RHS &R) {
509 return m_CombineOr(m_And(L, R), m_And(R, L));
510}
511
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000512template<typename LHS, typename RHS>
513inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>,
514 BinaryOp_match<RHS, LHS, Instruction::Or>>
515m_c_Or(const LHS &L, const RHS &R) {
516 return m_CombineOr(m_Or(L, R), m_Or(R, L));
517}
518
519template<typename LHS, typename RHS>
520inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>,
521 BinaryOp_match<RHS, LHS, Instruction::Xor>>
522m_c_Xor(const LHS &L, const RHS &R) {
523 return m_CombineOr(m_Xor(L, R), m_Xor(R, L));
524}
525
Philip Reames1c292272015-03-10 22:43:20 +0000526/// Compute known bits in 'V' under the assumption that the condition 'Cmp' is
527/// true (at the context instruction.) This is mostly a utility function for
528/// the prototype dominating conditions reasoning below.
529static void computeKnownBitsFromTrueCondition(Value *V, ICmpInst *Cmp,
530 APInt &KnownZero,
531 APInt &KnownOne,
532 const DataLayout &DL,
533 unsigned Depth, const Query &Q) {
534 Value *LHS = Cmp->getOperand(0);
535 Value *RHS = Cmp->getOperand(1);
536 // TODO: We could potentially be more aggressive here. This would be worth
537 // evaluating. If we can, explore commoning this code with the assume
538 // handling logic.
539 if (LHS != V && RHS != V)
540 return;
541
542 const unsigned BitWidth = KnownZero.getBitWidth();
543
544 switch (Cmp->getPredicate()) {
545 default:
546 // We know nothing from this condition
547 break;
548 // TODO: implement unsigned bound from below (known one bits)
549 // TODO: common condition check implementations with assumes
550 // TODO: implement other patterns from assume (e.g. V & B == A)
551 case ICmpInst::ICMP_SGT:
552 if (LHS == V) {
553 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
554 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
555 if (KnownOneTemp.isAllOnesValue() || KnownZeroTemp.isNegative()) {
556 // We know that the sign bit is zero.
557 KnownZero |= APInt::getSignBit(BitWidth);
558 }
559 }
560 break;
561 case ICmpInst::ICMP_EQ:
Jingyue Wu12b0c282015-06-15 05:46:29 +0000562 {
563 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
564 if (LHS == V)
565 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
566 else if (RHS == V)
567 computeKnownBits(LHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
568 else
569 llvm_unreachable("missing use?");
570 KnownZero |= KnownZeroTemp;
571 KnownOne |= KnownOneTemp;
572 }
Philip Reames1c292272015-03-10 22:43:20 +0000573 break;
574 case ICmpInst::ICMP_ULE:
575 if (LHS == V) {
576 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
577 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
578 // The known zero bits carry over
579 unsigned SignBits = KnownZeroTemp.countLeadingOnes();
580 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits);
581 }
582 break;
583 case ICmpInst::ICMP_ULT:
584 if (LHS == V) {
585 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
586 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
587 // Whatever high bits in rhs are zero are known to be zero (if rhs is a
588 // power of 2, then one more).
589 unsigned SignBits = KnownZeroTemp.countLeadingOnes();
590 if (isKnownToBeAPowerOfTwo(RHS, false, Depth + 1, Query(Q, Cmp), DL))
591 SignBits++;
592 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits);
593 }
594 break;
595 };
596}
597
598/// Compute known bits in 'V' from conditions which are known to be true along
599/// all paths leading to the context instruction. In particular, look for
600/// cases where one branch of an interesting condition dominates the context
601/// instruction. This does not do general dataflow.
602/// NOTE: This code is EXPERIMENTAL and currently off by default.
603static void computeKnownBitsFromDominatingCondition(Value *V, APInt &KnownZero,
604 APInt &KnownOne,
605 const DataLayout &DL,
606 unsigned Depth,
607 const Query &Q) {
608 // Need both the dominator tree and the query location to do anything useful
609 if (!Q.DT || !Q.CxtI)
610 return;
611 Instruction *Cxt = const_cast<Instruction *>(Q.CxtI);
612
613 // Avoid useless work
614 if (auto VI = dyn_cast<Instruction>(V))
615 if (VI->getParent() == Cxt->getParent())
616 return;
617
618 // Note: We currently implement two options. It's not clear which of these
619 // will survive long term, we need data for that.
620 // Option 1 - Try walking the dominator tree looking for conditions which
621 // might apply. This works well for local conditions (loop guards, etc..),
622 // but not as well for things far from the context instruction (presuming a
623 // low max blocks explored). If we can set an high enough limit, this would
624 // be all we need.
625 // Option 2 - We restrict out search to those conditions which are uses of
626 // the value we're interested in. This is independent of dom structure,
627 // but is slightly less powerful without looking through lots of use chains.
628 // It does handle conditions far from the context instruction (e.g. early
629 // function exits on entry) really well though.
630
631 // Option 1 - Search the dom tree
632 unsigned NumBlocksExplored = 0;
633 BasicBlock *Current = Cxt->getParent();
634 while (true) {
635 // Stop searching if we've gone too far up the chain
636 if (NumBlocksExplored >= DomConditionsMaxDomBlocks)
637 break;
638 NumBlocksExplored++;
639
640 if (!Q.DT->getNode(Current)->getIDom())
641 break;
642 Current = Q.DT->getNode(Current)->getIDom()->getBlock();
643 if (!Current)
644 // found function entry
645 break;
646
647 BranchInst *BI = dyn_cast<BranchInst>(Current->getTerminator());
648 if (!BI || BI->isUnconditional())
649 continue;
650 ICmpInst *Cmp = dyn_cast<ICmpInst>(BI->getCondition());
651 if (!Cmp)
652 continue;
653
654 // We're looking for conditions that are guaranteed to hold at the context
655 // instruction. Finding a condition where one path dominates the context
656 // isn't enough because both the true and false cases could merge before
657 // the context instruction we're actually interested in. Instead, we need
658 // to ensure that the taken *edge* dominates the context instruction.
659 BasicBlock *BB0 = BI->getSuccessor(0);
660 BasicBlockEdge Edge(BI->getParent(), BB0);
661 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent()))
662 continue;
663
664 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth,
665 Q);
666 }
667
668 // Option 2 - Search the other uses of V
669 unsigned NumUsesExplored = 0;
670 for (auto U : V->users()) {
671 // Avoid massive lists
672 if (NumUsesExplored >= DomConditionsMaxUses)
673 break;
674 NumUsesExplored++;
675 // Consider only compare instructions uniquely controlling a branch
676 ICmpInst *Cmp = dyn_cast<ICmpInst>(U);
677 if (!Cmp)
678 continue;
679
680 if (DomConditionsSingleCmpUse && !Cmp->hasOneUse())
681 continue;
682
683 for (auto *CmpU : Cmp->users()) {
684 BranchInst *BI = dyn_cast<BranchInst>(CmpU);
685 if (!BI || BI->isUnconditional())
686 continue;
687 // We're looking for conditions that are guaranteed to hold at the
688 // context instruction. Finding a condition where one path dominates
689 // the context isn't enough because both the true and false cases could
690 // merge before the context instruction we're actually interested in.
691 // Instead, we need to ensure that the taken *edge* dominates the context
692 // instruction.
693 BasicBlock *BB0 = BI->getSuccessor(0);
694 BasicBlockEdge Edge(BI->getParent(), BB0);
695 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent()))
696 continue;
697
698 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth,
699 Q);
700 }
701 }
702}
703
Hal Finkel60db0582014-09-07 18:57:58 +0000704static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000705 APInt &KnownOne, const DataLayout &DL,
Hal Finkel60db0582014-09-07 18:57:58 +0000706 unsigned Depth, const Query &Q) {
707 // Use of assumptions is context-sensitive. If we don't have a context, we
708 // cannot use them!
Chandler Carruth66b31302015-01-04 12:03:27 +0000709 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000710 return;
711
712 unsigned BitWidth = KnownZero.getBitWidth();
713
Chandler Carruth66b31302015-01-04 12:03:27 +0000714 for (auto &AssumeVH : Q.AC->assumptions()) {
715 if (!AssumeVH)
716 continue;
717 CallInst *I = cast<CallInst>(AssumeVH);
Chandler Carruth75c11b82015-01-04 23:13:57 +0000718 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
Chandler Carruth66b31302015-01-04 12:03:27 +0000719 "Got assumption for the wrong function!");
Hal Finkel60db0582014-09-07 18:57:58 +0000720 if (Q.ExclInvs.count(I))
721 continue;
722
Philip Reames00d3b272014-11-24 23:44:28 +0000723 // Warning: This loop can end up being somewhat performance sensetive.
724 // We're running this loop for once for each value queried resulting in a
725 // runtime of ~O(#assumes * #values).
726
Benjamin Kramer619c4e52015-04-10 11:24:51 +0000727 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
Philip Reames00d3b272014-11-24 23:44:28 +0000728 "must be an assume intrinsic");
Benjamin Kramer619c4e52015-04-10 11:24:51 +0000729
Philip Reames00d3b272014-11-24 23:44:28 +0000730 Value *Arg = I->getArgOperand(0);
731
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000732 if (Arg == V && isValidAssumeForContext(I, Q)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000733 assert(BitWidth == 1 && "assume operand is not i1?");
734 KnownZero.clearAllBits();
735 KnownOne.setAllBits();
736 return;
737 }
738
David Majnemer9b609752014-12-12 23:59:29 +0000739 // The remaining tests are all recursive, so bail out if we hit the limit.
740 if (Depth == MaxDepth)
741 continue;
742
Hal Finkel60db0582014-09-07 18:57:58 +0000743 Value *A, *B;
744 auto m_V = m_CombineOr(m_Specific(V),
745 m_CombineOr(m_PtrToInt(m_Specific(V)),
746 m_BitCast(m_Specific(V))));
747
748 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000749 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000750 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000751 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000752 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000753 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
754 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
755 KnownZero |= RHSKnownZero;
756 KnownOne |= RHSKnownOne;
757 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000758 } else if (match(Arg,
759 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
760 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000761 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
762 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
763 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
764 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
765
766 // For those bits in the mask that are known to be one, we can propagate
767 // known bits from the RHS to V.
768 KnownZero |= RHSKnownZero & MaskKnownOne;
769 KnownOne |= RHSKnownOne & MaskKnownOne;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000770 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000771 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
772 m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000773 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000774 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
775 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
776 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
777 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
778
779 // For those bits in the mask that are known to be one, we can propagate
780 // inverted known bits from the RHS to V.
781 KnownZero |= RHSKnownOne & MaskKnownOne;
782 KnownOne |= RHSKnownZero & MaskKnownOne;
783 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000784 } else if (match(Arg,
785 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
786 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000787 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
788 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
789 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
790 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
791
792 // For those bits in B that are known to be zero, we can propagate known
793 // bits from the RHS to V.
794 KnownZero |= RHSKnownZero & BKnownZero;
795 KnownOne |= RHSKnownOne & BKnownZero;
796 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000797 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
798 m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000799 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000800 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
801 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
802 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
803 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
804
805 // For those bits in B that are known to be zero, we can propagate
806 // inverted known bits from the RHS to V.
807 KnownZero |= RHSKnownOne & BKnownZero;
808 KnownOne |= RHSKnownZero & BKnownZero;
809 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000810 } else if (match(Arg,
811 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
812 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000813 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
814 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
815 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
816 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
817
818 // For those bits in B that are known to be zero, we can propagate known
819 // bits from the RHS to V. For those bits in B that are known to be one,
820 // we can propagate inverted known bits from the RHS to V.
821 KnownZero |= RHSKnownZero & BKnownZero;
822 KnownOne |= RHSKnownOne & BKnownZero;
823 KnownZero |= RHSKnownOne & BKnownOne;
824 KnownOne |= RHSKnownZero & BKnownOne;
825 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000826 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
827 m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000828 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000829 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
830 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
831 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
832 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
833
834 // For those bits in B that are known to be zero, we can propagate
835 // inverted known bits from the RHS to V. For those bits in B that are
836 // known to be one, we can propagate known bits from the RHS to V.
837 KnownZero |= RHSKnownOne & BKnownZero;
838 KnownOne |= RHSKnownZero & BKnownZero;
839 KnownZero |= RHSKnownZero & BKnownOne;
840 KnownOne |= RHSKnownOne & BKnownOne;
841 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000842 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
843 m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000844 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000845 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
846 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
847 // For those bits in RHS that are known, we can propagate them to known
848 // bits in V shifted to the right by C.
849 KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
850 KnownOne |= RHSKnownOne.lshr(C->getZExtValue());
851 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000852 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
853 m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000854 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000855 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
856 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
857 // For those bits in RHS that are known, we can propagate them inverted
858 // to known bits in V shifted to the right by C.
859 KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
860 KnownOne |= RHSKnownZero.lshr(C->getZExtValue());
861 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000862 } else if (match(Arg,
863 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000864 m_AShr(m_V, m_ConstantInt(C))),
865 m_Value(A))) &&
866 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000867 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
868 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
869 // For those bits in RHS that are known, we can propagate them to known
870 // bits in V shifted to the right by C.
871 KnownZero |= RHSKnownZero << C->getZExtValue();
872 KnownOne |= RHSKnownOne << C->getZExtValue();
873 // assume(~(v >> c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000874 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000875 m_LShr(m_V, m_ConstantInt(C)),
876 m_AShr(m_V, m_ConstantInt(C)))),
Philip Reames00d3b272014-11-24 23:44:28 +0000877 m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000878 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000879 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
880 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
881 // For those bits in RHS that are known, we can propagate them inverted
882 // to known bits in V shifted to the right by C.
883 KnownZero |= RHSKnownOne << C->getZExtValue();
884 KnownOne |= RHSKnownZero << C->getZExtValue();
885 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000886 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000887 Pred == ICmpInst::ICMP_SGE && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000888 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
889 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
890
891 if (RHSKnownZero.isNegative()) {
892 // We know that the sign bit is zero.
893 KnownZero |= APInt::getSignBit(BitWidth);
894 }
895 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000896 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000897 Pred == ICmpInst::ICMP_SGT && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000898 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
899 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
900
901 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
902 // We know that the sign bit is zero.
903 KnownZero |= APInt::getSignBit(BitWidth);
904 }
905 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000906 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000907 Pred == ICmpInst::ICMP_SLE && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000908 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
909 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
910
911 if (RHSKnownOne.isNegative()) {
912 // We know that the sign bit is one.
913 KnownOne |= APInt::getSignBit(BitWidth);
914 }
915 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000916 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000917 Pred == ICmpInst::ICMP_SLT && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000918 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
919 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
920
921 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
922 // We know that the sign bit is one.
923 KnownOne |= APInt::getSignBit(BitWidth);
924 }
925 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000926 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000927 Pred == ICmpInst::ICMP_ULE && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000928 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
929 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
930
931 // Whatever high bits in c are zero are known to be zero.
932 KnownZero |=
933 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
934 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000935 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000936 Pred == ICmpInst::ICMP_ULT && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000937 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
938 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
939
940 // Whatever high bits in c are zero are known to be zero (if c is a power
941 // of 2, then one more).
