blob: 66c809a95e809c284581969c2c93a00049bf9f7c [file] [log] [blame]
Zhou Shengdac63782007-02-06 03:00:16 +00001//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Zhou Shengdac63782007-02-06 03:00:16 +00007//
8//===----------------------------------------------------------------------===//
9//
Reid Spencera41e93b2007-02-25 19:32:03 +000010// This file implements a class to represent arbitrary precision integer
11// constant values and provide a variety of arithmetic operations on them.
Zhou Shengdac63782007-02-06 03:00:16 +000012//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/ADT/APInt.h"
Mehdi Amini47b292d2016-04-16 07:51:28 +000016#include "llvm/ADT/ArrayRef.h"
Ted Kremenek5c75d542008-01-19 04:23:33 +000017#include "llvm/ADT/FoldingSet.h"
Chandler Carruth71bd7d12012-03-04 12:02:57 +000018#include "llvm/ADT/Hashing.h"
Krzysztof Parzyszek90f32492018-08-02 19:13:35 +000019#include "llvm/ADT/Optional.h"
Chris Lattner17f71652008-08-17 07:19:36 +000020#include "llvm/ADT/SmallString.h"
Chandler Carruth71bd7d12012-03-04 12:02:57 +000021#include "llvm/ADT/StringRef.h"
Nico Weber432a3882018-04-30 14:59:11 +000022#include "llvm/Config/llvm-config.h"
Reid Spencera5e0d202007-02-24 03:58:46 +000023#include "llvm/Support/Debug.h"
Torok Edwin56d06592009-07-11 20:10:48 +000024#include "llvm/Support/ErrorHandling.h"
Zhou Shengdac63782007-02-06 03:00:16 +000025#include "llvm/Support/MathExtras.h"
Chris Lattner0c19df42008-08-23 22:23:09 +000026#include "llvm/Support/raw_ostream.h"
Vassil Vassilev2ec8b152016-09-14 08:55:18 +000027#include <climits>
Chris Lattner17f71652008-08-17 07:19:36 +000028#include <cmath>
Zhou Shengdac63782007-02-06 03:00:16 +000029#include <cstdlib>
Chandler Carruthed0881b2012-12-03 16:50:05 +000030#include <cstring>
Zhou Shengdac63782007-02-06 03:00:16 +000031using namespace llvm;
32
Chandler Carruth64648262014-04-22 03:07:47 +000033#define DEBUG_TYPE "apint"
34
Reid Spencera41e93b2007-02-25 19:32:03 +000035/// A utility function for allocating memory, checking for allocation failures,
36/// and ensuring the contents are zeroed.
Chris Lattner77527f52009-01-21 18:09:24 +000037inline static uint64_t* getClearedMemory(unsigned numWords) {
Fangrui Songc244a152018-03-23 17:26:12 +000038 uint64_t *result = new uint64_t[numWords];
Reid Spencera856b6e2007-02-18 18:38:44 +000039 memset(result, 0, numWords * sizeof(uint64_t));
40 return result;
Zhou Sheng94b623a2007-02-06 06:04:53 +000041}
42
Eric Christopher820256b2009-08-21 04:06:45 +000043/// A utility function for allocating memory and checking for allocation
Reid Spencera41e93b2007-02-25 19:32:03 +000044/// failure. The content is not zeroed.
Chris Lattner77527f52009-01-21 18:09:24 +000045inline static uint64_t* getMemory(unsigned numWords) {
Fangrui Songc244a152018-03-23 17:26:12 +000046 return new uint64_t[numWords];
Reid Spencera856b6e2007-02-18 18:38:44 +000047}
48
Erick Tryzelaardadb15712009-08-21 03:15:28 +000049/// A utility function that converts a character to a digit.
50inline static unsigned getDigit(char cdigit, uint8_t radix) {
Erick Tryzelaar60964092009-08-21 06:48:37 +000051 unsigned r;
52
Douglas Gregor663c0682011-09-14 15:54:46 +000053 if (radix == 16 || radix == 36) {
Erick Tryzelaar60964092009-08-21 06:48:37 +000054 r = cdigit - '0';
55 if (r <= 9)
56 return r;
57
58 r = cdigit - 'A';
Douglas Gregorc98ac852011-09-20 18:33:29 +000059 if (r <= radix - 11U)
Erick Tryzelaar60964092009-08-21 06:48:37 +000060 return r + 10;
61
62 r = cdigit - 'a';
Douglas Gregorc98ac852011-09-20 18:33:29 +000063 if (r <= radix - 11U)
Erick Tryzelaar60964092009-08-21 06:48:37 +000064 return r + 10;
Simon Pilgrim4c0ea9d2017-02-23 16:07:04 +000065
Douglas Gregore4e20f42011-09-20 18:11:52 +000066 radix = 10;
Erick Tryzelaardadb15712009-08-21 03:15:28 +000067 }
68
Erick Tryzelaar60964092009-08-21 06:48:37 +000069 r = cdigit - '0';
70 if (r < radix)
71 return r;
72
73 return -1U;
Erick Tryzelaardadb15712009-08-21 03:15:28 +000074}
75
76
Pawel Bylica68304012016-06-27 08:31:48 +000077void APInt::initSlowCase(uint64_t val, bool isSigned) {
Craig Topperb339c6d2017-05-03 15:46:24 +000078 U.pVal = getClearedMemory(getNumWords());
79 U.pVal[0] = val;
Eric Christopher820256b2009-08-21 04:06:45 +000080 if (isSigned && int64_t(val) < 0)
Chris Lattner1ac3e252008-08-20 17:02:31 +000081 for (unsigned i = 1; i < getNumWords(); ++i)
Craig Topperb339c6d2017-05-03 15:46:24 +000082 U.pVal[i] = WORD_MAX;
Craig Topperf78a6f02017-03-01 21:06:18 +000083 clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +000084}
85
Chris Lattnerd57b7602008-10-11 22:07:19 +000086void APInt::initSlowCase(const APInt& that) {
Craig Topperb339c6d2017-05-03 15:46:24 +000087 U.pVal = getMemory(getNumWords());
88 memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE);
Chris Lattnerd57b7602008-10-11 22:07:19 +000089}
90
Jeffrey Yasskin7a162882011-07-18 21:45:40 +000091void APInt::initFromArray(ArrayRef<uint64_t> bigVal) {
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +000092 assert(BitWidth && "Bitwidth too small");
Jeffrey Yasskin7a162882011-07-18 21:45:40 +000093 assert(bigVal.data() && "Null pointer detected!");
Zhou Shengdac63782007-02-06 03:00:16 +000094 if (isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +000095 U.VAL = bigVal[0];
Zhou Shengdac63782007-02-06 03:00:16 +000096 else {
Reid Spencerdf6cf5a2007-02-24 10:01:42 +000097 // Get memory, cleared to 0
Craig Topperb339c6d2017-05-03 15:46:24 +000098 U.pVal = getClearedMemory(getNumWords());
Reid Spencerdf6cf5a2007-02-24 10:01:42 +000099 // Calculate the number of words to copy
Jeffrey Yasskin7a162882011-07-18 21:45:40 +0000100 unsigned words = std::min<unsigned>(bigVal.size(), getNumWords());
Reid Spencerdf6cf5a2007-02-24 10:01:42 +0000101 // Copy the words from bigVal to pVal
Craig Topperb339c6d2017-05-03 15:46:24 +0000102 memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE);
Zhou Shengdac63782007-02-06 03:00:16 +0000103 }
Reid Spencerdf6cf5a2007-02-24 10:01:42 +0000104 // Make sure unused high bits are cleared
105 clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000106}
107
Jeffrey Yasskin7a162882011-07-18 21:45:40 +0000108APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal)
Craig Topper0085ffb2017-03-20 01:29:52 +0000109 : BitWidth(numBits) {
Jeffrey Yasskin7a162882011-07-18 21:45:40 +0000110 initFromArray(bigVal);
111}
112
113APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
Craig Topper0085ffb2017-03-20 01:29:52 +0000114 : BitWidth(numBits) {
Jeffrey Yasskin7a162882011-07-18 21:45:40 +0000115 initFromArray(makeArrayRef(bigVal, numWords));
116}
117
Benjamin Kramer92d89982010-07-14 22:38:02 +0000118APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix)
Craig Topperb339c6d2017-05-03 15:46:24 +0000119 : BitWidth(numbits) {
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +0000120 assert(BitWidth && "Bitwidth too small");
Daniel Dunbar3a1efd112009-08-13 02:33:34 +0000121 fromString(numbits, Str, radix);
Zhou Sheng3e8022d2007-02-07 06:14:53 +0000122}
123
Craig Toppera92fd0b2017-05-12 01:46:01 +0000124void APInt::reallocate(unsigned NewBitWidth) {
125 // If the number of words is the same we can just change the width and stop.
126 if (getNumWords() == getNumWords(NewBitWidth)) {
127 BitWidth = NewBitWidth;
128 return;
129 }
130
131 // If we have an allocation, delete it.
132 if (!isSingleWord())
133 delete [] U.pVal;
134
135 // Update BitWidth.
136 BitWidth = NewBitWidth;
137
138 // If we are supposed to have an allocation, create it.
139 if (!isSingleWord())
140 U.pVal = getMemory(getNumWords());
141}
142
Craig Topperc67fe572017-04-19 17:01:58 +0000143void APInt::AssignSlowCase(const APInt& RHS) {
Reid Spencer7c16cd22007-02-26 23:38:21 +0000144 // Don't do anything for X = X
145 if (this == &RHS)
Craig Topperc67fe572017-04-19 17:01:58 +0000146 return;
Reid Spencer7c16cd22007-02-26 23:38:21 +0000147
Craig Toppera92fd0b2017-05-12 01:46:01 +0000148 // Adjust the bit width and handle allocations as necessary.
149 reallocate(RHS.getBitWidth());
Reid Spencer7c16cd22007-02-26 23:38:21 +0000150
Craig Toppera92fd0b2017-05-12 01:46:01 +0000151 // Copy the data.
152 if (isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +0000153 U.VAL = RHS.U.VAL;
Craig Toppera92fd0b2017-05-12 01:46:01 +0000154 else
155 memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE);
Zhou Shengdac63782007-02-06 03:00:16 +0000156}
157
Pawel Bylica6eeeac72015-04-06 13:31:39 +0000158/// This method 'profiles' an APInt for use with FoldingSet.
Ted Kremenek5c75d542008-01-19 04:23:33 +0000159void APInt::Profile(FoldingSetNodeID& ID) const {
Ted Kremenek901540f2008-02-19 20:50:41 +0000160 ID.AddInteger(BitWidth);
Eric Christopher820256b2009-08-21 04:06:45 +0000161
Ted Kremenek5c75d542008-01-19 04:23:33 +0000162 if (isSingleWord()) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000163 ID.AddInteger(U.VAL);
Ted Kremenek5c75d542008-01-19 04:23:33 +0000164 return;
165 }
166
Chris Lattner77527f52009-01-21 18:09:24 +0000167 unsigned NumWords = getNumWords();
Ted Kremenek5c75d542008-01-19 04:23:33 +0000168 for (unsigned i = 0; i < NumWords; ++i)
Craig Topperb339c6d2017-05-03 15:46:24 +0000169 ID.AddInteger(U.pVal[i]);
Ted Kremenek5c75d542008-01-19 04:23:33 +0000170}
171
Adrian Prantl4dfcc4a2018-05-01 16:10:38 +0000172/// Prefix increment operator. Increments the APInt by one.
Zhou Shengdac63782007-02-06 03:00:16 +0000173APInt& APInt::operator++() {
Eric Christopher820256b2009-08-21 04:06:45 +0000174 if (isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +0000175 ++U.VAL;
Zhou Shengdac63782007-02-06 03:00:16 +0000176 else
Craig Topperb339c6d2017-05-03 15:46:24 +0000177 tcIncrement(U.pVal, getNumWords());
Reid Spencera41e93b2007-02-25 19:32:03 +0000178 return clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000179}
180
Adrian Prantl4dfcc4a2018-05-01 16:10:38 +0000181/// Prefix decrement operator. Decrements the APInt by one.
Zhou Shengdac63782007-02-06 03:00:16 +0000182APInt& APInt::operator--() {
Eric Christopher820256b2009-08-21 04:06:45 +0000183 if (isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +0000184 --U.VAL;
Zhou Shengdac63782007-02-06 03:00:16 +0000185 else
Craig Topperb339c6d2017-05-03 15:46:24 +0000186 tcDecrement(U.pVal, getNumWords());
Reid Spencera41e93b2007-02-25 19:32:03 +0000187 return clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000188}
189
Reid Spencera41e93b2007-02-25 19:32:03 +0000190/// Adds the RHS APint to this APInt.
191/// @returns this, after addition of RHS.
Adrian Prantl4dfcc4a2018-05-01 16:10:38 +0000192/// Addition assignment operator.
Zhou Shengdac63782007-02-06 03:00:16 +0000193APInt& APInt::operator+=(const APInt& RHS) {
Reid Spencera32372d12007-02-17 00:18:01 +0000194 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Eric Christopher820256b2009-08-21 04:06:45 +0000195 if (isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +0000196 U.VAL += RHS.U.VAL;
Craig Topper15e484a2017-04-02 06:59:43 +0000197 else
Craig Topperb339c6d2017-05-03 15:46:24 +0000198 tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords());
Reid Spencera41e93b2007-02-25 19:32:03 +0000199 return clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000200}
201
Pete Cooperfea21392016-07-22 20:55:46 +0000202APInt& APInt::operator+=(uint64_t RHS) {
203 if (isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +0000204 U.VAL += RHS;
Pete Cooperfea21392016-07-22 20:55:46 +0000205 else
Craig Topperb339c6d2017-05-03 15:46:24 +0000206 tcAddPart(U.pVal, RHS, getNumWords());
Pete Cooperfea21392016-07-22 20:55:46 +0000207 return clearUnusedBits();
208}
209
Reid Spencera41e93b2007-02-25 19:32:03 +0000210/// Subtracts the RHS APInt from this APInt
211/// @returns this, after subtraction
Adrian Prantl4dfcc4a2018-05-01 16:10:38 +0000212/// Subtraction assignment operator.
Zhou Shengdac63782007-02-06 03:00:16 +0000213APInt& APInt::operator-=(const APInt& RHS) {
Reid Spencera32372d12007-02-17 00:18:01 +0000214 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Eric Christopher820256b2009-08-21 04:06:45 +0000215 if (isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +0000216 U.VAL -= RHS.U.VAL;
Reid Spencer7a6a8d52007-02-20 23:40:25 +0000217 else
Craig Topperb339c6d2017-05-03 15:46:24 +0000218 tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords());
Reid Spencera41e93b2007-02-25 19:32:03 +0000219 return clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000220}
221
Pete Cooperfea21392016-07-22 20:55:46 +0000222APInt& APInt::operator-=(uint64_t RHS) {
223 if (isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +0000224 U.VAL -= RHS;
Pete Cooperfea21392016-07-22 20:55:46 +0000225 else
Craig Topperb339c6d2017-05-03 15:46:24 +0000226 tcSubtractPart(U.pVal, RHS, getNumWords());
Pete Cooperfea21392016-07-22 20:55:46 +0000227 return clearUnusedBits();
228}
229
Craig Topper93c68e12017-05-04 17:00:41 +0000230APInt APInt::operator*(const APInt& RHS) const {
Reid Spencera32372d12007-02-17 00:18:01 +0000231 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Craig Topper93c68e12017-05-04 17:00:41 +0000232 if (isSingleWord())
233 return APInt(BitWidth, U.VAL * RHS.U.VAL);
Reid Spencer58a6a432007-02-21 08:21:52 +0000234
Craig Topper93c68e12017-05-04 17:00:41 +0000235 APInt Result(getMemory(getNumWords()), getBitWidth());
Reid Spencer58a6a432007-02-21 08:21:52 +0000236
Craig Topper93c68e12017-05-04 17:00:41 +0000237 tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords());
Reid Spencer58a6a432007-02-21 08:21:52 +0000238
Craig Topper93c68e12017-05-04 17:00:41 +0000239 Result.clearUnusedBits();
240 return Result;
Zhou Shengdac63782007-02-06 03:00:16 +0000241}
242
Craig Topperc67fe572017-04-19 17:01:58 +0000243void APInt::AndAssignSlowCase(const APInt& RHS) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000244 tcAnd(U.pVal, RHS.U.pVal, getNumWords());
Zhou Shengdac63782007-02-06 03:00:16 +0000245}
246
Craig Topperc67fe572017-04-19 17:01:58 +0000247void APInt::OrAssignSlowCase(const APInt& RHS) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000248 tcOr(U.pVal, RHS.U.pVal, getNumWords());
Zhou Shengdac63782007-02-06 03:00:16 +0000249}
250
Craig Topperc67fe572017-04-19 17:01:58 +0000251void APInt::XorAssignSlowCase(const APInt& RHS) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000252 tcXor(U.pVal, RHS.U.pVal, getNumWords());
Zhou Shengdac63782007-02-06 03:00:16 +0000253}
254
Craig Topper93c68e12017-05-04 17:00:41 +0000255APInt& APInt::operator*=(const APInt& RHS) {
Reid Spencera32372d12007-02-17 00:18:01 +0000256 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Craig Topper93c68e12017-05-04 17:00:41 +0000257 *this = *this * RHS;
258 return *this;
Zhou Shengdac63782007-02-06 03:00:16 +0000259}
260
Craig Toppera51941f2017-05-08 04:55:09 +0000261APInt& APInt::operator*=(uint64_t RHS) {
262 if (isSingleWord()) {
263 U.VAL *= RHS;
264 } else {
265 unsigned NumWords = getNumWords();
266 tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false);
267 }
268 return clearUnusedBits();
269}
270
Chris Lattner1ac3e252008-08-20 17:02:31 +0000271bool APInt::EqualSlowCase(const APInt& RHS) const {
Craig Topperb339c6d2017-05-03 15:46:24 +0000272 return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal);
Zhou Shengdac63782007-02-06 03:00:16 +0000273}
274
Craig Topper1dc8fc82017-04-21 16:13:15 +0000275int APInt::compare(const APInt& RHS) const {
Reid Spencer1d072122007-02-16 22:36:51 +0000276 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
277 if (isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +0000278 return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL;
Reid Spencera41e93b2007-02-25 19:32:03 +0000279
Craig Topperb339c6d2017-05-03 15:46:24 +0000280 return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
Zhou Shengdac63782007-02-06 03:00:16 +0000281}
282
Craig Topper1dc8fc82017-04-21 16:13:15 +0000283int APInt::compareSigned(const APInt& RHS) const {
Reid Spencer1d072122007-02-16 22:36:51 +0000284 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000285 if (isSingleWord()) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000286 int64_t lhsSext = SignExtend64(U.VAL, BitWidth);
287 int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth);
Craig Topper1dc8fc82017-04-21 16:13:15 +0000288 return lhsSext < rhsSext ? -1 : lhsSext > rhsSext;
Reid Spencer1d072122007-02-16 22:36:51 +0000289 }
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000290
Reid Spencer54abdcf2007-02-27 18:23:40 +0000291 bool lhsNeg = isNegative();
Pete Cooperd6e6bf12016-05-26 17:40:07 +0000292 bool rhsNeg = RHS.isNegative();
Reid Spencera41e93b2007-02-25 19:32:03 +0000293
Pete Cooperd6e6bf12016-05-26 17:40:07 +0000294 // If the sign bits don't match, then (LHS < RHS) if LHS is negative
295 if (lhsNeg != rhsNeg)
Craig Topper1dc8fc82017-04-21 16:13:15 +0000296 return lhsNeg ? -1 : 1;
Pete Cooperd6e6bf12016-05-26 17:40:07 +0000297
Simon Pilgrim0099beb2017-03-09 13:57:04 +0000298 // Otherwise we can just use an unsigned comparison, because even negative
Pete Cooperd6e6bf12016-05-26 17:40:07 +0000299 // numbers compare correctly this way if both have the same signed-ness.
Craig Topperb339c6d2017-05-03 15:46:24 +0000300 return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
Zhou Shengdac63782007-02-06 03:00:16 +0000301}
302
Craig Topperbafdd032017-03-07 01:56:01 +0000303void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) {
304 unsigned loWord = whichWord(loBit);
305 unsigned hiWord = whichWord(hiBit);
Simon Pilgrimaed35222017-02-24 10:15:29 +0000306
Simon Pilgrim0099beb2017-03-09 13:57:04 +0000307 // Create an initial mask for the low word with zeros below loBit.
Craig Topper5e113742017-04-22 06:31:36 +0000308 uint64_t loMask = WORD_MAX << whichBit(loBit);
Simon Pilgrimaed35222017-02-24 10:15:29 +0000309
Craig Topperbafdd032017-03-07 01:56:01 +0000310 // If hiBit is not aligned, we need a high mask.
311 unsigned hiShiftAmt = whichBit(hiBit);
312 if (hiShiftAmt != 0) {
313 // Create a high mask with zeros above hiBit.
Craig Topper5e113742017-04-22 06:31:36 +0000314 uint64_t hiMask = WORD_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt);
Craig Topperbafdd032017-03-07 01:56:01 +0000315 // If loWord and hiWord are equal, then we combine the masks. Otherwise,
316 // set the bits in hiWord.
