blob: f0a812b1aabaa0fc219f43685097e41ee1af770a [file] [log] [blame]
Jingyue Wu13755602016-03-20 20:59:20 +00001//===-- NVPTXInferAddressSpace.cpp - ---------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// CUDA C/C++ includes memory space designation as variable type qualifers (such
11// as __global__ and __shared__). Knowing the space of a memory access allows
12// CUDA compilers to emit faster PTX loads and stores. For example, a load from
13// shared memory can be translated to `ld.shared` which is roughly 10% faster
14// than a generic `ld` on an NVIDIA Tesla K40c.
15//
16// Unfortunately, type qualifiers only apply to variable declarations, so CUDA
17// compilers must infer the memory space of an address expression from
18// type-qualified variables.
19//
20// LLVM IR uses non-zero (so-called) specific address spaces to represent memory
21// spaces (e.g. addrspace(3) means shared memory). The Clang frontend
22// places only type-qualified variables in specific address spaces, and then
23// conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
24// (so-called the generic address space) for other instructions to use.
25//
26// For example, the Clang translates the following CUDA code
27// __shared__ float a[10];
28// float v = a[i];
29// to
30// %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
31// %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
32// %v = load float, float* %1 ; emits ld.f32
33// @a is in addrspace(3) since it's type-qualified, but its use from %1 is
34// redirected to %0 (the generic version of @a).
35//
36// The optimization implemented in this file propagates specific address spaces
37// from type-qualified variable declarations to its users. For example, it
38// optimizes the above IR to
39// %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
40// %v = load float addrspace(3)* %1 ; emits ld.shared.f32
41// propagating the addrspace(3) from @a to %1. As the result, the NVPTX
42// codegen is able to emit ld.shared.f32 for %v.
43//
44// Address space inference works in two steps. First, it uses a data-flow
45// analysis to infer as many generic pointers as possible to point to only one
46// specific address space. In the above example, it can prove that %1 only
47// points to addrspace(3). This algorithm was published in
48// CUDA: Compiling and optimizing for a GPU platform
49// Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
50// ICCS 2012
51//
52// Then, address space inference replaces all refinable generic pointers with
53// equivalent specific pointers.
54//
55// The major challenge of implementing this optimization is handling PHINodes,
56// which may create loops in the data flow graph. This brings two complications.
57//
58// First, the data flow analysis in Step 1 needs to be circular. For example,
59// %generic.input = addrspacecast float addrspace(3)* %input to float*
60// loop:
61// %y = phi [ %generic.input, %y2 ]
62// %y2 = getelementptr %y, 1
63// %v = load %y2
64// br ..., label %loop, ...
65// proving %y specific requires proving both %generic.input and %y2 specific,
66// but proving %y2 specific circles back to %y. To address this complication,
67// the data flow analysis operates on a lattice:
68// uninitialized > specific address spaces > generic.
69// All address expressions (our implementation only considers phi, bitcast,
70// addrspacecast, and getelementptr) start with the uninitialized address space.
71// The monotone transfer function moves the address space of a pointer down a
72// lattice path from uninitialized to specific and then to generic. A join
73// operation of two different specific address spaces pushes the expression down
74// to the generic address space. The analysis completes once it reaches a fixed
75// point.
76//
77// Second, IR rewriting in Step 2 also needs to be circular. For example,
78// converting %y to addrspace(3) requires the compiler to know the converted
79// %y2, but converting %y2 needs the converted %y. To address this complication,
80// we break these cycles using "undef" placeholders. When converting an
81// instruction `I` to a new address space, if its operand `Op` is not converted
82// yet, we let `I` temporarily use `undef` and fix all the uses of undef later.