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000942 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I), DL))
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000943 KnownZero |=
944 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
945 else
946 KnownZero |=
947 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
Hal Finkel60db0582014-09-07 18:57:58 +0000948 }
949 }
950}
951
Jingyue Wu12b0c282015-06-15 05:46:29 +0000952static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
953 APInt &KnownOne, const DataLayout &DL,
954 unsigned Depth, const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000955 unsigned BitWidth = KnownZero.getBitWidth();
956
Chris Lattner965c7692008-06-02 01:18:21 +0000957 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000958 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000959 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000960 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000961 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Jingyue Wu37fcb592014-06-19 16:50:16 +0000962 computeKnownBitsFromRangeMetadata(*MD, KnownZero);
Jay Foad5a29c362014-05-15 12:12:55 +0000963 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000964 case Instruction::And: {
965 // If either the LHS or the RHS are Zero, the result is zero.
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000966 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
967 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000968
Chris Lattner965c7692008-06-02 01:18:21 +0000969 // Output known-1 bits are only known if set in both the LHS & RHS.
970 KnownOne &= KnownOne2;
971 // Output known-0 are known to be clear if zero in either the LHS | RHS.
972 KnownZero |= KnownZero2;
Jay Foad5a29c362014-05-15 12:12:55 +0000973 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000974 }
975 case Instruction::Or: {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000976 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
977 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000978
Chris Lattner965c7692008-06-02 01:18:21 +0000979 // Output known-0 bits are only known if clear in both the LHS & RHS.
980 KnownZero &= KnownZero2;
981 // Output known-1 are known to be set if set in either the LHS | RHS.
982 KnownOne |= KnownOne2;
Jay Foad5a29c362014-05-15 12:12:55 +0000983 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000984 }
985 case Instruction::Xor: {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000986 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
987 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000988
Chris Lattner965c7692008-06-02 01:18:21 +0000989 // Output known-0 bits are known if clear or set in both the LHS & RHS.
990 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
991 // Output known-1 are known to be set if set in only one of the LHS, RHS.
992 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
993 KnownZero = KnownZeroOut;
Jay Foad5a29c362014-05-15 12:12:55 +0000994 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000995 }
996 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000997 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000998 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
999 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001000 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001001 }
1002 case Instruction::UDiv: {
1003 // For the purposes of computing leading zeros we can conservatively
1004 // treat a udiv as a logical right shift by the power of 2 known to
1005 // be less than the denominator.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001006 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001007 unsigned LeadZ = KnownZero2.countLeadingOnes();
1008
Jay Foad25a5e4c2010-12-01 08:53:58 +00001009 KnownOne2.clearAllBits();
1010 KnownZero2.clearAllBits();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001011 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001012 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1013 if (RHSUnknownLeadingOnes != BitWidth)
1014 LeadZ = std::min(BitWidth,
1015 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1016
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001017 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +00001018 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001019 }
1020 case Instruction::Select:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001021 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, DL, Depth + 1, Q);
1022 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001023
1024 // Only known if known in both the LHS and RHS.
1025 KnownOne &= KnownOne2;
1026 KnownZero &= KnownZero2;
Jay Foad5a29c362014-05-15 12:12:55 +00001027 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001028 case Instruction::FPTrunc:
1029 case Instruction::FPExt:
1030 case Instruction::FPToUI:
1031 case Instruction::FPToSI:
1032 case Instruction::SIToFP:
1033 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +00001034 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +00001035 case Instruction::PtrToInt:
1036 case Instruction::IntToPtr:
Matt Arsenaultf1a7e622014-07-15 01:55:03 +00001037 case Instruction::AddrSpaceCast: // Pointers could be different sizes.
Chris Lattner965c7692008-06-02 01:18:21 +00001038 // FALL THROUGH and handle them the same as zext/trunc.
1039 case Instruction::ZExt:
1040 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +00001041 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +00001042
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001043 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +00001044 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1045 // which fall through here.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001046 SrcBitWidth = DL.getTypeSizeInBits(SrcTy->getScalarType());
Nadav Rotem15198e92012-10-26 17:17:05 +00001047
1048 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Jay Foad583abbc2010-12-07 08:25:19 +00001049 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
1050 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001051 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001052 KnownZero = KnownZero.zextOrTrunc(BitWidth);
1053 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001054 // Any top bits are known to be zero.
1055 if (BitWidth > SrcBitWidth)
1056 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001057 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001058 }
1059 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +00001060 Type *SrcTy = I->getOperand(0)->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00001061 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +00001062 // TODO: For now, not handling conversions like:
1063 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +00001064 !I->getType()->isVectorTy()) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001065 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001066 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001067 }
1068 break;
1069 }
1070 case Instruction::SExt: {
1071 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001072 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001073
Jay Foad583abbc2010-12-07 08:25:19 +00001074 KnownZero = KnownZero.trunc(SrcBitWidth);
1075 KnownOne = KnownOne.trunc(SrcBitWidth);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001076 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001077 KnownZero = KnownZero.zext(BitWidth);
1078 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001079
1080 // If the sign bit of the input is known set or clear, then we know the
1081 // top bits of the result.
1082 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
1083 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1084 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
1085 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001086 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001087 }
1088 case Instruction::Shl:
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001089 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Chris Lattner965c7692008-06-02 01:18:21 +00001090 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1091 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001092 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001093 KnownZero <<= ShiftAmt;
1094 KnownOne <<= ShiftAmt;
1095 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
Chris Lattner965c7692008-06-02 01:18:21 +00001096 }
1097 break;
1098 case Instruction::LShr:
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001099 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Chris Lattner965c7692008-06-02 01:18:21 +00001100 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1101 // Compute the new bits that are at the top now.
1102 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
Craig Topper1bef2c82012-12-22 19:15:35 +00001103
Chris Lattner965c7692008-06-02 01:18:21 +00001104 // Unsigned shift right.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001105 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001106 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
1107 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
1108 // high bits known zero.
1109 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
Chris Lattner965c7692008-06-02 01:18:21 +00001110 }
1111 break;
1112 case Instruction::AShr:
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001113 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Chris Lattner965c7692008-06-02 01:18:21 +00001114 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1115 // Compute the new bits that are at the top now.
Chris Lattnerc86e67e2011-01-04 18:19:15 +00001116 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
Craig Topper1bef2c82012-12-22 19:15:35 +00001117
Chris Lattner965c7692008-06-02 01:18:21 +00001118 // Signed shift right.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001119 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001120 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
1121 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
Craig Topper1bef2c82012-12-22 19:15:35 +00001122
Chris Lattner965c7692008-06-02 01:18:21 +00001123 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1124 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
1125 KnownZero |= HighBits;
1126 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
1127 KnownOne |= HighBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001128 }
1129 break;
1130 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001131 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001132 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001133 KnownZero, KnownOne, KnownZero2, KnownOne2, DL,
1134 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001135 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001136 }
Chris Lattner965c7692008-06-02 01:18:21 +00001137 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001138 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001139 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001140 KnownZero, KnownOne, KnownZero2, KnownOne2, DL,
1141 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001142 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001143 }
1144 case Instruction::SRem:
1145 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001146 APInt RA = Rem->getValue().abs();
1147 if (RA.isPowerOf2()) {
1148 APInt LowBits = RA - 1;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001149 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1,
1150 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001151
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001152 // The low bits of the first operand are unchanged by the srem.
1153 KnownZero = KnownZero2 & LowBits;
1154 KnownOne = KnownOne2 & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001155
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001156 // If the first operand is non-negative or has all low bits zero, then
1157 // the upper bits are all zero.
1158 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1159 KnownZero |= ~LowBits;
1160
1161 // If the first operand is negative and not all low bits are zero, then
1162 // the upper bits are all one.
1163 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1164 KnownOne |= ~LowBits;
1165
Craig Topper1bef2c82012-12-22 19:15:35 +00001166 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001167 }
1168 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001169
1170 // The sign bit is the LHS's sign bit, except when the result of the
1171 // remainder is zero.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001172 if (KnownZero.isNonNegative()) {
Nick Lewyckye4679792011-03-07 01:50:10 +00001173 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001174 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, DL,
1175 Depth + 1, Q);
Nick Lewyckye4679792011-03-07 01:50:10 +00001176 // If it's known zero, our sign bit is also zero.
1177 if (LHSKnownZero.isNegative())
Duncan Sands34c48692012-04-30 11:56:58 +00001178 KnownZero.setBit(BitWidth - 1);
Nick Lewyckye4679792011-03-07 01:50:10 +00001179 }
1180
Chris Lattner965c7692008-06-02 01:18:21 +00001181 break;
1182 case Instruction::URem: {
1183 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1184 APInt RA = Rem->getValue();
1185 if (RA.isPowerOf2()) {
1186 APInt LowBits = (RA - 1);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001187 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1,
1188 Q);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001189 KnownZero |= ~LowBits;
1190 KnownOne &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001191 break;
1192 }
1193 }
1194
1195 // Since the result is less than or equal to either operand, any leading
1196 // zero bits in either operand must also exist in the result.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001197 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
1198 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001199
Chris Lattner4612ae12009-01-20 18:22:57 +00001200 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner965c7692008-06-02 01:18:21 +00001201 KnownZero2.countLeadingOnes());
Jay Foad25a5e4c2010-12-01 08:53:58 +00001202 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001203 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001204 break;
1205 }
1206
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001207 case Instruction::Alloca: {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001208 AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001209 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001210 if (Align == 0)
1211 Align = DL.getABITypeAlignment(AI->getType()->getElementType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001212
Chris Lattner965c7692008-06-02 01:18:21 +00001213 if (Align > 0)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001214 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001215 break;
1216 }
1217 case Instruction::GetElementPtr: {
1218 // Analyze all of the subscripts of this getelementptr instruction
1219 // to determine if we can prove known low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001220 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001221 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, DL,
1222 Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001223 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1224
1225 gep_type_iterator GTI = gep_type_begin(I);
1226 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1227 Value *Index = I->getOperand(i);
Chris Lattner229907c2011-07-18 04:54:35 +00001228 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001229 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001230
1231 // Handle case when index is vector zeroinitializer
1232 Constant *CIndex = cast<Constant>(Index);
1233 if (CIndex->isZeroValue())
1234 continue;
1235
1236 if (CIndex->getType()->isVectorTy())
1237 Index = CIndex->getSplatValue();
1238
Chris Lattner965c7692008-06-02 01:18:21 +00001239 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001240 const StructLayout *SL = DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001241 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001242 TrailZ = std::min<unsigned>(TrailZ,
1243 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001244 } else {
1245 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001246 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001247 if (!IndexedTy->isSized()) {
1248 TrailZ = 0;
1249 break;
1250 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001251 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001252 uint64_t TypeSize = DL.getTypeAllocSize(IndexedTy);
Chris Lattner965c7692008-06-02 01:18:21 +00001253 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001254 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, DL, Depth + 1,
1255 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001256 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001257 unsigned(countTrailingZeros(TypeSize) +
Chris Lattner4612ae12009-01-20 18:22:57 +00001258 LocalKnownZero.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001259 }
1260 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001261
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001262 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001263 break;
1264 }
1265 case Instruction::PHI: {
1266 PHINode *P = cast<PHINode>(I);
1267 // Handle the case of a simple two-predecessor recurrence PHI.
1268 // There's a lot more that could theoretically be done here, but
1269 // this is sufficient to catch some interesting cases.
1270 if (P->getNumIncomingValues() == 2) {
1271 for (unsigned i = 0; i != 2; ++i) {
1272 Value *L = P->getIncomingValue(i);
1273 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001274 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001275 if (!LU)
1276 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001277 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001278 // Check for operations that have the property that if
1279 // both their operands have low zero bits, the result
1280 // will have low zero bits.
1281 if (Opcode == Instruction::Add ||
1282 Opcode == Instruction::Sub ||
1283 Opcode == Instruction::And ||
1284 Opcode == Instruction::Or ||
1285 Opcode == Instruction::Mul) {
1286 Value *LL = LU->getOperand(0);
1287 Value *LR = LU->getOperand(1);
1288 // Find a recurrence.
1289 if (LL == I)
1290 L = LR;
1291 else if (LR == I)
1292 L = LL;
1293 else
1294 break;
1295 // Ok, we have a PHI of the form L op= R. Check for low
1296 // zero bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001297 computeKnownBits(R, KnownZero2, KnownOne2, DL, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001298
1299 // We need to take the minimum number of known bits
1300 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001301 computeKnownBits(L, KnownZero3, KnownOne3, DL, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001302
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001303 KnownZero = APInt::getLowBitsSet(BitWidth,
David Greeneaebd9e02008-10-27 23:24:03 +00001304 std::min(KnownZero2.countTrailingOnes(),
1305 KnownZero3.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001306 break;
1307 }
1308 }
1309 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001310
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001311 // Unreachable blocks may have zero-operand PHI nodes.
1312 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001313 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001314
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001315 // Otherwise take the unions of the known bit sets of the operands,
1316 // taking conservative care to avoid excessive recursion.
1317 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001318 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001319 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001320 break;
1321
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001322 KnownZero = APInt::getAllOnesValue(BitWidth);
1323 KnownOne = APInt::getAllOnesValue(BitWidth);
Pete Cooper833f34d2015-05-12 20:05:31 +00001324 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001325 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001326 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001327
1328 KnownZero2 = APInt(BitWidth, 0);
1329 KnownOne2 = APInt(BitWidth, 0);
1330 // Recurse, but cap the recursion to one level, because we don't
1331 // want to waste time spinning around in loops.
Pete Cooper833f34d2015-05-12 20:05:31 +00001332 computeKnownBits(IncValue, KnownZero2, KnownOne2, DL,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001333 MaxDepth - 1, Q);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001334 KnownZero &= KnownZero2;
1335 KnownOne &= KnownOne2;
1336 // If all bits have been ruled out, there's no need to check
1337 // more operands.
1338 if (!KnownZero && !KnownOne)
1339 break;
1340 }
1341 }
Chris Lattner965c7692008-06-02 01:18:21 +00001342 break;
1343 }
1344 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001345 case Instruction::Invoke:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001346 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Jingyue Wu37fcb592014-06-19 16:50:16 +00001347 computeKnownBitsFromRangeMetadata(*MD, KnownZero);
1348 // If a range metadata is attached to this IntrinsicInst, intersect the
1349 // explicit range specified by the metadata and the implicit range of
1350 // the intrinsic.
Chris Lattner965c7692008-06-02 01:18:21 +00001351 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1352 switch (II->getIntrinsicID()) {
1353 default: break;
Chris Lattner965c7692008-06-02 01:18:21 +00001354 case Intrinsic::ctlz:
1355 case Intrinsic::cttz: {
1356 unsigned LowBits = Log2_32(BitWidth)+1;
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001357 // If this call is undefined for 0, the result will be less than 2^n.
