blob: fab4741ac10848459145d4ca029820470a35cc77 [file] [log] [blame]
Chris Lattner30fdc8d2010-06-08 16:52:24 +00001//===-- DNB.cpp -------------------------------------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Created by Greg Clayton on 3/23/07.
11//
12//===----------------------------------------------------------------------===//
13
14#include "DNB.h"
15#include <signal.h>
16#include <stdio.h>
17#include <stdlib.h>
18#include <sys/resource.h>
19#include <sys/stat.h>
20#include <sys/types.h>
21#include <sys/wait.h>
22#include <unistd.h>
23#include <sys/sysctl.h>
24#include <map>
25#include <vector>
26
27#include "MacOSX/MachProcess.h"
28#include "MacOSX/MachTask.h"
29#include "CFString.h"
30#include "DNBLog.h"
31#include "DNBDataRef.h"
32#include "DNBThreadResumeActions.h"
33#include "DNBTimer.h"
34
35typedef std::tr1::shared_ptr<MachProcess> MachProcessSP;
36typedef std::map<nub_process_t, MachProcessSP> ProcessMap;
37typedef ProcessMap::iterator ProcessMapIter;
38typedef ProcessMap::const_iterator ProcessMapConstIter;
39
40static size_t GetAllInfos (std::vector<struct kinfo_proc>& proc_infos);
41static size_t GetAllInfosMatchingName (const char *process_name, std::vector<struct kinfo_proc>& matching_proc_infos);
42
43//----------------------------------------------------------------------
44// A Thread safe singleton to get a process map pointer.
45//
46// Returns a pointer to the existing process map, or a pointer to a
47// newly created process map if CAN_CREATE is non-zero.
48//----------------------------------------------------------------------
49static ProcessMap*
50GetProcessMap(bool can_create)
51{
52 static ProcessMap* g_process_map_ptr = NULL;
53
54 if (can_create && g_process_map_ptr == NULL)
55 {
56 static pthread_mutex_t g_process_map_mutex = PTHREAD_MUTEX_INITIALIZER;
57 PTHREAD_MUTEX_LOCKER (locker, &g_process_map_mutex);
58 if (g_process_map_ptr == NULL)
59 g_process_map_ptr = new ProcessMap;
60 }
61 return g_process_map_ptr;
62}
63
64//----------------------------------------------------------------------
65// Add PID to the shared process pointer map.
66//
67// Return non-zero value if we succeed in adding the process to the map.
68// The only time this should fail is if we run out of memory and can't
69// allocate a ProcessMap.
70//----------------------------------------------------------------------
71static nub_bool_t
72AddProcessToMap (nub_process_t pid, MachProcessSP& procSP)
73{
74 ProcessMap* process_map = GetProcessMap(true);
75 if (process_map)
76 {
77 process_map->insert(std::make_pair(pid, procSP));
78 return true;
79 }
80 return false;
81}
82
83//----------------------------------------------------------------------
84// Remove the shared pointer for PID from the process map.
85//
86// Returns the number of items removed from the process map.
87//----------------------------------------------------------------------
88static size_t
89RemoveProcessFromMap (nub_process_t pid)
90{
91 ProcessMap* process_map = GetProcessMap(false);
92 if (process_map)
93 {
94 return process_map->erase(pid);
95 }
96 return 0;
97}
98
99//----------------------------------------------------------------------
100// Get the shared pointer for PID from the existing process map.
101//
102// Returns true if we successfully find a shared pointer to a
103// MachProcess object.
104//----------------------------------------------------------------------
105static nub_bool_t
106GetProcessSP (nub_process_t pid, MachProcessSP& procSP)
107{
108 ProcessMap* process_map = GetProcessMap(false);
109 if (process_map != NULL)
110 {
111 ProcessMapIter pos = process_map->find(pid);
112 if (pos != process_map->end())
113 {
114 procSP = pos->second;
115 return true;
116 }
117 }
118 procSP.reset();
119 return false;
120}
121
122
123static void *
124waitpid_thread (void *arg)
125{
126 const pid_t pid = (pid_t)(intptr_t)arg;
127 int status;
128 while (1)
129 {
130 pid_t child_pid = waitpid(pid, &status, 0);
131 DNBLogThreadedIf(LOG_PROCESS, "waitpid_process_thread (): waitpid (pid = %i, &status, 0) => %i, status = %i, errno = %i", pid, child_pid, status, errno);
132
133 if (child_pid < 0)
134 {
135 if (errno == EINTR)
136 continue;
137 break;
138 }
139 else
140 {
141 if (WIFSTOPPED(status))
142 {
143 continue;
144 }
145 else// if (WIFEXITED(status) || WIFSIGNALED(status))
146 {
147 DNBLogThreadedIf(LOG_PROCESS, "waitpid_process_thread (): setting exit status for pid = %i to %i", child_pid, status);
148 DNBProcessSetExitStatus (child_pid, status);
149 return NULL;
150 }
151 }
152 }
153
154 // We should never exit as long as our child process is alive, so if we
155 // do something else went wrong and we should exit...
156 DNBLogThreadedIf(LOG_PROCESS, "waitpid_process_thread (): main loop exited, setting exit status to an invalid value (-1) for pid %i", pid);
157 DNBProcessSetExitStatus (pid, -1);
158 return NULL;
159}
160
161static bool
162spawn_waitpid_thread (pid_t pid)
163{
164 pthread_t thread = THREAD_NULL;
165 ::pthread_create (&thread, NULL, waitpid_thread, (void *)(intptr_t)pid);
166 if (thread != THREAD_NULL)
167 {
168 ::pthread_detach (thread);
169 return true;
170 }
171 return false;
172}
173
174nub_process_t
175DNBProcessLaunch (const char *path,
176 char const *argv[],
177 const char *envp[],
Greg Clayton6779606a2011-01-22 23:43:18 +0000178 const char *working_directory, // NULL => dont' change, non-NULL => set working directory for inferior to this
179 const char *stdin_path,
180 const char *stdout_path,
181 const char *stderr_path,
Caroline Ticef8da8632010-12-03 18:46:09 +0000182 bool no_stdio,
Chris Lattner30fdc8d2010-06-08 16:52:24 +0000183 nub_launch_flavor_t launch_flavor,
Greg Claytonf681b942010-08-31 18:35:14 +0000184 int disable_aslr,
Chris Lattner30fdc8d2010-06-08 16:52:24 +0000185 char *err_str,
186 size_t err_len)
187{
Greg Claytonbd82a5d2011-01-23 05:56:20 +0000188 DNBLogThreadedIf(LOG_PROCESS, "%s ( path='%s', argv = %p, envp = %p, working_dir=%s, stdin=%s, stdout=%s, stderr=%s, no-stdio=%i, launch_flavor = %u, disable_aslr = %d, err = %p, err_len = %zu) called...",
189 __FUNCTION__,
190 path,
191 argv,
192 envp,
193 working_directory,
194 stdin_path,
195 stdout_path,
196 stderr_path,
197 no_stdio,
198 launch_flavor,
199 disable_aslr,
200 err_str,
201 err_len);
202
Chris Lattner30fdc8d2010-06-08 16:52:24 +0000203 if (err_str && err_len > 0)
204 err_str[0] = '\0';
205 struct stat path_stat;
206 if (::stat(path, &path_stat) == -1)
207 {
208 char stat_error[256];
209 ::strerror_r (errno, stat_error, sizeof(stat_error));
210 snprintf(err_str, err_len, "%s (%s)", stat_error, path);
211 return INVALID_NUB_PROCESS;
212 }
213
214 MachProcessSP processSP (new MachProcess);
215 if (processSP.get())
216 {
217 DNBError launch_err;
Greg Clayton6779606a2011-01-22 23:43:18 +0000218 pid_t pid = processSP->LaunchForDebug (path,
219 argv,
220 envp,
221 working_directory,
222 stdin_path,
223 stdout_path,
224 stderr_path,
225 no_stdio,
226 launch_flavor,
227 disable_aslr,
228 launch_err);
Chris Lattner30fdc8d2010-06-08 16:52:24 +0000229 if (err_str)
230 {
231 *err_str = '\0';
232 if (launch_err.Fail())
233 {
234 const char *launch_err_str = launch_err.AsString();
235 if (launch_err_str)
236 {
237 strncpy(err_str, launch_err_str, err_len-1);
238 err_str[err_len-1] = '\0'; // Make sure the error string is terminated
239 }
240 }
241 }
242
243 DNBLogThreadedIf(LOG_PROCESS, "(DebugNub) new pid is %d...", pid);
244
245 if (pid != INVALID_NUB_PROCESS)
246 {
247 // Spawn a thread to reap our child inferior process...