83// For instance, our algorithm first converts %y to
84// %y' = phi float addrspace(3)* [ %input, undef ]
85// Then, it converts %y2 to
86// %y2' = getelementptr %y', 1
87// Finally, it fixes the undef in %y' so that
88// %y' = phi float addrspace(3)* [ %input, %y2' ]
89//
Jingyue Wu13755602016-03-20 20:59:20 +000090//===----------------------------------------------------------------------===//
91
Matt Arsenault850657a2017-01-31 01:10:58 +000092#include "llvm/Transforms/Scalar.h"
Jingyue Wu13755602016-03-20 20:59:20 +000093#include "llvm/ADT/DenseSet.h"
94#include "llvm/ADT/Optional.h"
95#include "llvm/ADT/SetVector.h"
Matt Arsenault42b64782017-01-30 23:02:12 +000096#include "llvm/Analysis/TargetTransformInfo.h"
Jingyue Wu13755602016-03-20 20:59:20 +000097#include "llvm/IR/Function.h"
98#include "llvm/IR/InstIterator.h"
99#include "llvm/IR/Instructions.h"
100#include "llvm/IR/Operator.h"
Jingyue Wu13755602016-03-20 20:59:20 +0000101#include "llvm/Support/Debug.h"
102#include "llvm/Support/raw_ostream.h"
103#include "llvm/Transforms/Utils/Local.h"
104#include "llvm/Transforms/Utils/ValueMapper.h"
105
Matt Arsenault850657a2017-01-31 01:10:58 +0000106#define DEBUG_TYPE "infer-address-spaces"
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000107
Jingyue Wu13755602016-03-20 20:59:20 +0000108using namespace llvm;
109
110namespace {
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000111static const unsigned UninitializedAddressSpace = ~0u;
Jingyue Wu13755602016-03-20 20:59:20 +0000112
113using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
114
Matt Arsenault850657a2017-01-31 01:10:58 +0000115/// \brief InferAddressSpaces
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000116class InferAddressSpaces : public FunctionPass {
Matt Arsenault42b64782017-01-30 23:02:12 +0000117 /// Target specific address space which uses of should be replaced if
118 /// possible.
119 unsigned FlatAddrSpace;
120
Jingyue Wu13755602016-03-20 20:59:20 +0000121public:
122 static char ID;
123
Matt Arsenault850657a2017-01-31 01:10:58 +0000124 InferAddressSpaces() : FunctionPass(ID) {}
Jingyue Wu13755602016-03-20 20:59:20 +0000125
Matt Arsenault32b96002017-01-27 17:30:39 +0000126 void getAnalysisUsage(AnalysisUsage &AU) const override {
127 AU.setPreservesCFG();
Matt Arsenault42b64782017-01-30 23:02:12 +0000128 AU.addRequired<TargetTransformInfoWrapperPass>();
Matt Arsenault32b96002017-01-27 17:30:39 +0000129 }
130
Jingyue Wu13755602016-03-20 20:59:20 +0000131 bool runOnFunction(Function &F) override;
132
133private:
134 // Returns the new address space of V if updated; otherwise, returns None.
135 Optional<unsigned>
136 updateAddressSpace(const Value &V,
Matt Arsenault42b64782017-01-30 23:02:12 +0000137 const ValueToAddrSpaceMapTy &InferredAddrSpace) const;
Jingyue Wu13755602016-03-20 20:59:20 +0000138
139 // Tries to infer the specific address space of each address expression in
140 // Postorder.
141 void inferAddressSpaces(const std::vector<Value *> &Postorder,
Matt Arsenault42b64782017-01-30 23:02:12 +0000142 ValueToAddrSpaceMapTy *InferredAddrSpace) const;
Jingyue Wu13755602016-03-20 20:59:20 +0000143
Matt Arsenault72f259b2017-01-31 02:17:32 +0000144 bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const;
145
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000146 // Changes the flat address expressions in function F to point to specific
Jingyue Wu13755602016-03-20 20:59:20 +0000147 // address spaces if InferredAddrSpace says so. Postorder is the postorder of
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000148 // all flat expressions in the use-def graph of function F.