317 if (hiWord == loWord)
318 loMask &= hiMask;
319 else
Craig Topperb339c6d2017-05-03 15:46:24 +0000320 U.pVal[hiWord] |= hiMask;
Simon Pilgrimaed35222017-02-24 10:15:29 +0000321 }
Craig Topperbafdd032017-03-07 01:56:01 +0000322 // Apply the mask to the low word.
Craig Topperb339c6d2017-05-03 15:46:24 +0000323 U.pVal[loWord] |= loMask;
Craig Topperbafdd032017-03-07 01:56:01 +0000324
325 // Fill any words between loWord and hiWord with all ones.
326 for (unsigned word = loWord + 1; word < hiWord; ++word)
Craig Topperb339c6d2017-05-03 15:46:24 +0000327 U.pVal[word] = WORD_MAX;
Simon Pilgrimaed35222017-02-24 10:15:29 +0000328}
329
Adrian Prantl4dfcc4a2018-05-01 16:10:38 +0000330/// Toggle every bit to its opposite value.
Craig Topperafc9e352017-03-27 17:10:21 +0000331void APInt::flipAllBitsSlowCase() {
Craig Topperb339c6d2017-05-03 15:46:24 +0000332 tcComplement(U.pVal, getNumWords());
Craig Topperafc9e352017-03-27 17:10:21 +0000333 clearUnusedBits();
334}
Zhou Shengdac63782007-02-06 03:00:16 +0000335
Eric Christopher820256b2009-08-21 04:06:45 +0000336/// Toggle a given bit to its opposite value whose position is given
Zhou Shengdac63782007-02-06 03:00:16 +0000337/// as "bitPosition".
Adrian Prantl4dfcc4a2018-05-01 16:10:38 +0000338/// Toggles a given bit to its opposite value.
Jay Foad25a5e4c2010-12-01 08:53:58 +0000339void APInt::flipBit(unsigned bitPosition) {
Reid Spencer1d072122007-02-16 22:36:51 +0000340 assert(bitPosition < BitWidth && "Out of the bit-width range!");
Jay Foad25a5e4c2010-12-01 08:53:58 +0000341 if ((*this)[bitPosition]) clearBit(bitPosition);
342 else setBit(bitPosition);
Zhou Shengdac63782007-02-06 03:00:16 +0000343}
344
Simon Pilgrimb02667c2017-03-10 13:44:32 +0000345void APInt::insertBits(const APInt &subBits, unsigned bitPosition) {
346 unsigned subBitWidth = subBits.getBitWidth();
347 assert(0 < subBitWidth && (subBitWidth + bitPosition) <= BitWidth &&
348 "Illegal bit insertion");
349
350 // Insertion is a direct copy.
351 if (subBitWidth == BitWidth) {
352 *this = subBits;
353 return;
354 }
355
356 // Single word result can be done as a direct bitmask.
357 if (isSingleWord()) {
Craig Topper5e113742017-04-22 06:31:36 +0000358 uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
Craig Topperb339c6d2017-05-03 15:46:24 +0000359 U.VAL &= ~(mask << bitPosition);
360 U.VAL |= (subBits.U.VAL << bitPosition);
Simon Pilgrimb02667c2017-03-10 13:44:32 +0000361 return;
362 }
363
364 unsigned loBit = whichBit(bitPosition);
365 unsigned loWord = whichWord(bitPosition);
366 unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1);
367
368 // Insertion within a single word can be done as a direct bitmask.
369 if (loWord == hi1Word) {
Craig Topper5e113742017-04-22 06:31:36 +0000370 uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
Craig Topperb339c6d2017-05-03 15:46:24 +0000371 U.pVal[loWord] &= ~(mask << loBit);
372 U.pVal[loWord] |= (subBits.U.VAL << loBit);
Simon Pilgrimb02667c2017-03-10 13:44:32 +0000373 return;
374 }
375
376 // Insert on word boundaries.
377 if (loBit == 0) {
378 // Direct copy whole words.
379 unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD;
Craig Topperb339c6d2017-05-03 15:46:24 +0000380 memcpy(U.pVal + loWord, subBits.getRawData(),
Simon Pilgrimb02667c2017-03-10 13:44:32 +0000381 numWholeSubWords * APINT_WORD_SIZE);
382
383 // Mask+insert remaining bits.
384 unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD;
385 if (remainingBits != 0) {
Craig Topper5e113742017-04-22 06:31:36 +0000386 uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - remainingBits);
Craig Topperb339c6d2017-05-03 15:46:24 +0000387 U.pVal[hi1Word] &= ~mask;
388 U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1);
Simon Pilgrimb02667c2017-03-10 13:44:32 +0000389 }
390 return;
391 }
392
393 // General case - set/clear individual bits in dst based on src.
394 // TODO - there is scope for optimization here, but at the moment this code
395 // path is barely used so prefer readability over performance.
396 for (unsigned i = 0; i != subBitWidth; ++i) {
397 if (subBits[i])
398 setBit(bitPosition + i);
399 else
400 clearBit(bitPosition + i);
401 }
402}
403
Simon Pilgrim0f5fb5f2017-02-25 20:01:58 +0000404APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const {
405 assert(numBits > 0 && "Can't extract zero bits");
406 assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
407 "Illegal bit extraction");
408
409 if (isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +0000410 return APInt(numBits, U.VAL >> bitPosition);
Simon Pilgrim0f5fb5f2017-02-25 20:01:58 +0000411
412 unsigned loBit = whichBit(bitPosition);
413 unsigned loWord = whichWord(bitPosition);
414 unsigned hiWord = whichWord(bitPosition + numBits - 1);
415
416 // Single word result extracting bits from a single word source.
417 if (loWord == hiWord)
Craig Topperb339c6d2017-05-03 15:46:24 +0000418 return APInt(numBits, U.pVal[loWord] >> loBit);
Simon Pilgrim0f5fb5f2017-02-25 20:01:58 +0000419
420 // Extracting bits that start on a source word boundary can be done
421 // as a fast memory copy.
422 if (loBit == 0)
Craig Topperb339c6d2017-05-03 15:46:24 +0000423 return APInt(numBits, makeArrayRef(U.pVal + loWord, 1 + hiWord - loWord));
Simon Pilgrim0f5fb5f2017-02-25 20:01:58 +0000424
425 // General case - shift + copy source words directly into place.
426 APInt Result(numBits, 0);
427 unsigned NumSrcWords = getNumWords();
428 unsigned NumDstWords = Result.getNumWords();
429
Tim Shen89337752018-02-16 01:44:36 +0000430 uint64_t *DestPtr = Result.isSingleWord() ? &Result.U.VAL : Result.U.pVal;
Simon Pilgrim0f5fb5f2017-02-25 20:01:58 +0000431 for (unsigned word = 0; word < NumDstWords; ++word) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000432 uint64_t w0 = U.pVal[loWord + word];
Simon Pilgrim0f5fb5f2017-02-25 20:01:58 +0000433 uint64_t w1 =
Craig Topperb339c6d2017-05-03 15:46:24 +0000434 (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0;
Tim Shen89337752018-02-16 01:44:36 +0000435 DestPtr[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit));
Simon Pilgrim0f5fb5f2017-02-25 20:01:58 +0000436 }
437
438 return Result.clearUnusedBits();
439}
440
Benjamin Kramer92d89982010-07-14 22:38:02 +0000441unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) {
Daniel Dunbar3a1efd112009-08-13 02:33:34 +0000442 assert(!str.empty() && "Invalid string length");
Simon Pilgrim4c0ea9d2017-02-23 16:07:04 +0000443 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
Douglas Gregor663c0682011-09-14 15:54:46 +0000444 radix == 36) &&
445 "Radix should be 2, 8, 10, 16, or 36!");
Daniel Dunbar3a1efd112009-08-13 02:33:34 +0000446
447 size_t slen = str.size();
Reid Spencer9329e7b2007-04-13 19:19:07 +0000448
Eric Christopher43a1dec2009-08-21 04:10:31 +0000449 // Each computation below needs to know if it's negative.
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +0000450 StringRef::iterator p = str.begin();
Eric Christopher43a1dec2009-08-21 04:10:31 +0000451 unsigned isNegative = *p == '-';
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +0000452 if (*p == '-' || *p == '+') {
453 p++;
Reid Spencer9329e7b2007-04-13 19:19:07 +0000454 slen--;
Eric Christopher43a1dec2009-08-21 04:10:31 +0000455 assert(slen && "String is only a sign, needs a value.");
Reid Spencer9329e7b2007-04-13 19:19:07 +0000456 }
Eric Christopher43a1dec2009-08-21 04:10:31 +0000457
Reid Spencer9329e7b2007-04-13 19:19:07 +0000458 // For radixes of power-of-two values, the bits required is accurately and
459 // easily computed
460 if (radix == 2)
461 return slen + isNegative;
462 if (radix == 8)
463 return slen * 3 + isNegative;
464 if (radix == 16)
465 return slen * 4 + isNegative;
466
Douglas Gregor663c0682011-09-14 15:54:46 +0000467 // FIXME: base 36
Simon Pilgrim4c0ea9d2017-02-23 16:07:04 +0000468
Reid Spencer9329e7b2007-04-13 19:19:07 +0000469 // This is grossly inefficient but accurate. We could probably do something
470 // with a computation of roughly slen*64/20 and then adjust by the value of
471 // the first few digits. But, I'm not sure how accurate that could be.
472
473 // Compute a sufficient number of bits that is always large enough but might
Erick Tryzelaardadb15712009-08-21 03:15:28 +0000474 // be too large. This avoids the assertion in the constructor. This
475 // calculation doesn't work appropriately for the numbers 0-9, so just use 4
476 // bits in that case.
Simon Pilgrim4c0ea9d2017-02-23 16:07:04 +0000477 unsigned sufficient
Douglas Gregor663c0682011-09-14 15:54:46 +0000478 = radix == 10? (slen == 1 ? 4 : slen * 64/18)
479 : (slen == 1 ? 7 : slen * 16/3);
Reid Spencer9329e7b2007-04-13 19:19:07 +0000480
481 // Convert to the actual binary value.
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +0000482 APInt tmp(sufficient, StringRef(p, slen), radix);
Reid Spencer9329e7b2007-04-13 19:19:07 +0000483
Erick Tryzelaardadb15712009-08-21 03:15:28 +0000484 // Compute how many bits are required. If the log is infinite, assume we need
485 // just bit.
486 unsigned log = tmp.logBase2();
487 if (log == (unsigned)-1) {
488 return isNegative + 1;
489 } else {
490 return isNegative + log + 1;
491 }
Reid Spencer9329e7b2007-04-13 19:19:07 +0000492}
493
Chandler Carruth71bd7d12012-03-04 12:02:57 +0000494hash_code llvm::hash_value(const APInt &Arg) {
495 if (Arg.isSingleWord())
Craig Topperb339c6d2017-05-03 15:46:24 +0000496 return hash_combine(Arg.U.VAL);
Reid Spencerb2bc9852007-02-26 21:02:27 +0000497
Craig Topperb339c6d2017-05-03 15:46:24 +0000498 return hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords());
Reid Spencerb2bc9852007-02-26 21:02:27 +0000499}
500
Benjamin Kramerb4b51502015-03-25 16:49:59 +0000501bool APInt::isSplat(unsigned SplatSizeInBits) const {
502 assert(getBitWidth() % SplatSizeInBits == 0 &&
503 "SplatSizeInBits must divide width!");
504 // We can check that all parts of an integer are equal by making use of a
505 // little trick: rotate and check if it's still the same value.
506 return *this == rotl(SplatSizeInBits);
507}
508
Pawel Bylica6eeeac72015-04-06 13:31:39 +0000509/// This function returns the high "numBits" bits of this APInt.
Chris Lattner77527f52009-01-21 18:09:24 +0000510APInt APInt::getHiBits(unsigned numBits) const {
Craig Toppere7e35602017-03-31 18:48:14 +0000511 return this->lshr(BitWidth - numBits);
Zhou Shengdac63782007-02-06 03:00:16 +0000512}
513
Pawel Bylica6eeeac72015-04-06 13:31:39 +0000514/// This function returns the low "numBits" bits of this APInt.
Chris Lattner77527f52009-01-21 18:09:24 +0000515APInt APInt::getLoBits(unsigned numBits) const {
Craig Toppere7e35602017-03-31 18:48:14 +0000516 APInt Result(getLowBitsSet(BitWidth, numBits));
517 Result &= *this;
518 return Result;
Zhou Shengdac63782007-02-06 03:00:16 +0000519}
520
Craig Topper9881bd92017-05-02 06:32:27 +0000521/// Return a value containing V broadcasted over NewLen bits.
522APInt APInt::getSplat(unsigned NewLen, const APInt &V) {
523 assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
524
525 APInt Val = V.zextOrSelf(NewLen);
526 for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
527 Val |= Val << I;
528
529 return Val;
530}
531
Chris Lattner77527f52009-01-21 18:09:24 +0000532unsigned APInt::countLeadingZerosSlowCase() const {
Matthias Brauna6be4e82016-02-15 20:06:22 +0000533 unsigned Count = 0;
534 for (int i = getNumWords()-1; i >= 0; --i) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000535 uint64_t V = U.pVal[i];
Matthias Brauna6be4e82016-02-15 20:06:22 +0000536 if (V == 0)
Chris Lattner1ac3e252008-08-20 17:02:31 +0000537 Count += APINT_BITS_PER_WORD;
538 else {
Matthias Brauna6be4e82016-02-15 20:06:22 +0000539 Count += llvm::countLeadingZeros(V);
Chris Lattner1ac3e252008-08-20 17:02:31 +0000540 break;
Reid Spencer74cf82e2007-02-21 00:29:48 +0000541 }
Zhou Shengdac63782007-02-06 03:00:16 +0000542 }
Matthias Brauna6be4e82016-02-15 20:06:22 +0000543 // Adjust for unused bits in the most significant word (they are zero).
544 unsigned Mod = BitWidth % APINT_BITS_PER_WORD;
545 Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0;
John McCalldf951bd2010-02-03 03:42:44 +0000546 return Count;
Zhou Shengdac63782007-02-06 03:00:16 +0000547}
548
Craig Topper40516522017-06-23 20:28:45 +0000549unsigned APInt::countLeadingOnesSlowCase() const {
Chris Lattner77527f52009-01-21 18:09:24 +0000550 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
Torok Edwinec39eb82009-01-27 18:06:03 +0000551 unsigned shift;
552 if (!highWordBits) {
553 highWordBits = APINT_BITS_PER_WORD;
554 shift = 0;
555 } else {
556 shift = APINT_BITS_PER_WORD - highWordBits;
557 }
Reid Spencer31acef52007-02-27 21:59:26 +0000558 int i = getNumWords() - 1;
Craig Topperb339c6d2017-05-03 15:46:24 +0000559 unsigned Count = llvm::countLeadingOnes(U.pVal[i] << shift);
Reid Spencer31acef52007-02-27 21:59:26 +0000560 if (Count == highWordBits) {
561 for (i--; i >= 0; --i) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000562 if (U.pVal[i] == WORD_MAX)
Reid Spencer31acef52007-02-27 21:59:26 +0000563 Count += APINT_BITS_PER_WORD;
564 else {
Craig Topperb339c6d2017-05-03 15:46:24 +0000565 Count += llvm::countLeadingOnes(U.pVal[i]);
Reid Spencer31acef52007-02-27 21:59:26 +0000566 break;
567 }
568 }
569 }
570 return Count;
571}
572
Craig Topper40516522017-06-23 20:28:45 +0000573unsigned APInt::countTrailingZerosSlowCase() const {
Chris Lattner77527f52009-01-21 18:09:24 +0000574 unsigned Count = 0;
575 unsigned i = 0;
Craig Topperb339c6d2017-05-03 15:46:24 +0000576 for (; i < getNumWords() && U.pVal[i] == 0; ++i)
Reid Spenceraa8dcfe2007-02-26 07:44:38 +0000577 Count += APINT_BITS_PER_WORD;
578 if (i < getNumWords())
Craig Topperb339c6d2017-05-03 15:46:24 +0000579 Count += llvm::countTrailingZeros(U.pVal[i]);
Chris Lattnerc2c4c742007-11-23 22:36:25 +0000580 return std::min(Count, BitWidth);
Zhou Shengdac63782007-02-06 03:00:16 +0000581}
582
Chris Lattner77527f52009-01-21 18:09:24 +0000583unsigned APInt::countTrailingOnesSlowCase() const {
584 unsigned Count = 0;
585 unsigned i = 0;
Craig Topperb339c6d2017-05-03 15:46:24 +0000586 for (; i < getNumWords() && U.pVal[i] == WORD_MAX; ++i)
Dan Gohman8b4fa9d2008-02-13 21:11:05 +0000587 Count += APINT_BITS_PER_WORD;
588 if (i < getNumWords())
Craig Topperb339c6d2017-05-03 15:46:24 +0000589 Count += llvm::countTrailingOnes(U.pVal[i]);
Craig Topper3a29e3b82017-04-22 19:59:11 +0000590 assert(Count <= BitWidth);
591 return Count;
Dan Gohman8b4fa9d2008-02-13 21:11:05 +0000592}
593
Chris Lattner77527f52009-01-21 18:09:24 +0000594unsigned APInt::countPopulationSlowCase() const {
595 unsigned Count = 0;
596 for (unsigned i = 0; i < getNumWords(); ++i)
Craig Topperb339c6d2017-05-03 15:46:24 +0000597 Count += llvm::countPopulation(U.pVal[i]);
Zhou Shengdac63782007-02-06 03:00:16 +0000598 return Count;
599}
600
Craig Topperbaa392e2017-04-20 02:11:27 +0000601bool APInt::intersectsSlowCase(const APInt &RHS) const {
602 for (unsigned i = 0, e = getNumWords(); i != e; ++i)
Craig Topperb339c6d2017-05-03 15:46:24 +0000603 if ((U.pVal[i] & RHS.U.pVal[i]) != 0)
Craig Topperbaa392e2017-04-20 02:11:27 +0000604 return true;
605
606 return false;
607}
608
Craig Toppera8129a12017-04-20 16:17:13 +0000609bool APInt::isSubsetOfSlowCase(const APInt &RHS) const {
610 for (unsigned i = 0, e = getNumWords(); i != e; ++i)
Craig Topperb339c6d2017-05-03 15:46:24 +0000611 if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0)
Craig Toppera8129a12017-04-20 16:17:13 +0000612 return false;
613
614 return true;
615}
616
Reid Spencer1d072122007-02-16 22:36:51 +0000617APInt APInt::byteSwap() const {
618 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
619 if (BitWidth == 16)
Craig Topperb339c6d2017-05-03 15:46:24 +0000620 return APInt(BitWidth, ByteSwap_16(uint16_t(U.VAL)));
Richard Smith4f9a8082011-11-23 21:33:37 +0000621 if (BitWidth == 32)
Craig Topperb339c6d2017-05-03 15:46:24 +0000622 return APInt(BitWidth, ByteSwap_32(unsigned(U.VAL)));
Richard Smith4f9a8082011-11-23 21:33:37 +0000623 if (BitWidth == 48) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000624 unsigned Tmp1 = unsigned(U.VAL >> 16);
Zhou Shengcfa2ac02007-02-15 06:36:31 +0000625 Tmp1 = ByteSwap_32(Tmp1);
Craig Topperb339c6d2017-05-03 15:46:24 +0000626 uint16_t Tmp2 = uint16_t(U.VAL);
Zhou Shengcfa2ac02007-02-15 06:36:31 +0000627 Tmp2 = ByteSwap_16(Tmp2);
Jeff Cohene06855e2007-03-20 20:42:36 +0000628 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
Zhou Shengcfa2ac02007-02-15 06:36:31 +0000629 }
Richard Smith4f9a8082011-11-23 21:33:37 +0000630 if (BitWidth == 64)
Craig Topperb339c6d2017-05-03 15:46:24 +0000631 return APInt(BitWidth, ByteSwap_64(U.VAL));
Richard Smith4f9a8082011-11-23 21:33:37 +0000632
633 APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0);
634 for (unsigned I = 0, N = getNumWords(); I != N; ++I)
Craig Topperb339c6d2017-05-03 15:46:24 +0000635 Result.U.pVal[I] = ByteSwap_64(U.pVal[N - I - 1]);
Richard Smith4f9a8082011-11-23 21:33:37 +0000636 if (Result.BitWidth != BitWidth) {
Richard Smith55bd3752017-04-13 20:29:59 +0000637 Result.lshrInPlace(Result.BitWidth - BitWidth);
Richard Smith4f9a8082011-11-23 21:33:37 +0000638 Result.BitWidth = BitWidth;
639 }
640 return Result;
Zhou Shengdac63782007-02-06 03:00:16 +0000641}
642
Matt Arsenault155dda92016-03-21 15:00:35 +0000643APInt APInt::reverseBits() const {
644 switch (BitWidth) {
645 case 64:
Craig Topperb339c6d2017-05-03 15:46:24 +0000646 return APInt(BitWidth, llvm::reverseBits<uint64_t>(U.VAL));
Matt Arsenault155dda92016-03-21 15:00:35 +0000647 case 32:
Craig Topperb339c6d2017-05-03 15:46:24 +0000648 return APInt(BitWidth, llvm::reverseBits<uint32_t>(U.VAL));
Matt Arsenault155dda92016-03-21 15:00:35 +0000649 case 16:
Craig Topperb339c6d2017-05-03 15:46:24 +0000650 return APInt(BitWidth, llvm::reverseBits<uint16_t>(U.VAL));
Matt Arsenault155dda92016-03-21 15:00:35 +0000651 case 8:
Craig Topperb339c6d2017-05-03 15:46:24 +0000652 return APInt(BitWidth, llvm::reverseBits<uint8_t>(U.VAL));
Matt Arsenault155dda92016-03-21 15:00:35 +0000653 default:
654 break;
655 }
656
657 APInt Val(*this);
Craig Topper9eaef072017-04-18 05:02:21 +0000658 APInt Reversed(BitWidth, 0);
659 unsigned S = BitWidth;
Matt Arsenault155dda92016-03-21 15:00:35 +0000660
Craig Topper9eaef072017-04-18 05:02:21 +0000661 for (; Val != 0; Val.lshrInPlace(1)) {
Matt Arsenault155dda92016-03-21 15:00:35 +0000662 Reversed <<= 1;
Craig Topper9eaef072017-04-18 05:02:21 +0000663 Reversed |= Val[0];
Matt Arsenault155dda92016-03-21 15:00:35 +0000664 --S;
665 }
666
667 Reversed <<= S;
668 return Reversed;
669}
670
Craig Topper278ebd22017-04-01 20:30:57 +0000671APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) {
Richard Smith55bd3752017-04-13 20:29:59 +0000672 // Fast-path a common case.