1358 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1359 LowBits -= 1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001360 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001361 break;
1362 }
1363 case Intrinsic::ctpop: {
1364 unsigned LowBits = Log2_32(BitWidth)+1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001365 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Chris Lattner965c7692008-06-02 01:18:21 +00001366 break;
1367 }
Chad Rosierb3628842011-05-26 23:13:19 +00001368 case Intrinsic::x86_sse42_crc32_64_64:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001369 KnownZero |= APInt::getHighBitsSet(64, 32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001370 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001371 }
1372 }
1373 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001374 case Instruction::ExtractValue:
1375 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1376 ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1377 if (EVI->getNumIndices() != 1) break;
1378 if (EVI->getIndices()[0] == 0) {
1379 switch (II->getIntrinsicID()) {
1380 default: break;
1381 case Intrinsic::uadd_with_overflow:
1382 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001383 computeKnownBitsAddSub(true, II->getArgOperand(0),
1384 II->getArgOperand(1), false, KnownZero,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001385 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001386 break;
1387 case Intrinsic::usub_with_overflow:
1388 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001389 computeKnownBitsAddSub(false, II->getArgOperand(0),
1390 II->getArgOperand(1), false, KnownZero,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001391 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001392 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001393 case Intrinsic::umul_with_overflow:
1394 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001395 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1396 KnownZero, KnownOne, KnownZero2, KnownOne2, DL,
1397 Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001398 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001399 }
1400 }
1401 }
Chris Lattner965c7692008-06-02 01:18:21 +00001402 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001403}
1404
1405/// Determine which bits of V are known to be either zero or one and return
1406/// them in the KnownZero/KnownOne bit sets.
1407///
1408/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1409/// we cannot optimize based on the assumption that it is zero without changing
1410/// it to be an explicit zero. If we don't change it to zero, other code could
1411/// optimized based on the contradictory assumption that it is non-zero.
1412/// Because instcombine aggressively folds operations with undef args anyway,
1413/// this won't lose us code quality.
1414///
1415/// This function is defined on values with integer type, values with pointer
1416/// type, and vectors of integers. In the case
1417/// where V is a vector, known zero, and known one values are the
1418/// same width as the vector element, and the bit is set only if it is true
1419/// for all of the elements in the vector.
1420void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
1421 const DataLayout &DL, unsigned Depth, const Query &Q) {
1422 assert(V && "No Value?");
1423 assert(Depth <= MaxDepth && "Limit Search Depth");
1424 unsigned BitWidth = KnownZero.getBitWidth();
1425
1426 assert((V->getType()->isIntOrIntVectorTy() ||
1427 V->getType()->getScalarType()->isPointerTy()) &&
1428 "Not integer or pointer type!");
1429 assert((DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
1430 (!V->getType()->isIntOrIntVectorTy() ||
1431 V->getType()->getScalarSizeInBits() == BitWidth) &&
1432 KnownZero.getBitWidth() == BitWidth &&
1433 KnownOne.getBitWidth() == BitWidth &&
1434 "V, KnownOne and KnownZero should have same BitWidth");
1435
1436 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1437 // We know all of the bits for a constant!
1438 KnownOne = CI->getValue();
1439 KnownZero = ~KnownOne;
1440 return;
1441 }
1442 // Null and aggregate-zero are all-zeros.
1443 if (isa<ConstantPointerNull>(V) ||
1444 isa<ConstantAggregateZero>(V)) {
1445 KnownOne.clearAllBits();
1446 KnownZero = APInt::getAllOnesValue(BitWidth);
1447 return;
1448 }
1449 // Handle a constant vector by taking the intersection of the known bits of
1450 // each element. There is no real need to handle ConstantVector here, because
1451 // we don't handle undef in any particularly useful way.
1452 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1453 // We know that CDS must be a vector of integers. Take the intersection of
1454 // each element.
1455 KnownZero.setAllBits(); KnownOne.setAllBits();
1456 APInt Elt(KnownZero.getBitWidth(), 0);
1457 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1458 Elt = CDS->getElementAsInteger(i);
1459 KnownZero &= ~Elt;
1460 KnownOne &= Elt;
1461 }
1462 return;
1463 }
1464
1465 // The address of an aligned GlobalValue has trailing zeros.
1466 if (auto *GO = dyn_cast<GlobalObject>(V)) {
1467 unsigned Align = GO->getAlignment();
1468 if (Align == 0) {
1469 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
1470 Type *ObjectType = GVar->getType()->getElementType();
1471 if (ObjectType->isSized()) {
1472 // If the object is defined in the current Module, we'll be giving
1473 // it the preferred alignment. Otherwise, we have to assume that it
1474 // may only have the minimum ABI alignment.
Peter Collingbourne6a9d1772015-07-05 20:52:35 +00001475 if (GVar->isStrongDefinitionForLinker())
Jingyue Wu12b0c282015-06-15 05:46:29 +00001476 Align = DL.getPreferredAlignment(GVar);
1477 else
1478 Align = DL.getABITypeAlignment(ObjectType);
1479 }
1480 }
1481 }
1482 if (Align > 0)
1483 KnownZero = APInt::getLowBitsSet(BitWidth,
1484 countTrailingZeros(Align));
1485 else
1486 KnownZero.clearAllBits();
1487 KnownOne.clearAllBits();
1488 return;
1489 }
1490
1491 if (Argument *A = dyn_cast<Argument>(V)) {
1492 unsigned Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0;
1493
1494 if (!Align && A->hasStructRetAttr()) {
1495 // An sret parameter has at least the ABI alignment of the return type.
1496 Type *EltTy = cast<PointerType>(A->getType())->getElementType();
1497 if (EltTy->isSized())
1498 Align = DL.getABITypeAlignment(EltTy);
1499 }
1500
1501 if (Align)
1502 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1503 else
1504 KnownZero.clearAllBits();
1505 KnownOne.clearAllBits();
1506
1507 // Don't give up yet... there might be an assumption that provides more
1508 // information...
1509 computeKnownBitsFromAssume(V, KnownZero, KnownOne, DL, Depth, Q);
1510
1511 // Or a dominating condition for that matter
1512 if (EnableDomConditions && Depth <= DomConditionsMaxDepth)
1513 computeKnownBitsFromDominatingCondition(V, KnownZero, KnownOne, DL,
1514 Depth, Q);
1515 return;
1516 }
1517
1518 // Start out not knowing anything.
1519 KnownZero.clearAllBits(); KnownOne.clearAllBits();
1520
1521 // Limit search depth.
1522 // All recursive calls that increase depth must come after this.
1523 if (Depth == MaxDepth)
1524 return;
1525
1526 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1527 // the bits of its aliasee.
1528 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1529 if (!GA->mayBeOverridden())
1530 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, DL, Depth + 1, Q);
1531 return;
1532 }
1533
1534 if (Operator *I = dyn_cast<Operator>(V))
1535 computeKnownBitsFromOperator(I, KnownZero, KnownOne, DL, Depth, Q);
1536 // computeKnownBitsFromAssume and computeKnownBitsFromDominatingCondition
1537 // strictly refines KnownZero and KnownOne. Therefore, we run them after
1538 // computeKnownBitsFromOperator.
1539
1540 // Check whether a nearby assume intrinsic can determine some known bits.
1541 computeKnownBitsFromAssume(V, KnownZero, KnownOne, DL, Depth, Q);
1542
1543 // Check whether there's a dominating condition which implies something about
1544 // this value at the given context.
1545 if (EnableDomConditions && Depth <= DomConditionsMaxDepth)
1546 computeKnownBitsFromDominatingCondition(V, KnownZero, KnownOne, DL, Depth,
1547 Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001548
1549 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001550}
1551
Sanjay Patelaee84212014-11-04 16:27:42 +00001552/// Determine whether the sign bit is known to be zero or one.
1553/// Convenience wrapper around computeKnownBits.
Hal Finkel60db0582014-09-07 18:57:58 +00001554void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001555 const DataLayout &DL, unsigned Depth, const Query &Q) {
1556 unsigned BitWidth = getBitWidth(V->getType(), DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001557 if (!BitWidth) {
1558 KnownZero = false;
1559 KnownOne = false;
1560 return;
1561 }
1562 APInt ZeroBits(BitWidth, 0);
1563 APInt OneBits(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001564 computeKnownBits(V, ZeroBits, OneBits, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001565 KnownOne = OneBits[BitWidth - 1];
1566 KnownZero = ZeroBits[BitWidth - 1];
1567}
1568
Sanjay Patelaee84212014-11-04 16:27:42 +00001569/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001570/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001571/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001572/// types and vectors of integers.
Hal Finkel60db0582014-09-07 18:57:58 +00001573bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001574 const Query &Q, const DataLayout &DL) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001575 if (Constant *C = dyn_cast<Constant>(V)) {
1576 if (C->isNullValue())
1577 return OrZero;
1578 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1579 return CI->getValue().isPowerOf2();
1580 // TODO: Handle vector constants.
1581 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001582
1583 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1584 // it is shifted off the end then the result is undefined.
1585 if (match(V, m_Shl(m_One(), m_Value())))
1586 return true;
1587
1588 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1589 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands4b397fc2011-02-01 08:50:33 +00001590 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001591 return true;
1592
1593 // The remaining tests are all recursive, so bail out if we hit the limit.
1594 if (Depth++ == MaxDepth)
1595 return false;
1596
Craig Topper9f008862014-04-15 04:59:12 +00001597 Value *X = nullptr, *Y = nullptr;
Duncan Sands985ba632011-10-28 18:30:05 +00001598 // A shift of a power of two is a power of two or zero.
1599 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1600 match(V, m_Shr(m_Value(X), m_Value()))))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001601 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL);
Duncan Sands985ba632011-10-28 18:30:05 +00001602
Duncan Sandsd3951082011-01-25 09:38:29 +00001603 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001604 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q, DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001605
1606 if (SelectInst *SI = dyn_cast<SelectInst>(V))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001607 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q, DL) &&
1608 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q, DL);
Duncan Sandsba286d72011-10-26 20:55:21 +00001609
Duncan Sandsba286d72011-10-26 20:55:21 +00001610 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1611 // A power of two and'd with anything is a power of two or zero.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001612 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL) ||
1613 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q, DL))
Duncan Sandsba286d72011-10-26 20:55:21 +00001614 return true;
1615 // X & (-X) is always a power of two or zero.
1616 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1617 return true;
1618 return false;
1619 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001620
David Majnemerb7d54092013-07-30 21:01:36 +00001621 // Adding a power-of-two or zero to the same power-of-two or zero yields
1622 // either the original power-of-two, a larger power-of-two or zero.
1623 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1624 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1625 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1626 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1627 match(X, m_And(m_Value(), m_Specific(Y))))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001628 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q, DL))
David Majnemerb7d54092013-07-30 21:01:36 +00001629 return true;
1630 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1631 match(Y, m_And(m_Value(), m_Specific(X))))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001632 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q, DL))
David Majnemerb7d54092013-07-30 21:01:36 +00001633 return true;
1634
1635 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1636 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001637 computeKnownBits(X, LHSZeroBits, LHSOneBits, DL, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001638
1639 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001640 computeKnownBits(Y, RHSZeroBits, RHSOneBits, DL, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001641 // If i8 V is a power of two or zero:
1642 // ZeroBits: 1 1 1 0 1 1 1 1
1643 // ~ZeroBits: 0 0 0 1 0 0 0 0
1644 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1645 // If OrZero isn't set, we cannot give back a zero result.
1646 // Make sure either the LHS or RHS has a bit set.
1647 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1648 return true;
1649 }
1650 }
David Majnemerbeab5672013-05-18 19:30:37 +00001651
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001652 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001653 // is a power of two only if the first operand is a power of two and not
1654 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001655 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1656 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001657 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001658 Depth, Q, DL);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001659 }
1660
Duncan Sandsd3951082011-01-25 09:38:29 +00001661 return false;
1662}
1663
Chandler Carruth80d3e562012-12-07 02:08:58 +00001664/// \brief Test whether a GEP's result is known to be non-null.
1665///
1666/// Uses properties inherent in a GEP to try to determine whether it is known
1667/// to be non-null.
1668///
1669/// Currently this routine does not support vector GEPs.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001670static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout &DL,
Hal Finkel60db0582014-09-07 18:57:58 +00001671 unsigned Depth, const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001672 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1673 return false;
1674
1675 // FIXME: Support vector-GEPs.
1676 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1677
1678 // If the base pointer is non-null, we cannot walk to a null address with an
1679 // inbounds GEP in address space zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001680 if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001681 return true;
1682
Chandler Carruth80d3e562012-12-07 02:08:58 +00001683 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1684 // If so, then the GEP cannot produce a null pointer, as doing so would
1685 // inherently violate the inbounds contract within address space zero.
1686 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1687 GTI != GTE; ++GTI) {
1688 // Struct types are easy -- they must always be indexed by a constant.
1689 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1690 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1691 unsigned ElementIdx = OpC->getZExtValue();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001692 const StructLayout *SL = DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001693 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1694 if (ElementOffset > 0)
1695 return true;
1696 continue;
1697 }
1698
1699 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001700 if (DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001701 continue;
1702
1703 // Fast path the constant operand case both for efficiency and so we don't
1704 // increment Depth when just zipping down an all-constant GEP.
1705 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1706 if (!OpC->isZero())
1707 return true;
1708 continue;
1709 }
1710
1711 // We post-increment Depth here because while isKnownNonZero increments it
1712 // as well, when we pop back up that increment won't persist. We don't want
1713 // to recurse 10k times just because we have 10k GEP operands. We don't
1714 // bail completely out because we want to handle constant GEPs regardless
1715 // of depth.
1716 if (Depth++ >= MaxDepth)
1717 continue;
1718
Hal Finkel60db0582014-09-07 18:57:58 +00001719 if (isKnownNonZero(GTI.getOperand(), DL, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001720 return true;
1721 }
1722
1723 return false;
1724}
1725
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001726/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1727/// ensure that the value it's attached to is never Value? 'RangeType' is
1728/// is the type of the value described by the range.
1729static bool rangeMetadataExcludesValue(MDNode* Ranges,
1730 const APInt& Value) {
1731 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1732 assert(NumRanges >= 1);
1733 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001734 ConstantInt *Lower =
1735 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1736 ConstantInt *Upper =
1737 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001738 ConstantRange Range(Lower->getValue(), Upper->getValue());
1739 if (Range.contains(Value))
1740 return false;
1741 }
1742 return true;
1743}
1744
Sanjay Patelaee84212014-11-04 16:27:42 +00001745/// Return true if the given value is known to be non-zero when defined.
1746/// For vectors return true if every element is known to be non-zero when
1747/// defined. Supports values with integer or pointer type and vectors of
1748/// integers.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001749bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
Hal Finkel60db0582014-09-07 18:57:58 +00001750 const Query &Q) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001751 if (Constant *C = dyn_cast<Constant>(V)) {
1752 if (C->isNullValue())
1753 return false;
1754 if (isa<ConstantInt>(C))
1755 // Must be non-zero due to null test above.
1756 return true;
1757 // TODO: Handle vectors
1758 return false;
1759 }
1760
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001761 if (Instruction* I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001762 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001763 // If the possible ranges don't contain zero, then the value is
1764 // definitely non-zero.
