blob: 25a979cd3324a1960eeda16e69980c3e45640460 [file] [log] [blame]
Eugene Zelenko76bf48d2017-06-26 22:44:03 +00001//==- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect --*- C++ -*-==//
Quentin Colombet8e8e85c2016-04-05 19:06:01 +00002//
Chandler Carruth2946cd72019-01-19 08:50:56 +00003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Quentin Colombet8e8e85c2016-04-05 19:06:01 +00006//
7//===----------------------------------------------------------------------===//
8/// \file
9/// This file implements the RegBankSelect class.
10//===----------------------------------------------------------------------===//
11
12#include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
Quentin Colombetcfd97b92016-05-20 00:35:26 +000013#include "llvm/ADT/PostOrderIterator.h"
Eugene Zelenko76bf48d2017-06-26 22:44:03 +000014#include "llvm/ADT/STLExtras.h"
15#include "llvm/ADT/SmallVector.h"
Tim Northover69fa84a2016-10-14 22:18:18 +000016#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
Quentin Colombet40ad5732016-04-07 18:19:27 +000017#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
Eugene Zelenko76bf48d2017-06-26 22:44:03 +000018#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
Ahmed Bougachaae9dade2017-02-23 21:05:42 +000019#include "llvm/CodeGen/GlobalISel/Utils.h"
Eugene Zelenko76bf48d2017-06-26 22:44:03 +000020#include "llvm/CodeGen/MachineBasicBlock.h"
Quentin Colombet55650752016-05-20 00:49:10 +000021#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
22#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
Eugene Zelenko76bf48d2017-06-26 22:44:03 +000023#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstr.h"
25#include "llvm/CodeGen/MachineOperand.h"
26#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
Quentin Colombet40ad5732016-04-07 18:19:27 +000027#include "llvm/CodeGen/MachineRegisterInfo.h"
David Blaikieb3bde2e2017-11-17 01:07:10 +000028#include "llvm/CodeGen/TargetOpcodes.h"
Quentin Colombetacb857b2016-08-27 02:38:27 +000029#include "llvm/CodeGen/TargetPassConfig.h"
David Blaikieb3bde2e2017-11-17 01:07:10 +000030#include "llvm/CodeGen/TargetRegisterInfo.h"
31#include "llvm/CodeGen/TargetSubtargetInfo.h"
Nico Weber432a3882018-04-30 14:59:11 +000032#include "llvm/Config/llvm-config.h"
Eugene Zelenko76bf48d2017-06-26 22:44:03 +000033#include "llvm/IR/Attributes.h"
David Blaikieb3bde2e2017-11-17 01:07:10 +000034#include "llvm/IR/Function.h"
Eugene Zelenko76bf48d2017-06-26 22:44:03 +000035#include "llvm/Pass.h"
Quentin Colombetcfd97b92016-05-20 00:35:26 +000036#include "llvm/Support/BlockFrequency.h"
Quentin Colombeta41272f2016-06-08 15:49:23 +000037#include "llvm/Support/CommandLine.h"
Eugene Zelenko76bf48d2017-06-26 22:44:03 +000038#include "llvm/Support/Compiler.h"
Quentin Colombete16f5612016-04-07 23:53:55 +000039#include "llvm/Support/Debug.h"
Eugene Zelenko76bf48d2017-06-26 22:44:03 +000040#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/raw_ostream.h"
Eugene Zelenko76bf48d2017-06-26 22:44:03 +000042#include <algorithm>
43#include <cassert>
44#include <cstdint>
45#include <limits>
46#include <memory>
47#include <utility>
Quentin Colombet8e8e85c2016-04-05 19:06:01 +000048
49#define DEBUG_TYPE "regbankselect"
50
51using namespace llvm;
52
Quentin Colombeta41272f2016-06-08 15:49:23 +000053static cl::opt<RegBankSelect::Mode> RegBankSelectMode(
54 cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional,
55 cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast",
56 "Run the Fast mode (default mapping)"),
57 clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy",
Mehdi Amini732afdd2016-10-08 19:41:06 +000058 "Use the Greedy mode (best local mapping)")));
Quentin Colombeta41272f2016-06-08 15:49:23 +000059
Quentin Colombet8e8e85c2016-04-05 19:06:01 +000060char RegBankSelect::ID = 0;
Eugene Zelenko76bf48d2017-06-26 22:44:03 +000061
Quentin Colombetc13ea882016-09-23 17:50:06 +000062INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE,
Quentin Colombet25fcef72016-05-20 17:54:09 +000063 "Assign register bank of generic virtual registers",
64 false, false);
65INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
66INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
Quentin Colombetacb857b2016-08-27 02:38:27 +000067INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
Quentin Colombetc13ea882016-09-23 17:50:06 +000068INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE,
Quentin Colombet25fcef72016-05-20 17:54:09 +000069 "Assign register bank of generic virtual registers", false,
Tim Northover884b47e2016-07-26 03:29:18 +000070 false)
Quentin Colombet8e8e85c2016-04-05 19:06:01 +000071
Quentin Colombet46df7222016-05-20 16:55:35 +000072RegBankSelect::RegBankSelect(Mode RunningMode)
Eugene Zelenko76bf48d2017-06-26 22:44:03 +000073 : MachineFunctionPass(ID), OptMode(RunningMode) {
Quentin Colombet8e8e85c2016-04-05 19:06:01 +000074 initializeRegBankSelectPass(*PassRegistry::getPassRegistry());
Quentin Colombeta41272f2016-06-08 15:49:23 +000075 if (RegBankSelectMode.getNumOccurrences() != 0) {
76 OptMode = RegBankSelectMode;
77 if (RegBankSelectMode != RunningMode)
Nicola Zaghend34e60c2018-05-14 12:53:11 +000078 LLVM_DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n");
Quentin Colombeta41272f2016-06-08 15:49:23 +000079 }
Quentin Colombet8e8e85c2016-04-05 19:06:01 +000080}
81
Quentin Colombet40ad5732016-04-07 18:19:27 +000082void RegBankSelect::init(MachineFunction &MF) {
83 RBI = MF.getSubtarget().getRegBankInfo();
84 assert(RBI && "Cannot work without RegisterBankInfo");
85 MRI = &MF.getRegInfo();
Quentin Colombetaac71a42016-04-07 21:32:23 +000086 TRI = MF.getSubtarget().getRegisterInfo();
Quentin Colombetacb857b2016-08-27 02:38:27 +000087 TPC = &getAnalysis<TargetPassConfig>();
Quentin Colombet25fcef72016-05-20 17:54:09 +000088 if (OptMode != Mode::Fast) {
89 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
90 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
91 } else {
92 MBFI = nullptr;
93 MBPI = nullptr;
94 }
Quentin Colombet40ad5732016-04-07 18:19:27 +000095 MIRBuilder.setMF(MF);
Eugene Zelenko76bf48d2017-06-26 22:44:03 +000096 MORE = llvm::make_unique<MachineOptimizationRemarkEmitter>(MF, MBFI);
Quentin Colombet40ad5732016-04-07 18:19:27 +000097}
98
Quentin Colombet25fcef72016-05-20 17:54:09 +000099void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const {
100 if (OptMode != Mode::Fast) {
101 // We could preserve the information from these two analysis but
102 // the APIs do not allow to do so yet.
