blob: 58fb662efdd3dd2e7f2e0977c0a630c8d320e06e [file] [log] [blame]
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001//===-- SystemZInstrInfo.td - General SystemZ instructions ----*- tblgen-*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10//===----------------------------------------------------------------------===//
11// Stack allocation
12//===----------------------------------------------------------------------===//
13
14def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt),
15 [(callseq_start timm:$amt)]>;
16def ADJCALLSTACKUP : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
17 [(callseq_end timm:$amt1, timm:$amt2)]>;
18
19let neverHasSideEffects = 1 in {
20 // Takes as input the value of the stack pointer after a dynamic allocation
21 // has been made. Sets the output to the address of the dynamically-
22 // allocated area itself, skipping the outgoing arguments.
23 //
24 // This expands to an LA or LAY instruction. We restrict the offset
25 // to the range of LA and keep the LAY range in reserve for when
26 // the size of the outgoing arguments is added.
27 def ADJDYNALLOC : Pseudo<(outs GR64:$dst), (ins dynalloc12only:$src),
28 [(set GR64:$dst, dynalloc12only:$src)]>;
29}
30
31//===----------------------------------------------------------------------===//
32// Control flow instructions
33//===----------------------------------------------------------------------===//
34
35// A return instruction. R1 is the condition-code mask (all 1s)
36// and R2 is the target address, which is always stored in %r14.
37let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1,
38 R1 = 15, R2 = 14, isCodeGenOnly = 1 in {
39 def RET : InstRR<0x07, (outs), (ins), "br\t%r14", [(z_retflag)]>;
40}
41
42// Unconditional branches. R1 is the condition-code mask (all 1s).
43let isBranch = 1, isTerminator = 1, isBarrier = 1, R1 = 15 in {
44 let isIndirectBranch = 1 in
Richard Sandifordd454ec02013-05-14 09:28:21 +000045 def BR : InstRR<0x07, (outs), (ins ADDR64:$R2),
46 "br\t$R2", [(brind ADDR64:$R2)]>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +000047
Richard Sandiford312425f2013-05-20 14:23:08 +000048 // An assembler extended mnemonic for BRC.
49 def J : InstRI<0xA74, (outs), (ins brtarget16:$I2), "j\t$I2",
50 [(br bb:$I2)]>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +000051
52 // An assembler extended mnemonic for BRCL. (The extension is "G"
53 // rather than "L" because "JL" is "Jump if Less".)
Richard Sandiford312425f2013-05-20 14:23:08 +000054 def JG : InstRIL<0xC04, (outs), (ins brtarget32:$I2), "jg\t$I2", []>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +000055}
56
57// Conditional branches. It's easier for LLVM to handle these branches
58// in their raw BRC/BRCL form, with the 4-bit condition-code mask being
59// the first operand. It seems friendlier to use mnemonic forms like
60// JE and JLH when writing out the assembly though.
Richard Sandiford3d768e32013-07-31 12:30:20 +000061let isBranch = 1, isTerminator = 1, Uses = [CC] in {
Richard Sandifordfd7f4ae2013-08-01 10:39:40 +000062 let isCodeGenOnly = 1, CCMaskFirst = 1 in {
Richard Sandiford3d768e32013-07-31 12:30:20 +000063 def BRC : InstRI<0xA74, (outs), (ins cond4:$valid, cond4:$R1,
64 brtarget16:$I2), "j$R1\t$I2",
65 [(z_br_ccmask cond4:$valid, cond4:$R1, bb:$I2)]>;
66 def BRCL : InstRIL<0xC04, (outs), (ins cond4:$valid, cond4:$R1,
67 brtarget32:$I2), "jg$R1\t$I2", []>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +000068 }
Richard Sandiford3d768e32013-07-31 12:30:20 +000069 def AsmBRC : InstRI<0xA74, (outs), (ins uimm8zx4:$R1, brtarget16:$I2),
70 "brc\t$R1, $I2", []>;
71 def AsmBRCL : InstRIL<0xC04, (outs), (ins uimm8zx4:$R1, brtarget32:$I2),
72 "brcl\t$R1, $I2", []>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +000073}
Ulrich Weigand5f613df2013-05-06 16:15:19 +000074
Richard Sandiford0fb90ab2013-05-28 10:41:11 +000075// Fused compare-and-branch instructions. As for normal branches,
76// we handle these instructions internally in their raw CRJ-like form,
77// but use assembly macros like CRJE when writing them out.
78//
79// These instructions do not use or clobber the condition codes.
80// We nevertheless pretend that they clobber CC, so that we can lower
81// them to separate comparisons and BRCLs if the branch ends up being
82// out of range.
83multiclass CompareBranches<Operand ccmask, string pos1, string pos2> {
84 let isBranch = 1, isTerminator = 1, Defs = [CC] in {
85 def RJ : InstRIEb<0xEC76, (outs), (ins GR32:$R1, GR32:$R2, ccmask:$M3,
86 brtarget16:$RI4),
Richard Sandiforde1d9f002013-05-29 11:58:52 +000087 "crj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
Richard Sandiford0fb90ab2013-05-28 10:41:11 +000088 def GRJ : InstRIEb<0xEC64, (outs), (ins GR64:$R1, GR64:$R2, ccmask:$M3,
89 brtarget16:$RI4),
Richard Sandiforde1d9f002013-05-29 11:58:52 +000090 "cgrj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
91 def IJ : InstRIEc<0xEC7E, (outs), (ins GR32:$R1, imm32sx8:$I2, ccmask:$M3,
92 brtarget16:$RI4),
93 "cij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
94 def GIJ : InstRIEc<0xEC7C, (outs), (ins GR64:$R1, imm64sx8:$I2, ccmask:$M3,
95 brtarget16:$RI4),
96 "cgij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
Richard Sandiford0fb90ab2013-05-28 10:41:11 +000097 }
98}
99let isCodeGenOnly = 1 in
100 defm C : CompareBranches<cond4, "$M3", "">;
101defm AsmC : CompareBranches<uimm8zx4, "", "$M3, ">;
102
103// Define AsmParser mnemonics for each general condition-code mask
104// (integer or floating-point)
105multiclass CondExtendedMnemonic<bits<4> ccmask, string name> {
106 let R1 = ccmask in {
Richard Sandiforda68e6f52013-07-25 08:57:02 +0000107 def J : InstRI<0xA74, (outs), (ins brtarget16:$I2),
108 "j"##name##"\t$I2", []>;
109 def JG : InstRIL<0xC04, (outs), (ins brtarget32:$I2),
Richard Sandiforde1d9f002013-05-29 11:58:52 +0000110 "jg"##name##"\t$I2", []>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000111 }
Richard Sandifordf2404162013-07-25 09:11:15 +0000112 def LOCR : FixedCondUnaryRRF<"locr"##name, 0xB9F2, GR32, GR32, ccmask>;
113 def LOCGR : FixedCondUnaryRRF<"locgr"##name, 0xB9E2, GR64, GR64, ccmask>;
Richard Sandiford09a8cf32013-07-25 09:04:52 +0000114 def LOC : FixedCondUnaryRSY<"loc"##name, 0xEBF2, GR32, ccmask, 4>;
115 def LOCG : FixedCondUnaryRSY<"locg"##name, 0xEBE2, GR64, ccmask, 8>;
Richard Sandiforda68e6f52013-07-25 08:57:02 +0000116 def STOC : FixedCondStoreRSY<"stoc"##name, 0xEBF3, GR32, ccmask, 4>;
117 def STOCG : FixedCondStoreRSY<"stocg"##name, 0xEBE3, GR64, ccmask, 8>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000118}
Richard Sandiforda68e6f52013-07-25 08:57:02 +0000119defm AsmO : CondExtendedMnemonic<1, "o">;
120defm AsmH : CondExtendedMnemonic<2, "h">;
121defm AsmNLE : CondExtendedMnemonic<3, "nle">;
122defm AsmL : CondExtendedMnemonic<4, "l">;
123defm AsmNHE : CondExtendedMnemonic<5, "nhe">;
124defm AsmLH : CondExtendedMnemonic<6, "lh">;
125defm AsmNE : CondExtendedMnemonic<7, "ne">;
126defm AsmE : CondExtendedMnemonic<8, "e">;
127defm AsmNLH : CondExtendedMnemonic<9, "nlh">;
128defm AsmHE : CondExtendedMnemonic<10, "he">;
129defm AsmNL : CondExtendedMnemonic<11, "nl">;
130defm AsmLE : CondExtendedMnemonic<12, "le">;
131defm AsmNH : CondExtendedMnemonic<13, "nh">;
132defm AsmNO : CondExtendedMnemonic<14, "no">;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000133
Richard Sandiford0fb90ab2013-05-28 10:41:11 +0000134// Define AsmParser mnemonics for each integer condition-code mask.
135// This is like the list above, except that condition 3 is not possible
136// and that the low bit of the mask is therefore always 0. This means
137// that each condition has two names. Conditions "o" and "no" are not used.
138//
139// We don't make one of the two names an alias of the other because
140// we need the custom parsing routines to select the correct register class.
