blob: e1fdcac0af74d273b2b8c31aa15c31de06f51469 [file] [log] [blame]
Davide Italiano7e274e02016-12-22 16:03:48 +00001//===---- NewGVN.cpp - Global Value Numbering Pass --------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file implements the new LLVM's Global Value Numbering pass.
11/// GVN partitions values computed by a function into congruence classes.
12/// Values ending up in the same congruence class are guaranteed to be the same
13/// for every execution of the program. In that respect, congruency is a
14/// compile-time approximation of equivalence of values at runtime.
15/// The algorithm implemented here uses a sparse formulation and it's based
16/// on the ideas described in the paper:
17/// "A Sparse Algorithm for Predicated Global Value Numbering" from
18/// Karthik Gargi.
19///
Daniel Berlindb3c7be2017-01-26 21:39:49 +000020/// A brief overview of the algorithm: The algorithm is essentially the same as
21/// the standard RPO value numbering algorithm (a good reference is the paper
22/// "SCC based value numbering" by L. Taylor Simpson) with one major difference:
23/// The RPO algorithm proceeds, on every iteration, to process every reachable
24/// block and every instruction in that block. This is because the standard RPO
25/// algorithm does not track what things have the same value number, it only
26/// tracks what the value number of a given operation is (the mapping is
27/// operation -> value number). Thus, when a value number of an operation
28/// changes, it must reprocess everything to ensure all uses of a value number
29/// get updated properly. In constrast, the sparse algorithm we use *also*
30/// tracks what operations have a given value number (IE it also tracks the
31/// reverse mapping from value number -> operations with that value number), so
32/// that it only needs to reprocess the instructions that are affected when
33/// something's value number changes. The rest of the algorithm is devoted to
34/// performing symbolic evaluation, forward propagation, and simplification of
35/// operations based on the value numbers deduced so far.
36///
37/// We also do not perform elimination by using any published algorithm. All
38/// published algorithms are O(Instructions). Instead, we use a technique that
39/// is O(number of operations with the same value number), enabling us to skip
40/// trying to eliminate things that have unique value numbers.
Davide Italiano7e274e02016-12-22 16:03:48 +000041//===----------------------------------------------------------------------===//
42
43#include "llvm/Transforms/Scalar/NewGVN.h"
44#include "llvm/ADT/BitVector.h"
45#include "llvm/ADT/DenseMap.h"
46#include "llvm/ADT/DenseSet.h"
47#include "llvm/ADT/DepthFirstIterator.h"
48#include "llvm/ADT/Hashing.h"
49#include "llvm/ADT/MapVector.h"
50#include "llvm/ADT/PostOrderIterator.h"
Daniel Berlind7c12ee2016-12-25 22:23:49 +000051#include "llvm/ADT/STLExtras.h"
Davide Italiano7e274e02016-12-22 16:03:48 +000052#include "llvm/ADT/SmallPtrSet.h"
53#include "llvm/ADT/SmallSet.h"
54#include "llvm/ADT/SparseBitVector.h"
55#include "llvm/ADT/Statistic.h"
56#include "llvm/ADT/TinyPtrVector.h"
57#include "llvm/Analysis/AliasAnalysis.h"
58#include "llvm/Analysis/AssumptionCache.h"
59#include "llvm/Analysis/CFG.h"
60#include "llvm/Analysis/CFGPrinter.h"
61#include "llvm/Analysis/ConstantFolding.h"
62#include "llvm/Analysis/GlobalsModRef.h"
63#include "llvm/Analysis/InstructionSimplify.h"
Davide Italiano7e274e02016-12-22 16:03:48 +000064#include "llvm/Analysis/MemoryBuiltins.h"
Davide Italiano7e274e02016-12-22 16:03:48 +000065#include "llvm/Analysis/MemoryLocation.h"
Daniel Berlin2f72b192017-04-14 02:53:37 +000066#include "llvm/Analysis/MemorySSA.h"
Davide Italiano7e274e02016-12-22 16:03:48 +000067#include "llvm/Analysis/TargetLibraryInfo.h"
Davide Italiano7e274e02016-12-22 16:03:48 +000068#include "llvm/IR/DataLayout.h"
69#include "llvm/IR/Dominators.h"
70#include "llvm/IR/GlobalVariable.h"
71#include "llvm/IR/IRBuilder.h"
72#include "llvm/IR/IntrinsicInst.h"
73#include "llvm/IR/LLVMContext.h"
74#include "llvm/IR/Metadata.h"
75#include "llvm/IR/PatternMatch.h"
Davide Italiano7e274e02016-12-22 16:03:48 +000076#include "llvm/IR/Type.h"
77#include "llvm/Support/Allocator.h"
78#include "llvm/Support/CommandLine.h"
79#include "llvm/Support/Debug.h"
Daniel Berlin283a6082017-03-01 19:59:26 +000080#include "llvm/Support/DebugCounter.h"
Davide Italiano7e274e02016-12-22 16:03:48 +000081#include "llvm/Transforms/Scalar.h"
82#include "llvm/Transforms/Scalar/GVNExpression.h"
83#include "llvm/Transforms/Utils/BasicBlockUtils.h"
84#include "llvm/Transforms/Utils/Local.h"
Daniel Berlinf7d95802017-02-18 23:06:50 +000085#include "llvm/Transforms/Utils/PredicateInfo.h"
Daniel Berlin07daac82017-04-02 13:23:44 +000086#include "llvm/Transforms/Utils/VNCoercion.h"
Daniel Berlin1316a942017-04-06 18:52:50 +000087#include <numeric>
Davide Italiano7e274e02016-12-22 16:03:48 +000088#include <unordered_map>
89#include <utility>
90#include <vector>
91using namespace llvm;
92using namespace PatternMatch;
93using namespace llvm::GVNExpression;
Daniel Berlin07daac82017-04-02 13:23:44 +000094using namespace llvm::VNCoercion;
Davide Italiano7e274e02016-12-22 16:03:48 +000095#define DEBUG_TYPE "newgvn"
96
97STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted");
98STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted");
99STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified");
100STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same");
Daniel Berlin04443432017-01-07 03:23:47 +0000101STATISTIC(NumGVNMaxIterations,
102 "Maximum Number of iterations it took to converge GVN");
Daniel Berlinc0431fd2017-01-13 22:40:01 +0000103STATISTIC(NumGVNLeaderChanges, "Number of leader changes");
104STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes");
105STATISTIC(NumGVNAvoidedSortedLeaderChanges,
106 "Number of avoided sorted leader changes");
Daniel Berlin89fea6f2017-01-20 06:38:41 +0000107STATISTIC(NumGVNNotMostDominatingLeader,
108 "Number of times a member dominated it's new classes' leader");
Daniel Berlinc4796862017-01-27 02:37:11 +0000109STATISTIC(NumGVNDeadStores, "Number of redundant/dead stores eliminated");
Daniel Berlin283a6082017-03-01 19:59:26 +0000110DEBUG_COUNTER(VNCounter, "newgvn-vn",
111 "Controls which instructions are value numbered")
Daniel Berlin1316a942017-04-06 18:52:50 +0000112
113// Currently store defining access refinement is too slow due to basicaa being
114// egregiously slow. This flag lets us keep it working while we work on this
115// issue.
116static cl::opt<bool> EnableStoreRefinement("enable-store-refinement",
117 cl::init(false), cl::Hidden);
118
Davide Italiano7e274e02016-12-22 16:03:48 +0000119//===----------------------------------------------------------------------===//
120// GVN Pass
121//===----------------------------------------------------------------------===//
122
123// Anchor methods.
124namespace llvm {
125namespace GVNExpression {
Daniel Berlin85f91b02016-12-26 20:06:58 +0000126Expression::~Expression() = default;
127BasicExpression::~BasicExpression() = default;
128CallExpression::~CallExpression() = default;
129LoadExpression::~LoadExpression() = default;
130StoreExpression::~StoreExpression() = default;
131AggregateValueExpression::~AggregateValueExpression() = default;
132PHIExpression::~PHIExpression() = default;
Davide Italiano7e274e02016-12-22 16:03:48 +0000133}
134}
135
Daniel Berlin2f72b192017-04-14 02:53:37 +0000136// Tarjan's SCC finding algorithm with Nuutila's improvements
137// SCCIterator is actually fairly complex for the simple thing we want.
138// It also wants to hand us SCC's that are unrelated to the phi node we ask
139// about, and have us process them there or risk redoing work.
140// Graph traits over a filter iterator also doesn't work that well here.
Daniel Berlin9d0042b2017-04-18 20:15:47 +0000141// This SCC finder is specialized to walk use-def chains, and only follows
142// instructions,
Daniel Berlin2f72b192017-04-14 02:53:37 +0000143// not generic values (arguments, etc).
144struct TarjanSCC {
145
146 TarjanSCC() : Components(1) {}
147
148 void Start(const Instruction *Start) {
149 if (Root.lookup(Start) == 0)
150 FindSCC(Start);
151 }
152
153 const SmallPtrSetImpl<const Value *> &getComponentFor(const Value *V) const {
154 unsigned ComponentID = ValueToComponent.lookup(V);
155
156 assert(ComponentID > 0 &&
157 "Asking for a component for a value we never processed");
158 return Components[ComponentID];
159 }
160
161private:
162 void FindSCC(const Instruction *I) {
163 Root[I] = ++DFSNum;
164 // Store the DFS Number we had before it possibly gets incremented.
165 unsigned int OurDFS = DFSNum;
166 for (auto &Op : I->operands()) {
167 if (auto *InstOp = dyn_cast<Instruction>(Op)) {
168 if (Root.lookup(Op) == 0)
169 FindSCC(InstOp);
170 if (!InComponent.count(Op))
171 Root[I] = std::min(Root.lookup(I), Root.lookup(Op));
172 }
173 }
Daniel Berlin9d0042b2017-04-18 20:15:47 +0000174 // See if we really were the root of a component, by seeing if we still have
175 // our DFSNumber.
176 // If we do, we are the root of the component, and we have completed a
177 // component. If we do not,
Daniel Berlin2f72b192017-04-14 02:53:37 +0000178 // we are not the root of a component, and belong on the component stack.
179 if (Root.lookup(I) == OurDFS) {
180 unsigned ComponentID = Components.size();
181 Components.resize(Components.size() + 1);
182 auto &Component = Components.back();
183 Component.insert(I);
184 DEBUG(dbgs() << "Component root is " << *I << "\n");
185 InComponent.insert(I);
186 ValueToComponent[I] = ComponentID;
187 // Pop a component off the stack and label it.
188 while (!Stack.empty() && Root.lookup(Stack.back()) >= OurDFS) {
189 auto *Member = Stack.back();
190 DEBUG(dbgs() << "Component member is " << *Member << "\n");
191 Component.insert(Member);
192 InComponent.insert(Member);
193 ValueToComponent[Member] = ComponentID;
194 Stack.pop_back();
195 }
196 } else {
197 // Part of a component, push to stack
198 Stack.push_back(I);
199 }
200 }
201 unsigned int DFSNum = 1;
202 SmallPtrSet<const Value *, 8> InComponent;
203 DenseMap<const Value *, unsigned int> Root;
204 SmallVector<const Value *, 8> Stack;
205 // Store the components as vector of ptr sets, because we need the topo order
206 // of SCC's, but not individual member order
207 SmallVector<SmallPtrSet<const Value *, 8>, 8> Components;
208 DenseMap<const Value *, unsigned> ValueToComponent;
209};
Davide Italiano7e274e02016-12-22 16:03:48 +0000210// Congruence classes represent the set of expressions/instructions
211// that are all the same *during some scope in the function*.
212// That is, because of the way we perform equality propagation, and
213// because of memory value numbering, it is not correct to assume
214// you can willy-nilly replace any member with any other at any
215// point in the function.
216//
217// For any Value in the Member set, it is valid to replace any dominated member
218// with that Value.
219//
Daniel Berlin1316a942017-04-06 18:52:50 +0000220// Every congruence class has a leader, and the leader is used to symbolize
221// instructions in a canonical way (IE every operand of an instruction that is a
222// member of the same congruence class will always be replaced with leader
223// during symbolization). To simplify symbolization, we keep the leader as a
224// constant if class can be proved to be a constant value. Otherwise, the
225// leader is the member of the value set with the smallest DFS number. Each
226// congruence class also has a defining expression, though the expression may be
227// null. If it exists, it can be used for forward propagation and reassociation
228// of values.
229
230// For memory, we also track a representative MemoryAccess, and a set of memory
231// members for MemoryPhis (which have no real instructions). Note that for
232// memory, it seems tempting to try to split the memory members into a
233// MemoryCongruenceClass or something. Unfortunately, this does not work
234// easily. The value numbering of a given memory expression depends on the
235// leader of the memory congruence class, and the leader of memory congruence
236// class depends on the value numbering of a given memory expression. This
237// leads to wasted propagation, and in some cases, missed optimization. For
238// example: If we had value numbered two stores together before, but now do not,
239// we move them to a new value congruence class. This in turn will move at one
240// of the memorydefs to a new memory congruence class. Which in turn, affects
241// the value numbering of the stores we just value numbered (because the memory
242// congruence class is part of the value number). So while theoretically
243// possible to split them up, it turns out to be *incredibly* complicated to get
244// it to work right, because of the interdependency. While structurally
245// slightly messier, it is algorithmically much simpler and faster to do what we
Daniel Berlina8236562017-04-07 18:38:09 +0000246// do here, and track them both at once in the same class.
247// Note: The default iterators for this class iterate over values
248class CongruenceClass {
249public:
250 using MemberType = Value;
251 using MemberSet = SmallPtrSet<MemberType *, 4>;
252 using MemoryMemberType = MemoryPhi;
253 using MemoryMemberSet = SmallPtrSet<const MemoryMemberType *, 2>;
254
255 explicit CongruenceClass(unsigned ID) : ID(ID) {}
256 CongruenceClass(unsigned ID, Value *Leader, const Expression *E)
257 : ID(ID), RepLeader(Leader), DefiningExpr(E) {}
258 unsigned getID() const { return ID; }
259 // True if this class has no members left. This is mainly used for assertion
260 // purposes, and for skipping empty classes.
261 bool isDead() const {
262 // If it's both dead from a value perspective, and dead from a memory
263 // perspective, it's really dead.
264 return empty() && memory_empty();
265 }
266 // Leader functions
267 Value *getLeader() const { return RepLeader; }
268 void setLeader(Value *Leader) { RepLeader = Leader; }
269 const std::pair<Value *, unsigned int> &getNextLeader() const {
270 return NextLeader;
271 }
272 void resetNextLeader() { NextLeader = {nullptr, ~0}; }
273
274 void addPossibleNextLeader(std::pair<Value *, unsigned int> LeaderPair) {
275 if (LeaderPair.second < NextLeader.second)
276 NextLeader = LeaderPair;
277 }
278
279 Value *getStoredValue() const { return RepStoredValue; }
280 void setStoredValue(Value *Leader) { RepStoredValue = Leader; }
281 const MemoryAccess *getMemoryLeader() const { return RepMemoryAccess; }
282 void setMemoryLeader(const MemoryAccess *Leader) { RepMemoryAccess = Leader; }
283
284 // Forward propagation info
285 const Expression *getDefiningExpr() const { return DefiningExpr; }
Daniel Berlina8236562017-04-07 18:38:09 +0000286
287 // Value member set
288 bool empty() const { return Members.empty(); }
289 unsigned size() const { return Members.size(); }
290 MemberSet::const_iterator begin() const { return Members.begin(); }
291 MemberSet::const_iterator end() const { return Members.end(); }
292 void insert(MemberType *M) { Members.insert(M); }
293 void erase(MemberType *M) { Members.erase(M); }
294 void swap(MemberSet &Other) { Members.swap(Other); }
295
296 // Memory member set
297 bool memory_empty() const { return MemoryMembers.empty(); }
298 unsigned memory_size() const { return MemoryMembers.size(); }
299 MemoryMemberSet::const_iterator memory_begin() const {
300 return MemoryMembers.begin();
301 }
302 MemoryMemberSet::const_iterator memory_end() const {
303 return MemoryMembers.end();
304 }
305 iterator_range<MemoryMemberSet::const_iterator> memory() const {
306 return make_range(memory_begin(), memory_end());
307 }
308 void memory_insert(const MemoryMemberType *M) { MemoryMembers.insert(M); }
309 void memory_erase(const MemoryMemberType *M) { MemoryMembers.erase(M); }
310
311 // Store count
312 unsigned getStoreCount() const { return StoreCount; }
313 void incStoreCount() { ++StoreCount; }
314 void decStoreCount() {
315 assert(StoreCount != 0 && "Store count went negative");
316 --StoreCount;
317 }
318
Davide Italianodc435322017-05-10 19:57:43 +0000319 // True if this class has no memory members.
320 bool definesNoMemory() const { return StoreCount == 0 && memory_empty(); }
321
Daniel Berlina8236562017-04-07 18:38:09 +0000322 // Return true if two congruence classes are equivalent to each other. This
323 // means
324 // that every field but the ID number and the dead field are equivalent.
325 bool isEquivalentTo(const CongruenceClass *Other) const {
326 if (!Other)
327 return false;
328 if (this == Other)
329 return true;
330
331 if (std::tie(StoreCount, RepLeader, RepStoredValue, RepMemoryAccess) !=
332 std::tie(Other->StoreCount, Other->RepLeader, Other->RepStoredValue,
333 Other->RepMemoryAccess))
334 return false;
335 if (DefiningExpr != Other->DefiningExpr)
336 if (!DefiningExpr || !Other->DefiningExpr ||
337 *DefiningExpr != *Other->DefiningExpr)
338 return false;
339 // We need some ordered set
340 std::set<Value *> AMembers(Members.begin(), Members.end());
341 std::set<Value *> BMembers(Members.begin(), Members.end());
342 return AMembers == BMembers;
343 }
344
345private:
Davide Italiano7e274e02016-12-22 16:03:48 +0000346 unsigned ID;
347 // Representative leader.
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000348 Value *RepLeader = nullptr;
Daniel Berlina8236562017-04-07 18:38:09 +0000349 // The most dominating leader after our current leader, because the member set
350 // is not sorted and is expensive to keep sorted all the time.
351 std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U};
Daniel Berlin1316a942017-04-06 18:52:50 +0000352 // If this is represented by a store, the value of the store.
Daniel Berlin26addef2017-01-20 21:04:30 +0000353 Value *RepStoredValue = nullptr;
Daniel Berlin1316a942017-04-06 18:52:50 +0000354 // If this class contains MemoryDefs or MemoryPhis, this is the leading memory
355 // access.
356 const MemoryAccess *RepMemoryAccess = nullptr;
Davide Italiano7e274e02016-12-22 16:03:48 +0000357 // Defining Expression.
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000358 const Expression *DefiningExpr = nullptr;
Davide Italiano7e274e02016-12-22 16:03:48 +0000359 // Actual members of this class.
360 MemberSet Members;
Daniel Berlin1316a942017-04-06 18:52:50 +0000361 // This is the set of MemoryPhis that exist in the class. MemoryDefs and
362 // MemoryUses have real instructions representing them, so we only need to
363 // track MemoryPhis here.
364 MemoryMemberSet MemoryMembers;
Daniel Berlinf6eba4b2017-01-11 20:22:36 +0000365 // Number of stores in this congruence class.
366 // This is used so we can detect store equivalence changes properly.
Davide Italianoeac05f62017-01-11 23:41:24 +0000367 int StoreCount = 0;
Davide Italiano7e274e02016-12-22 16:03:48 +0000368};
369
370namespace llvm {
Daniel Berlin85f91b02016-12-26 20:06:58 +0000371template <> struct DenseMapInfo<const Expression *> {
372 static const Expression *getEmptyKey() {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000373 auto Val = static_cast<uintptr_t>(-1);
Daniel Berlin85f91b02016-12-26 20:06:58 +0000374 Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
375 return reinterpret_cast<const Expression *>(Val);
376 }
377 static const Expression *getTombstoneKey() {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000378 auto Val = static_cast<uintptr_t>(~1U);
Daniel Berlin85f91b02016-12-26 20:06:58 +0000379 Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
380 return reinterpret_cast<const Expression *>(Val);
381 }
382 static unsigned getHashValue(const Expression *V) {
383 return static_cast<unsigned>(V->getHashValue());
384 }
385 static bool isEqual(const Expression *LHS, const Expression *RHS) {
386 if (LHS == RHS)
387 return true;
388 if (LHS == getTombstoneKey() || RHS == getTombstoneKey() ||
389 LHS == getEmptyKey() || RHS == getEmptyKey())
390 return false;
391 return *LHS == *RHS;
392 }
393};
Davide Italiano7e274e02016-12-22 16:03:48 +0000394} // end namespace llvm
395
Benjamin Kramerefcf06f2017-02-11 11:06:55 +0000396namespace {
Daniel Berlin64e68992017-03-12 04:46:45 +0000397class NewGVN {
398 Function &F;
Davide Italiano7e274e02016-12-22 16:03:48 +0000399 DominatorTree *DT;
Daniel Berlin64e68992017-03-12 04:46:45 +0000400 const TargetLibraryInfo *TLI;
Davide Italiano7e274e02016-12-22 16:03:48 +0000401 AliasAnalysis *AA;
402 MemorySSA *MSSA;
403 MemorySSAWalker *MSSAWalker;
Daniel Berlin64e68992017-03-12 04:46:45 +0000404 const DataLayout &DL;
Daniel Berlinf7d95802017-02-18 23:06:50 +0000405 std::unique_ptr<PredicateInfo> PredInfo;
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000406
407 // These are the only two things the create* functions should have
408 // side-effects on due to allocating memory.
409 mutable BumpPtrAllocator ExpressionAllocator;
410 mutable ArrayRecycler<Value *> ArgRecycler;
411 mutable TarjanSCC SCCFinder;
Daniel Berlinede130d2017-04-26 20:56:14 +0000412 const SimplifyQuery SQ;
Davide Italiano7e274e02016-12-22 16:03:48 +0000413
Daniel Berlin1c087672017-02-11 15:07:01 +0000414 // Number of function arguments, used by ranking
415 unsigned int NumFuncArgs;
416
Daniel Berlin2f72b192017-04-14 02:53:37 +0000417 // RPOOrdering of basic blocks
418 DenseMap<const DomTreeNode *, unsigned> RPOOrdering;
419
Davide Italiano7e274e02016-12-22 16:03:48 +0000420 // Congruence class info.
Daniel Berlinb79f5362017-02-11 12:48:50 +0000421
422 // This class is called INITIAL in the paper. It is the class everything
423 // startsout in, and represents any value. Being an optimistic analysis,
Daniel Berlin5c338ff2017-03-10 19:05:04 +0000424 // anything in the TOP class has the value TOP, which is indeterminate and
Daniel Berlinb79f5362017-02-11 12:48:50 +0000425 // equivalent to everything.
Daniel Berlin5c338ff2017-03-10 19:05:04 +0000426 CongruenceClass *TOPClass;
Davide Italiano7e274e02016-12-22 16:03:48 +0000427 std::vector<CongruenceClass *> CongruenceClasses;
428 unsigned NextCongruenceNum;
429
430 // Value Mappings.
431 DenseMap<Value *, CongruenceClass *> ValueToClass;
432 DenseMap<Value *, const Expression *> ValueToExpression;
433
Daniel Berlinf7d95802017-02-18 23:06:50 +0000434 // Mapping from predicate info we used to the instructions we used it with.
435 // In order to correctly ensure propagation, we must keep track of what
436 // comparisons we used, so that when the values of the comparisons change, we
437 // propagate the information to the places we used the comparison.
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000438 mutable DenseMap<const Value *, SmallPtrSet<Instruction *, 2>>
439 PredicateToUsers;
Daniel Berlin1316a942017-04-06 18:52:50 +0000440 // the same reasoning as PredicateToUsers. When we skip MemoryAccesses for
441 // stores, we no longer can rely solely on the def-use chains of MemorySSA.
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000442 mutable DenseMap<const MemoryAccess *, SmallPtrSet<MemoryAccess *, 2>>
443 MemoryToUsers;
Daniel Berlinf7d95802017-02-18 23:06:50 +0000444
Daniel Berlind7c12ee2016-12-25 22:23:49 +0000445 // A table storing which memorydefs/phis represent a memory state provably
446 // equivalent to another memory state.
447 // We could use the congruence class machinery, but the MemoryAccess's are
448 // abstract memory states, so they can only ever be equivalent to each other,
449 // and not to constants, etc.
Daniel Berlin1ea5f322017-01-26 22:21:48 +0000450 DenseMap<const MemoryAccess *, CongruenceClass *> MemoryAccessToClass;
Daniel Berlind7c12ee2016-12-25 22:23:49 +0000451
Daniel Berlin1316a942017-04-06 18:52:50 +0000452 // We could, if we wanted, build MemoryPhiExpressions and
453 // MemoryVariableExpressions, etc, and value number them the same way we value
454 // number phi expressions. For the moment, this seems like overkill. They
455 // can only exist in one of three states: they can be TOP (equal to
456 // everything), Equivalent to something else, or unique. Because we do not
457 // create expressions for them, we need to simulate leader change not just
458 // when they change class, but when they change state. Note: We can do the
459 // same thing for phis, and avoid having phi expressions if we wanted, We
460 // should eventually unify in one direction or the other, so this is a little
461 // bit of an experiment in which turns out easier to maintain.
462 enum MemoryPhiState { MPS_Invalid, MPS_TOP, MPS_Equivalent, MPS_Unique };
463 DenseMap<const MemoryPhi *, MemoryPhiState> MemoryPhiState;
464
Daniel Berlin2f72b192017-04-14 02:53:37 +0000465 enum PhiCycleState { PCS_Unknown, PCS_CycleFree, PCS_Cycle };
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000466 mutable DenseMap<const PHINode *, PhiCycleState> PhiCycleState;
Davide Italiano7e274e02016-12-22 16:03:48 +0000467 // Expression to class mapping.
Piotr Padlewskie4047b82016-12-28 19:29:26 +0000468 using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>;
Davide Italiano7e274e02016-12-22 16:03:48 +0000469 ExpressionClassMap ExpressionToClass;
470
471 // Which values have changed as a result of leader changes.
Daniel Berlin3a1bd022017-01-11 20:22:05 +0000472 SmallPtrSet<Value *, 8> LeaderChanges;
Davide Italiano7e274e02016-12-22 16:03:48 +0000473
474 // Reachability info.
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000475 using BlockEdge = BasicBlockEdge;
Davide Italiano7e274e02016-12-22 16:03:48 +0000476 DenseSet<BlockEdge> ReachableEdges;
477 SmallPtrSet<const BasicBlock *, 8> ReachableBlocks;
478
479 // This is a bitvector because, on larger functions, we may have
480 // thousands of touched instructions at once (entire blocks,
481 // instructions with hundreds of uses, etc). Even with optimization
482 // for when we mark whole blocks as touched, when this was a
483 // SmallPtrSet or DenseSet, for some functions, we spent >20% of all
484 // the time in GVN just managing this list. The bitvector, on the
485 // other hand, efficiently supports test/set/clear of both
486 // individual and ranges, as well as "find next element" This
487 // enables us to use it as a worklist with essentially 0 cost.