103 AU.addRequired<MachineBlockFrequencyInfo>();
104 AU.addRequired<MachineBranchProbabilityInfo>();
105 }
Quentin Colombetacb857b2016-08-27 02:38:27 +0000106 AU.addRequired<TargetPassConfig>();
Matthias Braun90ad6832018-07-13 00:08:38 +0000107 getSelectionDAGFallbackAnalysisUsage(AU);
Quentin Colombet25fcef72016-05-20 17:54:09 +0000108 MachineFunctionPass::getAnalysisUsage(AU);
109}
110
Quentin Colombet40ad5732016-04-07 18:19:27 +0000111bool RegBankSelect::assignmentMatch(
Quentin Colombet0d77da42016-05-20 00:42:57 +0000112 unsigned Reg, const RegisterBankInfo::ValueMapping &ValMapping,
113 bool &OnlyAssign) const {
114 // By default we assume we will have to repair something.
115 OnlyAssign = false;
Quentin Colombet40ad5732016-04-07 18:19:27 +0000116 // Each part of a break down needs to end up in a different register.
Matt Arsenault376f2ef2019-01-08 01:25:47 +0000117 // In other word, Reg assignment does not match.
Matt Arsenault1ac38ba2018-12-18 09:27:29 +0000118 if (ValMapping.NumBreakDowns != 1)
Quentin Colombet40ad5732016-04-07 18:19:27 +0000119 return false;
120
Quentin Colombet6d6d6af2016-04-08 16:48:16 +0000121 const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI);
122 const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank;
Quentin Colombet0d77da42016-05-20 00:42:57 +0000123 // Reg is free of assignment, a simple assignment will make the
124 // register bank to match.
125 OnlyAssign = CurRegBank == nullptr;
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000126 LLVM_DEBUG(dbgs() << "Does assignment already match: ";
127 if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none";
128 dbgs() << " against ";
129 assert(DesiredRegBrank && "The mapping must be valid");
130 dbgs() << *DesiredRegBrank << '\n';);
Quentin Colombet6d6d6af2016-04-08 16:48:16 +0000131 return CurRegBank == DesiredRegBrank;
Quentin Colombet40ad5732016-04-07 18:19:27 +0000132}
133
Quentin Colombetacb857b2016-08-27 02:38:27 +0000134bool RegBankSelect::repairReg(
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000135 MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping,
136 RegBankSelect::RepairingPlacement &RepairPt,
Quentin Colombet06ef4e22016-06-08 16:24:55 +0000137 const iterator_range<SmallVectorImpl<unsigned>::const_iterator> &NewVRegs) {
Matt Arsenaultbaa5d2e2019-01-24 22:47:04 +0000138
139 assert(ValMapping.NumBreakDowns == size(NewVRegs) && "need new vreg for each breakdown");
140
Quentin Colombetf33e3652016-06-08 16:30:55 +0000141 // An empty range of new register means no repairing.
Matthias Braun9fd397b2018-10-31 00:23:23 +0000142 assert(!empty(NewVRegs) && "We should not have to repair");
Quentin Colombetf33e3652016-06-08 16:30:55 +0000143
Matt Arsenaultbaa5d2e2019-01-24 22:47:04 +0000144 MachineInstr *MI;
145 if (ValMapping.NumBreakDowns == 1) {
146 // Assume we are repairing a use and thus, the original reg will be
147 // the source of the repairing.
148 unsigned Src = MO.getReg();
149 unsigned Dst = *NewVRegs.begin();
Quentin Colombet904a2c72016-04-12 00:12:59 +0000150
Matt Arsenaultbaa5d2e2019-01-24 22:47:04 +0000151 // If we repair a definition, swap the source and destination for
152 // the repairing.
153 if (MO.isDef())
154 std::swap(Src, Dst);
Quentin Colombet904a2c72016-04-12 00:12:59 +0000155
Matt Arsenaultbaa5d2e2019-01-24 22:47:04 +0000156 assert((RepairPt.getNumInsertPoints() == 1 ||
157 TargetRegisterInfo::isPhysicalRegister(Dst)) &&
158 "We are about to create several defs for Dst");
Quentin Colombet904a2c72016-04-12 00:12:59 +0000159
Matt Arsenaultbaa5d2e2019-01-24 22:47:04 +0000160 // Build the instruction used to repair, then clone it at the right
161 // places. Avoiding buildCopy bypasses the check that Src and Dst have the
162 // same types because the type is a placeholder when this function is called.
163 MI = MIRBuilder.buildInstrNoInsert(TargetOpcode::COPY)
164 .addDef(Dst)
165 .addUse(Src);
166 LLVM_DEBUG(dbgs() << "Copy: " << printReg(Src) << " to: " << printReg(Dst)
167 << '\n');
168 } else {
169 // TODO: Support with G_IMPLICIT_DEF + G_INSERT sequence or G_EXTRACT
170 // sequence.
171 assert(ValMapping.partsAllUniform() && "irregular breakdowns not supported");
172
173 LLT RegTy = MRI->getType(MO.getReg());
174 assert(!RegTy.isPointer() && "not implemented");
175
176 // FIXME: We could handle split vectors with concat_vectors easily, but this
177 // would require an agreement on the type of registers with the
178 // target. Currently createVRegs just uses scalar types, and expects the
179 // target code to replace this type (which we won't know about here)
180 assert(RegTy.isScalar() ||
181 (RegTy.getNumElements() == ValMapping.NumBreakDowns) &&
182 "only basic vector breakdowns currently supported");
183
184 if (MO.isDef()) {
185 unsigned MergeOp = RegTy.isScalar() ?
186 TargetOpcode::G_MERGE_VALUES : TargetOpcode::G_BUILD_VECTOR;
187
188 auto &MergeBuilder =
189 MIRBuilder.buildInstrNoInsert(MergeOp)
190 .addDef(MO.getReg());
191
192 for (unsigned SrcReg : NewVRegs)
193 MergeBuilder.addUse(SrcReg);
194
195 MI = MergeBuilder;
196 } else {
197 MachineInstrBuilder UnMergeBuilder =
198 MIRBuilder.buildInstrNoInsert(TargetOpcode::G_UNMERGE_VALUES);
199 for (unsigned DefReg : NewVRegs)
200 UnMergeBuilder.addDef(DefReg);
201
202 UnMergeBuilder.addUse(MO.getReg());
203 MI = UnMergeBuilder;
204 }
205 }
206
207 if (RepairPt.getNumInsertPoints() != 1)
208 report_fatal_error("need testcase to support multiple insertion points");
209
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000210 // TODO:
211 // Check if MI is legal. if not, we need to legalize all the
212 // instructions we are going to insert.