1765 if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) {
1766 const APInt ZeroValue(Ty->getBitWidth(), 0);
1767 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1768 return true;
1769 }
1770 }
1771 }
1772
Duncan Sandsd3951082011-01-25 09:38:29 +00001773 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001774 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001775 return false;
1776
Chandler Carruth80d3e562012-12-07 02:08:58 +00001777 // Check for pointer simplifications.
1778 if (V->getType()->isPointerTy()) {
Manman Ren12171122013-03-18 21:23:25 +00001779 if (isKnownNonNull(V))
1780 return true;
Chandler Carruth80d3e562012-12-07 02:08:58 +00001781 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001782 if (isGEPKnownNonNull(GEP, DL, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001783 return true;
1784 }
1785
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001786 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001787
1788 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001789 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001790 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001791 return isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001792
1793 // ext X != 0 if X != 0.
1794 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001795 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001796
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001797 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001798 // if the lowest bit is shifted off the end.
1799 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001800 // shl nuw can't remove any non-zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001801 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001802 if (BO->hasNoUnsignedWrap())
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001803 return isKnownNonZero(X, DL, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001804
Duncan Sandsd3951082011-01-25 09:38:29 +00001805 APInt KnownZero(BitWidth, 0);
1806 APInt KnownOne(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001807 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001808 if (KnownOne[0])
1809 return true;
1810 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001811 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001812 // defined if the sign bit is shifted off the end.
1813 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001814 // shr exact can only shift out zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001815 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001816 if (BO->isExact())
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001817 return isKnownNonZero(X, DL, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001818
Duncan Sandsd3951082011-01-25 09:38:29 +00001819 bool XKnownNonNegative, XKnownNegative;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001820 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001821 if (XKnownNegative)
1822 return true;
1823 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001824 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001825 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001826 return isKnownNonZero(X, DL, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001827 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001828 // X + Y.
1829 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1830 bool XKnownNonNegative, XKnownNegative;
1831 bool YKnownNonNegative, YKnownNegative;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001832 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q);
1833 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001834
1835 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001836 // zero unless both X and Y are zero.
Duncan Sandsd3951082011-01-25 09:38:29 +00001837 if (XKnownNonNegative && YKnownNonNegative)
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001838 if (isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001839 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001840
1841 // If X and Y are both negative (as signed values) then their sum is not
1842 // zero unless both X and Y equal INT_MIN.
1843 if (BitWidth && XKnownNegative && YKnownNegative) {
1844 APInt KnownZero(BitWidth, 0);
1845 APInt KnownOne(BitWidth, 0);
1846 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1847 // The sign bit of X is set. If some other bit is set then X is not equal
1848 // to INT_MIN.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001849 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001850 if ((KnownOne & Mask) != 0)
1851 return true;
1852 // The sign bit of Y is set. If some other bit is set then Y is not equal
1853 // to INT_MIN.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001854 computeKnownBits(Y, KnownZero, KnownOne, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001855 if ((KnownOne & Mask) != 0)
1856 return true;
1857 }
1858
1859 // The sum of a non-negative number and a power of two is not zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001860 if (XKnownNonNegative &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001861 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q, DL))
Duncan Sandsd3951082011-01-25 09:38:29 +00001862 return true;
Hal Finkel60db0582014-09-07 18:57:58 +00001863 if (YKnownNonNegative &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001864 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q, DL))
Duncan Sandsd3951082011-01-25 09:38:29 +00001865 return true;
1866 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001867 // X * Y.
1868 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1869 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1870 // If X and Y are non-zero then so is X * Y as long as the multiplication
1871 // does not overflow.
1872 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001873 isKnownNonZero(X, DL, Depth, Q) && isKnownNonZero(Y, DL, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00001874 return true;
1875 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001876 // (C ? X : Y) != 0 if X != 0 and Y != 0.
1877 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001878 if (isKnownNonZero(SI->getTrueValue(), DL, Depth, Q) &&
1879 isKnownNonZero(SI->getFalseValue(), DL, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001880 return true;
1881 }
1882
1883 if (!BitWidth) return false;
1884 APInt KnownZero(BitWidth, 0);
1885 APInt KnownOne(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001886 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001887 return KnownOne != 0;
1888}
1889
Sanjay Patelaee84212014-11-04 16:27:42 +00001890/// Return true if 'V & Mask' is known to be zero. We use this predicate to
1891/// simplify operations downstream. Mask is known to be zero for bits that V
1892/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00001893///
1894/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001895/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00001896/// where V is a vector, the mask, known zero, and known one values are the
1897/// same width as the vector element, and the bit is set only if it is true
1898/// for all of the elements in the vector.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001899bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
1900 unsigned Depth, const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +00001901 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001902 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001903 return (KnownZero & Mask) == Mask;
1904}
1905
1906
1907
Sanjay Patelaee84212014-11-04 16:27:42 +00001908/// Return the number of times the sign bit of the register is replicated into
1909/// the other bits. We know that at least 1 bit is always equal to the sign bit
1910/// (itself), but other cases can give us information. For example, immediately
1911/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
1912/// other, so we return 3.
Chris Lattner965c7692008-06-02 01:18:21 +00001913///
1914/// 'Op' must have a scalar integer type.
1915///
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001916unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, unsigned Depth,
1917 const Query &Q) {
1918 unsigned TyBits = DL.getTypeSizeInBits(V->getType()->getScalarType());
Chris Lattner965c7692008-06-02 01:18:21 +00001919 unsigned Tmp, Tmp2;
1920 unsigned FirstAnswer = 1;
1921
Jay Foada0653a32014-05-14 21:14:37 +00001922 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00001923 // below.
1924
Chris Lattner965c7692008-06-02 01:18:21 +00001925 if (Depth == 6)
1926 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00001927
Dan Gohman80ca01c2009-07-17 20:47:02 +00001928 Operator *U = dyn_cast<Operator>(V);
1929 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001930 default: break;
1931 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00001932 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001933 return ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00001934
Nadav Rotemc99a3872015-03-06 00:23:58 +00001935 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00001936 const APInt *Denominator;
1937 // sdiv X, C -> adds log(C) sign bits.
1938 if (match(U->getOperand(1), m_APInt(Denominator))) {
1939
1940 // Ignore non-positive denominator.
1941 if (!Denominator->isStrictlyPositive())
1942 break;
1943
1944 // Calculate the incoming numerator bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001945 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00001946
1947 // Add floor(log(C)) bits to the numerator bits.
1948 return std::min(TyBits, NumBits + Denominator->logBase2());
1949 }
1950 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00001951 }
1952
1953 case Instruction::SRem: {
1954 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00001955 // srem X, C -> we know that the result is within [-C+1,C) when C is a
1956 // positive constant. This let us put a lower bound on the number of sign
1957 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00001958 if (match(U->getOperand(1), m_APInt(Denominator))) {
1959
1960 // Ignore non-positive denominator.
1961 if (!Denominator->isStrictlyPositive())
1962 break;
1963
1964 // Calculate the incoming numerator bits. SRem by a positive constant
1965 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001966 unsigned NumrBits =
1967 ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00001968
1969 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00001970 // denominator. Given that the denominator is positive, there are two
1971 // cases:
1972 //
1973 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
1974 // (1 << ceilLogBase2(C)).
1975 //
1976 // 2. the numerator is negative. Then the result range is (-C,0] and
1977 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
1978 //
1979 // Thus a lower bound on the number of sign bits is `TyBits -
1980 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00001981
Sanjoy Dase561fee2015-03-25 22:33:53 +00001982 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00001983 return std::max(NumrBits, ResBits);
1984 }
1985 break;
1986 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00001987
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001988 case Instruction::AShr: {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001989 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001990 // ashr X, C -> adds C sign bits. Vectors too.
1991 const APInt *ShAmt;
1992 if (match(U->getOperand(1), m_APInt(ShAmt))) {
1993 Tmp += ShAmt->getZExtValue();
Chris Lattner965c7692008-06-02 01:18:21 +00001994 if (Tmp > TyBits) Tmp = TyBits;
1995 }
1996 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001997 }
1998 case Instruction::Shl: {
1999 const APInt *ShAmt;
2000 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00002001 // shl destroys sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002002 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002003 Tmp2 = ShAmt->getZExtValue();
2004 if (Tmp2 >= TyBits || // Bad shift.
2005 Tmp2 >= Tmp) break; // Shifted all sign bits out.
2006 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00002007 }
2008 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002009 }
Chris Lattner965c7692008-06-02 01:18:21 +00002010 case Instruction::And:
2011 case Instruction::Or:
2012 case Instruction::Xor: // NOT is handled here.
2013 // Logical binary ops preserve the number of sign bits at the worst.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002014 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002015 if (Tmp != 1) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002016 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002017 FirstAnswer = std::min(Tmp, Tmp2);
2018 // We computed what we know about the sign bits as our first
2019 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002020 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002021 }
2022 break;
2023
2024 case Instruction::Select:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002025 Tmp = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002026 if (Tmp == 1) return 1; // Early out.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002027 Tmp2 = ComputeNumSignBits(U->getOperand(2), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002028 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002029
Chris Lattner965c7692008-06-02 01:18:21 +00002030 case Instruction::Add:
2031 // Add can have at most one carry bit. Thus we know that the output
2032 // is, at worst, one more bit than the inputs.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002033 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002034 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00002035
Chris Lattner965c7692008-06-02 01:18:21 +00002036 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002037 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002038 if (CRHS->isAllOnesValue()) {
2039 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002040 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL, Depth + 1,
2041 Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002042
Chris Lattner965c7692008-06-02 01:18:21 +00002043 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2044 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002045 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002046 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002047
Chris Lattner965c7692008-06-02 01:18:21 +00002048 // If we are subtracting one from a positive number, there is no carry
2049 // out of the result.
2050 if (KnownZero.isNegative())
2051 return Tmp;
2052 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002053
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002054 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002055 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002056 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002057
Chris Lattner965c7692008-06-02 01:18:21 +00002058 case Instruction::Sub:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002059 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002060 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002061
Chris Lattner965c7692008-06-02 01:18:21 +00002062 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002063 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002064 if (CLHS->isNullValue()) {
2065 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002066 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, DL, Depth + 1,
2067 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002068 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2069 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002070 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002071 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002072
Chris Lattner965c7692008-06-02 01:18:21 +00002073 // If the input is known to be positive (the sign bit is known clear),
2074 // the output of the NEG has the same number of sign bits as the input.
2075 if (KnownZero.isNegative())
2076 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002077
Chris Lattner965c7692008-06-02 01:18:21 +00002078 // Otherwise, we treat this like a SUB.
2079 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002080
Chris Lattner965c7692008-06-02 01:18:21 +00002081 // Sub can have at most one carry bit. Thus we know that the output
2082 // is, at worst, one more bit than the inputs.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002083 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002084 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002085 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002086
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002087 case Instruction::PHI: {
2088 PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002089 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002090 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002091 if (NumIncomingValues > 4) break;
2092 // Unreachable blocks may have zero-operand PHI nodes.
2093 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002094
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002095 // Take the minimum of all incoming values. This can't infinitely loop
2096 // because of our depth threshold.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002097 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), DL, Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002098 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002099 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002100 Tmp = std::min(
2101 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), DL, Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002102 }
2103 return Tmp;
2104 }
2105
Chris Lattner965c7692008-06-02 01:18:21 +00002106 case Instruction::Trunc:
2107 // FIXME: it's tricky to do anything useful for this, but it is an important
2108 // case for targets like X86.
2109 break;
2110 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002111
Chris Lattner965c7692008-06-02 01:18:21 +00002112 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2113 // use this information.
2114 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002115 APInt Mask;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002116 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002117
Chris Lattner965c7692008-06-02 01:18:21 +00002118 if (KnownZero.isNegative()) { // sign bit is 0
2119 Mask = KnownZero;
2120 } else if (KnownOne.isNegative()) { // sign bit is 1;
2121 Mask = KnownOne;
2122 } else {
2123 // Nothing known.
2124 return FirstAnswer;
2125 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002126
Chris Lattner965c7692008-06-02 01:18:21 +00002127 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
2128 // the number of identical bits in the top of the input value.
2129 Mask = ~Mask;
2130 Mask <<= Mask.getBitWidth()-TyBits;
2131 // Return # leading zeros. We use 'min' here in case Val was zero before
2132 // shifting. We don't want to return '64' as for an i32 "0".
2133 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
2134}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002135
Sanjay Patelaee84212014-11-04 16:27:42 +00002136/// This function computes the integer multiple of Base that equals V.
2137/// If successful, it returns true and returns the multiple in
2138/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002139/// through SExt instructions only if LookThroughSExt is true.
2140bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002141 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002142 const unsigned MaxDepth = 6;
2143
Dan Gohman6a976bb2009-11-18 00:58:27 +00002144 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002145 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002146 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002147
Chris Lattner229907c2011-07-18 04:54:35 +00002148 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002149
Dan Gohman6a976bb2009-11-18 00:58:27 +00002150 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002151
2152 if (Base == 0)
2153 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002154
Victor Hernandez47444882009-11-10 08:28:35 +00002155 if (Base == 1) {
2156 Multiple = V;
2157 return true;
2158 }
2159
2160 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2161 Constant *BaseVal = ConstantInt::get(T, Base);
2162 if (CO && CO == BaseVal) {
2163 // Multiple is 1.
2164 Multiple = ConstantInt::get(T, 1);
2165 return true;
2166 }
2167
2168 if (CI && CI->getZExtValue() % Base == 0) {
2169 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002170 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002171 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002172
Victor Hernandez47444882009-11-10 08:28:35 +00002173 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002174
Victor Hernandez47444882009-11-10 08:28:35 +00002175 Operator *I = dyn_cast<Operator>(V);
2176 if (!I) return false;
2177
2178 switch (I->getOpcode()) {
2179 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002180 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002181 if (!LookThroughSExt) return false;
2182 // otherwise fall through to ZExt
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002183 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002184 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2185 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002186 case Instruction::Shl:
2187 case Instruction::Mul: {
2188 Value *Op0 = I->getOperand(0);
2189 Value *Op1 = I->getOperand(1);
2190
2191 if (I->getOpcode() == Instruction::Shl) {
2192 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2193 if (!Op1CI) return false;
2194 // Turn Op0 << Op1 into Op0 * 2^Op1
2195 APInt Op1Int = Op1CI->getValue();
2196 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002197 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002198 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002199 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002200 }
2201
Craig Topper9f008862014-04-15 04:59:12 +00002202 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002203 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2204 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2205 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002206 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002207 MulC->getType()->getPrimitiveSizeInBits())
2208 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002209 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002210 MulC->getType()->getPrimitiveSizeInBits())
2211 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002212
Chris Lattner72d283c2010-09-05 17:20:46 +00002213 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2214 Multiple = ConstantExpr::getMul(MulC, Op1C);
2215 return true;
2216 }
Victor Hernandez47444882009-11-10 08:28:35 +00002217
2218 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2219 if (Mul0CI->getValue() == 1) {
2220 // V == Base * Op1, so return Op1
2221 Multiple = Op1;
2222 return true;
2223 }
2224 }
2225
Craig Topper9f008862014-04-15 04:59:12 +00002226 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002227 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2228 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2229 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002230 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002231 MulC->getType()->getPrimitiveSizeInBits())
2232 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002233 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002234 MulC->getType()->getPrimitiveSizeInBits())
2235 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002236
Chris Lattner72d283c2010-09-05 17:20:46 +00002237 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2238 Multiple = ConstantExpr::getMul(MulC, Op0C);
2239 return true;
2240 }
Victor Hernandez47444882009-11-10 08:28:35 +00002241
2242 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2243 if (Mul1CI->getValue() == 1) {
2244 // V == Base * Op0, so return Op0
2245 Multiple = Op0;
2246 return true;
2247 }
2248 }
Victor Hernandez47444882009-11-10 08:28:35 +00002249 }
2250 }
2251
2252 // We could not determine if V is a multiple of Base.