141multiclass IntCondExtendedMnemonicA<bits<4> ccmask, string name> {
142 let M3 = ccmask in {
143 def CR : InstRIEb<0xEC76, (outs), (ins GR32:$R1, GR32:$R2,
144 brtarget16:$RI4),
145 "crj"##name##"\t$R1, $R2, $RI4", []>;
146 def CGR : InstRIEb<0xEC64, (outs), (ins GR64:$R1, GR64:$R2,
147 brtarget16:$RI4),
148 "cgrj"##name##"\t$R1, $R2, $RI4", []>;
Richard Sandiforde1d9f002013-05-29 11:58:52 +0000149 def CI : InstRIEc<0xEC7E, (outs), (ins GR32:$R1, imm32sx8:$I2,
150 brtarget16:$RI4),
151 "cij"##name##"\t$R1, $I2, $RI4", []>;
152 def CGI : InstRIEc<0xEC7C, (outs), (ins GR64:$R1, imm64sx8:$I2,
153 brtarget16:$RI4),
154 "cgij"##name##"\t$R1, $I2, $RI4", []>;
Richard Sandiford0fb90ab2013-05-28 10:41:11 +0000155 }
156}
157multiclass IntCondExtendedMnemonic<bits<4> ccmask, string name1, string name2>
158 : IntCondExtendedMnemonicA<ccmask, name1> {
159 let isAsmParserOnly = 1 in
160 defm Alt : IntCondExtendedMnemonicA<ccmask, name2>;
161}
162defm AsmJH : IntCondExtendedMnemonic<2, "h", "nle">;
163defm AsmJL : IntCondExtendedMnemonic<4, "l", "nhe">;
164defm AsmJLH : IntCondExtendedMnemonic<6, "lh", "ne">;
165defm AsmJE : IntCondExtendedMnemonic<8, "e", "nlh">;
166defm AsmJHE : IntCondExtendedMnemonic<10, "he", "nl">;
167defm AsmJLE : IntCondExtendedMnemonic<12, "le", "nh">;
168
Richard Sandifordb86a8342013-06-27 09:27:40 +0000169//===----------------------------------------------------------------------===//
170// Select instructions
171//===----------------------------------------------------------------------===//
172
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000173def Select32 : SelectWrapper<GR32>;
174def Select64 : SelectWrapper<GR64>;
175
Richard Sandifordb86a8342013-06-27 09:27:40 +0000176defm CondStore8_32 : CondStores<GR32, nonvolatile_truncstorei8,
177 nonvolatile_anyextloadi8, bdxaddr20only>;
178defm CondStore16_32 : CondStores<GR32, nonvolatile_truncstorei16,
179 nonvolatile_anyextloadi16, bdxaddr20only>;
180defm CondStore32_32 : CondStores<GR32, nonvolatile_store,
181 nonvolatile_load, bdxaddr20only>;
182
183defm CondStore8 : CondStores<GR64, nonvolatile_truncstorei8,
184 nonvolatile_anyextloadi8, bdxaddr20only>;
185defm CondStore16 : CondStores<GR64, nonvolatile_truncstorei16,
186 nonvolatile_anyextloadi16, bdxaddr20only>;
187defm CondStore32 : CondStores<GR64, nonvolatile_truncstorei32,
188 nonvolatile_anyextloadi32, bdxaddr20only>;
189defm CondStore64 : CondStores<GR64, nonvolatile_store,
190 nonvolatile_load, bdxaddr20only>;
191
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000192//===----------------------------------------------------------------------===//
193// Call instructions
194//===----------------------------------------------------------------------===//
195
196// The definitions here are for the call-clobbered registers.
197let isCall = 1, Defs = [R0D, R1D, R2D, R3D, R4D, R5D, R14D,
Richard Sandifordfd7f4ae2013-08-01 10:39:40 +0000198 F0D, F1D, F2D, F3D, F4D, F5D, F6D, F7D, CC],
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000199 R1 = 14, isCodeGenOnly = 1 in {
Richard Sandifordd454ec02013-05-14 09:28:21 +0000200 def BRAS : InstRI<0xA75, (outs), (ins pcrel16call:$I2, variable_ops),
201 "bras\t%r14, $I2", []>;
202 def BRASL : InstRIL<0xC05, (outs), (ins pcrel32call:$I2, variable_ops),
203 "brasl\t%r14, $I2", [(z_call pcrel32call:$I2)]>;
204 def BASR : InstRR<0x0D, (outs), (ins ADDR64:$R2, variable_ops),
205 "basr\t%r14, $R2", [(z_call ADDR64:$R2)]>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000206}
207
208// Define the general form of the call instructions for the asm parser.
209// These instructions don't hard-code %r14 as the return address register.
Richard Sandiford6a808f92013-05-14 09:38:07 +0000210def AsmBRAS : InstRI<0xA75, (outs), (ins GR64:$R1, brtarget16:$I2),
211 "bras\t$R1, $I2", []>;
212def AsmBRASL : InstRIL<0xC05, (outs), (ins GR64:$R1, brtarget32:$I2),
213 "brasl\t$R1, $I2", []>;
214def AsmBASR : InstRR<0x0D, (outs), (ins GR64:$R1, ADDR64:$R2),
215 "basr\t$R1, $R2", []>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000216
217//===----------------------------------------------------------------------===//
218// Move instructions
219//===----------------------------------------------------------------------===//
220
221// Register moves.
222let neverHasSideEffects = 1 in {
Richard Sandiforded1fab62013-07-03 10:10:02 +0000223 def LR : UnaryRR <"l", 0x18, null_frag, GR32, GR32>;
224 def LGR : UnaryRRE<"lg", 0xB904, null_frag, GR64, GR64>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000225}
Richard Sandifordc62c64a2013-08-05 11:00:53 +0000226let Defs = [CC], CCValues = 0xE, CCHasZero = 1, CCHasOrder = 1 in {
227 def LTR : UnaryRR <"lt", 0x12, null_frag, GR32, GR32>;
228 def LTGR : UnaryRRE<"ltg", 0xB902, null_frag, GR64, GR64>;
229}
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000230
Richard Sandifordf2404162013-07-25 09:11:15 +0000231// Move on condition.
232let isCodeGenOnly = 1, Uses = [CC] in {
233 def LOCR : CondUnaryRRF<"loc", 0xB9F2, GR32, GR32>;
234 def LOCGR : CondUnaryRRF<"locg", 0xB9E2, GR64, GR64>;
235}
236let Uses = [CC] in {
237 def AsmLOCR : AsmCondUnaryRRF<"loc", 0xB9F2, GR32, GR32>;
238 def AsmLOCGR : AsmCondUnaryRRF<"locg", 0xB9E2, GR64, GR64>;
239}
240
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000241// Immediate moves.
Richard Sandiforda57e13b2013-06-27 09:38:48 +0000242let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1,
243 isReMaterializable = 1 in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000244 // 16-bit sign-extended immediates.
245 def LHI : UnaryRI<"lhi", 0xA78, bitconvert, GR32, imm32sx16>;
246 def LGHI : UnaryRI<"lghi", 0xA79, bitconvert, GR64, imm64sx16>;
247
248 // Other 16-bit immediates.
249 def LLILL : UnaryRI<"llill", 0xA5F, bitconvert, GR64, imm64ll16>;
250 def LLILH : UnaryRI<"llilh", 0xA5E, bitconvert, GR64, imm64lh16>;
251 def LLIHL : UnaryRI<"llihl", 0xA5D, bitconvert, GR64, imm64hl16>;
252 def LLIHH : UnaryRI<"llihh", 0xA5C, bitconvert, GR64, imm64hh16>;
253
254 // 32-bit immediates.
255 def LGFI : UnaryRIL<"lgfi", 0xC01, bitconvert, GR64, imm64sx32>;
256 def LLILF : UnaryRIL<"llilf", 0xC0F, bitconvert, GR64, imm64lf32>;
257 def LLIHF : UnaryRIL<"llihf", 0xC0E, bitconvert, GR64, imm64hf32>;
258}
259
260// Register loads.
261let canFoldAsLoad = 1, SimpleBDXLoad = 1 in {
Richard Sandiforded1fab62013-07-03 10:10:02 +0000262 defm L : UnaryRXPair<"l", 0x58, 0xE358, load, GR32, 4>;
263 def LG : UnaryRXY<"lg", 0xE304, load, GR64, 8>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000264
265 // These instructions are split after register allocation, so we don't
266 // want a custom inserter.
267 let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
268 def L128 : Pseudo<(outs GR128:$dst), (ins bdxaddr20only128:$src),
269 [(set GR128:$dst, (load bdxaddr20only128:$src))]>;
270 }
271}
Richard Sandifordc62c64a2013-08-05 11:00:53 +0000272let Defs = [CC], CCValues = 0xE, CCHasZero = 1, CCHasOrder = 1 in {
273 def LT : UnaryRXY<"lt", 0xE312, load, GR32, 4>;
274 def LTG : UnaryRXY<"ltg", 0xE302, load, GR64, 8>;
275}
276
Richard Sandifordf6bae1e2013-07-02 15:28:56 +0000277let canFoldAsLoad = 1 in {
278 def LRL : UnaryRILPC<"lrl", 0xC4D, aligned_load, GR32>;
279 def LGRL : UnaryRILPC<"lgrl", 0xC48, aligned_load, GR64>;
280}
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000281
Richard Sandiford09a8cf32013-07-25 09:04:52 +0000282// Load on condition.
283let isCodeGenOnly = 1, Uses = [CC] in {
Richard Sandifordee834382013-07-31 12:38:08 +0000284 def LOC : CondUnaryRSY<"loc", 0xEBF2, nonvolatile_load, GR32, 4>;
285 def LOCG : CondUnaryRSY<"locg", 0xEBE2, nonvolatile_load, GR64, 8>;
Richard Sandiford09a8cf32013-07-25 09:04:52 +0000286}
287let Uses = [CC] in {
288 def AsmLOC : AsmCondUnaryRSY<"loc", 0xEBF2, GR32, 4>;
289 def AsmLOCG : AsmCondUnaryRSY<"locg", 0xEBE2, GR64, 8>;
290}
Richard Sandiford09a8cf32013-07-25 09:04:52 +0000291
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000292// Register stores.
293let SimpleBDXStore = 1 in {
Richard Sandifordf6bae1e2013-07-02 15:28:56 +0000294 let isCodeGenOnly = 1 in
Richard Sandiforded1fab62013-07-03 10:10:02 +0000295 defm ST32 : StoreRXPair<"st", 0x50, 0xE350, store, GR32, 4>;
296 def STG : StoreRXY<"stg", 0xE324, store, GR64, 8>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000297
298 // These instructions are split after register allocation, so we don't
299 // want a custom inserter.
300 let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
301 def ST128 : Pseudo<(outs), (ins GR128:$src, bdxaddr20only128:$dst),
302 [(store GR128:$src, bdxaddr20only128:$dst)]>;
303 }
304}
Richard Sandifordf6bae1e2013-07-02 15:28:56 +0000305let isCodeGenOnly = 1 in
306 def STRL32 : StoreRILPC<"strl", 0xC4F, aligned_store, GR32>;
307def STGRL : StoreRILPC<"stgrl", 0xC4B, aligned_store, GR64>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000308
Richard Sandiforda68e6f52013-07-25 08:57:02 +0000309// Store on condition.