213 std::unique_ptr<MachineInstr *[]> NewInstrs(
214 new MachineInstr *[RepairPt.getNumInsertPoints()]);
215 bool IsFirst = true;
216 unsigned Idx = 0;
217 for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
218 MachineInstr *CurMI;
219 if (IsFirst)
220 CurMI = MI;
221 else
222 CurMI = MIRBuilder.getMF().CloneMachineInstr(MI);
223 InsertPt->insert(*CurMI);
224 NewInstrs[Idx++] = CurMI;
225 IsFirst = false;
226 }
227 // TODO:
228 // Legalize NewInstrs if need be.
Quentin Colombetacb857b2016-08-27 02:38:27 +0000229 return true;
Quentin Colombet40ad5732016-04-07 18:19:27 +0000230}
231
Quentin Colombetf2723a22016-05-21 01:43:25 +0000232uint64_t RegBankSelect::getRepairCost(
233 const MachineOperand &MO,
234 const RegisterBankInfo::ValueMapping &ValMapping) const {
235 assert(MO.isReg() && "We should only repair register operand");
Quentin Colombet0afa7d62016-09-23 00:14:30 +0000236 assert(ValMapping.NumBreakDowns && "Nothing to map??");
Quentin Colombetf2723a22016-05-21 01:43:25 +0000237
Quentin Colombet0afa7d62016-09-23 00:14:30 +0000238 bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1;
Quentin Colombetf2723a22016-05-21 01:43:25 +0000239 const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI);
240 // If MO does not have a register bank, we should have just been
241 // able to set one unless we have to break the value down.
Matt Arsenaultbaa5d2e2019-01-24 22:47:04 +0000242 assert(CurRegBank || MO.isDef());
243
Quentin Colombetf2723a22016-05-21 01:43:25 +0000244 // Def: Val <- NewDefs
245 // Same number of values: copy
246 // Different number: Val = build_sequence Defs1, Defs2, ...
247 // Use: NewSources <- Val.
248 // Same number of values: copy.
249 // Different number: Src1, Src2, ... =
250 // extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ...
251 // We should remember that this value is available somewhere else to
252 // coalesce the value.
253
Matt Arsenaultbaa5d2e2019-01-24 22:47:04 +0000254 if (ValMapping.NumBreakDowns != 1)
255 return RBI->getBreakDownCost(ValMapping, CurRegBank);
256
Quentin Colombetf2723a22016-05-21 01:43:25 +0000257 if (IsSameNumOfValues) {
258 const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank;
259 // If we repair a definition, swap the source and destination for
260 // the repairing.
261 if (MO.isDef())
262 std::swap(CurRegBank, DesiredRegBrank);
Quentin Colombetd6886bd2016-06-08 17:39:43 +0000263 // TODO: It may be possible to actually avoid the copy.
264 // If we repair something where the source is defined by a copy
265 // and the source of that copy is on the right bank, we can reuse
266 // it for free.
267 // E.g.,
268 // RegToRepair<BankA> = copy AlternativeSrc<BankB>
269 // = op RegToRepair<BankA>
270 // We can simply propagate AlternativeSrc instead of copying RegToRepair
271 // into a new virtual register.
272 // We would also need to propagate this information in the
273 // repairing placement.
Quentin Colombet4a6b7502017-10-13 21:16:15 +0000274 unsigned Cost = RBI->copyCost(*DesiredRegBrank, *CurRegBank,
275 RBI->getSizeInBits(MO.getReg(), *MRI, *TRI));
Quentin Colombetf2723a22016-05-21 01:43:25 +0000276 // TODO: use a dedicated constant for ImpossibleCost.
Eugene Zelenko76bf48d2017-06-26 22:44:03 +0000277 if (Cost != std::numeric_limits<unsigned>::max())
Quentin Colombetf2723a22016-05-21 01:43:25 +0000278 return Cost;
Quentin Colombetf2723a22016-05-21 01:43:25 +0000279 // Return the legalization cost of that repairing.
280 }
Eugene Zelenko76bf48d2017-06-26 22:44:03 +0000281 return std::numeric_limits<unsigned>::max();
Quentin Colombetf2723a22016-05-21 01:43:25 +0000282}
283
Quentin Colombet245994d2017-05-05 22:48:22 +0000284const RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping(
Quentin Colombet79fe1be2016-05-20 18:37:33 +0000285 MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings,
286 SmallVectorImpl<RepairingPlacement> &RepairPts) {
Quentin Colombetacb857b2016-08-27 02:38:27 +0000287 assert(!PossibleMappings.empty() &&
288 "Do not know how to map this instruction");
Quentin Colombet79fe1be2016-05-20 18:37:33 +0000289
Quentin Colombet245994d2017-05-05 22:48:22 +0000290 const RegisterBankInfo::InstructionMapping *BestMapping = nullptr;
Quentin Colombet79fe1be2016-05-20 18:37:33 +0000291 MappingCost Cost = MappingCost::ImpossibleCost();
292 SmallVector<RepairingPlacement, 4> LocalRepairPts;
Quentin Colombet245994d2017-05-05 22:48:22 +0000293 for (const RegisterBankInfo::InstructionMapping *CurMapping :
294 PossibleMappings) {
295 MappingCost CurCost =
296 computeMapping(MI, *CurMapping, LocalRepairPts, &Cost);
Quentin Colombet79fe1be2016-05-20 18:37:33 +0000297 if (CurCost < Cost) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000298 LLVM_DEBUG(dbgs() << "New best: " << CurCost << '\n');
Quentin Colombet79fe1be2016-05-20 18:37:33 +0000299 Cost = CurCost;
Quentin Colombet245994d2017-05-05 22:48:22 +0000300 BestMapping = CurMapping;
Quentin Colombet79fe1be2016-05-20 18:37:33 +0000301 RepairPts.clear();
302 for (RepairingPlacement &RepairPt : LocalRepairPts)
303 RepairPts.emplace_back(std::move(RepairPt));
304 }
305 }
Quentin Colombetacb857b2016-08-27 02:38:27 +0000306 if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) {
307 // If none of the mapping worked that means they are all impossible.
308 // Thus, pick the first one and set an impossible repairing point.
309 // It will trigger the failed isel mode.
Quentin Colombet245994d2017-05-05 22:48:22 +0000310 BestMapping = *PossibleMappings.begin();
Quentin Colombetacb857b2016-08-27 02:38:27 +0000311 RepairPts.emplace_back(
312 RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible));
313 } else
314 assert(BestMapping && "No suitable mapping for instruction");
Quentin Colombet79fe1be2016-05-20 18:37:33 +0000315 return *BestMapping;
316}
317
Quentin Colombetf75c2bf2016-05-20 16:36:12 +0000318void RegBankSelect::tryAvoidingSplit(
319 RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO,
320 const RegisterBankInfo::ValueMapping &ValMapping) const {
321 const MachineInstr &MI = *MO.getParent();
322 assert(RepairPt.hasSplit() && "We should not have to adjust for split");
323 // Splitting should only occur for PHIs or between terminators,
324 // because we only do local repairing.