2253 return false;
2254}
2255
Sanjay Patelaee84212014-11-04 16:27:42 +00002256/// Return true if we can prove that the specified FP value is never equal to
2257/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002258///
2259/// NOTE: this function will need to be revisited when we support non-default
2260/// rounding modes!
2261///
2262bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
2263 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2264 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002265
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002266 // FIXME: Magic number! At the least, this should be given a name because it's
2267 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to
2268 // expose it as a parameter, so it can be used for testing / experimenting.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002269 if (Depth == 6)
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002270 return false; // Limit search depth.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002271
Dan Gohman80ca01c2009-07-17 20:47:02 +00002272 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00002273 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002274
2275 // Check if the nsz fast-math flag is set
2276 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2277 if (FPO->hasNoSignedZeros())
2278 return true;
2279
Chris Lattnera12a6de2008-06-02 01:29:46 +00002280 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00002281 if (I->getOpcode() == Instruction::FAdd)
2282 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2283 if (CFP->isNullValue())
2284 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002285
Chris Lattnera12a6de2008-06-02 01:29:46 +00002286 // sitofp and uitofp turn into +0.0 for zero.
2287 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2288 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002289
Chris Lattnera12a6de2008-06-02 01:29:46 +00002290 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2291 // sqrt(-0.0) = -0.0, no other negative results are possible.
2292 if (II->getIntrinsicID() == Intrinsic::sqrt)
Gabor Greif1abbde32010-06-23 23:38:07 +00002293 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
Craig Topper1bef2c82012-12-22 19:15:35 +00002294
Chris Lattnera12a6de2008-06-02 01:29:46 +00002295 if (const CallInst *CI = dyn_cast<CallInst>(I))
2296 if (const Function *F = CI->getCalledFunction()) {
2297 if (F->isDeclaration()) {
Daniel Dunbarca414c72009-07-26 08:34:35 +00002298 // abs(x) != -0.0
2299 if (F->getName() == "abs") return true;
Dale Johannesenf6a987b2009-09-25 20:54:50 +00002300 // fabs[lf](x) != -0.0
2301 if (F->getName() == "fabs") return true;
2302 if (F->getName() == "fabsf") return true;
2303 if (F->getName() == "fabsl") return true;
2304 if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
2305 F->getName() == "sqrtl")
Gabor Greif1abbde32010-06-23 23:38:07 +00002306 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
Chris Lattnera12a6de2008-06-02 01:29:46 +00002307 }
2308 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002309
Chris Lattnera12a6de2008-06-02 01:29:46 +00002310 return false;
2311}
2312
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002313bool llvm::CannotBeOrderedLessThanZero(const Value *V, unsigned Depth) {
2314 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2315 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
2316
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002317 // FIXME: Magic number! At the least, this should be given a name because it's
2318 // used similarly in CannotBeNegativeZero(). A better fix may be to
2319 // expose it as a parameter, so it can be used for testing / experimenting.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002320 if (Depth == 6)
2321 return false; // Limit search depth.
2322
2323 const Operator *I = dyn_cast<Operator>(V);
2324 if (!I) return false;
2325
2326 switch (I->getOpcode()) {
2327 default: break;
2328 case Instruction::FMul:
2329 // x*x is always non-negative or a NaN.
2330 if (I->getOperand(0) == I->getOperand(1))
2331 return true;
2332 // Fall through
2333 case Instruction::FAdd:
2334 case Instruction::FDiv:
2335 case Instruction::FRem:
2336 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) &&
2337 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1);
2338 case Instruction::FPExt:
2339 case Instruction::FPTrunc:
2340 // Widening/narrowing never change sign.
2341 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1);
2342 case Instruction::Call:
2343 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2344 switch (II->getIntrinsicID()) {
2345 default: break;
2346 case Intrinsic::exp:
2347 case Intrinsic::exp2:
2348 case Intrinsic::fabs:
2349 case Intrinsic::sqrt:
2350 return true;
2351 case Intrinsic::powi:
2352 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
2353 // powi(x,n) is non-negative if n is even.
2354 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
2355 return true;
2356 }
2357 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1);
2358 case Intrinsic::fma:
2359 case Intrinsic::fmuladd:
2360 // x*x+y is non-negative if y is non-negative.
2361 return I->getOperand(0) == I->getOperand(1) &&
2362 CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1);
2363 }
2364 break;
2365 }
2366 return false;
2367}
2368
Sanjay Patelaee84212014-11-04 16:27:42 +00002369/// If the specified value can be set by repeating the same byte in memory,
2370/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002371/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2372/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2373/// byte store (e.g. i16 0x1234), return null.
2374Value *llvm::isBytewiseValue(Value *V) {
2375 // All byte-wide stores are splatable, even of arbitrary variables.
2376 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002377
2378 // Handle 'null' ConstantArrayZero etc.
2379 if (Constant *C = dyn_cast<Constant>(V))
2380 if (C->isNullValue())
2381 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002382
Chris Lattner9cb10352010-12-26 20:15:01 +00002383 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002384 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002385 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2386 if (CFP->getType()->isFloatTy())
2387 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2388 if (CFP->getType()->isDoubleTy())
2389 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2390 // Don't handle long double formats, which have strange constraints.
2391 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002392
Benjamin Kramer17d90152015-02-07 19:29:02 +00002393 // We can handle constant integers that are multiple of 8 bits.
Chris Lattner9cb10352010-12-26 20:15:01 +00002394 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00002395 if (CI->getBitWidth() % 8 == 0) {
2396 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Craig Topper1bef2c82012-12-22 19:15:35 +00002397
Benjamin Kramerb4b51502015-03-25 16:49:59 +00002398 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00002399 return nullptr;
2400 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00002401 }
2402 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002403
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002404 // A ConstantDataArray/Vector is splatable if all its members are equal and
2405 // also splatable.
2406 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2407 Value *Elt = CA->getElementAsConstant(0);
2408 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002409 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002410 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002411
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002412 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2413 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002414 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002415
Chris Lattner9cb10352010-12-26 20:15:01 +00002416 return Val;
2417 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002418
Chris Lattner9cb10352010-12-26 20:15:01 +00002419 // Conceptually, we could handle things like:
2420 // %a = zext i8 %X to i16
2421 // %b = shl i16 %a, 8
2422 // %c = or i16 %a, %b
2423 // but until there is an example that actually needs this, it doesn't seem
2424 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002425 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002426}
2427
2428
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002429// This is the recursive version of BuildSubAggregate. It takes a few different
2430// arguments. Idxs is the index within the nested struct From that we are
2431// looking at now (which is of type IndexedType). IdxSkip is the number of
2432// indices from Idxs that should be left out when inserting into the resulting
2433// struct. To is the result struct built so far, new insertvalue instructions
2434// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002435static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002436 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002437 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002438 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00002439 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002440 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002441 // Save the original To argument so we can modify it
2442 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002443 // General case, the type indexed by Idxs is a struct
2444 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2445 // Process each struct element recursively
2446 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002447 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002448 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002449 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002450 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002451 if (!To) {
2452 // Couldn't find any inserted value for this index? Cleanup
2453 while (PrevTo != OrigTo) {
2454 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2455 PrevTo = Del->getAggregateOperand();
2456 Del->eraseFromParent();
2457 }
2458 // Stop processing elements
2459 break;
2460 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002461 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002462 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002463 if (To)
2464 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002465 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002466 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2467 // the struct's elements had a value that was inserted directly. In the latter
2468 // case, perhaps we can't determine each of the subelements individually, but
2469 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002470
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002471 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002472 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002473
2474 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002475 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002476
2477 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002478 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00002479 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002480}
2481
2482// This helper takes a nested struct and extracts a part of it (which is again a
2483// struct) into a new value. For example, given the struct:
2484// { a, { b, { c, d }, e } }
2485// and the indices "1, 1" this returns
2486// { c, d }.
2487//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002488// It does this by inserting an insertvalue for each element in the resulting
2489// struct, as opposed to just inserting a single struct. This will only work if
2490// each of the elements of the substruct are known (ie, inserted into From by an
2491// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002492//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002493// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002494static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002495 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002496 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002497 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002498 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002499 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002500 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002501 unsigned IdxSkip = Idxs.size();
2502
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002503 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002504}
2505
Sanjay Patelaee84212014-11-04 16:27:42 +00002506/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002507/// the scalar value indexed is already around as a register, for example if it
2508/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002509///
2510/// If InsertBefore is not null, this function will duplicate (modified)
2511/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002512Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2513 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002514 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002515 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002516 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002517 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002518 // We have indices, so V should have an indexable type.
2519 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2520 "Not looking at a struct or array?");
2521 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2522 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002523
Chris Lattner67058832012-01-25 06:48:06 +00002524 if (Constant *C = dyn_cast<Constant>(V)) {
2525 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002526 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002527 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2528 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002529
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002530 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002531 // Loop the indices for the insertvalue instruction in parallel with the
2532 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002533 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002534 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2535 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002536 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002537 // We can't handle this without inserting insertvalues
2538 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002539 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002540
2541 // The requested index identifies a part of a nested aggregate. Handle
2542 // this specially. For example,
2543 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2544 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2545 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2546 // This can be changed into
2547 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2548 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2549 // which allows the unused 0,0 element from the nested struct to be
2550 // removed.
2551 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2552 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002553 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002554
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002555 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002556 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002557 // looking for, then.
2558 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002559 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002560 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002561 }
2562 // If we end up here, the indices of the insertvalue match with those
2563 // requested (though possibly only partially). Now we recursively look at
2564 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002565 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002566 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002567 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002568 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002569
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002570 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002571 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002572 // something else, we can extract from that something else directly instead.
2573 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00002574
2575 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00002576 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002577 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00002578 SmallVector<unsigned, 5> Idxs;
2579 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002580 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00002581 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00002582
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002583 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002584 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002585
Craig Topper1bef2c82012-12-22 19:15:35 +00002586 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002587 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00002588
Jay Foad57aa6362011-07-13 10:26:04 +00002589 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002590 }
2591 // Otherwise, we don't know (such as, extracting from a function return value
2592 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00002593 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002594}
Evan Chengda3db112008-06-30 07:31:25 +00002595
Sanjay Patelaee84212014-11-04 16:27:42 +00002596/// Analyze the specified pointer to see if it can be expressed as a base
2597/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00002598Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002599 const DataLayout &DL) {
2600 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00002601 APInt ByteOffset(BitWidth, 0);
2602 while (1) {
2603 if (Ptr->getType()->isVectorTy())
2604 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002605
Nuno Lopes368c4d02012-12-31 20:48:35 +00002606 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002607 APInt GEPOffset(BitWidth, 0);
2608 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2609 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002610
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002611 ByteOffset += GEPOffset;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002612
Nuno Lopes368c4d02012-12-31 20:48:35 +00002613 Ptr = GEP->getPointerOperand();
Matt Arsenaultfd78d0c2014-07-14 22:39:22 +00002614 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2615 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002616 Ptr = cast<Operator>(Ptr)->getOperand(0);
2617 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
2618 if (GA->mayBeOverridden())
2619 break;
2620 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00002621 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002622 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00002623 }
2624 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00002625 Offset = ByteOffset.getSExtValue();
2626 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00002627}
2628
2629
Sanjay Patelaee84212014-11-04 16:27:42 +00002630/// This function computes the length of a null-terminated C string pointed to
2631/// by V. If successful, it returns true and returns the string in Str.
2632/// If unsuccessful, it returns false.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002633bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2634 uint64_t Offset, bool TrimAtNul) {
2635 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00002636
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002637 // Look through bitcast instructions and geps.
2638 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00002639
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002640 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002641 // offset.
2642 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
Evan Chengda3db112008-06-30 07:31:25 +00002643 // Make sure the GEP has exactly three arguments.
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002644 if (GEP->getNumOperands() != 3)
2645 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002646
Evan Chengda3db112008-06-30 07:31:25 +00002647 // Make sure the index-ee is a pointer to array of i8.
Chris Lattner229907c2011-07-18 04:54:35 +00002648 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
2649 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
Craig Topper9f008862014-04-15 04:59:12 +00002650 if (!AT || !AT->getElementType()->isIntegerTy(8))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002651 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002652
Evan Chengda3db112008-06-30 07:31:25 +00002653 // Check to make sure that the first operand of the GEP is an integer and
2654 // has value 0 so that we are sure we're indexing into the initializer.
Dan Gohman0b4df042010-04-14 22:20:45 +00002655 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
Craig Topper9f008862014-04-15 04:59:12 +00002656 if (!FirstIdx || !FirstIdx->isZero())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002657 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002658
Evan Chengda3db112008-06-30 07:31:25 +00002659 // If the second index isn't a ConstantInt, then this is a variable index
2660 // into the array. If this occurs, we can't say anything meaningful about
2661 // the string.
2662 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00002663 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00002664 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002665 else
2666 return false;
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002667 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
2668 TrimAtNul);
Evan Chengda3db112008-06-30 07:31:25 +00002669 }
Nick Lewycky46209882011-10-20 00:34:35 +00002670
Evan Chengda3db112008-06-30 07:31:25 +00002671 // The GEP instruction, constant or instruction, must reference a global
2672 // variable that is a constant and is initialized. The referenced constant
2673 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002674 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00002675 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002676 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002677
Nick Lewycky46209882011-10-20 00:34:35 +00002678 // Handle the all-zeros case
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002679 if (GV->getInitializer()->isNullValue()) {
Evan Chengda3db112008-06-30 07:31:25 +00002680 // This is a degenerate case. The initializer is constant zero so the
2681 // length of the string must be zero.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002682 Str = "";
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002683 return true;
2684 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002685
Evan Chengda3db112008-06-30 07:31:25 +00002686 // Must be a Constant Array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002687 const ConstantDataArray *Array =
2688 dyn_cast<ConstantDataArray>(GV->getInitializer());
Craig Topper9f008862014-04-15 04:59:12 +00002689 if (!Array || !Array->isString())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002690 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002691
Evan Chengda3db112008-06-30 07:31:25 +00002692 // Get the number of elements in the array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002693 uint64_t NumElts = Array->getType()->getArrayNumElements();
2694
2695 // Start out with the entire array in the StringRef.
2696 Str = Array->getAsString();
2697
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002698 if (Offset > NumElts)
2699 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002700
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002701 // Skip over 'offset' bytes.