310let isCodeGenOnly = 1, Uses = [CC] in {
311 def STOC32 : CondStoreRSY<"stoc", 0xEBF3, GR32, 4>;
312 def STOC : CondStoreRSY<"stoc", 0xEBF3, GR64, 4>;
313 def STOCG : CondStoreRSY<"stocg", 0xEBE3, GR64, 8>;
314}
315let Uses = [CC] in {
316 def AsmSTOC : AsmCondStoreRSY<"stoc", 0xEBF3, GR32, 4>;
317 def AsmSTOCG : AsmCondStoreRSY<"stocg", 0xEBE3, GR64, 8>;
318}
319
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000320// 8-bit immediate stores to 8-bit fields.
321defm MVI : StoreSIPair<"mvi", 0x92, 0xEB52, truncstorei8, imm32zx8trunc>;
322
323// 16-bit immediate stores to 16-, 32- or 64-bit fields.
324def MVHHI : StoreSIL<"mvhhi", 0xE544, truncstorei16, imm32sx16trunc>;
325def MVHI : StoreSIL<"mvhi", 0xE54C, store, imm32sx16>;
326def MVGHI : StoreSIL<"mvghi", 0xE548, store, imm64sx16>;
327
Richard Sandiford1d959002013-07-02 14:56:45 +0000328// Memory-to-memory moves.
329let mayLoad = 1, mayStore = 1 in
330 def MVC : InstSS<0xD2, (outs), (ins bdladdr12onlylen8:$BDL1,
331 bdaddr12only:$BD2),
332 "mvc\t$BDL1, $BD2", []>;
333
Richard Sandifordd131ff82013-07-08 09:35:23 +0000334let mayLoad = 1, mayStore = 1, usesCustomInserter = 1 in
335 def MVCWrapper : Pseudo<(outs), (ins bdaddr12only:$dest, bdaddr12only:$src,
336 imm32len8:$length),
337 [(z_mvc bdaddr12only:$dest, bdaddr12only:$src,
338 imm32len8:$length)]>;
339
Richard Sandiford97846492013-07-09 09:46:39 +0000340defm LoadStore8_32 : MVCLoadStore<anyextloadi8, truncstorei8, i32,
341 MVCWrapper, 1>;
342defm LoadStore16_32 : MVCLoadStore<anyextloadi16, truncstorei16, i32,
343 MVCWrapper, 2>;
344defm LoadStore32_32 : MVCLoadStore<load, store, i32, MVCWrapper, 4>;
345
346defm LoadStore8 : MVCLoadStore<anyextloadi8, truncstorei8, i64,
347 MVCWrapper, 1>;
348defm LoadStore16 : MVCLoadStore<anyextloadi16, truncstorei16, i64,
349 MVCWrapper, 2>;
350defm LoadStore32 : MVCLoadStore<anyextloadi32, truncstorei32, i64,
351 MVCWrapper, 4>;
352defm LoadStore64 : MVCLoadStore<load, store, i64, MVCWrapper, 8>;
353
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000354//===----------------------------------------------------------------------===//
355// Sign extensions
356//===----------------------------------------------------------------------===//
357
358// 32-bit extensions from registers.
359let neverHasSideEffects = 1 in {
Richard Sandiforded1fab62013-07-03 10:10:02 +0000360 def LBR : UnaryRRE<"lb", 0xB926, sext8, GR32, GR32>;
361 def LHR : UnaryRRE<"lh", 0xB927, sext16, GR32, GR32>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000362}
363
364// 64-bit extensions from registers.
365let neverHasSideEffects = 1 in {
Richard Sandiforded1fab62013-07-03 10:10:02 +0000366 def LGBR : UnaryRRE<"lgb", 0xB906, sext8, GR64, GR64>;
367 def LGHR : UnaryRRE<"lgh", 0xB907, sext16, GR64, GR64>;
368 def LGFR : UnaryRRE<"lgf", 0xB914, sext32, GR64, GR32>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000369}
Richard Sandifordc62c64a2013-08-05 11:00:53 +0000370let Defs = [CC], CCValues = 0xE, CCHasZero = 1, CCHasOrder = 1 in
371 def LTGFR : UnaryRRE<"ltgf", 0xB912, null_frag, GR64, GR64>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000372
373// Match 32-to-64-bit sign extensions in which the source is already
374// in a 64-bit register.
375def : Pat<(sext_inreg GR64:$src, i32),
376 (LGFR (EXTRACT_SUBREG GR64:$src, subreg_32bit))>;
377
378// 32-bit extensions from memory.
Richard Sandiforded1fab62013-07-03 10:10:02 +0000379def LB : UnaryRXY<"lb", 0xE376, sextloadi8, GR32, 1>;
380defm LH : UnaryRXPair<"lh", 0x48, 0xE378, sextloadi16, GR32, 2>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000381def LHRL : UnaryRILPC<"lhrl", 0xC45, aligned_sextloadi16, GR32>;
382
383// 64-bit extensions from memory.
Richard Sandiforded1fab62013-07-03 10:10:02 +0000384def LGB : UnaryRXY<"lgb", 0xE377, sextloadi8, GR64, 1>;
385def LGH : UnaryRXY<"lgh", 0xE315, sextloadi16, GR64, 2>;
386def LGF : UnaryRXY<"lgf", 0xE314, sextloadi32, GR64, 4>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000387def LGHRL : UnaryRILPC<"lghrl", 0xC44, aligned_sextloadi16, GR64>;
388def LGFRL : UnaryRILPC<"lgfrl", 0xC4C, aligned_sextloadi32, GR64>;
Richard Sandifordc62c64a2013-08-05 11:00:53 +0000389let Defs = [CC], CCValues = 0xE, CCHasZero = 1, CCHasOrder = 1 in
390 def LTGF : UnaryRXY<"ltgf", 0xE332, sextloadi32, GR64, 4>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000391
392// If the sign of a load-extend operation doesn't matter, use the signed ones.
393// There's not really much to choose between the sign and zero extensions,
394// but LH is more compact than LLH for small offsets.
395def : Pat<(i32 (extloadi8 bdxaddr20only:$src)), (LB bdxaddr20only:$src)>;
396def : Pat<(i32 (extloadi16 bdxaddr12pair:$src)), (LH bdxaddr12pair:$src)>;
397def : Pat<(i32 (extloadi16 bdxaddr20pair:$src)), (LHY bdxaddr20pair:$src)>;
398
399def : Pat<(i64 (extloadi8 bdxaddr20only:$src)), (LGB bdxaddr20only:$src)>;
400def : Pat<(i64 (extloadi16 bdxaddr20only:$src)), (LGH bdxaddr20only:$src)>;
401def : Pat<(i64 (extloadi32 bdxaddr20only:$src)), (LGF bdxaddr20only:$src)>;
402
Richard Sandiford97846492013-07-09 09:46:39 +0000403// We want PC-relative addresses to be tried ahead of BD and BDX addresses.
404// However, BDXs have two extra operands and are therefore 6 units more
405// complex.
406let AddedComplexity = 7 in {
407 def : Pat<(i32 (extloadi16 pcrel32:$src)), (LHRL pcrel32:$src)>;
408 def : Pat<(i64 (extloadi16 pcrel32:$src)), (LGHRL pcrel32:$src)>;
409}
410
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000411//===----------------------------------------------------------------------===//
412// Zero extensions
413//===----------------------------------------------------------------------===//
414
415// 32-bit extensions from registers.
416let neverHasSideEffects = 1 in {
Richard Sandiforded1fab62013-07-03 10:10:02 +0000417 def LLCR : UnaryRRE<"llc", 0xB994, zext8, GR32, GR32>;
418 def LLHR : UnaryRRE<"llh", 0xB995, zext16, GR32, GR32>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000419}
420
421// 64-bit extensions from registers.
422let neverHasSideEffects = 1 in {
Richard Sandiforded1fab62013-07-03 10:10:02 +0000423 def LLGCR : UnaryRRE<"llgc", 0xB984, zext8, GR64, GR64>;
424 def LLGHR : UnaryRRE<"llgh", 0xB985, zext16, GR64, GR64>;
425 def LLGFR : UnaryRRE<"llgf", 0xB916, zext32, GR64, GR32>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000426}
427
428// Match 32-to-64-bit zero extensions in which the source is already
429// in a 64-bit register.
430def : Pat<(and GR64:$src, 0xffffffff),
431 (LLGFR (EXTRACT_SUBREG GR64:$src, subreg_32bit))>;
432
433// 32-bit extensions from memory.
Richard Sandiforded1fab62013-07-03 10:10:02 +0000434def LLC : UnaryRXY<"llc", 0xE394, zextloadi8, GR32, 1>;
435def LLH : UnaryRXY<"llh", 0xE395, zextloadi16, GR32, 2>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000436def LLHRL : UnaryRILPC<"llhrl", 0xC42, aligned_zextloadi16, GR32>;
437
438// 64-bit extensions from memory.
Richard Sandiforded1fab62013-07-03 10:10:02 +0000439def LLGC : UnaryRXY<"llgc", 0xE390, zextloadi8, GR64, 1>;
440def LLGH : UnaryRXY<"llgh", 0xE391, zextloadi16, GR64, 2>;
441def LLGF : UnaryRXY<"llgf", 0xE316, zextloadi32, GR64, 4>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000442def LLGHRL : UnaryRILPC<"llghrl", 0xC46, aligned_zextloadi16, GR64>;
443def LLGFRL : UnaryRILPC<"llgfrl", 0xC4E, aligned_zextloadi32, GR64>;
444
445//===----------------------------------------------------------------------===//
446// Truncations
447//===----------------------------------------------------------------------===//
448
449// Truncations of 64-bit registers to 32-bit registers.
450def : Pat<(i32 (trunc GR64:$src)),
451 (EXTRACT_SUBREG GR64:$src, subreg_32bit)>;
452
453// Truncations of 32-bit registers to memory.
454let isCodeGenOnly = 1 in {
Richard Sandiforded1fab62013-07-03 10:10:02 +0000455 defm STC32 : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR32, 1>;
456 defm STH32 : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR32, 2>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000457 def STHRL32 : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR32>;
458}
459
460// Truncations of 64-bit registers to memory.
Richard Sandiforded1fab62013-07-03 10:10:02 +0000461defm STC : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR64, 1>;
462defm STH : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR64, 2>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000463def STHRL : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR64>;
Richard Sandiforded1fab62013-07-03 10:10:02 +0000464defm ST : StoreRXPair<"st", 0x50, 0xE350, truncstorei32, GR64, 4>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000465def STRL : StoreRILPC<"strl", 0xC4F, aligned_truncstorei32, GR64>;
466
467//===----------------------------------------------------------------------===//
468// Multi-register moves
469//===----------------------------------------------------------------------===//
470
471// Multi-register loads.