248 spawn_waitpid_thread (pid);
249
250 if (processSP->Task().TaskPortForProcessID (launch_err) == TASK_NULL)
251 {
252 // We failed to get the task for our process ID which is bad.
253 if (err_str && err_len > 0)
254 {
255 if (launch_err.AsString())
256 {
257 ::snprintf (err_str, err_len, "failed to get the task for process %i (%s)", pid, launch_err.AsString());
258 }
259 else
260 {
261 ::snprintf (err_str, err_len, "failed to get the task for process %i", pid);
262 }
263 }
264 }
265 else
266 {
267 assert(AddProcessToMap(pid, processSP));
268 return pid;
269 }
270 }
271 }
272 return INVALID_NUB_PROCESS;
273}
274
275nub_process_t
276DNBProcessAttachByName (const char *name, struct timespec *timeout, char *err_str, size_t err_len)
277{
278 if (err_str && err_len > 0)
279 err_str[0] = '\0';
280 std::vector<struct kinfo_proc> matching_proc_infos;
281 size_t num_matching_proc_infos = GetAllInfosMatchingName(name, matching_proc_infos);
282 if (num_matching_proc_infos == 0)
283 {
284 DNBLogError ("error: no processes match '%s'\n", name);
285 return INVALID_NUB_PROCESS;
286 }
287 else if (num_matching_proc_infos > 1)
288 {
289 DNBLogError ("error: %u processes match '%s':\n", num_matching_proc_infos, name);
290 size_t i;
291 for (i=0; i<num_matching_proc_infos; ++i)
292 DNBLogError ("%6u - %s\n", matching_proc_infos[i].kp_proc.p_pid, matching_proc_infos[i].kp_proc.p_comm);
293 return INVALID_NUB_PROCESS;
294 }
Greg Clayton3af9ea52010-11-18 05:57:03 +0000295
296 return DNBProcessAttach (matching_proc_infos[0].kp_proc.p_pid, timeout, err_str, err_len);
Chris Lattner30fdc8d2010-06-08 16:52:24 +0000297}
298
299nub_process_t
300DNBProcessAttach (nub_process_t attach_pid, struct timespec *timeout, char *err_str, size_t err_len)
301{
302 if (err_str && err_len > 0)
303 err_str[0] = '\0';
304
305 pid_t pid;
306 MachProcessSP processSP(new MachProcess);
307 if (processSP.get())
308 {
309 DNBLogThreadedIf(LOG_PROCESS, "(DebugNub) attaching to pid %d...", attach_pid);
310 pid = processSP->AttachForDebug (attach_pid, err_str, err_len);
311
312 if (pid != INVALID_NUB_PROCESS)
313 {
314 assert(AddProcessToMap(pid, processSP));
315 spawn_waitpid_thread(pid);
316 }
317 }
318
319 while (pid != INVALID_NUB_PROCESS)
320 {
321 // Wait for process to start up and hit entry point
Greg Clayton3af9ea52010-11-18 05:57:03 +0000322 DNBLogThreadedIf (LOG_PROCESS,
323 "%s DNBProcessWaitForEvent (%4.4x, eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged, true, INFINITE)...",
324 __FUNCTION__,
325 pid);
Chris Lattner30fdc8d2010-06-08 16:52:24 +0000326 nub_event_t set_events = DNBProcessWaitForEvents (pid,
Greg Clayton3af9ea52010-11-18 05:57:03 +0000327 eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged,
328 true,
329 timeout);
330
331 DNBLogThreadedIf (LOG_PROCESS,
332 "%s DNBProcessWaitForEvent (%4.4x, eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged, true, INFINITE) => 0x%8.8x",
333 __FUNCTION__,
334 pid,
335 set_events);
Chris Lattner30fdc8d2010-06-08 16:52:24 +0000336
337 if (set_events == 0)
338 {
339 if (err_str && err_len > 0)
340 snprintf(err_str, err_len, "operation timed out");
341 pid = INVALID_NUB_PROCESS;
342 }
343 else
344 {
345 if (set_events & (eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged))
346 {
347 nub_state_t pid_state = DNBProcessGetState (pid);
348 DNBLogThreadedIf (LOG_PROCESS, "%s process %4.4x state changed (eEventProcessStateChanged): %s",
349 __FUNCTION__, pid, DNBStateAsString(pid_state));
350
351 switch (pid_state)
352 {
Greg Clayton3af9ea52010-11-18 05:57:03 +0000353 default:
354 case eStateInvalid:
355 case eStateUnloaded:
356 case eStateAttaching:
357 case eStateLaunching:
358 case eStateSuspended:
359 break; // Ignore
360
361 case eStateRunning:
362 case eStateStepping:
363 // Still waiting to stop at entry point...
364 break;
365
366 case eStateStopped:
367 case eStateCrashed:
368 return pid;
Chris Lattner30fdc8d2010-06-08 16:52:24 +0000369
Greg Clayton3af9ea52010-11-18 05:57:03 +0000370 case eStateDetached:
371 case eStateExited:
372 if (err_str && err_len > 0)
373 snprintf(err_str, err_len, "process exited");
374 return INVALID_NUB_PROCESS;
375 }
376 }
Chris Lattner30fdc8d2010-06-08 16:52:24 +0000377
378 DNBProcessResetEvents(pid, set_events);
379 }
380 }
381
382 return INVALID_NUB_PROCESS;
383}
384
385static size_t
Greg Clayton3af9ea52010-11-18 05:57:03 +0000386GetAllInfos (std::vector<struct kinfo_proc>& proc_infos)
Chris Lattner30fdc8d2010-06-08 16:52:24 +0000387{
388 size_t size;
389 int name[] = { CTL_KERN, KERN_PROC, KERN_PROC_ALL };
390 u_int namelen = sizeof(name)/sizeof(int);
391 int err;
392
393 // Try to find out how many processes are around so we can
394 // size the buffer appropriately. sysctl's man page specifically suggests
395 // this approach, and says it returns a bit larger size than needed to
396 // handle any new processes created between then and now.
397
398 err = ::sysctl (name, namelen, NULL, &size, NULL, 0);
399
400 if ((err < 0) && (err != ENOMEM))
401 {
402 proc_infos.clear();
403 perror("sysctl (mib, miblen, NULL, &num_processes, NULL, 0)");
404 return 0;
405 }
406
407
408 // Increase the size of the buffer by a few processes in case more have
409 // been spawned
410 proc_infos.resize (size / sizeof(struct kinfo_proc));
411 size = proc_infos.size() * sizeof(struct kinfo_proc); // Make sure we don't exceed our resize...
412 err = ::sysctl (name, namelen, &proc_infos[0], &size, NULL, 0);
413 if (err < 0)
414 {
415 proc_infos.clear();
416 return 0;
417 }
418
419 // Trim down our array to fit what we actually got back
420 proc_infos.resize(size / sizeof(struct kinfo_proc));
421 return proc_infos.size();
422}
423
424
425static size_t
426GetAllInfosMatchingName(const char *full_process_name, std::vector<struct kinfo_proc>& matching_proc_infos)
427{
428
429 matching_proc_infos.clear();
430 if (full_process_name && full_process_name[0])
431 {
432 // We only get the process name, not the full path, from the proc_info. So just take the
433 // base name of the process name...
434 const char *process_name;
435 process_name = strrchr (full_process_name, '/');
436 if (process_name == NULL)
437 process_name = full_process_name;
438 else
439 process_name++;
440
441 std::vector<struct kinfo_proc> proc_infos;
442 const size_t num_proc_infos = GetAllInfos(proc_infos);
443 if (num_proc_infos > 0)
444 {
445 uint32_t i;
446 for (i=0; i<num_proc_infos; i++)
447 {
448 // Skip zombie processes and processes with unset status
449 if (proc_infos[i].kp_proc.p_stat == 0 || proc_infos[i].kp_proc.p_stat == SZOMB)
450 continue;
451
452 // Check for process by name. We only check the first MAXCOMLEN
453 // chars as that is all that kp_proc.p_comm holds.
454 if (::strncasecmp(proc_infos[i].kp_proc.p_comm, process_name, MAXCOMLEN) == 0)
455 {
456 // We found a matching process, add it to our list
457 matching_proc_infos.push_back(proc_infos[i]);
458 }
459 }
460 }
461 }
462 // return the newly added matches.
463 return matching_proc_infos.size();
464}
465
466nub_process_t
Greg Clayton19388cf2010-10-18 01:45:30 +0000467DNBProcessAttachWait (const char *waitfor_process_name,
468 nub_launch_flavor_t launch_flavor,
469 struct timespec *timeout_abstime,
470 useconds_t waitfor_interval,
471 char *err_str,
472 size_t err_len,
Chris Lattner30fdc8d2010-06-08 16:52:24 +0000473 DNBShouldCancelCallback should_cancel_callback,
474 void *callback_data)
475{
476 DNBError prepare_error;
477 std::vector<struct kinfo_proc> exclude_proc_infos;
478 size_t num_exclude_proc_infos;
479
480 // If the PrepareForAttach returns a valid token, use MachProcess to check
481 // for the process, otherwise scan the process table.