325 assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?");
326
327 assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO &&
328 "Repairing placement does not match operand");
329
330 // If we need splitting for phis, that means it is because we
331 // could not find an insertion point before the terminators of
332 // the predecessor block for this argument. In other words,
333 // the input value is defined by one of the terminators.
334 assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?");
335
336 // We split to repair the use of a phi or a terminator.
337 if (!MO.isDef()) {
338 if (MI.isTerminator()) {
339 assert(&MI != &(*MI.getParent()->getFirstTerminator()) &&
340 "Need to split for the first terminator?!");
341 } else {
342 // For the PHI case, the split may not be actually required.
343 // In the copy case, a phi is already a copy on the incoming edge,
344 // therefore there is no need to split.
Quentin Colombet0afa7d62016-09-23 00:14:30 +0000345 if (ValMapping.NumBreakDowns == 1)
Quentin Colombetf75c2bf2016-05-20 16:36:12 +0000346 // This is a already a copy, there is nothing to do.
347 RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign);
348 }
349 return;
350 }
351
352 // At this point, we need to repair a defintion of a terminator.
353
354 // Technically we need to fix the def of MI on all outgoing
355 // edges of MI to keep the repairing local. In other words, we
356 // will create several definitions of the same register. This
357 // does not work for SSA unless that definition is a physical
358 // register.
359 // However, there are other cases where we can get away with
360 // that while still keeping the repairing local.
361 assert(MI.isTerminator() && MO.isDef() &&
362 "This code is for the def of a terminator");
363
364 // Since we use RPO traversal, if we need to repair a definition
365 // this means this definition could be:
366 // 1. Used by PHIs (i.e., this VReg has been visited as part of the
367 // uses of a phi.), or
368 // 2. Part of a target specific instruction (i.e., the target applied
369 // some register class constraints when creating the instruction.)
370 // If the constraints come for #2, the target said that another mapping
371 // is supported so we may just drop them. Indeed, if we do not change
372 // the number of registers holding that value, the uses will get fixed
373 // when we get to them.
374 // Uses in PHIs may have already been proceeded though.
375 // If the constraints come for #1, then, those are weak constraints and
376 // no actual uses may rely on them. However, the problem remains mainly
377 // the same as for #2. If the value stays in one register, we could
378 // just switch the register bank of the definition, but we would need to
379 // account for a repairing cost for each phi we silently change.
380 //
381 // In any case, if the value needs to be broken down into several
382 // registers, the repairing is not local anymore as we need to patch
383 // every uses to rebuild the value in just one register.
384 //
385 // To summarize:
386 // - If the value is in a physical register, we can do the split and
387 // fix locally.
388 // Otherwise if the value is in a virtual register:
389 // - If the value remains in one register, we do not have to split
390 // just switching the register bank would do, but we need to account
391 // in the repairing cost all the phi we changed.
392 // - If the value spans several registers, then we cannot do a local
393 // repairing.
394
395 // Check if this is a physical or virtual register.
396 unsigned Reg = MO.getReg();
397 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
398 // We are going to split every outgoing edges.
399 // Check that this is possible.
400 // FIXME: The machine representation is currently broken
401 // since it also several terminators in one basic block.
402 // Because of that we would technically need a way to get
403 // the targets of just one terminator to know which edges
404 // we have to split.
405 // Assert that we do not hit the ill-formed representation.
406
407 // If there are other terminators before that one, some of
408 // the outgoing edges may not be dominated by this definition.
409 assert(&MI == &(*MI.getParent()->getFirstTerminator()) &&
410 "Do not know which outgoing edges are relevant");
411 const MachineInstr *Next = MI.getNextNode();
412 assert((!Next || Next->isUnconditionalBranch()) &&
413 "Do not know where each terminator ends up");
414 if (Next)
415 // If the next terminator uses Reg, this means we have
416 // to split right after MI and thus we need a way to ask
417 // which outgoing edges are affected.
418 assert(!Next->readsRegister(Reg) && "Need to split between terminators");
419 // We will split all the edges and repair there.
420 } else {
421 // This is a virtual register defined by a terminator.
Quentin Colombet0afa7d62016-09-23 00:14:30 +0000422 if (ValMapping.NumBreakDowns == 1) {
Quentin Colombetf75c2bf2016-05-20 16:36:12 +0000423 // There is nothing to repair, but we may actually lie on
424 // the repairing cost because of the PHIs already proceeded
425 // as already stated.
426 // Though the code will be correct.
Eugene Zelenko76bf48d2017-06-26 22:44:03 +0000427 assert(false && "Repairing cost may not be accurate");
Quentin Colombetf75c2bf2016-05-20 16:36:12 +0000428 } else {
429 // We need to do non-local repairing. Basically, patch all
430 // the uses (i.e., phis) that we already proceeded.
431 // For now, just say this mapping is not possible.
432 RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible);
433 }
434 }
435}
436
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000437RegBankSelect::MappingCost RegBankSelect::computeMapping(
438 MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
Quentin Colombet6e80dbc2016-05-20 18:00:46 +0000439 SmallVectorImpl<RepairingPlacement> &RepairPts,
440 const RegBankSelect::MappingCost *BestCost) {
441 assert((MBFI || !BestCost) && "Costs comparison require MBFI");
Quentin Colombete16f5612016-04-07 23:53:55 +0000442
Tim Northoverc1a23852016-12-06 18:38:38 +0000443 if (!InstrMapping.isValid())
444 return MappingCost::ImpossibleCost();
445
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000446 // If mapped with InstrMapping, MI will have the recorded cost.
Quentin Colombet25fcef72016-05-20 17:54:09 +0000447 MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1);
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000448 bool Saturated = Cost.addLocalCost(InstrMapping.getCost());
449 assert(!Saturated && "Possible mapping saturated the cost");
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000450 LLVM_DEBUG(dbgs() << "Evaluating mapping cost for: " << MI);
451 LLVM_DEBUG(dbgs() << "With: " << InstrMapping << '\n');
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000452 RepairPts.clear();
Quentin Colombet0b63b312017-01-11 00:48:41 +0000453 if (BestCost && Cost > *BestCost) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000454 LLVM_DEBUG(dbgs() << "Mapping is too expensive from the start\n");
Quentin Colombet6e80dbc2016-05-20 18:00:46 +0000455 return Cost;
Quentin Colombet0b63b312017-01-11 00:48:41 +0000456 }
Quentin Colombet6e80dbc2016-05-20 18:00:46 +0000457
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000458 // Moreover, to realize this mapping, the register bank of each operand must
459 // match this mapping. In other words, we may need to locally reassign the
460 // register banks. Account for that repairing cost as well.
461 // In this context, local means in the surrounding of MI.