472def LMG : LoadMultipleRSY<"lmg", 0xEB04, GR64>;
473
474// Multi-register stores.
475def STMG : StoreMultipleRSY<"stmg", 0xEB24, GR64>;
476
477//===----------------------------------------------------------------------===//
478// Byte swaps
479//===----------------------------------------------------------------------===//
480
481// Byte-swapping register moves.
482let neverHasSideEffects = 1 in {
Richard Sandiforded1fab62013-07-03 10:10:02 +0000483 def LRVR : UnaryRRE<"lrv", 0xB91F, bswap, GR32, GR32>;
484 def LRVGR : UnaryRRE<"lrvg", 0xB90F, bswap, GR64, GR64>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000485}
486
Richard Sandiford30efd872013-05-31 13:25:22 +0000487// Byte-swapping loads. Unlike normal loads, these instructions are
488// allowed to access storage more than once.
Richard Sandiforded1fab62013-07-03 10:10:02 +0000489def LRV : UnaryRXY<"lrv", 0xE31E, loadu<bswap, nonvolatile_load>, GR32, 4>;
490def LRVG : UnaryRXY<"lrvg", 0xE30F, loadu<bswap, nonvolatile_load>, GR64, 8>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000491
Richard Sandiford30efd872013-05-31 13:25:22 +0000492// Likewise byte-swapping stores.
Richard Sandiforded1fab62013-07-03 10:10:02 +0000493def STRV : StoreRXY<"strv", 0xE33E, storeu<bswap, nonvolatile_store>, GR32, 4>;
494def STRVG : StoreRXY<"strvg", 0xE32F, storeu<bswap, nonvolatile_store>,
495 GR64, 8>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000496
497//===----------------------------------------------------------------------===//
498// Load address instructions
499//===----------------------------------------------------------------------===//
500
501// Load BDX-style addresses.
Richard Sandiford891a7e72013-06-27 09:42:10 +0000502let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isReMaterializable = 1,
Richard Sandiforddf313ff2013-07-03 09:19:58 +0000503 DispKey = "la" in {
504 let DispSize = "12" in
Richard Sandifordd454ec02013-05-14 09:28:21 +0000505 def LA : InstRX<0x41, (outs GR64:$R1), (ins laaddr12pair:$XBD2),
506 "la\t$R1, $XBD2",
507 [(set GR64:$R1, laaddr12pair:$XBD2)]>;
Richard Sandiforddf313ff2013-07-03 09:19:58 +0000508 let DispSize = "20" in
Richard Sandifordd454ec02013-05-14 09:28:21 +0000509 def LAY : InstRXY<0xE371, (outs GR64:$R1), (ins laaddr20pair:$XBD2),
510 "lay\t$R1, $XBD2",
511 [(set GR64:$R1, laaddr20pair:$XBD2)]>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000512}
513
514// Load a PC-relative address. There's no version of this instruction
515// with a 16-bit offset, so there's no relaxation.
Richard Sandiford891a7e72013-06-27 09:42:10 +0000516let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1,
517 isReMaterializable = 1 in {
Richard Sandifordd454ec02013-05-14 09:28:21 +0000518 def LARL : InstRIL<0xC00, (outs GR64:$R1), (ins pcrel32:$I2),
519 "larl\t$R1, $I2",
520 [(set GR64:$R1, pcrel32:$I2)]>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000521}
522
523//===----------------------------------------------------------------------===//
524// Negation
525//===----------------------------------------------------------------------===//
526
Richard Sandiford14a44492013-05-22 13:38:45 +0000527let Defs = [CC] in {
Richard Sandifordfd7f4ae2013-08-01 10:39:40 +0000528 let CCValues = 0xF, CCHasZero = 1 in {
529 def LCR : UnaryRR <"lc", 0x13, ineg, GR32, GR32>;
530 def LCGR : UnaryRRE<"lcg", 0xB903, ineg, GR64, GR64>;
531 }
532 let CCValues = 0xE, CCHasZero = 1, CCHasOrder = 1 in
533 def LCGFR : UnaryRRE<"lcgf", 0xB913, null_frag, GR64, GR32>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000534}
535defm : SXU<ineg, LCGFR>;
536
537//===----------------------------------------------------------------------===//
538// Insertion
539//===----------------------------------------------------------------------===//
540
541let isCodeGenOnly = 1 in
Richard Sandiforded1fab62013-07-03 10:10:02 +0000542 defm IC32 : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR32, zextloadi8, 1>;
543defm IC : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR64, zextloadi8, 1>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000544
545defm : InsertMem<"inserti8", IC32, GR32, zextloadi8, bdxaddr12pair>;
546defm : InsertMem<"inserti8", IC32Y, GR32, zextloadi8, bdxaddr20pair>;
547
548defm : InsertMem<"inserti8", IC, GR64, zextloadi8, bdxaddr12pair>;
549defm : InsertMem<"inserti8", ICY, GR64, zextloadi8, bdxaddr20pair>;
550
551// Insertions of a 16-bit immediate, leaving other bits unaffected.
552// We don't have or_as_insert equivalents of these operations because
553// OI is available instead.
554let isCodeGenOnly = 1 in {
555 def IILL32 : BinaryRI<"iill", 0xA53, insertll, GR32, imm32ll16>;
556 def IILH32 : BinaryRI<"iilh", 0xA52, insertlh, GR32, imm32lh16>;
557}
558def IILL : BinaryRI<"iill", 0xA53, insertll, GR64, imm64ll16>;
559def IILH : BinaryRI<"iilh", 0xA52, insertlh, GR64, imm64lh16>;
560def IIHL : BinaryRI<"iihl", 0xA51, inserthl, GR64, imm64hl16>;
561def IIHH : BinaryRI<"iihh", 0xA50, inserthh, GR64, imm64hh16>;
562
563// ...likewise for 32-bit immediates. For GR32s this is a general
564// full-width move. (We use IILF rather than something like LLILF
565// for 32-bit moves because IILF leaves the upper 32 bits of the
566// GR64 unchanged.)
Richard Sandiforda57e13b2013-06-27 09:38:48 +0000567let isCodeGenOnly = 1, isAsCheapAsAMove = 1, isMoveImm = 1,
568 isReMaterializable = 1 in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000569 def IILF32 : UnaryRIL<"iilf", 0xC09, bitconvert, GR32, uimm32>;
570}
571def IILF : BinaryRIL<"iilf", 0xC09, insertlf, GR64, imm64lf32>;
572def IIHF : BinaryRIL<"iihf", 0xC08, inserthf, GR64, imm64hf32>;
573
574// An alternative model of inserthf, with the first operand being
575// a zero-extended value.
576def : Pat<(or (zext32 GR32:$src), imm64hf32:$imm),
577 (IIHF (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_32bit),
578 imm64hf32:$imm)>;
579
580//===----------------------------------------------------------------------===//
581// Addition
582//===----------------------------------------------------------------------===//
583
584// Plain addition.
Richard Sandifordfd7f4ae2013-08-01 10:39:40 +0000585let Defs = [CC], CCValues = 0xF, CCHasZero = 1 in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000586 // Addition of a register.
587 let isCommutable = 1 in {
Richard Sandifordc575df62013-07-19 16:26:39 +0000588 defm AR : BinaryRRAndK<"a", 0x1A, 0xB9F8, add, GR32, GR32>;
589 defm AGR : BinaryRREAndK<"ag", 0xB908, 0xB9E8, add, GR64, GR64>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000590 }
Richard Sandiforded1fab62013-07-03 10:10:02 +0000591 def AGFR : BinaryRRE<"agf", 0xB918, null_frag, GR64, GR32>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000592
593 // Addition of signed 16-bit immediates.
Richard Sandiford7d6a4532013-07-19 16:32:12 +0000594 defm AHI : BinaryRIAndK<"ahi", 0xA7A, 0xECD8, add, GR32, imm32sx16>;
595 defm AGHI : BinaryRIAndK<"aghi", 0xA7B, 0xECD9, add, GR64, imm64sx16>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000596
597 // Addition of signed 32-bit immediates.
598 def AFI : BinaryRIL<"afi", 0xC29, add, GR32, simm32>;
599 def AGFI : BinaryRIL<"agfi", 0xC28, add, GR64, imm64sx32>;
600
601 // Addition of memory.
Richard Sandiforded1fab62013-07-03 10:10:02 +0000602 defm AH : BinaryRXPair<"ah", 0x4A, 0xE37A, add, GR32, sextloadi16, 2>;
603 defm A : BinaryRXPair<"a", 0x5A, 0xE35A, add, GR32, load, 4>;
604 def AGF : BinaryRXY<"agf", 0xE318, add, GR64, sextloadi32, 4>;
605 def AG : BinaryRXY<"ag", 0xE308, add, GR64, load, 8>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000606
607 // Addition to memory.
608 def ASI : BinarySIY<"asi", 0xEB6A, add, imm32sx8>;
609 def AGSI : BinarySIY<"agsi", 0xEB7A, add, imm64sx8>;
610}
611defm : SXB<add, GR64, AGFR>;
612
613// Addition producing a carry.
Richard Sandiford14a44492013-05-22 13:38:45 +0000614let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000615 // Addition of a register.
616 let isCommutable = 1 in {
Richard Sandifordfac8b102013-07-19 16:37:00 +0000617 defm ALR : BinaryRRAndK<"al", 0x1E, 0xB9FA, addc, GR32, GR32>;
618 defm ALGR : BinaryRREAndK<"alg", 0xB90A, 0xB9EA, addc, GR64, GR64>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000619 }
Richard Sandiforded1fab62013-07-03 10:10:02 +0000620 def ALGFR : BinaryRRE<"algf", 0xB91A, null_frag, GR64, GR32>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000621
Richard Sandifordfac8b102013-07-19 16:37:00 +0000622 // Addition of signed 16-bit immediates.
623 def ALHSIK : BinaryRIE<"alhsik", 0xECDA, addc, GR32, imm32sx16>,
624 Requires<[FeatureDistinctOps]>;
625 def ALGHSIK : BinaryRIE<"alghsik", 0xECDB, addc, GR64, imm64sx16>,
626 Requires<[FeatureDistinctOps]>;
627
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000628 // Addition of unsigned 32-bit immediates.