488 BitVector TouchedInstructions;
489
490 DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange;
Davide Italiano7e274e02016-12-22 16:03:48 +0000491
492#ifndef NDEBUG
493 // Debugging for how many times each block and instruction got processed.
494 DenseMap<const Value *, unsigned> ProcessedCount;
495#endif
496
497 // DFS info.
Davide Italiano71f2d9c2017-01-20 23:29:28 +0000498 // This contains a mapping from Instructions to DFS numbers.
499 // The numbering starts at 1. An instruction with DFS number zero
500 // means that the instruction is dead.
Davide Italiano7e274e02016-12-22 16:03:48 +0000501 DenseMap<const Value *, unsigned> InstrDFS;
Davide Italiano71f2d9c2017-01-20 23:29:28 +0000502
503 // This contains the mapping DFS numbers to instructions.
Daniel Berlin1f31fe522016-12-27 09:20:36 +0000504 SmallVector<Value *, 32> DFSToInstr;
Davide Italiano7e274e02016-12-22 16:03:48 +0000505
506 // Deletion info.
507 SmallPtrSet<Instruction *, 8> InstructionsToErase;
508
509public:
Daniel Berlin64e68992017-03-12 04:46:45 +0000510 NewGVN(Function &F, DominatorTree *DT, AssumptionCache *AC,
511 TargetLibraryInfo *TLI, AliasAnalysis *AA, MemorySSA *MSSA,
512 const DataLayout &DL)
Daniel Berlin4d0fe642017-04-28 19:55:38 +0000513 : F(F), DT(DT), TLI(TLI), AA(AA), MSSA(MSSA), DL(DL),
Daniel Berlinede130d2017-04-26 20:56:14 +0000514 PredInfo(make_unique<PredicateInfo>(F, *DT, *AC)), SQ(DL, TLI, DT, AC) {
515 }
Daniel Berlin64e68992017-03-12 04:46:45 +0000516 bool runGVN();
Davide Italiano7e274e02016-12-22 16:03:48 +0000517
518private:
Davide Italiano7e274e02016-12-22 16:03:48 +0000519 // Expression handling.
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000520 const Expression *createExpression(Instruction *) const;
521 const Expression *createBinaryExpression(unsigned, Type *, Value *,
522 Value *) const;
523 PHIExpression *createPHIExpression(Instruction *, bool &HasBackEdge,
524 bool &AllConstant) const;
525 const VariableExpression *createVariableExpression(Value *) const;
526 const ConstantExpression *createConstantExpression(Constant *) const;
527 const Expression *createVariableOrConstant(Value *V) const;
528 const UnknownExpression *createUnknownExpression(Instruction *) const;
Daniel Berlin1316a942017-04-06 18:52:50 +0000529 const StoreExpression *createStoreExpression(StoreInst *,
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000530 const MemoryAccess *) const;
Davide Italiano7e274e02016-12-22 16:03:48 +0000531 LoadExpression *createLoadExpression(Type *, Value *, LoadInst *,
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000532 const MemoryAccess *) const;
533 const CallExpression *createCallExpression(CallInst *,
534 const MemoryAccess *) const;
535 const AggregateValueExpression *
536 createAggregateValueExpression(Instruction *) const;
537 bool setBasicExpressionInfo(Instruction *, BasicExpression *) const;
Davide Italiano7e274e02016-12-22 16:03:48 +0000538
539 // Congruence class handling.
540 CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000541 auto *result = new CongruenceClass(NextCongruenceNum++, Leader, E);
Piotr Padlewski6c37d292016-12-28 23:24:02 +0000542 CongruenceClasses.emplace_back(result);
Davide Italiano7e274e02016-12-22 16:03:48 +0000543 return result;
544 }
545
Daniel Berlin1316a942017-04-06 18:52:50 +0000546 CongruenceClass *createMemoryClass(MemoryAccess *MA) {
547 auto *CC = createCongruenceClass(nullptr, nullptr);
Daniel Berlina8236562017-04-07 18:38:09 +0000548 CC->setMemoryLeader(MA);
Daniel Berlin1316a942017-04-06 18:52:50 +0000549 return CC;
550 }
551 CongruenceClass *ensureLeaderOfMemoryClass(MemoryAccess *MA) {
552 auto *CC = getMemoryClass(MA);
Daniel Berlina8236562017-04-07 18:38:09 +0000553 if (CC->getMemoryLeader() != MA)
Daniel Berlin1316a942017-04-06 18:52:50 +0000554 CC = createMemoryClass(MA);
555 return CC;
556 }
557
Davide Italiano7e274e02016-12-22 16:03:48 +0000558 CongruenceClass *createSingletonCongruenceClass(Value *Member) {
Davide Italiano0e714802016-12-28 14:00:11 +0000559 CongruenceClass *CClass = createCongruenceClass(Member, nullptr);
Daniel Berlina8236562017-04-07 18:38:09 +0000560 CClass->insert(Member);
Davide Italiano7e274e02016-12-22 16:03:48 +0000561 ValueToClass[Member] = CClass;
562 return CClass;
563 }
564 void initializeCongruenceClasses(Function &F);
565
Daniel Berlind7c12ee2016-12-25 22:23:49 +0000566 // Value number an Instruction or MemoryPhi.
567 void valueNumberMemoryPhi(MemoryPhi *);
568 void valueNumberInstruction(Instruction *);
569
Davide Italiano7e274e02016-12-22 16:03:48 +0000570 // Symbolic evaluation.
571 const Expression *checkSimplificationResults(Expression *, Instruction *,
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000572 Value *) const;
573 const Expression *performSymbolicEvaluation(Value *) const;
Daniel Berlin07daac82017-04-02 13:23:44 +0000574 const Expression *performSymbolicLoadCoercion(Type *, Value *, LoadInst *,
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000575 Instruction *,
576 MemoryAccess *) const;
577 const Expression *performSymbolicLoadEvaluation(Instruction *) const;
578 const Expression *performSymbolicStoreEvaluation(Instruction *) const;
579 const Expression *performSymbolicCallEvaluation(Instruction *) const;
580 const Expression *performSymbolicPHIEvaluation(Instruction *) const;
581 const Expression *performSymbolicAggrValueEvaluation(Instruction *) const;
582 const Expression *performSymbolicCmpEvaluation(Instruction *) const;
583 const Expression *performSymbolicPredicateInfoEvaluation(Instruction *) const;
Davide Italiano7e274e02016-12-22 16:03:48 +0000584
585 // Congruence finding.
Daniel Berlin9d0796e2017-03-24 05:30:34 +0000586 bool someEquivalentDominates(const Instruction *, const Instruction *) const;
Daniel Berlin203f47b2017-01-31 22:31:53 +0000587 Value *lookupOperandLeader(Value *) const;
Daniel Berlinc0431fd2017-01-13 22:40:01 +0000588 void performCongruenceFinding(Instruction *, const Expression *);
Daniel Berlin1316a942017-04-06 18:52:50 +0000589 void moveValueToNewCongruenceClass(Instruction *, const Expression *,
590 CongruenceClass *, CongruenceClass *);
591 void moveMemoryToNewCongruenceClass(Instruction *, MemoryAccess *,
592 CongruenceClass *, CongruenceClass *);
593 Value *getNextValueLeader(CongruenceClass *) const;
594 const MemoryAccess *getNextMemoryLeader(CongruenceClass *) const;
595 bool setMemoryClass(const MemoryAccess *From, CongruenceClass *To);
596 CongruenceClass *getMemoryClass(const MemoryAccess *MA) const;
597 const MemoryAccess *lookupMemoryLeader(const MemoryAccess *) const;
Daniel Berlinc4796862017-01-27 02:37:11 +0000598 bool isMemoryAccessTop(const MemoryAccess *) const;
Daniel Berlin1316a942017-04-06 18:52:50 +0000599
Daniel Berlin1c087672017-02-11 15:07:01 +0000600 // Ranking
601 unsigned int getRank(const Value *) const;
602 bool shouldSwapOperands(const Value *, const Value *) const;
603
Davide Italiano7e274e02016-12-22 16:03:48 +0000604 // Reachability handling.
605 void updateReachableEdge(BasicBlock *, BasicBlock *);
606 void processOutgoingEdges(TerminatorInst *, BasicBlock *);
Daniel Berlin97718e62017-01-31 22:32:03 +0000607 Value *findConditionEquivalence(Value *) const;
Davide Italiano7e274e02016-12-22 16:03:48 +0000608
609 // Elimination.
610 struct ValueDFS;
Daniel Berlina8236562017-04-07 18:38:09 +0000611 void convertClassToDFSOrdered(const CongruenceClass &,
Daniel Berline3e69e12017-03-10 00:32:33 +0000612 SmallVectorImpl<ValueDFS> &,
613 DenseMap<const Value *, unsigned int> &,
Daniel Berlina8236562017-04-07 18:38:09 +0000614 SmallPtrSetImpl<Instruction *> &) const;
615 void convertClassToLoadsAndStores(const CongruenceClass &,
616 SmallVectorImpl<ValueDFS> &) const;
Davide Italiano7e274e02016-12-22 16:03:48 +0000617
618 bool eliminateInstructions(Function &);
619 void replaceInstruction(Instruction *, Value *);
620 void markInstructionForDeletion(Instruction *);
621 void deleteInstructionsInBlock(BasicBlock *);
622
623 // New instruction creation.
624 void handleNewInstruction(Instruction *){};
Daniel Berlin32f8d562017-01-07 16:55:14 +0000625
626 // Various instruction touch utilities
Davide Italiano7e274e02016-12-22 16:03:48 +0000627 void markUsersTouched(Value *);
Daniel Berlin1316a942017-04-06 18:52:50 +0000628 void markMemoryUsersTouched(const MemoryAccess *);
629 void markMemoryDefTouched(const MemoryAccess *);
Daniel Berlinf7d95802017-02-18 23:06:50 +0000630 void markPredicateUsersTouched(Instruction *);
Daniel Berlin1316a942017-04-06 18:52:50 +0000631 void markValueLeaderChangeTouched(CongruenceClass *CC);
632 void markMemoryLeaderChangeTouched(CongruenceClass *CC);
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000633 void addPredicateUsers(const PredicateBase *, Instruction *) const;
634 void addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const;
Davide Italiano7e274e02016-12-22 16:03:48 +0000635
Daniel Berlin06329a92017-03-18 15:41:40 +0000636 // Main loop of value numbering
637 void iterateTouchedInstructions();
638
Davide Italiano7e274e02016-12-22 16:03:48 +0000639 // Utilities.
640 void cleanupTables();
641 std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned);
642 void updateProcessedCount(Value *V);
Daniel Berlinf6eba4b2017-01-11 20:22:36 +0000643 void verifyMemoryCongruency() const;
Daniel Berlin06329a92017-03-18 15:41:40 +0000644 void verifyIterationSettled(Function &F);
Daniel Berlinf6eba4b2017-01-11 20:22:36 +0000645 bool singleReachablePHIPath(const MemoryAccess *, const MemoryAccess *) const;
Daniel Berlin06329a92017-03-18 15:41:40 +0000646 BasicBlock *getBlockForValue(Value *V) const;
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000647 void deleteExpression(const Expression *E) const;
Daniel Berlin21279bd2017-04-06 18:52:58 +0000648 unsigned InstrToDFSNum(const Value *V) const {
Daniel Berlin1316a942017-04-06 18:52:50 +0000649 assert(isa<Instruction>(V) && "This should not be used for MemoryAccesses");
650 return InstrDFS.lookup(V);
651 }
652
Daniel Berlin21279bd2017-04-06 18:52:58 +0000653 unsigned InstrToDFSNum(const MemoryAccess *MA) const {
654 return MemoryToDFSNum(MA);
655 }
656 Value *InstrFromDFSNum(unsigned DFSNum) { return DFSToInstr[DFSNum]; }
657 // Given a MemoryAccess, return the relevant instruction DFS number. Note:
658 // This deliberately takes a value so it can be used with Use's, which will
659 // auto-convert to Value's but not to MemoryAccess's.
660 unsigned MemoryToDFSNum(const Value *MA) const {
661 assert(isa<MemoryAccess>(MA) &&
662 "This should not be used with instructions");
663 return isa<MemoryUseOrDef>(MA)
664 ? InstrToDFSNum(cast<MemoryUseOrDef>(MA)->getMemoryInst())
665 : InstrDFS.lookup(MA);
Daniel Berlin1316a942017-04-06 18:52:50 +0000666 }
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000667 bool isCycleFree(const PHINode *PN) const ;
Daniel Berlin1316a942017-04-06 18:52:50 +0000668 template <class T, class Range> T *getMinDFSOfRange(const Range &) const;
Daniel Berlin06329a92017-03-18 15:41:40 +0000669 // Debug counter info. When verifying, we have to reset the value numbering
670 // debug counter to the same state it started in to get the same results.
671 std::pair<int, int> StartingVNCounter;
Davide Italiano7e274e02016-12-22 16:03:48 +0000672};
Benjamin Kramerefcf06f2017-02-11 11:06:55 +0000673} // end anonymous namespace
Davide Italiano7e274e02016-12-22 16:03:48 +0000674
Davide Italianob1114092016-12-28 13:37:17 +0000675template <typename T>
676static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) {
Daniel Berlin9b498492017-04-01 09:44:29 +0000677 if (!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS))
Davide Italiano7e274e02016-12-22 16:03:48 +0000678 return false;
Daniel Berlin9b498492017-04-01 09:44:29 +0000679 return LHS.MemoryExpression::equals(RHS);
Davide Italiano7e274e02016-12-22 16:03:48 +0000680}
681
Davide Italianob1114092016-12-28 13:37:17 +0000682bool LoadExpression::equals(const Expression &Other) const {
683 return equalsLoadStoreHelper(*this, Other);
684}
Davide Italiano7e274e02016-12-22 16:03:48 +0000685
Davide Italianob1114092016-12-28 13:37:17 +0000686bool StoreExpression::equals(const Expression &Other) const {
Daniel Berlin9b498492017-04-01 09:44:29 +0000687 if (!equalsLoadStoreHelper(*this, Other))
688 return false;
Daniel Berlin26addef2017-01-20 21:04:30 +0000689 // Make sure that store vs store includes the value operand.
Daniel Berlin9b498492017-04-01 09:44:29 +0000690 if (const auto *S = dyn_cast<StoreExpression>(&Other))
691 if (getStoredValue() != S->getStoredValue())
692 return false;
693 return true;
Davide Italiano7e274e02016-12-22 16:03:48 +0000694}
695
696#ifndef NDEBUG
697static std::string getBlockName(const BasicBlock *B) {
Davide Italiano0e714802016-12-28 14:00:11 +0000698 return DOTGraphTraits<const Function *>::getSimpleNodeLabel(B, nullptr);
Davide Italiano7e274e02016-12-22 16:03:48 +0000699}
700#endif
701
Daniel Berlin06329a92017-03-18 15:41:40 +0000702// Get the basic block from an instruction/memory value.
703BasicBlock *NewGVN::getBlockForValue(Value *V) const {
704 if (auto *I = dyn_cast<Instruction>(V))
705 return I->getParent();
706 else if (auto *MP = dyn_cast<MemoryPhi>(V))
707 return MP->getBlock();
708 llvm_unreachable("Should have been able to figure out a block for our value");
709 return nullptr;
710}
711
Daniel Berlin0e900112017-03-24 06:33:48 +0000712// Delete a definitely dead expression, so it can be reused by the expression
713// allocator. Some of these are not in creation functions, so we have to accept
714// const versions.
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000715void NewGVN::deleteExpression(const Expression *E) const {
Daniel Berlin0e900112017-03-24 06:33:48 +0000716 assert(isa<BasicExpression>(E));
717 auto *BE = cast<BasicExpression>(E);
718 const_cast<BasicExpression *>(BE)->deallocateOperands(ArgRecycler);
719 ExpressionAllocator.Deallocate(E);
720}
721
Daniel Berlin2f72b192017-04-14 02:53:37 +0000722PHIExpression *NewGVN::createPHIExpression(Instruction *I, bool &HasBackedge,
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000723 bool &AllConstant) const {
Daniel Berlind92e7f92017-01-07 00:01:42 +0000724 BasicBlock *PHIBlock = I->getParent();
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000725 auto *PN = cast<PHINode>(I);
Daniel Berlind92e7f92017-01-07 00:01:42 +0000726 auto *E =
727 new (ExpressionAllocator) PHIExpression(PN->getNumOperands(), PHIBlock);
Davide Italiano7e274e02016-12-22 16:03:48 +0000728
729 E->allocateOperands(ArgRecycler, ExpressionAllocator);
730 E->setType(I->getType());
731 E->setOpcode(I->getOpcode());
Daniel Berlin85cbc8c2016-12-26 19:57:25 +0000732
Daniel Berlin2f72b192017-04-14 02:53:37 +0000733 unsigned PHIRPO = RPOOrdering.lookup(DT->getNode(PHIBlock));
734
Davide Italianod6bb8ca2017-05-09 16:58:28 +0000735 // NewGVN assumes the operands of a PHI node are in a consistent order across
736 // PHIs. LLVM doesn't seem to always guarantee this. While we need to fix
737 // this in LLVM at some point we don't want GVN to find wrong congruences.
738 // Therefore, here we sort uses in predecessor order.
Davide Italiano63998ec2017-05-09 18:29:37 +0000739 // We're sorting the values by pointer. In theory this might be cause of
740 // non-determinism, but here we don't rely on the ordering for anything
741 // significant, e.g. we don't create new instructions based on it so we're
742 // fine.
Davide Italianod6bb8ca2017-05-09 16:58:28 +0000743 SmallVector<const Use *, 4> PHIOperands;
744 for (const Use &U : PN->operands())
745 PHIOperands.push_back(&U);
746 std::sort(PHIOperands.begin(), PHIOperands.end(),
747 [&](const Use *U1, const Use *U2) {
748 return PN->getIncomingBlock(*U1) < PN->getIncomingBlock(*U2);
749 });
750
Davide Italianob3886dd2017-01-25 23:37:49 +0000751 // Filter out unreachable phi operands.
Davide Italianod6bb8ca2017-05-09 16:58:28 +0000752 auto Filtered = make_filter_range(PHIOperands, [&](const Use *U) {
753 return ReachableEdges.count({PN->getIncomingBlock(*U), PHIBlock});
Davide Italianob3886dd2017-01-25 23:37:49 +0000754 });
Daniel Berlin85cbc8c2016-12-26 19:57:25 +0000755
756 std::transform(Filtered.begin(), Filtered.end(), op_inserter(E),
Davide Italianod6bb8ca2017-05-09 16:58:28 +0000757 [&](const Use *U) -> Value * {
758 auto *BB = PN->getIncomingBlock(*U);
Daniel Berlin2f72b192017-04-14 02:53:37 +0000759 auto *DTN = DT->getNode(BB);
760 if (RPOOrdering.lookup(DTN) >= PHIRPO)
761 HasBackedge = true;
Davide Italianod6bb8ca2017-05-09 16:58:28 +0000762 AllConstant &= isa<UndefValue>(*U) || isa<Constant>(*U);
Daniel Berlin2f72b192017-04-14 02:53:37 +0000763
Daniel Berlind92e7f92017-01-07 00:01:42 +0000764 // Don't try to transform self-defined phis.
Davide Italianod6bb8ca2017-05-09 16:58:28 +0000765 if (*U == PN)
Daniel Berlin85cbc8c2016-12-26 19:57:25 +0000766 return PN;
Davide Italianod6bb8ca2017-05-09 16:58:28 +0000767 return lookupOperandLeader(*U);
Daniel Berlin85cbc8c2016-12-26 19:57:25 +0000768 });
Davide Italiano7e274e02016-12-22 16:03:48 +0000769 return E;
770}
771
772// Set basic expression info (Arguments, type, opcode) for Expression
773// E from Instruction I in block B.
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000774bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E) const {
Davide Italiano7e274e02016-12-22 16:03:48 +0000775 bool AllConstant = true;
776 if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
777 E->setType(GEP->getSourceElementType());
778 else
779 E->setType(I->getType());
780 E->setOpcode(I->getOpcode());
781 E->allocateOperands(ArgRecycler, ExpressionAllocator);
782
Daniel Berlin85cbc8c2016-12-26 19:57:25 +0000783 // Transform the operand array into an operand leader array, and keep track of
784 // whether all members are constant.
785 std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) {
Daniel Berlin203f47b2017-01-31 22:31:53 +0000786 auto Operand = lookupOperandLeader(O);
Daniel Berlin85cbc8c2016-12-26 19:57:25 +0000787 AllConstant &= isa<Constant>(Operand);
788 return Operand;
789 });
790
Davide Italiano7e274e02016-12-22 16:03:48 +0000791 return AllConstant;
792}
793
794const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T,
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000795 Value *Arg1,
796 Value *Arg2) const {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000797 auto *E = new (ExpressionAllocator) BasicExpression(2);
Davide Italiano7e274e02016-12-22 16:03:48 +0000798
799 E->setType(T);
800 E->setOpcode(Opcode);
801 E->allocateOperands(ArgRecycler, ExpressionAllocator);
802 if (Instruction::isCommutative(Opcode)) {
803 // Ensure that commutative instructions that only differ by a permutation
804 // of their operands get the same value number by sorting the operand value
805 // numbers. Since all commutative instructions have two operands it is more
806 // efficient to sort by hand rather than using, say, std::sort.
Daniel Berlin1c087672017-02-11 15:07:01 +0000807 if (shouldSwapOperands(Arg1, Arg2))
Davide Italiano7e274e02016-12-22 16:03:48 +0000808 std::swap(Arg1, Arg2);
809 }
Daniel Berlin203f47b2017-01-31 22:31:53 +0000810 E->op_push_back(lookupOperandLeader(Arg1));
811 E->op_push_back(lookupOperandLeader(Arg2));
Davide Italiano7e274e02016-12-22 16:03:48 +0000812
Daniel Berlinede130d2017-04-26 20:56:14 +0000813 Value *V = SimplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), SQ);
Davide Italiano7e274e02016-12-22 16:03:48 +0000814 if (const Expression *SimplifiedE = checkSimplificationResults(E, nullptr, V))
815 return SimplifiedE;
816 return E;
817}
818
819// Take a Value returned by simplification of Expression E/Instruction
820// I, and see if it resulted in a simpler expression. If so, return
821// that expression.
822// TODO: Once finished, this should not take an Instruction, we only
823// use it for printing.
824const Expression *NewGVN::checkSimplificationResults(Expression *E,
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000825 Instruction *I,
826 Value *V) const {
Davide Italiano7e274e02016-12-22 16:03:48 +0000827 if (!V)
828 return nullptr;
829 if (auto *C = dyn_cast<Constant>(V)) {
830 if (I)
831 DEBUG(dbgs() << "Simplified " << *I << " to "
832 << " constant " << *C << "\n");
833 NumGVNOpsSimplified++;
834 assert(isa<BasicExpression>(E) &&
835 "We should always have had a basic expression here");
Daniel Berlin0e900112017-03-24 06:33:48 +0000836 deleteExpression(E);
Davide Italiano7e274e02016-12-22 16:03:48 +0000837 return createConstantExpression(C);
838 } else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
839 if (I)
840 DEBUG(dbgs() << "Simplified " << *I << " to "
841 << " variable " << *V << "\n");
Daniel Berlin0e900112017-03-24 06:33:48 +0000842 deleteExpression(E);
Davide Italiano7e274e02016-12-22 16:03:48 +0000843 return createVariableExpression(V);
844 }
845
846 CongruenceClass *CC = ValueToClass.lookup(V);
Daniel Berlina8236562017-04-07 18:38:09 +0000847 if (CC && CC->getDefiningExpr()) {
Davide Italiano7e274e02016-12-22 16:03:48 +0000848 if (I)
849 DEBUG(dbgs() << "Simplified " << *I << " to "
850 << " expression " << *V << "\n");
851 NumGVNOpsSimplified++;
Daniel Berlin0e900112017-03-24 06:33:48 +0000852 deleteExpression(E);
Daniel Berlina8236562017-04-07 18:38:09 +0000853 return CC->getDefiningExpr();
Davide Italiano7e274e02016-12-22 16:03:48 +0000854 }
855 return nullptr;
856}
857
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000858const Expression *NewGVN::createExpression(Instruction *I) const {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000859 auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands());
Davide Italiano7e274e02016-12-22 16:03:48 +0000860
Daniel Berlin97718e62017-01-31 22:32:03 +0000861 bool AllConstant = setBasicExpressionInfo(I, E);
Davide Italiano7e274e02016-12-22 16:03:48 +0000862
863 if (I->isCommutative()) {
864 // Ensure that commutative instructions that only differ by a permutation
865 // of their operands get the same value number by sorting the operand value
866 // numbers. Since all commutative instructions have two operands it is more
867 // efficient to sort by hand rather than using, say, std::sort.
868 assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
Daniel Berlin508a1de2017-02-12 23:24:42 +0000869 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1)))
Davide Italiano7e274e02016-12-22 16:03:48 +0000870 E->swapOperands(0, 1);
871 }
872
873 // Perform simplificaiton
874 // TODO: Right now we only check to see if we get a constant result.
875 // We may get a less than constant, but still better, result for
876 // some operations.
877 // IE
878 // add 0, x -> x
879 // and x, x -> x
880 // We should handle this by simply rewriting the expression.
881 if (auto *CI = dyn_cast<CmpInst>(I)) {
882 // Sort the operand value numbers so x<y and y>x get the same value
883 // number.