Quentin Colombet1b016772016-09-29 19:51:46 +0000462 for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands();
463 OpIdx != EndOpIdx; ++OpIdx) {
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000464 const MachineOperand &MO = MI.getOperand(OpIdx);
Quentin Colombet40ad5732016-04-07 18:19:27 +0000465 if (!MO.isReg())
466 continue;
467 unsigned Reg = MO.getReg();
468 if (!Reg)
469 continue;
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000470 LLVM_DEBUG(dbgs() << "Opd" << OpIdx << '\n');
Quentin Colombet40ad5732016-04-07 18:19:27 +0000471 const RegisterBankInfo::ValueMapping &ValMapping =
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000472 InstrMapping.getOperandMapping(OpIdx);
473 // If Reg is already properly mapped, this is free.
474 bool Assign;
475 if (assignmentMatch(Reg, ValMapping, Assign)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000476 LLVM_DEBUG(dbgs() << "=> is free (match).\n");
Quentin Colombet40ad5732016-04-07 18:19:27 +0000477 continue;
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000478 }
479 if (Assign) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000480 LLVM_DEBUG(dbgs() << "=> is free (simple assignment).\n");
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000481 RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this,
482 RepairingPlacement::Reassign));
483 continue;
Quentin Colombet40ad5732016-04-07 18:19:27 +0000484 }
Quentin Colombet904a2c72016-04-12 00:12:59 +0000485
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000486 // Find the insertion point for the repairing code.
487 RepairPts.emplace_back(
488 RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert));
489 RepairingPlacement &RepairPt = RepairPts.back();
490
Quentin Colombetf75c2bf2016-05-20 16:36:12 +0000491 // If we need to split a basic block to materialize this insertion point,
492 // we may give a higher cost to this mapping.
493 // Nevertheless, we may get away with the split, so try that first.
494 if (RepairPt.hasSplit())
495 tryAvoidingSplit(RepairPt, MO, ValMapping);
496
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000497 // Check that the materialization of the repairing is possible.
Quentin Colombet0b63b312017-01-11 00:48:41 +0000498 if (!RepairPt.canMaterialize()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000499 LLVM_DEBUG(dbgs() << "Mapping involves impossible repairing\n");
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000500 return MappingCost::ImpossibleCost();
Quentin Colombet0b63b312017-01-11 00:48:41 +0000501 }
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000502
503 // Account for the split cost and repair cost.
Quentin Colombet6e80dbc2016-05-20 18:00:46 +0000504 // Unless the cost is already saturated or we do not care about the cost.
505 if (!BestCost || Saturated)
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000506 continue;
507
Quentin Colombet6e80dbc2016-05-20 18:00:46 +0000508 // To get accurate information we need MBFI and MBPI.
509 // Thus, if we end up here this information should be here.
510 assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI");
511
Quentin Colombet6feaf8202016-06-08 15:40:32 +0000512 // FIXME: We will have to rework the repairing cost model.
513 // The repairing cost depends on the register bank that MO has.
514 // However, when we break down the value into different values,
515 // MO may not have a register bank while still needing repairing.
516 // For the fast mode, we don't compute the cost so that is fine,
517 // but still for the repairing code, we will have to make a choice.
518 // For the greedy mode, we should choose greedily what is the best
519 // choice based on the next use of MO.
520
Quentin Colombetf2723a22016-05-21 01:43:25 +0000521 // Sums up the repairing cost of MO at each insertion point.
522 uint64_t RepairCost = getRepairCost(MO, ValMapping);
Tom Stellard049e7e02017-05-15 09:52:33 +0000523
524 // This is an impossible to repair cost.
Eugene Zelenko76bf48d2017-06-26 22:44:03 +0000525 if (RepairCost == std::numeric_limits<unsigned>::max())
Tom Stellard179757e2018-07-25 03:08:35 +0000526 return MappingCost::ImpossibleCost();
Tom Stellard049e7e02017-05-15 09:52:33 +0000527
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000528 // Bias used for splitting: 5%.
529 const uint64_t PercentageForBias = 5;
530 uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100;
531 // We should not need more than a couple of instructions to repair
532 // an assignment. In other words, the computation should not
533 // overflow because the repairing cost is free of basic block
534 // frequency.
535 assert(((RepairCost < RepairCost * PercentageForBias) &&
536 (RepairCost * PercentageForBias <
537 RepairCost * PercentageForBias + 99)) &&
538 "Repairing involves more than a billion of instructions?!");
539 for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
540 assert(InsertPt->canMaterialize() && "We should not have made it here");
541 // We will applied some basic block frequency and those uses uint64_t.
542 if (!InsertPt->isSplit())
543 Saturated = Cost.addLocalCost(RepairCost);
544 else {
545 uint64_t CostForInsertPt = RepairCost;
546 // Again we shouldn't overflow here givent that
547 // CostForInsertPt is frequency free at this point.
548 assert(CostForInsertPt + Bias > CostForInsertPt &&
549 "Repairing + split bias overflows");
550 CostForInsertPt += Bias;
551 uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt;
552 // Check if we just overflowed.
553 if ((Saturated = PtCost < CostForInsertPt))
554 Cost.saturate();
555 else
556 Saturated = Cost.addNonLocalCost(PtCost);
557 }
Quentin Colombet6e80dbc2016-05-20 18:00:46 +0000558
559 // Stop looking into what it takes to repair, this is already
560 // too expensive.
Quentin Colombet0b63b312017-01-11 00:48:41 +0000561 if (BestCost && Cost > *BestCost) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000562 LLVM_DEBUG(dbgs() << "Mapping is too expensive, stop processing\n");
Quentin Colombet6e80dbc2016-05-20 18:00:46 +0000563 return Cost;
Quentin Colombet0b63b312017-01-11 00:48:41 +0000564 }
Quentin Colombet6e80dbc2016-05-20 18:00:46 +0000565
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000566 // No need to accumulate more cost information.
567 // We need to still gather the repairing information though.
568 if (Saturated)
569 break;
570 }
Quentin Colombet40ad5732016-04-07 18:19:27 +0000571 }
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000572 LLVM_DEBUG(dbgs() << "Total cost is: " << Cost << "\n");
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000573 return Cost;
574}
575
Quentin Colombetacb857b2016-08-27 02:38:27 +0000576bool RegBankSelect::applyMapping(
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000577 MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
578 SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) {
Matt Arsenault376f2ef2019-01-08 01:25:47 +0000579 // OpdMapper will hold all the information needed for the rewriting.
Quentin Colombetf33e3652016-06-08 16:30:55 +0000580 RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI);
581
Quentin Colombetec5c93d2016-06-08 16:45:04 +0000582 // First, place the repairing code.