629 def ALFI : BinaryRIL<"alfi", 0xC2B, addc, GR32, uimm32>;
630 def ALGFI : BinaryRIL<"algfi", 0xC2A, addc, GR64, imm64zx32>;
631
632 // Addition of memory.
Richard Sandiforded1fab62013-07-03 10:10:02 +0000633 defm AL : BinaryRXPair<"al", 0x5E, 0xE35E, addc, GR32, load, 4>;
634 def ALGF : BinaryRXY<"algf", 0xE31A, addc, GR64, zextloadi32, 4>;
635 def ALG : BinaryRXY<"alg", 0xE30A, addc, GR64, load, 8>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000636}
637defm : ZXB<addc, GR64, ALGFR>;
638
639// Addition producing and using a carry.
Richard Sandiford14a44492013-05-22 13:38:45 +0000640let Defs = [CC], Uses = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000641 // Addition of a register.
Richard Sandiforded1fab62013-07-03 10:10:02 +0000642 def ALCR : BinaryRRE<"alc", 0xB998, adde, GR32, GR32>;
643 def ALCGR : BinaryRRE<"alcg", 0xB988, adde, GR64, GR64>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000644
645 // Addition of memory.
Richard Sandiforded1fab62013-07-03 10:10:02 +0000646 def ALC : BinaryRXY<"alc", 0xE398, adde, GR32, load, 4>;
647 def ALCG : BinaryRXY<"alcg", 0xE388, adde, GR64, load, 8>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000648}
649
650//===----------------------------------------------------------------------===//
651// Subtraction
652//===----------------------------------------------------------------------===//
653
654// Plain substraction. Although immediate forms exist, we use the
655// add-immediate instruction instead.
Richard Sandifordfd7f4ae2013-08-01 10:39:40 +0000656let Defs = [CC], CCValues = 0xF, CCHasZero = 1 in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000657 // Subtraction of a register.
Richard Sandifordc575df62013-07-19 16:26:39 +0000658 defm SR : BinaryRRAndK<"s", 0x1B, 0xB9F9, sub, GR32, GR32>;
Richard Sandiforded1fab62013-07-03 10:10:02 +0000659 def SGFR : BinaryRRE<"sgf", 0xB919, null_frag, GR64, GR32>;
Richard Sandifordc575df62013-07-19 16:26:39 +0000660 defm SGR : BinaryRREAndK<"sg", 0xB909, 0xB9E9, sub, GR64, GR64>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000661
662 // Subtraction of memory.
Richard Sandiforded1fab62013-07-03 10:10:02 +0000663 defm SH : BinaryRXPair<"sh", 0x4B, 0xE37B, sub, GR32, sextloadi16, 2>;
664 defm S : BinaryRXPair<"s", 0x5B, 0xE35B, sub, GR32, load, 4>;
665 def SGF : BinaryRXY<"sgf", 0xE319, sub, GR64, sextloadi32, 4>;
666 def SG : BinaryRXY<"sg", 0xE309, sub, GR64, load, 8>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000667}
668defm : SXB<sub, GR64, SGFR>;
669
670// Subtraction producing a carry.
Richard Sandiford14a44492013-05-22 13:38:45 +0000671let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000672 // Subtraction of a register.
Richard Sandifordfac8b102013-07-19 16:37:00 +0000673 defm SLR : BinaryRRAndK<"sl", 0x1F, 0xB9FB, subc, GR32, GR32>;
Richard Sandiforded1fab62013-07-03 10:10:02 +0000674 def SLGFR : BinaryRRE<"slgf", 0xB91B, null_frag, GR64, GR32>;
Richard Sandifordfac8b102013-07-19 16:37:00 +0000675 defm SLGR : BinaryRREAndK<"slg", 0xB90B, 0xB9EB, subc, GR64, GR64>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000676
677 // Subtraction of unsigned 32-bit immediates. These don't match
678 // subc because we prefer addc for constants.
679 def SLFI : BinaryRIL<"slfi", 0xC25, null_frag, GR32, uimm32>;
680 def SLGFI : BinaryRIL<"slgfi", 0xC24, null_frag, GR64, imm64zx32>;
681
682 // Subtraction of memory.
Richard Sandiforded1fab62013-07-03 10:10:02 +0000683 defm SL : BinaryRXPair<"sl", 0x5F, 0xE35F, subc, GR32, load, 4>;
684 def SLGF : BinaryRXY<"slgf", 0xE31B, subc, GR64, zextloadi32, 4>;
685 def SLG : BinaryRXY<"slg", 0xE30B, subc, GR64, load, 8>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000686}
687defm : ZXB<subc, GR64, SLGFR>;
688
689// Subtraction producing and using a carry.
Richard Sandiford14a44492013-05-22 13:38:45 +0000690let Defs = [CC], Uses = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000691 // Subtraction of a register.
Richard Sandiforded1fab62013-07-03 10:10:02 +0000692 def SLBR : BinaryRRE<"slb", 0xB999, sube, GR32, GR32>;
693 def SLGBR : BinaryRRE<"slbg", 0xB989, sube, GR64, GR64>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000694
695 // Subtraction of memory.
Richard Sandiforded1fab62013-07-03 10:10:02 +0000696 def SLB : BinaryRXY<"slb", 0xE399, sube, GR32, load, 4>;
697 def SLBG : BinaryRXY<"slbg", 0xE389, sube, GR64, load, 8>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000698}
699
700//===----------------------------------------------------------------------===//
701// AND
702//===----------------------------------------------------------------------===//
703
Richard Sandiford14a44492013-05-22 13:38:45 +0000704let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000705 // ANDs of a register.
Richard Sandifordfd7f4ae2013-08-01 10:39:40 +0000706 let isCommutable = 1, CCValues = 0xC, CCHasZero = 1 in {
Richard Sandiford0175b4a2013-07-19 16:21:55 +0000707 defm NR : BinaryRRAndK<"n", 0x14, 0xB9F4, and, GR32, GR32>;
Richard Sandifordc57e5862013-07-19 16:24:22 +0000708 defm NGR : BinaryRREAndK<"ng", 0xB980, 0xB9E4, and, GR64, GR64>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000709 }
710
Richard Sandiford6a06ba32013-07-31 11:36:35 +0000711 let isConvertibleToThreeAddress = 1 in {
712 // ANDs of a 16-bit immediate, leaving other bits unaffected.
Richard Sandifordfd7f4ae2013-08-01 10:39:40 +0000713 // The CC result only reflects the 16-bit field, not the full register.
Richard Sandiford6a06ba32013-07-31 11:36:35 +0000714 let isCodeGenOnly = 1 in {
715 def NILL32 : BinaryRI<"nill", 0xA57, and, GR32, imm32ll16c>;
716 def NILH32 : BinaryRI<"nilh", 0xA56, and, GR32, imm32lh16c>;
717 }
718 def NILL : BinaryRI<"nill", 0xA57, and, GR64, imm64ll16c>;
719 def NILH : BinaryRI<"nilh", 0xA56, and, GR64, imm64lh16c>;
720 def NIHL : BinaryRI<"nihl", 0xA55, and, GR64, imm64hl16c>;
721 def NIHH : BinaryRI<"nihh", 0xA54, and, GR64, imm64hh16c>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000722
Richard Sandiford6a06ba32013-07-31 11:36:35 +0000723 // ANDs of a 32-bit immediate, leaving other bits unaffected.
Richard Sandifordfd7f4ae2013-08-01 10:39:40 +0000724 // The CC result only reflects the 32-bit field, which means we can
725 // use it as a zero indicator for i32 operations but not otherwise.
726 let isCodeGenOnly = 1, CCValues = 0xC, CCHasZero = 1 in
Richard Sandiford6a06ba32013-07-31 11:36:35 +0000727 def NILF32 : BinaryRIL<"nilf", 0xC0B, and, GR32, uimm32>;
728 def NILF : BinaryRIL<"nilf", 0xC0B, and, GR64, imm64lf32c>;
729 def NIHF : BinaryRIL<"nihf", 0xC0A, and, GR64, imm64hf32c>;
730 }
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000731
732 // ANDs of memory.
Richard Sandifordfd7f4ae2013-08-01 10:39:40 +0000733 let CCValues = 0xC, CCHasZero = 1 in {
734 defm N : BinaryRXPair<"n", 0x54, 0xE354, and, GR32, load, 4>;
735 def NG : BinaryRXY<"ng", 0xE380, and, GR64, load, 8>;
736 }
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000737
738 // AND to memory
739 defm NI : BinarySIPair<"ni", 0x94, 0xEB54, null_frag, uimm8>;
740}
741defm : RMWIByte<and, bdaddr12pair, NI>;
742defm : RMWIByte<and, bdaddr20pair, NIY>;
743
744//===----------------------------------------------------------------------===//
745// OR
746//===----------------------------------------------------------------------===//
747
Richard Sandiford14a44492013-05-22 13:38:45 +0000748let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000749 // ORs of a register.
Richard Sandifordfd7f4ae2013-08-01 10:39:40 +0000750 let isCommutable = 1, CCValues = 0xC, CCHasZero = 1 in {
Richard Sandiford0175b4a2013-07-19 16:21:55 +0000751 defm OR : BinaryRRAndK<"o", 0x16, 0xB9F6, or, GR32, GR32>;
Richard Sandifordc57e5862013-07-19 16:24:22 +0000752 defm OGR : BinaryRREAndK<"og", 0xB981, 0xB9E6, or, GR64, GR64>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000753 }
754
755 // ORs of a 16-bit immediate, leaving other bits unaffected.
Richard Sandifordfd7f4ae2013-08-01 10:39:40 +0000756 // The CC result only reflects the 16-bit field, not the full register.
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000757 let isCodeGenOnly = 1 in {
758 def OILL32 : BinaryRI<"oill", 0xA5B, or, GR32, imm32ll16>;
759 def OILH32 : BinaryRI<"oilh", 0xA5A, or, GR32, imm32lh16>;
760 }
761 def OILL : BinaryRI<"oill", 0xA5B, or, GR64, imm64ll16>;
762 def OILH : BinaryRI<"oilh", 0xA5A, or, GR64, imm64lh16>;
763 def OIHL : BinaryRI<"oihl", 0xA59, or, GR64, imm64hl16>;
764 def OIHH : BinaryRI<"oihh", 0xA58, or, GR64, imm64hh16>;
765
766 // ORs of a 32-bit immediate, leaving other bits unaffected.