482
483 const void *attach_token = MachProcess::PrepareForAttach (waitfor_process_name, launch_flavor, true, prepare_error);
484
485 if (prepare_error.Fail())
486 {
487 DNBLogError ("Error in PrepareForAttach: %s", prepare_error.AsString());
488 return INVALID_NUB_PROCESS;
489 }
490
491 if (attach_token == NULL)
492 num_exclude_proc_infos = GetAllInfosMatchingName (waitfor_process_name, exclude_proc_infos);
493
494 DNBLogThreadedIf (LOG_PROCESS, "Waiting for '%s' to appear...\n", waitfor_process_name);
495
496 // Loop and try to find the process by name
497 nub_process_t waitfor_pid = INVALID_NUB_PROCESS;
498
499 while (waitfor_pid == INVALID_NUB_PROCESS)
500 {
501 if (attach_token != NULL)
502 {
503 nub_process_t pid;
504 pid = MachProcess::CheckForProcess(attach_token);
505 if (pid != INVALID_NUB_PROCESS)
506 {
507 waitfor_pid = pid;
508 break;
509 }
510 }
511 else
512 {
513
514 // Get the current process list, and check for matches that
515 // aren't in our original list. If anyone wants to attach
516 // to an existing process by name, they should do it with
517 // --attach=PROCNAME. Else we will wait for the first matching
518 // process that wasn't in our exclusion list.
519 std::vector<struct kinfo_proc> proc_infos;
520 const size_t num_proc_infos = GetAllInfosMatchingName (waitfor_process_name, proc_infos);
521 for (size_t i=0; i<num_proc_infos; i++)
522 {
523 nub_process_t curr_pid = proc_infos[i].kp_proc.p_pid;
524 for (size_t j=0; j<num_exclude_proc_infos; j++)
525 {
526 if (curr_pid == exclude_proc_infos[j].kp_proc.p_pid)
527 {
528 // This process was in our exclusion list, don't use it.
529 curr_pid = INVALID_NUB_PROCESS;
530 break;
531 }
532 }
533
534 // If we didn't find CURR_PID in our exclusion list, then use it.
535 if (curr_pid != INVALID_NUB_PROCESS)
536 {
537 // We found our process!
538 waitfor_pid = curr_pid;
539 break;
540 }
541 }
542 }
543
544 // If we haven't found our process yet, check for a timeout
545 // and then sleep for a bit until we poll again.
546 if (waitfor_pid == INVALID_NUB_PROCESS)
547 {
548 if (timeout_abstime != NULL)
549 {
550 // Check to see if we have a waitfor-duration option that
551 // has timed out?
552 if (DNBTimer::TimeOfDayLaterThan(*timeout_abstime))
553 {
554 if (err_str && err_len > 0)
555 snprintf(err_str, err_len, "operation timed out");
556 DNBLogError ("error: waiting for process '%s' timed out.\n", waitfor_process_name);
557 return INVALID_NUB_PROCESS;
558 }
559 }
560
561 // Call the should cancel callback as well...
562
563 if (should_cancel_callback != NULL
564 && should_cancel_callback (callback_data))
565 {
566 DNBLogThreadedIf (LOG_PROCESS, "DNBProcessAttachWait cancelled by should_cancel callback.");
567 waitfor_pid = INVALID_NUB_PROCESS;
568 break;
569 }
570
571 ::usleep (waitfor_interval); // Sleep for WAITFOR_INTERVAL, then poll again
572 }
573 }
574
575 if (waitfor_pid != INVALID_NUB_PROCESS)
576 {
577 DNBLogThreadedIf (LOG_PROCESS, "Attaching to %s with pid %i...\n", waitfor_process_name, waitfor_pid);
578 waitfor_pid = DNBProcessAttach (waitfor_pid, timeout_abstime, err_str, err_len);
579 }
580
581 bool success = waitfor_pid != INVALID_NUB_PROCESS;
582 MachProcess::CleanupAfterAttach (attach_token, success, prepare_error);
583
584 return waitfor_pid;
585}
586
587nub_bool_t
588DNBProcessDetach (nub_process_t pid)
589{
590 MachProcessSP procSP;
591 if (GetProcessSP (pid, procSP))
592 {
593 return procSP->Detach();
594 }
595 return false;
596}
597
598nub_bool_t
599DNBProcessKill (nub_process_t pid)
600{
601 MachProcessSP procSP;
602 if (GetProcessSP (pid, procSP))
603 {
604 return procSP->Kill ();
605 }
606 return false;
607}
608
609nub_bool_t
610DNBProcessSignal (nub_process_t pid, int signal)
611{
612 MachProcessSP procSP;
613 if (GetProcessSP (pid, procSP))
614 {
615 return procSP->Signal (signal);
616 }
617 return false;
618}
619
620
621nub_bool_t
622DNBProcessIsAlive (nub_process_t pid)
623{
624 MachProcessSP procSP;
625 if (GetProcessSP (pid, procSP))
626 {
627 return MachTask::IsValid (procSP->Task().TaskPort());
628 }
629 return eStateInvalid;
630}
631
632//----------------------------------------------------------------------
633// Process and Thread state information
634//----------------------------------------------------------------------
635nub_state_t
636DNBProcessGetState (nub_process_t pid)
637{
638 MachProcessSP procSP;
639 if (GetProcessSP (pid, procSP))
640 {
641 return procSP->GetState();
642 }
643 return eStateInvalid;
644}
645
646//----------------------------------------------------------------------
647// Process and Thread state information
648//----------------------------------------------------------------------
649nub_bool_t
650DNBProcessGetExitStatus (nub_process_t pid, int* status)
651{
652 MachProcessSP procSP;
653 if (GetProcessSP (pid, procSP))
654 {
655 return procSP->GetExitStatus(status);
656 }
657 return false;
658}
659
660nub_bool_t
661DNBProcessSetExitStatus (nub_process_t pid, int status)
662{
663 MachProcessSP procSP;
664 if (GetProcessSP (pid, procSP))
665 {
666 procSP->SetExitStatus(status);
667 return true;
668 }
669 return false;
670}
671
672
673const char *
674DNBThreadGetName (nub_process_t pid, nub_thread_t tid)
675{
676 MachProcessSP procSP;
677 if (GetProcessSP (pid, procSP))
678 return procSP->ThreadGetName(tid);
679 return NULL;
680}
681
682
683nub_bool_t
684DNBThreadGetIdentifierInfo (nub_process_t pid, nub_thread_t tid, thread_identifier_info_data_t *ident_info)
685{
686 MachProcessSP procSP;
687 if (GetProcessSP (pid, procSP))
688 return procSP->GetThreadList().GetIdentifierInfo(tid, ident_info);
689 return false;
690}
691
692nub_state_t
693DNBThreadGetState (nub_process_t pid, nub_thread_t tid)
694{
695 MachProcessSP procSP;
696 if (GetProcessSP (pid, procSP))
697 {
698 return procSP->ThreadGetState(tid);
699 }
700 return eStateInvalid;
701}
702
703const char *
704DNBStateAsString(nub_state_t state)
705{
706 switch (state)
707 {
708 case eStateUnloaded: return "Unloaded";
709 case eStateAttaching: return "Attaching";
710 case eStateLaunching: return "Launching";
711 case eStateStopped: return "Stopped";
712 case eStateRunning: return "Running";
713 case eStateStepping: return "Stepping";
714 case eStateCrashed: return "Crashed";
715 case eStateDetached: return "Detached";
716 case eStateExited: return "Exited";
717 case eStateSuspended: return "Suspended";
718 }
719 return "nub_state_t ???";
720}
721
722const char *
723DNBProcessGetExecutablePath (nub_process_t pid)
724{
725 MachProcessSP procSP;
726 if (GetProcessSP (pid, procSP))
727 {
728 return procSP->Path();
729 }
730 return NULL;
731}
732
733nub_size_t
734DNBProcessGetArgumentCount (nub_process_t pid)
735{
736 MachProcessSP procSP;
737 if (GetProcessSP (pid, procSP))
738 {
739 return procSP->ArgumentCount();
740 }
741 return 0;
742}
743
744const char *
745DNBProcessGetArgumentAtIndex (nub_process_t pid, nub_size_t idx)
746{
747 MachProcessSP procSP;
748 if (GetProcessSP (pid, procSP))
749 {
750 return procSP->ArgumentAtIndex (idx);
751 }
752 return NULL;
753}
754
755
756//----------------------------------------------------------------------
757// Execution control
758//----------------------------------------------------------------------
759nub_bool_t
760DNBProcessResume (nub_process_t pid, const DNBThreadResumeAction *actions, size_t num_actions)
761{
762 DNBLogThreadedIf(LOG_PROCESS, "%s(pid = %4.4x)", __FUNCTION__, pid);
763 MachProcessSP procSP;
764 if (GetProcessSP (pid, procSP))
765 {
766 DNBThreadResumeActions thread_actions (actions, num_actions);
767
768 // Below we add a default thread plan just in case one wasn't
769 // provided so all threads always know what they were supposed to do
770 if (thread_actions.IsEmpty())
771 {
772 // No thread plans were given, so the default it to run all threads
773 thread_actions.SetDefaultThreadActionIfNeeded (eStateRunning, 0);
774 }
775 else
776 {
777 // Some thread plans were given which means anything that wasn't
778 // specified should remain stopped.