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000583 for (RepairingPlacement &RepairPt : RepairPts) {
Quentin Colombetacb857b2016-08-27 02:38:27 +0000584 if (!RepairPt.canMaterialize() ||
585 RepairPt.getKind() == RepairingPlacement::Impossible)
586 return false;
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000587 assert(RepairPt.getKind() != RepairingPlacement::None &&
588 "This should not make its way in the list");
589 unsigned OpIdx = RepairPt.getOpIdx();
590 MachineOperand &MO = MI.getOperand(OpIdx);
591 const RegisterBankInfo::ValueMapping &ValMapping =
592 InstrMapping.getOperandMapping(OpIdx);
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000593 unsigned Reg = MO.getReg();
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000594
595 switch (RepairPt.getKind()) {
596 case RepairingPlacement::Reassign:
Quentin Colombet0afa7d62016-09-23 00:14:30 +0000597 assert(ValMapping.NumBreakDowns == 1 &&
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000598 "Reassignment should only be for simple mapping");
599 MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank);
600 break;
601 case RepairingPlacement::Insert:
Quentin Colombetf33e3652016-06-08 16:30:55 +0000602 OpdMapper.createVRegs(OpIdx);
Quentin Colombetacb857b2016-08-27 02:38:27 +0000603 if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx)))
604 return false;
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000605 break;
606 default:
607 llvm_unreachable("Other kind should not happen");
608 }
609 }
Tim Northover849fcca2017-06-27 21:41:40 +0000610
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000611 // Second, rewrite the instruction.
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000612 LLVM_DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n');
Quentin Colombetec5c93d2016-06-08 16:45:04 +0000613 RBI->applyMapping(OpdMapper);
Tim Northover849fcca2017-06-27 21:41:40 +0000614
Quentin Colombetacb857b2016-08-27 02:38:27 +0000615 return true;
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000616}
617
Quentin Colombetacb857b2016-08-27 02:38:27 +0000618bool RegBankSelect::assignInstr(MachineInstr &MI) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000619 LLVM_DEBUG(dbgs() << "Assign: " << MI);
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000620 // Remember the repairing placement for all the operands.
621 SmallVector<RepairingPlacement, 4> RepairPts;
622
Quentin Colombet245994d2017-05-05 22:48:22 +0000623 const RegisterBankInfo::InstructionMapping *BestMapping;
Quentin Colombet79fe1be2016-05-20 18:37:33 +0000624 if (OptMode == RegBankSelect::Mode::Fast) {
Quentin Colombet245994d2017-05-05 22:48:22 +0000625 BestMapping = &RBI->getInstrMapping(MI);
626 MappingCost DefaultCost = computeMapping(MI, *BestMapping, RepairPts);
Quentin Colombet79fe1be2016-05-20 18:37:33 +0000627 (void)DefaultCost;
Quentin Colombetacb857b2016-08-27 02:38:27 +0000628 if (DefaultCost == MappingCost::ImpossibleCost())
629 return false;
Quentin Colombet79fe1be2016-05-20 18:37:33 +0000630 } else {
631 RegisterBankInfo::InstructionMappings PossibleMappings =
632 RBI->getInstrPossibleMappings(MI);
Quentin Colombetacb857b2016-08-27 02:38:27 +0000633 if (PossibleMappings.empty())
634 return false;
Quentin Colombet245994d2017-05-05 22:48:22 +0000635 BestMapping = &findBestMapping(MI, PossibleMappings, RepairPts);
Quentin Colombet79fe1be2016-05-20 18:37:33 +0000636 }
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000637 // Make sure the mapping is valid for MI.
Quentin Colombet245994d2017-05-05 22:48:22 +0000638 assert(BestMapping->verify(MI) && "Invalid instruction mapping");
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000639
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000640 LLVM_DEBUG(dbgs() << "Best Mapping: " << *BestMapping << '\n');
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000641
Quentin Colombet9400bfb2016-06-08 21:55:29 +0000642 // After this call, MI may not be valid anymore.
643 // Do not use it.
Quentin Colombet245994d2017-05-05 22:48:22 +0000644 return applyMapping(MI, *BestMapping, RepairPts);
Quentin Colombet40ad5732016-04-07 18:19:27 +0000645}
646
Quentin Colombet8e8e85c2016-04-05 19:06:01 +0000647bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) {
Quentin Colombet60495242016-08-27 00:18:24 +0000648 // If the ISel pipeline failed, do not bother running that pass.
649 if (MF.getProperties().hasProperty(
650 MachineFunctionProperties::Property::FailedISel))
651 return false;
652
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000653 LLVM_DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n');
Matthias Braunf1caa282017-12-15 22:22:58 +0000654 const Function &F = MF.getFunction();
Quentin Colombeta5530122016-05-20 17:36:54 +0000655 Mode SaveOptMode = OptMode;
Matthias Braunf1caa282017-12-15 22:22:58 +0000656 if (F.hasFnAttribute(Attribute::OptimizeNone))
Quentin Colombeta5530122016-05-20 17:36:54 +0000657 OptMode = Mode::Fast;
Quentin Colombet40ad5732016-04-07 18:19:27 +0000658 init(MF);
Ahmed Bougacha24d0d4d2016-08-02 15:10:32 +0000659
660#ifndef NDEBUG
661 // Check that our input is fully legal: we require the function to have the
662 // Legalized property, so it should be.
Roman Tereshin2b949722018-03-01 00:27:48 +0000663 // FIXME: This should be in the MachineVerifier.
664 if (!DisableGISelLegalityCheck)
665 if (const MachineInstr *MI = machineFunctionIsIllegal(MF)) {
666 reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
667 "instruction is not legal", *MI);
668 return false;
Ahmed Bougacha24d0d4d2016-08-02 15:10:32 +0000669 }
Ahmed Bougacha24d0d4d2016-08-02 15:10:32 +0000670#endif
671
Quentin Colombet40ad5732016-04-07 18:19:27 +0000672 // Walk the function and assign register banks to all operands.
Quentin Colombetab8c21f2016-04-08 17:19:10 +0000673 // Use a RPOT to make sure all registers are assigned before we choose
674 // the best mapping of the current instruction.
675 ReversePostOrderTraversal<MachineFunction*> RPOT(&MF);
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000676 for (MachineBasicBlock *MBB : RPOT) {
677 // Set a sensible insertion point so that subsequent calls to
678 // MIRBuilder.
679 MIRBuilder.setMBB(*MBB);
Quentin Colombetec5c93d2016-06-08 16:45:04 +0000680 for (MachineBasicBlock::iterator MII = MBB->begin(), End = MBB->end();
681 MII != End;) {
682 // MI might be invalidated by the assignment, so move the
683 // iterator before hand.
Ahmed Bougacha45eb3b92016-08-02 11:41:16 +0000684 MachineInstr &MI = *MII++;
685
686 // Ignore target-specific instructions: they should use proper regclasses.