Richard Sandifordfd7f4ae2013-08-01 10:39:40 +0000767 // The CC result only reflects the 32-bit field, which means we can
768 // use it as a zero indicator for i32 operations but not otherwise.
769 let isCodeGenOnly = 1, CCValues = 0xC, CCHasZero = 1 in
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000770 def OILF32 : BinaryRIL<"oilf", 0xC0D, or, GR32, uimm32>;
771 def OILF : BinaryRIL<"oilf", 0xC0D, or, GR64, imm64lf32>;
772 def OIHF : BinaryRIL<"oihf", 0xC0C, or, GR64, imm64hf32>;
773
774 // ORs of memory.
Richard Sandifordfd7f4ae2013-08-01 10:39:40 +0000775 let CCValues = 0xC, CCHasZero = 1 in {
776 defm O : BinaryRXPair<"o", 0x56, 0xE356, or, GR32, load, 4>;
777 def OG : BinaryRXY<"og", 0xE381, or, GR64, load, 8>;
778 }
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000779
780 // OR to memory
781 defm OI : BinarySIPair<"oi", 0x96, 0xEB56, null_frag, uimm8>;
782}
783defm : RMWIByte<or, bdaddr12pair, OI>;
784defm : RMWIByte<or, bdaddr20pair, OIY>;
785
786//===----------------------------------------------------------------------===//
787// XOR
788//===----------------------------------------------------------------------===//
789
Richard Sandiford14a44492013-05-22 13:38:45 +0000790let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000791 // XORs of a register.
Richard Sandifordfd7f4ae2013-08-01 10:39:40 +0000792 let isCommutable = 1, CCValues = 0xC, CCHasZero = 1 in {
Richard Sandiford0175b4a2013-07-19 16:21:55 +0000793 defm XR : BinaryRRAndK<"x", 0x17, 0xB9F7, xor, GR32, GR32>;
Richard Sandifordc57e5862013-07-19 16:24:22 +0000794 defm XGR : BinaryRREAndK<"xg", 0xB982, 0xB9E7, xor, GR64, GR64>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000795 }
796
797 // XORs of a 32-bit immediate, leaving other bits unaffected.
Richard Sandifordfd7f4ae2013-08-01 10:39:40 +0000798 // The CC result only reflects the 32-bit field, which means we can
799 // use it as a zero indicator for i32 operations but not otherwise.
800 let isCodeGenOnly = 1, CCValues = 0xC, CCHasZero = 1 in
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000801 def XILF32 : BinaryRIL<"xilf", 0xC07, xor, GR32, uimm32>;
802 def XILF : BinaryRIL<"xilf", 0xC07, xor, GR64, imm64lf32>;
803 def XIHF : BinaryRIL<"xihf", 0xC06, xor, GR64, imm64hf32>;
804
805 // XORs of memory.
Richard Sandifordfd7f4ae2013-08-01 10:39:40 +0000806 let CCValues = 0xC, CCHasZero = 1 in {
807 defm X : BinaryRXPair<"x",0x57, 0xE357, xor, GR32, load, 4>;
808 def XG : BinaryRXY<"xg", 0xE382, xor, GR64, load, 8>;
809 }
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000810
811 // XOR to memory
812 defm XI : BinarySIPair<"xi", 0x97, 0xEB57, null_frag, uimm8>;
813}
814defm : RMWIByte<xor, bdaddr12pair, XI>;
815defm : RMWIByte<xor, bdaddr20pair, XIY>;
816
817//===----------------------------------------------------------------------===//
818// Multiplication
819//===----------------------------------------------------------------------===//
820
821// Multiplication of a register.
822let isCommutable = 1 in {
Richard Sandiforded1fab62013-07-03 10:10:02 +0000823 def MSR : BinaryRRE<"ms", 0xB252, mul, GR32, GR32>;
824 def MSGR : BinaryRRE<"msg", 0xB90C, mul, GR64, GR64>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000825}
Richard Sandiforded1fab62013-07-03 10:10:02 +0000826def MSGFR : BinaryRRE<"msgf", 0xB91C, null_frag, GR64, GR32>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000827defm : SXB<mul, GR64, MSGFR>;
828
829// Multiplication of a signed 16-bit immediate.
830def MHI : BinaryRI<"mhi", 0xA7C, mul, GR32, imm32sx16>;
831def MGHI : BinaryRI<"mghi", 0xA7D, mul, GR64, imm64sx16>;
832
833// Multiplication of a signed 32-bit immediate.
834def MSFI : BinaryRIL<"msfi", 0xC21, mul, GR32, simm32>;
835def MSGFI : BinaryRIL<"msgfi", 0xC20, mul, GR64, imm64sx32>;
836
837// Multiplication of memory.
Richard Sandiforded1fab62013-07-03 10:10:02 +0000838defm MH : BinaryRXPair<"mh", 0x4C, 0xE37C, mul, GR32, sextloadi16, 2>;
839defm MS : BinaryRXPair<"ms", 0x71, 0xE351, mul, GR32, load, 4>;
840def MSGF : BinaryRXY<"msgf", 0xE31C, mul, GR64, sextloadi32, 4>;
841def MSG : BinaryRXY<"msg", 0xE30C, mul, GR64, load, 8>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000842
843// Multiplication of a register, producing two results.
Richard Sandiforded1fab62013-07-03 10:10:02 +0000844def MLGR : BinaryRRE<"mlg", 0xB986, z_umul_lohi64, GR128, GR64>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000845
846// Multiplication of memory, producing two results.
Richard Sandiforded1fab62013-07-03 10:10:02 +0000847def MLG : BinaryRXY<"mlg", 0xE386, z_umul_lohi64, GR128, load, 8>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000848
849//===----------------------------------------------------------------------===//
850// Division and remainder
851//===----------------------------------------------------------------------===//
852
853// Division and remainder, from registers.
Richard Sandiforded1fab62013-07-03 10:10:02 +0000854def DSGFR : BinaryRRE<"dsgf", 0xB91D, z_sdivrem32, GR128, GR32>;
855def DSGR : BinaryRRE<"dsg", 0xB90D, z_sdivrem64, GR128, GR64>;
856def DLR : BinaryRRE<"dl", 0xB997, z_udivrem32, GR128, GR32>;
857def DLGR : BinaryRRE<"dlg", 0xB987, z_udivrem64, GR128, GR64>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000858
859// Division and remainder, from memory.
Richard Sandiforded1fab62013-07-03 10:10:02 +0000860def DSGF : BinaryRXY<"dsgf", 0xE31D, z_sdivrem32, GR128, load, 4>;
861def DSG : BinaryRXY<"dsg", 0xE30D, z_sdivrem64, GR128, load, 8>;
862def DL : BinaryRXY<"dl", 0xE397, z_udivrem32, GR128, load, 4>;
863def DLG : BinaryRXY<"dlg", 0xE387, z_udivrem64, GR128, load, 8>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000864
865//===----------------------------------------------------------------------===//
866// Shifts
867//===----------------------------------------------------------------------===//
868
869// Shift left.
870let neverHasSideEffects = 1 in {
Richard Sandiford27d1cfe2013-07-19 16:09:03 +0000871 defm SLL : ShiftRSAndK<"sll", 0x89, 0xEBDF, shl, GR32>;
872 def SLLG : ShiftRSY<"sllg", 0xEB0D, shl, GR64>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000873}
874
875// Logical shift right.
876let neverHasSideEffects = 1 in {
Richard Sandiford27d1cfe2013-07-19 16:09:03 +0000877 defm SRL : ShiftRSAndK<"srl", 0x88, 0xEBDE, srl, GR32>;
878 def SRLG : ShiftRSY<"srlg", 0xEB0C, srl, GR64>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000879}
880
881// Arithmetic shift right.
Richard Sandifordfd7f4ae2013-08-01 10:39:40 +0000882let Defs = [CC], CCValues = 0xE, CCHasZero = 1, CCHasOrder = 1 in {
Richard Sandiford27d1cfe2013-07-19 16:09:03 +0000883 defm SRA : ShiftRSAndK<"sra", 0x8A, 0xEBDC, sra, GR32>;
884 def SRAG : ShiftRSY<"srag", 0xEB0A, sra, GR64>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000885}
886
887// Rotate left.
888let neverHasSideEffects = 1 in {
Richard Sandiford27d1cfe2013-07-19 16:09:03 +0000889 def RLL : ShiftRSY<"rll", 0xEB1D, rotl, GR32>;
890 def RLLG : ShiftRSY<"rllg", 0xEB1C, rotl, GR64>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000891}
892
893// Rotate second operand left and inserted selected bits into first operand.
894// These can act like 32-bit operands provided that the constant start and
Richard Sandifordfd7f4ae2013-08-01 10:39:40 +0000895// end bits (operands 2 and 3) are in the range [32, 64).
Richard Sandiford14a44492013-05-22 13:38:45 +0000896let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000897 let isCodeGenOnly = 1 in
Richard Sandifordfd7f4ae2013-08-01 10:39:40 +0000898 def RISBG32 : RotateSelectRIEf<"risbg", 0xEC55, GR32, GR32>;
899 let CCValues = 0xE, CCHasZero = 1, CCHasOrder = 1 in
900 def RISBG : RotateSelectRIEf<"risbg", 0xEC55, GR64, GR64>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000901}
902
Richard Sandiford6cf80b32013-07-31 11:17:35 +0000903// Forms of RISBG that only affect one word of the destination register.
904// They do not set CC.
Richard Sandiford6a06ba32013-07-31 11:36:35 +0000905let isCodeGenOnly = 1 in
906 def RISBLG32 : RotateSelectRIEf<"risblg", 0xEC51, GR32, GR32>,
907 Requires<[FeatureHighWord]>;
Richard Sandiford6cf80b32013-07-31 11:17:35 +0000908def RISBHG : RotateSelectRIEf<"risbhg", 0xEC5D, GR64, GR64>,
909 Requires<[FeatureHighWord]>;
910def RISBLG : RotateSelectRIEf<"risblg", 0xEC51, GR64, GR64>,
911 Requires<[FeatureHighWord]>;
912
Richard Sandiford35bb4632013-07-16 11:28:08 +0000913// Rotate second operand left and perform a logical operation with selected
Richard Sandifordfd7f4ae2013-08-01 10:39:40 +0000914// bits of the first operand. The CC result only describes the selected bits,
915// so isn't useful for a full comparison against zero.