779 thread_actions.SetDefaultThreadActionIfNeeded (eStateStopped, 0);
780 }
781 return procSP->Resume (thread_actions);
782 }
783 return false;
784}
785
786nub_bool_t
787DNBProcessHalt (nub_process_t pid)
788{
789 DNBLogThreadedIf(LOG_PROCESS, "%s(pid = %4.4x)", __FUNCTION__, pid);
790 MachProcessSP procSP;
791 if (GetProcessSP (pid, procSP))
792 return procSP->Signal (SIGSTOP);
793 return false;
794}
795//
796//nub_bool_t
797//DNBThreadResume (nub_process_t pid, nub_thread_t tid, nub_bool_t step)
798//{
799// DNBLogThreadedIf(LOG_THREAD, "%s(pid = %4.4x, tid = %4.4x, step = %u)", __FUNCTION__, pid, tid, (uint32_t)step);
800// MachProcessSP procSP;
801// if (GetProcessSP (pid, procSP))
802// {
803// return procSP->Resume(tid, step, 0);
804// }
805// return false;
806//}
807//
808//nub_bool_t
809//DNBThreadResumeWithSignal (nub_process_t pid, nub_thread_t tid, nub_bool_t step, int signal)
810//{
811// DNBLogThreadedIf(LOG_THREAD, "%s(pid = %4.4x, tid = %4.4x, step = %u, signal = %i)", __FUNCTION__, pid, tid, (uint32_t)step, signal);
812// MachProcessSP procSP;
813// if (GetProcessSP (pid, procSP))
814// {
815// return procSP->Resume(tid, step, signal);
816// }
817// return false;
818//}
819
820nub_event_t
821DNBProcessWaitForEvents (nub_process_t pid, nub_event_t event_mask, bool wait_for_set, struct timespec* timeout)
822{
823 nub_event_t result = 0;
824 MachProcessSP procSP;
825 if (GetProcessSP (pid, procSP))
826 {
827 if (wait_for_set)
828 result = procSP->Events().WaitForSetEvents(event_mask, timeout);
829 else
830 result = procSP->Events().WaitForEventsToReset(event_mask, timeout);
831 }
832 return result;
833}
834
835void
836DNBProcessResetEvents (nub_process_t pid, nub_event_t event_mask)
837{
838 MachProcessSP procSP;
839 if (GetProcessSP (pid, procSP))
840 procSP->Events().ResetEvents(event_mask);
841}
842
843void
844DNBProcessInterruptEvents (nub_process_t pid)
845{
846 MachProcessSP procSP;
847 if (GetProcessSP (pid, procSP))
848 procSP->Events().SetEvents(eEventProcessAsyncInterrupt);
849}
850
851
852// Breakpoints
853nub_break_t
854DNBBreakpointSet (nub_process_t pid, nub_addr_t addr, nub_size_t size, nub_bool_t hardware)
855{
856 MachProcessSP procSP;
857 if (GetProcessSP (pid, procSP))
858 {
859 return procSP->CreateBreakpoint(addr, size, hardware, THREAD_NULL);
860 }
861 return INVALID_NUB_BREAK_ID;
862}
863
864nub_bool_t
865DNBBreakpointClear (nub_process_t pid, nub_break_t breakID)
866{
867 if (NUB_BREAK_ID_IS_VALID(breakID))
868 {
869 MachProcessSP procSP;
870 if (GetProcessSP (pid, procSP))
871 {
872 return procSP->DisableBreakpoint(breakID, true);
873 }
874 }
875 return false; // Failed
876}
877
878nub_ssize_t
879DNBBreakpointGetHitCount (nub_process_t pid, nub_break_t breakID)
880{
881 if (NUB_BREAK_ID_IS_VALID(breakID))
882 {
883 MachProcessSP procSP;
884 if (GetProcessSP (pid, procSP))
885 {
886 DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
887 if (bp)
888 return bp->GetHitCount();
889 }
890 }
891 return 0;
892}
893
894nub_ssize_t
895DNBBreakpointGetIgnoreCount (nub_process_t pid, nub_break_t breakID)
896{
897 if (NUB_BREAK_ID_IS_VALID(breakID))
898 {
899 MachProcessSP procSP;
900 if (GetProcessSP (pid, procSP))
901 {
902 DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
903 if (bp)
904 return bp->GetIgnoreCount();
905 }
906 }
907 return 0;
908}
909
910nub_bool_t
911DNBBreakpointSetIgnoreCount (nub_process_t pid, nub_break_t breakID, nub_size_t ignore_count)
912{
913 if (NUB_BREAK_ID_IS_VALID(breakID))
914 {
915 MachProcessSP procSP;
916 if (GetProcessSP (pid, procSP))
917 {
918 DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
919 if (bp)
920 {
921 bp->SetIgnoreCount(ignore_count);
922 return true;
923 }
924 }
925 }
926 return false;
927}
928
929// Set the callback function for a given breakpoint. The callback function will
930// get called as soon as the breakpoint is hit. The function will be called
931// with the process ID, thread ID, breakpoint ID and the baton, and can return
932//
933nub_bool_t
934DNBBreakpointSetCallback (nub_process_t pid, nub_break_t breakID, DNBCallbackBreakpointHit callback, void *baton)
935{
936 if (NUB_BREAK_ID_IS_VALID(breakID))
937 {
938 MachProcessSP procSP;
939 if (GetProcessSP (pid, procSP))
940 {
941 DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
942 if (bp)
943 {
944 bp->SetCallback(callback, baton);
945 return true;
946 }
947 }
948 }
949 return false;
950}
951
952//----------------------------------------------------------------------
953// Dump the breakpoints stats for process PID for a breakpoint by ID.
954//----------------------------------------------------------------------
955void
956DNBBreakpointPrint (nub_process_t pid, nub_break_t breakID)
957{
958 MachProcessSP procSP;
959 if (GetProcessSP (pid, procSP))
960 procSP->DumpBreakpoint(breakID);
961}
962
963//----------------------------------------------------------------------
964// Watchpoints
965//----------------------------------------------------------------------
966nub_watch_t
967DNBWatchpointSet (nub_process_t pid, nub_addr_t addr, nub_size_t size, uint32_t watch_flags, nub_bool_t hardware)
968{
969 MachProcessSP procSP;
970 if (GetProcessSP (pid, procSP))
971 {
972 return procSP->CreateWatchpoint(addr, size, watch_flags, hardware, THREAD_NULL);
973 }
974 return INVALID_NUB_BREAK_ID;
975}
976
977nub_bool_t
978DNBWatchpointClear (nub_process_t pid, nub_watch_t watchID)
979{
980 if (NUB_BREAK_ID_IS_VALID(watchID))
981 {
982 MachProcessSP procSP;
983 if (GetProcessSP (pid, procSP))
984 {
985 return procSP->DisableWatchpoint(watchID, true);
986 }
987 }
988 return false; // Failed
989}
990
991nub_ssize_t
992DNBWatchpointGetHitCount (nub_process_t pid, nub_watch_t watchID)
993{
994 if (NUB_BREAK_ID_IS_VALID(watchID))
995 {
996 MachProcessSP procSP;
997 if (GetProcessSP (pid, procSP))
998 {
999 DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
1000 if (bp)
1001 return bp->GetHitCount();
1002 }
1003 }
1004 return 0;
1005}
1006
1007nub_ssize_t
1008DNBWatchpointGetIgnoreCount (nub_process_t pid, nub_watch_t watchID)
1009{
1010 if (NUB_BREAK_ID_IS_VALID(watchID))
1011 {
1012 MachProcessSP procSP;
1013 if (GetProcessSP (pid, procSP))
1014 {
1015 DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
1016 if (bp)
1017 return bp->GetIgnoreCount();
1018 }
1019 }
1020 return 0;
1021}
1022
1023nub_bool_t
1024DNBWatchpointSetIgnoreCount (nub_process_t pid, nub_watch_t watchID, nub_size_t ignore_count)
1025{
1026 if (NUB_BREAK_ID_IS_VALID(watchID))
1027 {
1028 MachProcessSP procSP;
1029 if (GetProcessSP (pid, procSP))
1030 {
1031 DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
1032 if (bp)
1033 {
1034 bp->SetIgnoreCount(ignore_count);
1035 return true;
1036 }
1037 }
1038 }
1039 return false;
1040}
1041
1042// Set the callback function for a given watchpoint. The callback function will
1043// get called as soon as the watchpoint is hit. The function will be called
1044// with the process ID, thread ID, watchpoint ID and the baton, and can return
1045//
1046nub_bool_t
1047DNBWatchpointSetCallback (nub_process_t pid, nub_watch_t watchID, DNBCallbackBreakpointHit callback, void *baton)
1048{
1049 if (NUB_BREAK_ID_IS_VALID(watchID))
1050 {
1051 MachProcessSP procSP;
1052 if (GetProcessSP (pid, procSP))
1053 {
1054 DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
1055 if (bp)
1056 {
1057 bp->SetCallback(callback, baton);
1058 return true;
1059 }
1060 }
1061 }
1062 return false;
1063}
1064
1065//----------------------------------------------------------------------
1066// Dump the watchpoints stats for process PID for a watchpoint by ID.