Jingyue Wu13755602016-03-20 20:59:20 +0000149 bool
150 rewriteWithNewAddressSpaces(const std::vector<Value *> &Postorder,
151 const ValueToAddrSpaceMapTy &InferredAddrSpace,
Matt Arsenault42b64782017-01-30 23:02:12 +0000152 Function *F) const;
153
154 void appendsFlatAddressExpressionToPostorderStack(
155 Value *V, std::vector<std::pair<Value *, bool>> *PostorderStack,
156 DenseSet<Value *> *Visited) const;
157
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000158 bool rewriteIntrinsicOperands(IntrinsicInst *II,
159 Value *OldV, Value *NewV) const;
160 void collectRewritableIntrinsicOperands(
161 IntrinsicInst *II,
162 std::vector<std::pair<Value *, bool>> *PostorderStack,
163 DenseSet<Value *> *Visited) const;
164
Matt Arsenault42b64782017-01-30 23:02:12 +0000165 std::vector<Value *> collectFlatAddressExpressions(Function &F) const;
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000166
Matt Arsenault42b64782017-01-30 23:02:12 +0000167 Value *cloneValueWithNewAddressSpace(
168 Value *V, unsigned NewAddrSpace,
169 const ValueToValueMapTy &ValueWithNewAddrSpace,
170 SmallVectorImpl<const Use *> *UndefUsesToFix) const;
171 unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const;
Jingyue Wu13755602016-03-20 20:59:20 +0000172};
173} // end anonymous namespace
174
Matt Arsenault850657a2017-01-31 01:10:58 +0000175char InferAddressSpaces::ID = 0;
Jingyue Wu13755602016-03-20 20:59:20 +0000176
177namespace llvm {
Matt Arsenault850657a2017-01-31 01:10:58 +0000178void initializeInferAddressSpacesPass(PassRegistry &);
Jingyue Wu13755602016-03-20 20:59:20 +0000179}
Matt Arsenault850657a2017-01-31 01:10:58 +0000180
181INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
Jingyue Wu13755602016-03-20 20:59:20 +0000182 false, false)
183
184// Returns true if V is an address expression.
185// TODO: Currently, we consider only phi, bitcast, addrspacecast, and
186// getelementptr operators.
187static bool isAddressExpression(const Value &V) {
188 if (!isa<Operator>(V))
189 return false;
190
191 switch (cast<Operator>(V).getOpcode()) {
192 case Instruction::PHI:
193 case Instruction::BitCast:
194 case Instruction::AddrSpaceCast:
195 case Instruction::GetElementPtr:
Matt Arsenaultbdd59e62017-02-01 00:08:53 +0000196 case Instruction::Select:
Jingyue Wu13755602016-03-20 20:59:20 +0000197 return true;
198 default:
199 return false;
200 }
201}
202
203// Returns the pointer operands of V.
204//
205// Precondition: V is an address expression.
206static SmallVector<Value *, 2> getPointerOperands(const Value &V) {
207 assert(isAddressExpression(V));
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000208 const Operator &Op = cast<Operator>(V);
Jingyue Wu13755602016-03-20 20:59:20 +0000209 switch (Op.getOpcode()) {
210 case Instruction::PHI: {
211 auto IncomingValues = cast<PHINode>(Op).incoming_values();
212 return SmallVector<Value *, 2>(IncomingValues.begin(),
213 IncomingValues.end());
214 }
215 case Instruction::BitCast:
216 case Instruction::AddrSpaceCast:
217 case Instruction::GetElementPtr:
218 return {Op.getOperand(0)};
Matt Arsenaultbdd59e62017-02-01 00:08:53 +0000219 case Instruction::Select:
220 return {Op.getOperand(1), Op.getOperand(2)};
Jingyue Wu13755602016-03-20 20:59:20 +0000221 default:
222 llvm_unreachable("Unexpected instruction type.");
223 }
224}
225
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000226// TODO: Move logic to TTI?
227bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II,
228 Value *OldV,
229 Value *NewV) const {
230 Module *M = II->getParent()->getParent()->getParent();
231
232 switch (II->getIntrinsicID()) {
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000233 case Intrinsic::amdgcn_atomic_inc:
Matt Arsenault79f837c2017-03-30 22:21:40 +0000234 case Intrinsic::amdgcn_atomic_dec:{
235 const ConstantInt *IsVolatile = dyn_cast<ConstantInt>(II->getArgOperand(4));
236 if (!IsVolatile || !IsVolatile->isNullValue())
237 return false;
238
239 LLVM_FALLTHROUGH;
240 }
241 case Intrinsic::objectsize: {
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000242 Type *DestTy = II->getType();
243 Type *SrcTy = NewV->getType();
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000244 Function *NewDecl =
245 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000246 II->setArgOperand(0, NewV);
247 II->setCalledFunction(NewDecl);
248 return true;
249 }
250 default:
251 return false;
252 }
253}
254
255// TODO: Move logic to TTI?
256void InferAddressSpaces::collectRewritableIntrinsicOperands(
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000257 IntrinsicInst *II, std::vector<std::pair<Value *, bool>> *PostorderStack,
258 DenseSet<Value *> *Visited) const {
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000259 switch (II->getIntrinsicID()) {
260 case Intrinsic::objectsize:
261 case Intrinsic::amdgcn_atomic_inc:
262 case Intrinsic::amdgcn_atomic_dec:
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000263 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
264 PostorderStack, Visited);
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000265 break;
266 default:
267 break;
268 }
269}
270
271// Returns all flat address expressions in function F. The elements are
Matt Arsenault42b64782017-01-30 23:02:12 +0000272// If V is an unvisited flat address expression, appends V to PostorderStack
Jingyue Wu13755602016-03-20 20:59:20 +0000273// and marks it as visited.
Matt Arsenault850657a2017-01-31 01:10:58 +0000274void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack(
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000275 Value *V, std::vector<std::pair<Value *, bool>> *PostorderStack,
276 DenseSet<Value *> *Visited) const {
Jingyue Wu13755602016-03-20 20:59:20 +0000277 assert(V->getType()->isPointerTy());
278 if (isAddressExpression(*V) &&
Matt Arsenault42b64782017-01-30 23:02:12 +0000279 V->getType()->getPointerAddressSpace() == FlatAddrSpace) {
Jingyue Wu13755602016-03-20 20:59:20 +0000280 if (Visited->insert(V).second)
281 PostorderStack->push_back(std::make_pair(V, false));
282 }
283}
284
Matt Arsenault42b64782017-01-30 23:02:12 +0000285// Returns all flat address expressions in function F. The elements are ordered
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000286// ordered in postorder.
Matt Arsenault42b64782017-01-30 23:02:12 +0000287std::vector<Value *>
Matt Arsenault850657a2017-01-31 01:10:58 +0000288InferAddressSpaces::collectFlatAddressExpressions(Function &F) const {
Jingyue Wu13755602016-03-20 20:59:20 +0000289 // This function implements a non-recursive postorder traversal of a partial
290 // use-def graph of function F.
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000291 std::vector<std::pair<Value *, bool>> PostorderStack;
Jingyue Wu13755602016-03-20 20:59:20 +0000292 // The set of visited expressions.
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000293 DenseSet<Value *> Visited;
Matt Arsenault6c907a92017-01-31 01:40:38 +0000294
295 auto PushPtrOperand = [&](Value *Ptr) {
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000296 appendsFlatAddressExpressionToPostorderStack(Ptr, &PostorderStack,
297 &Visited);
Matt Arsenault6c907a92017-01-31 01:40:38 +0000298 };
299
Matt Arsenaultc07bda72017-04-21 21:35:04 +0000300 // Look at operations that may be interesting accelerate by moving to a known
301 // address space. We aim at generating after loads and stores, but pure
302 // addressing calculations may also be faster.