884 CmpInst::Predicate Predicate = CI->getPredicate();
Daniel Berlin1c087672017-02-11 15:07:01 +0000885 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) {
Davide Italiano7e274e02016-12-22 16:03:48 +0000886 E->swapOperands(0, 1);
887 Predicate = CmpInst::getSwappedPredicate(Predicate);
888 }
889 E->setOpcode((CI->getOpcode() << 8) | Predicate);
890 // TODO: 25% of our time is spent in SimplifyCmpInst with pointer operands
Davide Italiano7e274e02016-12-22 16:03:48 +0000891 assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() &&
892 "Wrong types on cmp instruction");
Daniel Berlin97718e62017-01-31 22:32:03 +0000893 assert((E->getOperand(0)->getType() == I->getOperand(0)->getType() &&
894 E->getOperand(1)->getType() == I->getOperand(1)->getType()));
Daniel Berlinede130d2017-04-26 20:56:14 +0000895 Value *V =
896 SimplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1), SQ);
Daniel Berlinff12c922017-01-31 22:32:01 +0000897 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
898 return SimplifiedE;
Davide Italiano7e274e02016-12-22 16:03:48 +0000899 } else if (isa<SelectInst>(I)) {
900 if (isa<Constant>(E->getOperand(0)) ||
Daniel Berlin97718e62017-01-31 22:32:03 +0000901 E->getOperand(0) == E->getOperand(1)) {
902 assert(E->getOperand(1)->getType() == I->getOperand(1)->getType() &&
903 E->getOperand(2)->getType() == I->getOperand(2)->getType());
Davide Italiano7e274e02016-12-22 16:03:48 +0000904 Value *V = SimplifySelectInst(E->getOperand(0), E->getOperand(1),
Daniel Berlinede130d2017-04-26 20:56:14 +0000905 E->getOperand(2), SQ);
Davide Italiano7e274e02016-12-22 16:03:48 +0000906 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
907 return SimplifiedE;
908 }
909 } else if (I->isBinaryOp()) {
Daniel Berlinede130d2017-04-26 20:56:14 +0000910 Value *V =
911 SimplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1), SQ);
Davide Italiano7e274e02016-12-22 16:03:48 +0000912 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
913 return SimplifiedE;
914 } else if (auto *BI = dyn_cast<BitCastInst>(I)) {
Daniel Berlin4d0fe642017-04-28 19:55:38 +0000915 Value *V =
916 SimplifyCastInst(BI->getOpcode(), BI->getOperand(0), BI->getType(), SQ);
Davide Italiano7e274e02016-12-22 16:03:48 +0000917 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
918 return SimplifiedE;
919 } else if (isa<GetElementPtrInst>(I)) {
Daniel Berlinede130d2017-04-26 20:56:14 +0000920 Value *V = SimplifyGEPInst(
921 E->getType(), ArrayRef<Value *>(E->op_begin(), E->op_end()), SQ);
Davide Italiano7e274e02016-12-22 16:03:48 +0000922 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
923 return SimplifiedE;
924 } else if (AllConstant) {
925 // We don't bother trying to simplify unless all of the operands
926 // were constant.
927 // TODO: There are a lot of Simplify*'s we could call here, if we
928 // wanted to. The original motivating case for this code was a
929 // zext i1 false to i8, which we don't have an interface to
930 // simplify (IE there is no SimplifyZExt).
931
932 SmallVector<Constant *, 8> C;
933 for (Value *Arg : E->operands())
Piotr Padlewski6c37d292016-12-28 23:24:02 +0000934 C.emplace_back(cast<Constant>(Arg));
Davide Italiano7e274e02016-12-22 16:03:48 +0000935
Daniel Berlin64e68992017-03-12 04:46:45 +0000936 if (Value *V = ConstantFoldInstOperands(I, C, DL, TLI))
Davide Italiano7e274e02016-12-22 16:03:48 +0000937 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
938 return SimplifiedE;
939 }
940 return E;
941}
942
943const AggregateValueExpression *
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000944NewGVN::createAggregateValueExpression(Instruction *I) const {
Davide Italiano7e274e02016-12-22 16:03:48 +0000945 if (auto *II = dyn_cast<InsertValueInst>(I)) {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000946 auto *E = new (ExpressionAllocator)
Davide Italiano7e274e02016-12-22 16:03:48 +0000947 AggregateValueExpression(I->getNumOperands(), II->getNumIndices());
Daniel Berlin97718e62017-01-31 22:32:03 +0000948 setBasicExpressionInfo(I, E);
Davide Italiano7e274e02016-12-22 16:03:48 +0000949 E->allocateIntOperands(ExpressionAllocator);
Daniel Berlin85cbc8c2016-12-26 19:57:25 +0000950 std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E));
Davide Italiano7e274e02016-12-22 16:03:48 +0000951 return E;
Davide Italiano7e274e02016-12-22 16:03:48 +0000952 } else if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000953 auto *E = new (ExpressionAllocator)
Davide Italiano7e274e02016-12-22 16:03:48 +0000954 AggregateValueExpression(I->getNumOperands(), EI->getNumIndices());
Daniel Berlin97718e62017-01-31 22:32:03 +0000955 setBasicExpressionInfo(EI, E);
Davide Italiano7e274e02016-12-22 16:03:48 +0000956 E->allocateIntOperands(ExpressionAllocator);
Daniel Berlin85cbc8c2016-12-26 19:57:25 +0000957 std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E));
Davide Italiano7e274e02016-12-22 16:03:48 +0000958 return E;
959 }
960 llvm_unreachable("Unhandled type of aggregate value operation");
961}
962
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000963const VariableExpression *NewGVN::createVariableExpression(Value *V) const {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000964 auto *E = new (ExpressionAllocator) VariableExpression(V);
Davide Italiano7e274e02016-12-22 16:03:48 +0000965 E->setOpcode(V->getValueID());
966 return E;
967}
968
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000969const Expression *NewGVN::createVariableOrConstant(Value *V) const {
Daniel Berlinf7d95802017-02-18 23:06:50 +0000970 if (auto *C = dyn_cast<Constant>(V))
971 return createConstantExpression(C);
972 return createVariableExpression(V);
973}
974
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000975const ConstantExpression *NewGVN::createConstantExpression(Constant *C) const {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000976 auto *E = new (ExpressionAllocator) ConstantExpression(C);
Davide Italiano7e274e02016-12-22 16:03:48 +0000977 E->setOpcode(C->getValueID());
978 return E;
979}
980
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000981const UnknownExpression *NewGVN::createUnknownExpression(Instruction *I) const {
Daniel Berlin02c6b172017-01-02 18:00:53 +0000982 auto *E = new (ExpressionAllocator) UnknownExpression(I);
983 E->setOpcode(I->getOpcode());
984 return E;
985}
986
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000987const CallExpression *
988NewGVN::createCallExpression(CallInst *CI, const MemoryAccess *MA) const {
Davide Italiano7e274e02016-12-22 16:03:48 +0000989 // FIXME: Add operand bundles for calls.
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000990 auto *E =
Daniel Berlin1316a942017-04-06 18:52:50 +0000991 new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, MA);
Daniel Berlin97718e62017-01-31 22:32:03 +0000992 setBasicExpressionInfo(CI, E);
Davide Italiano7e274e02016-12-22 16:03:48 +0000993 return E;
994}
995
Daniel Berlin9d0796e2017-03-24 05:30:34 +0000996// Return true if some equivalent of instruction Inst dominates instruction U.
997bool NewGVN::someEquivalentDominates(const Instruction *Inst,
998 const Instruction *U) const {
999 auto *CC = ValueToClass.lookup(Inst);
Daniel Berlinffc30782017-03-24 06:33:51 +00001000 // This must be an instruction because we are only called from phi nodes
1001 // in the case that the value it needs to check against is an instruction.
1002
1003 // The most likely candiates for dominance are the leader and the next leader.
1004 // The leader or nextleader will dominate in all cases where there is an
1005 // equivalent that is higher up in the dom tree.
1006 // We can't *only* check them, however, because the
1007 // dominator tree could have an infinite number of non-dominating siblings
1008 // with instructions that are in the right congruence class.
1009 // A
1010 // B C D E F G
1011 // |
1012 // H
1013 // Instruction U could be in H, with equivalents in every other sibling.
1014 // Depending on the rpo order picked, the leader could be the equivalent in
1015 // any of these siblings.
1016 if (!CC)
1017 return false;
Daniel Berlina8236562017-04-07 18:38:09 +00001018 if (DT->dominates(cast<Instruction>(CC->getLeader()), U))
Daniel Berlinffc30782017-03-24 06:33:51 +00001019 return true;
Daniel Berlina8236562017-04-07 18:38:09 +00001020 if (CC->getNextLeader().first &&
1021 DT->dominates(cast<Instruction>(CC->getNextLeader().first), U))
Daniel Berlinffc30782017-03-24 06:33:51 +00001022 return true;
Daniel Berlina8236562017-04-07 18:38:09 +00001023 return llvm::any_of(*CC, [&](const Value *Member) {
1024 return Member != CC->getLeader() &&
Daniel Berlinffc30782017-03-24 06:33:51 +00001025 DT->dominates(cast<Instruction>(Member), U);
1026 });
Daniel Berlin9d0796e2017-03-24 05:30:34 +00001027}
1028
Davide Italiano7e274e02016-12-22 16:03:48 +00001029// See if we have a congruence class and leader for this operand, and if so,
1030// return it. Otherwise, return the operand itself.
Daniel Berlin203f47b2017-01-31 22:31:53 +00001031Value *NewGVN::lookupOperandLeader(Value *V) const {
Davide Italiano7e274e02016-12-22 16:03:48 +00001032 CongruenceClass *CC = ValueToClass.lookup(V);
Daniel Berlinb79f5362017-02-11 12:48:50 +00001033 if (CC) {
Daniel Berlin5c338ff2017-03-10 19:05:04 +00001034 // Everything in TOP is represneted by undef, as it can be any value.
Daniel Berlinb79f5362017-02-11 12:48:50 +00001035 // We do have to make sure we get the type right though, so we can't set the
1036 // RepLeader to undef.
Daniel Berlin5c338ff2017-03-10 19:05:04 +00001037 if (CC == TOPClass)
Daniel Berlinb79f5362017-02-11 12:48:50 +00001038 return UndefValue::get(V->getType());
Daniel Berlina8236562017-04-07 18:38:09 +00001039 return CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
Daniel Berlinb79f5362017-02-11 12:48:50 +00001040 }
1041
Davide Italiano7e274e02016-12-22 16:03:48 +00001042 return V;
1043}
1044
Daniel Berlin1316a942017-04-06 18:52:50 +00001045const MemoryAccess *NewGVN::lookupMemoryLeader(const MemoryAccess *MA) const {
1046 auto *CC = getMemoryClass(MA);
Daniel Berlina8236562017-04-07 18:38:09 +00001047 assert(CC->getMemoryLeader() &&
Davide Italianob60f6e02017-05-12 15:25:56 +00001048 "Every MemoryAccess should be mapped to a congruence class with a "
1049 "representative memory access");
Daniel Berlina8236562017-04-07 18:38:09 +00001050 return CC->getMemoryLeader();
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001051}
1052
Daniel Berlinc4796862017-01-27 02:37:11 +00001053// Return true if the MemoryAccess is really equivalent to everything. This is
1054// equivalent to the lattice value "TOP" in most lattices. This is the initial
Daniel Berlin1316a942017-04-06 18:52:50 +00001055// state of all MemoryAccesses.
Daniel Berlinc4796862017-01-27 02:37:11 +00001056bool NewGVN::isMemoryAccessTop(const MemoryAccess *MA) const {
Daniel Berlin1316a942017-04-06 18:52:50 +00001057 return getMemoryClass(MA) == TOPClass;
1058}
1059
Davide Italiano7e274e02016-12-22 16:03:48 +00001060LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp,
Daniel Berlin1316a942017-04-06 18:52:50 +00001061 LoadInst *LI,
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001062 const MemoryAccess *MA) const {
Daniel Berlin1316a942017-04-06 18:52:50 +00001063 auto *E =
1064 new (ExpressionAllocator) LoadExpression(1, LI, lookupMemoryLeader(MA));
Davide Italiano7e274e02016-12-22 16:03:48 +00001065 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1066 E->setType(LoadType);
1067
1068 // Give store and loads same opcode so they value number together.
1069 E->setOpcode(0);
Daniel Berlin1316a942017-04-06 18:52:50 +00001070 E->op_push_back(PointerOp);
Davide Italiano7e274e02016-12-22 16:03:48 +00001071 if (LI)
1072 E->setAlignment(LI->getAlignment());
1073
1074 // TODO: Value number heap versions. We may be able to discover
1075 // things alias analysis can't on it's own (IE that a store and a
1076 // load have the same value, and thus, it isn't clobbering the load).
1077 return E;
1078}
1079
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001080const StoreExpression *
1081NewGVN::createStoreExpression(StoreInst *SI, const MemoryAccess *MA) const {
Daniel Berlin203f47b2017-01-31 22:31:53 +00001082 auto *StoredValueLeader = lookupOperandLeader(SI->getValueOperand());
Daniel Berlin26addef2017-01-20 21:04:30 +00001083 auto *E = new (ExpressionAllocator)
Daniel Berlin1316a942017-04-06 18:52:50 +00001084 StoreExpression(SI->getNumOperands(), SI, StoredValueLeader, MA);
Davide Italiano7e274e02016-12-22 16:03:48 +00001085 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1086 E->setType(SI->getValueOperand()->getType());
1087
1088 // Give store and loads same opcode so they value number together.
1089 E->setOpcode(0);
Daniel Berlin203f47b2017-01-31 22:31:53 +00001090 E->op_push_back(lookupOperandLeader(SI->getPointerOperand()));
Davide Italiano7e274e02016-12-22 16:03:48 +00001091
1092 // TODO: Value number heap versions. We may be able to discover
1093 // things alias analysis can't on it's own (IE that a store and a
1094 // load have the same value, and thus, it isn't clobbering the load).
1095 return E;
1096}
1097
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001098const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I) const {
Daniel Berlin589cecc2017-01-02 18:00:46 +00001099 // Unlike loads, we never try to eliminate stores, so we do not check if they
1100 // are simple and avoid value numbering them.
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00001101 auto *SI = cast<StoreInst>(I);
Daniel Berlin1316a942017-04-06 18:52:50 +00001102 auto *StoreAccess = MSSA->getMemoryAccess(SI);
Daniel Berlinc4796862017-01-27 02:37:11 +00001103 // Get the expression, if any, for the RHS of the MemoryDef.
Daniel Berlin1316a942017-04-06 18:52:50 +00001104 const MemoryAccess *StoreRHS = StoreAccess->getDefiningAccess();
1105 if (EnableStoreRefinement)
1106 StoreRHS = MSSAWalker->getClobberingMemoryAccess(StoreAccess);
1107 // If we bypassed the use-def chains, make sure we add a use.
1108 if (StoreRHS != StoreAccess->getDefiningAccess())
1109 addMemoryUsers(StoreRHS, StoreAccess);
1110
1111 StoreRHS = lookupMemoryLeader(StoreRHS);
Daniel Berlinc4796862017-01-27 02:37:11 +00001112 // If we are defined by ourselves, use the live on entry def.
1113 if (StoreRHS == StoreAccess)
1114 StoreRHS = MSSA->getLiveOnEntryDef();
1115
Daniel Berlin589cecc2017-01-02 18:00:46 +00001116 if (SI->isSimple()) {
Daniel Berlinc4796862017-01-27 02:37:11 +00001117 // See if we are defined by a previous store expression, it already has a
1118 // value, and it's the same value as our current store. FIXME: Right now, we
1119 // only do this for simple stores, we should expand to cover memcpys, etc.
Daniel Berlin1316a942017-04-06 18:52:50 +00001120 const auto *LastStore = createStoreExpression(SI, StoreRHS);
1121 const auto *LastCC = ExpressionToClass.lookup(LastStore);
Daniel Berlinb755aea2017-01-09 05:34:29 +00001122 // Basically, check if the congruence class the store is in is defined by a
1123 // store that isn't us, and has the same value. MemorySSA takes care of
1124 // ensuring the store has the same memory state as us already.
Daniel Berlin26addef2017-01-20 21:04:30 +00001125 // The RepStoredValue gets nulled if all the stores disappear in a class, so
1126 // we don't need to check if the class contains a store besides us.
Daniel Berlin1316a942017-04-06 18:52:50 +00001127 if (LastCC &&
Daniel Berlina8236562017-04-07 18:38:09 +00001128 LastCC->getStoredValue() == lookupOperandLeader(SI->getValueOperand()))
Daniel Berlin1316a942017-04-06 18:52:50 +00001129 return LastStore;
1130 deleteExpression(LastStore);
Daniel Berlinc4796862017-01-27 02:37:11 +00001131 // Also check if our value operand is defined by a load of the same memory
Daniel Berlin1316a942017-04-06 18:52:50 +00001132 // location, and the memory state is the same as it was then (otherwise, it
1133 // could have been overwritten later. See test32 in
1134 // transforms/DeadStoreElimination/simple.ll).
1135 if (auto *LI =
1136 dyn_cast<LoadInst>(lookupOperandLeader(SI->getValueOperand()))) {
Daniel Berlin203f47b2017-01-31 22:31:53 +00001137 if ((lookupOperandLeader(LI->getPointerOperand()) ==
1138 lookupOperandLeader(SI->getPointerOperand())) &&
Daniel Berlin1316a942017-04-06 18:52:50 +00001139 (lookupMemoryLeader(MSSA->getMemoryAccess(LI)->getDefiningAccess()) ==
1140 StoreRHS))
Daniel Berlinc4796862017-01-27 02:37:11 +00001141 return createVariableExpression(LI);
1142 }
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001143 }
Daniel Berlin1316a942017-04-06 18:52:50 +00001144
1145 // If the store is not equivalent to anything, value number it as a store that
1146 // produces a unique memory state (instead of using it's MemoryUse, we use
1147 // it's MemoryDef).
Daniel Berlin97718e62017-01-31 22:32:03 +00001148 return createStoreExpression(SI, StoreAccess);
Davide Italiano7e274e02016-12-22 16:03:48 +00001149}
1150
Daniel Berlin07daac82017-04-02 13:23:44 +00001151// See if we can extract the value of a loaded pointer from a load, a store, or
1152// a memory instruction.
1153const Expression *
1154NewGVN::performSymbolicLoadCoercion(Type *LoadType, Value *LoadPtr,
1155 LoadInst *LI, Instruction *DepInst,
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001156 MemoryAccess *DefiningAccess) const {
Daniel Berlin07daac82017-04-02 13:23:44 +00001157 assert((!LI || LI->isSimple()) && "Not a simple load");
1158 if (auto *DepSI = dyn_cast<StoreInst>(DepInst)) {
1159 // Can't forward from non-atomic to atomic without violating memory model.
1160 // Also don't need to coerce if they are the same type, we will just
1161 // propogate..
1162 if (LI->isAtomic() > DepSI->isAtomic() ||
1163 LoadType == DepSI->getValueOperand()->getType())
1164 return nullptr;
1165 int Offset = analyzeLoadFromClobberingStore(LoadType, LoadPtr, DepSI, DL);
1166 if (Offset >= 0) {
1167 if (auto *C = dyn_cast<Constant>(
1168 lookupOperandLeader(DepSI->getValueOperand()))) {
1169 DEBUG(dbgs() << "Coercing load from store " << *DepSI << " to constant "
1170 << *C << "\n");
1171 return createConstantExpression(
1172 getConstantStoreValueForLoad(C, Offset, LoadType, DL));
1173 }
1174 }
1175
1176 } else if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1177 // Can't forward from non-atomic to atomic without violating memory model.
1178 if (LI->isAtomic() > DepLI->isAtomic())
1179 return nullptr;
1180 int Offset = analyzeLoadFromClobberingLoad(LoadType, LoadPtr, DepLI, DL);
1181 if (Offset >= 0) {
1182 // We can coerce a constant load into a load
1183 if (auto *C = dyn_cast<Constant>(lookupOperandLeader(DepLI)))
1184 if (auto *PossibleConstant =
1185 getConstantLoadValueForLoad(C, Offset, LoadType, DL)) {
1186 DEBUG(dbgs() << "Coercing load from load " << *LI << " to constant "
1187 << *PossibleConstant << "\n");
1188 return createConstantExpression(PossibleConstant);
1189 }
1190 }
1191
1192 } else if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
1193 int Offset = analyzeLoadFromClobberingMemInst(LoadType, LoadPtr, DepMI, DL);
1194 if (Offset >= 0) {
1195 if (auto *PossibleConstant =
1196 getConstantMemInstValueForLoad(DepMI, Offset, LoadType, DL)) {
1197 DEBUG(dbgs() << "Coercing load from meminst " << *DepMI
1198 << " to constant " << *PossibleConstant << "\n");
1199 return createConstantExpression(PossibleConstant);
1200 }
1201 }
1202 }
1203
1204 // All of the below are only true if the loaded pointer is produced
1205 // by the dependent instruction.
1206 if (LoadPtr != lookupOperandLeader(DepInst) &&
1207 !AA->isMustAlias(LoadPtr, DepInst))
1208 return nullptr;
1209 // If this load really doesn't depend on anything, then we must be loading an
1210 // undef value. This can happen when loading for a fresh allocation with no
1211 // intervening stores, for example. Note that this is only true in the case
1212 // that the result of the allocation is pointer equal to the load ptr.
1213 if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI)) {
1214 return createConstantExpression(UndefValue::get(LoadType));
1215 }
1216 // If this load occurs either right after a lifetime begin,
1217 // then the loaded value is undefined.
1218 else if (auto *II = dyn_cast<IntrinsicInst>(DepInst)) {
1219 if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1220 return createConstantExpression(UndefValue::get(LoadType));
1221 }
1222 // If this load follows a calloc (which zero initializes memory),
1223 // then the loaded value is zero
1224 else if (isCallocLikeFn(DepInst, TLI)) {
1225 return createConstantExpression(Constant::getNullValue(LoadType));
1226 }
1227
1228 return nullptr;
1229}
1230
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001231const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I) const {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00001232 auto *LI = cast<LoadInst>(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00001233
1234 // We can eliminate in favor of non-simple loads, but we won't be able to
Daniel Berlin589cecc2017-01-02 18:00:46 +00001235 // eliminate the loads themselves.
Davide Italiano7e274e02016-12-22 16:03:48 +00001236 if (!LI->isSimple())
1237 return nullptr;
1238
Daniel Berlin203f47b2017-01-31 22:31:53 +00001239 Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand());
Davide Italiano7e274e02016-12-22 16:03:48 +00001240 // Load of undef is undef.
1241 if (isa<UndefValue>(LoadAddressLeader))
1242 return createConstantExpression(UndefValue::get(LI->getType()));
1243
1244 MemoryAccess *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(I);
1245
1246 if (!MSSA->isLiveOnEntryDef(DefiningAccess)) {
1247 if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) {
1248 Instruction *DefiningInst = MD->getMemoryInst();
1249 // If the defining instruction is not reachable, replace with undef.
1250 if (!ReachableBlocks.count(DefiningInst->getParent()))
1251 return createConstantExpression(UndefValue::get(LI->getType()));
Daniel Berlin07daac82017-04-02 13:23:44 +00001252 // This will handle stores and memory insts. We only do if it the
1253 // defining access has a different type, or it is a pointer produced by
1254 // certain memory operations that cause the memory to have a fixed value
1255 // (IE things like calloc).
Daniel Berlin5845e052017-04-06 18:52:53 +00001256 if (const auto *CoercionResult =
1257 performSymbolicLoadCoercion(LI->getType(), LoadAddressLeader, LI,
1258 DefiningInst, DefiningAccess))
Daniel Berlin07daac82017-04-02 13:23:44 +00001259 return CoercionResult;
Davide Italiano7e274e02016-12-22 16:03:48 +00001260 }
1261 }
1262
Daniel Berlin1316a942017-04-06 18:52:50 +00001263 const Expression *E = createLoadExpression(LI->getType(), LoadAddressLeader,
1264 LI, DefiningAccess);
Davide Italiano7e274e02016-12-22 16:03:48 +00001265 return E;
1266}
1267
Daniel Berlinf7d95802017-02-18 23:06:50 +00001268const Expression *
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001269NewGVN::performSymbolicPredicateInfoEvaluation(Instruction *I) const {
Daniel Berlinf7d95802017-02-18 23:06:50 +00001270 auto *PI = PredInfo->getPredicateInfoFor(I);
1271 if (!PI)
1272 return nullptr;
1273
1274 DEBUG(dbgs() << "Found predicate info from instruction !\n");
Daniel Berlinfccbda92017-02-22 22:20:58 +00001275
1276 auto *PWC = dyn_cast<PredicateWithCondition>(PI);
1277 if (!PWC)
Daniel Berlinf7d95802017-02-18 23:06:50 +00001278 return nullptr;
1279
Daniel Berlinfccbda92017-02-22 22:20:58 +00001280 auto *CopyOf = I->getOperand(0);
1281 auto *Cond = PWC->Condition;
1282
Daniel Berlinf7d95802017-02-18 23:06:50 +00001283 // If this a copy of the condition, it must be either true or false depending
1284 // on the predicate info type and edge
1285 if (CopyOf == Cond) {
Daniel Berlinfccbda92017-02-22 22:20:58 +00001286 // We should not need to add predicate users because the predicate info is
1287 // already a use of this operand.
Daniel Berlinf7d95802017-02-18 23:06:50 +00001288 if (isa<PredicateAssume>(PI))
1289 return createConstantExpression(ConstantInt::getTrue(Cond->getType()));
1290 if (auto *PBranch = dyn_cast<PredicateBranch>(PI)) {
1291 if (PBranch->TrueEdge)
1292 return createConstantExpression(ConstantInt::getTrue(Cond->getType()));
1293 return createConstantExpression(ConstantInt::getFalse(Cond->getType()));
1294 }
Daniel Berlinfccbda92017-02-22 22:20:58 +00001295 if (auto *PSwitch = dyn_cast<PredicateSwitch>(PI))
1296 return createConstantExpression(cast<Constant>(PSwitch->CaseValue));
Daniel Berlinf7d95802017-02-18 23:06:50 +00001297 }
Daniel Berlinfccbda92017-02-22 22:20:58 +00001298
Daniel Berlinf7d95802017-02-18 23:06:50 +00001299 // Not a copy of the condition, so see what the predicates tell us about this
1300 // value. First, though, we check to make sure the value is actually a copy
1301 // of one of the condition operands. It's possible, in certain cases, for it
1302 // to be a copy of a predicateinfo copy. In particular, if two branch
1303 // operations use the same condition, and one branch dominates the other, we
1304 // will end up with a copy of a copy. This is currently a small deficiency in
Daniel Berlinfccbda92017-02-22 22:20:58 +00001305 // predicateinfo. What will end up happening here is that we will value
Daniel Berlinf7d95802017-02-18 23:06:50 +00001306 // number both copies the same anyway.
Daniel Berlinfccbda92017-02-22 22:20:58 +00001307
1308 // Everything below relies on the condition being a comparison.
1309 auto *Cmp = dyn_cast<CmpInst>(Cond);
1310 if (!Cmp)
1311 return nullptr;
1312
1313 if (CopyOf != Cmp->getOperand(0) && CopyOf != Cmp->getOperand(1)) {
Davide Italianoc43a9f82017-05-12 15:28:12 +00001314 DEBUG(dbgs() << "Copy is not of any condition operands!\n");
Daniel Berlinf7d95802017-02-18 23:06:50 +00001315 return nullptr;
1316 }
Daniel Berlinfccbda92017-02-22 22:20:58 +00001317 Value *FirstOp = lookupOperandLeader(Cmp->getOperand(0));
1318 Value *SecondOp = lookupOperandLeader(Cmp->getOperand(1));
Daniel Berlinf7d95802017-02-18 23:06:50 +00001319 bool SwappedOps = false;
1320 // Sort the ops
1321 if (shouldSwapOperands(FirstOp, SecondOp)) {
1322 std::swap(FirstOp, SecondOp);
1323 SwappedOps = true;
1324 }
Daniel Berlinf7d95802017-02-18 23:06:50 +00001325 CmpInst::Predicate Predicate =
1326 SwappedOps ? Cmp->getSwappedPredicate() : Cmp->getPredicate();
1327
1328 if (isa<PredicateAssume>(PI)) {
1329 // If the comparison is true when the operands are equal, then we know the
1330 // operands are equal, because assumes must always be true.