Richard Sandiford35bb4632013-07-16 11:28:08 +0000916let Defs = [CC] in {
917 def RNSBG : RotateSelectRIEf<"rnsbg", 0xEC54, GR64, GR64>;
918 def ROSBG : RotateSelectRIEf<"rosbg", 0xEC56, GR64, GR64>;
919 def RXSBG : RotateSelectRIEf<"rxsbg", 0xEC57, GR64, GR64>;
920}
921
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000922//===----------------------------------------------------------------------===//
923// Comparison
924//===----------------------------------------------------------------------===//
925
926// Signed comparisons.
Richard Sandifordfd7f4ae2013-08-01 10:39:40 +0000927let Defs = [CC], CCValues = 0xE in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000928 // Comparison with a register.
Richard Sandiforded1fab62013-07-03 10:10:02 +0000929 def CR : CompareRR <"c", 0x19, z_cmp, GR32, GR32>;
930 def CGFR : CompareRRE<"cgf", 0xB930, null_frag, GR64, GR32>;
931 def CGR : CompareRRE<"cg", 0xB920, z_cmp, GR64, GR64>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000932
933 // Comparison with a signed 16-bit immediate.
934 def CHI : CompareRI<"chi", 0xA7E, z_cmp, GR32, imm32sx16>;
935 def CGHI : CompareRI<"cghi", 0xA7F, z_cmp, GR64, imm64sx16>;
936
937 // Comparison with a signed 32-bit immediate.
938 def CFI : CompareRIL<"cfi", 0xC2D, z_cmp, GR32, simm32>;
939 def CGFI : CompareRIL<"cgfi", 0xC2C, z_cmp, GR64, imm64sx32>;
940
941 // Comparison with memory.
Richard Sandiforded1fab62013-07-03 10:10:02 +0000942 defm CH : CompareRXPair<"ch", 0x49, 0xE379, z_cmp, GR32, sextloadi16, 2>;
943 defm C : CompareRXPair<"c", 0x59, 0xE359, z_cmp, GR32, load, 4>;
944 def CGH : CompareRXY<"cgh", 0xE334, z_cmp, GR64, sextloadi16, 2>;
945 def CGF : CompareRXY<"cgf", 0xE330, z_cmp, GR64, sextloadi32, 4>;
946 def CG : CompareRXY<"cg", 0xE320, z_cmp, GR64, load, 8>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000947 def CHRL : CompareRILPC<"chrl", 0xC65, z_cmp, GR32, aligned_sextloadi16>;
948 def CRL : CompareRILPC<"crl", 0xC6D, z_cmp, GR32, aligned_load>;
949 def CGHRL : CompareRILPC<"cghrl", 0xC64, z_cmp, GR64, aligned_sextloadi16>;
950 def CGFRL : CompareRILPC<"cgfrl", 0xC6C, z_cmp, GR64, aligned_sextloadi32>;
951 def CGRL : CompareRILPC<"cgrl", 0xC68, z_cmp, GR64, aligned_load>;
952
953 // Comparison between memory and a signed 16-bit immediate.
954 def CHHSI : CompareSIL<"chhsi", 0xE554, z_cmp, sextloadi16, imm32sx16>;
955 def CHSI : CompareSIL<"chsi", 0xE55C, z_cmp, load, imm32sx16>;
956 def CGHSI : CompareSIL<"cghsi", 0xE558, z_cmp, load, imm64sx16>;
957}
958defm : SXB<z_cmp, GR64, CGFR>;
959
960// Unsigned comparisons.
Richard Sandifordfd7f4ae2013-08-01 10:39:40 +0000961let Defs = [CC], CCValues = 0xE, IsLogical = 1 in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000962 // Comparison with a register.
Richard Sandiforded1fab62013-07-03 10:10:02 +0000963 def CLR : CompareRR <"cl", 0x15, z_ucmp, GR32, GR32>;
964 def CLGFR : CompareRRE<"clgf", 0xB931, null_frag, GR64, GR32>;
965 def CLGR : CompareRRE<"clg", 0xB921, z_ucmp, GR64, GR64>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000966
967 // Comparison with a signed 32-bit immediate.
968 def CLFI : CompareRIL<"clfi", 0xC2F, z_ucmp, GR32, uimm32>;
969 def CLGFI : CompareRIL<"clgfi", 0xC2E, z_ucmp, GR64, imm64zx32>;
970
971 // Comparison with memory.
Richard Sandiforded1fab62013-07-03 10:10:02 +0000972 defm CL : CompareRXPair<"cl", 0x55, 0xE355, z_ucmp, GR32, load, 4>;
973 def CLGF : CompareRXY<"clgf", 0xE331, z_ucmp, GR64, zextloadi32, 4>;
974 def CLG : CompareRXY<"clg", 0xE321, z_ucmp, GR64, load, 8>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000975 def CLHRL : CompareRILPC<"clhrl", 0xC67, z_ucmp, GR32,
976 aligned_zextloadi16>;
977 def CLRL : CompareRILPC<"clrl", 0xC6F, z_ucmp, GR32,
978 aligned_load>;
979 def CLGHRL : CompareRILPC<"clghrl", 0xC66, z_ucmp, GR64,
980 aligned_zextloadi16>;
981 def CLGFRL : CompareRILPC<"clgfrl", 0xC6E, z_ucmp, GR64,
982 aligned_zextloadi32>;
983 def CLGRL : CompareRILPC<"clgrl", 0xC6A, z_ucmp, GR64,
984 aligned_load>;
985
986 // Comparison between memory and an unsigned 8-bit immediate.
987 defm CLI : CompareSIPair<"cli", 0x95, 0xEB55, z_ucmp, zextloadi8, imm32zx8>;
988
989 // Comparison between memory and an unsigned 16-bit immediate.
990 def CLHHSI : CompareSIL<"clhhsi", 0xE555, z_ucmp, zextloadi16, imm32zx16>;
991 def CLFHSI : CompareSIL<"clfhsi", 0xE55D, z_ucmp, load, imm32zx16>;
992 def CLGHSI : CompareSIL<"clghsi", 0xE559, z_ucmp, load, imm64zx16>;
993}
994defm : ZXB<z_ucmp, GR64, CLGFR>;
995
996//===----------------------------------------------------------------------===//
997// Atomic operations
998//===----------------------------------------------------------------------===//
999
1000def ATOMIC_SWAPW : AtomicLoadWBinaryReg<z_atomic_swapw>;
1001def ATOMIC_SWAP_32 : AtomicLoadBinaryReg32<atomic_swap_32>;
1002def ATOMIC_SWAP_64 : AtomicLoadBinaryReg64<atomic_swap_64>;
1003
1004def ATOMIC_LOADW_AR : AtomicLoadWBinaryReg<z_atomic_loadw_add>;
1005def ATOMIC_LOADW_AFI : AtomicLoadWBinaryImm<z_atomic_loadw_add, simm32>;
1006def ATOMIC_LOAD_AR : AtomicLoadBinaryReg32<atomic_load_add_32>;
1007def ATOMIC_LOAD_AHI : AtomicLoadBinaryImm32<atomic_load_add_32, imm32sx16>;
1008def ATOMIC_LOAD_AFI : AtomicLoadBinaryImm32<atomic_load_add_32, simm32>;
1009def ATOMIC_LOAD_AGR : AtomicLoadBinaryReg64<atomic_load_add_64>;
1010def ATOMIC_LOAD_AGHI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx16>;
1011def ATOMIC_LOAD_AGFI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx32>;
1012
1013def ATOMIC_LOADW_SR : AtomicLoadWBinaryReg<z_atomic_loadw_sub>;
1014def ATOMIC_LOAD_SR : AtomicLoadBinaryReg32<atomic_load_sub_32>;
1015def ATOMIC_LOAD_SGR : AtomicLoadBinaryReg64<atomic_load_sub_64>;
1016
1017def ATOMIC_LOADW_NR : AtomicLoadWBinaryReg<z_atomic_loadw_and>;
1018def ATOMIC_LOADW_NILH : AtomicLoadWBinaryImm<z_atomic_loadw_and, imm32lh16c>;
1019def ATOMIC_LOAD_NR : AtomicLoadBinaryReg32<atomic_load_and_32>;
1020def ATOMIC_LOAD_NILL32 : AtomicLoadBinaryImm32<atomic_load_and_32, imm32ll16c>;
1021def ATOMIC_LOAD_NILH32 : AtomicLoadBinaryImm32<atomic_load_and_32, imm32lh16c>;
1022def ATOMIC_LOAD_NILF32 : AtomicLoadBinaryImm32<atomic_load_and_32, uimm32>;
1023def ATOMIC_LOAD_NGR : AtomicLoadBinaryReg64<atomic_load_and_64>;
1024def ATOMIC_LOAD_NILL : AtomicLoadBinaryImm64<atomic_load_and_64, imm64ll16c>;
1025def ATOMIC_LOAD_NILH : AtomicLoadBinaryImm64<atomic_load_and_64, imm64lh16c>;
1026def ATOMIC_LOAD_NIHL : AtomicLoadBinaryImm64<atomic_load_and_64, imm64hl16c>;
1027def ATOMIC_LOAD_NIHH : AtomicLoadBinaryImm64<atomic_load_and_64, imm64hh16c>;
1028def ATOMIC_LOAD_NILF : AtomicLoadBinaryImm64<atomic_load_and_64, imm64lf32c>;
1029def ATOMIC_LOAD_NIHF : AtomicLoadBinaryImm64<atomic_load_and_64, imm64hf32c>;
1030
1031def ATOMIC_LOADW_OR : AtomicLoadWBinaryReg<z_atomic_loadw_or>;
1032def ATOMIC_LOADW_OILH : AtomicLoadWBinaryImm<z_atomic_loadw_or, imm32lh16>;
1033def ATOMIC_LOAD_OR : AtomicLoadBinaryReg32<atomic_load_or_32>;
1034def ATOMIC_LOAD_OILL32 : AtomicLoadBinaryImm32<atomic_load_or_32, imm32ll16>;
1035def ATOMIC_LOAD_OILH32 : AtomicLoadBinaryImm32<atomic_load_or_32, imm32lh16>;
1036def ATOMIC_LOAD_OILF32 : AtomicLoadBinaryImm32<atomic_load_or_32, uimm32>;
1037def ATOMIC_LOAD_OGR : AtomicLoadBinaryReg64<atomic_load_or_64>;
1038def ATOMIC_LOAD_OILL : AtomicLoadBinaryImm64<atomic_load_or_64, imm64ll16>;
1039def ATOMIC_LOAD_OILH : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lh16>;