2702 Str = Str.substr(Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00002703
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002704 if (TrimAtNul) {
2705 // Trim off the \0 and anything after it. If the array is not nul
2706 // terminated, we just return the whole end of string. The client may know
2707 // some other way that the string is length-bound.
2708 Str = Str.substr(0, Str.find('\0'));
2709 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002710 return true;
Evan Chengda3db112008-06-30 07:31:25 +00002711}
Eric Christopher4899cbc2010-03-05 06:58:57 +00002712
2713// These next two are very similar to the above, but also look through PHI
2714// nodes.
2715// TODO: See if we can integrate these two together.
2716
Sanjay Patelaee84212014-11-04 16:27:42 +00002717/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002718/// the specified pointer, return 'len+1'. If we can't, return 0.
Craig Topper71b7b682014-08-21 05:55:13 +00002719static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00002720 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002721 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00002722
2723 // If this is a PHI node, there are two cases: either we have already seen it
2724 // or we haven't.
2725 if (PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00002726 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00002727 return ~0ULL; // already in the set.
2728
2729 // If it was new, see if all the input strings are the same length.
2730 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00002731 for (Value *IncValue : PN->incoming_values()) {
2732 uint64_t Len = GetStringLengthH(IncValue, PHIs);
Eric Christopher4899cbc2010-03-05 06:58:57 +00002733 if (Len == 0) return 0; // Unknown length -> unknown.
2734
2735 if (Len == ~0ULL) continue;
2736
2737 if (Len != LenSoFar && LenSoFar != ~0ULL)
2738 return 0; // Disagree -> unknown.
2739 LenSoFar = Len;
2740 }
2741
2742 // Success, all agree.
2743 return LenSoFar;
2744 }
2745
2746 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
2747 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
2748 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
2749 if (Len1 == 0) return 0;
2750 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
2751 if (Len2 == 0) return 0;
2752 if (Len1 == ~0ULL) return Len2;
2753 if (Len2 == ~0ULL) return Len1;
2754 if (Len1 != Len2) return 0;
2755 return Len1;
2756 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002757
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002758 // Otherwise, see if we can read the string.
2759 StringRef StrData;
2760 if (!getConstantStringInfo(V, StrData))
Eric Christopher4899cbc2010-03-05 06:58:57 +00002761 return 0;
2762
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002763 return StrData.size()+1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00002764}
2765
Sanjay Patelaee84212014-11-04 16:27:42 +00002766/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002767/// the specified pointer, return 'len+1'. If we can't, return 0.
2768uint64_t llvm::GetStringLength(Value *V) {
2769 if (!V->getType()->isPointerTy()) return 0;
2770
2771 SmallPtrSet<PHINode*, 32> PHIs;
2772 uint64_t Len = GetStringLengthH(V, PHIs);
2773 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
2774 // an empty string as a length.
2775 return Len == ~0ULL ? 1 : Len;
2776}
Dan Gohmana4fcd242010-12-15 20:02:24 +00002777
Adam Nemete2b885c2015-04-23 20:09:20 +00002778/// \brief \p PN defines a loop-variant pointer to an object. Check if the
2779/// previous iteration of the loop was referring to the same object as \p PN.
2780static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) {
2781 // Find the loop-defined value.
2782 Loop *L = LI->getLoopFor(PN->getParent());
2783 if (PN->getNumIncomingValues() != 2)
2784 return true;
2785
2786 // Find the value from previous iteration.
2787 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
2788 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
2789 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
2790 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
2791 return true;
2792
2793 // If a new pointer is loaded in the loop, the pointer references a different
2794 // object in every iteration. E.g.:
2795 // for (i)
2796 // int *p = a[i];
2797 // ...
2798 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
2799 if (!L->isLoopInvariant(Load->getPointerOperand()))
2800 return false;
2801 return true;
2802}
2803
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002804Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
2805 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00002806 if (!V->getType()->isPointerTy())
2807 return V;
2808 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
2809 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2810 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00002811 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
2812 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00002813 V = cast<Operator>(V)->getOperand(0);
2814 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
2815 if (GA->mayBeOverridden())
2816 return V;
2817 V = GA->getAliasee();
2818 } else {
Dan Gohman05b18f12010-12-15 20:49:55 +00002819 // See if InstructionSimplify knows any relevant tricks.
2820 if (Instruction *I = dyn_cast<Instruction>(V))
Chandler Carruth66b31302015-01-04 12:03:27 +00002821 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002822 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
Dan Gohman05b18f12010-12-15 20:49:55 +00002823 V = Simplified;
2824 continue;
2825 }
2826
Dan Gohmana4fcd242010-12-15 20:02:24 +00002827 return V;
2828 }
2829 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
2830 }
2831 return V;
2832}
Nick Lewycky3e334a42011-06-27 04:20:45 +00002833
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002834void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00002835 const DataLayout &DL, LoopInfo *LI,
2836 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002837 SmallPtrSet<Value *, 4> Visited;
2838 SmallVector<Value *, 4> Worklist;
2839 Worklist.push_back(V);
2840 do {
2841 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002842 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002843
David Blaikie70573dc2014-11-19 07:49:26 +00002844 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002845 continue;
2846
2847 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
2848 Worklist.push_back(SI->getTrueValue());
2849 Worklist.push_back(SI->getFalseValue());
2850 continue;
2851 }
2852
2853 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00002854 // If this PHI changes the underlying object in every iteration of the
2855 // loop, don't look through it. Consider:
2856 // int **A;
2857 // for (i) {
2858 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
2859 // Curr = A[i];
2860 // *Prev, *Curr;
2861 //
2862 // Prev is tracking Curr one iteration behind so they refer to different
2863 // underlying objects.
2864 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
2865 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00002866 for (Value *IncValue : PN->incoming_values())
2867 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002868 continue;
2869 }
2870
2871 Objects.push_back(P);
2872 } while (!Worklist.empty());
2873}
2874
Sanjay Patelaee84212014-11-04 16:27:42 +00002875/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00002876bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00002877 for (const User *U : V->users()) {
2878 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00002879 if (!II) return false;
2880
2881 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
2882 II->getIntrinsicID() != Intrinsic::lifetime_end)
2883 return false;
2884 }
2885 return true;
2886}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002887
Philip Reames5461d452015-04-23 17:36:48 +00002888static bool isDereferenceableFromAttribute(const Value *BV, APInt Offset,
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00002889 Type *Ty, const DataLayout &DL,
2890 const Instruction *CtxI,
2891 const DominatorTree *DT,
2892 const TargetLibraryInfo *TLI) {
Philip Reames5461d452015-04-23 17:36:48 +00002893 assert(Offset.isNonNegative() && "offset can't be negative");
2894 assert(Ty->isSized() && "must be sized");
2895
2896 APInt DerefBytes(Offset.getBitWidth(), 0);
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00002897 bool CheckForNonNull = false;
Philip Reames5461d452015-04-23 17:36:48 +00002898 if (const Argument *A = dyn_cast<Argument>(BV)) {
2899 DerefBytes = A->getDereferenceableBytes();
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00002900 if (!DerefBytes.getBoolValue()) {
2901 DerefBytes = A->getDereferenceableOrNullBytes();
2902 CheckForNonNull = true;
2903 }
Philip Reames5461d452015-04-23 17:36:48 +00002904 } else if (auto CS = ImmutableCallSite(BV)) {
2905 DerefBytes = CS.getDereferenceableBytes(0);
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00002906 if (!DerefBytes.getBoolValue()) {
2907 DerefBytes = CS.getDereferenceableOrNullBytes(0);
2908 CheckForNonNull = true;
2909 }
Sanjoy Dasf9995472015-05-19 20:10:19 +00002910 } else if (const LoadInst *LI = dyn_cast<LoadInst>(BV)) {
2911 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
2912 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
2913 DerefBytes = CI->getLimitedValue();
2914 }
2915 if (!DerefBytes.getBoolValue()) {
2916 if (MDNode *MD =
2917 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
2918 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
2919 DerefBytes = CI->getLimitedValue();
2920 }
2921 CheckForNonNull = true;
2922 }
Philip Reames5461d452015-04-23 17:36:48 +00002923 }
2924
2925 if (DerefBytes.getBoolValue())
2926 if (DerefBytes.uge(Offset + DL.getTypeStoreSize(Ty)))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00002927 if (!CheckForNonNull || isKnownNonNullAt(BV, CtxI, DT, TLI))
2928 return true;
2929
Philip Reames5461d452015-04-23 17:36:48 +00002930 return false;
2931}
2932
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00002933static bool isDereferenceableFromAttribute(const Value *V, const DataLayout &DL,
2934 const Instruction *CtxI,
2935 const DominatorTree *DT,
2936 const TargetLibraryInfo *TLI) {
Philip Reames5461d452015-04-23 17:36:48 +00002937 Type *VTy = V->getType();
2938 Type *Ty = VTy->getPointerElementType();
2939 if (!Ty->isSized())
2940 return false;
2941
2942 APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0);
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00002943 return isDereferenceableFromAttribute(V, Offset, Ty, DL, CtxI, DT, TLI);
Philip Reames5461d452015-04-23 17:36:48 +00002944}
2945
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00002946static bool isAligned(const Value *Base, APInt Offset, unsigned Align,
2947 const DataLayout &DL) {
2948 APInt BaseAlign(Offset.getBitWidth(), 0);
2949 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Base))
2950 BaseAlign = AI->getAlignment();
2951 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Base))
2952 BaseAlign = GV->getAlignment();
2953 else if (const Argument *A = dyn_cast<Argument>(Base))
2954 BaseAlign = A->getParamAlignment();
Artur Pilipenko84bc62f2015-09-18 12:33:31 +00002955 else if (auto CS = ImmutableCallSite(Base))
2956 BaseAlign = CS.getAttributes().getParamAlignment(AttributeSet::ReturnIndex);
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00002957
2958 if (!BaseAlign) {
2959 Type *Ty = Base->getType()->getPointerElementType();
2960 BaseAlign = DL.getABITypeAlignment(Ty);
2961 }
2962
2963 APInt Alignment(Offset.getBitWidth(), Align);
2964
2965 assert(Alignment.isPowerOf2() && "must be a power of 2!");
2966 return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1));
2967}
2968
2969static bool isAligned(const Value *Base, unsigned Align, const DataLayout &DL) {
2970 APInt Offset(DL.getTypeStoreSizeInBits(Base->getType()), 0);
2971 return isAligned(Base, Offset, Align, DL);
2972}
2973
Philip Reames5461d452015-04-23 17:36:48 +00002974/// Test if V is always a pointer to allocated and suitably aligned memory for
2975/// a simple load or store.
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00002976static bool isDereferenceableAndAlignedPointer(
2977 const Value *V, unsigned Align, const DataLayout &DL,
2978 const Instruction *CtxI, const DominatorTree *DT,
2979 const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited) {
Philip Reames5461d452015-04-23 17:36:48 +00002980 // Note that it is not safe to speculate into a malloc'd region because
2981 // malloc may return null.
2982
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00002983 // These are obviously ok if aligned.
2984 if (isa<AllocaInst>(V))
2985 return isAligned(V, Align, DL);
Philip Reames5461d452015-04-23 17:36:48 +00002986
2987 // It's not always safe to follow a bitcast, for example:
2988 // bitcast i8* (alloca i8) to i32*
2989 // would result in a 4-byte load from a 1-byte alloca. However,
2990 // if we're casting from a pointer from a type of larger size
2991 // to a type of smaller size (or the same size), and the alignment
2992 // is at least as large as for the resulting pointer type, then
2993 // we can look through the bitcast.
2994 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) {
2995 Type *STy = BC->getSrcTy()->getPointerElementType(),
2996 *DTy = BC->getDestTy()->getPointerElementType();
2997 if (STy->isSized() && DTy->isSized() &&
2998 (DL.getTypeStoreSize(STy) >= DL.getTypeStoreSize(DTy)) &&
2999 (DL.getABITypeAlignment(STy) >= DL.getABITypeAlignment(DTy)))
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003000 return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, DL,
3001 CtxI, DT, TLI, Visited);
Philip Reames5461d452015-04-23 17:36:48 +00003002 }
3003
3004 // Global variables which can't collapse to null are ok.
3005 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003006 if (!GV->hasExternalWeakLinkage())
3007 return isAligned(V, Align, DL);
Philip Reames5461d452015-04-23 17:36:48 +00003008
3009 // byval arguments are okay.
3010 if (const Argument *A = dyn_cast<Argument>(V))
3011 if (A->hasByValAttr())
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003012 return isAligned(V, Align, DL);
3013
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003014 if (isDereferenceableFromAttribute(V, DL, CtxI, DT, TLI))
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003015 return isAligned(V, Align, DL);
Philip Reames5461d452015-04-23 17:36:48 +00003016
3017 // For GEPs, determine if the indexing lands within the allocated object.
3018 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
Artur Pilipenko7fad7e52015-06-08 11:58:13 +00003019 Type *VTy = GEP->getType();
3020 Type *Ty = VTy->getPointerElementType();
3021 const Value *Base = GEP->getPointerOperand();
3022
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003023 // Conservatively require that the base pointer be fully dereferenceable
3024 // and aligned.
Artur Pilipenko7fad7e52015-06-08 11:58:13 +00003025 if (!Visited.insert(Base).second)
Philip Reames5461d452015-04-23 17:36:48 +00003026 return false;
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003027 if (!isDereferenceableAndAlignedPointer(Base, Align, DL, CtxI, DT, TLI,
3028 Visited))
Philip Reames5461d452015-04-23 17:36:48 +00003029 return false;
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003030
Artur Pilipenko7fad7e52015-06-08 11:58:13 +00003031 APInt Offset(DL.getPointerTypeSizeInBits(VTy), 0);
3032 if (!GEP->accumulateConstantOffset(DL, Offset))
3033 return false;
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003034
3035 // Check if the load is within the bounds of the underlying object
3036 // and offset is aligned.
Artur Pilipenko7fad7e52015-06-08 11:58:13 +00003037 uint64_t LoadSize = DL.getTypeStoreSize(Ty);
3038 Type *BaseType = Base->getType()->getPointerElementType();
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003039 assert(isPowerOf2_32(Align) && "must be a power of 2!");
3040 return (Offset + LoadSize).ule(DL.getTypeAllocSize(BaseType)) &&
3041 !(Offset & APInt(Offset.getBitWidth(), Align-1));
Philip Reames5461d452015-04-23 17:36:48 +00003042 }
3043
3044 // For gc.relocate, look through relocations
3045 if (const IntrinsicInst *I = dyn_cast<IntrinsicInst>(V))
3046 if (I->getIntrinsicID() == Intrinsic::experimental_gc_relocate) {
3047 GCRelocateOperands RelocateInst(I);
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003048 return isDereferenceableAndAlignedPointer(
3049 RelocateInst.getDerivedPtr(), Align, DL, CtxI, DT, TLI, Visited);
Philip Reames5461d452015-04-23 17:36:48 +00003050 }
3051
3052 if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003053 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, DL,
3054 CtxI, DT, TLI, Visited);
Philip Reames5461d452015-04-23 17:36:48 +00003055
3056 // If we don't know, assume the worst.