1331 if (CmpInst::isTrueWhenEqual(Predicate)) {
1332 addPredicateUsers(PI, I);
1333 return createVariableOrConstant(FirstOp);
1334 }
1335 }
1336 if (const auto *PBranch = dyn_cast<PredicateBranch>(PI)) {
1337 // If we are *not* a copy of the comparison, we may equal to the other
1338 // operand when the predicate implies something about equality of
1339 // operations. In particular, if the comparison is true/false when the
1340 // operands are equal, and we are on the right edge, we know this operation
1341 // is equal to something.
1342 if ((PBranch->TrueEdge && Predicate == CmpInst::ICMP_EQ) ||
1343 (!PBranch->TrueEdge && Predicate == CmpInst::ICMP_NE)) {
1344 addPredicateUsers(PI, I);
1345 return createVariableOrConstant(FirstOp);
1346 }
1347 // Handle the special case of floating point.
1348 if (((PBranch->TrueEdge && Predicate == CmpInst::FCMP_OEQ) ||
1349 (!PBranch->TrueEdge && Predicate == CmpInst::FCMP_UNE)) &&
1350 isa<ConstantFP>(FirstOp) && !cast<ConstantFP>(FirstOp)->isZero()) {
1351 addPredicateUsers(PI, I);
1352 return createConstantExpression(cast<Constant>(FirstOp));
1353 }
1354 }
1355 return nullptr;
1356}
1357
Davide Italiano7e274e02016-12-22 16:03:48 +00001358// Evaluate read only and pure calls, and create an expression result.
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001359const Expression *NewGVN::performSymbolicCallEvaluation(Instruction *I) const {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00001360 auto *CI = cast<CallInst>(I);
Daniel Berlinf7d95802017-02-18 23:06:50 +00001361 if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1362 // Instrinsics with the returned attribute are copies of arguments.
1363 if (auto *ReturnedValue = II->getReturnedArgOperand()) {
1364 if (II->getIntrinsicID() == Intrinsic::ssa_copy)
1365 if (const auto *Result = performSymbolicPredicateInfoEvaluation(I))
1366 return Result;
1367 return createVariableOrConstant(ReturnedValue);
1368 }
1369 }
1370 if (AA->doesNotAccessMemory(CI)) {
Daniel Berlina8236562017-04-07 18:38:09 +00001371 return createCallExpression(CI, TOPClass->getMemoryLeader());
Daniel Berlinf7d95802017-02-18 23:06:50 +00001372 } else if (AA->onlyReadsMemory(CI)) {
Daniel Berlin85cbc8c2016-12-26 19:57:25 +00001373 MemoryAccess *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(CI);
Daniel Berlin1316a942017-04-06 18:52:50 +00001374 return createCallExpression(CI, DefiningAccess);
Davide Italianob2225492016-12-27 18:15:39 +00001375 }
1376 return nullptr;
Davide Italiano7e274e02016-12-22 16:03:48 +00001377}
1378
Daniel Berlin1316a942017-04-06 18:52:50 +00001379// Retrieve the memory class for a given MemoryAccess.
1380CongruenceClass *NewGVN::getMemoryClass(const MemoryAccess *MA) const {
1381
1382 auto *Result = MemoryAccessToClass.lookup(MA);
1383 assert(Result && "Should have found memory class");
1384 return Result;
1385}
1386
1387// Update the MemoryAccess equivalence table to say that From is equal to To,
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001388// and return true if this is different from what already existed in the table.
Daniel Berlin1316a942017-04-06 18:52:50 +00001389bool NewGVN::setMemoryClass(const MemoryAccess *From,
1390 CongruenceClass *NewClass) {
1391 assert(NewClass &&
1392 "Every MemoryAccess should be getting mapped to a non-null class");
Daniel Berlin1ea5f322017-01-26 22:21:48 +00001393 DEBUG(dbgs() << "Setting " << *From);
Daniel Berlin1316a942017-04-06 18:52:50 +00001394 DEBUG(dbgs() << " equivalent to congruence class ");
Daniel Berlina8236562017-04-07 18:38:09 +00001395 DEBUG(dbgs() << NewClass->getID() << " with current MemoryAccess leader ");
Davide Italianob7a66982017-05-09 20:02:48 +00001396 DEBUG(dbgs() << *NewClass->getMemoryLeader() << "\n");
Daniel Berlin1ea5f322017-01-26 22:21:48 +00001397
1398 auto LookupResult = MemoryAccessToClass.find(From);
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001399 bool Changed = false;
1400 // If it's already in the table, see if the value changed.
Daniel Berlin1ea5f322017-01-26 22:21:48 +00001401 if (LookupResult != MemoryAccessToClass.end()) {
Daniel Berlin1316a942017-04-06 18:52:50 +00001402 auto *OldClass = LookupResult->second;
1403 if (OldClass != NewClass) {
1404 // If this is a phi, we have to handle memory member updates.
1405 if (auto *MP = dyn_cast<MemoryPhi>(From)) {
Daniel Berlina8236562017-04-07 18:38:09 +00001406 OldClass->memory_erase(MP);
1407 NewClass->memory_insert(MP);
Daniel Berlin1316a942017-04-06 18:52:50 +00001408 // This may have killed the class if it had no non-memory members
Daniel Berlina8236562017-04-07 18:38:09 +00001409 if (OldClass->getMemoryLeader() == From) {
Davide Italiano41f5c7b2017-05-12 15:22:45 +00001410 if (OldClass->definesNoMemory()) {
Daniel Berlina8236562017-04-07 18:38:09 +00001411 OldClass->setMemoryLeader(nullptr);
Daniel Berlin1316a942017-04-06 18:52:50 +00001412 } else {
Daniel Berlina8236562017-04-07 18:38:09 +00001413 OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
Daniel Berlin1316a942017-04-06 18:52:50 +00001414 DEBUG(dbgs() << "Memory class leader change for class "
Daniel Berlina8236562017-04-07 18:38:09 +00001415 << OldClass->getID() << " to "
1416 << *OldClass->getMemoryLeader()
Daniel Berlin1316a942017-04-06 18:52:50 +00001417 << " due to removal of a memory member " << *From
1418 << "\n");
1419 markMemoryLeaderChangeTouched(OldClass);
1420 }
1421 }
1422 }
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001423 // It wasn't equivalent before, and now it is.
Daniel Berlin1316a942017-04-06 18:52:50 +00001424 LookupResult->second = NewClass;
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001425 Changed = true;
1426 }
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001427 }
Daniel Berlin589cecc2017-01-02 18:00:46 +00001428
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001429 return Changed;
1430}
Daniel Berlin0e900112017-03-24 06:33:48 +00001431
Daniel Berlin2f72b192017-04-14 02:53:37 +00001432// Determine if a phi is cycle-free. That means the values in the phi don't
1433// depend on any expressions that can change value as a result of the phi.
1434// For example, a non-cycle free phi would be v = phi(0, v+1).
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001435bool NewGVN::isCycleFree(const PHINode *PN) const {
Daniel Berlin2f72b192017-04-14 02:53:37 +00001436 // In order to compute cycle-freeness, we do SCC finding on the phi, and see
1437 // what kind of SCC it ends up in. If it is a singleton, it is cycle-free.
1438 // If it is not in a singleton, it is only cycle free if the other members are
1439 // all phi nodes (as they do not compute anything, they are copies). TODO:
1440 // There are likely a few other intrinsics or expressions that could be
1441 // included here, but this happens so infrequently already that it is not
1442 // likely to be worth it.
1443 auto PCS = PhiCycleState.lookup(PN);
1444 if (PCS == PCS_Unknown) {
1445 SCCFinder.Start(PN);
1446 auto &SCC = SCCFinder.getComponentFor(PN);
1447 // It's cycle free if it's size 1 or or the SCC is *only* phi nodes.
1448 if (SCC.size() == 1)
1449 PhiCycleState.insert({PN, PCS_CycleFree});
1450 else {
1451 bool AllPhis =
1452 llvm::all_of(SCC, [](const Value *V) { return isa<PHINode>(V); });
1453 PCS = AllPhis ? PCS_CycleFree : PCS_Cycle;
1454 for (auto *Member : SCC)
1455 if (auto *MemberPhi = dyn_cast<PHINode>(Member))
1456 PhiCycleState.insert({MemberPhi, PCS});
1457 }
1458 }
1459 if (PCS == PCS_Cycle)
1460 return false;
1461 return true;
1462}
1463
Davide Italiano7e274e02016-12-22 16:03:48 +00001464// Evaluate PHI nodes symbolically, and create an expression result.
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001465const Expression *NewGVN::performSymbolicPHIEvaluation(Instruction *I) const {
Daniel Berlin2f72b192017-04-14 02:53:37 +00001466 // True if one of the incoming phi edges is a backedge.
1467 bool HasBackedge = false;
1468 // All constant tracks the state of whether all the *original* phi operands
Davide Italiano839c7e62017-05-02 21:11:40 +00001469 // were constant. This is really shorthand for "this phi cannot cycle due
1470 // to forward propagation", as any change in value of the phi is guaranteed
1471 // not to later change the value of the phi.
Daniel Berlin2f72b192017-04-14 02:53:37 +00001472 // IE it can't be v = phi(undef, v+1)
1473 bool AllConstant = true;
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001474 auto *E = cast<PHIExpression>(createPHIExpression(I, HasBackedge, AllConstant));
Daniel Berlind92e7f92017-01-07 00:01:42 +00001475 // We match the semantics of SimplifyPhiNode from InstructionSimplify here.
Davide Italiano839c7e62017-05-02 21:11:40 +00001476 // See if all arguments are the same.
Daniel Berlind92e7f92017-01-07 00:01:42 +00001477 // We track if any were undef because they need special handling.
1478 bool HasUndef = false;
1479 auto Filtered = make_filter_range(E->operands(), [&](const Value *Arg) {
1480 if (Arg == I)
1481 return false;
1482 if (isa<UndefValue>(Arg)) {
1483 HasUndef = true;
1484 return false;
1485 }
1486 return true;
1487 });
1488 // If we are left with no operands, it's undef
1489 if (Filtered.begin() == Filtered.end()) {
Davide Italiano7e274e02016-12-22 16:03:48 +00001490 DEBUG(dbgs() << "Simplified PHI node " << *I << " to undef"
1491 << "\n");
Daniel Berlin0e900112017-03-24 06:33:48 +00001492 deleteExpression(E);
Davide Italiano7e274e02016-12-22 16:03:48 +00001493 return createConstantExpression(UndefValue::get(I->getType()));
1494 }
Daniel Berlin2f72b192017-04-14 02:53:37 +00001495 unsigned NumOps = 0;
Daniel Berlind92e7f92017-01-07 00:01:42 +00001496 Value *AllSameValue = *(Filtered.begin());
1497 ++Filtered.begin();
1498 // Can't use std::equal here, sadly, because filter.begin moves.
Daniel Berlin2f72b192017-04-14 02:53:37 +00001499 if (llvm::all_of(Filtered, [AllSameValue, &NumOps](const Value *V) {
1500 ++NumOps;
Daniel Berlind92e7f92017-01-07 00:01:42 +00001501 return V == AllSameValue;
1502 })) {
1503 // In LLVM's non-standard representation of phi nodes, it's possible to have
1504 // phi nodes with cycles (IE dependent on other phis that are .... dependent
1505 // on the original phi node), especially in weird CFG's where some arguments
1506 // are unreachable, or uninitialized along certain paths. This can cause
1507 // infinite loops during evaluation. We work around this by not trying to
1508 // really evaluate them independently, but instead using a variable
1509 // expression to say if one is equivalent to the other.
1510 // We also special case undef, so that if we have an undef, we can't use the
1511 // common value unless it dominates the phi block.
1512 if (HasUndef) {
Daniel Berlin2f72b192017-04-14 02:53:37 +00001513 // If we have undef and at least one other value, this is really a
1514 // multivalued phi, and we need to know if it's cycle free in order to
1515 // evaluate whether we can ignore the undef. The other parts of this are
1516 // just shortcuts. If there is no backedge, or all operands are
1517 // constants, or all operands are ignored but the undef, it also must be
1518 // cycle free.
1519 if (!AllConstant && HasBackedge && NumOps > 0 &&
1520 !isa<UndefValue>(AllSameValue) && !isCycleFree(cast<PHINode>(I)))
1521 return E;
1522
Daniel Berlind92e7f92017-01-07 00:01:42 +00001523 // Only have to check for instructions
Davide Italiano1b97fc32017-01-07 02:05:50 +00001524 if (auto *AllSameInst = dyn_cast<Instruction>(AllSameValue))
Daniel Berlin9d0796e2017-03-24 05:30:34 +00001525 if (!someEquivalentDominates(AllSameInst, I))
Daniel Berlind92e7f92017-01-07 00:01:42 +00001526 return E;
Davide Italiano7e274e02016-12-22 16:03:48 +00001527 }
1528
Davide Italiano7e274e02016-12-22 16:03:48 +00001529 NumGVNPhisAllSame++;
1530 DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue
1531 << "\n");
Daniel Berlin0e900112017-03-24 06:33:48 +00001532 deleteExpression(E);
Daniel Berlinf7d95802017-02-18 23:06:50 +00001533 return createVariableOrConstant(AllSameValue);
Davide Italiano7e274e02016-12-22 16:03:48 +00001534 }
1535 return E;
1536}
1537
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001538const Expression *
1539NewGVN::performSymbolicAggrValueEvaluation(Instruction *I) const {
Davide Italiano7e274e02016-12-22 16:03:48 +00001540 if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1541 auto *II = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
1542 if (II && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) {
1543 unsigned Opcode = 0;
1544 // EI might be an extract from one of our recognised intrinsics. If it
1545 // is we'll synthesize a semantically equivalent expression instead on
1546 // an extract value expression.
1547 switch (II->getIntrinsicID()) {
1548 case Intrinsic::sadd_with_overflow:
1549 case Intrinsic::uadd_with_overflow:
1550 Opcode = Instruction::Add;
1551 break;
1552 case Intrinsic::ssub_with_overflow:
1553 case Intrinsic::usub_with_overflow:
1554 Opcode = Instruction::Sub;
1555 break;
1556 case Intrinsic::smul_with_overflow:
1557 case Intrinsic::umul_with_overflow:
1558 Opcode = Instruction::Mul;
1559 break;
1560 default:
1561 break;
1562 }
1563
1564 if (Opcode != 0) {
1565 // Intrinsic recognized. Grab its args to finish building the
1566 // expression.
1567 assert(II->getNumArgOperands() == 2 &&
1568 "Expect two args for recognised intrinsics.");
Daniel Berlinb79f5362017-02-11 12:48:50 +00001569 return createBinaryExpression(
1570 Opcode, EI->getType(), II->getArgOperand(0), II->getArgOperand(1));
Davide Italiano7e274e02016-12-22 16:03:48 +00001571 }
1572 }
1573 }
1574
Daniel Berlin97718e62017-01-31 22:32:03 +00001575 return createAggregateValueExpression(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00001576}
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001577const Expression *NewGVN::performSymbolicCmpEvaluation(Instruction *I) const {
Daniel Berlinf7d95802017-02-18 23:06:50 +00001578 auto *CI = dyn_cast<CmpInst>(I);
1579 // See if our operands are equal to those of a previous predicate, and if so,
1580 // if it implies true or false.
Daniel Berlinc22aafe2017-01-31 22:31:58 +00001581 auto Op0 = lookupOperandLeader(CI->getOperand(0));
1582 auto Op1 = lookupOperandLeader(CI->getOperand(1));
Daniel Berlinf7d95802017-02-18 23:06:50 +00001583 auto OurPredicate = CI->getPredicate();
Daniel Berlin0350a872017-03-04 00:44:43 +00001584 if (shouldSwapOperands(Op0, Op1)) {
Daniel Berlinf7d95802017-02-18 23:06:50 +00001585 std::swap(Op0, Op1);
1586 OurPredicate = CI->getSwappedPredicate();
1587 }
1588
1589 // Avoid processing the same info twice
1590 const PredicateBase *LastPredInfo = nullptr;
Daniel Berlinf7d95802017-02-18 23:06:50 +00001591 // See if we know something about the comparison itself, like it is the target
1592 // of an assume.
1593 auto *CmpPI = PredInfo->getPredicateInfoFor(I);
1594 if (dyn_cast_or_null<PredicateAssume>(CmpPI))
1595 return createConstantExpression(ConstantInt::getTrue(CI->getType()));
1596
Daniel Berlinc22aafe2017-01-31 22:31:58 +00001597 if (Op0 == Op1) {
Daniel Berlinf7d95802017-02-18 23:06:50 +00001598 // This condition does not depend on predicates, no need to add users
Daniel Berlinc22aafe2017-01-31 22:31:58 +00001599 if (CI->isTrueWhenEqual())
1600 return createConstantExpression(ConstantInt::getTrue(CI->getType()));
1601 else if (CI->isFalseWhenEqual())
1602 return createConstantExpression(ConstantInt::getFalse(CI->getType()));
1603 }
Daniel Berlinf7d95802017-02-18 23:06:50 +00001604
1605 // NOTE: Because we are comparing both operands here and below, and using
1606 // previous comparisons, we rely on fact that predicateinfo knows to mark
1607 // comparisons that use renamed operands as users of the earlier comparisons.
1608 // It is *not* enough to just mark predicateinfo renamed operands as users of
1609 // the earlier comparisons, because the *other* operand may have changed in a
1610 // previous iteration.
1611 // Example:
1612 // icmp slt %a, %b
1613 // %b.0 = ssa.copy(%b)
1614 // false branch:
1615 // icmp slt %c, %b.0
1616
1617 // %c and %a may start out equal, and thus, the code below will say the second
1618 // %icmp is false. c may become equal to something else, and in that case the
1619 // %second icmp *must* be reexamined, but would not if only the renamed
1620 // %operands are considered users of the icmp.
1621
1622 // *Currently* we only check one level of comparisons back, and only mark one
1623 // level back as touched when changes appen . If you modify this code to look
1624 // back farther through comparisons, you *must* mark the appropriate
1625 // comparisons as users in PredicateInfo.cpp, or you will cause bugs. See if
1626 // we know something just from the operands themselves
1627
1628 // See if our operands have predicate info, so that we may be able to derive
1629 // something from a previous comparison.
1630 for (const auto &Op : CI->operands()) {
1631 auto *PI = PredInfo->getPredicateInfoFor(Op);
1632 if (const auto *PBranch = dyn_cast_or_null<PredicateBranch>(PI)) {
1633 if (PI == LastPredInfo)
1634 continue;
1635 LastPredInfo = PI;
Daniel Berlinfccbda92017-02-22 22:20:58 +00001636
Daniel Berlinf7d95802017-02-18 23:06:50 +00001637 // TODO: Along the false edge, we may know more things too, like icmp of
1638 // same operands is false.
1639 // TODO: We only handle actual comparison conditions below, not and/or.
1640 auto *BranchCond = dyn_cast<CmpInst>(PBranch->Condition);
1641 if (!BranchCond)
1642 continue;
1643 auto *BranchOp0 = lookupOperandLeader(BranchCond->getOperand(0));
1644 auto *BranchOp1 = lookupOperandLeader(BranchCond->getOperand(1));
1645 auto BranchPredicate = BranchCond->getPredicate();
Daniel Berlin0350a872017-03-04 00:44:43 +00001646 if (shouldSwapOperands(BranchOp0, BranchOp1)) {
Daniel Berlinf7d95802017-02-18 23:06:50 +00001647 std::swap(BranchOp0, BranchOp1);
1648 BranchPredicate = BranchCond->getSwappedPredicate();
1649 }
1650 if (BranchOp0 == Op0 && BranchOp1 == Op1) {
1651 if (PBranch->TrueEdge) {
1652 // If we know the previous predicate is true and we are in the true
1653 // edge then we may be implied true or false.
Davide Italiano2dfd46b2017-05-01 22:26:28 +00001654 if (CmpInst::isImpliedTrueByMatchingCmp(BranchPredicate,
1655 OurPredicate)) {
Daniel Berlinf7d95802017-02-18 23:06:50 +00001656 addPredicateUsers(PI, I);
1657 return createConstantExpression(
1658 ConstantInt::getTrue(CI->getType()));
1659 }
1660
Davide Italiano2dfd46b2017-05-01 22:26:28 +00001661 if (CmpInst::isImpliedFalseByMatchingCmp(BranchPredicate,
1662 OurPredicate)) {
Daniel Berlinf7d95802017-02-18 23:06:50 +00001663 addPredicateUsers(PI, I);
1664 return createConstantExpression(
1665 ConstantInt::getFalse(CI->getType()));
1666 }
1667
1668 } else {
1669 // Just handle the ne and eq cases, where if we have the same
1670 // operands, we may know something.
1671 if (BranchPredicate == OurPredicate) {
1672 addPredicateUsers(PI, I);
1673 // Same predicate, same ops,we know it was false, so this is false.
1674 return createConstantExpression(
1675 ConstantInt::getFalse(CI->getType()));
1676 } else if (BranchPredicate ==
1677 CmpInst::getInversePredicate(OurPredicate)) {
1678 addPredicateUsers(PI, I);
1679 // Inverse predicate, we know the other was false, so this is true.
Daniel Berlinf7d95802017-02-18 23:06:50 +00001680 return createConstantExpression(
1681 ConstantInt::getTrue(CI->getType()));
1682 }
1683 }
1684 }
1685 }
1686 }
1687 // Create expression will take care of simplifyCmpInst
Daniel Berlin97718e62017-01-31 22:32:03 +00001688 return createExpression(I);
Daniel Berlinc22aafe2017-01-31 22:31:58 +00001689}
Davide Italiano7e274e02016-12-22 16:03:48 +00001690
1691// Substitute and symbolize the value before value numbering.
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001692const Expression *NewGVN::performSymbolicEvaluation(Value *V) const {
Davide Italiano0e714802016-12-28 14:00:11 +00001693 const Expression *E = nullptr;
Davide Italiano7e274e02016-12-22 16:03:48 +00001694 if (auto *C = dyn_cast<Constant>(V))
1695 E = createConstantExpression(C);
1696 else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
1697 E = createVariableExpression(V);
1698 } else {
1699 // TODO: memory intrinsics.
1700 // TODO: Some day, we should do the forward propagation and reassociation
1701 // parts of the algorithm.
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00001702 auto *I = cast<Instruction>(V);
Davide Italiano7e274e02016-12-22 16:03:48 +00001703 switch (I->getOpcode()) {
1704 case Instruction::ExtractValue:
1705 case Instruction::InsertValue:
Daniel Berlin97718e62017-01-31 22:32:03 +00001706 E = performSymbolicAggrValueEvaluation(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00001707 break;
1708 case Instruction::PHI:
Daniel Berlin97718e62017-01-31 22:32:03 +00001709 E = performSymbolicPHIEvaluation(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00001710 break;
1711 case Instruction::Call:
Daniel Berlin97718e62017-01-31 22:32:03 +00001712 E = performSymbolicCallEvaluation(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00001713 break;
1714 case Instruction::Store:
Daniel Berlin97718e62017-01-31 22:32:03 +00001715 E = performSymbolicStoreEvaluation(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00001716 break;
1717 case Instruction::Load:
Daniel Berlin97718e62017-01-31 22:32:03 +00001718 E = performSymbolicLoadEvaluation(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00001719 break;
1720 case Instruction::BitCast: {
Daniel Berlin97718e62017-01-31 22:32:03 +00001721 E = createExpression(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00001722 } break;
Daniel Berlinc22aafe2017-01-31 22:31:58 +00001723 case Instruction::ICmp:
1724 case Instruction::FCmp: {
Daniel Berlin97718e62017-01-31 22:32:03 +00001725 E = performSymbolicCmpEvaluation(I);
Daniel Berlinc22aafe2017-01-31 22:31:58 +00001726 } break;
Davide Italiano7e274e02016-12-22 16:03:48 +00001727 case Instruction::Add:
1728 case Instruction::FAdd:
1729 case Instruction::Sub:
1730 case Instruction::FSub:
1731 case Instruction::Mul:
1732 case Instruction::FMul:
1733 case Instruction::UDiv:
1734 case Instruction::SDiv:
1735 case Instruction::FDiv:
1736 case Instruction::URem:
1737 case Instruction::SRem:
1738 case Instruction::FRem:
1739 case Instruction::Shl:
1740 case Instruction::LShr:
1741 case Instruction::AShr:
1742 case Instruction::And:
1743 case Instruction::Or:
1744 case Instruction::Xor:
Davide Italiano7e274e02016-12-22 16:03:48 +00001745 case Instruction::Trunc:
1746 case Instruction::ZExt:
1747 case Instruction::SExt:
1748 case Instruction::FPToUI:
1749 case Instruction::FPToSI:
1750 case Instruction::UIToFP:
1751 case Instruction::SIToFP:
1752 case Instruction::FPTrunc:
1753 case Instruction::FPExt:
1754 case Instruction::PtrToInt:
1755 case Instruction::IntToPtr:
1756 case Instruction::Select:
1757 case Instruction::ExtractElement:
1758 case Instruction::InsertElement:
1759 case Instruction::ShuffleVector:
1760 case Instruction::GetElementPtr:
Daniel Berlin97718e62017-01-31 22:32:03 +00001761 E = createExpression(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00001762 break;
1763 default:
1764 return nullptr;
1765 }
1766 }
Davide Italiano7e274e02016-12-22 16:03:48 +00001767 return E;
1768}
1769
Davide Italiano7e274e02016-12-22 16:03:48 +00001770void NewGVN::markUsersTouched(Value *V) {
1771 // Now mark the users as touched.
Daniel Berline0bd37e2016-12-29 22:15:12 +00001772 for (auto *User : V->users()) {
1773 assert(isa<Instruction>(User) && "Use of value not within an instruction?");
Daniel Berlin21279bd2017-04-06 18:52:58 +00001774 TouchedInstructions.set(InstrToDFSNum(User));
Davide Italiano7e274e02016-12-22 16:03:48 +00001775 }
1776}
1777
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001778void NewGVN::addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const {
Daniel Berlin1316a942017-04-06 18:52:50 +00001779 DEBUG(dbgs() << "Adding memory user " << *U << " to " << *To << "\n");
1780 MemoryToUsers[To].insert(U);
1781}
1782
1783void NewGVN::markMemoryDefTouched(const MemoryAccess *MA) {
Daniel Berlin21279bd2017-04-06 18:52:58 +00001784 TouchedInstructions.set(MemoryToDFSNum(MA));
Daniel Berlin1316a942017-04-06 18:52:50 +00001785}
1786
1787void NewGVN::markMemoryUsersTouched(const MemoryAccess *MA) {
1788 if (isa<MemoryUse>(MA))
1789 return;
1790 for (auto U : MA->users())
Daniel Berlin21279bd2017-04-06 18:52:58 +00001791 TouchedInstructions.set(MemoryToDFSNum(U));
Daniel Berlin1316a942017-04-06 18:52:50 +00001792 const auto Result = MemoryToUsers.find(MA);
1793 if (Result != MemoryToUsers.end()) {
1794 for (auto *User : Result->second)
Daniel Berlin21279bd2017-04-06 18:52:58 +00001795 TouchedInstructions.set(MemoryToDFSNum(User));
Daniel Berlin1316a942017-04-06 18:52:50 +00001796 MemoryToUsers.erase(Result);
Davide Italiano7e274e02016-12-22 16:03:48 +00001797 }
1798}
1799
Daniel Berlinf7d95802017-02-18 23:06:50 +00001800// Add I to the set of users of a given predicate.