687 if (isTargetSpecificOpcode(MI.getOpcode()))
688 continue;
689
Quentin Colombetacb857b2016-08-27 02:38:27 +0000690 if (!assignInstr(MI)) {
Ahmed Bougachaae9dade2017-02-23 21:05:42 +0000691 reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
692 "unable to map instruction", MI);
Quentin Colombetacb857b2016-08-27 02:38:27 +0000693 return false;
694 }
Quentin Colombetec5c93d2016-06-08 16:45:04 +0000695 }
Quentin Colombetd84d00b2016-05-20 00:55:51 +0000696 }
Quentin Colombeta5530122016-05-20 17:36:54 +0000697 OptMode = SaveOptMode;
Quentin Colombet8e8e85c2016-04-05 19:06:01 +0000698 return false;
699}
Quentin Colombetcfd97b92016-05-20 00:35:26 +0000700
701//------------------------------------------------------------------------------
Quentin Colombet55650752016-05-20 00:49:10 +0000702// Helper Classes Implementation
Quentin Colombetcfd97b92016-05-20 00:35:26 +0000703//------------------------------------------------------------------------------
Quentin Colombet55650752016-05-20 00:49:10 +0000704RegBankSelect::RepairingPlacement::RepairingPlacement(
705 MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P,
706 RepairingPlacement::RepairingKind Kind)
707 // Default is, we are going to insert code to repair OpIdx.
Eugene Zelenko76bf48d2017-06-26 22:44:03 +0000708 : Kind(Kind), OpIdx(OpIdx),
709 CanMaterialize(Kind != RepairingKind::Impossible), P(P) {
Quentin Colombet55650752016-05-20 00:49:10 +0000710 const MachineOperand &MO = MI.getOperand(OpIdx);
711 assert(MO.isReg() && "Trying to repair a non-reg operand");
712
713 if (Kind != RepairingKind::Insert)
714 return;
715
716 // Repairings for definitions happen after MI, uses happen before.
717 bool Before = !MO.isDef();
718
719 // Check if we are done with MI.
720 if (!MI.isPHI() && !MI.isTerminator()) {
721 addInsertPoint(MI, Before);
722 // We are done with the initialization.
723 return;
724 }
725
726 // Now, look for the special cases.
727 if (MI.isPHI()) {
728 // - PHI must be the first instructions:
729 // * Before, we have to split the related incoming edge.
730 // * After, move the insertion point past the last phi.
731 if (!Before) {
732 MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI();
733 if (It != MI.getParent()->end())
734 addInsertPoint(*It, /*Before*/ true);
735 else
736 addInsertPoint(*(--It), /*Before*/ false);
737 return;
738 }
739 // We repair a use of a phi, we may need to split the related edge.
740 MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB();
741 // Check if we can move the insertion point prior to the
742 // terminators of the predecessor.
743 unsigned Reg = MO.getReg();
744 MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr();
745 for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It)
746 if (It->modifiesRegister(Reg, &TRI)) {
747 // We cannot hoist the repairing code in the predecessor.
748 // Split the edge.
749 addInsertPoint(Pred, *MI.getParent());
750 return;
751 }
752 // At this point, we can insert in Pred.
753
754 // - If It is invalid, Pred is empty and we can insert in Pred
755 // wherever we want.
756 // - If It is valid, It is the first non-terminator, insert after It.
757 if (It == Pred.end())
758 addInsertPoint(Pred, /*Beginning*/ false);
759 else
760 addInsertPoint(*It, /*Before*/ false);
761 } else {
762 // - Terminators must be the last instructions:
763 // * Before, move the insert point before the first terminator.
764 // * After, we have to split the outcoming edges.
Quentin Colombet55650752016-05-20 00:49:10 +0000765 if (Before) {
766 // Check whether Reg is defined by any terminator.
Matt Arsenaultadc40ba2019-01-08 01:22:47 +0000767 MachineBasicBlock::reverse_iterator It = MI;
768 auto REnd = MI.getParent()->rend();
769
770 for (; It != REnd && It->isTerminator(); ++It) {
Benjamin Kramera4805232019-01-08 12:54:26 +0000771 assert(!It->modifiesRegister(MO.getReg(), &TRI) &&
Matt Arsenaultadc40ba2019-01-08 01:22:47 +0000772 "copy insertion in middle of terminators not handled");
773 }
774
775 if (It == REnd) {
776 addInsertPoint(*MI.getParent()->begin(), true);
777 return;
778 }
779
780 // We are sure to be right before the first terminator.
781 addInsertPoint(*It, /*Before*/ false);
Quentin Colombet55650752016-05-20 00:49:10 +0000782 return;
783 }
784 // Make sure Reg is not redefined by other terminators, otherwise
785 // we do not know how to split.
786 for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end();
787 ++It != End;)
788 // The machine verifier should reject this kind of code.
Benjamin Kramera4805232019-01-08 12:54:26 +0000789 assert(It->modifiesRegister(MO.getReg(), &TRI) &&
790 "Do not know where to split");
Quentin Colombet55650752016-05-20 00:49:10 +0000791 // Split each outcoming edges.
792 MachineBasicBlock &Src = *MI.getParent();
793 for (auto &Succ : Src.successors())
794 addInsertPoint(Src, Succ);
795 }
796}
797
798void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI,
799 bool Before) {
800 addInsertPoint(*new InstrInsertPoint(MI, Before));
801}
802
803void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB,
804 bool Beginning) {
805 addInsertPoint(*new MBBInsertPoint(MBB, Beginning));
806}
807
808void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src,
809 MachineBasicBlock &Dst) {
810 addInsertPoint(*new EdgeInsertPoint(Src, Dst, P));
811}
812
813void RegBankSelect::RepairingPlacement::addInsertPoint(
814 RegBankSelect::InsertPoint &Point) {
815 CanMaterialize &= Point.canMaterialize();
816 HasSplit |= Point.isSplit();
817 InsertPoints.emplace_back(&Point);
818}
819
820RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr,
821 bool Before)
822 : InsertPoint(), Instr(Instr), Before(Before) {
823 // Since we do not support splitting, we do not need to update
824 // liveness and such, so do not do anything with P.
825 assert((!Before || !Instr.isPHI()) &&
826 "Splitting before phis requires more points");
827 assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) &&
828 "Splitting between phis does not make sense");
829}
830
831void RegBankSelect::InstrInsertPoint::materialize() {
832 if (isSplit()) {
833 // Slice and return the beginning of the new block.
834 // If we need to split between the terminators, we theoritically
835 // need to know where the first and second set of terminators end
836 // to update the successors properly.
837 // Now, in pratice, we should have a maximum of 2 branch
838 // instructions; one conditional and one unconditional. Therefore
839 // we know how to update the successor by looking at the target of
840 // the unconditional branch.
841 // If we end up splitting at some point, then, we should update
842 // the liveness information and such. I.e., we would need to
843 // access P here.
844 // The machine verifier should actually make sure such cases
845 // cannot happen.
846 llvm_unreachable("Not yet implemented");
847 }
848 // Otherwise the insertion point is just the current or next
849 // instruction depending on Before. I.e., there is nothing to do
850 // here.
851}
852
853bool RegBankSelect::InstrInsertPoint::isSplit() const {
854 // If the insertion point is after a terminator, we need to split.
855 if (!Before)
856 return Instr.isTerminator();
857 // If we insert before an instruction that is after a terminator,
858 // we are still after a terminator.
859 return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator();
860}
861
862uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const {
863 // Even if we need to split, because we insert between terminators,
864 // this split has actually the same frequency as the instruction.