3057 return false;
3058}
3059
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003060bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align,
3061 const DataLayout &DL,
3062 const Instruction *CtxI,
3063 const DominatorTree *DT,
3064 const TargetLibraryInfo *TLI) {
Philip Reames5461d452015-04-23 17:36:48 +00003065 // When dereferenceability information is provided by a dereferenceable
3066 // attribute, we know exactly how many bytes are dereferenceable. If we can
3067 // determine the exact offset to the attributed variable, we can use that
3068 // information here.
3069 Type *VTy = V->getType();
3070 Type *Ty = VTy->getPointerElementType();
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003071
3072 // Require ABI alignment for loads without alignment specification
3073 if (Align == 0)
3074 Align = DL.getABITypeAlignment(Ty);
3075
Philip Reames5461d452015-04-23 17:36:48 +00003076 if (Ty->isSized()) {
3077 APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0);
3078 const Value *BV = V->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003079
Philip Reames5461d452015-04-23 17:36:48 +00003080 if (Offset.isNonNegative())
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003081 if (isDereferenceableFromAttribute(BV, Offset, Ty, DL, CtxI, DT, TLI) &&
3082 isAligned(BV, Offset, Align, DL))
Philip Reames5461d452015-04-23 17:36:48 +00003083 return true;
3084 }
3085
3086 SmallPtrSet<const Value *, 32> Visited;
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003087 return ::isDereferenceableAndAlignedPointer(V, Align, DL, CtxI, DT, TLI,
3088 Visited);
3089}
3090
3091bool llvm::isDereferenceablePointer(const Value *V, const DataLayout &DL,
3092 const Instruction *CtxI,
3093 const DominatorTree *DT,
3094 const TargetLibraryInfo *TLI) {
3095 return isDereferenceableAndAlignedPointer(V, 1, DL, CtxI, DT, TLI);
Philip Reames5461d452015-04-23 17:36:48 +00003096}
3097
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003098bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3099 const Instruction *CtxI,
3100 const DominatorTree *DT,
3101 const TargetLibraryInfo *TLI) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00003102 const Operator *Inst = dyn_cast<Operator>(V);
3103 if (!Inst)
3104 return false;
3105
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003106 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3107 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3108 if (C->canTrap())
3109 return false;
3110
3111 switch (Inst->getOpcode()) {
3112 default:
3113 return true;
3114 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00003115 case Instruction::URem: {
3116 // x / y is undefined if y == 0.
3117 const APInt *V;
3118 if (match(Inst->getOperand(1), m_APInt(V)))
3119 return *V != 0;
3120 return false;
3121 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003122 case Instruction::SDiv:
3123 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00003124 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00003125 const APInt *Numerator, *Denominator;
3126 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3127 return false;
3128 // We cannot hoist this division if the denominator is 0.
3129 if (*Denominator == 0)
3130 return false;
3131 // It's safe to hoist if the denominator is not 0 or -1.
3132 if (*Denominator != -1)
3133 return true;
3134 // At this point we know that the denominator is -1. It is safe to hoist as
3135 // long we know that the numerator is not INT_MIN.
3136 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3137 return !Numerator->isMinSignedValue();
3138 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00003139 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003140 }
3141 case Instruction::Load: {
3142 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00003143 if (!LI->isUnordered() ||
3144 // Speculative load may create a race that did not exist in the source.
3145 LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003146 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003147 const DataLayout &DL = LI->getModule()->getDataLayout();
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003148 return isDereferenceableAndAlignedPointer(
3149 LI->getPointerOperand(), LI->getAlignment(), DL, CtxI, DT, TLI);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003150 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003151 case Instruction::Call: {
David Majnemer0a92f862015-08-28 21:13:39 +00003152 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3153 switch (II->getIntrinsicID()) {
3154 // These synthetic intrinsics have no side-effects and just mark
3155 // information about their operands.
3156 // FIXME: There are other no-op synthetic instructions that potentially
3157 // should be considered at least *safe* to speculate...
3158 case Intrinsic::dbg_declare:
3159 case Intrinsic::dbg_value:
3160 return true;
3161
3162 case Intrinsic::bswap:
3163 case Intrinsic::ctlz:
3164 case Intrinsic::ctpop:
3165 case Intrinsic::cttz:
3166 case Intrinsic::objectsize:
3167 case Intrinsic::sadd_with_overflow:
3168 case Intrinsic::smul_with_overflow:
3169 case Intrinsic::ssub_with_overflow:
3170 case Intrinsic::uadd_with_overflow:
3171 case Intrinsic::umul_with_overflow:
3172 case Intrinsic::usub_with_overflow:
3173 return true;
3174 // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set
3175 // errno like libm sqrt would.
3176 case Intrinsic::sqrt:
3177 case Intrinsic::fma:
3178 case Intrinsic::fmuladd:
3179 case Intrinsic::fabs:
3180 case Intrinsic::minnum:
3181 case Intrinsic::maxnum:
3182 return true;
3183 // TODO: some fp intrinsics are marked as having the same error handling
3184 // as libm. They're safe to speculate when they won't error.
3185 // TODO: are convert_{from,to}_fp16 safe?
3186 // TODO: can we list target-specific intrinsics here?
3187 default: break;
3188 }
3189 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003190 return false; // The called function could have undefined behavior or
David Majnemer0a92f862015-08-28 21:13:39 +00003191 // side-effects, even if marked readnone nounwind.
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003192 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003193 case Instruction::VAArg:
3194 case Instruction::Alloca:
3195 case Instruction::Invoke:
3196 case Instruction::PHI:
3197 case Instruction::Store:
3198 case Instruction::Ret:
3199 case Instruction::Br:
3200 case Instruction::IndirectBr:
3201 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003202 case Instruction::Unreachable:
3203 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003204 case Instruction::AtomicRMW:
3205 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003206 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003207 case Instruction::Resume:
David Majnemer654e1302015-07-31 17:58:14 +00003208 case Instruction::CatchPad:
3209 case Instruction::CatchEndPad:
3210 case Instruction::CatchRet:
3211 case Instruction::CleanupPad:
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00003212 case Instruction::CleanupEndPad:
David Majnemer654e1302015-07-31 17:58:14 +00003213 case Instruction::CleanupRet:
3214 case Instruction::TerminatePad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003215 return false; // Misc instructions which have effects
3216 }
3217}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003218
Quentin Colombet6443cce2015-08-06 18:44:34 +00003219bool llvm::mayBeMemoryDependent(const Instruction &I) {
3220 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3221}
3222
Sanjay Patelaee84212014-11-04 16:27:42 +00003223/// Return true if we know that the specified value is never null.
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003224bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
Chen Li0d043b52015-09-14 18:10:43 +00003225 assert(V->getType()->isPointerTy() && "V must be pointer type");
3226
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003227 // Alloca never returns null, malloc might.
3228 if (isa<AllocaInst>(V)) return true;
3229
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003230 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003231 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003232 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003233
Pete Cooper6b716212015-08-27 03:16:29 +00003234 // A global variable in address space 0 is non null unless extern weak.
3235 // Other address spaces may have null as a valid address for a global,
3236 // so we can't assume anything.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003237 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
Pete Cooper6b716212015-08-27 03:16:29 +00003238 return !GV->hasExternalWeakLinkage() &&
3239 GV->getType()->getAddressSpace() == 0;
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003240
Philip Reamescdb72f32014-10-20 22:40:55 +00003241 // A Load tagged w/nonnull metadata is never null.
3242 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
Philip Reames5a3f5f72014-10-21 00:13:20 +00003243 return LI->getMetadata(LLVMContext::MD_nonnull);
Philip Reamescdb72f32014-10-20 22:40:55 +00003244
Benjamin Kramer3a09ef62015-04-10 14:50:08 +00003245 if (auto CS = ImmutableCallSite(V))
Hal Finkelb0407ba2014-07-18 15:51:28 +00003246 if (CS.isReturnNonNull())
Nick Lewyckyec373542014-05-20 05:13:21 +00003247 return true;
3248
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003249 // operator new never returns null.
3250 if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true))
3251 return true;
3252
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003253 return false;
3254}
David Majnemer491331a2015-01-02 07:29:43 +00003255
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003256static bool isKnownNonNullFromDominatingCondition(const Value *V,
3257 const Instruction *CtxI,
3258 const DominatorTree *DT) {
Chen Li0d043b52015-09-14 18:10:43 +00003259 assert(V->getType()->isPointerTy() && "V must be pointer type");
3260
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003261 unsigned NumUsesExplored = 0;
3262 for (auto U : V->users()) {
3263 // Avoid massive lists
3264 if (NumUsesExplored >= DomConditionsMaxUses)
3265 break;
3266 NumUsesExplored++;
3267 // Consider only compare instructions uniquely controlling a branch
3268 const ICmpInst *Cmp = dyn_cast<ICmpInst>(U);
3269 if (!Cmp)
3270 continue;
3271
3272 if (DomConditionsSingleCmpUse && !Cmp->hasOneUse())
3273 continue;
3274
3275 for (auto *CmpU : Cmp->users()) {
3276 const BranchInst *BI = dyn_cast<BranchInst>(CmpU);
3277 if (!BI)
3278 continue;
3279
3280 assert(BI->isConditional() && "uses a comparison!");
3281
3282 BasicBlock *NonNullSuccessor = nullptr;
3283 CmpInst::Predicate Pred;
3284
3285 if (match(const_cast<ICmpInst*>(Cmp),
3286 m_c_ICmp(Pred, m_Specific(V), m_Zero()))) {
3287 if (Pred == ICmpInst::ICMP_EQ)
3288 NonNullSuccessor = BI->getSuccessor(1);
3289 else if (Pred == ICmpInst::ICMP_NE)
3290 NonNullSuccessor = BI->getSuccessor(0);
3291 }
3292
3293 if (NonNullSuccessor) {
3294 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3295 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3296 return true;
3297 }
3298 }
3299 }
3300
3301 return false;
3302}
3303
3304bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
3305 const DominatorTree *DT, const TargetLibraryInfo *TLI) {
3306 if (isKnownNonNull(V, TLI))
3307 return true;
3308
3309 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false;
3310}
3311
David Majnemer491331a2015-01-02 07:29:43 +00003312OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003313 const DataLayout &DL,
Chandler Carruth66b31302015-01-04 12:03:27 +00003314 AssumptionCache *AC,
David Majnemer491331a2015-01-02 07:29:43 +00003315 const Instruction *CxtI,
3316 const DominatorTree *DT) {
3317 // Multiplying n * m significant bits yields a result of n + m significant
3318 // bits. If the total number of significant bits does not exceed the
3319 // result bit width (minus 1), there is no overflow.
3320 // This means if we have enough leading zero bits in the operands
3321 // we can guarantee that the result does not overflow.
3322 // Ref: "Hacker's Delight" by Henry Warren
3323 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3324 APInt LHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003325 APInt LHSKnownOne(BitWidth, 0);
David Majnemer491331a2015-01-02 07:29:43 +00003326 APInt RHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003327 APInt RHSKnownOne(BitWidth, 0);
Chandler Carruth66b31302015-01-04 12:03:27 +00003328 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3329 DT);
3330 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3331 DT);
David Majnemer491331a2015-01-02 07:29:43 +00003332 // Note that underestimating the number of zero bits gives a more
3333 // conservative answer.
3334 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3335 RHSKnownZero.countLeadingOnes();
3336 // First handle the easy case: if we have enough zero bits there's
3337 // definitely no overflow.
3338 if (ZeroBits >= BitWidth)
3339 return OverflowResult::NeverOverflows;
3340
3341 // Get the largest possible values for each operand.
3342 APInt LHSMax = ~LHSKnownZero;
3343 APInt RHSMax = ~RHSKnownZero;
3344
3345 // We know the multiply operation doesn't overflow if the maximum values for
3346 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003347 bool MaxOverflow;
3348 LHSMax.umul_ov(RHSMax, MaxOverflow);
3349 if (!MaxOverflow)
3350 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003351
David Majnemerc8a576b2015-01-02 07:29:47 +00003352 // We know it always overflows if multiplying the smallest possible values for
3353 // the operands also results in overflow.
3354 bool MinOverflow;
3355 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3356 if (MinOverflow)
3357 return OverflowResult::AlwaysOverflows;
3358
3359 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003360}
David Majnemer5310c1e2015-01-07 00:39:50 +00003361
3362OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003363 const DataLayout &DL,
David Majnemer5310c1e2015-01-07 00:39:50 +00003364 AssumptionCache *AC,
3365 const Instruction *CxtI,
3366 const DominatorTree *DT) {
3367 bool LHSKnownNonNegative, LHSKnownNegative;
3368 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3369 AC, CxtI, DT);
3370 if (LHSKnownNonNegative || LHSKnownNegative) {
3371 bool RHSKnownNonNegative, RHSKnownNegative;
3372 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3373 AC, CxtI, DT);
3374
3375 if (LHSKnownNegative && RHSKnownNegative) {
3376 // The sign bit is set in both cases: this MUST overflow.
3377 // Create a simple add instruction, and insert it into the struct.
3378 return OverflowResult::AlwaysOverflows;
3379 }
3380
3381 if (LHSKnownNonNegative && RHSKnownNonNegative) {
3382 // The sign bit is clear in both cases: this CANNOT overflow.
3383 // Create a simple add instruction, and insert it into the struct.
3384 return OverflowResult::NeverOverflows;
3385 }
3386 }
3387
3388 return OverflowResult::MayOverflow;
3389}
James Molloy71b91c22015-05-11 14:42:20 +00003390
Jingyue Wu10fcea52015-08-20 18:27:04 +00003391static OverflowResult computeOverflowForSignedAdd(
3392 Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL,
3393 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) {
3394 if (Add && Add->hasNoSignedWrap()) {
3395 return OverflowResult::NeverOverflows;
3396 }
3397
3398 bool LHSKnownNonNegative, LHSKnownNegative;
3399 bool RHSKnownNonNegative, RHSKnownNegative;
3400 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3401 AC, CxtI, DT);
3402 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3403 AC, CxtI, DT);
3404
3405 if ((LHSKnownNonNegative && RHSKnownNegative) ||
3406 (LHSKnownNegative && RHSKnownNonNegative)) {
3407 // The sign bits are opposite: this CANNOT overflow.
3408 return OverflowResult::NeverOverflows;
3409 }
3410
3411 // The remaining code needs Add to be available. Early returns if not so.
3412 if (!Add)
3413 return OverflowResult::MayOverflow;
3414
3415 // If the sign of Add is the same as at least one of the operands, this add
3416 // CANNOT overflow. This is particularly useful when the sum is
3417 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3418 // operands.