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001801void NewGVN::addPredicateUsers(const PredicateBase *PB, Instruction *I) const {
Daniel Berlinf7d95802017-02-18 23:06:50 +00001802 if (auto *PBranch = dyn_cast<PredicateBranch>(PB))
1803 PredicateToUsers[PBranch->Condition].insert(I);
1804 else if (auto *PAssume = dyn_cast<PredicateBranch>(PB))
1805 PredicateToUsers[PAssume->Condition].insert(I);
1806}
1807
1808// Touch all the predicates that depend on this instruction.
1809void NewGVN::markPredicateUsersTouched(Instruction *I) {
1810 const auto Result = PredicateToUsers.find(I);
Daniel Berlin46b72e62017-03-19 00:07:32 +00001811 if (Result != PredicateToUsers.end()) {
Daniel Berlinf7d95802017-02-18 23:06:50 +00001812 for (auto *User : Result->second)
Daniel Berlin21279bd2017-04-06 18:52:58 +00001813 TouchedInstructions.set(InstrToDFSNum(User));
Daniel Berlin46b72e62017-03-19 00:07:32 +00001814 PredicateToUsers.erase(Result);
1815 }
Daniel Berlinf7d95802017-02-18 23:06:50 +00001816}
1817
Daniel Berlin1316a942017-04-06 18:52:50 +00001818// Mark users affected by a memory leader change.
1819void NewGVN::markMemoryLeaderChangeTouched(CongruenceClass *CC) {
Daniel Berlina8236562017-04-07 18:38:09 +00001820 for (auto M : CC->memory())
Daniel Berlin1316a942017-04-06 18:52:50 +00001821 markMemoryDefTouched(M);
1822}
1823
Daniel Berlin32f8d562017-01-07 16:55:14 +00001824// Touch the instructions that need to be updated after a congruence class has a
1825// leader change, and mark changed values.
Daniel Berlin1316a942017-04-06 18:52:50 +00001826void NewGVN::markValueLeaderChangeTouched(CongruenceClass *CC) {
Daniel Berlina8236562017-04-07 18:38:09 +00001827 for (auto M : *CC) {
Daniel Berlin32f8d562017-01-07 16:55:14 +00001828 if (auto *I = dyn_cast<Instruction>(M))
Daniel Berlin21279bd2017-04-06 18:52:58 +00001829 TouchedInstructions.set(InstrToDFSNum(I));
Daniel Berlin3a1bd022017-01-11 20:22:05 +00001830 LeaderChanges.insert(M);
1831 }
1832}
1833
Daniel Berlin1316a942017-04-06 18:52:50 +00001834// Give a range of things that have instruction DFS numbers, this will return
1835// the member of the range with the smallest dfs number.
1836template <class T, class Range>
1837T *NewGVN::getMinDFSOfRange(const Range &R) const {
1838 std::pair<T *, unsigned> MinDFS = {nullptr, ~0U};
1839 for (const auto X : R) {
Daniel Berlin21279bd2017-04-06 18:52:58 +00001840 auto DFSNum = InstrToDFSNum(X);
Daniel Berlin1316a942017-04-06 18:52:50 +00001841 if (DFSNum < MinDFS.second)
1842 MinDFS = {X, DFSNum};
1843 }
1844 return MinDFS.first;
1845}
1846
1847// This function returns the MemoryAccess that should be the next leader of
1848// congruence class CC, under the assumption that the current leader is going to
1849// disappear.
1850const MemoryAccess *NewGVN::getNextMemoryLeader(CongruenceClass *CC) const {
1851 // TODO: If this ends up to slow, we can maintain a next memory leader like we
1852 // do for regular leaders.
1853 // Make sure there will be a leader to find
Davide Italianodc435322017-05-10 19:57:43 +00001854 assert(!CC->definesNoMemory() && "Can't get next leader if there is none");
Daniel Berlina8236562017-04-07 18:38:09 +00001855 if (CC->getStoreCount() > 0) {
1856 if (auto *NL = dyn_cast_or_null<StoreInst>(CC->getNextLeader().first))
Daniel Berlin1316a942017-04-06 18:52:50 +00001857 return MSSA->getMemoryAccess(NL);
1858 // Find the store with the minimum DFS number.
1859 auto *V = getMinDFSOfRange<Value>(make_filter_range(
Daniel Berlina8236562017-04-07 18:38:09 +00001860 *CC, [&](const Value *V) { return isa<StoreInst>(V); }));
Daniel Berlin1316a942017-04-06 18:52:50 +00001861 return MSSA->getMemoryAccess(cast<StoreInst>(V));
1862 }
Daniel Berlina8236562017-04-07 18:38:09 +00001863 assert(CC->getStoreCount() == 0);
Daniel Berlin1316a942017-04-06 18:52:50 +00001864
1865 // Given our assertion, hitting this part must mean
Daniel Berlina8236562017-04-07 18:38:09 +00001866 // !OldClass->memory_empty()
1867 if (CC->memory_size() == 1)
1868 return *CC->memory_begin();
1869 return getMinDFSOfRange<const MemoryPhi>(CC->memory());
Daniel Berlin1316a942017-04-06 18:52:50 +00001870}
1871
1872// This function returns the next value leader of a congruence class, under the
1873// assumption that the current leader is going away. This should end up being
1874// the next most dominating member.
1875Value *NewGVN::getNextValueLeader(CongruenceClass *CC) const {
1876 // We don't need to sort members if there is only 1, and we don't care about
1877 // sorting the TOP class because everything either gets out of it or is
1878 // unreachable.
1879
Daniel Berlina8236562017-04-07 18:38:09 +00001880 if (CC->size() == 1 || CC == TOPClass) {
1881 return *(CC->begin());
1882 } else if (CC->getNextLeader().first) {
Daniel Berlin1316a942017-04-06 18:52:50 +00001883 ++NumGVNAvoidedSortedLeaderChanges;
Daniel Berlina8236562017-04-07 18:38:09 +00001884 return CC->getNextLeader().first;
Daniel Berlin1316a942017-04-06 18:52:50 +00001885 } else {
1886 ++NumGVNSortedLeaderChanges;
1887 // NOTE: If this ends up to slow, we can maintain a dual structure for
1888 // member testing/insertion, or keep things mostly sorted, and sort only
1889 // here, or use SparseBitVector or ....
Daniel Berlina8236562017-04-07 18:38:09 +00001890 return getMinDFSOfRange<Value>(*CC);
Daniel Berlin1316a942017-04-06 18:52:50 +00001891 }
1892}
1893
1894// Move a MemoryAccess, currently in OldClass, to NewClass, including updates to
1895// the memory members, etc for the move.
1896//
1897// The invariants of this function are:
1898//
1899// I must be moving to NewClass from OldClass The StoreCount of OldClass and
1900// NewClass is expected to have been updated for I already if it is is a store.
1901// The OldClass memory leader has not been updated yet if I was the leader.
1902void NewGVN::moveMemoryToNewCongruenceClass(Instruction *I,
1903 MemoryAccess *InstMA,
1904 CongruenceClass *OldClass,
1905 CongruenceClass *NewClass) {
1906 // If the leader is I, and we had a represenative MemoryAccess, it should
1907 // be the MemoryAccess of OldClass.
Davide Italianof58a30232017-04-10 23:08:35 +00001908 assert((!InstMA || !OldClass->getMemoryLeader() ||
1909 OldClass->getLeader() != I ||
1910 OldClass->getMemoryLeader() == InstMA) &&
1911 "Representative MemoryAccess mismatch");
Daniel Berlin1316a942017-04-06 18:52:50 +00001912 // First, see what happens to the new class
Daniel Berlina8236562017-04-07 18:38:09 +00001913 if (!NewClass->getMemoryLeader()) {
Daniel Berlin1316a942017-04-06 18:52:50 +00001914 // Should be a new class, or a store becoming a leader of a new class.
Daniel Berlina8236562017-04-07 18:38:09 +00001915 assert(NewClass->size() == 1 ||
1916 (isa<StoreInst>(I) && NewClass->getStoreCount() == 1));
1917 NewClass->setMemoryLeader(InstMA);
Daniel Berlin1316a942017-04-06 18:52:50 +00001918 // Mark it touched if we didn't just create a singleton
Daniel Berlina8236562017-04-07 18:38:09 +00001919 DEBUG(dbgs() << "Memory class leader change for class " << NewClass->getID()
Daniel Berlin1316a942017-04-06 18:52:50 +00001920 << " due to new memory instruction becoming leader\n");
1921 markMemoryLeaderChangeTouched(NewClass);
1922 }
1923 setMemoryClass(InstMA, NewClass);
1924 // Now, fixup the old class if necessary
Daniel Berlina8236562017-04-07 18:38:09 +00001925 if (OldClass->getMemoryLeader() == InstMA) {
Davide Italianodc435322017-05-10 19:57:43 +00001926 if (!OldClass->definesNoMemory()) {
Daniel Berlina8236562017-04-07 18:38:09 +00001927 OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
1928 DEBUG(dbgs() << "Memory class leader change for class "
1929 << OldClass->getID() << " to "
1930 << *OldClass->getMemoryLeader()
Daniel Berlin1316a942017-04-06 18:52:50 +00001931 << " due to removal of old leader " << *InstMA << "\n");
1932 markMemoryLeaderChangeTouched(OldClass);
1933 } else
Daniel Berlina8236562017-04-07 18:38:09 +00001934 OldClass->setMemoryLeader(nullptr);
Daniel Berlin1316a942017-04-06 18:52:50 +00001935 }
1936}
1937
Daniel Berlin3a1bd022017-01-11 20:22:05 +00001938// Move a value, currently in OldClass, to be part of NewClass
Daniel Berlin1316a942017-04-06 18:52:50 +00001939// Update OldClass and NewClass for the move (including changing leaders, etc).
1940void NewGVN::moveValueToNewCongruenceClass(Instruction *I, const Expression *E,
Daniel Berlinc0431fd2017-01-13 22:40:01 +00001941 CongruenceClass *OldClass,
Daniel Berlin3a1bd022017-01-11 20:22:05 +00001942 CongruenceClass *NewClass) {
Daniel Berlina8236562017-04-07 18:38:09 +00001943 if (I == OldClass->getNextLeader().first)
1944 OldClass->resetNextLeader();
Daniel Berlinc0431fd2017-01-13 22:40:01 +00001945
Daniel Berlin89fea6f2017-01-20 06:38:41 +00001946 // It's possible, though unlikely, for us to discover equivalences such
1947 // that the current leader does not dominate the old one.
1948 // This statistic tracks how often this happens.
1949 // We assert on phi nodes when this happens, currently, for debugging, because
1950 // we want to make sure we name phi node cycles properly.
Daniel Berlina8236562017-04-07 18:38:09 +00001951 if (isa<Instruction>(NewClass->getLeader()) && NewClass->getLeader() &&
1952 I != NewClass->getLeader()) {
Daniel Berlinffc30782017-03-24 06:33:51 +00001953 auto *IBB = I->getParent();
Daniel Berlina8236562017-04-07 18:38:09 +00001954 auto *NCBB = cast<Instruction>(NewClass->getLeader())->getParent();
Daniel Berlin21279bd2017-04-06 18:52:58 +00001955 bool Dominated =
Daniel Berlina8236562017-04-07 18:38:09 +00001956 IBB == NCBB && InstrToDFSNum(I) < InstrToDFSNum(NewClass->getLeader());
Daniel Berlinffc30782017-03-24 06:33:51 +00001957 Dominated = Dominated || DT->properlyDominates(IBB, NCBB);
1958 if (Dominated) {
1959 ++NumGVNNotMostDominatingLeader;
1960 assert(
1961 !isa<PHINode>(I) &&
1962 "New class for instruction should not be dominated by instruction");
1963 }
Daniel Berlin89fea6f2017-01-20 06:38:41 +00001964 }
Daniel Berlinc0431fd2017-01-13 22:40:01 +00001965
Daniel Berlina8236562017-04-07 18:38:09 +00001966 if (NewClass->getLeader() != I)
1967 NewClass->addPossibleNextLeader({I, InstrToDFSNum(I)});
Daniel Berlinc0431fd2017-01-13 22:40:01 +00001968
Daniel Berlina8236562017-04-07 18:38:09 +00001969 OldClass->erase(I);
1970 NewClass->insert(I);
Daniel Berlin1316a942017-04-06 18:52:50 +00001971 // Handle our special casing of stores.
Daniel Berlin1ea5f322017-01-26 22:21:48 +00001972 if (auto *SI = dyn_cast<StoreInst>(I)) {
Daniel Berlina8236562017-04-07 18:38:09 +00001973 OldClass->decStoreCount();
1974 // Okay, so when do we want to make a store a leader of a class?
1975 // If we have a store defined by an earlier load, we want the earlier load
1976 // to lead the class.
1977 // If we have a store defined by something else, we want the store to lead
1978 // the class so everything else gets the "something else" as a value.
Daniel Berlin1316a942017-04-06 18:52:50 +00001979 // If we have a store as the single member of the class, we want the store
Daniel Berlina8236562017-04-07 18:38:09 +00001980 // as the leader
1981 if (NewClass->getStoreCount() == 0 && !NewClass->getStoredValue()) {
Daniel Berlin1316a942017-04-06 18:52:50 +00001982 // If it's a store expression we are using, it means we are not equivalent
1983 // to something earlier.
1984 if (isa<StoreExpression>(E)) {
1985 assert(lookupOperandLeader(SI->getValueOperand()) !=
Daniel Berlina8236562017-04-07 18:38:09 +00001986 NewClass->getLeader());
1987 NewClass->setStoredValue(lookupOperandLeader(SI->getValueOperand()));
Daniel Berlin1316a942017-04-06 18:52:50 +00001988 markValueLeaderChangeTouched(NewClass);
1989 // Shift the new class leader to be the store
Daniel Berlina8236562017-04-07 18:38:09 +00001990 DEBUG(dbgs() << "Changing leader of congruence class "
1991 << NewClass->getID() << " from " << *NewClass->getLeader()
1992 << " to " << *SI << " because store joined class\n");
Daniel Berlin1316a942017-04-06 18:52:50 +00001993 // If we changed the leader, we have to mark it changed because we don't
1994 // know what it will do to symbolic evlauation.
Daniel Berlina8236562017-04-07 18:38:09 +00001995 NewClass->setLeader(SI);
Daniel Berlin1316a942017-04-06 18:52:50 +00001996 }
1997 // We rely on the code below handling the MemoryAccess change.
1998 }
Daniel Berlina8236562017-04-07 18:38:09 +00001999 NewClass->incStoreCount();
Daniel Berlin3a1bd022017-01-11 20:22:05 +00002000 }
Daniel Berlin1316a942017-04-06 18:52:50 +00002001 // True if there is no memory instructions left in a class that had memory
2002 // instructions before.
Daniel Berlin3a1bd022017-01-11 20:22:05 +00002003
Daniel Berlin1316a942017-04-06 18:52:50 +00002004 // If it's not a memory use, set the MemoryAccess equivalence
2005 auto *InstMA = dyn_cast_or_null<MemoryDef>(MSSA->getMemoryAccess(I));
Daniel Berlina8236562017-04-07 18:38:09 +00002006 bool InstWasMemoryLeader = InstMA && OldClass->getMemoryLeader() == InstMA;
Daniel Berlin1316a942017-04-06 18:52:50 +00002007 if (InstMA)
2008 moveMemoryToNewCongruenceClass(I, InstMA, OldClass, NewClass);
Daniel Berlinc0431fd2017-01-13 22:40:01 +00002009 ValueToClass[I] = NewClass;
Daniel Berlin3a1bd022017-01-11 20:22:05 +00002010 // See if we destroyed the class or need to swap leaders.
Daniel Berlina8236562017-04-07 18:38:09 +00002011 if (OldClass->empty() && OldClass != TOPClass) {
2012 if (OldClass->getDefiningExpr()) {
2013 DEBUG(dbgs() << "Erasing expression " << OldClass->getDefiningExpr()
Daniel Berlin3a1bd022017-01-11 20:22:05 +00002014 << " from table\n");
Daniel Berlina8236562017-04-07 18:38:09 +00002015 ExpressionToClass.erase(OldClass->getDefiningExpr());
Daniel Berlin3a1bd022017-01-11 20:22:05 +00002016 }
Daniel Berlina8236562017-04-07 18:38:09 +00002017 } else if (OldClass->getLeader() == I) {
Daniel Berlin3a1bd022017-01-11 20:22:05 +00002018 // When the leader changes, the value numbering of
2019 // everything may change due to symbolization changes, so we need to
2020 // reprocess.
Daniel Berlina8236562017-04-07 18:38:09 +00002021 DEBUG(dbgs() << "Value class leader change for class " << OldClass->getID()
Daniel Berlin1316a942017-04-06 18:52:50 +00002022 << "\n");
Daniel Berlinc0431fd2017-01-13 22:40:01 +00002023 ++NumGVNLeaderChanges;
Daniel Berlin26addef2017-01-20 21:04:30 +00002024 // Destroy the stored value if there are no more stores to represent it.
Daniel Berlin1316a942017-04-06 18:52:50 +00002025 // Note that this is basically clean up for the expression removal that
2026 // happens below. If we remove stores from a class, we may leave it as a
2027 // class of equivalent memory phis.
Daniel Berlina8236562017-04-07 18:38:09 +00002028 if (OldClass->getStoreCount() == 0) {
2029 if (OldClass->getStoredValue())
2030 OldClass->setStoredValue(nullptr);
Daniel Berlin1ea5f322017-01-26 22:21:48 +00002031 }
Daniel Berlin1316a942017-04-06 18:52:50 +00002032 // If we destroy the old access leader and it's a store, we have to
2033 // effectively destroy the congruence class. When it comes to scalars,
2034 // anything with the same value is as good as any other. That means that
2035 // one leader is as good as another, and as long as you have some leader for
2036 // the value, you are good.. When it comes to *memory states*, only one
2037 // particular thing really represents the definition of a given memory
2038 // state. Once it goes away, we need to re-evaluate which pieces of memory
2039 // are really still equivalent. The best way to do this is to re-value
2040 // number things. The only way to really make that happen is to destroy the
2041 // rest of the class. In order to effectively destroy the class, we reset
2042 // ExpressionToClass for each by using the ValueToExpression mapping. The
2043 // members later get marked as touched due to the leader change. We will
2044 // create new congruence classes, and the pieces that are still equivalent
2045 // will end back together in a new class. If this becomes too expensive, it
2046 // is possible to use a versioning scheme for the congruence classes to
2047 // avoid the expressions finding this old class. Note that the situation is
2048 // different for memory phis, becuase they are evaluated anew each time, and
2049 // they become equal not by hashing, but by seeing if all operands are the
2050 // same (or only one is reachable).
Daniel Berlina8236562017-04-07 18:38:09 +00002051 if (OldClass->getStoreCount() > 0 && InstWasMemoryLeader) {
2052 DEBUG(dbgs() << "Kicking everything out of class " << OldClass->getID()
Daniel Berlin1316a942017-04-06 18:52:50 +00002053 << " because MemoryAccess leader changed");
Daniel Berlina8236562017-04-07 18:38:09 +00002054 for (auto Member : *OldClass)
Daniel Berlin1ea5f322017-01-26 22:21:48 +00002055 ExpressionToClass.erase(ValueToExpression.lookup(Member));
2056 }
Daniel Berlina8236562017-04-07 18:38:09 +00002057 OldClass->setLeader(getNextValueLeader(OldClass));
2058 OldClass->resetNextLeader();
Daniel Berlin1316a942017-04-06 18:52:50 +00002059 markValueLeaderChangeTouched(OldClass);
Daniel Berlin32f8d562017-01-07 16:55:14 +00002060 }
2061}
2062
Davide Italiano7e274e02016-12-22 16:03:48 +00002063// Perform congruence finding on a given value numbering expression.
Daniel Berlinc0431fd2017-01-13 22:40:01 +00002064void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) {
2065 ValueToExpression[I] = E;
Davide Italiano7e274e02016-12-22 16:03:48 +00002066 // This is guaranteed to return something, since it will at least find
Daniel Berlinb79f5362017-02-11 12:48:50 +00002067 // TOP.
Daniel Berlin32f8d562017-01-07 16:55:14 +00002068
Daniel Berlinc0431fd2017-01-13 22:40:01 +00002069 CongruenceClass *IClass = ValueToClass[I];
2070 assert(IClass && "Should have found a IClass");
Davide Italiano7e274e02016-12-22 16:03:48 +00002071 // Dead classes should have been eliminated from the mapping.
Daniel Berlin1316a942017-04-06 18:52:50 +00002072 assert(!IClass->isDead() && "Found a dead class");
Davide Italiano7e274e02016-12-22 16:03:48 +00002073
2074 CongruenceClass *EClass;
Daniel Berlin02c6b172017-01-02 18:00:53 +00002075 if (const auto *VE = dyn_cast<VariableExpression>(E)) {
Davide Italiano7e274e02016-12-22 16:03:48 +00002076 EClass = ValueToClass[VE->getVariableValue()];
2077 } else {
2078 auto lookupResult = ExpressionToClass.insert({E, nullptr});
2079
2080 // If it's not in the value table, create a new congruence class.
2081 if (lookupResult.second) {
Davide Italiano0e714802016-12-28 14:00:11 +00002082 CongruenceClass *NewClass = createCongruenceClass(nullptr, E);
Davide Italiano7e274e02016-12-22 16:03:48 +00002083 auto place = lookupResult.first;
2084 place->second = NewClass;
2085
2086 // Constants and variables should always be made the leader.
Daniel Berlin32f8d562017-01-07 16:55:14 +00002087 if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
Daniel Berlina8236562017-04-07 18:38:09 +00002088 NewClass->setLeader(CE->getConstantValue());
Daniel Berlin32f8d562017-01-07 16:55:14 +00002089 } else if (const auto *SE = dyn_cast<StoreExpression>(E)) {
2090 StoreInst *SI = SE->getStoreInst();
Daniel Berlina8236562017-04-07 18:38:09 +00002091 NewClass->setLeader(SI);
2092 NewClass->setStoredValue(lookupOperandLeader(SI->getValueOperand()));
Daniel Berlin1ea5f322017-01-26 22:21:48 +00002093 // The RepMemoryAccess field will be filled in properly by the
2094 // moveValueToNewCongruenceClass call.
Daniel Berlin32f8d562017-01-07 16:55:14 +00002095 } else {
Daniel Berlina8236562017-04-07 18:38:09 +00002096 NewClass->setLeader(I);
Daniel Berlin32f8d562017-01-07 16:55:14 +00002097 }
2098 assert(!isa<VariableExpression>(E) &&
2099 "VariableExpression should have been handled already");
Davide Italiano7e274e02016-12-22 16:03:48 +00002100
2101 EClass = NewClass;
Daniel Berlinc0431fd2017-01-13 22:40:01 +00002102 DEBUG(dbgs() << "Created new congruence class for " << *I
Daniel Berlina8236562017-04-07 18:38:09 +00002103 << " using expression " << *E << " at " << NewClass->getID()
2104 << " and leader " << *(NewClass->getLeader()));
2105 if (NewClass->getStoredValue())
2106 DEBUG(dbgs() << " and stored value " << *(NewClass->getStoredValue()));
Daniel Berlin26addef2017-01-20 21:04:30 +00002107 DEBUG(dbgs() << "\n");
Davide Italiano7e274e02016-12-22 16:03:48 +00002108 } else {
2109 EClass = lookupResult.first->second;
Daniel Berlin589cecc2017-01-02 18:00:46 +00002110 if (isa<ConstantExpression>(E))
Davide Italianof58a30232017-04-10 23:08:35 +00002111 assert((isa<Constant>(EClass->getLeader()) ||
2112 (EClass->getStoredValue() &&
2113 isa<Constant>(EClass->getStoredValue()))) &&
2114 "Any class with a constant expression should have a "
2115 "constant leader");
Daniel Berlin589cecc2017-01-02 18:00:46 +00002116
Davide Italiano7e274e02016-12-22 16:03:48 +00002117 assert(EClass && "Somehow don't have an eclass");
2118
Daniel Berlin1316a942017-04-06 18:52:50 +00002119 assert(!EClass->isDead() && "We accidentally looked up a dead class");
Davide Italiano7e274e02016-12-22 16:03:48 +00002120 }
2121 }
Daniel Berlinc0431fd2017-01-13 22:40:01 +00002122 bool ClassChanged = IClass != EClass;
2123 bool LeaderChanged = LeaderChanges.erase(I);
Daniel Berlin3a1bd022017-01-11 20:22:05 +00002124 if (ClassChanged || LeaderChanged) {
Daniel Berlina8236562017-04-07 18:38:09 +00002125 DEBUG(dbgs() << "New class " << EClass->getID() << " for expression " << *E
Davide Italiano7e274e02016-12-22 16:03:48 +00002126 << "\n");
Daniel Berlin3a1bd022017-01-11 20:22:05 +00002127 if (ClassChanged)
Daniel Berlin1316a942017-04-06 18:52:50 +00002128 moveValueToNewCongruenceClass(I, E, IClass, EClass);
Daniel Berlinc0431fd2017-01-13 22:40:01 +00002129 markUsersTouched(I);
Daniel Berlin1ea5f322017-01-26 22:21:48 +00002130 if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
Daniel Berlinc0431fd2017-01-13 22:40:01 +00002131 markMemoryUsersTouched(MA);
Daniel Berlinf7d95802017-02-18 23:06:50 +00002132 if (auto *CI = dyn_cast<CmpInst>(I))
2133 markPredicateUsersTouched(CI);
Davide Italiano7e274e02016-12-22 16:03:48 +00002134 }
2135}
2136
2137// Process the fact that Edge (from, to) is reachable, including marking
2138// any newly reachable blocks and instructions for processing.
2139void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) {
2140 // Check if the Edge was reachable before.
2141 if (ReachableEdges.insert({From, To}).second) {
2142 // If this block wasn't reachable before, all instructions are touched.
2143 if (ReachableBlocks.insert(To).second) {
2144 DEBUG(dbgs() << "Block " << getBlockName(To) << " marked reachable\n");
2145 const auto &InstRange = BlockInstRange.lookup(To);
2146 TouchedInstructions.set(InstRange.first, InstRange.second);
2147 } else {
2148 DEBUG(dbgs() << "Block " << getBlockName(To)
2149 << " was reachable, but new edge {" << getBlockName(From)
2150 << "," << getBlockName(To) << "} to it found\n");
2151
2152 // We've made an edge reachable to an existing block, which may
2153 // impact predicates. Otherwise, only mark the phi nodes as touched, as
2154 // they are the only thing that depend on new edges. Anything using their
2155 // values will get propagated to if necessary.