1067//----------------------------------------------------------------------
1068void
1069DNBWatchpointPrint (nub_process_t pid, nub_watch_t watchID)
1070{
1071 MachProcessSP procSP;
1072 if (GetProcessSP (pid, procSP))
1073 procSP->DumpWatchpoint(watchID);
1074}
1075
1076//----------------------------------------------------------------------
1077// Read memory in the address space of process PID. This call will take
1078// care of setting and restoring permissions and breaking up the memory
1079// read into multiple chunks as required.
1080//
1081// RETURNS: number of bytes actually read
1082//----------------------------------------------------------------------
1083nub_size_t
1084DNBProcessMemoryRead (nub_process_t pid, nub_addr_t addr, nub_size_t size, void *buf)
1085{
1086 MachProcessSP procSP;
1087 if (GetProcessSP (pid, procSP))
1088 return procSP->ReadMemory(addr, size, buf);
1089 return 0;
1090}
1091
1092//----------------------------------------------------------------------
1093// Write memory to the address space of process PID. This call will take
1094// care of setting and restoring permissions and breaking up the memory
1095// write into multiple chunks as required.
1096//
1097// RETURNS: number of bytes actually written
1098//----------------------------------------------------------------------
1099nub_size_t
1100DNBProcessMemoryWrite (nub_process_t pid, nub_addr_t addr, nub_size_t size, const void *buf)
1101{
1102 MachProcessSP procSP;
1103 if (GetProcessSP (pid, procSP))
1104 return procSP->WriteMemory(addr, size, buf);
1105 return 0;
1106}
1107
1108nub_addr_t
1109DNBProcessMemoryAllocate (nub_process_t pid, nub_size_t size, uint32_t permissions)
1110{
1111 MachProcessSP procSP;
1112 if (GetProcessSP (pid, procSP))
1113 return procSP->Task().AllocateMemory (size, permissions);
1114 return 0;
1115}
1116
1117nub_bool_t
1118DNBProcessMemoryDeallocate (nub_process_t pid, nub_addr_t addr)
1119{
1120 MachProcessSP procSP;
1121 if (GetProcessSP (pid, procSP))
1122 return procSP->Task().DeallocateMemory (addr);
1123 return 0;
1124}
1125
1126
1127//----------------------------------------------------------------------
1128// Formatted output that uses memory and registers from process and
1129// thread in place of arguments.
1130//----------------------------------------------------------------------
1131nub_size_t
1132DNBPrintf (nub_process_t pid, nub_thread_t tid, nub_addr_t base_addr, FILE *file, const char *format)
1133{
1134 if (file == NULL)
1135 return 0;
1136 enum printf_flags
1137 {
1138 alternate_form = (1 << 0),
1139 zero_padding = (1 << 1),
1140 negative_field_width = (1 << 2),
1141 blank_space = (1 << 3),
1142 show_sign = (1 << 4),
1143 show_thousands_separator= (1 << 5),
1144 };
1145
1146 enum printf_length_modifiers
1147 {
1148 length_mod_h = (1 << 0),
1149 length_mod_hh = (1 << 1),
1150 length_mod_l = (1 << 2),
1151 length_mod_ll = (1 << 3),
1152 length_mod_L = (1 << 4),
1153 length_mod_j = (1 << 5),
1154 length_mod_t = (1 << 6),
1155 length_mod_z = (1 << 7),
1156 length_mod_q = (1 << 8),
1157 };
1158
1159 nub_addr_t addr = base_addr;
1160 char *end_format = (char*)format + strlen(format);
1161 char *end = NULL; // For strtoXXXX calls;
1162 std::basic_string<uint8_t> buf;
1163 nub_size_t total_bytes_read = 0;
1164 DNBDataRef data;
1165 const char *f;
1166 for (f = format; *f != '\0' && f < end_format; f++)
1167 {
1168 char ch = *f;
1169 switch (ch)
1170 {
1171 case '%':
1172 {
1173 f++; // Skip the '%' character
1174 int min_field_width = 0;
1175 int precision = 0;
1176 uint32_t flags = 0;
1177 uint32_t length_modifiers = 0;
1178 uint32_t byte_size = 0;
1179 uint32_t actual_byte_size = 0;
1180 bool is_string = false;
1181 bool is_register = false;
1182 DNBRegisterValue register_value;
1183 int64_t register_offset = 0;
1184 nub_addr_t register_addr = INVALID_NUB_ADDRESS;
1185
1186 // Create the format string to use for this conversion specification
1187 // so we can remove and mprintf specific flags and formatters.
1188 std::string fprintf_format("%");
1189
1190 // Decode any flags
1191 switch (*f)
1192 {
1193 case '#': fprintf_format += *f++; flags |= alternate_form; break;
1194 case '0': fprintf_format += *f++; flags |= zero_padding; break;
1195 case '-': fprintf_format += *f++; flags |= negative_field_width; break;
1196 case ' ': fprintf_format += *f++; flags |= blank_space; break;
1197 case '+': fprintf_format += *f++; flags |= show_sign; break;
1198 case ',': fprintf_format += *f++; flags |= show_thousands_separator;break;
1199 case '{':
1200 case '[':
1201 {
1202 // We have a register name specification that can take two forms:
1203 // ${regname} or ${regname+offset}
1204 // The action is to read the register value and add the signed offset
1205 // (if any) and use that as the value to format.
1206 // $[regname] or $[regname+offset]
1207 // The action is to read the register value and add the signed offset
1208 // (if any) and use the result as an address to dereference. The size
1209 // of what is dereferenced is specified by the actual byte size that
1210 // follows the minimum field width and precision (see comments below).
1211 switch (*f)
1212 {
1213 case '{':
1214 case '[':
1215 {
1216 char open_scope_ch = *f;
1217 f++;
1218 const char *reg_name = f;
1219 size_t reg_name_length = strcspn(f, "+-}]");
1220 if (reg_name_length > 0)
1221 {
1222 std::string register_name(reg_name, reg_name_length);
1223 f += reg_name_length;
1224 register_offset = strtoll(f, &end, 0);
1225 if (f < end)
1226 f = end;
1227 if ((open_scope_ch == '{' && *f != '}') || (open_scope_ch == '[' && *f != ']'))
1228 {
1229 fprintf(file, "error: Invalid register format string. Valid formats are %%{regname} or %%{regname+offset}, %%[regname] or %%[regname+offset]\n");
1230 return total_bytes_read;
1231 }
1232 else
1233 {
1234 f++;
1235 if (DNBThreadGetRegisterValueByName(pid, tid, REGISTER_SET_ALL, register_name.c_str(), &register_value))
1236 {
1237 // Set the address to dereference using the register value plus the offset
1238 switch (register_value.info.size)
1239 {
1240 default:
1241 case 0:
1242 fprintf (file, "error: unsupported register size of %u.\n", register_value.info.size);
1243 return total_bytes_read;
1244
1245 case 1: register_addr = register_value.value.uint8 + register_offset; break;
1246 case 2: register_addr = register_value.value.uint16 + register_offset; break;
1247 case 4: register_addr = register_value.value.uint32 + register_offset; break;
1248 case 8: register_addr = register_value.value.uint64 + register_offset; break;
1249 case 16:
1250 if (open_scope_ch == '[')
1251 {
1252 fprintf (file, "error: register size (%u) too large for address.\n", register_value.info.size);
1253 return total_bytes_read;
1254 }
1255 break;
1256 }
1257
1258 if (open_scope_ch == '{')
1259 {
1260 byte_size = register_value.info.size;
1261 is_register = true; // value is in a register
1262
1263 }
1264 else
1265 {
1266 addr = register_addr; // Use register value and offset as the address
1267 }
1268 }
1269 else
1270 {
1271 fprintf(file, "error: unable to read register '%s' for process %#.4x and thread %#.4x\n", register_name.c_str(), pid, tid);
1272 return total_bytes_read;
1273 }
1274 }
1275 }
1276 }
1277 break;
1278
1279 default:
1280 fprintf(file, "error: %%$ must be followed by (regname + n) or [regname + n]\n");
1281 return total_bytes_read;
1282 }
1283 }
1284 break;
1285 }
1286
1287 // Check for a minimum field width
1288 if (isdigit(*f))
1289 {
1290 min_field_width = strtoul(f, &end, 10);
1291 if (end > f)
1292 {
1293 fprintf_format.append(f, end - f);
1294 f = end;
1295 }
1296 }
1297
1298
1299 // Check for a precision
1300 if (*f == '.')