673 if (A == B) return A;
674
675 // Corner cases: if either operand is zero, the other is the gcd.
676 if (!A) return B;
677 if (!B) return A;
678
679 // Count common powers of 2 and remove all other powers of 2.
680 unsigned Pow2;
681 {
682 unsigned Pow2_A = A.countTrailingZeros();
683 unsigned Pow2_B = B.countTrailingZeros();
684 if (Pow2_A > Pow2_B) {
685 A.lshrInPlace(Pow2_A - Pow2_B);
686 Pow2 = Pow2_B;
687 } else if (Pow2_B > Pow2_A) {
688 B.lshrInPlace(Pow2_B - Pow2_A);
689 Pow2 = Pow2_A;
690 } else {
691 Pow2 = Pow2_A;
692 }
Zhou Shengdac63782007-02-06 03:00:16 +0000693 }
Richard Smith55bd3752017-04-13 20:29:59 +0000694
695 // Both operands are odd multiples of 2^Pow_2:
696 //
697 // gcd(a, b) = gcd(|a - b| / 2^i, min(a, b))
698 //
699 // This is a modified version of Stein's algorithm, taking advantage of
700 // efficient countTrailingZeros().
701 while (A != B) {
702 if (A.ugt(B)) {
703 A -= B;
704 A.lshrInPlace(A.countTrailingZeros() - Pow2);
705 } else {
706 B -= A;
707 B.lshrInPlace(B.countTrailingZeros() - Pow2);
708 }
709 }
710
Zhou Shengdac63782007-02-06 03:00:16 +0000711 return A;
712}
Chris Lattner28cbd1d2007-02-06 05:38:37 +0000713
Chris Lattner77527f52009-01-21 18:09:24 +0000714APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
Zhou Shengd707d632007-02-12 20:02:55 +0000715 union {
716 double D;
717 uint64_t I;
718 } T;
719 T.D = Double;
Reid Spencer974551a2007-02-27 01:28:10 +0000720
721 // Get the sign bit from the highest order bit
Zhou Shengd707d632007-02-12 20:02:55 +0000722 bool isNeg = T.I >> 63;
Reid Spencer974551a2007-02-27 01:28:10 +0000723
724 // Get the 11-bit exponent and adjust for the 1023 bit bias
Zhou Shengd707d632007-02-12 20:02:55 +0000725 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
Reid Spencer974551a2007-02-27 01:28:10 +0000726
727 // If the exponent is negative, the value is < 0 so just return 0.
Zhou Shengd707d632007-02-12 20:02:55 +0000728 if (exp < 0)
Reid Spencer66d0d572007-02-28 01:30:08 +0000729 return APInt(width, 0u);
Reid Spencer974551a2007-02-27 01:28:10 +0000730
731 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
732 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
733
734 // If the exponent doesn't shift all bits out of the mantissa
Zhou Shengd707d632007-02-12 20:02:55 +0000735 if (exp < 52)
Eric Christopher820256b2009-08-21 04:06:45 +0000736 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
Reid Spencer54abdcf2007-02-27 18:23:40 +0000737 APInt(width, mantissa >> (52 - exp));
738
739 // If the client didn't provide enough bits for us to shift the mantissa into
740 // then the result is undefined, just return 0
741 if (width <= exp - 52)
742 return APInt(width, 0);
Reid Spencer974551a2007-02-27 01:28:10 +0000743
744 // Otherwise, we have to shift the mantissa bits up to the right location
Reid Spencer54abdcf2007-02-27 18:23:40 +0000745 APInt Tmp(width, mantissa);
Craig Topper24e71012017-04-28 03:36:24 +0000746 Tmp <<= (unsigned)exp - 52;
Zhou Shengd707d632007-02-12 20:02:55 +0000747 return isNeg ? -Tmp : Tmp;
748}
749
Pawel Bylica6eeeac72015-04-06 13:31:39 +0000750/// This function converts this APInt to a double.
Zhou Shengd707d632007-02-12 20:02:55 +0000751/// The layout for double is as following (IEEE Standard 754):
752/// --------------------------------------
753/// | Sign Exponent Fraction Bias |
754/// |-------------------------------------- |
755/// | 1[63] 11[62-52] 52[51-00] 1023 |
Eric Christopher820256b2009-08-21 04:06:45 +0000756/// --------------------------------------
Reid Spencer1d072122007-02-16 22:36:51 +0000757double APInt::roundToDouble(bool isSigned) const {
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000758
759 // Handle the simple case where the value is contained in one uint64_t.
Dale Johannesen54be7852009-08-12 18:04:11 +0000760 // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000761 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
762 if (isSigned) {
David Majnemer03992262016-06-24 21:15:36 +0000763 int64_t sext = SignExtend64(getWord(0), BitWidth);
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000764 return double(sext);
765 } else
Dale Johannesen34c08bb2009-08-12 17:42:34 +0000766 return double(getWord(0));
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000767 }
768
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000769 // Determine if the value is negative.
Reid Spencer1d072122007-02-16 22:36:51 +0000770 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000771
772 // Construct the absolute value if we're negative.
Zhou Shengd707d632007-02-12 20:02:55 +0000773 APInt Tmp(isNeg ? -(*this) : (*this));
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000774
775 // Figure out how many bits we're using.
Chris Lattner77527f52009-01-21 18:09:24 +0000776 unsigned n = Tmp.getActiveBits();
Zhou Shengd707d632007-02-12 20:02:55 +0000777
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000778 // The exponent (without bias normalization) is just the number of bits
779 // we are using. Note that the sign bit is gone since we constructed the
780 // absolute value.
781 uint64_t exp = n;
Zhou Shengd707d632007-02-12 20:02:55 +0000782
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000783 // Return infinity for exponent overflow
784 if (exp > 1023) {
785 if (!isSigned || !isNeg)
Jeff Cohene06855e2007-03-20 20:42:36 +0000786 return std::numeric_limits<double>::infinity();
Eric Christopher820256b2009-08-21 04:06:45 +0000787 else
Jeff Cohene06855e2007-03-20 20:42:36 +0000788 return -std::numeric_limits<double>::infinity();
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000789 }
790 exp += 1023; // Increment for 1023 bias
791
792 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
793 // extract the high 52 bits from the correct words in pVal.
Zhou Shengd707d632007-02-12 20:02:55 +0000794 uint64_t mantissa;
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000795 unsigned hiWord = whichWord(n-1);
796 if (hiWord == 0) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000797 mantissa = Tmp.U.pVal[0];
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000798 if (n > 52)
799 mantissa >>= n - 52; // shift down, we want the top 52 bits.
800 } else {
801 assert(hiWord > 0 && "huh?");
Craig Topperb339c6d2017-05-03 15:46:24 +0000802 uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
803 uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000804 mantissa = hibits | lobits;
805 }
806
Zhou Shengd707d632007-02-12 20:02:55 +0000807 // The leading bit of mantissa is implicit, so get rid of it.
Reid Spencerfbd48a52007-02-18 00:44:22 +0000808 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
Zhou Shengd707d632007-02-12 20:02:55 +0000809 union {
810 double D;
811 uint64_t I;
812 } T;
813 T.I = sign | (exp << 52) | mantissa;
814 return T.D;
815}
816
Reid Spencer1d072122007-02-16 22:36:51 +0000817// Truncate to new width.
Jay Foad583abbc2010-12-07 08:25:19 +0000818APInt APInt::trunc(unsigned width) const {
Reid Spencer1d072122007-02-16 22:36:51 +0000819 assert(width < BitWidth && "Invalid APInt Truncate request");
Chris Lattner1ac3e252008-08-20 17:02:31 +0000820 assert(width && "Can't truncate to 0 bits");
Jay Foad583abbc2010-12-07 08:25:19 +0000821
822 if (width <= APINT_BITS_PER_WORD)
823 return APInt(width, getRawData()[0]);
824
825 APInt Result(getMemory(getNumWords(width)), width);
826
827 // Copy full words.
828 unsigned i;
829 for (i = 0; i != width / APINT_BITS_PER_WORD; i++)
Craig Topperb339c6d2017-05-03 15:46:24 +0000830 Result.U.pVal[i] = U.pVal[i];
Jay Foad583abbc2010-12-07 08:25:19 +0000831
832 // Truncate and copy any partial word.
833 unsigned bits = (0 - width) % APINT_BITS_PER_WORD;
834 if (bits != 0)
Craig Topperb339c6d2017-05-03 15:46:24 +0000835 Result.U.pVal[i] = U.pVal[i] << bits >> bits;
Jay Foad583abbc2010-12-07 08:25:19 +0000836
837 return Result;
Reid Spencer1d072122007-02-16 22:36:51 +0000838}
839
840// Sign extend to a new width.
Craig Topper1dec2812017-04-24 17:37:10 +0000841APInt APInt::sext(unsigned Width) const {
842 assert(Width > BitWidth && "Invalid APInt SignExtend request");
Jay Foad583abbc2010-12-07 08:25:19 +0000843
Craig Topper1dec2812017-04-24 17:37:10 +0000844 if (Width <= APINT_BITS_PER_WORD)
Craig Topperb339c6d2017-05-03 15:46:24 +0000845 return APInt(Width, SignExtend64(U.VAL, BitWidth));
Reid Spencerb6b5cc32007-02-25 23:44:53 +0000846
Craig Topper1dec2812017-04-24 17:37:10 +0000847 APInt Result(getMemory(getNumWords(Width)), Width);
Reid Spencerb6b5cc32007-02-25 23:44:53 +0000848
Craig Topper1dec2812017-04-24 17:37:10 +0000849 // Copy words.
Craig Topperb339c6d2017-05-03 15:46:24 +0000850 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
Reid Spencerb6b5cc32007-02-25 23:44:53 +0000851
Craig Topper1dec2812017-04-24 17:37:10 +0000852 // Sign extend the last word since there may be unused bits in the input.
Craig Topperb339c6d2017-05-03 15:46:24 +0000853 Result.U.pVal[getNumWords() - 1] =
854 SignExtend64(Result.U.pVal[getNumWords() - 1],
Craig Topper1dec2812017-04-24 17:37:10 +0000855 ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
Jay Foad583abbc2010-12-07 08:25:19 +0000856
Craig Topper1dec2812017-04-24 17:37:10 +0000857 // Fill with sign bits.
Craig Topperb339c6d2017-05-03 15:46:24 +0000858 std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0,
Craig Topper1dec2812017-04-24 17:37:10 +0000859 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
860 Result.clearUnusedBits();
Jay Foad583abbc2010-12-07 08:25:19 +0000861 return Result;
Reid Spencer1d072122007-02-16 22:36:51 +0000862}
863
864// Zero extend to a new width.
Jay Foad583abbc2010-12-07 08:25:19 +0000865APInt APInt::zext(unsigned width) const {
Reid Spencer1d072122007-02-16 22:36:51 +0000866 assert(width > BitWidth && "Invalid APInt ZeroExtend request");
Jay Foad583abbc2010-12-07 08:25:19 +0000867
868 if (width <= APINT_BITS_PER_WORD)
Craig Topperb339c6d2017-05-03 15:46:24 +0000869 return APInt(width, U.VAL);
Jay Foad583abbc2010-12-07 08:25:19 +0000870
871 APInt Result(getMemory(getNumWords(width)), width);
872
873 // Copy words.
Craig Topperb339c6d2017-05-03 15:46:24 +0000874 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
Jay Foad583abbc2010-12-07 08:25:19 +0000875
876 // Zero remaining words.
Craig Topperb339c6d2017-05-03 15:46:24 +0000877 std::memset(Result.U.pVal + getNumWords(), 0,
Craig Topper1dec2812017-04-24 17:37:10 +0000878 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
Jay Foad583abbc2010-12-07 08:25:19 +0000879
880 return Result;
Reid Spencer1d072122007-02-16 22:36:51 +0000881}
882
Jay Foad583abbc2010-12-07 08:25:19 +0000883APInt APInt::zextOrTrunc(unsigned width) const {
Reid Spencer742d1702007-03-01 17:15:32 +0000884 if (BitWidth < width)
885 return zext(width);
886 if (BitWidth > width)
887 return trunc(width);
888 return *this;
889}
890
Jay Foad583abbc2010-12-07 08:25:19 +0000891APInt APInt::sextOrTrunc(unsigned width) const {
Reid Spencer742d1702007-03-01 17:15:32 +0000892 if (BitWidth < width)
893 return sext(width);
894 if (BitWidth > width)
895 return trunc(width);
896 return *this;
897}
898
Rafael Espindolabb893fe2012-01-27 23:33:07 +0000899APInt APInt::zextOrSelf(unsigned width) const {
900 if (BitWidth < width)
901 return zext(width);
902 return *this;
903}
904
905APInt APInt::sextOrSelf(unsigned width) const {
906 if (BitWidth < width)
907 return sext(width);
908 return *this;
909}
910
Zhou Shenge93db8f2007-02-09 07:48:24 +0000911/// Arithmetic right-shift this APInt by shiftAmt.
Adrian Prantl4dfcc4a2018-05-01 16:10:38 +0000912/// Arithmetic right-shift function.
Craig Topper8b373262017-04-24 17:18:47 +0000913void APInt::ashrInPlace(const APInt &shiftAmt) {
914 ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman105c1d42008-02-29 01:40:47 +0000915}
916
917/// Arithmetic right-shift this APInt by shiftAmt.
Adrian Prantl4dfcc4a2018-05-01 16:10:38 +0000918/// Arithmetic right-shift function.
Craig Topper8b373262017-04-24 17:18:47 +0000919void APInt::ashrSlowCase(unsigned ShiftAmt) {
920 // Don't bother performing a no-op shift.
921 if (!ShiftAmt)
922 return;
Reid Spencer1825dd02007-03-02 22:39:11 +0000923
Craig Topper8b373262017-04-24 17:18:47 +0000924 // Save the original sign bit for later.
925 bool Negative = isNegative();
Reid Spencer522ca7c2007-02-25 01:56:07 +0000926
Hiroshi Inoue9ff23802018-04-09 04:37:53 +0000927 // WordShift is the inter-part shift; BitShift is intra-part shift.
Craig Topper8b373262017-04-24 17:18:47 +0000928 unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD;
929 unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD;
Reid Spenceraa8dcfe2007-02-26 07:44:38 +0000930
Craig Topper8b373262017-04-24 17:18:47 +0000931 unsigned WordsToMove = getNumWords() - WordShift;
932 if (WordsToMove != 0) {
933 // Sign extend the last word to fill in the unused bits.
Craig Topperb339c6d2017-05-03 15:46:24 +0000934 U.pVal[getNumWords() - 1] = SignExtend64(
935 U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
Renato Golincc4a9122017-04-23 12:02:07 +0000936
Craig Topper8b373262017-04-24 17:18:47 +0000937 // Fastpath for moving by whole words.
938 if (BitShift == 0) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000939 std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE);
Craig Topper8b373262017-04-24 17:18:47 +0000940 } else {
941 // Move the words containing significant bits.
942 for (unsigned i = 0; i != WordsToMove - 1; ++i)
Craig Topperb339c6d2017-05-03 15:46:24 +0000943 U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) |
944 (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift));
Renato Golincc4a9122017-04-23 12:02:07 +0000945
Craig Topper8b373262017-04-24 17:18:47 +0000946 // Handle the last word which has no high bits to copy.
Craig Topperb339c6d2017-05-03 15:46:24 +0000947 U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift;
Craig Topper8b373262017-04-24 17:18:47 +0000948 // Sign extend one more time.
Craig Topperb339c6d2017-05-03 15:46:24 +0000949 U.pVal[WordsToMove - 1] =
950 SignExtend64(U.pVal[WordsToMove - 1], APINT_BITS_PER_WORD - BitShift);
Chris Lattnerdad2d092007-05-03 18:15:36 +0000951 }
Reid Spenceraa8dcfe2007-02-26 07:44:38 +0000952 }
953
Craig Topper8b373262017-04-24 17:18:47 +0000954 // Fill in the remainder based on the original sign.
Craig Topperb339c6d2017-05-03 15:46:24 +0000955 std::memset(U.pVal + WordsToMove, Negative ? -1 : 0,
Craig Topper8b373262017-04-24 17:18:47 +0000956 WordShift * APINT_WORD_SIZE);
957 clearUnusedBits();
Zhou Shengfbf61ea2007-02-08 14:35:19 +0000958}
959
Zhou Shenge93db8f2007-02-09 07:48:24 +0000960/// Logical right-shift this APInt by shiftAmt.
Adrian Prantl4dfcc4a2018-05-01 16:10:38 +0000961/// Logical right-shift function.
Craig Topperfc947bc2017-04-18 17:14:21 +0000962void APInt::lshrInPlace(const APInt &shiftAmt) {
963 lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman105c1d42008-02-29 01:40:47 +0000964}
965
966/// Logical right-shift this APInt by shiftAmt.
Adrian Prantl4dfcc4a2018-05-01 16:10:38 +0000967/// Logical right-shift function.
Craig Topperae8bd672017-04-18 19:13:27 +0000968void APInt::lshrSlowCase(unsigned ShiftAmt) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000969 tcShiftRight(U.pVal, getNumWords(), ShiftAmt);
Zhou Shengfbf61ea2007-02-08 14:35:19 +0000970}
971
Zhou Shenge93db8f2007-02-09 07:48:24 +0000972/// Left-shift this APInt by shiftAmt.
Adrian Prantl4dfcc4a2018-05-01 16:10:38 +0000973/// Left-shift function.
Craig Topper24e71012017-04-28 03:36:24 +0000974APInt &APInt::operator<<=(const APInt &shiftAmt) {
Nick Lewycky030c4502009-01-19 17:42:33 +0000975 // It's undefined behavior in C to shift by BitWidth or greater.
Craig Topper24e71012017-04-28 03:36:24 +0000976 *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth);
977 return *this;
Dan Gohman105c1d42008-02-29 01:40:47 +0000978}
979
Craig Toppera8a4f0d2017-04-18 04:39:48 +0000980void APInt::shlSlowCase(unsigned ShiftAmt) {
Craig Topperb339c6d2017-05-03 15:46:24 +0000981 tcShiftLeft(U.pVal, getNumWords(), ShiftAmt);
Craig Toppera8a4f0d2017-04-18 04:39:48 +0000982 clearUnusedBits();
Zhou Shengfbf61ea2007-02-08 14:35:19 +0000983}
984
Joey Gouly51c0ae52017-02-07 11:58:22 +0000985// Calculate the rotate amount modulo the bit width.
986static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) {
987 unsigned rotBitWidth = rotateAmt.getBitWidth();
988 APInt rot = rotateAmt;
989 if (rotBitWidth < BitWidth) {
990 // Extend the rotate APInt, so that the urem doesn't divide by 0.
991 // e.g. APInt(1, 32) would give APInt(1, 0).