865 const MachineBlockFrequencyInfo *MBFI =
866 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
867 if (!MBFI)
868 return 1;
869 return MBFI->getBlockFreq(Instr.getParent()).getFrequency();
870}
871
872uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const {
873 const MachineBlockFrequencyInfo *MBFI =
874 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
875 if (!MBFI)
876 return 1;
877 return MBFI->getBlockFreq(&MBB).getFrequency();
878}
879
880void RegBankSelect::EdgeInsertPoint::materialize() {
881 // If we end up repairing twice at the same place before materializing the
882 // insertion point, we may think we have to split an edge twice.
883 // We should have a factory for the insert point such that identical points
884 // are the same instance.
885 assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) &&
886 "This point has already been split");
887 MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P);
888 assert(NewBB && "Invalid call to materialize");
889 // We reuse the destination block to hold the information of the new block.
890 DstOrSplit = NewBB;
891}
892
893uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const {
894 const MachineBlockFrequencyInfo *MBFI =
895 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
896 if (!MBFI)
897 return 1;
898 if (WasMaterialized)
899 return MBFI->getBlockFreq(DstOrSplit).getFrequency();
900
901 const MachineBranchProbabilityInfo *MBPI =
902 P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>();
903 if (!MBPI)
904 return 1;
905 // The basic block will be on the edge.
906 return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit))
907 .getFrequency();
908}
909
910bool RegBankSelect::EdgeInsertPoint::canMaterialize() const {
911 // If this is not a critical edge, we should not have used this insert
912 // point. Indeed, either the successor or the predecessor should
913 // have do.
914 assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 &&
915 "Edge is not critical");
916 return Src.canSplitCriticalEdge(DstOrSplit);
917}
918
Quentin Colombetcfd97b92016-05-20 00:35:26 +0000919RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq)
Eugene Zelenko76bf48d2017-06-26 22:44:03 +0000920 : LocalFreq(LocalFreq.getFrequency()) {}
Quentin Colombetcfd97b92016-05-20 00:35:26 +0000921
922bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) {
923 // Check if this overflows.
924 if (LocalCost + Cost < LocalCost) {
925 saturate();
926 return true;
927 }
928 LocalCost += Cost;
929 return isSaturated();
930}
931
932bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) {
933 // Check if this overflows.
934 if (NonLocalCost + Cost < NonLocalCost) {
935 saturate();
936 return true;
937 }
938 NonLocalCost += Cost;
939 return isSaturated();
940}
941
942bool RegBankSelect::MappingCost::isSaturated() const {
943 return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX &&
944 LocalFreq == UINT64_MAX;
945}
946
947void RegBankSelect::MappingCost::saturate() {
948 *this = ImpossibleCost();
949 --LocalCost;
950}
951
952RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() {
953 return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX);
954}
955
956bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const {
957 // Sort out the easy cases.
958 if (*this == Cost)
959 return false;
960 // If one is impossible to realize the other is cheaper unless it is
961 // impossible as well.
962 if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost()))
963 return (*this == ImpossibleCost()) < (Cost == ImpossibleCost());
964 // If one is saturated the other is cheaper, unless it is saturated
965 // as well.
966 if (isSaturated() || Cost.isSaturated())
967 return isSaturated() < Cost.isSaturated();
968 // At this point we know both costs hold sensible values.
969
970 // If both values have a different base frequency, there is no much
971 // we can do but to scale everything.
972 // However, if they have the same base frequency we can avoid making
973 // complicated computation.
974 uint64_t ThisLocalAdjust;
975 uint64_t OtherLocalAdjust;
976 if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) {
977
978 // At this point, we know the local costs are comparable.
979 // Do the case that do not involve potential overflow first.
980 if (NonLocalCost == Cost.NonLocalCost)
981 // Since the non-local costs do not discriminate on the result,
982 // just compare the local costs.
983 return LocalCost < Cost.LocalCost;
984
985 // The base costs are comparable so we may only keep the relative
986 // value to increase our chances of avoiding overflows.
987 ThisLocalAdjust = 0;
988 OtherLocalAdjust = 0;
989 if (LocalCost < Cost.LocalCost)
990 OtherLocalAdjust = Cost.LocalCost - LocalCost;
991 else
992 ThisLocalAdjust = LocalCost - Cost.LocalCost;
Quentin Colombetcfd97b92016-05-20 00:35:26 +0000993 } else {
994 ThisLocalAdjust = LocalCost;
995 OtherLocalAdjust = Cost.LocalCost;
996 }
997
998 // The non-local costs are comparable, just keep the relative value.
999 uint64_t ThisNonLocalAdjust = 0;
1000 uint64_t OtherNonLocalAdjust = 0;
1001 if (NonLocalCost < Cost.NonLocalCost)
1002 OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost;
1003 else
1004 ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost;
1005 // Scale everything to make them comparable.
1006 uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq;
1007 // Check for overflow on that operation.
1008 bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust ||
1009 ThisScaledCost < LocalFreq);
1010 uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq;
1011 // Check for overflow on the last operation.
1012 bool OtherOverflows =
1013 OtherLocalAdjust &&
1014 (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq);
1015 // Add the non-local costs.
1016 ThisOverflows |= ThisNonLocalAdjust &&
1017 ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust;
1018 ThisScaledCost += ThisNonLocalAdjust;
1019 OtherOverflows |= OtherNonLocalAdjust &&
1020 OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust;
1021 OtherScaledCost += OtherNonLocalAdjust;
1022 // If both overflows, we cannot compare without additional
1023 // precision, e.g., APInt. Just give up on that case.
1024 if (ThisOverflows && OtherOverflows)
1025 return false;
1026 // If one overflows but not the other, we can still compare.
1027 if (ThisOverflows || OtherOverflows)
1028 return ThisOverflows < OtherOverflows;
1029 // Otherwise, just compare the values.
1030 return ThisScaledCost < OtherScaledCost;
1031}
1032
1033bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const {
1034 return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost &&
1035 LocalFreq == Cost.LocalFreq;
1036}
Quentin Colombet0b63b312017-01-11 00:48:41 +00001037
Aaron Ballman615eb472017-10-15 14:32:27 +00001038#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Matthias Braun8c209aa2017-01-28 02:02:38 +00001039LLVM_DUMP_METHOD void RegBankSelect::MappingCost::dump() const {
Quentin Colombet0b63b312017-01-11 00:48:41 +00001040 print(dbgs());
1041 dbgs() << '\n';
1042}
Matthias Braun8c209aa2017-01-28 02:02:38 +00001043#endif
Quentin Colombet0b63b312017-01-11 00:48:41 +00001044
1045void RegBankSelect::MappingCost::print(raw_ostream &OS) const {
1046 if (*this == ImpossibleCost()) {
1047 OS << "impossible";
1048 return;
1049 }
1050 if (isSaturated()) {
1051 OS << "saturated";
1052 return;
1053 }
1054 OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost;
1055}