1301 {
1302 f++;
1303 if (isdigit(*f))
1304 {
1305 fprintf_format += '.';
1306 precision = strtoul(f, &end, 10);
1307 if (end > f)
1308 {
1309 fprintf_format.append(f, end - f);
1310 f = end;
1311 }
1312 }
1313 }
1314
1315
1316 // mprintf specific: read the optional actual byte size (abs)
1317 // after the standard minimum field width (mfw) and precision (prec).
1318 // Standard printf calls you can have "mfw.prec" or ".prec", but
1319 // mprintf can have "mfw.prec.abs", ".prec.abs" or "..abs". This is nice
1320 // for strings that may be in a fixed size buffer, but may not use all bytes
1321 // in that buffer for printable characters.
1322 if (*f == '.')
1323 {
1324 f++;
1325 actual_byte_size = strtoul(f, &end, 10);
1326 if (end > f)
1327 {
1328 byte_size = actual_byte_size;
1329 f = end;
1330 }
1331 }
1332
1333 // Decode the length modifiers
1334 switch (*f)
1335 {
1336 case 'h': // h and hh length modifiers
1337 fprintf_format += *f++;
1338 length_modifiers |= length_mod_h;
1339 if (*f == 'h')
1340 {
1341 fprintf_format += *f++;
1342 length_modifiers |= length_mod_hh;
1343 }
1344 break;
1345
1346 case 'l': // l and ll length modifiers
1347 fprintf_format += *f++;
1348 length_modifiers |= length_mod_l;
1349 if (*f == 'h')
1350 {
1351 fprintf_format += *f++;
1352 length_modifiers |= length_mod_ll;
1353 }
1354 break;
1355
1356 case 'L': fprintf_format += *f++; length_modifiers |= length_mod_L; break;
1357 case 'j': fprintf_format += *f++; length_modifiers |= length_mod_j; break;
1358 case 't': fprintf_format += *f++; length_modifiers |= length_mod_t; break;
1359 case 'z': fprintf_format += *f++; length_modifiers |= length_mod_z; break;
1360 case 'q': fprintf_format += *f++; length_modifiers |= length_mod_q; break;
1361 }
1362
1363 // Decode the conversion specifier
1364 switch (*f)
1365 {
1366 case '_':
1367 // mprintf specific format items
1368 {
1369 ++f; // Skip the '_' character
1370 switch (*f)
1371 {
1372 case 'a': // Print the current address
1373 ++f;
1374 fprintf_format += "ll";
1375 fprintf_format += *f; // actual format to show address with folows the 'a' ("%_ax")
1376 fprintf (file, fprintf_format.c_str(), addr);
1377 break;
1378 case 'o': // offset from base address
1379 ++f;
1380 fprintf_format += "ll";
1381 fprintf_format += *f; // actual format to show address with folows the 'a' ("%_ox")
1382 fprintf(file, fprintf_format.c_str(), addr - base_addr);
1383 break;
1384 default:
1385 fprintf (file, "error: unsupported mprintf specific format character '%c'.\n", *f);
1386 break;
1387 }
1388 continue;
1389 }
1390 break;
1391
1392 case 'D':
1393 case 'O':
1394 case 'U':
1395 fprintf_format += *f;
1396 if (byte_size == 0)
1397 byte_size = sizeof(long int);
1398 break;
1399
1400 case 'd':
1401 case 'i':
1402 case 'o':
1403 case 'u':
1404 case 'x':
1405 case 'X':
1406 fprintf_format += *f;
1407 if (byte_size == 0)
1408 {
1409 if (length_modifiers & length_mod_hh)
1410 byte_size = sizeof(char);
1411 else if (length_modifiers & length_mod_h)
1412 byte_size = sizeof(short);
1413 if (length_modifiers & length_mod_ll)
1414 byte_size = sizeof(long long);
1415 else if (length_modifiers & length_mod_l)
1416 byte_size = sizeof(long);
1417 else
1418 byte_size = sizeof(int);
1419 }
1420 break;
1421
1422 case 'a':
1423 case 'A':
1424 case 'f':
1425 case 'F':
1426 case 'e':
1427 case 'E':
1428 case 'g':
1429 case 'G':
1430 fprintf_format += *f;
1431 if (byte_size == 0)
1432 {
1433 if (length_modifiers & length_mod_L)
1434 byte_size = sizeof(long double);
1435 else
1436 byte_size = sizeof(double);
1437 }
1438 break;
1439
1440 case 'c':
1441 if ((length_modifiers & length_mod_l) == 0)
1442 {
1443 fprintf_format += *f;
1444 if (byte_size == 0)
1445 byte_size = sizeof(char);
1446 break;
1447 }
1448 // Fall through to 'C' modifier below...
1449
1450 case 'C':
1451 fprintf_format += *f;
1452 if (byte_size == 0)
1453 byte_size = sizeof(wchar_t);
1454 break;
1455
1456 case 's':
1457 fprintf_format += *f;
1458 if (is_register || byte_size == 0)
1459 is_string = 1;
1460 break;
1461
1462 case 'p':
1463 fprintf_format += *f;
1464 if (byte_size == 0)
1465 byte_size = sizeof(void*);
1466 break;
1467 }
1468
1469 if (is_string)
1470 {
1471 std::string mem_string;
1472 const size_t string_buf_len = 4;
1473 char string_buf[string_buf_len+1];
1474 char *string_buf_end = string_buf + string_buf_len;
1475 string_buf[string_buf_len] = '\0';
1476 nub_size_t bytes_read;
1477 nub_addr_t str_addr = is_register ? register_addr : addr;
1478 while ((bytes_read = DNBProcessMemoryRead(pid, str_addr, string_buf_len, &string_buf[0])) > 0)
1479 {
1480 // Did we get a NULL termination character yet?