992 rot = rotateAmt.zext(BitWidth);
993 }
994 rot = rot.urem(APInt(rot.getBitWidth(), BitWidth));
995 return rot.getLimitedValue(BitWidth);
996}
997
Dan Gohman105c1d42008-02-29 01:40:47 +0000998APInt APInt::rotl(const APInt &rotateAmt) const {
Joey Gouly51c0ae52017-02-07 11:58:22 +0000999 return rotl(rotateModulo(BitWidth, rotateAmt));
Dan Gohman105c1d42008-02-29 01:40:47 +00001000}
1001
Chris Lattner77527f52009-01-21 18:09:24 +00001002APInt APInt::rotl(unsigned rotateAmt) const {
Eli Friedman2aae94f2011-12-22 03:15:35 +00001003 rotateAmt %= BitWidth;
Reid Spencer98ed7db2007-05-14 00:15:28 +00001004 if (rotateAmt == 0)
1005 return *this;
Eli Friedman2aae94f2011-12-22 03:15:35 +00001006 return shl(rotateAmt) | lshr(BitWidth - rotateAmt);
Reid Spencer4c50b522007-05-13 23:44:59 +00001007}
1008
Dan Gohman105c1d42008-02-29 01:40:47 +00001009APInt APInt::rotr(const APInt &rotateAmt) const {
Joey Gouly51c0ae52017-02-07 11:58:22 +00001010 return rotr(rotateModulo(BitWidth, rotateAmt));
Dan Gohman105c1d42008-02-29 01:40:47 +00001011}
1012
Chris Lattner77527f52009-01-21 18:09:24 +00001013APInt APInt::rotr(unsigned rotateAmt) const {
Eli Friedman2aae94f2011-12-22 03:15:35 +00001014 rotateAmt %= BitWidth;
Reid Spencer98ed7db2007-05-14 00:15:28 +00001015 if (rotateAmt == 0)
1016 return *this;
Eli Friedman2aae94f2011-12-22 03:15:35 +00001017 return lshr(rotateAmt) | shl(BitWidth - rotateAmt);
Reid Spencer4c50b522007-05-13 23:44:59 +00001018}
Reid Spencerd99feaf2007-03-01 05:39:56 +00001019
1020// Square Root - this method computes and returns the square root of "this".
1021// Three mechanisms are used for computation. For small values (<= 5 bits),
1022// a table lookup is done. This gets some performance for common cases. For
1023// values using less than 52 bits, the value is converted to double and then
1024// the libc sqrt function is called. The result is rounded and then converted
1025// back to a uint64_t which is then used to construct the result. Finally,
Eric Christopher820256b2009-08-21 04:06:45 +00001026// the Babylonian method for computing square roots is used.
Reid Spencerd99feaf2007-03-01 05:39:56 +00001027APInt APInt::sqrt() const {
1028
1029 // Determine the magnitude of the value.
Chris Lattner77527f52009-01-21 18:09:24 +00001030 unsigned magnitude = getActiveBits();
Reid Spencerd99feaf2007-03-01 05:39:56 +00001031
1032 // Use a fast table for some small values. This also gets rid of some
1033 // rounding errors in libc sqrt for small values.
1034 if (magnitude <= 5) {
Reid Spencer2f6ad4d2007-03-01 17:47:31 +00001035 static const uint8_t results[32] = {
Reid Spencerc8841d22007-03-01 06:23:32 +00001036 /* 0 */ 0,
1037 /* 1- 2 */ 1, 1,
Eric Christopher820256b2009-08-21 04:06:45 +00001038 /* 3- 6 */ 2, 2, 2, 2,
Reid Spencerc8841d22007-03-01 06:23:32 +00001039 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1040 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1041 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1042 /* 31 */ 6
1043 };
Craig Topperb339c6d2017-05-03 15:46:24 +00001044 return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]);
Reid Spencerd99feaf2007-03-01 05:39:56 +00001045 }
1046
1047 // If the magnitude of the value fits in less than 52 bits (the precision of
1048 // an IEEE double precision floating point value), then we can use the
1049 // libc sqrt function which will probably use a hardware sqrt computation.
1050 // This should be faster than the algorithm below.
Jeff Cohenb622c112007-03-05 00:00:42 +00001051 if (magnitude < 52) {
Eric Christopher820256b2009-08-21 04:06:45 +00001052 return APInt(BitWidth,
Craig Topperb339c6d2017-05-03 15:46:24 +00001053 uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL
1054 : U.pVal[0])))));
Jeff Cohenb622c112007-03-05 00:00:42 +00001055 }
Reid Spencerd99feaf2007-03-01 05:39:56 +00001056
1057 // Okay, all the short cuts are exhausted. We must compute it. The following
1058 // is a classical Babylonian method for computing the square root. This code
Sanjay Patel4cb54e02014-09-11 15:41:01 +00001059 // was adapted to APInt from a wikipedia article on such computations.
Reid Spencerd99feaf2007-03-01 05:39:56 +00001060 // See http://www.wikipedia.org/ and go to the page named
Eric Christopher820256b2009-08-21 04:06:45 +00001061 // Calculate_an_integer_square_root.
Chris Lattner77527f52009-01-21 18:09:24 +00001062 unsigned nbits = BitWidth, i = 4;
Reid Spencerd99feaf2007-03-01 05:39:56 +00001063 APInt testy(BitWidth, 16);
1064 APInt x_old(BitWidth, 1);
1065 APInt x_new(BitWidth, 0);
1066 APInt two(BitWidth, 2);
1067
1068 // Select a good starting value using binary logarithms.
Eric Christopher820256b2009-08-21 04:06:45 +00001069 for (;; i += 2, testy = testy.shl(2))
Reid Spencerd99feaf2007-03-01 05:39:56 +00001070 if (i >= nbits || this->ule(testy)) {
1071 x_old = x_old.shl(i / 2);
1072 break;
1073 }
1074
Eric Christopher820256b2009-08-21 04:06:45 +00001075 // Use the Babylonian method to arrive at the integer square root:
Reid Spencerd99feaf2007-03-01 05:39:56 +00001076 for (;;) {
1077 x_new = (this->udiv(x_old) + x_old).udiv(two);
1078 if (x_old.ule(x_new))
1079 break;
1080 x_old = x_new;
1081 }
1082
1083 // Make sure we return the closest approximation
Eric Christopher820256b2009-08-21 04:06:45 +00001084 // NOTE: The rounding calculation below is correct. It will produce an
Reid Spencercf817562007-03-02 04:21:55 +00001085 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
Eric Christopher820256b2009-08-21 04:06:45 +00001086 // determined to be a rounding issue with pari/gp as it begins to use a
Reid Spencercf817562007-03-02 04:21:55 +00001087 // floating point representation after 192 bits. There are no discrepancies
1088 // between this algorithm and pari/gp for bit widths < 192 bits.
Reid Spencerd99feaf2007-03-01 05:39:56 +00001089 APInt square(x_old * x_old);
1090 APInt nextSquare((x_old + 1) * (x_old +1));
1091 if (this->ult(square))
1092 return x_old;
David Blaikie54c94622011-12-01 20:58:30 +00001093 assert(this->ule(nextSquare) && "Error in APInt::sqrt computation");
1094 APInt midpoint((nextSquare - square).udiv(two));
1095 APInt offset(*this - square);
1096 if (offset.ult(midpoint))
1097 return x_old;
Reid Spencerd99feaf2007-03-01 05:39:56 +00001098 return x_old + 1;
1099}
1100
Wojciech Matyjewicz41b744d2008-06-23 19:39:50 +00001101/// Computes the multiplicative inverse of this APInt for a given modulo. The
1102/// iterative extended Euclidean algorithm is used to solve for this value,
1103/// however we simplify it to speed up calculating only the inverse, and take
1104/// advantage of div+rem calculations. We also use some tricks to avoid copying
1105/// (potentially large) APInts around.
1106APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1107 assert(ult(modulo) && "This APInt must be smaller than the modulo");
1108
1109 // Using the properties listed at the following web page (accessed 06/21/08):
1110 // http://www.numbertheory.org/php/euclid.html
1111 // (especially the properties numbered 3, 4 and 9) it can be proved that
1112 // BitWidth bits suffice for all the computations in the algorithm implemented
1113 // below. More precisely, this number of bits suffice if the multiplicative
1114 // inverse exists, but may not suffice for the general extended Euclidean
1115 // algorithm.
1116
1117 APInt r[2] = { modulo, *this };
1118 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1119 APInt q(BitWidth, 0);
Eric Christopher820256b2009-08-21 04:06:45 +00001120
Wojciech Matyjewicz41b744d2008-06-23 19:39:50 +00001121 unsigned i;
1122 for (i = 0; r[i^1] != 0; i ^= 1) {
1123 // An overview of the math without the confusing bit-flipping:
1124 // q = r[i-2] / r[i-1]
1125 // r[i] = r[i-2] % r[i-1]
1126 // t[i] = t[i-2] - t[i-1] * q
1127 udivrem(r[i], r[i^1], q, r[i]);
1128 t[i] -= t[i^1] * q;
1129 }
1130
1131 // If this APInt and the modulo are not coprime, there is no multiplicative
1132 // inverse, so return 0. We check this by looking at the next-to-last
1133 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1134 // algorithm.
1135 if (r[i] != 1)
1136 return APInt(BitWidth, 0);
1137
1138 // The next-to-last t is the multiplicative inverse. However, we are
Craig Topper3fbecad2017-05-11 17:57:43 +00001139 // interested in a positive inverse. Calculate a positive one from a negative
Wojciech Matyjewicz41b744d2008-06-23 19:39:50 +00001140 // one if necessary. A simple addition of the modulo suffices because
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00001141 // abs(t[i]) is known to be less than *this/2 (see the link above).
Craig Topperdbd62192017-05-11 18:40:53 +00001142 if (t[i].isNegative())
1143 t[i] += modulo;
1144
1145 return std::move(t[i]);
Wojciech Matyjewicz41b744d2008-06-23 19:39:50 +00001146}
1147
Jay Foadfe0c6482009-04-30 10:15:35 +00001148/// Calculate the magic numbers required to implement a signed integer division
1149/// by a constant as a sequence of multiplies, adds and shifts. Requires that
1150/// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
1151/// Warren, Jr., chapter 10.
1152APInt::ms APInt::magic() const {
1153 const APInt& d = *this;
1154 unsigned p;
1155 APInt ad, anc, delta, q1, r1, q2, r2, t;
Jay Foadfe0c6482009-04-30 10:15:35 +00001156 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
Jay Foadfe0c6482009-04-30 10:15:35 +00001157 struct ms mag;
Eric Christopher820256b2009-08-21 04:06:45 +00001158
Jay Foadfe0c6482009-04-30 10:15:35 +00001159 ad = d.abs();
1160 t = signedMin + (d.lshr(d.getBitWidth() - 1));
1161 anc = t - 1 - t.urem(ad); // absolute value of nc
1162 p = d.getBitWidth() - 1; // initialize p
1163 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc)
1164 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc))
1165 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d)
1166 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d))
1167 do {
1168 p = p + 1;
1169 q1 = q1<<1; // update q1 = 2p/abs(nc)
1170 r1 = r1<<1; // update r1 = rem(2p/abs(nc))
1171 if (r1.uge(anc)) { // must be unsigned comparison
1172 q1 = q1 + 1;
1173 r1 = r1 - anc;
1174 }
1175 q2 = q2<<1; // update q2 = 2p/abs(d)
1176 r2 = r2<<1; // update r2 = rem(2p/abs(d))
1177 if (r2.uge(ad)) { // must be unsigned comparison
1178 q2 = q2 + 1;
1179 r2 = r2 - ad;
1180 }
1181 delta = ad - r2;
Cameron Zwarich8731d0c2011-02-21 00:22:02 +00001182 } while (q1.ult(delta) || (q1 == delta && r1 == 0));
Eric Christopher820256b2009-08-21 04:06:45 +00001183
Jay Foadfe0c6482009-04-30 10:15:35 +00001184 mag.m = q2 + 1;
1185 if (d.isNegative()) mag.m = -mag.m; // resulting magic number
1186 mag.s = p - d.getBitWidth(); // resulting shift
1187 return mag;
1188}
1189
1190/// Calculate the magic numbers required to implement an unsigned integer
1191/// division by a constant as a sequence of multiplies, adds and shifts.
1192/// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
1193/// S. Warren, Jr., chapter 10.
Benjamin Kramer09a51ba2011-03-17 20:39:06 +00001194/// LeadingZeros can be used to simplify the calculation if the upper bits
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00001195/// of the divided value are known zero.
Benjamin Kramer09a51ba2011-03-17 20:39:06 +00001196APInt::mu APInt::magicu(unsigned LeadingZeros) const {
Jay Foadfe0c6482009-04-30 10:15:35 +00001197 const APInt& d = *this;
1198 unsigned p;
1199 APInt nc, delta, q1, r1, q2, r2;
1200 struct mu magu;
1201 magu.a = 0; // initialize "add" indicator
Benjamin Kramer09a51ba2011-03-17 20:39:06 +00001202 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros);
Jay Foadfe0c6482009-04-30 10:15:35 +00001203 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1204 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1205
Benjamin Kramer3aab6a82012-07-11 18:31:59 +00001206 nc = allOnes - (allOnes - d).urem(d);
Jay Foadfe0c6482009-04-30 10:15:35 +00001207 p = d.getBitWidth() - 1; // initialize p
1208 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc
1209 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc)
1210 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d
1211 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d)
1212 do {
1213 p = p + 1;
1214 if (r1.uge(nc - r1)) {
1215 q1 = q1 + q1 + 1; // update q1
1216 r1 = r1 + r1 - nc; // update r1
1217 }
1218 else {
1219 q1 = q1+q1; // update q1
1220 r1 = r1+r1; // update r1
1221 }
1222 if ((r2 + 1).uge(d - r2)) {
1223 if (q2.uge(signedMax)) magu.a = 1;
1224 q2 = q2+q2 + 1; // update q2
1225 r2 = r2+r2 + 1 - d; // update r2
1226 }
1227 else {
1228 if (q2.uge(signedMin)) magu.a = 1;
1229 q2 = q2+q2; // update q2
1230 r2 = r2+r2 + 1; // update r2
1231 }
1232 delta = d - 1 - r2;
1233 } while (p < d.getBitWidth()*2 &&
1234 (q1.ult(delta) || (q1 == delta && r1 == 0)));
1235 magu.m = q2 + 1; // resulting magic number
1236 magu.s = p - d.getBitWidth(); // resulting shift
1237 return magu;
1238}
1239
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001240/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1241/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1242/// variables here have the same names as in the algorithm. Comments explain
1243/// the algorithm and any deviation from it.
Craig Topper6271bc72017-05-10 18:15:20 +00001244static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
Chris Lattner77527f52009-01-21 18:09:24 +00001245 unsigned m, unsigned n) {
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001246 assert(u && "Must provide dividend");
1247 assert(v && "Must provide divisor");
1248 assert(q && "Must provide quotient");
Yaron Keren39fc5a62015-03-26 19:45:19 +00001249 assert(u != v && u != q && v != q && "Must use different memory");
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001250 assert(n>1 && "n must be > 1");
1251
Yaron Keren39fc5a62015-03-26 19:45:19 +00001252 // b denotes the base of the number system. In our case b is 2^32.
George Burgess IV381fc0e2016-08-25 01:05:08 +00001253 const uint64_t b = uint64_t(1) << 32;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001254
Craig Topper03106bb2017-11-24 20:29:04 +00001255// The DEBUG macros here tend to be spam in the debug output if you're not
1256// debugging this code. Disable them unless KNUTH_DEBUG is defined.
Tim Northoverb3766452018-08-06 11:43:11 +00001257#ifdef KNUTH_DEBUG
1258#define DEBUG_KNUTH(X) LLVM_DEBUG(X)
1259#else
1260#define DEBUG_KNUTH(X) do {} while(false)
Craig Topper03106bb2017-11-24 20:29:04 +00001261#endif
1262
Tim Northoverb3766452018-08-06 11:43:11 +00001263 DEBUG_KNUTH(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1264 DEBUG_KNUTH(dbgs() << "KnuthDiv: original:");
1265 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1266 DEBUG_KNUTH(dbgs() << " by");
1267 DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
1268 DEBUG_KNUTH(dbgs() << '\n');
Eric Christopher820256b2009-08-21 04:06:45 +00001269 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1270 // u and v by d. Note that we have taken Knuth's advice here to use a power
1271 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1272 // 2 allows us to shift instead of multiply and it is easy to determine the
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001273 // shift amount from the leading zeros. We are basically normalizing the u
1274 // and v so that its high bits are shifted to the top of v's range without
1275 // overflow. Note that this can require an extra word in u so that u must
1276 // be of length m+n+1.
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001277 unsigned shift = countLeadingZeros(v[n-1]);
Craig Topper6271bc72017-05-10 18:15:20 +00001278 uint32_t v_carry = 0;
1279 uint32_t u_carry = 0;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001280 if (shift) {
Chris Lattner77527f52009-01-21 18:09:24 +00001281 for (unsigned i = 0; i < m+n; ++i) {
Craig Topper6271bc72017-05-10 18:15:20 +00001282 uint32_t u_tmp = u[i] >> (32 - shift);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001283 u[i] = (u[i] << shift) | u_carry;
1284 u_carry = u_tmp;
Reid Spencer100502d2007-02-17 03:16:00 +00001285 }
Chris Lattner77527f52009-01-21 18:09:24 +00001286 for (unsigned i = 0; i < n; ++i) {
Craig Topper6271bc72017-05-10 18:15:20 +00001287 uint32_t v_tmp = v[i] >> (32 - shift);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001288 v[i] = (v[i] << shift) | v_carry;
1289 v_carry = v_tmp;
1290 }
1291 }
1292 u[m+n] = u_carry;
Yaron Keren39fc5a62015-03-26 19:45:19 +00001293
Tim Northoverb3766452018-08-06 11:43:11 +00001294 DEBUG_KNUTH(dbgs() << "KnuthDiv: normal:");
1295 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1296 DEBUG_KNUTH(dbgs() << " by");
1297 DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
1298 DEBUG_KNUTH(dbgs() << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001299
1300 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1301 int j = m;
1302 do {
Tim Northoverb3766452018-08-06 11:43:11 +00001303 DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
Eric Christopher820256b2009-08-21 04:06:45 +00001304 // D3. [Calculate q'.].
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001305 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1306 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1307 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
Craig Topper4b83b4d2017-05-13 00:35:30 +00001308 // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001309 // on v[n-2] determines at high speed most of the cases in which the trial
Eric Christopher820256b2009-08-21 04:06:45 +00001310 // value qp is one too large, and it eliminates all cases where qp is two
1311 // too large.
Craig Topper2c9a7062017-05-13 07:14:17 +00001312 uint64_t dividend = Make_64(u[j+n], u[j+n-1]);
Tim Northoverb3766452018-08-06 11:43:11 +00001313 DEBUG_KNUTH(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
Reid Spencercb292e42007-02-23 01:57:13 +00001314 uint64_t qp = dividend / v[n-1];
1315 uint64_t rp = dividend % v[n-1];
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001316 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1317 qp--;
1318 rp += v[n-1];
Reid Spencerdf6cf5a2007-02-24 10:01:42 +00001319 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
Reid Spencera5e0d202007-02-24 03:58:46 +00001320 qp--;
Reid Spencercb292e42007-02-23 01:57:13 +00001321 }
Tim Northoverb3766452018-08-06 11:43:11 +00001322 DEBUG_KNUTH(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001323
Reid Spencercb292e42007-02-23 01:57:13 +00001324 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1325 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1326 // consists of a simple multiplication by a one-place number, combined with
Eric Christopher820256b2009-08-21 04:06:45 +00001327 // a subtraction.
Yaron Keren39fc5a62015-03-26 19:45:19 +00001328 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1329 // this step is actually negative, (u[j+n]...u[j]) should be left as the
1330 // true value plus b**(n+1), namely as the b's complement of
1331 // the true value, and a "borrow" to the left should be remembered.
Pawel Bylica86ac4472015-04-24 07:38:39 +00001332 int64_t borrow = 0;
Chris Lattner77527f52009-01-21 18:09:24 +00001333 for (unsigned i = 0; i < n; ++i) {
Pawel Bylica86ac4472015-04-24 07:38:39 +00001334 uint64_t p = uint64_t(qp) * uint64_t(v[i]);
Craig Topper2c9a7062017-05-13 07:14:17 +00001335 int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p);
1336 u[j+i] = Lo_32(subres);
1337 borrow = Hi_32(p) - Hi_32(subres);
Tim Northoverb3766452018-08-06 11:43:11 +00001338 DEBUG_KNUTH(dbgs() << "KnuthDiv: u[j+i] = " << u[j + i]
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001339 << ", borrow = " << borrow << '\n');
Reid Spencera5e0d202007-02-24 03:58:46 +00001340 }
Pawel Bylica86ac4472015-04-24 07:38:39 +00001341 bool isNeg = u[j+n] < borrow;
Craig Topper2c9a7062017-05-13 07:14:17 +00001342 u[j+n] -= Lo_32(borrow);
Pawel Bylica86ac4472015-04-24 07:38:39 +00001343
Tim Northoverb3766452018-08-06 11:43:11 +00001344 DEBUG_KNUTH(dbgs() << "KnuthDiv: after subtraction:");
1345 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1346 DEBUG_KNUTH(dbgs() << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001347
Eric Christopher820256b2009-08-21 04:06:45 +00001348 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001349 // negative, go to step D6; otherwise go on to step D7.