Daniel Berlin589cecc2017-01-02 18:00:46 +00002156 if (MemoryAccess *MemPhi = MSSA->getMemoryAccess(To))
Daniel Berlin21279bd2017-04-06 18:52:58 +00002157 TouchedInstructions.set(InstrToDFSNum(MemPhi));
Daniel Berlin589cecc2017-01-02 18:00:46 +00002158
Davide Italiano7e274e02016-12-22 16:03:48 +00002159 auto BI = To->begin();
2160 while (isa<PHINode>(BI)) {
Daniel Berlin21279bd2017-04-06 18:52:58 +00002161 TouchedInstructions.set(InstrToDFSNum(&*BI));
Davide Italiano7e274e02016-12-22 16:03:48 +00002162 ++BI;
2163 }
2164 }
2165 }
2166}
2167
2168// Given a predicate condition (from a switch, cmp, or whatever) and a block,
2169// see if we know some constant value for it already.
Daniel Berlin97718e62017-01-31 22:32:03 +00002170Value *NewGVN::findConditionEquivalence(Value *Cond) const {
Daniel Berlin203f47b2017-01-31 22:31:53 +00002171 auto Result = lookupOperandLeader(Cond);
Davide Italiano7e274e02016-12-22 16:03:48 +00002172 if (isa<Constant>(Result))
2173 return Result;
2174 return nullptr;
2175}
2176
2177// Process the outgoing edges of a block for reachability.
2178void NewGVN::processOutgoingEdges(TerminatorInst *TI, BasicBlock *B) {
2179 // Evaluate reachability of terminator instruction.
2180 BranchInst *BR;
2181 if ((BR = dyn_cast<BranchInst>(TI)) && BR->isConditional()) {
2182 Value *Cond = BR->getCondition();
Daniel Berlin97718e62017-01-31 22:32:03 +00002183 Value *CondEvaluated = findConditionEquivalence(Cond);
Davide Italiano7e274e02016-12-22 16:03:48 +00002184 if (!CondEvaluated) {
2185 if (auto *I = dyn_cast<Instruction>(Cond)) {
Daniel Berlin97718e62017-01-31 22:32:03 +00002186 const Expression *E = createExpression(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00002187 if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
2188 CondEvaluated = CE->getConstantValue();
2189 }
2190 } else if (isa<ConstantInt>(Cond)) {
2191 CondEvaluated = Cond;
2192 }
2193 }
2194 ConstantInt *CI;
2195 BasicBlock *TrueSucc = BR->getSuccessor(0);
2196 BasicBlock *FalseSucc = BR->getSuccessor(1);
2197 if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) {
2198 if (CI->isOne()) {
2199 DEBUG(dbgs() << "Condition for Terminator " << *TI
2200 << " evaluated to true\n");
2201 updateReachableEdge(B, TrueSucc);
2202 } else if (CI->isZero()) {
2203 DEBUG(dbgs() << "Condition for Terminator " << *TI
2204 << " evaluated to false\n");
2205 updateReachableEdge(B, FalseSucc);
2206 }
2207 } else {
2208 updateReachableEdge(B, TrueSucc);
2209 updateReachableEdge(B, FalseSucc);
2210 }
2211 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
2212 // For switches, propagate the case values into the case
2213 // destinations.
2214
2215 // Remember how many outgoing edges there are to every successor.
2216 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
2217
Davide Italiano7e274e02016-12-22 16:03:48 +00002218 Value *SwitchCond = SI->getCondition();
Daniel Berlin97718e62017-01-31 22:32:03 +00002219 Value *CondEvaluated = findConditionEquivalence(SwitchCond);
Davide Italiano7e274e02016-12-22 16:03:48 +00002220 // See if we were able to turn this switch statement into a constant.
2221 if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00002222 auto *CondVal = cast<ConstantInt>(CondEvaluated);
Davide Italiano7e274e02016-12-22 16:03:48 +00002223 // We should be able to get case value for this.
Chandler Carruth927d8e62017-04-12 07:27:28 +00002224 auto Case = *SI->findCaseValue(CondVal);
2225 if (Case.getCaseSuccessor() == SI->getDefaultDest()) {
Davide Italiano7e274e02016-12-22 16:03:48 +00002226 // We proved the value is outside of the range of the case.
2227 // We can't do anything other than mark the default dest as reachable,
2228 // and go home.
2229 updateReachableEdge(B, SI->getDefaultDest());
2230 return;
2231 }
2232 // Now get where it goes and mark it reachable.
Chandler Carruth927d8e62017-04-12 07:27:28 +00002233 BasicBlock *TargetBlock = Case.getCaseSuccessor();
Davide Italiano7e274e02016-12-22 16:03:48 +00002234 updateReachableEdge(B, TargetBlock);
Davide Italiano7e274e02016-12-22 16:03:48 +00002235 } else {
2236 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
2237 BasicBlock *TargetBlock = SI->getSuccessor(i);
2238 ++SwitchEdges[TargetBlock];
2239 updateReachableEdge(B, TargetBlock);
2240 }
2241 }
2242 } else {
2243 // Otherwise this is either unconditional, or a type we have no
2244 // idea about. Just mark successors as reachable.
2245 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
2246 BasicBlock *TargetBlock = TI->getSuccessor(i);
2247 updateReachableEdge(B, TargetBlock);
2248 }
Daniel Berlin589cecc2017-01-02 18:00:46 +00002249
2250 // This also may be a memory defining terminator, in which case, set it
Daniel Berlin1316a942017-04-06 18:52:50 +00002251 // equivalent only to itself.
2252 //
2253 auto *MA = MSSA->getMemoryAccess(TI);
2254 if (MA && !isa<MemoryUse>(MA)) {
2255 auto *CC = ensureLeaderOfMemoryClass(MA);
2256 if (setMemoryClass(MA, CC))
2257 markMemoryUsersTouched(MA);
2258 }
Davide Italiano7e274e02016-12-22 16:03:48 +00002259 }
2260}
2261
Daniel Berlin5c338ff2017-03-10 19:05:04 +00002262// The algorithm initially places the values of the routine in the TOP
2263// congruence class. The leader of TOP is the undetermined value `undef`.
2264// When the algorithm has finished, values still in TOP are unreachable.
Davide Italiano7e274e02016-12-22 16:03:48 +00002265void NewGVN::initializeCongruenceClasses(Function &F) {
Daniel Berlin1316a942017-04-06 18:52:50 +00002266 NextCongruenceNum = 0;
2267
2268 // Note that even though we use the live on entry def as a representative
2269 // MemoryAccess, it is *not* the same as the actual live on entry def. We
2270 // have no real equivalemnt to undef for MemoryAccesses, and so we really
2271 // should be checking whether the MemoryAccess is top if we want to know if it
2272 // is equivalent to everything. Otherwise, what this really signifies is that
2273 // the access "it reaches all the way back to the beginning of the function"
2274
Daniel Berlin5c338ff2017-03-10 19:05:04 +00002275 // Initialize all other instructions to be in TOP class.
Daniel Berlin5c338ff2017-03-10 19:05:04 +00002276 TOPClass = createCongruenceClass(nullptr, nullptr);
Daniel Berlina8236562017-04-07 18:38:09 +00002277 TOPClass->setMemoryLeader(MSSA->getLiveOnEntryDef());
Daniel Berlin1316a942017-04-06 18:52:50 +00002278 // The live on entry def gets put into it's own class
2279 MemoryAccessToClass[MSSA->getLiveOnEntryDef()] =
2280 createMemoryClass(MSSA->getLiveOnEntryDef());
Daniel Berlin589cecc2017-01-02 18:00:46 +00002281
Daniel Berlinec9deb72017-04-18 17:06:11 +00002282 for (auto DTN : nodes(DT)) {
2283 BasicBlock *BB = DTN->getBlock();
Daniel Berlin1316a942017-04-06 18:52:50 +00002284 // All MemoryAccesses are equivalent to live on entry to start. They must
2285 // be initialized to something so that initial changes are noticed. For
2286 // the maximal answer, we initialize them all to be the same as
2287 // liveOnEntry.
Daniel Berlinec9deb72017-04-18 17:06:11 +00002288 auto *MemoryBlockDefs = MSSA->getBlockDefs(BB);
Daniel Berlin1316a942017-04-06 18:52:50 +00002289 if (MemoryBlockDefs)
2290 for (const auto &Def : *MemoryBlockDefs) {
2291 MemoryAccessToClass[&Def] = TOPClass;
2292 auto *MD = dyn_cast<MemoryDef>(&Def);
2293 // Insert the memory phis into the member list.
2294 if (!MD) {
2295 const MemoryPhi *MP = cast<MemoryPhi>(&Def);
Daniel Berlina8236562017-04-07 18:38:09 +00002296 TOPClass->memory_insert(MP);
Daniel Berlin1316a942017-04-06 18:52:50 +00002297 MemoryPhiState.insert({MP, MPS_TOP});
2298 }
2299
2300 if (MD && isa<StoreInst>(MD->getMemoryInst()))
Daniel Berlina8236562017-04-07 18:38:09 +00002301 TOPClass->incStoreCount();
Daniel Berlin1316a942017-04-06 18:52:50 +00002302 }
Daniel Berlinec9deb72017-04-18 17:06:11 +00002303 for (auto &I : *BB) {
Daniel Berlin22a4a012017-02-11 15:20:15 +00002304 // Don't insert void terminators into the class. We don't value number
Daniel Berlin5c338ff2017-03-10 19:05:04 +00002305 // them, and they just end up sitting in TOP.
Daniel Berlin22a4a012017-02-11 15:20:15 +00002306 if (isa<TerminatorInst>(I) && I.getType()->isVoidTy())
2307 continue;
Daniel Berlina8236562017-04-07 18:38:09 +00002308 TOPClass->insert(&I);
Daniel Berlin5c338ff2017-03-10 19:05:04 +00002309 ValueToClass[&I] = TOPClass;
Daniel Berlin85cbc8c2016-12-26 19:57:25 +00002310 }
Daniel Berlin589cecc2017-01-02 18:00:46 +00002311 }
Davide Italiano7e274e02016-12-22 16:03:48 +00002312
2313 // Initialize arguments to be in their own unique congruence classes
2314 for (auto &FA : F.args())
2315 createSingletonCongruenceClass(&FA);
2316}
2317
2318void NewGVN::cleanupTables() {
2319 for (unsigned i = 0, e = CongruenceClasses.size(); i != e; ++i) {
Daniel Berlina8236562017-04-07 18:38:09 +00002320 DEBUG(dbgs() << "Congruence class " << CongruenceClasses[i]->getID()
2321 << " has " << CongruenceClasses[i]->size() << " members\n");
Davide Italiano7e274e02016-12-22 16:03:48 +00002322 // Make sure we delete the congruence class (probably worth switching to
2323 // a unique_ptr at some point.
2324 delete CongruenceClasses[i];
Davide Italiano0e714802016-12-28 14:00:11 +00002325 CongruenceClasses[i] = nullptr;
Davide Italiano7e274e02016-12-22 16:03:48 +00002326 }
2327
2328 ValueToClass.clear();
2329 ArgRecycler.clear(ExpressionAllocator);
2330 ExpressionAllocator.Reset();
2331 CongruenceClasses.clear();
2332 ExpressionToClass.clear();
2333 ValueToExpression.clear();
2334 ReachableBlocks.clear();
2335 ReachableEdges.clear();
2336#ifndef NDEBUG
2337 ProcessedCount.clear();
2338#endif
Davide Italiano7e274e02016-12-22 16:03:48 +00002339 InstrDFS.clear();
2340 InstructionsToErase.clear();
Davide Italiano7e274e02016-12-22 16:03:48 +00002341 DFSToInstr.clear();
2342 BlockInstRange.clear();
2343 TouchedInstructions.clear();
Daniel Berlin1ea5f322017-01-26 22:21:48 +00002344 MemoryAccessToClass.clear();
Daniel Berlinf7d95802017-02-18 23:06:50 +00002345 PredicateToUsers.clear();
Daniel Berlin1316a942017-04-06 18:52:50 +00002346 MemoryToUsers.clear();
Davide Italiano7e274e02016-12-22 16:03:48 +00002347}
2348
2349std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B,
2350 unsigned Start) {
2351 unsigned End = Start;
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002352 if (MemoryAccess *MemPhi = MSSA->getMemoryAccess(B)) {
2353 InstrDFS[MemPhi] = End++;
Piotr Padlewski6c37d292016-12-28 23:24:02 +00002354 DFSToInstr.emplace_back(MemPhi);
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002355 }
2356
Davide Italiano7e274e02016-12-22 16:03:48 +00002357 for (auto &I : *B) {
Daniel Berlin856fa142017-03-06 18:42:27 +00002358 // There's no need to call isInstructionTriviallyDead more than once on
2359 // an instruction. Therefore, once we know that an instruction is dead
2360 // we change its DFS number so that it doesn't get value numbered.
2361 if (isInstructionTriviallyDead(&I, TLI)) {
2362 InstrDFS[&I] = 0;
2363 DEBUG(dbgs() << "Skipping trivially dead instruction " << I << "\n");
2364 markInstructionForDeletion(&I);
2365 continue;
2366 }
2367
Davide Italiano7e274e02016-12-22 16:03:48 +00002368 InstrDFS[&I] = End++;
Piotr Padlewski6c37d292016-12-28 23:24:02 +00002369 DFSToInstr.emplace_back(&I);
Davide Italiano7e274e02016-12-22 16:03:48 +00002370 }
2371
2372 // All of the range functions taken half-open ranges (open on the end side).
2373 // So we do not subtract one from count, because at this point it is one
2374 // greater than the last instruction.
2375 return std::make_pair(Start, End);
2376}
2377
2378void NewGVN::updateProcessedCount(Value *V) {
2379#ifndef NDEBUG
2380 if (ProcessedCount.count(V) == 0) {
2381 ProcessedCount.insert({V, 1});
2382 } else {
Davide Italiano7cf29dc2017-01-14 20:13:18 +00002383 ++ProcessedCount[V];
Davide Italiano7e274e02016-12-22 16:03:48 +00002384 assert(ProcessedCount[V] < 100 &&
Davide Italiano75e39f92016-12-30 15:01:17 +00002385 "Seem to have processed the same Value a lot");
Davide Italiano7e274e02016-12-22 16:03:48 +00002386 }
2387#endif
2388}
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002389// Evaluate MemoryPhi nodes symbolically, just like PHI nodes
2390void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) {
2391 // If all the arguments are the same, the MemoryPhi has the same value as the
2392 // argument.
Daniel Berlinc4796862017-01-27 02:37:11 +00002393 // Filter out unreachable blocks and self phis from our operands.
Daniel Berlin41b39162017-03-18 15:41:36 +00002394 const BasicBlock *PHIBlock = MP->getBlock();
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002395 auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) {
Daniel Berlin1316a942017-04-06 18:52:50 +00002396 return lookupMemoryLeader(cast<MemoryAccess>(U)) != MP &&
Daniel Berlinc4796862017-01-27 02:37:11 +00002397 !isMemoryAccessTop(cast<MemoryAccess>(U)) &&
Daniel Berlin41b39162017-03-18 15:41:36 +00002398 ReachableEdges.count({MP->getIncomingBlock(U), PHIBlock});
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002399 });
Daniel Berlinc4796862017-01-27 02:37:11 +00002400 // If all that is left is nothing, our memoryphi is undef. We keep it as
2401 // InitialClass. Note: The only case this should happen is if we have at
2402 // least one self-argument.
2403 if (Filtered.begin() == Filtered.end()) {
Daniel Berlin1316a942017-04-06 18:52:50 +00002404 if (setMemoryClass(MP, TOPClass))
Daniel Berlinc4796862017-01-27 02:37:11 +00002405 markMemoryUsersTouched(MP);
2406 return;
2407 }
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002408
2409 // Transform the remaining operands into operand leaders.
2410 // FIXME: mapped_iterator should have a range version.
2411 auto LookupFunc = [&](const Use &U) {
Daniel Berlin1316a942017-04-06 18:52:50 +00002412 return lookupMemoryLeader(cast<MemoryAccess>(U));
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002413 };
2414 auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc);
2415 auto MappedEnd = map_iterator(Filtered.end(), LookupFunc);
2416
2417 // and now check if all the elements are equal.
2418 // Sadly, we can't use std::equals since these are random access iterators.
Daniel Berlin1316a942017-04-06 18:52:50 +00002419 const auto *AllSameValue = *MappedBegin;
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002420 ++MappedBegin;
2421 bool AllEqual = std::all_of(
2422 MappedBegin, MappedEnd,
2423 [&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; });
2424
2425 if (AllEqual)
2426 DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue << "\n");
2427 else
2428 DEBUG(dbgs() << "Memory Phi value numbered to itself\n");
Daniel Berlin1316a942017-04-06 18:52:50 +00002429 // If it's equal to something, it's in that class. Otherwise, it has to be in
2430 // a class where it is the leader (other things may be equivalent to it, but
2431 // it needs to start off in its own class, which means it must have been the
2432 // leader, and it can't have stopped being the leader because it was never
2433 // removed).
2434 CongruenceClass *CC =
2435 AllEqual ? getMemoryClass(AllSameValue) : ensureLeaderOfMemoryClass(MP);
2436 auto OldState = MemoryPhiState.lookup(MP);
2437 assert(OldState != MPS_Invalid && "Invalid memory phi state");
2438 auto NewState = AllEqual ? MPS_Equivalent : MPS_Unique;
2439 MemoryPhiState[MP] = NewState;
2440 if (setMemoryClass(MP, CC) || OldState != NewState)
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002441 markMemoryUsersTouched(MP);
2442}
2443
2444// Value number a single instruction, symbolically evaluating, performing
2445// congruence finding, and updating mappings.
2446void NewGVN::valueNumberInstruction(Instruction *I) {
2447 DEBUG(dbgs() << "Processing instruction " << *I << "\n");
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002448 if (!I->isTerminator()) {
Daniel Berlin283a6082017-03-01 19:59:26 +00002449 const Expression *Symbolized = nullptr;
2450 if (DebugCounter::shouldExecute(VNCounter)) {
2451 Symbolized = performSymbolicEvaluation(I);
2452 } else {
Daniel Berlin343576a2017-03-06 18:42:39 +00002453 // Mark the instruction as unused so we don't value number it again.
2454 InstrDFS[I] = 0;
Daniel Berlin283a6082017-03-01 19:59:26 +00002455 }
Daniel Berlin02c6b172017-01-02 18:00:53 +00002456 // If we couldn't come up with a symbolic expression, use the unknown
2457 // expression
Daniel Berlin1316a942017-04-06 18:52:50 +00002458 if (Symbolized == nullptr) {
Daniel Berlin02c6b172017-01-02 18:00:53 +00002459 Symbolized = createUnknownExpression(I);
Daniel Berlin1316a942017-04-06 18:52:50 +00002460 }
2461
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002462 performCongruenceFinding(I, Symbolized);
2463 } else {
Daniel Berlin02c6b172017-01-02 18:00:53 +00002464 // Handle terminators that return values. All of them produce values we
Daniel Berlinb79f5362017-02-11 12:48:50 +00002465 // don't currently understand. We don't place non-value producing
2466 // terminators in a class.
Daniel Berlin25f05b02017-01-02 18:22:38 +00002467 if (!I->getType()->isVoidTy()) {
Daniel Berlin02c6b172017-01-02 18:00:53 +00002468 auto *Symbolized = createUnknownExpression(I);
2469 performCongruenceFinding(I, Symbolized);
2470 }
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002471 processOutgoingEdges(dyn_cast<TerminatorInst>(I), I->getParent());
2472 }
2473}
Davide Italiano7e274e02016-12-22 16:03:48 +00002474
Daniel Berlinf6eba4b2017-01-11 20:22:36 +00002475// Check if there is a path, using single or equal argument phi nodes, from
2476// First to Second.
2477bool NewGVN::singleReachablePHIPath(const MemoryAccess *First,
2478 const MemoryAccess *Second) const {
2479 if (First == Second)
2480 return true;
Daniel Berlin871ecd92017-04-01 09:44:24 +00002481 if (MSSA->isLiveOnEntryDef(First))
Daniel Berlinf6eba4b2017-01-11 20:22:36 +00002482 return false;
Daniel Berlin1316a942017-04-06 18:52:50 +00002483
Daniel Berlin871ecd92017-04-01 09:44:24 +00002484 const auto *EndDef = First;
Daniel Berlin3082b8e2017-04-05 17:26:25 +00002485 for (auto *ChainDef : optimized_def_chain(First)) {
Daniel Berlin871ecd92017-04-01 09:44:24 +00002486 if (ChainDef == Second)
2487 return true;
2488 if (MSSA->isLiveOnEntryDef(ChainDef))
2489 return false;
2490 EndDef = ChainDef;
Daniel Berlinf6eba4b2017-01-11 20:22:36 +00002491 }
Daniel Berlin871ecd92017-04-01 09:44:24 +00002492 auto *MP = cast<MemoryPhi>(EndDef);
2493 auto ReachableOperandPred = [&](const Use &U) {
2494 return ReachableEdges.count({MP->getIncomingBlock(U), MP->getBlock()});
2495 };
2496 auto FilteredPhiArgs =
2497 make_filter_range(MP->operands(), ReachableOperandPred);
2498 SmallVector<const Value *, 32> OperandList;
2499 std::copy(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
2500 std::back_inserter(OperandList));
2501 bool Okay = OperandList.size() == 1;
2502 if (!Okay)
2503 Okay =
2504 std::equal(OperandList.begin(), OperandList.end(), OperandList.begin());
2505 if (Okay)
2506 return singleReachablePHIPath(cast<MemoryAccess>(OperandList[0]), Second);
2507 return false;
Daniel Berlinf6eba4b2017-01-11 20:22:36 +00002508}
2509
Daniel Berlin589cecc2017-01-02 18:00:46 +00002510// Verify the that the memory equivalence table makes sense relative to the
Daniel Berlinf6eba4b2017-01-11 20:22:36 +00002511// congruence classes. Note that this checking is not perfect, and is currently
Davide Italianoed67f192017-01-14 20:15:04 +00002512// subject to very rare false negatives. It is only useful for
2513// testing/debugging.
Daniel Berlinf6eba4b2017-01-11 20:22:36 +00002514void NewGVN::verifyMemoryCongruency() const {
Davide Italianoe9781e72017-03-25 02:40:02 +00002515#ifndef NDEBUG
Daniel Berlin1316a942017-04-06 18:52:50 +00002516 // Verify that the memory table equivalence and memory member set match
2517 for (const auto *CC : CongruenceClasses) {
2518 if (CC == TOPClass || CC->isDead())
2519 continue;
Daniel Berlina8236562017-04-07 18:38:09 +00002520 if (CC->getStoreCount() != 0) {
Davide Italianof58a30232017-04-10 23:08:35 +00002521 assert((CC->getStoredValue() || !isa<StoreInst>(CC->getLeader())) &&
Davide Italiano94bf7842017-05-04 17:26:15 +00002522 "Any class with a store as a leader should have a "
2523 "representative stored value");
Daniel Berlina8236562017-04-07 18:38:09 +00002524 assert(CC->getMemoryLeader() &&
Davide Italiano94bf7842017-05-04 17:26:15 +00002525 "Any congruence class with a store should have a "
2526 "representative access");
Daniel Berlin1316a942017-04-06 18:52:50 +00002527 }
2528
Daniel Berlina8236562017-04-07 18:38:09 +00002529 if (CC->getMemoryLeader())
2530 assert(MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC &&
Daniel Berlin1316a942017-04-06 18:52:50 +00002531 "Representative MemoryAccess does not appear to be reverse "
2532 "mapped properly");
Daniel Berlina8236562017-04-07 18:38:09 +00002533 for (auto M : CC->memory())
Daniel Berlin1316a942017-04-06 18:52:50 +00002534 assert(MemoryAccessToClass.lookup(M) == CC &&
2535 "Memory member does not appear to be reverse mapped properly");
2536 }
2537
2538 // Anything equivalent in the MemoryAccess table should be in the same
Daniel Berlin589cecc2017-01-02 18:00:46 +00002539 // congruence class.
2540
2541 // Filter out the unreachable and trivially dead entries, because they may
2542 // never have been updated if the instructions were not processed.
2543 auto ReachableAccessPred =
Daniel Berlin1ea5f322017-01-26 22:21:48 +00002544 [&](const std::pair<const MemoryAccess *, CongruenceClass *> Pair) {
Daniel Berlin589cecc2017-01-02 18:00:46 +00002545 bool Result = ReachableBlocks.count(Pair.first->getBlock());
Daniel Berlin9d0042b2017-04-18 20:15:47 +00002546 if (!Result || MSSA->isLiveOnEntryDef(Pair.first) ||
2547 MemoryToDFSNum(Pair.first) == 0)
Daniel Berlin589cecc2017-01-02 18:00:46 +00002548 return false;
2549 if (auto *MemDef = dyn_cast<MemoryDef>(Pair.first))
2550 return !isInstructionTriviallyDead(MemDef->getMemoryInst());
Davide Italiano6e7a2122017-05-15 18:50:53 +00002551
2552 // We could have phi nodes which operands are all trivially dead,
2553 // so we don't process them.
2554 if (auto *MemPHI = dyn_cast<MemoryPhi>(Pair.first)) {
2555 for (auto &U : MemPHI->incoming_values()) {
2556 if (Instruction *I = dyn_cast<Instruction>(U.get())) {
2557 if (!isInstructionTriviallyDead(I))
2558 return true;
2559 }
2560 }
2561 return false;
2562 }
2563
Daniel Berlin589cecc2017-01-02 18:00:46 +00002564 return true;
2565 };
2566
Daniel Berlin1ea5f322017-01-26 22:21:48 +00002567 auto Filtered = make_filter_range(MemoryAccessToClass, ReachableAccessPred);
Daniel Berlin589cecc2017-01-02 18:00:46 +00002568 for (auto KV : Filtered) {
Daniel Berlin1316a942017-04-06 18:52:50 +00002569 assert(KV.second != TOPClass &&
2570 "Memory not unreachable but ended up in TOP");
Daniel Berlin589cecc2017-01-02 18:00:46 +00002571 if (auto *FirstMUD = dyn_cast<MemoryUseOrDef>(KV.first)) {
Daniel Berlina8236562017-04-07 18:38:09 +00002572 auto *SecondMUD = dyn_cast<MemoryUseOrDef>(KV.second->getMemoryLeader());
Davide Italiano67ada752017-01-02 19:03:16 +00002573 if (FirstMUD && SecondMUD)
Davide Italianoff694052017-01-11 21:58:42 +00002574 assert((singleReachablePHIPath(FirstMUD, SecondMUD) ||
Davide Italianoed67f192017-01-14 20:15:04 +00002575 ValueToClass.lookup(FirstMUD->getMemoryInst()) ==
2576 ValueToClass.lookup(SecondMUD->getMemoryInst())) &&
2577 "The instructions for these memory operations should have "
2578 "been in the same congruence class or reachable through"
2579 "a single argument phi");
Daniel Berlin589cecc2017-01-02 18:00:46 +00002580 } else if (auto *FirstMP = dyn_cast<MemoryPhi>(KV.first)) {
Daniel Berlin589cecc2017-01-02 18:00:46 +00002581 // We can only sanely verify that MemoryDefs in the operand list all have
2582 // the same class.