3419 bool LHSOrRHSKnownNonNegative =
3420 (LHSKnownNonNegative || RHSKnownNonNegative);
3421 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3422 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3423 bool AddKnownNonNegative, AddKnownNegative;
3424 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
3425 /*Depth=*/0, AC, CxtI, DT);
3426 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3427 (AddKnownNegative && LHSOrRHSKnownNegative)) {
3428 return OverflowResult::NeverOverflows;
3429 }
3430 }
3431
3432 return OverflowResult::MayOverflow;
3433}
3434
3435OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add,
3436 const DataLayout &DL,
3437 AssumptionCache *AC,
3438 const Instruction *CxtI,
3439 const DominatorTree *DT) {
3440 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
3441 Add, DL, AC, CxtI, DT);
3442}
3443
3444OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS,
3445 const DataLayout &DL,
3446 AssumptionCache *AC,
3447 const Instruction *CxtI,
3448 const DominatorTree *DT) {
3449 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
3450}
3451
Jingyue Wu42f1d672015-07-28 18:22:40 +00003452bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
3453 // FIXME: This conservative implementation can be relaxed. E.g. most
3454 // atomic operations are guaranteed to terminate on most platforms
3455 // and most functions terminate.
3456
3457 return !I->isAtomic() && // atomics may never succeed on some platforms
3458 !isa<CallInst>(I) && // could throw and might not terminate
3459 !isa<InvokeInst>(I) && // might not terminate and could throw to
3460 // non-successor (see bug 24185 for details).
3461 !isa<ResumeInst>(I) && // has no successors
3462 !isa<ReturnInst>(I); // has no successors
3463}
3464
3465bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3466 const Loop *L) {
3467 // The loop header is guaranteed to be executed for every iteration.
3468 //
3469 // FIXME: Relax this constraint to cover all basic blocks that are
3470 // guaranteed to be executed at every iteration.
3471 if (I->getParent() != L->getHeader()) return false;
3472
3473 for (const Instruction &LI : *L->getHeader()) {
3474 if (&LI == I) return true;
3475 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3476 }
3477 llvm_unreachable("Instruction not contained in its own parent basic block.");
3478}
3479
3480bool llvm::propagatesFullPoison(const Instruction *I) {
3481 switch (I->getOpcode()) {
3482 case Instruction::Add:
3483 case Instruction::Sub:
3484 case Instruction::Xor:
3485 case Instruction::Trunc:
3486 case Instruction::BitCast:
3487 case Instruction::AddrSpaceCast:
3488 // These operations all propagate poison unconditionally. Note that poison
3489 // is not any particular value, so xor or subtraction of poison with
3490 // itself still yields poison, not zero.
3491 return true;
3492
3493 case Instruction::AShr:
3494 case Instruction::SExt:
3495 // For these operations, one bit of the input is replicated across
3496 // multiple output bits. A replicated poison bit is still poison.
3497 return true;
3498
3499 case Instruction::Shl: {
3500 // Left shift *by* a poison value is poison. The number of
3501 // positions to shift is unsigned, so no negative values are
3502 // possible there. Left shift by zero places preserves poison. So
3503 // it only remains to consider left shift of poison by a positive
3504 // number of places.
3505 //
3506 // A left shift by a positive number of places leaves the lowest order bit
3507 // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3508 // make the poison operand violate that flag, yielding a fresh full-poison
3509 // value.
3510 auto *OBO = cast<OverflowingBinaryOperator>(I);
3511 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3512 }
3513
3514 case Instruction::Mul: {
3515 // A multiplication by zero yields a non-poison zero result, so we need to
3516 // rule out zero as an operand. Conservatively, multiplication by a
3517 // non-zero constant is not multiplication by zero.
3518 //
3519 // Multiplication by a non-zero constant can leave some bits
3520 // non-poisoned. For example, a multiplication by 2 leaves the lowest
3521 // order bit unpoisoned. So we need to consider that.
3522 //
3523 // Multiplication by 1 preserves poison. If the multiplication has a
3524 // no-wrap flag, then we can make the poison operand violate that flag
3525 // when multiplied by any integer other than 0 and 1.
3526 auto *OBO = cast<OverflowingBinaryOperator>(I);
3527 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3528 for (Value *V : OBO->operands()) {
3529 if (auto *CI = dyn_cast<ConstantInt>(V)) {
3530 // A ConstantInt cannot yield poison, so we can assume that it is
3531 // the other operand that is poison.
3532 return !CI->isZero();
3533 }
3534 }
3535 }
3536 return false;
3537 }
3538
3539 case Instruction::GetElementPtr:
3540 // A GEP implicitly represents a sequence of additions, subtractions,
3541 // truncations, sign extensions and multiplications. The multiplications
3542 // are by the non-zero sizes of some set of types, so we do not have to be
3543 // concerned with multiplication by zero. If the GEP is in-bounds, then
3544 // these operations are implicitly no-signed-wrap so poison is propagated
3545 // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3546 return cast<GEPOperator>(I)->isInBounds();
3547
3548 default:
3549 return false;
3550 }
3551}
3552
3553const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3554 switch (I->getOpcode()) {
3555 case Instruction::Store:
3556 return cast<StoreInst>(I)->getPointerOperand();
3557
3558 case Instruction::Load:
3559 return cast<LoadInst>(I)->getPointerOperand();
3560
3561 case Instruction::AtomicCmpXchg:
3562 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3563
3564 case Instruction::AtomicRMW:
3565 return cast<AtomicRMWInst>(I)->getPointerOperand();
3566
3567 case Instruction::UDiv:
3568 case Instruction::SDiv:
3569 case Instruction::URem:
3570 case Instruction::SRem:
3571 return I->getOperand(1);
3572
3573 default:
3574 return nullptr;
3575 }
3576}
3577
3578bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3579 // We currently only look for uses of poison values within the same basic
3580 // block, as that makes it easier to guarantee that the uses will be
3581 // executed given that PoisonI is executed.
3582 //
3583 // FIXME: Expand this to consider uses beyond the same basic block. To do
3584 // this, look out for the distinction between post-dominance and strong
3585 // post-dominance.
3586 const BasicBlock *BB = PoisonI->getParent();
3587
3588 // Set of instructions that we have proved will yield poison if PoisonI
3589 // does.
3590 SmallSet<const Value *, 16> YieldsPoison;
3591 YieldsPoison.insert(PoisonI);
3592
3593 for (const Instruction *I = PoisonI, *E = BB->end(); I != E;
3594 I = I->getNextNode()) {
3595 if (I != PoisonI) {
3596 const Value *NotPoison = getGuaranteedNonFullPoisonOp(I);
3597 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) return true;
3598 if (!isGuaranteedToTransferExecutionToSuccessor(I)) return false;
3599 }
3600
3601 // Mark poison that propagates from I through uses of I.
3602 if (YieldsPoison.count(I)) {
3603 for (const User *User : I->users()) {
3604 const Instruction *UserI = cast<Instruction>(User);
3605 if (UserI->getParent() == BB && propagatesFullPoison(UserI))
3606 YieldsPoison.insert(User);
3607 }
3608 }
3609 }
3610 return false;
3611}
3612
James Molloy134bec22015-08-11 09:12:57 +00003613static bool isKnownNonNaN(Value *V, FastMathFlags FMF) {
3614 if (FMF.noNaNs())
3615 return true;
3616
3617 if (auto *C = dyn_cast<ConstantFP>(V))
3618 return !C->isNaN();
3619 return false;
3620}
3621
3622static bool isKnownNonZero(Value *V) {
3623 if (auto *C = dyn_cast<ConstantFP>(V))
3624 return !C->isZero();
3625 return false;
3626}
3627
3628static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
3629 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00003630 Value *CmpLHS, Value *CmpRHS,
3631 Value *TrueVal, Value *FalseVal,
3632 Value *&LHS, Value *&RHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003633 LHS = CmpLHS;
3634 RHS = CmpRHS;
3635
James Molloy134bec22015-08-11 09:12:57 +00003636 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may
3637 // return inconsistent results between implementations.
3638 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
3639 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
3640 // Therefore we behave conservatively and only proceed if at least one of the
3641 // operands is known to not be zero, or if we don't care about signed zeroes.
3642 switch (Pred) {
3643 default: break;
3644 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
3645 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
3646 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
3647 !isKnownNonZero(CmpRHS))
3648 return {SPF_UNKNOWN, SPNB_NA, false};
3649 }
3650
3651 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
3652 bool Ordered = false;
3653
3654 // When given one NaN and one non-NaN input:
3655 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
3656 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
3657 // ordered comparison fails), which could be NaN or non-NaN.
3658 // so here we discover exactly what NaN behavior is required/accepted.
3659 if (CmpInst::isFPPredicate(Pred)) {
3660 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
3661 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
3662
3663 if (LHSSafe && RHSSafe) {
3664 // Both operands are known non-NaN.
3665 NaNBehavior = SPNB_RETURNS_ANY;
3666 } else if (CmpInst::isOrdered(Pred)) {
3667 // An ordered comparison will return false when given a NaN, so it
3668 // returns the RHS.
3669 Ordered = true;
3670 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003671 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003672 NaNBehavior = SPNB_RETURNS_NAN;
3673 else if (RHSSafe)
3674 NaNBehavior = SPNB_RETURNS_OTHER;
3675 else
3676 // Completely unsafe.
3677 return {SPF_UNKNOWN, SPNB_NA, false};
3678 } else {
3679 Ordered = false;
3680 // An unordered comparison will return true when given a NaN, so it
3681 // returns the LHS.
3682 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003683 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003684 NaNBehavior = SPNB_RETURNS_OTHER;
3685 else if (RHSSafe)
3686 NaNBehavior = SPNB_RETURNS_NAN;
3687 else
3688 // Completely unsafe.
3689 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003690 }
3691 }
3692
James Molloy71b91c22015-05-11 14:42:20 +00003693 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00003694 std::swap(CmpLHS, CmpRHS);
3695 Pred = CmpInst::getSwappedPredicate(Pred);
3696 if (NaNBehavior == SPNB_RETURNS_NAN)
3697 NaNBehavior = SPNB_RETURNS_OTHER;
3698 else if (NaNBehavior == SPNB_RETURNS_OTHER)
3699 NaNBehavior = SPNB_RETURNS_NAN;
3700 Ordered = !Ordered;
3701 }
3702
3703 // ([if]cmp X, Y) ? X : Y
3704 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003705 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00003706 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00003707 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00003708 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003709 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00003710 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003711 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00003712 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003713 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00003714 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
3715 case FCmpInst::FCMP_UGT:
3716 case FCmpInst::FCMP_UGE:
3717 case FCmpInst::FCMP_OGT:
3718 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
3719 case FCmpInst::FCMP_ULT:
3720 case FCmpInst::FCMP_ULE:
3721 case FCmpInst::FCMP_OLT:
3722 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00003723 }
3724 }
3725
3726 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) {
3727 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
3728 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
3729
3730 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
3731 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
3732 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) {
James Molloy134bec22015-08-11 09:12:57 +00003733 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003734 }
3735
3736 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
3737 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
3738 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) {
James Molloy134bec22015-08-11 09:12:57 +00003739 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003740 }
3741 }
3742
3743 // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C)
3744 if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) {
3745 if (C1->getType() == C2->getType() && ~C1->getValue() == C2->getValue() &&
3746 (match(TrueVal, m_Not(m_Specific(CmpLHS))) ||
3747 match(CmpLHS, m_Not(m_Specific(TrueVal))))) {
3748 LHS = TrueVal;
3749 RHS = FalseVal;
James Molloy134bec22015-08-11 09:12:57 +00003750 return {SPF_SMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003751 }
3752 }
3753 }
3754
3755 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5)
3756
James Molloy134bec22015-08-11 09:12:57 +00003757 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003758}
James Molloy270ef8c2015-05-15 16:04:50 +00003759
James Molloy569cea62015-09-02 17:25:25 +00003760static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
3761 Instruction::CastOps *CastOp) {
James Molloy270ef8c2015-05-15 16:04:50 +00003762 CastInst *CI = dyn_cast<CastInst>(V1);
3763 Constant *C = dyn_cast<Constant>(V2);
James Molloy569cea62015-09-02 17:25:25 +00003764 CastInst *CI2 = dyn_cast<CastInst>(V2);
3765 if (!CI)
James Molloy270ef8c2015-05-15 16:04:50 +00003766 return nullptr;
3767 *CastOp = CI->getOpcode();
3768
James Molloy569cea62015-09-02 17:25:25 +00003769 if (CI2) {
3770 // If V1 and V2 are both the same cast from the same type, we can look
3771 // through V1.
3772 if (CI2->getOpcode() == CI->getOpcode() &&
3773 CI2->getSrcTy() == CI->getSrcTy())
3774 return CI2->getOperand(0);
3775 return nullptr;
3776 } else if (!C) {
3777 return nullptr;
3778 }
3779
James Molloy2b21a7c2015-05-20 18:41:25 +00003780 if (isa<SExtInst>(CI) && CmpI->isSigned()) {
3781 Constant *T = ConstantExpr::getTrunc(C, CI->getSrcTy());
3782 // This is only valid if the truncated value can be sign-extended
3783 // back to the original value.
3784 if (ConstantExpr::getSExt(T, C->getType()) == C)
3785 return T;
3786 return nullptr;
3787 }
3788 if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
James Molloy270ef8c2015-05-15 16:04:50 +00003789 return ConstantExpr::getTrunc(C, CI->getSrcTy());
3790
3791 if (isa<TruncInst>(CI))
3792 return ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
3793
James Molloy134bec22015-08-11 09:12:57 +00003794 if (isa<FPToUIInst>(CI))
3795 return ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
3796
3797 if (isa<FPToSIInst>(CI))
3798 return ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
3799
3800 if (isa<UIToFPInst>(CI))
3801 return ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
3802
3803 if (isa<SIToFPInst>(CI))
3804 return ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
3805
3806 if (isa<FPTruncInst>(CI))
3807 return ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
3808
3809 if (isa<FPExtInst>(CI))
3810 return ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
3811
James Molloy270ef8c2015-05-15 16:04:50 +00003812 return nullptr;
3813}
3814
James Molloy134bec22015-08-11 09:12:57 +00003815SelectPatternResult llvm::matchSelectPattern(Value *V,
James Molloy270ef8c2015-05-15 16:04:50 +00003816 Value *&LHS, Value *&RHS,
3817 Instruction::CastOps *CastOp) {
3818 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00003819 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00003820
James Molloy134bec22015-08-11 09:12:57 +00003821 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
3822 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00003823
James Molloy134bec22015-08-11 09:12:57 +00003824 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00003825 Value *CmpLHS = CmpI->getOperand(0);
3826 Value *CmpRHS = CmpI->getOperand(1);
3827 Value *TrueVal = SI->getTrueValue();
3828 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00003829 FastMathFlags FMF;
3830 if (isa<FPMathOperator>(CmpI))
3831 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00003832
3833 // Bail out early.
3834 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00003835 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00003836
3837 // Deal with type mismatches.
3838 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
James Molloy569cea62015-09-02 17:25:25 +00003839 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00003840 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00003841 cast<CastInst>(TrueVal)->getOperand(0), C,
3842 LHS, RHS);
James Molloy569cea62015-09-02 17:25:25 +00003843 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00003844 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00003845 C, cast<CastInst>(FalseVal)->getOperand(0),
3846 LHS, RHS);
3847 }
James Molloy134bec22015-08-11 09:12:57 +00003848 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
James Molloy270ef8c2015-05-15 16:04:50 +00003849 LHS, RHS);
3850}