Craig Topper2c9a7062017-05-13 07:14:17 +00001350 q[j] = Lo_32(qp);
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00001351 if (isNeg) {
Eric Christopher820256b2009-08-21 04:06:45 +00001352 // D6. [Add back]. The probability that this step is necessary is very
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001353 // small, on the order of only 2/b. Make sure that test data accounts for
Eric Christopher820256b2009-08-21 04:06:45 +00001354 // this possibility. Decrease q[j] by 1
Reid Spencercb292e42007-02-23 01:57:13 +00001355 q[j]--;
Eric Christopher820256b2009-08-21 04:06:45 +00001356 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1357 // A carry will occur to the left of u[j+n], and it should be ignored
Reid Spencercb292e42007-02-23 01:57:13 +00001358 // since it cancels with the borrow that occurred in D4.
1359 bool carry = false;
Chris Lattner77527f52009-01-21 18:09:24 +00001360 for (unsigned i = 0; i < n; i++) {
Craig Topper6271bc72017-05-10 18:15:20 +00001361 uint32_t limit = std::min(u[j+i],v[i]);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001362 u[j+i] += v[i] + carry;
Reid Spencera5e0d202007-02-24 03:58:46 +00001363 carry = u[j+i] < limit || (carry && u[j+i] == limit);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001364 }
Reid Spencera5e0d202007-02-24 03:58:46 +00001365 u[j+n] += carry;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001366 }
Tim Northoverb3766452018-08-06 11:43:11 +00001367 DEBUG_KNUTH(dbgs() << "KnuthDiv: after correction:");
1368 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1369 DEBUG_KNUTH(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001370
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001371 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
Reid Spencercb292e42007-02-23 01:57:13 +00001372 } while (--j >= 0);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001373
Tim Northoverb3766452018-08-06 11:43:11 +00001374 DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient:");
1375 DEBUG_KNUTH(for (int i = m; i >= 0; i--) dbgs() << " " << q[i]);
1376 DEBUG_KNUTH(dbgs() << '\n');
Reid Spencera5e0d202007-02-24 03:58:46 +00001377
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001378 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1379 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1380 // compute the remainder (urem uses this).
1381 if (r) {
1382 // The value d is expressed by the "shift" value above since we avoided
1383 // multiplication by d by using a shift left. So, all we have to do is
Simon Pilgrim0099beb2017-03-09 13:57:04 +00001384 // shift right here.
Reid Spencer468ad9112007-02-24 20:38:01 +00001385 if (shift) {
Craig Topper6271bc72017-05-10 18:15:20 +00001386 uint32_t carry = 0;
Tim Northoverb3766452018-08-06 11:43:11 +00001387 DEBUG_KNUTH(dbgs() << "KnuthDiv: remainder:");
Reid Spencer468ad9112007-02-24 20:38:01 +00001388 for (int i = n-1; i >= 0; i--) {
1389 r[i] = (u[i] >> shift) | carry;
1390 carry = u[i] << (32 - shift);
Tim Northoverb3766452018-08-06 11:43:11 +00001391 DEBUG_KNUTH(dbgs() << " " << r[i]);
Reid Spencer468ad9112007-02-24 20:38:01 +00001392 }
1393 } else {
1394 for (int i = n-1; i >= 0; i--) {
1395 r[i] = u[i];
Tim Northoverb3766452018-08-06 11:43:11 +00001396 DEBUG_KNUTH(dbgs() << " " << r[i]);
Reid Spencer468ad9112007-02-24 20:38:01 +00001397 }
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001398 }
Tim Northoverb3766452018-08-06 11:43:11 +00001399 DEBUG_KNUTH(dbgs() << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001400 }
Tim Northoverb3766452018-08-06 11:43:11 +00001401 DEBUG_KNUTH(dbgs() << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001402}
1403
Craig Topper8885f932017-05-19 16:43:54 +00001404void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS,
1405 unsigned rhsWords, WordType *Quotient, WordType *Remainder) {
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001406 assert(lhsWords >= rhsWords && "Fractional result");
1407
Eric Christopher820256b2009-08-21 04:06:45 +00001408 // First, compose the values into an array of 32-bit words instead of
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001409 // 64-bit words. This is a necessity of both the "short division" algorithm
Dan Gohman4a618822010-02-10 16:03:48 +00001410 // and the Knuth "classical algorithm" which requires there to be native
Eric Christopher820256b2009-08-21 04:06:45 +00001411 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1412 // can't use 64-bit operands here because we don't have native results of
1413 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001414 // work on large-endian machines.
Chris Lattner77527f52009-01-21 18:09:24 +00001415 unsigned n = rhsWords * 2;
1416 unsigned m = (lhsWords * 2) - n;
Reid Spencer522ca7c2007-02-25 01:56:07 +00001417
1418 // Allocate space for the temporary values we need either on the stack, if
1419 // it will fit, or on the heap if it won't.
Craig Topper6271bc72017-05-10 18:15:20 +00001420 uint32_t SPACE[128];
1421 uint32_t *U = nullptr;
1422 uint32_t *V = nullptr;
1423 uint32_t *Q = nullptr;
1424 uint32_t *R = nullptr;
Reid Spencer522ca7c2007-02-25 01:56:07 +00001425 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1426 U = &SPACE[0];
1427 V = &SPACE[m+n+1];
1428 Q = &SPACE[(m+n+1) + n];
1429 if (Remainder)
1430 R = &SPACE[(m+n+1) + n + (m+n)];
1431 } else {
Craig Topper6271bc72017-05-10 18:15:20 +00001432 U = new uint32_t[m + n + 1];
1433 V = new uint32_t[n];
1434 Q = new uint32_t[m+n];
Reid Spencer522ca7c2007-02-25 01:56:07 +00001435 if (Remainder)
Craig Topper6271bc72017-05-10 18:15:20 +00001436 R = new uint32_t[n];
Reid Spencer522ca7c2007-02-25 01:56:07 +00001437 }
1438
1439 // Initialize the dividend
Craig Topper6271bc72017-05-10 18:15:20 +00001440 memset(U, 0, (m+n+1)*sizeof(uint32_t));
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001441 for (unsigned i = 0; i < lhsWords; ++i) {
Craig Topper8885f932017-05-19 16:43:54 +00001442 uint64_t tmp = LHS[i];
Craig Topper6271bc72017-05-10 18:15:20 +00001443 U[i * 2] = Lo_32(tmp);
1444 U[i * 2 + 1] = Hi_32(tmp);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001445 }
1446 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1447
Reid Spencer522ca7c2007-02-25 01:56:07 +00001448 // Initialize the divisor
Craig Topper6271bc72017-05-10 18:15:20 +00001449 memset(V, 0, (n)*sizeof(uint32_t));
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001450 for (unsigned i = 0; i < rhsWords; ++i) {
Craig Topper8885f932017-05-19 16:43:54 +00001451 uint64_t tmp = RHS[i];
Craig Topper6271bc72017-05-10 18:15:20 +00001452 V[i * 2] = Lo_32(tmp);
1453 V[i * 2 + 1] = Hi_32(tmp);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001454 }
1455
Reid Spencer522ca7c2007-02-25 01:56:07 +00001456 // initialize the quotient and remainder
Craig Topper6271bc72017-05-10 18:15:20 +00001457 memset(Q, 0, (m+n) * sizeof(uint32_t));
Reid Spencer522ca7c2007-02-25 01:56:07 +00001458 if (Remainder)
Craig Topper6271bc72017-05-10 18:15:20 +00001459 memset(R, 0, n * sizeof(uint32_t));
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001460
Eric Christopher820256b2009-08-21 04:06:45 +00001461 // Now, adjust m and n for the Knuth division. n is the number of words in
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001462 // the divisor. m is the number of words by which the dividend exceeds the
Eric Christopher820256b2009-08-21 04:06:45 +00001463 // divisor (i.e. m+n is the length of the dividend). These sizes must not
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001464 // contain any zero words or the Knuth algorithm fails.
1465 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1466 n--;
1467 m++;
1468 }
1469 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1470 m--;
1471
1472 // If we're left with only a single word for the divisor, Knuth doesn't work
1473 // so we implement the short division algorithm here. This is much simpler
1474 // and faster because we are certain that we can divide a 64-bit quantity
1475 // by a 32-bit quantity at hardware speed and short division is simply a
1476 // series of such operations. This is just like doing short division but we
1477 // are using base 2^32 instead of base 10.
1478 assert(n != 0 && "Divide by zero?");
1479 if (n == 1) {
Craig Topper6271bc72017-05-10 18:15:20 +00001480 uint32_t divisor = V[0];
1481 uint32_t remainder = 0;
Craig Topper6a1d0202017-05-15 22:01:03 +00001482 for (int i = m; i >= 0; i--) {
Craig Topper6271bc72017-05-10 18:15:20 +00001483 uint64_t partial_dividend = Make_64(remainder, U[i]);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001484 if (partial_dividend == 0) {
1485 Q[i] = 0;
1486 remainder = 0;
1487 } else if (partial_dividend < divisor) {
1488 Q[i] = 0;
Craig Topper6271bc72017-05-10 18:15:20 +00001489 remainder = Lo_32(partial_dividend);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001490 } else if (partial_dividend == divisor) {
1491 Q[i] = 1;
1492 remainder = 0;
1493 } else {
Craig Topper6271bc72017-05-10 18:15:20 +00001494 Q[i] = Lo_32(partial_dividend / divisor);
1495 remainder = Lo_32(partial_dividend - (Q[i] * divisor));
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001496 }
1497 }
1498 if (R)
1499 R[0] = remainder;
1500 } else {
1501 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1502 // case n > 1.
1503 KnuthDiv(U, V, Q, R, m, n);
1504 }
1505
1506 // If the caller wants the quotient
1507 if (Quotient) {
Craig Topper8885f932017-05-19 16:43:54 +00001508 for (unsigned i = 0; i < lhsWords; ++i)
1509 Quotient[i] = Make_64(Q[i*2+1], Q[i*2]);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001510 }
1511
1512 // If the caller wants the remainder
1513 if (Remainder) {
Craig Topper8885f932017-05-19 16:43:54 +00001514 for (unsigned i = 0; i < rhsWords; ++i)
1515 Remainder[i] = Make_64(R[i*2+1], R[i*2]);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001516 }
1517
1518 // Clean up the memory we allocated.
Reid Spencer522ca7c2007-02-25 01:56:07 +00001519 if (U != &SPACE[0]) {
1520 delete [] U;
1521 delete [] V;
1522 delete [] Q;
1523 delete [] R;
1524 }
Reid Spencer100502d2007-02-17 03:16:00 +00001525}
1526
Craig Topper8885f932017-05-19 16:43:54 +00001527APInt APInt::udiv(const APInt &RHS) const {
Reid Spencera32372d12007-02-17 00:18:01 +00001528 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer39867762007-02-17 02:07:07 +00001529
1530 // First, deal with the easy case
1531 if (isSingleWord()) {
Craig Topperb339c6d2017-05-03 15:46:24 +00001532 assert(RHS.U.VAL != 0 && "Divide by zero?");
1533 return APInt(BitWidth, U.VAL / RHS.U.VAL);
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001534 }
Reid Spencer39867762007-02-17 02:07:07 +00001535
Reid Spencer39867762007-02-17 02:07:07 +00001536 // Get some facts about the LHS and RHS number of bits and words
Craig Topper62de0392017-05-10 07:50:15 +00001537 unsigned lhsWords = getNumWords(getActiveBits());
Craig Topperb1a71ca2017-05-12 21:45:50 +00001538 unsigned rhsBits = RHS.getActiveBits();
1539 unsigned rhsWords = getNumWords(rhsBits);
1540 assert(rhsWords && "Divided by zero???");
Reid Spencer39867762007-02-17 02:07:07 +00001541
1542 // Deal with some degenerate cases
Eric Christopher820256b2009-08-21 04:06:45 +00001543 if (!lhsWords)
Reid Spencer58a6a432007-02-21 08:21:52 +00001544 // 0 / X ===> 0
Eric Christopher820256b2009-08-21 04:06:45 +00001545 return APInt(BitWidth, 0);
Craig Topperb1a71ca2017-05-12 21:45:50 +00001546 if (rhsBits == 1)
1547 // X / 1 ===> X
1548 return *this;
Craig Topper24ae6952017-05-08 23:49:49 +00001549 if (lhsWords < rhsWords || this->ult(RHS))
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001550 // X / Y ===> 0, iff X < Y
Reid Spencer58a6a432007-02-21 08:21:52 +00001551 return APInt(BitWidth, 0);
Craig Topper24ae6952017-05-08 23:49:49 +00001552 if (*this == RHS)
Reid Spencer58a6a432007-02-21 08:21:52 +00001553 // X / X ===> 1
1554 return APInt(BitWidth, 1);
Craig Topper06da0812017-05-12 18:18:57 +00001555 if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
Reid Spencer39867762007-02-17 02:07:07 +00001556 // All high words are zero, just use native divide
Craig Topperb339c6d2017-05-03 15:46:24 +00001557 return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001558
1559 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
Craig Topper8885f932017-05-19 16:43:54 +00001560 APInt Quotient(BitWidth, 0); // to hold result.
1561 divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, nullptr);
1562 return Quotient;
1563}
1564
1565APInt APInt::udiv(uint64_t RHS) const {
1566 assert(RHS != 0 && "Divide by zero?");
1567
1568 // First, deal with the easy case
1569 if (isSingleWord())
1570 return APInt(BitWidth, U.VAL / RHS);
1571
1572 // Get some facts about the LHS words.
1573 unsigned lhsWords = getNumWords(getActiveBits());
1574
1575 // Deal with some degenerate cases
1576 if (!lhsWords)
1577 // 0 / X ===> 0
1578 return APInt(BitWidth, 0);
1579 if (RHS == 1)
1580 // X / 1 ===> X
1581 return *this;
1582 if (this->ult(RHS))
1583 // X / Y ===> 0, iff X < Y
1584 return APInt(BitWidth, 0);
1585 if (*this == RHS)
1586 // X / X ===> 1
1587 return APInt(BitWidth, 1);
1588 if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1589 // All high words are zero, just use native divide
1590 return APInt(BitWidth, this->U.pVal[0] / RHS);
1591
1592 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1593 APInt Quotient(BitWidth, 0); // to hold result.
1594 divide(U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, nullptr);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001595 return Quotient;
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001596}
1597
Jakub Staszak6605c602013-02-20 00:17:42 +00001598APInt APInt::sdiv(const APInt &RHS) const {
1599 if (isNegative()) {
1600 if (RHS.isNegative())
1601 return (-(*this)).udiv(-RHS);
1602 return -((-(*this)).udiv(RHS));
1603 }
1604 if (RHS.isNegative())
1605 return -(this->udiv(-RHS));
1606 return this->udiv(RHS);
1607}
1608
Craig Topper8885f932017-05-19 16:43:54 +00001609APInt APInt::sdiv(int64_t RHS) const {
1610 if (isNegative()) {
1611 if (RHS < 0)
1612 return (-(*this)).udiv(-RHS);
1613 return -((-(*this)).udiv(RHS));
1614 }
1615 if (RHS < 0)
1616 return -(this->udiv(-RHS));
1617 return this->udiv(RHS);
1618}
1619
1620APInt APInt::urem(const APInt &RHS) const {
Reid Spencera32372d12007-02-17 00:18:01 +00001621 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer39867762007-02-17 02:07:07 +00001622 if (isSingleWord()) {
Craig Topperb339c6d2017-05-03 15:46:24 +00001623 assert(RHS.U.VAL != 0 && "Remainder by zero?");
1624 return APInt(BitWidth, U.VAL % RHS.U.VAL);
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001625 }
Reid Spencer39867762007-02-17 02:07:07 +00001626
Reid Spencer58a6a432007-02-21 08:21:52 +00001627 // Get some facts about the LHS
Craig Topper62de0392017-05-10 07:50:15 +00001628 unsigned lhsWords = getNumWords(getActiveBits());
Reid Spencer39867762007-02-17 02:07:07 +00001629
1630 // Get some facts about the RHS
Craig Topperb1a71ca2017-05-12 21:45:50 +00001631 unsigned rhsBits = RHS.getActiveBits();
1632 unsigned rhsWords = getNumWords(rhsBits);
Reid Spencer39867762007-02-17 02:07:07 +00001633 assert(rhsWords && "Performing remainder operation by zero ???");
1634
Reid Spencer39867762007-02-17 02:07:07 +00001635 // Check the degenerate cases
Craig Topper24ae6952017-05-08 23:49:49 +00001636 if (lhsWords == 0)
Reid Spencer58a6a432007-02-21 08:21:52 +00001637 // 0 % Y ===> 0
1638 return APInt(BitWidth, 0);
Craig Topperb1a71ca2017-05-12 21:45:50 +00001639 if (rhsBits == 1)
1640 // X % 1 ===> 0
1641 return APInt(BitWidth, 0);
Craig Topper24ae6952017-05-08 23:49:49 +00001642 if (lhsWords < rhsWords || this->ult(RHS))
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001643 // X % Y ===> X, iff X < Y
Reid Spencer58a6a432007-02-21 08:21:52 +00001644 return *this;
Craig Topper24ae6952017-05-08 23:49:49 +00001645 if (*this == RHS)
Reid Spencer39867762007-02-17 02:07:07 +00001646 // X % X == 0;
Reid Spencer58a6a432007-02-21 08:21:52 +00001647 return APInt(BitWidth, 0);
Craig Topper24ae6952017-05-08 23:49:49 +00001648 if (lhsWords == 1)
Reid Spencer39867762007-02-17 02:07:07 +00001649 // All high words are zero, just use native remainder
Craig Topperb339c6d2017-05-03 15:46:24 +00001650 return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001651
Reid Spencer4c50b522007-05-13 23:44:59 +00001652 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
Craig Topper8885f932017-05-19 16:43:54 +00001653 APInt Remainder(BitWidth, 0);
1654 divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, nullptr, Remainder.U.pVal);
1655 return Remainder;
1656}
1657
1658uint64_t APInt::urem(uint64_t RHS) const {
1659 assert(RHS != 0 && "Remainder by zero?");
1660
1661 if (isSingleWord())
1662 return U.VAL % RHS;
1663
1664 // Get some facts about the LHS
1665 unsigned lhsWords = getNumWords(getActiveBits());
1666
1667 // Check the degenerate cases
1668 if (lhsWords == 0)
1669 // 0 % Y ===> 0
1670 return 0;
1671 if (RHS == 1)
1672 // X % 1 ===> 0
1673 return 0;
1674 if (this->ult(RHS))
1675 // X % Y ===> X, iff X < Y
1676 return getZExtValue();
1677 if (*this == RHS)
1678 // X % X == 0;
1679 return 0;
1680 if (lhsWords == 1)
1681 // All high words are zero, just use native remainder
1682 return U.pVal[0] % RHS;
1683
1684 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1685 uint64_t Remainder;
1686 divide(U.pVal, lhsWords, &RHS, 1, nullptr, &Remainder);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001687 return Remainder;
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001688}
Reid Spencer100502d2007-02-17 03:16:00 +00001689
Jakub Staszak6605c602013-02-20 00:17:42 +00001690APInt APInt::srem(const APInt &RHS) const {
1691 if (isNegative()) {
1692 if (RHS.isNegative())
1693 return -((-(*this)).urem(-RHS));
1694 return -((-(*this)).urem(RHS));
1695 }
1696 if (RHS.isNegative())
1697 return this->urem(-RHS);
1698 return this->urem(RHS);
1699}
1700
Craig Topper8885f932017-05-19 16:43:54 +00001701int64_t APInt::srem(int64_t RHS) const {
1702 if (isNegative()) {
1703 if (RHS < 0)
1704 return -((-(*this)).urem(-RHS));
1705 return -((-(*this)).urem(RHS));
1706 }
1707 if (RHS < 0)
1708 return this->urem(-RHS);
1709 return this->urem(RHS);
1710}
1711
Eric Christopher820256b2009-08-21 04:06:45 +00001712void APInt::udivrem(const APInt &LHS, const APInt &RHS,
Reid Spencer4c50b522007-05-13 23:44:59 +00001713 APInt &Quotient, APInt &Remainder) {
David Majnemer7f039202014-12-14 09:41:56 +00001714 assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same");
Craig Topper2579c7c2017-05-12 21:45:44 +00001715 unsigned BitWidth = LHS.BitWidth;
David Majnemer7f039202014-12-14 09:41:56 +00001716
1717 // First, deal with the easy case
1718 if (LHS.isSingleWord()) {
Craig Topperb339c6d2017-05-03 15:46:24 +00001719 assert(RHS.U.VAL != 0 && "Divide by zero?");
1720 uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL;
1721 uint64_t RemVal = LHS.U.VAL % RHS.U.VAL;
Craig Topper2579c7c2017-05-12 21:45:44 +00001722 Quotient = APInt(BitWidth, QuotVal);
1723 Remainder = APInt(BitWidth, RemVal);
David Majnemer7f039202014-12-14 09:41:56 +00001724 return;
1725 }
1726
Reid Spencer4c50b522007-05-13 23:44:59 +00001727 // Get some size facts about the dividend and divisor
Craig Topper62de0392017-05-10 07:50:15 +00001728 unsigned lhsWords = getNumWords(LHS.getActiveBits());
Craig Topperb1a71ca2017-05-12 21:45:50 +00001729 unsigned rhsBits = RHS.getActiveBits();
1730 unsigned rhsWords = getNumWords(rhsBits);
Craig Topper4bdd6212017-05-12 18:19:01 +00001731 assert(rhsWords && "Performing divrem operation by zero ???");
Reid Spencer4c50b522007-05-13 23:44:59 +00001732
1733 // Check the degenerate cases
Eric Christopher820256b2009-08-21 04:06:45 +00001734 if (lhsWords == 0) {
Krzysztof Parzyszek55a0dce2018-07-19 18:07:56 +00001735 Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0
1736 Remainder = APInt(BitWidth, 0); // 0 % Y ===> 0
Reid Spencer4c50b522007-05-13 23:44:59 +00001737 return;
Eric Christopher820256b2009-08-21 04:06:45 +00001738 }
1739
Craig Topperb1a71ca2017-05-12 21:45:50 +00001740 if (rhsBits == 1) {
Krzysztof Parzyszek55a0dce2018-07-19 18:07:56 +00001741 Quotient = LHS; // X / 1 ===> X
1742 Remainder = APInt(BitWidth, 0); // X % 1 ===> 0
Craig Topperb1a71ca2017-05-12 21:45:50 +00001743 }
1744
Eric Christopher820256b2009-08-21 04:06:45 +00001745 if (lhsWords < rhsWords || LHS.ult(RHS)) {
Krzysztof Parzyszek55a0dce2018-07-19 18:07:56 +00001746 Remainder = LHS; // X % Y ===> X, iff X < Y
1747 Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y
Reid Spencer4c50b522007-05-13 23:44:59 +00001748 return;
Eric Christopher820256b2009-08-21 04:06:45 +00001749 }
1750
Reid Spencer4c50b522007-05-13 23:44:59 +00001751 if (LHS == RHS) {
Krzysztof Parzyszek55a0dce2018-07-19 18:07:56 +00001752 Quotient = APInt(BitWidth, 1); // X / X ===> 1
1753 Remainder = APInt(BitWidth, 0); // X % X ===> 0;
Reid Spencer4c50b522007-05-13 23:44:59 +00001754 return;
Eric Christopher820256b2009-08-21 04:06:45 +00001755 }
1756
Craig Topper8885f932017-05-19 16:43:54 +00001757 // Make sure there is enough space to hold the results.