2583 auto ReachableOperandPred = [&](const Use &U) {
Daniel Berlin41b39162017-03-18 15:41:36 +00002584 return ReachableEdges.count(
2585 {FirstMP->getIncomingBlock(U), FirstMP->getBlock()}) &&
Daniel Berlin589cecc2017-01-02 18:00:46 +00002586 isa<MemoryDef>(U);
2587
2588 };
2589 // All arguments should in the same class, ignoring unreachable arguments
2590 auto FilteredPhiArgs =
2591 make_filter_range(FirstMP->operands(), ReachableOperandPred);
2592 SmallVector<const CongruenceClass *, 16> PhiOpClasses;
2593 std::transform(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
2594 std::back_inserter(PhiOpClasses), [&](const Use &U) {
2595 const MemoryDef *MD = cast<MemoryDef>(U);
2596 return ValueToClass.lookup(MD->getMemoryInst());
2597 });
2598 assert(std::equal(PhiOpClasses.begin(), PhiOpClasses.end(),
2599 PhiOpClasses.begin()) &&
2600 "All MemoryPhi arguments should be in the same class");
2601 }
2602 }
Davide Italianoe9781e72017-03-25 02:40:02 +00002603#endif
Daniel Berlin589cecc2017-01-02 18:00:46 +00002604}
2605
Daniel Berlin06329a92017-03-18 15:41:40 +00002606// Verify that the sparse propagation we did actually found the maximal fixpoint
2607// We do this by storing the value to class mapping, touching all instructions,
2608// and redoing the iteration to see if anything changed.
2609void NewGVN::verifyIterationSettled(Function &F) {
Daniel Berlinf7d95802017-02-18 23:06:50 +00002610#ifndef NDEBUG
Daniel Berlin1316a942017-04-06 18:52:50 +00002611 DEBUG(dbgs() << "Beginning iteration verification\n");
Daniel Berlin06329a92017-03-18 15:41:40 +00002612 if (DebugCounter::isCounterSet(VNCounter))
2613 DebugCounter::setCounterValue(VNCounter, StartingVNCounter);
2614
2615 // Note that we have to store the actual classes, as we may change existing
2616 // classes during iteration. This is because our memory iteration propagation
2617 // is not perfect, and so may waste a little work. But it should generate
2618 // exactly the same congruence classes we have now, with different IDs.
2619 std::map<const Value *, CongruenceClass> BeforeIteration;
2620
2621 for (auto &KV : ValueToClass) {
2622 if (auto *I = dyn_cast<Instruction>(KV.first))
2623 // Skip unused/dead instructions.
Daniel Berlin21279bd2017-04-06 18:52:58 +00002624 if (InstrToDFSNum(I) == 0)
Daniel Berlinf7d95802017-02-18 23:06:50 +00002625 continue;
Daniel Berlin06329a92017-03-18 15:41:40 +00002626 BeforeIteration.insert({KV.first, *KV.second});
2627 }
2628
2629 TouchedInstructions.set();
2630 TouchedInstructions.reset(0);
2631 iterateTouchedInstructions();
2632 DenseSet<std::pair<const CongruenceClass *, const CongruenceClass *>>
2633 EqualClasses;
2634 for (const auto &KV : ValueToClass) {
2635 if (auto *I = dyn_cast<Instruction>(KV.first))
2636 // Skip unused/dead instructions.
Daniel Berlin21279bd2017-04-06 18:52:58 +00002637 if (InstrToDFSNum(I) == 0)
Daniel Berlin06329a92017-03-18 15:41:40 +00002638 continue;
2639 // We could sink these uses, but i think this adds a bit of clarity here as
2640 // to what we are comparing.
2641 auto *BeforeCC = &BeforeIteration.find(KV.first)->second;
2642 auto *AfterCC = KV.second;
2643 // Note that the classes can't change at this point, so we memoize the set
2644 // that are equal.
2645 if (!EqualClasses.count({BeforeCC, AfterCC})) {
Daniel Berlina8236562017-04-07 18:38:09 +00002646 assert(BeforeCC->isEquivalentTo(AfterCC) &&
Daniel Berlin06329a92017-03-18 15:41:40 +00002647 "Value number changed after main loop completed!");
2648 EqualClasses.insert({BeforeCC, AfterCC});
Daniel Berlinf7d95802017-02-18 23:06:50 +00002649 }
2650 }
2651#endif
2652}
2653
Daniel Berlin06329a92017-03-18 15:41:40 +00002654// This is the main value numbering loop, it iterates over the initial touched
2655// instruction set, propagating value numbers, marking things touched, etc,
2656// until the set of touched instructions is completely empty.
2657void NewGVN::iterateTouchedInstructions() {
2658 unsigned int Iterations = 0;
2659 // Figure out where touchedinstructions starts
2660 int FirstInstr = TouchedInstructions.find_first();
2661 // Nothing set, nothing to iterate, just return.
2662 if (FirstInstr == -1)
2663 return;
Daniel Berlin21279bd2017-04-06 18:52:58 +00002664 BasicBlock *LastBlock = getBlockForValue(InstrFromDFSNum(FirstInstr));
Daniel Berlin06329a92017-03-18 15:41:40 +00002665 while (TouchedInstructions.any()) {
2666 ++Iterations;
2667 // Walk through all the instructions in all the blocks in RPO.
2668 // TODO: As we hit a new block, we should push and pop equalities into a
2669 // table lookupOperandLeader can use, to catch things PredicateInfo
2670 // might miss, like edge-only equivalences.
2671 for (int InstrNum = TouchedInstructions.find_first(); InstrNum != -1;
2672 InstrNum = TouchedInstructions.find_next(InstrNum)) {
2673
2674 // This instruction was found to be dead. We don't bother looking
2675 // at it again.
2676 if (InstrNum == 0) {
2677 TouchedInstructions.reset(InstrNum);
2678 continue;
2679 }
2680
Daniel Berlin21279bd2017-04-06 18:52:58 +00002681 Value *V = InstrFromDFSNum(InstrNum);
Daniel Berlin06329a92017-03-18 15:41:40 +00002682 BasicBlock *CurrBlock = getBlockForValue(V);
2683
2684 // If we hit a new block, do reachability processing.
2685 if (CurrBlock != LastBlock) {
2686 LastBlock = CurrBlock;
2687 bool BlockReachable = ReachableBlocks.count(CurrBlock);
2688 const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock);
2689
2690 // If it's not reachable, erase any touched instructions and move on.
2691 if (!BlockReachable) {
2692 TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second);
2693 DEBUG(dbgs() << "Skipping instructions in block "
2694 << getBlockName(CurrBlock)
2695 << " because it is unreachable\n");
2696 continue;
2697 }
2698 updateProcessedCount(CurrBlock);
2699 }
2700
2701 if (auto *MP = dyn_cast<MemoryPhi>(V)) {
2702 DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n");
2703 valueNumberMemoryPhi(MP);
2704 } else if (auto *I = dyn_cast<Instruction>(V)) {
2705 valueNumberInstruction(I);
2706 } else {
2707 llvm_unreachable("Should have been a MemoryPhi or Instruction");
2708 }
2709 updateProcessedCount(V);
2710 // Reset after processing (because we may mark ourselves as touched when
2711 // we propagate equalities).
2712 TouchedInstructions.reset(InstrNum);
2713 }
2714 }
2715 NumGVNMaxIterations = std::max(NumGVNMaxIterations.getValue(), Iterations);
2716}
2717
Daniel Berlin85f91b02016-12-26 20:06:58 +00002718// This is the main transformation entry point.
Daniel Berlin64e68992017-03-12 04:46:45 +00002719bool NewGVN::runGVN() {
Daniel Berlin06329a92017-03-18 15:41:40 +00002720 if (DebugCounter::isCounterSet(VNCounter))
2721 StartingVNCounter = DebugCounter::getCounterValue(VNCounter);
Davide Italiano7e274e02016-12-22 16:03:48 +00002722 bool Changed = false;
Daniel Berlin1529bb92017-02-11 15:13:49 +00002723 NumFuncArgs = F.arg_size();
Davide Italiano7e274e02016-12-22 16:03:48 +00002724 MSSAWalker = MSSA->getWalker();
2725
2726 // Count number of instructions for sizing of hash tables, and come
2727 // up with a global dfs numbering for instructions.
Daniel Berline0bd37e2016-12-29 22:15:12 +00002728 unsigned ICount = 1;
2729 // Add an empty instruction to account for the fact that we start at 1
2730 DFSToInstr.emplace_back(nullptr);
Daniel Berlinf7d95802017-02-18 23:06:50 +00002731 // Note: We want ideal RPO traversal of the blocks, which is not quite the
2732 // same as dominator tree order, particularly with regard whether backedges
2733 // get visited first or second, given a block with multiple successors.
Davide Italiano7e274e02016-12-22 16:03:48 +00002734 // If we visit in the wrong order, we will end up performing N times as many
2735 // iterations.
Daniel Berlin6658cc92016-12-29 01:12:36 +00002736 // The dominator tree does guarantee that, for a given dom tree node, it's
2737 // parent must occur before it in the RPO ordering. Thus, we only need to sort
2738 // the siblings.
Davide Italiano7e274e02016-12-22 16:03:48 +00002739 ReversePostOrderTraversal<Function *> RPOT(&F);
Daniel Berlin6658cc92016-12-29 01:12:36 +00002740 unsigned Counter = 0;
Davide Italiano7e274e02016-12-22 16:03:48 +00002741 for (auto &B : RPOT) {
Daniel Berlin6658cc92016-12-29 01:12:36 +00002742 auto *Node = DT->getNode(B);
2743 assert(Node && "RPO and Dominator tree should have same reachability");
2744 RPOOrdering[Node] = ++Counter;
2745 }
2746 // Sort dominator tree children arrays into RPO.
2747 for (auto &B : RPOT) {
2748 auto *Node = DT->getNode(B);
2749 if (Node->getChildren().size() > 1)
2750 std::sort(Node->begin(), Node->end(),
Daniel Berlin2f72b192017-04-14 02:53:37 +00002751 [&](const DomTreeNode *A, const DomTreeNode *B) {
Daniel Berlin6658cc92016-12-29 01:12:36 +00002752 return RPOOrdering[A] < RPOOrdering[B];
2753 });
2754 }
2755
2756 // Now a standard depth first ordering of the domtree is equivalent to RPO.
Daniel Berlinec9deb72017-04-18 17:06:11 +00002757 for (auto DTN : depth_first(DT->getRootNode())) {
2758 BasicBlock *B = DTN->getBlock();
Davide Italiano7e274e02016-12-22 16:03:48 +00002759 const auto &BlockRange = assignDFSNumbers(B, ICount);
2760 BlockInstRange.insert({B, BlockRange});
2761 ICount += BlockRange.second - BlockRange.first;
2762 }
2763
Daniel Berline0bd37e2016-12-29 22:15:12 +00002764 TouchedInstructions.resize(ICount);
Davide Italiano7e274e02016-12-22 16:03:48 +00002765 // Ensure we don't end up resizing the expressionToClass map, as
2766 // that can be quite expensive. At most, we have one expression per
2767 // instruction.
Daniel Berline0bd37e2016-12-29 22:15:12 +00002768 ExpressionToClass.reserve(ICount);
Davide Italiano7e274e02016-12-22 16:03:48 +00002769
2770 // Initialize the touched instructions to include the entry block.
2771 const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock());
2772 TouchedInstructions.set(InstRange.first, InstRange.second);
2773 ReachableBlocks.insert(&F.getEntryBlock());
2774
2775 initializeCongruenceClasses(F);
Daniel Berlin06329a92017-03-18 15:41:40 +00002776 iterateTouchedInstructions();
Daniel Berlin589cecc2017-01-02 18:00:46 +00002777 verifyMemoryCongruency();
Daniel Berlin06329a92017-03-18 15:41:40 +00002778 verifyIterationSettled(F);
Daniel Berlinf7d95802017-02-18 23:06:50 +00002779
Davide Italiano7e274e02016-12-22 16:03:48 +00002780 Changed |= eliminateInstructions(F);
2781
2782 // Delete all instructions marked for deletion.
2783 for (Instruction *ToErase : InstructionsToErase) {
2784 if (!ToErase->use_empty())
2785 ToErase->replaceAllUsesWith(UndefValue::get(ToErase->getType()));
2786
2787 ToErase->eraseFromParent();
2788 }
2789
2790 // Delete all unreachable blocks.
Daniel Berlin85f91b02016-12-26 20:06:58 +00002791 auto UnreachableBlockPred = [&](const BasicBlock &BB) {
2792 return !ReachableBlocks.count(&BB);
2793 };
Daniel Berlin85cbc8c2016-12-26 19:57:25 +00002794
2795 for (auto &BB : make_filter_range(F, UnreachableBlockPred)) {
2796 DEBUG(dbgs() << "We believe block " << getBlockName(&BB)
Daniel Berlin85f91b02016-12-26 20:06:58 +00002797 << " is unreachable\n");
Daniel Berlin85cbc8c2016-12-26 19:57:25 +00002798 deleteInstructionsInBlock(&BB);
2799 Changed = true;
Davide Italiano7e274e02016-12-22 16:03:48 +00002800 }
2801
2802 cleanupTables();
2803 return Changed;
2804}
2805
Davide Italiano7e274e02016-12-22 16:03:48 +00002806// Return true if V is a value that will always be available (IE can
2807// be placed anywhere) in the function. We don't do globals here
2808// because they are often worse to put in place.
2809// TODO: Separate cost from availability
2810static bool alwaysAvailable(Value *V) {
2811 return isa<Constant>(V) || isa<Argument>(V);
2812}
2813
Davide Italiano7e274e02016-12-22 16:03:48 +00002814struct NewGVN::ValueDFS {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00002815 int DFSIn = 0;
2816 int DFSOut = 0;
2817 int LocalNum = 0;
Daniel Berlinc0e008d2017-03-10 00:32:26 +00002818 // Only one of Def and U will be set.
Daniel Berlin9a9c9ff2017-04-01 09:44:33 +00002819 // The bool in the Def tells us whether the Def is the stored value of a
2820 // store.
2821 PointerIntPair<Value *, 1, bool> Def;
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00002822 Use *U = nullptr;
Davide Italiano7e274e02016-12-22 16:03:48 +00002823 bool operator<(const ValueDFS &Other) const {
2824 // It's not enough that any given field be less than - we have sets
2825 // of fields that need to be evaluated together to give a proper ordering.
2826 // For example, if you have;
2827 // DFS (1, 3)
2828 // Val 0
2829 // DFS (1, 2)
2830 // Val 50
2831 // We want the second to be less than the first, but if we just go field
2832 // by field, we will get to Val 0 < Val 50 and say the first is less than
2833 // the second. We only want it to be less than if the DFS orders are equal.
2834 //
2835 // Each LLVM instruction only produces one value, and thus the lowest-level
2836 // differentiator that really matters for the stack (and what we use as as a
2837 // replacement) is the local dfs number.
Daniel Berlin85f91b02016-12-26 20:06:58 +00002838 // Everything else in the structure is instruction level, and only affects
2839 // the order in which we will replace operands of a given instruction.
Davide Italiano7e274e02016-12-22 16:03:48 +00002840 //
2841 // For a given instruction (IE things with equal dfsin, dfsout, localnum),
2842 // the order of replacement of uses does not matter.
2843 // IE given,
2844 // a = 5
2845 // b = a + a
Daniel Berlin85f91b02016-12-26 20:06:58 +00002846 // When you hit b, you will have two valuedfs with the same dfsin, out, and
2847 // localnum.
Davide Italiano7e274e02016-12-22 16:03:48 +00002848 // The .val will be the same as well.
2849 // The .u's will be different.
Daniel Berlin85f91b02016-12-26 20:06:58 +00002850 // You will replace both, and it does not matter what order you replace them
2851 // in (IE whether you replace operand 2, then operand 1, or operand 1, then
2852 // operand 2).
2853 // Similarly for the case of same dfsin, dfsout, localnum, but different
2854 // .val's
Davide Italiano7e274e02016-12-22 16:03:48 +00002855 // a = 5
2856 // b = 6
2857 // c = a + b
Daniel Berlin85f91b02016-12-26 20:06:58 +00002858 // in c, we will a valuedfs for a, and one for b,with everything the same
2859 // but .val and .u.
Davide Italiano7e274e02016-12-22 16:03:48 +00002860 // It does not matter what order we replace these operands in.
2861 // You will always end up with the same IR, and this is guaranteed.
Daniel Berlinc0e008d2017-03-10 00:32:26 +00002862 return std::tie(DFSIn, DFSOut, LocalNum, Def, U) <
2863 std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Def,
Davide Italiano7e274e02016-12-22 16:03:48 +00002864 Other.U);
2865 }
2866};
2867
Daniel Berlinc4796862017-01-27 02:37:11 +00002868// This function converts the set of members for a congruence class from values,
Daniel Berlinc0e008d2017-03-10 00:32:26 +00002869// to sets of defs and uses with associated DFS info. The total number of
Daniel Berline3e69e12017-03-10 00:32:33 +00002870// reachable uses for each value is stored in UseCount, and instructions that
2871// seem
2872// dead (have no non-dead uses) are stored in ProbablyDead.
2873void NewGVN::convertClassToDFSOrdered(
Daniel Berlina8236562017-04-07 18:38:09 +00002874 const CongruenceClass &Dense, SmallVectorImpl<ValueDFS> &DFSOrderedSet,
Daniel Berline3e69e12017-03-10 00:32:33 +00002875 DenseMap<const Value *, unsigned int> &UseCounts,
Daniel Berlina8236562017-04-07 18:38:09 +00002876 SmallPtrSetImpl<Instruction *> &ProbablyDead) const {
Davide Italiano7e274e02016-12-22 16:03:48 +00002877 for (auto D : Dense) {
2878 // First add the value.
2879 BasicBlock *BB = getBlockForValue(D);
2880 // Constants are handled prior to ever calling this function, so
2881 // we should only be left with instructions as members.
Chandler Carruthee086762016-12-23 01:38:06 +00002882 assert(BB && "Should have figured out a basic block for value");
Daniel Berlinc0e008d2017-03-10 00:32:26 +00002883 ValueDFS VDDef;
Daniel Berlinb66164c2017-01-14 00:24:23 +00002884 DomTreeNode *DomNode = DT->getNode(BB);
Daniel Berlinc0e008d2017-03-10 00:32:26 +00002885 VDDef.DFSIn = DomNode->getDFSNumIn();
2886 VDDef.DFSOut = DomNode->getDFSNumOut();
Daniel Berlin9a9c9ff2017-04-01 09:44:33 +00002887 // If it's a store, use the leader of the value operand, if it's always
2888 // available, or the value operand. TODO: We could do dominance checks to
2889 // find a dominating leader, but not worth it ATM.
Daniel Berlin26addef2017-01-20 21:04:30 +00002890 if (auto *SI = dyn_cast<StoreInst>(D)) {
Daniel Berlin808e3ff2017-01-31 22:31:56 +00002891 auto Leader = lookupOperandLeader(SI->getValueOperand());
Daniel Berlin9a9c9ff2017-04-01 09:44:33 +00002892 if (alwaysAvailable(Leader)) {
2893 VDDef.Def.setPointer(Leader);
2894 } else {
2895 VDDef.Def.setPointer(SI->getValueOperand());
2896 VDDef.Def.setInt(true);
2897 }
Daniel Berlin26addef2017-01-20 21:04:30 +00002898 } else {
Daniel Berlin9a9c9ff2017-04-01 09:44:33 +00002899 VDDef.Def.setPointer(D);
Daniel Berlin26addef2017-01-20 21:04:30 +00002900 }
Daniel Berlinc0e008d2017-03-10 00:32:26 +00002901 assert(isa<Instruction>(D) &&
2902 "The dense set member should always be an instruction");
Daniel Berlin21279bd2017-04-06 18:52:58 +00002903 VDDef.LocalNum = InstrToDFSNum(D);
Daniel Berlinc0e008d2017-03-10 00:32:26 +00002904 DFSOrderedSet.emplace_back(VDDef);
Daniel Berline3e69e12017-03-10 00:32:33 +00002905 Instruction *Def = cast<Instruction>(D);
2906 unsigned int UseCount = 0;
Daniel Berlinb66164c2017-01-14 00:24:23 +00002907 // Now add the uses.
Daniel Berline3e69e12017-03-10 00:32:33 +00002908 for (auto &U : Def->uses()) {
Davide Italiano7e274e02016-12-22 16:03:48 +00002909 if (auto *I = dyn_cast<Instruction>(U.getUser())) {
Daniel Berline3e69e12017-03-10 00:32:33 +00002910 // Don't try to replace into dead uses
2911 if (InstructionsToErase.count(I))
2912 continue;
Daniel Berlinc0e008d2017-03-10 00:32:26 +00002913 ValueDFS VDUse;
Davide Italiano7e274e02016-12-22 16:03:48 +00002914 // Put the phi node uses in the incoming block.
2915 BasicBlock *IBlock;
2916 if (auto *P = dyn_cast<PHINode>(I)) {
2917 IBlock = P->getIncomingBlock(U);
2918 // Make phi node users appear last in the incoming block
2919 // they are from.
Daniel Berlinc0e008d2017-03-10 00:32:26 +00002920 VDUse.LocalNum = InstrDFS.size() + 1;
Davide Italiano7e274e02016-12-22 16:03:48 +00002921 } else {
2922 IBlock = I->getParent();
Daniel Berlin21279bd2017-04-06 18:52:58 +00002923 VDUse.LocalNum = InstrToDFSNum(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00002924 }
Davide Italianoccbbc832017-01-26 00:42:42 +00002925
2926 // Skip uses in unreachable blocks, as we're going
2927 // to delete them.
2928 if (ReachableBlocks.count(IBlock) == 0)
2929 continue;
2930
Daniel Berlinb66164c2017-01-14 00:24:23 +00002931 DomTreeNode *DomNode = DT->getNode(IBlock);
Daniel Berlinc0e008d2017-03-10 00:32:26 +00002932 VDUse.DFSIn = DomNode->getDFSNumIn();
2933 VDUse.DFSOut = DomNode->getDFSNumOut();
2934 VDUse.U = &U;
Daniel Berline3e69e12017-03-10 00:32:33 +00002935 ++UseCount;
Daniel Berlinc0e008d2017-03-10 00:32:26 +00002936 DFSOrderedSet.emplace_back(VDUse);
Davide Italiano7e274e02016-12-22 16:03:48 +00002937 }
2938 }
Daniel Berline3e69e12017-03-10 00:32:33 +00002939
2940 // If there are no uses, it's probably dead (but it may have side-effects,
2941 // so not definitely dead. Otherwise, store the number of uses so we can
2942 // track if it becomes dead later).
2943 if (UseCount == 0)
2944 ProbablyDead.insert(Def);
2945 else
2946 UseCounts[Def] = UseCount;
Davide Italiano7e274e02016-12-22 16:03:48 +00002947 }
2948}
2949
Daniel Berlinc4796862017-01-27 02:37:11 +00002950// This function converts the set of members for a congruence class from values,
2951// to the set of defs for loads and stores, with associated DFS info.
Daniel Berline3e69e12017-03-10 00:32:33 +00002952void NewGVN::convertClassToLoadsAndStores(
Daniel Berlina8236562017-04-07 18:38:09 +00002953 const CongruenceClass &Dense,
2954 SmallVectorImpl<ValueDFS> &LoadsAndStores) const {
Daniel Berlinc4796862017-01-27 02:37:11 +00002955 for (auto D : Dense) {
2956 if (!isa<LoadInst>(D) && !isa<StoreInst>(D))
2957 continue;
2958
2959 BasicBlock *BB = getBlockForValue(D);
2960 ValueDFS VD;
2961 DomTreeNode *DomNode = DT->getNode(BB);
2962 VD.DFSIn = DomNode->getDFSNumIn();
2963 VD.DFSOut = DomNode->getDFSNumOut();
Daniel Berlin9a9c9ff2017-04-01 09:44:33 +00002964 VD.Def.setPointer(D);
Daniel Berlinc4796862017-01-27 02:37:11 +00002965
2966 // If it's an instruction, use the real local dfs number.
2967 if (auto *I = dyn_cast<Instruction>(D))
Daniel Berlin21279bd2017-04-06 18:52:58 +00002968 VD.LocalNum = InstrToDFSNum(I);
Daniel Berlinc4796862017-01-27 02:37:11 +00002969 else
2970 llvm_unreachable("Should have been an instruction");
2971
2972 LoadsAndStores.emplace_back(VD);
2973 }
2974}
2975
Davide Italiano7e274e02016-12-22 16:03:48 +00002976static void patchReplacementInstruction(Instruction *I, Value *Repl) {
Daniel Berlin4d547962017-02-12 23:24:45 +00002977 auto *ReplInst = dyn_cast<Instruction>(Repl);
Daniel Berlin86eab152017-02-12 22:25:20 +00002978 if (!ReplInst)
2979 return;
2980
Davide Italiano7e274e02016-12-22 16:03:48 +00002981 // Patch the replacement so that it is not more restrictive than the value
2982 // being replaced.
Daniel Berlin86eab152017-02-12 22:25:20 +00002983 // Note that if 'I' is a load being replaced by some operation,
2984 // for example, by an arithmetic operation, then andIRFlags()
2985 // would just erase all math flags from the original arithmetic
2986 // operation, which is clearly not wanted and not needed.
2987 if (!isa<LoadInst>(I))
2988 ReplInst->andIRFlags(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00002989
Daniel Berlin86eab152017-02-12 22:25:20 +00002990 // FIXME: If both the original and replacement value are part of the
2991 // same control-flow region (meaning that the execution of one
2992 // guarantees the execution of the other), then we can combine the
2993 // noalias scopes here and do better than the general conservative
2994 // answer used in combineMetadata().
Davide Italiano7e274e02016-12-22 16:03:48 +00002995
Daniel Berlin86eab152017-02-12 22:25:20 +00002996 // In general, GVN unifies expressions over different control-flow
2997 // regions, and so we need a conservative combination of the noalias
2998 // scopes.
2999 static const unsigned KnownIDs[] = {
3000 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
3001 LLVMContext::MD_noalias, LLVMContext::MD_range,
3002 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load,
3003 LLVMContext::MD_invariant_group};
3004 combineMetadata(ReplInst, I, KnownIDs);
Davide Italiano7e274e02016-12-22 16:03:48 +00003005}
3006
3007static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
3008 patchReplacementInstruction(I, Repl);
3009 I->replaceAllUsesWith(Repl);
3010}
3011
3012void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) {
3013 DEBUG(dbgs() << " BasicBlock Dead:" << *BB);
3014 ++NumGVNBlocksDeleted;
3015
Daniel Berline19f0e02017-01-30 17:06:55 +00003016 // Delete the instructions backwards, as it has a reduced likelihood of having
3017 // to update as many def-use and use-def chains. Start after the terminator.