1040def ATOMIC_LOAD_OIHL : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hl16>;
1041def ATOMIC_LOAD_OIHH : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hh16>;
1042def ATOMIC_LOAD_OILF : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lf32>;
1043def ATOMIC_LOAD_OIHF : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hf32>;
1044
1045def ATOMIC_LOADW_XR : AtomicLoadWBinaryReg<z_atomic_loadw_xor>;
1046def ATOMIC_LOADW_XILF : AtomicLoadWBinaryImm<z_atomic_loadw_xor, uimm32>;
1047def ATOMIC_LOAD_XR : AtomicLoadBinaryReg32<atomic_load_xor_32>;
1048def ATOMIC_LOAD_XILF32 : AtomicLoadBinaryImm32<atomic_load_xor_32, uimm32>;
1049def ATOMIC_LOAD_XGR : AtomicLoadBinaryReg64<atomic_load_xor_64>;
1050def ATOMIC_LOAD_XILF : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64lf32>;
1051def ATOMIC_LOAD_XIHF : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64hf32>;
1052
1053def ATOMIC_LOADW_NRi : AtomicLoadWBinaryReg<z_atomic_loadw_nand>;
1054def ATOMIC_LOADW_NILHi : AtomicLoadWBinaryImm<z_atomic_loadw_nand,
1055 imm32lh16c>;
1056def ATOMIC_LOAD_NRi : AtomicLoadBinaryReg32<atomic_load_nand_32>;
1057def ATOMIC_LOAD_NILL32i : AtomicLoadBinaryImm32<atomic_load_nand_32,
1058 imm32ll16c>;
1059def ATOMIC_LOAD_NILH32i : AtomicLoadBinaryImm32<atomic_load_nand_32,
1060 imm32lh16c>;
1061def ATOMIC_LOAD_NILF32i : AtomicLoadBinaryImm32<atomic_load_nand_32, uimm32>;
1062def ATOMIC_LOAD_NGRi : AtomicLoadBinaryReg64<atomic_load_nand_64>;
1063def ATOMIC_LOAD_NILLi : AtomicLoadBinaryImm64<atomic_load_nand_64,
1064 imm64ll16c>;
1065def ATOMIC_LOAD_NILHi : AtomicLoadBinaryImm64<atomic_load_nand_64,
1066 imm64lh16c>;
1067def ATOMIC_LOAD_NIHLi : AtomicLoadBinaryImm64<atomic_load_nand_64,
1068 imm64hl16c>;
1069def ATOMIC_LOAD_NIHHi : AtomicLoadBinaryImm64<atomic_load_nand_64,
1070 imm64hh16c>;
1071def ATOMIC_LOAD_NILFi : AtomicLoadBinaryImm64<atomic_load_nand_64,
1072 imm64lf32c>;
1073def ATOMIC_LOAD_NIHFi : AtomicLoadBinaryImm64<atomic_load_nand_64,
1074 imm64hf32c>;
1075
1076def ATOMIC_LOADW_MIN : AtomicLoadWBinaryReg<z_atomic_loadw_min>;
1077def ATOMIC_LOAD_MIN_32 : AtomicLoadBinaryReg32<atomic_load_min_32>;
1078def ATOMIC_LOAD_MIN_64 : AtomicLoadBinaryReg64<atomic_load_min_64>;
1079
1080def ATOMIC_LOADW_MAX : AtomicLoadWBinaryReg<z_atomic_loadw_max>;
1081def ATOMIC_LOAD_MAX_32 : AtomicLoadBinaryReg32<atomic_load_max_32>;
1082def ATOMIC_LOAD_MAX_64 : AtomicLoadBinaryReg64<atomic_load_max_64>;
1083
1084def ATOMIC_LOADW_UMIN : AtomicLoadWBinaryReg<z_atomic_loadw_umin>;
1085def ATOMIC_LOAD_UMIN_32 : AtomicLoadBinaryReg32<atomic_load_umin_32>;
1086def ATOMIC_LOAD_UMIN_64 : AtomicLoadBinaryReg64<atomic_load_umin_64>;
1087
1088def ATOMIC_LOADW_UMAX : AtomicLoadWBinaryReg<z_atomic_loadw_umax>;
1089def ATOMIC_LOAD_UMAX_32 : AtomicLoadBinaryReg32<atomic_load_umax_32>;
1090def ATOMIC_LOAD_UMAX_64 : AtomicLoadBinaryReg64<atomic_load_umax_64>;
1091
1092def ATOMIC_CMP_SWAPW
1093 : Pseudo<(outs GR32:$dst), (ins bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
1094 ADDR32:$bitshift, ADDR32:$negbitshift,
1095 uimm32:$bitsize),
1096 [(set GR32:$dst,
1097 (z_atomic_cmp_swapw bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
1098 ADDR32:$bitshift, ADDR32:$negbitshift,
1099 uimm32:$bitsize))]> {
Richard Sandiford14a44492013-05-22 13:38:45 +00001100 let Defs = [CC];
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001101 let mayLoad = 1;
1102 let mayStore = 1;
1103 let usesCustomInserter = 1;
1104}
1105
Richard Sandiford14a44492013-05-22 13:38:45 +00001106let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001107 defm CS : CmpSwapRSPair<"cs", 0xBA, 0xEB14, atomic_cmp_swap_32, GR32>;
1108 def CSG : CmpSwapRSY<"csg", 0xEB30, atomic_cmp_swap_64, GR64>;
1109}
1110
1111//===----------------------------------------------------------------------===//
1112// Miscellaneous Instructions.
1113//===----------------------------------------------------------------------===//
1114
1115// Read a 32-bit access register into a GR32. As with all GR32 operations,
1116// the upper 32 bits of the enclosing GR64 remain unchanged, which is useful
1117// when a 64-bit address is stored in a pair of access registers.
Richard Sandifordd454ec02013-05-14 09:28:21 +00001118def EAR : InstRRE<0xB24F, (outs GR32:$R1), (ins access_reg:$R2),
1119 "ear\t$R1, $R2",
1120 [(set GR32:$R1, (z_extract_access access_reg:$R2))]>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001121
1122// Find leftmost one, AKA count leading zeros. The instruction actually
1123// returns a pair of GR64s, the first giving the number of leading zeros
1124// and the second giving a copy of the source with the leftmost one bit
1125// cleared. We only use the first result here.
Richard Sandiford14a44492013-05-22 13:38:45 +00001126let Defs = [CC] in {
Richard Sandiforded1fab62013-07-03 10:10:02 +00001127 def FLOGR : UnaryRRE<"flog", 0xB983, null_frag, GR128, GR64>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001128}
1129def : Pat<(ctlz GR64:$src),
1130 (EXTRACT_SUBREG (FLOGR GR64:$src), subreg_high)>;
1131
1132// Use subregs to populate the "don't care" bits in a 32-bit to 64-bit anyext.
1133def : Pat<(i64 (anyext GR32:$src)),
1134 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_32bit)>;
1135
1136// There are no 32-bit equivalents of LLILL and LLILH, so use a full
1137// 64-bit move followed by a subreg. This preserves the invariant that
1138// all GR32 operations only modify the low 32 bits.
1139def : Pat<(i32 imm32ll16:$src),
1140 (EXTRACT_SUBREG (LLILL (LL16 imm:$src)), subreg_32bit)>;
1141def : Pat<(i32 imm32lh16:$src),
1142 (EXTRACT_SUBREG (LLILH (LH16 imm:$src)), subreg_32bit)>;
1143
1144// Extend GR32s and GR64s to GR128s.
1145let usesCustomInserter = 1 in {
1146 def AEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
1147 def ZEXT128_32 : Pseudo<(outs GR128:$dst), (ins GR32:$src), []>;
1148 def ZEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
1149}
1150
1151//===----------------------------------------------------------------------===//
1152// Peepholes.
1153//===----------------------------------------------------------------------===//
1154
1155// Use AL* for GR64 additions of unsigned 32-bit values.
1156defm : ZXB<add, GR64, ALGFR>;
1157def : Pat<(add GR64:$src1, imm64zx32:$src2),
1158 (ALGFI GR64:$src1, imm64zx32:$src2)>;
1159def : Pat<(add GR64:$src1, (zextloadi32 bdxaddr20only:$addr)),
1160 (ALGF GR64:$src1, bdxaddr20only:$addr)>;
1161
1162// Use SL* for GR64 subtractions of unsigned 32-bit values.
1163defm : ZXB<sub, GR64, SLGFR>;
1164def : Pat<(add GR64:$src1, imm64zx32n:$src2),
1165 (SLGFI GR64:$src1, imm64zx32n:$src2)>;
1166def : Pat<(sub GR64:$src1, (zextloadi32 bdxaddr20only:$addr)),
1167 (SLGF GR64:$src1, bdxaddr20only:$addr)>;
Richard Sandiford6d4bd282013-07-12 09:17:10 +00001168
1169// Optimize sign-extended 1/0 selects to -1/0 selects. This is important
1170// for vector legalization.
Richard Sandiford3d768e32013-07-31 12:30:20 +00001171def : Pat<(sra (shl (i32 (z_select_ccmask 1, 0, uimm8zx4:$valid, uimm8zx4:$cc)),
1172 (i32 31)),
1173 (i32 31)),
1174 (Select32 (LHI -1), (LHI 0), uimm8zx4:$valid, uimm8zx4:$cc)>;
1175def : Pat<(sra (shl (i64 (anyext (i32 (z_select_ccmask 1, 0, uimm8zx4:$valid,
1176 uimm8zx4:$cc)))),
Richard Sandiford6d4bd282013-07-12 09:17:10 +00001177 (i32 63)),
1178 (i32 63)),
Richard Sandiford3d768e32013-07-31 12:30:20 +00001179 (Select64 (LGHI -1), (LGHI 0), uimm8zx4:$valid, uimm8zx4:$cc)>;