1758 // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1759 // change the size. This is necessary if Quotient or Remainder is aliased
1760 // with LHS or RHS.
1761 Quotient.reallocate(BitWidth);
1762 Remainder.reallocate(BitWidth);
1763
Craig Topper06da0812017-05-12 18:18:57 +00001764 if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
Reid Spencer4c50b522007-05-13 23:44:59 +00001765 // There is only one word to consider so use the native versions.
Craig Topper93eabae2017-05-10 18:15:14 +00001766 uint64_t lhsValue = LHS.U.pVal[0];
1767 uint64_t rhsValue = RHS.U.pVal[0];
Craig Topper87694032017-05-12 07:21:09 +00001768 Quotient = lhsValue / rhsValue;
1769 Remainder = lhsValue % rhsValue;
Reid Spencer4c50b522007-05-13 23:44:59 +00001770 return;
1771 }
1772
1773 // Okay, lets do it the long way
Craig Topper8885f932017-05-19 16:43:54 +00001774 divide(LHS.U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal,
1775 Remainder.U.pVal);
1776 // Clear the rest of the Quotient and Remainder.
1777 std::memset(Quotient.U.pVal + lhsWords, 0,
1778 (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1779 std::memset(Remainder.U.pVal + rhsWords, 0,
1780 (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE);
1781}
1782
1783void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1784 uint64_t &Remainder) {
1785 assert(RHS != 0 && "Divide by zero?");
1786 unsigned BitWidth = LHS.BitWidth;
1787
1788 // First, deal with the easy case
1789 if (LHS.isSingleWord()) {
1790 uint64_t QuotVal = LHS.U.VAL / RHS;
1791 Remainder = LHS.U.VAL % RHS;
1792 Quotient = APInt(BitWidth, QuotVal);
1793 return;
1794 }
1795
1796 // Get some size facts about the dividend and divisor
1797 unsigned lhsWords = getNumWords(LHS.getActiveBits());
1798
1799 // Check the degenerate cases
1800 if (lhsWords == 0) {
Krzysztof Parzyszek55a0dce2018-07-19 18:07:56 +00001801 Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0
1802 Remainder = 0; // 0 % Y ===> 0
Craig Topper8885f932017-05-19 16:43:54 +00001803 return;
1804 }
1805
1806 if (RHS == 1) {
Krzysztof Parzyszek55a0dce2018-07-19 18:07:56 +00001807 Quotient = LHS; // X / 1 ===> X
1808 Remainder = 0; // X % 1 ===> 0
1809 return;
Craig Topper8885f932017-05-19 16:43:54 +00001810 }
1811
1812 if (LHS.ult(RHS)) {
Krzysztof Parzyszek55a0dce2018-07-19 18:07:56 +00001813 Remainder = LHS.getZExtValue(); // X % Y ===> X, iff X < Y
1814 Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y
Craig Topper8885f932017-05-19 16:43:54 +00001815 return;
1816 }
1817
1818 if (LHS == RHS) {
Krzysztof Parzyszek55a0dce2018-07-19 18:07:56 +00001819 Quotient = APInt(BitWidth, 1); // X / X ===> 1
1820 Remainder = 0; // X % X ===> 0;
Craig Topper8885f932017-05-19 16:43:54 +00001821 return;
1822 }
1823
1824 // Make sure there is enough space to hold the results.
1825 // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1826 // change the size. This is necessary if Quotient is aliased with LHS.
1827 Quotient.reallocate(BitWidth);
1828
1829 if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1830 // There is only one word to consider so use the native versions.
1831 uint64_t lhsValue = LHS.U.pVal[0];
1832 Quotient = lhsValue / RHS;
1833 Remainder = lhsValue % RHS;
1834 return;
1835 }
1836
1837 // Okay, lets do it the long way
1838 divide(LHS.U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, &Remainder);
1839 // Clear the rest of the Quotient.
1840 std::memset(Quotient.U.pVal + lhsWords, 0,
1841 (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
Reid Spencer4c50b522007-05-13 23:44:59 +00001842}
1843
Jakub Staszak6605c602013-02-20 00:17:42 +00001844void APInt::sdivrem(const APInt &LHS, const APInt &RHS,
1845 APInt &Quotient, APInt &Remainder) {
1846 if (LHS.isNegative()) {
1847 if (RHS.isNegative())
1848 APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
1849 else {
1850 APInt::udivrem(-LHS, RHS, Quotient, Remainder);
Craig Topperb3c1f562017-05-11 07:02:04 +00001851 Quotient.negate();
Jakub Staszak6605c602013-02-20 00:17:42 +00001852 }
Craig Topperb3c1f562017-05-11 07:02:04 +00001853 Remainder.negate();
Jakub Staszak6605c602013-02-20 00:17:42 +00001854 } else if (RHS.isNegative()) {
1855 APInt::udivrem(LHS, -RHS, Quotient, Remainder);
Craig Topperb3c1f562017-05-11 07:02:04 +00001856 Quotient.negate();
Jakub Staszak6605c602013-02-20 00:17:42 +00001857 } else {
1858 APInt::udivrem(LHS, RHS, Quotient, Remainder);
1859 }
1860}
1861
Craig Topper8885f932017-05-19 16:43:54 +00001862void APInt::sdivrem(const APInt &LHS, int64_t RHS,
1863 APInt &Quotient, int64_t &Remainder) {
1864 uint64_t R = Remainder;
1865 if (LHS.isNegative()) {
1866 if (RHS < 0)
1867 APInt::udivrem(-LHS, -RHS, Quotient, R);
1868 else {
1869 APInt::udivrem(-LHS, RHS, Quotient, R);
1870 Quotient.negate();
1871 }
1872 R = -R;
1873 } else if (RHS < 0) {
1874 APInt::udivrem(LHS, -RHS, Quotient, R);
1875 Quotient.negate();
1876 } else {
1877 APInt::udivrem(LHS, RHS, Quotient, R);
1878 }
1879 Remainder = R;
1880}
1881
Chris Lattner2c819b02010-10-13 23:54:10 +00001882APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattner79bdd882010-10-13 23:46:33 +00001883 APInt Res = *this+RHS;
1884 Overflow = isNonNegative() == RHS.isNonNegative() &&
1885 Res.isNonNegative() != isNonNegative();
1886 return Res;
1887}
1888
Chris Lattner698661c2010-10-14 00:05:07 +00001889APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
1890 APInt Res = *this+RHS;
1891 Overflow = Res.ult(RHS);
1892 return Res;
1893}
1894
Chris Lattner2c819b02010-10-13 23:54:10 +00001895APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattner79bdd882010-10-13 23:46:33 +00001896 APInt Res = *this - RHS;
1897 Overflow = isNonNegative() != RHS.isNonNegative() &&
1898 Res.isNonNegative() != isNonNegative();
1899 return Res;
1900}
1901
Chris Lattner698661c2010-10-14 00:05:07 +00001902APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattnerb9681ad2010-10-14 00:30:00 +00001903 APInt Res = *this-RHS;
1904 Overflow = Res.ugt(*this);
Chris Lattner698661c2010-10-14 00:05:07 +00001905 return Res;
1906}
1907
Chris Lattner2c819b02010-10-13 23:54:10 +00001908APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattner79bdd882010-10-13 23:46:33 +00001909 // MININT/-1 --> overflow.
1910 Overflow = isMinSignedValue() && RHS.isAllOnesValue();
1911 return sdiv(RHS);
1912}
1913
Chris Lattner2c819b02010-10-13 23:54:10 +00001914APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattner79bdd882010-10-13 23:46:33 +00001915 APInt Res = *this * RHS;
Simon Pilgrim4c0ea9d2017-02-23 16:07:04 +00001916
Chris Lattner79bdd882010-10-13 23:46:33 +00001917 if (*this != 0 && RHS != 0)
1918 Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS;
1919 else
1920 Overflow = false;
1921 return Res;
1922}
1923
Frits van Bommel0bb2ad22011-03-27 14:26:13 +00001924APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const {
1925 APInt Res = *this * RHS;
1926
1927 if (*this != 0 && RHS != 0)
1928 Overflow = Res.udiv(RHS) != *this || Res.udiv(*this) != RHS;
1929 else
1930 Overflow = false;
1931 return Res;
1932}
1933
David Majnemera2521382014-10-13 21:48:30 +00001934APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const {
1935 Overflow = ShAmt.uge(getBitWidth());
Chris Lattner79bdd882010-10-13 23:46:33 +00001936 if (Overflow)
David Majnemera2521382014-10-13 21:48:30 +00001937 return APInt(BitWidth, 0);
Chris Lattner79bdd882010-10-13 23:46:33 +00001938
1939 if (isNonNegative()) // Don't allow sign change.
David Majnemera2521382014-10-13 21:48:30 +00001940 Overflow = ShAmt.uge(countLeadingZeros());
Chris Lattner79bdd882010-10-13 23:46:33 +00001941 else
David Majnemera2521382014-10-13 21:48:30 +00001942 Overflow = ShAmt.uge(countLeadingOnes());
Simon Pilgrim4c0ea9d2017-02-23 16:07:04 +00001943
Chris Lattner79bdd882010-10-13 23:46:33 +00001944 return *this << ShAmt;
1945}
1946
David Majnemera2521382014-10-13 21:48:30 +00001947APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const {
1948 Overflow = ShAmt.uge(getBitWidth());
1949 if (Overflow)
1950 return APInt(BitWidth, 0);
1951
1952 Overflow = ShAmt.ugt(countLeadingZeros());
1953
1954 return *this << ShAmt;
1955}
1956
Chris Lattner79bdd882010-10-13 23:46:33 +00001957
1958
1959
Benjamin Kramer92d89982010-07-14 22:38:02 +00001960void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) {
Reid Spencer1ba83352007-02-21 03:55:44 +00001961 // Check our assumptions here
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +00001962 assert(!str.empty() && "Invalid string length");
Simon Pilgrim4c0ea9d2017-02-23 16:07:04 +00001963 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
Douglas Gregor663c0682011-09-14 15:54:46 +00001964 radix == 36) &&
1965 "Radix should be 2, 8, 10, 16, or 36!");
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +00001966
Daniel Dunbar3a1efd112009-08-13 02:33:34 +00001967 StringRef::iterator p = str.begin();
1968 size_t slen = str.size();
1969 bool isNeg = *p == '-';
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +00001970 if (*p == '-' || *p == '+') {
Daniel Dunbar3a1efd112009-08-13 02:33:34 +00001971 p++;
1972 slen--;
Eric Christopher43a1dec2009-08-21 04:10:31 +00001973 assert(slen && "String is only a sign, needs a value.");
Daniel Dunbar3a1efd112009-08-13 02:33:34 +00001974 }
Chris Lattnerdad2d092007-05-03 18:15:36 +00001975 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
Chris Lattnerb869a0a2009-04-25 18:34:04 +00001976 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
1977 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
Dan Gohmanb452d4e2010-03-24 19:38:02 +00001978 assert((((slen-1)*64)/22 <= numbits || radix != 10) &&
1979 "Insufficient bit width");
Reid Spencer1ba83352007-02-21 03:55:44 +00001980
Craig Topperb339c6d2017-05-03 15:46:24 +00001981 // Allocate memory if needed
1982 if (isSingleWord())
1983 U.VAL = 0;
1984 else
1985 U.pVal = getClearedMemory(getNumWords());
Reid Spencer1ba83352007-02-21 03:55:44 +00001986
1987 // Figure out if we can shift instead of multiply
Chris Lattner77527f52009-01-21 18:09:24 +00001988 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
Reid Spencer1ba83352007-02-21 03:55:44 +00001989
Reid Spencer1ba83352007-02-21 03:55:44 +00001990 // Enter digit traversal loop
Daniel Dunbar3a1efd112009-08-13 02:33:34 +00001991 for (StringRef::iterator e = str.end(); p != e; ++p) {
Erick Tryzelaardadb15712009-08-21 03:15:28 +00001992 unsigned digit = getDigit(*p, radix);
Erick Tryzelaar60964092009-08-21 06:48:37 +00001993 assert(digit < radix && "Invalid character in digit string");
Reid Spencer1ba83352007-02-21 03:55:44 +00001994
Reid Spencera93c9812007-05-16 19:18:22 +00001995 // Shift or multiply the value by the radix
Chris Lattnerb869a0a2009-04-25 18:34:04 +00001996 if (slen > 1) {
1997 if (shift)
1998 *this <<= shift;
1999 else
Craig Topperf15bec52017-05-08 04:55:12 +00002000 *this *= radix;
Chris Lattnerb869a0a2009-04-25 18:34:04 +00002001 }
Reid Spencer1ba83352007-02-21 03:55:44 +00002002
2003 // Add in the digit we just interpreted
Craig Topperb7d8faa2017-04-02 06:59:38 +00002004 *this += digit;
Reid Spencer100502d2007-02-17 03:16:00 +00002005 }
Reid Spencerb6b5cc32007-02-25 23:44:53 +00002006 // If its negative, put it in two's complement form
Craig Topperef0114c2017-05-10 20:01:38 +00002007 if (isNeg)
2008 this->negate();
Reid Spencer100502d2007-02-17 03:16:00 +00002009}
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002010
Chris Lattner17f71652008-08-17 07:19:36 +00002011void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002012 bool Signed, bool formatAsCLiteral) const {
Simon Pilgrim4c0ea9d2017-02-23 16:07:04 +00002013 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 ||
Douglas Gregor663c0682011-09-14 15:54:46 +00002014 Radix == 36) &&
Dylan Noblesmith1c419ff2011-12-16 20:36:31 +00002015 "Radix should be 2, 8, 10, 16, or 36!");
Eric Christopher820256b2009-08-21 04:06:45 +00002016
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002017 const char *Prefix = "";
2018 if (formatAsCLiteral) {
2019 switch (Radix) {
2020 case 2:
2021 // Binary literals are a non-standard extension added in gcc 4.3:
2022 // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html
2023 Prefix = "0b";
2024 break;
2025 case 8:
2026 Prefix = "0";
2027 break;
Dylan Noblesmith1c419ff2011-12-16 20:36:31 +00002028 case 10:
2029 break; // No prefix
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002030 case 16:
2031 Prefix = "0x";
2032 break;
Dylan Noblesmith1c419ff2011-12-16 20:36:31 +00002033 default:
2034 llvm_unreachable("Invalid radix!");
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002035 }
2036 }
2037
Chris Lattner17f71652008-08-17 07:19:36 +00002038 // First, check for a zero value and just short circuit the logic below.
2039 if (*this == 0) {
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002040 while (*Prefix) {
2041 Str.push_back(*Prefix);
2042 ++Prefix;
2043 };
Chris Lattner17f71652008-08-17 07:19:36 +00002044 Str.push_back('0');
2045 return;
2046 }
Eric Christopher820256b2009-08-21 04:06:45 +00002047
Douglas Gregor663c0682011-09-14 15:54:46 +00002048 static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
Eric Christopher820256b2009-08-21 04:06:45 +00002049
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002050 if (isSingleWord()) {
Chris Lattner17f71652008-08-17 07:19:36 +00002051 char Buffer[65];
Craig Toppere6a23182017-05-24 07:00:55 +00002052 char *BufPtr = std::end(Buffer);
Eric Christopher820256b2009-08-21 04:06:45 +00002053
Chris Lattner17f71652008-08-17 07:19:36 +00002054 uint64_t N;
Chris Lattnerb91c9032010-08-18 00:33:47 +00002055 if (!Signed) {
Chris Lattner17f71652008-08-17 07:19:36 +00002056 N = getZExtValue();
Chris Lattnerb91c9032010-08-18 00:33:47 +00002057 } else {
2058 int64_t I = getSExtValue();
2059 if (I >= 0) {
2060 N = I;
2061 } else {
2062 Str.push_back('-');
2063 N = -(uint64_t)I;
2064 }
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002065 }
Eric Christopher820256b2009-08-21 04:06:45 +00002066
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002067 while (*Prefix) {
2068 Str.push_back(*Prefix);
2069 ++Prefix;
2070 };
2071
Chris Lattner17f71652008-08-17 07:19:36 +00002072 while (N) {
2073 *--BufPtr = Digits[N % Radix];
2074 N /= Radix;
2075 }
Craig Toppere6a23182017-05-24 07:00:55 +00002076 Str.append(BufPtr, std::end(Buffer));
Chris Lattner17f71652008-08-17 07:19:36 +00002077 return;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002078 }
2079
Chris Lattner17f71652008-08-17 07:19:36 +00002080 APInt Tmp(*this);
Eric Christopher820256b2009-08-21 04:06:45 +00002081
Chris Lattner17f71652008-08-17 07:19:36 +00002082 if (Signed && isNegative()) {
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002083 // They want to print the signed version and it is a negative value
2084 // Flip the bits and add one to turn it into the equivalent positive
2085 // value and put a '-' in the result.
Craig Topperef0114c2017-05-10 20:01:38 +00002086 Tmp.negate();
Chris Lattner17f71652008-08-17 07:19:36 +00002087 Str.push_back('-');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002088 }
Eric Christopher820256b2009-08-21 04:06:45 +00002089
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002090 while (*Prefix) {
2091 Str.push_back(*Prefix);
2092 ++Prefix;
2093 };
2094
Chris Lattner17f71652008-08-17 07:19:36 +00002095 // We insert the digits backward, then reverse them to get the right order.
2096 unsigned StartDig = Str.size();
Eric Christopher820256b2009-08-21 04:06:45 +00002097
2098 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2099 // because the number of bits per digit (1, 3 and 4 respectively) divides
Craig Topperd7ed50d2017-04-02 06:59:36 +00002100 // equally. We just shift until the value is zero.
Douglas Gregor663c0682011-09-14 15:54:46 +00002101 if (Radix == 2 || Radix == 8 || Radix == 16) {
Chris Lattner17f71652008-08-17 07:19:36 +00002102 // Just shift tmp right for each digit width until it becomes zero
2103 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2104 unsigned MaskAmt = Radix - 1;
Eric Christopher820256b2009-08-21 04:06:45 +00002105
Craig Topperecb97da2017-05-10 18:15:24 +00002106 while (Tmp.getBoolValue()) {
Chris Lattner17f71652008-08-17 07:19:36 +00002107 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2108 Str.push_back(Digits[Digit]);
Craig Topperfc947bc2017-04-18 17:14:21 +00002109 Tmp.lshrInPlace(ShiftAmt);
Chris Lattner17f71652008-08-17 07:19:36 +00002110 }
2111 } else {
Craig Topperecb97da2017-05-10 18:15:24 +00002112 while (Tmp.getBoolValue()) {
Craig Topper8885f932017-05-19 16:43:54 +00002113 uint64_t Digit;
2114 udivrem(Tmp, Radix, Tmp, Digit);
Chris Lattner17f71652008-08-17 07:19:36 +00002115 assert(Digit < Radix && "divide failed");
2116 Str.push_back(Digits[Digit]);
Chris Lattner17f71652008-08-17 07:19:36 +00002117 }
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002118 }
Eric Christopher820256b2009-08-21 04:06:45 +00002119
Chris Lattner17f71652008-08-17 07:19:36 +00002120 // Reverse the digits before returning.