1481 if (strchr(string_buf, '\0') == string_buf_end)
1482 {
1483 // no NULL terminator yet, append as a std::string
1484 mem_string.append(string_buf, string_buf_len);
1485 str_addr += string_buf_len;
1486 }
1487 else
1488 {
1489 // yep
1490 break;
1491 }
1492 }
1493 // Append as a C-string so we don't get the extra NULL
1494 // characters in the temp buffer (since it was resized)
1495 mem_string += string_buf;
1496 size_t mem_string_len = mem_string.size() + 1;
1497 fprintf(file, fprintf_format.c_str(), mem_string.c_str());
1498 if (mem_string_len > 0)
1499 {
1500 if (!is_register)
1501 {
1502 addr += mem_string_len;
1503 total_bytes_read += mem_string_len;
1504 }
1505 }
1506 else
1507 return total_bytes_read;
1508 }
1509 else
1510 if (byte_size > 0)
1511 {
1512 buf.resize(byte_size);
1513 nub_size_t bytes_read = 0;
1514 if (is_register)
1515 bytes_read = register_value.info.size;
1516 else
1517 bytes_read = DNBProcessMemoryRead(pid, addr, buf.size(), &buf[0]);
1518 if (bytes_read > 0)
1519 {
1520 if (!is_register)
1521 total_bytes_read += bytes_read;
1522
1523 if (bytes_read == byte_size)
1524 {
1525 switch (*f)
1526 {
1527 case 'd':
1528 case 'i':
1529 case 'o':
1530 case 'u':
1531 case 'X':
1532 case 'x':
1533 case 'a':
1534 case 'A':
1535 case 'f':
1536 case 'F':
1537 case 'e':
1538 case 'E':
1539 case 'g':
1540 case 'G':
1541 case 'p':
1542 case 'c':
1543 case 'C':
1544 {
1545 if (is_register)
1546 data.SetData(&register_value.value.v_uint8[0], register_value.info.size);
1547 else
1548 data.SetData(&buf[0], bytes_read);
1549 DNBDataRef::offset_t data_offset = 0;
1550 if (byte_size <= 4)
1551 {
1552 uint32_t u32 = data.GetMax32(&data_offset, byte_size);
1553 // Show the actual byte width when displaying hex
1554 fprintf(file, fprintf_format.c_str(), u32);
1555 }
1556 else if (byte_size <= 8)
1557 {
1558 uint64_t u64 = data.GetMax64(&data_offset, byte_size);
1559 // Show the actual byte width when displaying hex
1560 fprintf(file, fprintf_format.c_str(), u64);
1561 }
1562 else
1563 {
1564 fprintf(file, "error: integer size not supported, must be 8 bytes or less (%u bytes).\n", byte_size);
1565 }
1566 if (!is_register)
1567 addr += byte_size;
1568 }
1569 break;
1570
1571 case 's':
1572 fprintf(file, fprintf_format.c_str(), buf.c_str());
1573 addr += byte_size;
1574 break;
1575
1576 default:
1577 fprintf(file, "error: unsupported conversion specifier '%c'.\n", *f);
1578 break;
1579 }
1580 }
1581 }
1582 }
1583 else
1584 return total_bytes_read;
1585 }
1586 break;
1587
1588 case '\\':
1589 {
1590 f++;
1591 switch (*f)
1592 {
1593 case 'e': ch = '\e'; break;
1594 case 'a': ch = '\a'; break;
1595 case 'b': ch = '\b'; break;
1596 case 'f': ch = '\f'; break;
1597 case 'n': ch = '\n'; break;
1598 case 'r': ch = '\r'; break;
1599 case 't': ch = '\t'; break;
1600 case 'v': ch = '\v'; break;
1601 case '\'': ch = '\''; break;
1602 case '\\': ch = '\\'; break;
1603 case '0':
1604 case '1':
1605 case '2':
1606 case '3':
1607 case '4':
1608 case '5':
1609 case '6':
1610 case '7':
1611 ch = strtoul(f, &end, 8);
1612 f = end;
1613 break;
1614 default:
1615 ch = *f;
1616 break;
1617 }
1618 fputc(ch, file);
1619 }
1620 break;
1621
1622 default:
1623 fputc(ch, file);
1624 break;
1625 }
1626 }
1627 return total_bytes_read;
1628}
1629
1630
1631//----------------------------------------------------------------------
1632// Get the number of threads for the specified process.
1633//----------------------------------------------------------------------
1634nub_size_t
1635DNBProcessGetNumThreads (nub_process_t pid)
1636{
1637 MachProcessSP procSP;
1638 if (GetProcessSP (pid, procSP))
1639 return procSP->GetNumThreads();
1640 return 0;
1641}
1642
1643//----------------------------------------------------------------------
1644// Get the thread ID of the current thread.
1645//----------------------------------------------------------------------
1646nub_thread_t
1647DNBProcessGetCurrentThread (nub_process_t pid)
1648{
1649 MachProcessSP procSP;
1650 if (GetProcessSP (pid, procSP))
1651 return procSP->GetCurrentThread();
1652 return 0;
1653}
1654
1655//----------------------------------------------------------------------
1656// Change the current thread.
1657//----------------------------------------------------------------------
1658nub_thread_t
1659DNBProcessSetCurrentThread (nub_process_t pid, nub_thread_t tid)
1660{
1661 MachProcessSP procSP;
1662 if (GetProcessSP (pid, procSP))
1663 return procSP->SetCurrentThread (tid);
1664 return INVALID_NUB_THREAD;
1665}
1666
1667
1668//----------------------------------------------------------------------
1669// Dump a string describing a thread's stop reason to the specified file
1670// handle
1671//----------------------------------------------------------------------
1672nub_bool_t
1673DNBThreadGetStopReason (nub_process_t pid, nub_thread_t tid, struct DNBThreadStopInfo *stop_info)
1674{
1675 MachProcessSP procSP;
1676 if (GetProcessSP (pid, procSP))
1677 return procSP->GetThreadStoppedReason (tid, stop_info);
1678 return false;
1679}
1680
1681//----------------------------------------------------------------------
1682// Return string description for the specified thread.
1683//
1684// RETURNS: NULL if the thread isn't valid, else a NULL terminated C
1685// string from a static buffer that must be copied prior to subsequent
1686// calls.
1687//----------------------------------------------------------------------
1688const char *
1689DNBThreadGetInfo (nub_process_t pid, nub_thread_t tid)
1690{
1691 MachProcessSP procSP;
1692 if (GetProcessSP (pid, procSP))
1693 return procSP->GetThreadInfo (tid);
1694 return NULL;
1695}
1696
1697//----------------------------------------------------------------------
1698// Get the thread ID given a thread index.
1699//----------------------------------------------------------------------
1700nub_thread_t
1701DNBProcessGetThreadAtIndex (nub_process_t pid, size_t thread_idx)
1702{
1703 MachProcessSP procSP;
1704 if (GetProcessSP (pid, procSP))
1705 return procSP->GetThreadAtIndex (thread_idx);
1706 return INVALID_NUB_THREAD;
1707}
1708
1709nub_addr_t
1710DNBProcessGetSharedLibraryInfoAddress (nub_process_t pid)
1711{
1712 MachProcessSP procSP;
1713 DNBError err;
1714 if (GetProcessSP (pid, procSP))
1715 return procSP->Task().GetDYLDAllImageInfosAddress (err);
1716 return INVALID_NUB_ADDRESS;
1717}
1718
1719
1720nub_bool_t
1721DNBProcessSharedLibrariesUpdated(nub_process_t pid)
1722{
1723 MachProcessSP procSP;
1724 if (GetProcessSP (pid, procSP))
1725 {
1726 procSP->SharedLibrariesUpdated ();
1727 return true;
1728 }
1729 return false;
1730}
1731
1732//----------------------------------------------------------------------
1733// Get the current shared library information for a process. Only return
1734// the shared libraries that have changed since the last shared library
1735// state changed event if only_changed is non-zero.
1736//----------------------------------------------------------------------
1737nub_size_t
1738DNBProcessGetSharedLibraryInfo (nub_process_t pid, nub_bool_t only_changed, struct DNBExecutableImageInfo **image_infos)
1739{
1740 MachProcessSP procSP;
1741 if (GetProcessSP (pid, procSP))
1742 return procSP->CopyImageInfos (image_infos, only_changed);
1743
1744 // If we have no process, then return NULL for the shared library info
1745 // and zero for shared library count
1746 *image_infos = NULL;
1747 return 0;
1748}
1749
1750//----------------------------------------------------------------------
1751// Get the register set information for a specific thread.
1752//----------------------------------------------------------------------
1753const DNBRegisterSetInfo *
1754DNBGetRegisterSetInfo (nub_size_t *num_reg_sets)
1755{
Greg Clayton3af9ea52010-11-18 05:57:03 +00001756 return DNBArchProtocol::GetRegisterSetInfo (num_reg_sets);
Chris Lattner30fdc8d2010-06-08 16:52:24 +00001757}
1758
1759
1760//----------------------------------------------------------------------
1761// Read a register value by register set and register index.
1762//----------------------------------------------------------------------
1763nub_bool_t
1764DNBThreadGetRegisterValueByID (nub_process_t pid, nub_thread_t tid, uint32_t set, uint32_t reg, DNBRegisterValue *value)
1765{
1766 MachProcessSP procSP;
1767 ::bzero (value, sizeof(DNBRegisterValue));
1768 if (GetProcessSP (pid, procSP))
1769 {
1770 if (tid != INVALID_NUB_THREAD)
1771 return procSP->GetRegisterValue (tid, set, reg, value);
1772 }
1773 return false;
1774}
1775
1776nub_bool_t
1777DNBThreadSetRegisterValueByID (nub_process_t pid, nub_thread_t tid, uint32_t set, uint32_t reg, const DNBRegisterValue *value)
1778{
1779 if (tid != INVALID_NUB_THREAD)
1780 {
1781 MachProcessSP procSP;
1782 if (GetProcessSP (pid, procSP))
1783 return procSP->SetRegisterValue (tid, set, reg, value);
1784 }
1785 return false;
1786}
1787
1788nub_size_t
1789DNBThreadGetRegisterContext (nub_process_t pid, nub_thread_t tid, void *buf, size_t buf_len)
1790{
1791 MachProcessSP procSP;
1792 if (GetProcessSP (pid, procSP))
1793 {
1794 if (tid != INVALID_NUB_THREAD)
1795 return procSP->GetThreadList().GetRegisterContext (tid, buf, buf_len);
1796 }
1797 ::bzero (buf, buf_len);
1798 return 0;
1799
1800}
1801
1802nub_size_t
1803DNBThreadSetRegisterContext (nub_process_t pid, nub_thread_t tid, const void *buf, size_t buf_len)
1804{
1805 MachProcessSP procSP;
1806 if (GetProcessSP (pid, procSP))
1807 {
1808 if (tid != INVALID_NUB_THREAD)
1809 return procSP->GetThreadList().SetRegisterContext (tid, buf, buf_len);
1810 }
1811 return 0;
1812}
1813
1814//----------------------------------------------------------------------
1815// Read a register value by name.