3018 auto StartPoint = BB->rbegin();
3019 ++StartPoint;
3020 // Note that we explicitly recalculate BB->rend() on each iteration,
3021 // as it may change when we remove the first instruction.
3022 for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) {
3023 Instruction &Inst = *I++;
3024 if (!Inst.use_empty())
3025 Inst.replaceAllUsesWith(UndefValue::get(Inst.getType()));
3026 if (isa<LandingPadInst>(Inst))
3027 continue;
3028
3029 Inst.eraseFromParent();
3030 ++NumGVNInstrDeleted;
3031 }
Daniel Berlina53a7222017-01-30 18:12:56 +00003032 // Now insert something that simplifycfg will turn into an unreachable.
3033 Type *Int8Ty = Type::getInt8Ty(BB->getContext());
3034 new StoreInst(UndefValue::get(Int8Ty),
3035 Constant::getNullValue(Int8Ty->getPointerTo()),
3036 BB->getTerminator());
Davide Italiano7e274e02016-12-22 16:03:48 +00003037}
3038
3039void NewGVN::markInstructionForDeletion(Instruction *I) {
3040 DEBUG(dbgs() << "Marking " << *I << " for deletion\n");
3041 InstructionsToErase.insert(I);
3042}
3043
3044void NewGVN::replaceInstruction(Instruction *I, Value *V) {
3045
3046 DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n");
3047 patchAndReplaceAllUsesWith(I, V);
3048 // We save the actual erasing to avoid invalidating memory
3049 // dependencies until we are done with everything.
3050 markInstructionForDeletion(I);
3051}
3052
3053namespace {
3054
3055// This is a stack that contains both the value and dfs info of where
3056// that value is valid.
3057class ValueDFSStack {
3058public:
3059 Value *back() const { return ValueStack.back(); }
3060 std::pair<int, int> dfs_back() const { return DFSStack.back(); }
3061
3062 void push_back(Value *V, int DFSIn, int DFSOut) {
Piotr Padlewski6c37d292016-12-28 23:24:02 +00003063 ValueStack.emplace_back(V);
Davide Italiano7e274e02016-12-22 16:03:48 +00003064 DFSStack.emplace_back(DFSIn, DFSOut);
3065 }
3066 bool empty() const { return DFSStack.empty(); }
3067 bool isInScope(int DFSIn, int DFSOut) const {
3068 if (empty())
3069 return false;
3070 return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second;
3071 }
3072
3073 void popUntilDFSScope(int DFSIn, int DFSOut) {
3074
3075 // These two should always be in sync at this point.
3076 assert(ValueStack.size() == DFSStack.size() &&
3077 "Mismatch between ValueStack and DFSStack");
3078 while (
3079 !DFSStack.empty() &&
3080 !(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) {
3081 DFSStack.pop_back();
3082 ValueStack.pop_back();
3083 }
3084 }
3085
3086private:
3087 SmallVector<Value *, 8> ValueStack;
3088 SmallVector<std::pair<int, int>, 8> DFSStack;
3089};
3090}
Daniel Berlin04443432017-01-07 03:23:47 +00003091
Davide Italiano7e274e02016-12-22 16:03:48 +00003092bool NewGVN::eliminateInstructions(Function &F) {
3093 // This is a non-standard eliminator. The normal way to eliminate is
3094 // to walk the dominator tree in order, keeping track of available
3095 // values, and eliminating them. However, this is mildly
3096 // pointless. It requires doing lookups on every instruction,
3097 // regardless of whether we will ever eliminate it. For
Daniel Berlin85cbc8c2016-12-26 19:57:25 +00003098 // instructions part of most singleton congruence classes, we know we
3099 // will never eliminate them.
Davide Italiano7e274e02016-12-22 16:03:48 +00003100
3101 // Instead, this eliminator looks at the congruence classes directly, sorts
3102 // them into a DFS ordering of the dominator tree, and then we just
Daniel Berlin85cbc8c2016-12-26 19:57:25 +00003103 // perform elimination straight on the sets by walking the congruence
Davide Italiano7e274e02016-12-22 16:03:48 +00003104 // class member uses in order, and eliminate the ones dominated by the
Daniel Berlin85cbc8c2016-12-26 19:57:25 +00003105 // last member. This is worst case O(E log E) where E = number of
3106 // instructions in a single congruence class. In theory, this is all
3107 // instructions. In practice, it is much faster, as most instructions are
3108 // either in singleton congruence classes or can't possibly be eliminated
3109 // anyway (if there are no overlapping DFS ranges in class).
Davide Italiano7e274e02016-12-22 16:03:48 +00003110 // When we find something not dominated, it becomes the new leader
Daniel Berlin85cbc8c2016-12-26 19:57:25 +00003111 // for elimination purposes.
3112 // TODO: If we wanted to be faster, We could remove any members with no
3113 // overlapping ranges while sorting, as we will never eliminate anything
3114 // with those members, as they don't dominate anything else in our set.
3115
Davide Italiano7e274e02016-12-22 16:03:48 +00003116 bool AnythingReplaced = false;
3117
3118 // Since we are going to walk the domtree anyway, and we can't guarantee the
3119 // DFS numbers are updated, we compute some ourselves.
3120 DT->updateDFSNumbers();
3121
3122 for (auto &B : F) {
3123 if (!ReachableBlocks.count(&B)) {
3124 for (const auto S : successors(&B)) {
3125 for (auto II = S->begin(); isa<PHINode>(II); ++II) {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00003126 auto &Phi = cast<PHINode>(*II);
Davide Italiano7e274e02016-12-22 16:03:48 +00003127 DEBUG(dbgs() << "Replacing incoming value of " << *II << " for block "
3128 << getBlockName(&B)
3129 << " with undef due to it being unreachable\n");
3130 for (auto &Operand : Phi.incoming_values())
3131 if (Phi.getIncomingBlock(Operand) == &B)
3132 Operand.set(UndefValue::get(Phi.getType()));
3133 }
3134 }
3135 }
Davide Italiano7e274e02016-12-22 16:03:48 +00003136 }
3137
Daniel Berline3e69e12017-03-10 00:32:33 +00003138 // Map to store the use counts
3139 DenseMap<const Value *, unsigned int> UseCounts;
Daniel Berlin4d547962017-02-12 23:24:45 +00003140 for (CongruenceClass *CC : reverse(CongruenceClasses)) {
Daniel Berlinc4796862017-01-27 02:37:11 +00003141 // Track the equivalent store info so we can decide whether to try
3142 // dead store elimination.
3143 SmallVector<ValueDFS, 8> PossibleDeadStores;
Daniel Berline3e69e12017-03-10 00:32:33 +00003144 SmallPtrSet<Instruction *, 8> ProbablyDead;
Daniel Berlina8236562017-04-07 18:38:09 +00003145 if (CC->isDead() || CC->empty())
Davide Italiano7e274e02016-12-22 16:03:48 +00003146 continue;
Daniel Berlin5c338ff2017-03-10 19:05:04 +00003147 // Everything still in the TOP class is unreachable or dead.
3148 if (CC == TOPClass) {
Daniel Berlinb79f5362017-02-11 12:48:50 +00003149#ifndef NDEBUG
Daniel Berlina8236562017-04-07 18:38:09 +00003150 for (auto M : *CC)
Daniel Berlinb79f5362017-02-11 12:48:50 +00003151 assert((!ReachableBlocks.count(cast<Instruction>(M)->getParent()) ||
3152 InstructionsToErase.count(cast<Instruction>(M))) &&
Daniel Berlin5c338ff2017-03-10 19:05:04 +00003153 "Everything in TOP should be unreachable or dead at this "
Daniel Berlinb79f5362017-02-11 12:48:50 +00003154 "point");
3155#endif
3156 continue;
3157 }
3158
Daniel Berlina8236562017-04-07 18:38:09 +00003159 assert(CC->getLeader() && "We should have had a leader");
Davide Italiano7e274e02016-12-22 16:03:48 +00003160 // If this is a leader that is always available, and it's a
3161 // constant or has no equivalences, just replace everything with
3162 // it. We then update the congruence class with whatever members
3163 // are left.
Daniel Berlina8236562017-04-07 18:38:09 +00003164 Value *Leader =
3165 CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
Daniel Berlin26addef2017-01-20 21:04:30 +00003166 if (alwaysAvailable(Leader)) {
Daniel Berlin08fe6e02017-04-06 18:52:55 +00003167 CongruenceClass::MemberSet MembersLeft;
Daniel Berlina8236562017-04-07 18:38:09 +00003168 for (auto M : *CC) {
Davide Italiano7e274e02016-12-22 16:03:48 +00003169 Value *Member = M;
Davide Italiano7e274e02016-12-22 16:03:48 +00003170 // Void things have no uses we can replace.
Daniel Berlin08fe6e02017-04-06 18:52:55 +00003171 if (Member == Leader || !isa<Instruction>(Member) ||
3172 Member->getType()->isVoidTy()) {
Davide Italiano7e274e02016-12-22 16:03:48 +00003173 MembersLeft.insert(Member);
3174 continue;
3175 }
Daniel Berlin26addef2017-01-20 21:04:30 +00003176 DEBUG(dbgs() << "Found replacement " << *(Leader) << " for " << *Member
3177 << "\n");
Daniel Berlin08fe6e02017-04-06 18:52:55 +00003178 auto *I = cast<Instruction>(Member);
3179 assert(Leader != I && "About to accidentally remove our leader");
3180 replaceInstruction(I, Leader);
3181 AnythingReplaced = true;
Davide Italiano7e274e02016-12-22 16:03:48 +00003182 }
Daniel Berlina8236562017-04-07 18:38:09 +00003183 CC->swap(MembersLeft);
Davide Italiano7e274e02016-12-22 16:03:48 +00003184 } else {
Daniel Berlina8236562017-04-07 18:38:09 +00003185 DEBUG(dbgs() << "Eliminating in congruence class " << CC->getID()
3186 << "\n");
Davide Italiano7e274e02016-12-22 16:03:48 +00003187 // If this is a singleton, we can skip it.
Daniel Berlina8236562017-04-07 18:38:09 +00003188 if (CC->size() != 1) {
Davide Italiano7e274e02016-12-22 16:03:48 +00003189 // This is a stack because equality replacement/etc may place
3190 // constants in the middle of the member list, and we want to use
3191 // those constant values in preference to the current leader, over
3192 // the scope of those constants.
3193 ValueDFSStack EliminationStack;
3194
3195 // Convert the members to DFS ordered sets and then merge them.
Daniel Berlin2f1fbcc2017-01-09 05:34:19 +00003196 SmallVector<ValueDFS, 8> DFSOrderedSet;
Daniel Berlina8236562017-04-07 18:38:09 +00003197 convertClassToDFSOrdered(*CC, DFSOrderedSet, UseCounts, ProbablyDead);
Davide Italiano7e274e02016-12-22 16:03:48 +00003198
3199 // Sort the whole thing.
Daniel Berlin2f1fbcc2017-01-09 05:34:19 +00003200 std::sort(DFSOrderedSet.begin(), DFSOrderedSet.end());
Daniel Berlin2f1fbcc2017-01-09 05:34:19 +00003201 for (auto &VD : DFSOrderedSet) {
3202 int MemberDFSIn = VD.DFSIn;
3203 int MemberDFSOut = VD.DFSOut;
Daniel Berlin9a9c9ff2017-04-01 09:44:33 +00003204 Value *Def = VD.Def.getPointer();
3205 bool FromStore = VD.Def.getInt();
Daniel Berline3e69e12017-03-10 00:32:33 +00003206 Use *U = VD.U;
Daniel Berlinc4796862017-01-27 02:37:11 +00003207 // We ignore void things because we can't get a value from them.
Daniel Berline3e69e12017-03-10 00:32:33 +00003208 if (Def && Def->getType()->isVoidTy())
Daniel Berlinc4796862017-01-27 02:37:11 +00003209 continue;
Davide Italiano7e274e02016-12-22 16:03:48 +00003210
3211 if (EliminationStack.empty()) {
3212 DEBUG(dbgs() << "Elimination Stack is empty\n");
3213 } else {
3214 DEBUG(dbgs() << "Elimination Stack Top DFS numbers are ("
3215 << EliminationStack.dfs_back().first << ","
3216 << EliminationStack.dfs_back().second << ")\n");
3217 }
Davide Italiano7e274e02016-12-22 16:03:48 +00003218
3219 DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << ","
3220 << MemberDFSOut << ")\n");
3221 // First, we see if we are out of scope or empty. If so,
3222 // and there equivalences, we try to replace the top of
3223 // stack with equivalences (if it's on the stack, it must
3224 // not have been eliminated yet).
3225 // Then we synchronize to our current scope, by
3226 // popping until we are back within a DFS scope that
3227 // dominates the current member.
3228 // Then, what happens depends on a few factors
3229 // If the stack is now empty, we need to push
3230 // If we have a constant or a local equivalence we want to
3231 // start using, we also push.
3232 // Otherwise, we walk along, processing members who are
3233 // dominated by this scope, and eliminate them.
Daniel Berline3e69e12017-03-10 00:32:33 +00003234 bool ShouldPush = Def && EliminationStack.empty();
Davide Italiano7e274e02016-12-22 16:03:48 +00003235 bool OutOfScope =
3236 !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut);
3237
3238 if (OutOfScope || ShouldPush) {
3239 // Sync to our current scope.
3240 EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
Daniel Berline3e69e12017-03-10 00:32:33 +00003241 bool ShouldPush = Def && EliminationStack.empty();
Davide Italiano7e274e02016-12-22 16:03:48 +00003242 if (ShouldPush) {
Daniel Berline3e69e12017-03-10 00:32:33 +00003243 EliminationStack.push_back(Def, MemberDFSIn, MemberDFSOut);
Davide Italiano7e274e02016-12-22 16:03:48 +00003244 }
3245 }
3246
Daniel Berline3e69e12017-03-10 00:32:33 +00003247 // Skip the Def's, we only want to eliminate on their uses. But mark
3248 // dominated defs as dead.
3249 if (Def) {
3250 // For anything in this case, what and how we value number
3251 // guarantees that any side-effets that would have occurred (ie
3252 // throwing, etc) can be proven to either still occur (because it's
3253 // dominated by something that has the same side-effects), or never
3254 // occur. Otherwise, we would not have been able to prove it value
3255 // equivalent to something else. For these things, we can just mark
3256 // it all dead. Note that this is different from the "ProbablyDead"
3257 // set, which may not be dominated by anything, and thus, are only
Daniel Berlin9a9c9ff2017-04-01 09:44:33 +00003258 // easy to prove dead if they are also side-effect free. Note that
3259 // because stores are put in terms of the stored value, we skip
3260 // stored values here. If the stored value is really dead, it will
3261 // still be marked for deletion when we process it in its own class.
Daniel Berline3e69e12017-03-10 00:32:33 +00003262 if (!EliminationStack.empty() && Def != EliminationStack.back() &&
Daniel Berlin9a9c9ff2017-04-01 09:44:33 +00003263 isa<Instruction>(Def) && !FromStore)
Daniel Berline3e69e12017-03-10 00:32:33 +00003264 markInstructionForDeletion(cast<Instruction>(Def));
3265 continue;
3266 }
3267 // At this point, we know it is a Use we are trying to possibly
3268 // replace.
3269
3270 assert(isa<Instruction>(U->get()) &&
3271 "Current def should have been an instruction");
3272 assert(isa<Instruction>(U->getUser()) &&
3273 "Current user should have been an instruction");
3274
3275 // If the thing we are replacing into is already marked to be dead,
3276 // this use is dead. Note that this is true regardless of whether
3277 // we have anything dominating the use or not. We do this here
3278 // because we are already walking all the uses anyway.
3279 Instruction *InstUse = cast<Instruction>(U->getUser());
3280 if (InstructionsToErase.count(InstUse)) {
3281 auto &UseCount = UseCounts[U->get()];
3282 if (--UseCount == 0) {
3283 ProbablyDead.insert(cast<Instruction>(U->get()));
3284 }
Daniel Berlinc0e008d2017-03-10 00:32:26 +00003285 }
3286
Davide Italiano7e274e02016-12-22 16:03:48 +00003287 // If we get to this point, and the stack is empty we must have a use
Daniel Berline3e69e12017-03-10 00:32:33 +00003288 // with nothing we can use to eliminate this use, so just skip it.
Davide Italiano7e274e02016-12-22 16:03:48 +00003289 if (EliminationStack.empty())
3290 continue;
3291
Daniel Berlinc0e008d2017-03-10 00:32:26 +00003292 Value *DominatingLeader = EliminationStack.back();
Davide Italiano7e274e02016-12-22 16:03:48 +00003293
Daniel Berlind92e7f92017-01-07 00:01:42 +00003294 // Don't replace our existing users with ourselves.
Daniel Berline3e69e12017-03-10 00:32:33 +00003295 if (U->get() == DominatingLeader)
Davide Italiano7e274e02016-12-22 16:03:48 +00003296 continue;
Daniel Berlinc0e008d2017-03-10 00:32:26 +00003297 DEBUG(dbgs() << "Found replacement " << *DominatingLeader << " for "
Daniel Berline3e69e12017-03-10 00:32:33 +00003298 << *U->get() << " in " << *(U->getUser()) << "\n");
Davide Italiano7e274e02016-12-22 16:03:48 +00003299
3300 // If we replaced something in an instruction, handle the patching of
Daniel Berline3e69e12017-03-10 00:32:33 +00003301 // metadata. Skip this if we are replacing predicateinfo with its
3302 // original operand, as we already know we can just drop it.
3303 auto *ReplacedInst = cast<Instruction>(U->get());
Daniel Berlinc0e008d2017-03-10 00:32:26 +00003304 auto *PI = PredInfo->getPredicateInfoFor(ReplacedInst);
3305 if (!PI || DominatingLeader != PI->OriginalOp)
3306 patchReplacementInstruction(ReplacedInst, DominatingLeader);
Daniel Berline3e69e12017-03-10 00:32:33 +00003307 U->set(DominatingLeader);
3308 // This is now a use of the dominating leader, which means if the
3309 // dominating leader was dead, it's now live!
3310 auto &LeaderUseCount = UseCounts[DominatingLeader];
3311 // It's about to be alive again.
3312 if (LeaderUseCount == 0 && isa<Instruction>(DominatingLeader))
3313 ProbablyDead.erase(cast<Instruction>(DominatingLeader));
3314 ++LeaderUseCount;
Davide Italiano7e274e02016-12-22 16:03:48 +00003315 AnythingReplaced = true;
3316 }
3317 }
3318 }
3319
Daniel Berline3e69e12017-03-10 00:32:33 +00003320 // At this point, anything still in the ProbablyDead set is actually dead if
3321 // would be trivially dead.
3322 for (auto *I : ProbablyDead)
3323 if (wouldInstructionBeTriviallyDead(I))
3324 markInstructionForDeletion(I);
3325
Davide Italiano7e274e02016-12-22 16:03:48 +00003326 // Cleanup the congruence class.
Daniel Berlin08fe6e02017-04-06 18:52:55 +00003327 CongruenceClass::MemberSet MembersLeft;
Daniel Berlina8236562017-04-07 18:38:09 +00003328 for (auto *Member : *CC)
Daniel Berlin08fe6e02017-04-06 18:52:55 +00003329 if (!isa<Instruction>(Member) ||
3330 !InstructionsToErase.count(cast<Instruction>(Member)))
Davide Italiano7e274e02016-12-22 16:03:48 +00003331 MembersLeft.insert(Member);
Daniel Berlina8236562017-04-07 18:38:09 +00003332 CC->swap(MembersLeft);
Daniel Berlinc4796862017-01-27 02:37:11 +00003333
3334 // If we have possible dead stores to look at, try to eliminate them.
Daniel Berlina8236562017-04-07 18:38:09 +00003335 if (CC->getStoreCount() > 0) {
3336 convertClassToLoadsAndStores(*CC, PossibleDeadStores);
Daniel Berlinc4796862017-01-27 02:37:11 +00003337 std::sort(PossibleDeadStores.begin(), PossibleDeadStores.end());
3338 ValueDFSStack EliminationStack;
3339 for (auto &VD : PossibleDeadStores) {
3340 int MemberDFSIn = VD.DFSIn;
3341 int MemberDFSOut = VD.DFSOut;
Daniel Berlin9a9c9ff2017-04-01 09:44:33 +00003342 Instruction *Member = cast<Instruction>(VD.Def.getPointer());
Daniel Berlinc4796862017-01-27 02:37:11 +00003343 if (EliminationStack.empty() ||
3344 !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut)) {
3345 // Sync to our current scope.
3346 EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
3347 if (EliminationStack.empty()) {
3348 EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut);
3349 continue;
3350 }
3351 }
3352 // We already did load elimination, so nothing to do here.
3353 if (isa<LoadInst>(Member))
3354 continue;
3355 assert(!EliminationStack.empty());
3356 Instruction *Leader = cast<Instruction>(EliminationStack.back());
Richard Trieu0b79aa32017-01-27 06:06:05 +00003357 (void)Leader;
Daniel Berlinc4796862017-01-27 02:37:11 +00003358 assert(DT->dominates(Leader->getParent(), Member->getParent()));
3359 // Member is dominater by Leader, and thus dead
3360 DEBUG(dbgs() << "Marking dead store " << *Member
3361 << " that is dominated by " << *Leader << "\n");
3362 markInstructionForDeletion(Member);
Daniel Berlina8236562017-04-07 18:38:09 +00003363 CC->erase(Member);
Daniel Berlinc4796862017-01-27 02:37:11 +00003364 ++NumGVNDeadStores;
3365 }
3366 }
Davide Italiano7e274e02016-12-22 16:03:48 +00003367 }
3368
3369 return AnythingReplaced;
3370}
Daniel Berlin1c087672017-02-11 15:07:01 +00003371
3372// This function provides global ranking of operations so that we can place them
3373// in a canonical order. Note that rank alone is not necessarily enough for a
3374// complete ordering, as constants all have the same rank. However, generally,
3375// we will simplify an operation with all constants so that it doesn't matter
3376// what order they appear in.
3377unsigned int NewGVN::getRank(const Value *V) const {
Daniel Berlinb355c4f2017-02-18 23:06:47 +00003378 // Prefer undef to anything else
3379 if (isa<UndefValue>(V))
Daniel Berlin1c087672017-02-11 15:07:01 +00003380 return 0;
Daniel Berlinb355c4f2017-02-18 23:06:47 +00003381 if (isa<Constant>(V))
3382 return 1;
Daniel Berlin1c087672017-02-11 15:07:01 +00003383 else if (auto *A = dyn_cast<Argument>(V))
Daniel Berlinb355c4f2017-02-18 23:06:47 +00003384 return 2 + A->getArgNo();
Daniel Berlin1c087672017-02-11 15:07:01 +00003385
Daniel Berlinb355c4f2017-02-18 23:06:47 +00003386 // Need to shift the instruction DFS by number of arguments + 3 to account for
Daniel Berlin1c087672017-02-11 15:07:01 +00003387 // the constant and argument ranking above.
Daniel Berlin21279bd2017-04-06 18:52:58 +00003388 unsigned Result = InstrToDFSNum(V);
Daniel Berlin1c087672017-02-11 15:07:01 +00003389 if (Result > 0)
Daniel Berlinb355c4f2017-02-18 23:06:47 +00003390 return 3 + NumFuncArgs + Result;
Daniel Berlin1c087672017-02-11 15:07:01 +00003391 // Unreachable or something else, just return a really large number.
3392 return ~0;
3393}
3394
3395// This is a function that says whether two commutative operations should
3396// have their order swapped when canonicalizing.
3397bool NewGVN::shouldSwapOperands(const Value *A, const Value *B) const {
3398 // Because we only care about a total ordering, and don't rewrite expressions
3399 // in this order, we order by rank, which will give a strict weak ordering to
Daniel Berlinb355c4f2017-02-18 23:06:47 +00003400 // everything but constants, and then we order by pointer address.
Daniel Berlinf7d95802017-02-18 23:06:50 +00003401 return std::make_pair(getRank(A), A) > std::make_pair(getRank(B), B);
Daniel Berlin1c087672017-02-11 15:07:01 +00003402}
Daniel Berlin64e68992017-03-12 04:46:45 +00003403
3404class NewGVNLegacyPass : public FunctionPass {
3405public:
3406 static char ID; // Pass identification, replacement for typeid.
3407 NewGVNLegacyPass() : FunctionPass(ID) {
3408 initializeNewGVNLegacyPassPass(*PassRegistry::getPassRegistry());
3409 }
3410 bool runOnFunction(Function &F) override;
3411
3412private:
3413 void getAnalysisUsage(AnalysisUsage &AU) const override {
3414 AU.addRequired<AssumptionCacheTracker>();
3415 AU.addRequired<DominatorTreeWrapperPass>();
3416 AU.addRequired<TargetLibraryInfoWrapperPass>();
3417 AU.addRequired<MemorySSAWrapperPass>();
3418 AU.addRequired<AAResultsWrapperPass>();
3419 AU.addPreserved<DominatorTreeWrapperPass>();
3420 AU.addPreserved<GlobalsAAWrapperPass>();
3421 }
3422};
3423
3424bool NewGVNLegacyPass::runOnFunction(Function &F) {
3425 if (skipFunction(F))
3426 return false;
3427 return NewGVN(F, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
3428 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
3429 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
3430 &getAnalysis<AAResultsWrapperPass>().getAAResults(),
3431 &getAnalysis<MemorySSAWrapperPass>().getMSSA(),
3432 F.getParent()->getDataLayout())
3433 .runGVN();
3434}
3435
3436INITIALIZE_PASS_BEGIN(NewGVNLegacyPass, "newgvn", "Global Value Numbering",
3437 false, false)
3438INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3439INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
3440INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3441INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3442INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
3443INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
3444INITIALIZE_PASS_END(NewGVNLegacyPass, "newgvn", "Global Value Numbering", false,
3445 false)
3446
3447char NewGVNLegacyPass::ID = 0;
3448
3449// createGVNPass - The public interface to this file.
3450FunctionPass *llvm::createNewGVNPass() { return new NewGVNLegacyPass(); }
3451
3452PreservedAnalyses NewGVNPass::run(Function &F, AnalysisManager<Function> &AM) {
3453 // Apparently the order in which we get these results matter for
3454 // the old GVN (see Chandler's comment in GVN.cpp). I'll keep
3455 // the same order here, just in case.
3456 auto &AC = AM.getResult<AssumptionAnalysis>(F);
3457 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
3458 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
3459 auto &AA = AM.getResult<AAManager>(F);
3460 auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
3461 bool Changed =
3462 NewGVN(F, &DT, &AC, &TLI, &AA, &MSSA, F.getParent()->getDataLayout())
3463 .runGVN();
3464 if (!Changed)
3465 return PreservedAnalyses::all();
3466 PreservedAnalyses PA;
3467 PA.preserve<DominatorTreeAnalysis>();
3468 PA.preserve<GlobalsAA>();
3469 return PA;
3470}