2121 std::reverse(Str.begin()+StartDig, Str.end());
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002122}
2123
Pawel Bylica6eeeac72015-04-06 13:31:39 +00002124/// Returns the APInt as a std::string. Note that this is an inefficient method.
2125/// It is better to pass in a SmallVector/SmallString to the methods above.
Chris Lattner17f71652008-08-17 07:19:36 +00002126std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
2127 SmallString<40> S;
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002128 toString(S, Radix, Signed, /* formatAsCLiteral = */false);
Daniel Dunbar8b0b1152009-08-19 20:07:03 +00002129 return S.str();
Reid Spencer1ba83352007-02-21 03:55:44 +00002130}
Chris Lattner6b695682007-08-16 15:56:55 +00002131
Aaron Ballman615eb472017-10-15 14:32:27 +00002132#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Yaron Kereneb2a2542016-01-29 20:50:44 +00002133LLVM_DUMP_METHOD void APInt::dump() const {
Chris Lattner17f71652008-08-17 07:19:36 +00002134 SmallString<40> S, U;
2135 this->toStringUnsigned(U);
2136 this->toStringSigned(S);
David Greenef32fcb42010-01-05 01:28:52 +00002137 dbgs() << "APInt(" << BitWidth << "b, "
Davide Italiano5a473d22017-01-31 21:26:18 +00002138 << U << "u " << S << "s)\n";
Chris Lattner17f71652008-08-17 07:19:36 +00002139}
Matthias Braun8c209aa2017-01-28 02:02:38 +00002140#endif
Chris Lattner17f71652008-08-17 07:19:36 +00002141
Chris Lattner0c19df42008-08-23 22:23:09 +00002142void APInt::print(raw_ostream &OS, bool isSigned) const {
Chris Lattner17f71652008-08-17 07:19:36 +00002143 SmallString<40> S;
Ted Kremenekb05f02e2011-06-15 00:51:55 +00002144 this->toString(S, 10, isSigned, /* formatAsCLiteral = */false);
Yaron Keren92e1b622015-03-18 10:17:07 +00002145 OS << S;
Chris Lattner17f71652008-08-17 07:19:36 +00002146}
2147
Chris Lattner6b695682007-08-16 15:56:55 +00002148// This implements a variety of operations on a representation of
2149// arbitrary precision, two's-complement, bignum integer values.
2150
Chris Lattner96cffa62009-08-23 23:11:28 +00002151// Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2152// and unrestricting assumption.
Craig Topper55229b72017-04-02 19:17:22 +00002153static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0,
2154 "Part width must be divisible by 2!");
Chris Lattner6b695682007-08-16 15:56:55 +00002155
2156/* Some handy functions local to this file. */
Chris Lattner6b695682007-08-16 15:56:55 +00002157
Craig Topper76f42462017-03-28 05:32:53 +00002158/* Returns the integer part with the least significant BITS set.
2159 BITS cannot be zero. */
Craig Topper55229b72017-04-02 19:17:22 +00002160static inline APInt::WordType lowBitMask(unsigned bits) {
2161 assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD);
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002162
Craig Topper55229b72017-04-02 19:17:22 +00002163 return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits);
Craig Topper76f42462017-03-28 05:32:53 +00002164}
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002165
Craig Topper76f42462017-03-28 05:32:53 +00002166/* Returns the value of the lower half of PART. */
Craig Topper55229b72017-04-02 19:17:22 +00002167static inline APInt::WordType lowHalf(APInt::WordType part) {
2168 return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2);
Craig Topper76f42462017-03-28 05:32:53 +00002169}
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002170
Craig Topper76f42462017-03-28 05:32:53 +00002171/* Returns the value of the upper half of PART. */
Craig Topper55229b72017-04-02 19:17:22 +00002172static inline APInt::WordType highHalf(APInt::WordType part) {
2173 return part >> (APInt::APINT_BITS_PER_WORD / 2);
Craig Topper76f42462017-03-28 05:32:53 +00002174}
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002175
Craig Topper76f42462017-03-28 05:32:53 +00002176/* Returns the bit number of the most significant set bit of a part.
2177 If the input number has no bits set -1U is returned. */
Craig Topper55229b72017-04-02 19:17:22 +00002178static unsigned partMSB(APInt::WordType value) {
Craig Topper76f42462017-03-28 05:32:53 +00002179 return findLastSet(value, ZB_Max);
2180}
Chris Lattner6b695682007-08-16 15:56:55 +00002181
Craig Topper76f42462017-03-28 05:32:53 +00002182/* Returns the bit number of the least significant set bit of a
2183 part. If the input number has no bits set -1U is returned. */
Craig Topper55229b72017-04-02 19:17:22 +00002184static unsigned partLSB(APInt::WordType value) {
Craig Topper76f42462017-03-28 05:32:53 +00002185 return findFirstSet(value, ZB_Max);
Alexander Kornienkof00654e2015-06-23 09:49:53 +00002186}
Chris Lattner6b695682007-08-16 15:56:55 +00002187
2188/* Sets the least significant part of a bignum to the input value, and
2189 zeroes out higher parts. */
Craig Topper55229b72017-04-02 19:17:22 +00002190void APInt::tcSet(WordType *dst, WordType part, unsigned parts) {
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002191 assert(parts > 0);
Neil Boothb6182162007-10-08 13:47:12 +00002192
Chris Lattner6b695682007-08-16 15:56:55 +00002193 dst[0] = part;
Craig Topperb0038162017-03-28 05:32:52 +00002194 for (unsigned i = 1; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002195 dst[i] = 0;
2196}
2197
2198/* Assign one bignum to another. */
Craig Topper55229b72017-04-02 19:17:22 +00002199void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) {
Craig Topperb0038162017-03-28 05:32:52 +00002200 for (unsigned i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002201 dst[i] = src[i];
2202}
2203
2204/* Returns true if a bignum is zero, false otherwise. */
Craig Topper55229b72017-04-02 19:17:22 +00002205bool APInt::tcIsZero(const WordType *src, unsigned parts) {
Craig Topperb0038162017-03-28 05:32:52 +00002206 for (unsigned i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002207 if (src[i])
2208 return false;
2209
2210 return true;
2211}
2212
2213/* Extract the given bit of a bignum; returns 0 or 1. */
Craig Topper55229b72017-04-02 19:17:22 +00002214int APInt::tcExtractBit(const WordType *parts, unsigned bit) {
Craig Topper00b47ee2017-04-02 19:35:18 +00002215 return (parts[whichWord(bit)] & maskBit(bit)) != 0;
Chris Lattner6b695682007-08-16 15:56:55 +00002216}
2217
John McCalldcb9a7a2010-02-28 02:51:25 +00002218/* Set the given bit of a bignum. */
Craig Topper55229b72017-04-02 19:17:22 +00002219void APInt::tcSetBit(WordType *parts, unsigned bit) {
Craig Topper00b47ee2017-04-02 19:35:18 +00002220 parts[whichWord(bit)] |= maskBit(bit);
Chris Lattner6b695682007-08-16 15:56:55 +00002221}
2222
John McCalldcb9a7a2010-02-28 02:51:25 +00002223/* Clears the given bit of a bignum. */
Craig Topper55229b72017-04-02 19:17:22 +00002224void APInt::tcClearBit(WordType *parts, unsigned bit) {
Craig Topper00b47ee2017-04-02 19:35:18 +00002225 parts[whichWord(bit)] &= ~maskBit(bit);
John McCalldcb9a7a2010-02-28 02:51:25 +00002226}
2227
Neil Boothc8b650a2007-10-06 00:43:45 +00002228/* Returns the bit number of the least significant set bit of a
2229 number. If the input number has no bits set -1U is returned. */
Craig Topper55229b72017-04-02 19:17:22 +00002230unsigned APInt::tcLSB(const WordType *parts, unsigned n) {
Craig Topperb0038162017-03-28 05:32:52 +00002231 for (unsigned i = 0; i < n; i++) {
2232 if (parts[i] != 0) {
2233 unsigned lsb = partLSB(parts[i]);
Chris Lattner6b695682007-08-16 15:56:55 +00002234
Craig Topper55229b72017-04-02 19:17:22 +00002235 return lsb + i * APINT_BITS_PER_WORD;
Craig Topperb0038162017-03-28 05:32:52 +00002236 }
Chris Lattner6b695682007-08-16 15:56:55 +00002237 }
2238
2239 return -1U;
2240}
2241
Neil Boothc8b650a2007-10-06 00:43:45 +00002242/* Returns the bit number of the most significant set bit of a number.
2243 If the input number has no bits set -1U is returned. */
Craig Topper55229b72017-04-02 19:17:22 +00002244unsigned APInt::tcMSB(const WordType *parts, unsigned n) {
Chris Lattner6b695682007-08-16 15:56:55 +00002245 do {
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002246 --n;
Chris Lattner6b695682007-08-16 15:56:55 +00002247
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002248 if (parts[n] != 0) {
Craig Topperb0038162017-03-28 05:32:52 +00002249 unsigned msb = partMSB(parts[n]);
Chris Lattner6b695682007-08-16 15:56:55 +00002250
Craig Topper55229b72017-04-02 19:17:22 +00002251 return msb + n * APINT_BITS_PER_WORD;
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002252 }
Chris Lattner6b695682007-08-16 15:56:55 +00002253 } while (n);
2254
2255 return -1U;
2256}
2257
Neil Boothb6182162007-10-08 13:47:12 +00002258/* Copy the bit vector of width srcBITS from SRC, starting at bit
2259 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2260 the least significant bit of DST. All high bits above srcBITS in
2261 DST are zero-filled. */
2262void
Craig Topper55229b72017-04-02 19:17:22 +00002263APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src,
Craig Topper6a8518082017-03-28 05:32:55 +00002264 unsigned srcBits, unsigned srcLSB) {
Craig Topper55229b72017-04-02 19:17:22 +00002265 unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002266 assert(dstParts <= dstCount);
Neil Boothb6182162007-10-08 13:47:12 +00002267
Craig Topper55229b72017-04-02 19:17:22 +00002268 unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD;
Neil Boothb6182162007-10-08 13:47:12 +00002269 tcAssign (dst, src + firstSrcPart, dstParts);
2270
Craig Topper55229b72017-04-02 19:17:22 +00002271 unsigned shift = srcLSB % APINT_BITS_PER_WORD;
Neil Boothb6182162007-10-08 13:47:12 +00002272 tcShiftRight (dst, dstParts, shift);
2273
Craig Topper55229b72017-04-02 19:17:22 +00002274 /* We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC
Neil Boothb6182162007-10-08 13:47:12 +00002275 in DST. If this is less that srcBits, append the rest, else
2276 clear the high bits. */
Craig Topper55229b72017-04-02 19:17:22 +00002277 unsigned n = dstParts * APINT_BITS_PER_WORD - shift;
Neil Boothb6182162007-10-08 13:47:12 +00002278 if (n < srcBits) {
Craig Topper55229b72017-04-02 19:17:22 +00002279 WordType mask = lowBitMask (srcBits - n);
Neil Boothb6182162007-10-08 13:47:12 +00002280 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
Craig Topper55229b72017-04-02 19:17:22 +00002281 << n % APINT_BITS_PER_WORD);
Neil Boothb6182162007-10-08 13:47:12 +00002282 } else if (n > srcBits) {
Craig Topper55229b72017-04-02 19:17:22 +00002283 if (srcBits % APINT_BITS_PER_WORD)
2284 dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD);
Neil Boothb6182162007-10-08 13:47:12 +00002285 }
2286
2287 /* Clear high parts. */
2288 while (dstParts < dstCount)
2289 dst[dstParts++] = 0;
2290}
2291
Chris Lattner6b695682007-08-16 15:56:55 +00002292/* DST += RHS + C where C is zero or one. Returns the carry flag. */
Craig Topper55229b72017-04-02 19:17:22 +00002293APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs,
2294 WordType c, unsigned parts) {
Chris Lattner6b695682007-08-16 15:56:55 +00002295 assert(c <= 1);
2296
Craig Topperb0038162017-03-28 05:32:52 +00002297 for (unsigned i = 0; i < parts; i++) {
Craig Topper55229b72017-04-02 19:17:22 +00002298 WordType l = dst[i];
Chris Lattner6b695682007-08-16 15:56:55 +00002299 if (c) {
2300 dst[i] += rhs[i] + 1;
2301 c = (dst[i] <= l);
2302 } else {
2303 dst[i] += rhs[i];
2304 c = (dst[i] < l);
2305 }
2306 }
2307
2308 return c;
2309}
2310
Craig Topper92fc4772017-04-13 04:36:06 +00002311/// This function adds a single "word" integer, src, to the multiple
2312/// "word" integer array, dst[]. dst[] is modified to reflect the addition and
2313/// 1 is returned if there is a carry out, otherwise 0 is returned.
2314/// @returns the carry of the addition.
2315APInt::WordType APInt::tcAddPart(WordType *dst, WordType src,
2316 unsigned parts) {
2317 for (unsigned i = 0; i < parts; ++i) {
2318 dst[i] += src;
2319 if (dst[i] >= src)
2320 return 0; // No need to carry so exit early.
2321 src = 1; // Carry one to next digit.
2322 }
2323
2324 return 1;
2325}
2326
Chris Lattner6b695682007-08-16 15:56:55 +00002327/* DST -= RHS + C where C is zero or one. Returns the carry flag. */
Craig Topper55229b72017-04-02 19:17:22 +00002328APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs,
2329 WordType c, unsigned parts) {
Chris Lattner6b695682007-08-16 15:56:55 +00002330 assert(c <= 1);
2331
Craig Topperb0038162017-03-28 05:32:52 +00002332 for (unsigned i = 0; i < parts; i++) {
Craig Topper55229b72017-04-02 19:17:22 +00002333 WordType l = dst[i];
Chris Lattner6b695682007-08-16 15:56:55 +00002334 if (c) {
2335 dst[i] -= rhs[i] + 1;
2336 c = (dst[i] >= l);
2337 } else {
2338 dst[i] -= rhs[i];
2339 c = (dst[i] > l);
2340 }
2341 }
2342
2343 return c;
2344}
2345
Craig Topper92fc4772017-04-13 04:36:06 +00002346/// This function subtracts a single "word" (64-bit word), src, from
2347/// the multi-word integer array, dst[], propagating the borrowed 1 value until
2348/// no further borrowing is needed or it runs out of "words" in dst. The result
2349/// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not
2350/// exhausted. In other words, if src > dst then this function returns 1,
2351/// otherwise 0.
2352/// @returns the borrow out of the subtraction
2353APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src,
2354 unsigned parts) {
2355 for (unsigned i = 0; i < parts; ++i) {
2356 WordType Dst = dst[i];
2357 dst[i] -= src;
2358 if (src <= Dst)
2359 return 0; // No need to borrow so exit early.
2360 src = 1; // We have to "borrow 1" from next "word"
2361 }
2362
2363 return 1;
2364}
2365
Chris Lattner6b695682007-08-16 15:56:55 +00002366/* Negate a bignum in-place. */
Craig Topper55229b72017-04-02 19:17:22 +00002367void APInt::tcNegate(WordType *dst, unsigned parts) {
Chris Lattner6b695682007-08-16 15:56:55 +00002368 tcComplement(dst, parts);
2369 tcIncrement(dst, parts);
2370}
2371
Neil Boothc8b650a2007-10-06 00:43:45 +00002372/* DST += SRC * MULTIPLIER + CARRY if add is true
2373 DST = SRC * MULTIPLIER + CARRY if add is false
Chris Lattner6b695682007-08-16 15:56:55 +00002374
2375 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2376 they must start at the same point, i.e. DST == SRC.
2377
2378 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2379 returned. Otherwise DST is filled with the least significant
2380 DSTPARTS parts of the result, and if all of the omitted higher
2381 parts were zero return zero, otherwise overflow occurred and
2382 return one. */
Craig Topper55229b72017-04-02 19:17:22 +00002383int APInt::tcMultiplyPart(WordType *dst, const WordType *src,
2384 WordType multiplier, WordType carry,
Craig Topper6a8518082017-03-28 05:32:55 +00002385 unsigned srcParts, unsigned dstParts,
2386 bool add) {
Chris Lattner6b695682007-08-16 15:56:55 +00002387 /* Otherwise our writes of DST kill our later reads of SRC. */
2388 assert(dst <= src || dst >= src + srcParts);
2389 assert(dstParts <= srcParts + 1);
2390
2391 /* N loops; minimum of dstParts and srcParts. */
Craig Topper0cbab7c2017-05-08 06:34:39 +00002392 unsigned n = std::min(dstParts, srcParts);
Chris Lattner6b695682007-08-16 15:56:55 +00002393
Craig Topperc96a84d2017-05-08 06:34:41 +00002394 for (unsigned i = 0; i < n; i++) {
Craig Topper55229b72017-04-02 19:17:22 +00002395 WordType low, mid, high, srcPart;
Chris Lattner6b695682007-08-16 15:56:55 +00002396
2397 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2398
2399 This cannot overflow, because
2400
2401 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2402
2403 which is less than n^2. */
2404
2405 srcPart = src[i];
2406
Craig Topper6a8518082017-03-28 05:32:55 +00002407 if (multiplier == 0 || srcPart == 0) {
Chris Lattner6b695682007-08-16 15:56:55 +00002408 low = carry;
2409 high = 0;
2410 } else {
2411 low = lowHalf(srcPart) * lowHalf(multiplier);
2412 high = highHalf(srcPart) * highHalf(multiplier);
2413
2414 mid = lowHalf(srcPart) * highHalf(multiplier);
2415 high += highHalf(mid);
Craig Topper55229b72017-04-02 19:17:22 +00002416 mid <<= APINT_BITS_PER_WORD / 2;
Chris Lattner6b695682007-08-16 15:56:55 +00002417 if (low + mid < low)
2418 high++;
2419 low += mid;
2420
2421 mid = highHalf(srcPart) * lowHalf(multiplier);
2422 high += highHalf(mid);
Craig Topper55229b72017-04-02 19:17:22 +00002423 mid <<= APINT_BITS_PER_WORD / 2;
Chris Lattner6b695682007-08-16 15:56:55 +00002424 if (low + mid < low)
2425 high++;
2426 low += mid;
2427
2428 /* Now add carry. */
2429 if (low + carry < low)
2430 high++;
2431 low += carry;
2432 }
2433
2434 if (add) {
2435 /* And now DST[i], and store the new low part there. */
2436 if (low + dst[i] < low)
2437 high++;
2438 dst[i] += low;
2439 } else
2440 dst[i] = low;
2441
2442 carry = high;
2443 }
2444
Craig Topperc96a84d2017-05-08 06:34:41 +00002445 if (srcParts < dstParts) {
Chris Lattner6b695682007-08-16 15:56:55 +00002446 /* Full multiplication, there is no overflow. */
Craig Topperc96a84d2017-05-08 06:34:41 +00002447 assert(srcParts + 1 == dstParts);
2448 dst[srcParts] = carry;
Chris Lattner6b695682007-08-16 15:56:55 +00002449 return 0;
Chris Lattner6b695682007-08-16 15:56:55 +00002450 }
Craig Toppera6c142a2017-05-08 06:34:36 +00002451
2452 /* We overflowed if there is carry. */
2453 if (carry)
2454 return 1;
2455
2456 /* We would overflow if any significant unwritten parts would be
2457 non-zero. This is true if any remaining src parts are non-zero
2458 and the multiplier is non-zero. */
2459 if (multiplier)
Craig Topperc96a84d2017-05-08 06:34:41 +00002460 for (unsigned i = dstParts; i < srcParts; i++)
Craig Toppera6c142a2017-05-08 06:34:36 +00002461 if (src[i])
2462 return 1;
2463
2464 /* We fitted in the narrow destination. */
2465 return 0;
Chris Lattner6b695682007-08-16 15:56:55 +00002466}
2467
2468/* DST = LHS * RHS, where DST has the same width as the operands and
2469 is filled with the least significant parts of the result. Returns
2470 one if overflow occurred, otherwise zero. DST must be disjoint
2471 from both operands. */
Craig Topper55229b72017-04-02 19:17:22 +00002472int APInt::tcMultiply(WordType *dst, const WordType *lhs,
2473 const WordType *rhs, unsigned parts) {
Chris Lattner6b695682007-08-16 15:56:55 +00002474 assert(dst != lhs && dst != rhs);
2475
Craig Topperb0038162017-03-28 05:32:52 +00002476 int overflow = 0;
Chris Lattner6b695682007-08-16 15:56:55 +00002477 tcSet(dst, 0, parts);
2478
Craig Topperb0038162017-03-28 05:32:52 +00002479 for (unsigned i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002480 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2481 parts - i, true);
2482
2483 return overflow;
2484}
2485
Craig Topper0acb6652017-05-09 16:47:33 +00002486/// DST = LHS * RHS, where DST has width the sum of the widths of the
2487/// operands. No overflow occurs. DST must be disjoint from both operands.