1816//----------------------------------------------------------------------
1817nub_bool_t
1818DNBThreadGetRegisterValueByName (nub_process_t pid, nub_thread_t tid, uint32_t reg_set, const char *reg_name, DNBRegisterValue *value)
1819{
1820 MachProcessSP procSP;
1821 ::bzero (value, sizeof(DNBRegisterValue));
1822 if (GetProcessSP (pid, procSP))
1823 {
1824 const struct DNBRegisterSetInfo *set_info;
1825 nub_size_t num_reg_sets = 0;
1826 set_info = DNBGetRegisterSetInfo (&num_reg_sets);
1827 if (set_info)
1828 {
1829 uint32_t set = reg_set;
1830 uint32_t reg;
1831 if (set == REGISTER_SET_ALL)
1832 {
1833 for (set = 1; set < num_reg_sets; ++set)
1834 {
1835 for (reg = 0; reg < set_info[set].num_registers; ++reg)
1836 {
1837 if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0)
1838 return procSP->GetRegisterValue (tid, set, reg, value);
1839 }
1840 }
1841 }
1842 else
1843 {
1844 for (reg = 0; reg < set_info[set].num_registers; ++reg)
1845 {
1846 if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0)
1847 return procSP->GetRegisterValue (tid, set, reg, value);
1848 }
1849 }
1850 }
1851 }
1852 return false;
1853}
1854
1855
1856//----------------------------------------------------------------------
1857// Read a register set and register number from the register name.
1858//----------------------------------------------------------------------
1859nub_bool_t
1860DNBGetRegisterInfoByName (const char *reg_name, DNBRegisterInfo* info)
1861{
1862 const struct DNBRegisterSetInfo *set_info;
1863 nub_size_t num_reg_sets = 0;
1864 set_info = DNBGetRegisterSetInfo (&num_reg_sets);
1865 if (set_info)
1866 {
1867 uint32_t set, reg;
1868 for (set = 1; set < num_reg_sets; ++set)
1869 {
1870 for (reg = 0; reg < set_info[set].num_registers; ++reg)
1871 {
1872 if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0)
1873 {
1874 *info = set_info[set].registers[reg];
1875 return true;
1876 }
1877 }
1878 }
1879
1880 for (set = 1; set < num_reg_sets; ++set)
1881 {
1882 uint32_t reg;
1883 for (reg = 0; reg < set_info[set].num_registers; ++reg)
1884 {
1885 if (set_info[set].registers[reg].alt == NULL)
1886 continue;
1887
1888 if (strcasecmp(reg_name, set_info[set].registers[reg].alt) == 0)
1889 {
1890 *info = set_info[set].registers[reg];
1891 return true;
1892 }
1893 }
1894 }
1895 }
1896
1897 ::bzero (info, sizeof(DNBRegisterInfo));
1898 return false;
1899}
1900
1901
1902//----------------------------------------------------------------------
1903// Set the name to address callback function that this nub can use
1904// for any name to address lookups that are needed.
1905//----------------------------------------------------------------------
1906nub_bool_t
1907DNBProcessSetNameToAddressCallback (nub_process_t pid, DNBCallbackNameToAddress callback, void *baton)
1908{
1909 MachProcessSP procSP;
1910 if (GetProcessSP (pid, procSP))
1911 {
1912 procSP->SetNameToAddressCallback (callback, baton);
1913 return true;
1914 }
1915 return false;
1916}
1917
1918
1919//----------------------------------------------------------------------
1920// Set the name to address callback function that this nub can use
1921// for any name to address lookups that are needed.
1922//----------------------------------------------------------------------
1923nub_bool_t
1924DNBProcessSetSharedLibraryInfoCallback (nub_process_t pid, DNBCallbackCopyExecutableImageInfos callback, void *baton)
1925{
1926 MachProcessSP procSP;
1927 if (GetProcessSP (pid, procSP))
1928 {
1929 procSP->SetSharedLibraryInfoCallback (callback, baton);
1930 return true;
1931 }
1932 return false;
1933}
1934
1935nub_addr_t
1936DNBProcessLookupAddress (nub_process_t pid, const char *name, const char *shlib)
1937{
1938 MachProcessSP procSP;
1939 if (GetProcessSP (pid, procSP))
1940 {
1941 return procSP->LookupSymbol (name, shlib);
1942 }
1943 return INVALID_NUB_ADDRESS;
1944}
1945
1946
1947nub_size_t
1948DNBProcessGetAvailableSTDOUT (nub_process_t pid, char *buf, nub_size_t buf_size)
1949{
1950 MachProcessSP procSP;
1951 if (GetProcessSP (pid, procSP))
1952 return procSP->GetAvailableSTDOUT (buf, buf_size);
1953 return 0;
1954}
1955
1956nub_size_t
1957DNBProcessGetAvailableSTDERR (nub_process_t pid, char *buf, nub_size_t buf_size)
1958{
1959 MachProcessSP procSP;
1960 if (GetProcessSP (pid, procSP))
1961 return procSP->GetAvailableSTDERR (buf, buf_size);
1962 return 0;
1963}
1964
1965nub_size_t
1966DNBProcessGetStopCount (nub_process_t pid)
1967{
1968 MachProcessSP procSP;
1969 if (GetProcessSP (pid, procSP))
1970 return procSP->StopCount();
1971 return 0;
1972}
1973
1974nub_bool_t
1975DNBResolveExecutablePath (const char *path, char *resolved_path, size_t resolved_path_size)
1976{
1977 if (path == NULL || path[0] == '\0')
1978 return false;
1979
1980 char max_path[PATH_MAX];
1981 std::string result;
1982 CFString::GlobPath(path, result);
1983
1984 if (result.empty())
1985 result = path;
1986
1987 if (realpath(path, max_path))
1988 {
1989 // Found the path relatively...
1990 ::strncpy(resolved_path, max_path, resolved_path_size);
1991 return strlen(resolved_path) + 1 < resolved_path_size;
1992 }
1993 else
1994 {
1995 // Not a relative path, check the PATH environment variable if the
1996 const char *PATH = getenv("PATH");
1997 if (PATH)
1998 {
1999 const char *curr_path_start = PATH;
2000 const char *curr_path_end;
2001 while (curr_path_start && *curr_path_start)
2002 {
2003 curr_path_end = strchr(curr_path_start, ':');
2004 if (curr_path_end == NULL)
2005 {
2006 result.assign(curr_path_start);
2007 curr_path_start = NULL;
2008 }
2009 else if (curr_path_end > curr_path_start)
2010 {
2011 size_t len = curr_path_end - curr_path_start;
2012 result.assign(curr_path_start, len);
2013 curr_path_start += len + 1;
2014 }
2015 else
2016 break;
2017
2018 result += '/';
2019 result += path;
2020 struct stat s;
2021 if (stat(result.c_str(), &s) == 0)
2022 {
2023 ::strncpy(resolved_path, result.c_str(), resolved_path_size);
2024 return result.size() + 1 < resolved_path_size;
2025 }
2026 }
2027 }
2028 }
2029 return false;
2030}
2031
Greg Clayton3af9ea52010-11-18 05:57:03 +00002032
2033void
2034DNBInitialize()
2035{
2036 DNBLogThreadedIf (LOG_PROCESS, "DNBInitialize ()");
2037#if defined (__i386__) || defined (__x86_64__)
2038 DNBArchImplI386::Initialize();
2039 DNBArchImplX86_64::Initialize();
2040#elif defined (__arm__)
2041 DNBArchMachARM::Initialize();
2042#endif
2043}
2044
2045void
2046DNBTerminate()
2047{
2048}
Greg Clayton3c144382010-12-01 22:45:40 +00002049
2050nub_bool_t
2051DNBSetArchitecture (const char *arch)
2052{
2053 if (arch && arch[0])
2054 {
2055 if (strcasecmp (arch, "i386") == 0)
2056 return DNBArchProtocol::SetArchitecture (CPU_TYPE_I386);
2057 else if (strcasecmp (arch, "x86_64") == 0)
2058 return DNBArchProtocol::SetArchitecture (CPU_TYPE_X86_64);
2059 else if (strstr (arch, "arm") == arch)
2060 return DNBArchProtocol::SetArchitecture (CPU_TYPE_ARM);
2061 }
2062 return false;
2063}