2488void APInt::tcFullMultiply(WordType *dst, const WordType *lhs,
2489 const WordType *rhs, unsigned lhsParts,
2490 unsigned rhsParts) {
Neil Booth0ea72a92007-10-06 00:24:48 +00002491 /* Put the narrower number on the LHS for less loops below. */
Craig Toppera6c142a2017-05-08 06:34:36 +00002492 if (lhsParts > rhsParts)
Neil Booth0ea72a92007-10-06 00:24:48 +00002493 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
Chris Lattner6b695682007-08-16 15:56:55 +00002494
Craig Toppera6c142a2017-05-08 06:34:36 +00002495 assert(dst != lhs && dst != rhs);
Chris Lattner6b695682007-08-16 15:56:55 +00002496
Craig Toppera6c142a2017-05-08 06:34:36 +00002497 tcSet(dst, 0, rhsParts);
Chris Lattner6b695682007-08-16 15:56:55 +00002498
Craig Toppera6c142a2017-05-08 06:34:36 +00002499 for (unsigned i = 0; i < lhsParts; i++)
2500 tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true);
Chris Lattner6b695682007-08-16 15:56:55 +00002501}
2502
2503/* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2504 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2505 set REMAINDER to the remainder, return zero. i.e.
2506
2507 OLD_LHS = RHS * LHS + REMAINDER
2508
2509 SCRATCH is a bignum of the same size as the operands and result for
2510 use by the routine; its contents need not be initialized and are
2511 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2512*/
Craig Topper55229b72017-04-02 19:17:22 +00002513int APInt::tcDivide(WordType *lhs, const WordType *rhs,
2514 WordType *remainder, WordType *srhs,
Craig Topper6a8518082017-03-28 05:32:55 +00002515 unsigned parts) {
Chris Lattner6b695682007-08-16 15:56:55 +00002516 assert(lhs != remainder && lhs != srhs && remainder != srhs);
2517
Craig Topperb0038162017-03-28 05:32:52 +00002518 unsigned shiftCount = tcMSB(rhs, parts) + 1;
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002519 if (shiftCount == 0)
Chris Lattner6b695682007-08-16 15:56:55 +00002520 return true;
2521
Craig Topper55229b72017-04-02 19:17:22 +00002522 shiftCount = parts * APINT_BITS_PER_WORD - shiftCount;
2523 unsigned n = shiftCount / APINT_BITS_PER_WORD;
2524 WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD);
Chris Lattner6b695682007-08-16 15:56:55 +00002525
2526 tcAssign(srhs, rhs, parts);
2527 tcShiftLeft(srhs, parts, shiftCount);
2528 tcAssign(remainder, lhs, parts);
2529 tcSet(lhs, 0, parts);
2530
2531 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2532 the total. */
Dan Gohmanb452d4e2010-03-24 19:38:02 +00002533 for (;;) {
Craig Toppera584af52017-05-10 07:50:17 +00002534 int compare = tcCompare(remainder, srhs, parts);
2535 if (compare >= 0) {
2536 tcSubtract(remainder, srhs, 0, parts);
2537 lhs[n] |= mask;
2538 }
Chris Lattner6b695682007-08-16 15:56:55 +00002539
Craig Toppera584af52017-05-10 07:50:17 +00002540 if (shiftCount == 0)
2541 break;
2542 shiftCount--;
2543 tcShiftRight(srhs, parts, 1);
2544 if ((mask >>= 1) == 0) {
2545 mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1);
2546 n--;
2547 }
Chris Lattner6b695682007-08-16 15:56:55 +00002548 }
2549
2550 return false;
2551}
2552
Craig Toppera8a4f0d2017-04-18 04:39:48 +00002553/// Shift a bignum left Cound bits in-place. Shifted in bits are zero. There are
2554/// no restrictions on Count.
2555void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) {
2556 // Don't bother performing a no-op shift.
2557 if (!Count)
2558 return;
Chris Lattner6b695682007-08-16 15:56:55 +00002559
Craig Topperc6b05682017-04-24 17:00:22 +00002560 // WordShift is the inter-part shift; BitShift is the intra-part shift.
Craig Toppera8a4f0d2017-04-18 04:39:48 +00002561 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2562 unsigned BitShift = Count % APINT_BITS_PER_WORD;
Chris Lattner6b695682007-08-16 15:56:55 +00002563
Craig Toppera8a4f0d2017-04-18 04:39:48 +00002564 // Fastpath for moving by whole words.
2565 if (BitShift == 0) {
2566 std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE);
2567 } else {
2568 while (Words-- > WordShift) {
2569 Dst[Words] = Dst[Words - WordShift] << BitShift;
2570 if (Words > WordShift)
2571 Dst[Words] |=
2572 Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift);
Neil Boothb6182162007-10-08 13:47:12 +00002573 }
Neil Boothb6182162007-10-08 13:47:12 +00002574 }
Craig Toppera8a4f0d2017-04-18 04:39:48 +00002575
2576 // Fill in the remainder with 0s.
2577 std::memset(Dst, 0, WordShift * APINT_WORD_SIZE);
Chris Lattner6b695682007-08-16 15:56:55 +00002578}
2579
Craig Topper9575d8f2017-04-17 21:43:43 +00002580/// Shift a bignum right Count bits in-place. Shifted in bits are zero. There
2581/// are no restrictions on Count.
2582void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) {
2583 // Don't bother performing a no-op shift.
2584 if (!Count)
2585 return;
Chris Lattner6b695682007-08-16 15:56:55 +00002586
Craig Topperc6b05682017-04-24 17:00:22 +00002587 // WordShift is the inter-part shift; BitShift is the intra-part shift.
Craig Topper9575d8f2017-04-17 21:43:43 +00002588 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2589 unsigned BitShift = Count % APINT_BITS_PER_WORD;
Chris Lattner6b695682007-08-16 15:56:55 +00002590
Craig Topper9575d8f2017-04-17 21:43:43 +00002591 unsigned WordsToMove = Words - WordShift;
2592 // Fastpath for moving by whole words.
2593 if (BitShift == 0) {
2594 std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE);
2595 } else {
2596 for (unsigned i = 0; i != WordsToMove; ++i) {
2597 Dst[i] = Dst[i + WordShift] >> BitShift;
2598 if (i + 1 != WordsToMove)
2599 Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift);
Neil Boothb6182162007-10-08 13:47:12 +00002600 }
Chris Lattner6b695682007-08-16 15:56:55 +00002601 }
Craig Topper9575d8f2017-04-17 21:43:43 +00002602
2603 // Fill in the remainder with 0s.
2604 std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE);
Chris Lattner6b695682007-08-16 15:56:55 +00002605}
2606
2607/* Bitwise and of two bignums. */
Craig Topper55229b72017-04-02 19:17:22 +00002608void APInt::tcAnd(WordType *dst, const WordType *rhs, unsigned parts) {
Craig Topperb0038162017-03-28 05:32:52 +00002609 for (unsigned i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002610 dst[i] &= rhs[i];
2611}
2612
2613/* Bitwise inclusive or of two bignums. */
Craig Topper55229b72017-04-02 19:17:22 +00002614void APInt::tcOr(WordType *dst, const WordType *rhs, unsigned parts) {
Craig Topperb0038162017-03-28 05:32:52 +00002615 for (unsigned i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002616 dst[i] |= rhs[i];
2617}
2618
2619/* Bitwise exclusive or of two bignums. */
Craig Topper55229b72017-04-02 19:17:22 +00002620void APInt::tcXor(WordType *dst, const WordType *rhs, unsigned parts) {
Craig Topperb0038162017-03-28 05:32:52 +00002621 for (unsigned i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002622 dst[i] ^= rhs[i];
2623}
2624
2625/* Complement a bignum in-place. */
Craig Topper55229b72017-04-02 19:17:22 +00002626void APInt::tcComplement(WordType *dst, unsigned parts) {
Craig Topperb0038162017-03-28 05:32:52 +00002627 for (unsigned i = 0; i < parts; i++)
Chris Lattner6b695682007-08-16 15:56:55 +00002628 dst[i] = ~dst[i];
2629}
2630
2631/* Comparison (unsigned) of two bignums. */
Craig Topper55229b72017-04-02 19:17:22 +00002632int APInt::tcCompare(const WordType *lhs, const WordType *rhs,
Craig Topper6a8518082017-03-28 05:32:55 +00002633 unsigned parts) {
Chris Lattner6b695682007-08-16 15:56:55 +00002634 while (parts) {
Craig Topper99cfe4f2017-04-01 21:50:06 +00002635 parts--;
Craig Topper1dc8fc82017-04-21 16:13:15 +00002636 if (lhs[parts] != rhs[parts])
2637 return (lhs[parts] > rhs[parts]) ? 1 : -1;
Craig Topper99cfe4f2017-04-01 21:50:06 +00002638 }
Chris Lattner6b695682007-08-16 15:56:55 +00002639
2640 return 0;
2641}
2642
Chris Lattner6b695682007-08-16 15:56:55 +00002643/* Set the least significant BITS bits of a bignum, clear the
2644 rest. */
Craig Topper55229b72017-04-02 19:17:22 +00002645void APInt::tcSetLeastSignificantBits(WordType *dst, unsigned parts,
Craig Topper6a8518082017-03-28 05:32:55 +00002646 unsigned bits) {
Craig Topperb0038162017-03-28 05:32:52 +00002647 unsigned i = 0;
Craig Topper55229b72017-04-02 19:17:22 +00002648 while (bits > APINT_BITS_PER_WORD) {
2649 dst[i++] = ~(WordType) 0;
2650 bits -= APINT_BITS_PER_WORD;
Chris Lattner6b695682007-08-16 15:56:55 +00002651 }
2652
2653 if (bits)
Craig Topper55229b72017-04-02 19:17:22 +00002654 dst[i++] = ~(WordType) 0 >> (APINT_BITS_PER_WORD - bits);
Chris Lattner6b695682007-08-16 15:56:55 +00002655
2656 while (i < parts)
2657 dst[i++] = 0;
2658}
Tim Shen802c31c2018-06-25 23:49:20 +00002659
2660APInt llvm::APIntOps::RoundingUDiv(const APInt &A, const APInt &B,
2661 APInt::Rounding RM) {
2662 // Currently udivrem always rounds down.
2663 switch (RM) {
2664 case APInt::Rounding::DOWN:
2665 case APInt::Rounding::TOWARD_ZERO:
2666 return A.udiv(B);
2667 case APInt::Rounding::UP: {
2668 APInt Quo, Rem;
2669 APInt::udivrem(A, B, Quo, Rem);
2670 if (Rem == 0)
2671 return Quo;
2672 return Quo + 1;
2673 }
2674 }
Simon Pilgrim9b3b0fe2018-06-26 09:31:18 +00002675 llvm_unreachable("Unknown APInt::Rounding enum");
Tim Shen802c31c2018-06-25 23:49:20 +00002676}
2677
2678APInt llvm::APIntOps::RoundingSDiv(const APInt &A, const APInt &B,
2679 APInt::Rounding RM) {
2680 switch (RM) {
2681 case APInt::Rounding::DOWN:
2682 case APInt::Rounding::UP: {
2683 APInt Quo, Rem;
2684 APInt::sdivrem(A, B, Quo, Rem);
2685 if (Rem == 0)
2686 return Quo;
2687 // This algorithm deals with arbitrary rounding mode used by sdivrem.
2688 // We want to check whether the non-integer part of the mathematical value
2689 // is negative or not. If the non-integer part is negative, we need to round
2690 // down from Quo; otherwise, if it's positive or 0, we return Quo, as it's
2691 // already rounded down.
2692 if (RM == APInt::Rounding::DOWN) {
2693 if (Rem.isNegative() != B.isNegative())
2694 return Quo - 1;
2695 return Quo;
2696 }
2697 if (Rem.isNegative() != B.isNegative())
2698 return Quo;
2699 return Quo + 1;
2700 }
2701 // Currently sdiv rounds twards zero.
2702 case APInt::Rounding::TOWARD_ZERO:
2703 return A.sdiv(B);
2704 }
Simon Pilgrim9b3b0fe2018-06-26 09:31:18 +00002705 llvm_unreachable("Unknown APInt::Rounding enum");
Tim Shen802c31c2018-06-25 23:49:20 +00002706}
Krzysztof Parzyszek90f32492018-08-02 19:13:35 +00002707
2708Optional<APInt>
2709llvm::APIntOps::SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2710 unsigned RangeWidth) {
2711 unsigned CoeffWidth = A.getBitWidth();
2712 assert(CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth());
2713 assert(RangeWidth <= CoeffWidth &&
2714 "Value range width should be less than coefficient width");
2715 assert(RangeWidth > 1 && "Value range bit width should be > 1");
2716
2717 LLVM_DEBUG(dbgs() << __func__ << ": solving " << A << "x^2 + " << B
2718 << "x + " << C << ", rw:" << RangeWidth << '\n');
2719
2720 // Identify 0 as a (non)solution immediately.
2721 if (C.sextOrTrunc(RangeWidth).isNullValue() ) {
2722 LLVM_DEBUG(dbgs() << __func__ << ": zero solution\n");
2723 return APInt(CoeffWidth, 0);
2724 }
2725
2726 // The result of APInt arithmetic has the same bit width as the operands,
2727 // so it can actually lose high bits. A product of two n-bit integers needs
2728 // 2n-1 bits to represent the full value.
2729 // The operation done below (on quadratic coefficients) that can produce
2730 // the largest value is the evaluation of the equation during bisection,
2731 // which needs 3 times the bitwidth of the coefficient, so the total number
2732 // of required bits is 3n.
2733 //
2734 // The purpose of this extension is to simulate the set Z of all integers,
2735 // where n+1 > n for all n in Z. In Z it makes sense to talk about positive
2736 // and negative numbers (not so much in a modulo arithmetic). The method
2737 // used to solve the equation is based on the standard formula for real
2738 // numbers, and uses the concepts of "positive" and "negative" with their
2739 // usual meanings.
2740 CoeffWidth *= 3;
2741 A = A.sext(CoeffWidth);
2742 B = B.sext(CoeffWidth);
2743 C = C.sext(CoeffWidth);
2744
2745 // Make A > 0 for simplicity. Negate cannot overflow at this point because
2746 // the bit width has increased.
2747 if (A.isNegative()) {
2748 A.negate();
2749 B.negate();
2750 C.negate();
2751 }
2752
2753 // Solving an equation q(x) = 0 with coefficients in modular arithmetic
2754 // is really solving a set of equations q(x) = kR for k = 0, 1, 2, ...,
2755 // and R = 2^BitWidth.
2756 // Since we're trying not only to find exact solutions, but also values
2757 // that "wrap around", such a set will always have a solution, i.e. an x
2758 // that satisfies at least one of the equations, or such that |q(x)|
2759 // exceeds kR, while |q(x-1)| for the same k does not.
2760 //
2761 // We need to find a value k, such that Ax^2 + Bx + C = kR will have a
2762 // positive solution n (in the above sense), and also such that the n
2763 // will be the least among all solutions corresponding to k = 0, 1, ...
2764 // (more precisely, the least element in the set
2765 // { n(k) | k is such that a solution n(k) exists }).
2766 //
2767 // Consider the parabola (over real numbers) that corresponds to the
2768 // quadratic equation. Since A > 0, the arms of the parabola will point
2769 // up. Picking different values of k will shift it up and down by R.
2770 //
2771 // We want to shift the parabola in such a way as to reduce the problem
2772 // of solving q(x) = kR to solving shifted_q(x) = 0.
2773 // (The interesting solutions are the ceilings of the real number
2774 // solutions.)
2775 APInt R = APInt::getOneBitSet(CoeffWidth, RangeWidth);
2776 APInt TwoA = 2 * A;
2777 APInt SqrB = B * B;
2778 bool PickLow;
2779
Krzysztof Parzyszekdfd5fad2018-08-02 19:38:18 +00002780 auto RoundUp = [] (const APInt &V, const APInt &A) -> APInt {
Krzysztof Parzyszek90f32492018-08-02 19:13:35 +00002781 assert(A.isStrictlyPositive());
2782 APInt T = V.abs().urem(A);
2783 if (T.isNullValue())
2784 return V;
2785 return V.isNegative() ? V+T : V+(A-T);
2786 };
2787
2788 // The vertex of the parabola is at -B/2A, but since A > 0, it's negative
2789 // iff B is positive.
2790 if (B.isNonNegative()) {
2791 // If B >= 0, the vertex it at a negative location (or at 0), so in
2792 // order to have a non-negative solution we need to pick k that makes
2793 // C-kR negative. To satisfy all the requirements for the solution
2794 // that we are looking for, it needs to be closest to 0 of all k.
2795 C = C.srem(R);
2796 if (C.isStrictlyPositive())
2797 C -= R;
2798 // Pick the greater solution.
2799 PickLow = false;
2800 } else {
2801 // If B < 0, the vertex is at a positive location. For any solution
2802 // to exist, the discriminant must be non-negative. This means that
2803 // C-kR <= B^2/4A is a necessary condition for k, i.e. there is a
2804 // lower bound on values of k: kR >= C - B^2/4A.
2805 APInt LowkR = C - SqrB.udiv(2*TwoA); // udiv because all values > 0.
2806 // Round LowkR up (towards +inf) to the nearest kR.
2807 LowkR = RoundUp(LowkR, R);
2808
2809 // If there exists k meeting the condition above, and such that
2810 // C-kR > 0, there will be two positive real number solutions of
2811 // q(x) = kR. Out of all such values of k, pick the one that makes
2812 // C-kR closest to 0, (i.e. pick maximum k such that C-kR > 0).
2813 // In other words, find maximum k such that LowkR <= kR < C.
2814 if (C.sgt(LowkR)) {
2815 // If LowkR < C, then such a k is guaranteed to exist because
2816 // LowkR itself is a multiple of R.
2817 C -= -RoundUp(-C, R); // C = C - RoundDown(C, R)
2818 // Pick the smaller solution.
2819 PickLow = true;
2820 } else {
2821 // If C-kR < 0 for all potential k's, it means that one solution
2822 // will be negative, while the other will be positive. The positive
2823 // solution will shift towards 0 if the parabola is moved up.
2824 // Pick the kR closest to the lower bound (i.e. make C-kR closest
2825 // to 0, or in other words, out of all parabolas that have solutions,
2826 // pick the one that is the farthest "up").
2827 // Since LowkR is itself a multiple of R, simply take C-LowkR.
2828 C -= LowkR;
2829 // Pick the greater solution.
2830 PickLow = false;
2831 }
2832 }
2833
2834 LLVM_DEBUG(dbgs() << __func__ << ": updated coefficients " << A << "x^2 + "
2835 << B << "x + " << C << ", rw:" << RangeWidth << '\n');
2836
2837 APInt D = SqrB - 4*A*C;
2838 assert(D.isNonNegative() && "Negative discriminant");
2839 APInt SQ = D.sqrt();
2840
2841 APInt Q = SQ * SQ;
2842 bool InexactSQ = Q != D;
2843 // The calculated SQ may actually be greater than the exact (non-integer)
2844 // value. If that's the case, decremement SQ to get a value that is lower.
2845 if (Q.sgt(D))
2846 SQ -= 1;
2847
2848 APInt X;
2849 APInt Rem;
2850
2851 // SQ is rounded down (i.e SQ * SQ <= D), so the roots may be inexact.
2852 // When using the quadratic formula directly, the calculated low root
2853 // may be greater than the exact one, since we would be subtracting SQ.
2854 // To make sure that the calculated root is not greater than the exact
2855 // one, subtract SQ+1 when calculating the low root (for inexact value
2856 // of SQ).
2857 if (PickLow)
2858 APInt::sdivrem(-B - (SQ+InexactSQ), TwoA, X, Rem);
2859 else
2860 APInt::sdivrem(-B + SQ, TwoA, X, Rem);
2861
2862 // The updated coefficients should be such that the (exact) solution is
2863 // positive. Since APInt division rounds towards 0, the calculated one
2864 // can be 0, but cannot be negative.
2865 assert(X.isNonNegative() && "Solution should be non-negative");
2866
2867 if (!InexactSQ && Rem.isNullValue()) {
2868 LLVM_DEBUG(dbgs() << __func__ << ": solution (root): " << X << '\n');
2869 return X;
2870 }
2871
2872 assert((SQ*SQ).sle(D) && "SQ = |_sqrt(D)_|, so SQ*SQ <= D");
2873 // The exact value of the square root of D should be between SQ and SQ+1.
2874 // This implies that the solution should be between that corresponding to
2875 // SQ (i.e. X) and that corresponding to SQ+1.
2876 //
2877 // The calculated X cannot be greater than the exact (real) solution.
2878 // Actually it must be strictly less than the exact solution, while
2879 // X+1 will be greater than or equal to it.
2880
2881 APInt VX = (A*X + B)*X + C;
2882 APInt VY = VX + TwoA*X + A + B;
2883 bool SignChange = VX.isNegative() != VY.isNegative() ||
2884 VX.isNullValue() != VY.isNullValue();
2885 // If the sign did not change between X and X+1, X is not a valid solution.
2886 // This could happen when the actual (exact) roots don't have an integer
2887 // between them, so they would both be contained between X and X+1.
2888 if (!SignChange) {
2889 LLVM_DEBUG(dbgs() << __func__ << ": no valid solution\n");
2890 return None;
2891 }
2892
2893 X += 1;
2894 LLVM_DEBUG(dbgs() << __func__ << ": solution (wrap): " << X << '\n');
2895 return X;
2896}