Jingyue Wu13755602016-03-20 20:59:20 +0000303 for (Instruction &I : instructions(F)) {
Matt Arsenaultc07bda72017-04-21 21:35:04 +0000304 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
305 if (!GEP->getType()->isVectorTy())
306 PushPtrOperand(GEP->getPointerOperand());
307 } else if (auto *LI = dyn_cast<LoadInst>(&I))
Matt Arsenault6c907a92017-01-31 01:40:38 +0000308 PushPtrOperand(LI->getPointerOperand());
309 else if (auto *SI = dyn_cast<StoreInst>(&I))
310 PushPtrOperand(SI->getPointerOperand());
311 else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I))
312 PushPtrOperand(RMW->getPointerOperand());
313 else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I))
314 PushPtrOperand(CmpX->getPointerOperand());
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000315 else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) {
316 // For memset/memcpy/memmove, any pointer operand can be replaced.
317 PushPtrOperand(MI->getRawDest());
Matt Arsenault6c907a92017-01-31 01:40:38 +0000318
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000319 // Handle 2nd operand for memcpy/memmove.
320 if (auto *MTI = dyn_cast<MemTransferInst>(MI))
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000321 PushPtrOperand(MTI->getRawSource());
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000322 } else if (auto *II = dyn_cast<IntrinsicInst>(&I))
323 collectRewritableIntrinsicOperands(II, &PostorderStack, &Visited);
Matt Arsenault72f259b2017-01-31 02:17:32 +0000324 else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) {
325 // FIXME: Handle vectors of pointers
326 if (Cmp->getOperand(0)->getType()->isPointerTy()) {
327 PushPtrOperand(Cmp->getOperand(0));
328 PushPtrOperand(Cmp->getOperand(1));
329 }
330 }
Jingyue Wu13755602016-03-20 20:59:20 +0000331 }
332
333 std::vector<Value *> Postorder; // The resultant postorder.
334 while (!PostorderStack.empty()) {
335 // If the operands of the expression on the top are already explored,
336 // adds that expression to the resultant postorder.
337 if (PostorderStack.back().second) {
338 Postorder.push_back(PostorderStack.back().first);
339 PostorderStack.pop_back();
340 continue;
341 }
342 // Otherwise, adds its operands to the stack and explores them.
343 PostorderStack.back().second = true;
344 for (Value *PtrOperand : getPointerOperands(*PostorderStack.back().first)) {
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000345 appendsFlatAddressExpressionToPostorderStack(PtrOperand, &PostorderStack,
346 &Visited);
Jingyue Wu13755602016-03-20 20:59:20 +0000347 }
348 }
349 return Postorder;
350}
351
352// A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
353// of OperandUse.get() in the new address space. If the clone is not ready yet,
354// returns an undef in the new address space as a placeholder.
355static Value *operandWithNewAddressSpaceOrCreateUndef(
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000356 const Use &OperandUse, unsigned NewAddrSpace,
357 const ValueToValueMapTy &ValueWithNewAddrSpace,
358 SmallVectorImpl<const Use *> *UndefUsesToFix) {
Jingyue Wu13755602016-03-20 20:59:20 +0000359 Value *Operand = OperandUse.get();
Matt Arsenault30083602017-02-02 03:37:22 +0000360
361 Type *NewPtrTy =
362 Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
363
364 if (Constant *C = dyn_cast<Constant>(Operand))
365 return ConstantExpr::getAddrSpaceCast(C, NewPtrTy);
366
Jingyue Wu13755602016-03-20 20:59:20 +0000367 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
368 return NewOperand;
369
370 UndefUsesToFix->push_back(&OperandUse);
Matt Arsenault30083602017-02-02 03:37:22 +0000371 return UndefValue::get(NewPtrTy);
Jingyue Wu13755602016-03-20 20:59:20 +0000372}
373
374// Returns a clone of `I` with its operands converted to those specified in
375// ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
376// operand whose address space needs to be modified might not exist in
377// ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and
378// adds that operand use to UndefUsesToFix so that caller can fix them later.
379//
380// Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
381// from a pointer whose type already matches. Therefore, this function returns a
382// Value* instead of an Instruction*.
383static Value *cloneInstructionWithNewAddressSpace(
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000384 Instruction *I, unsigned NewAddrSpace,
385 const ValueToValueMapTy &ValueWithNewAddrSpace,
386 SmallVectorImpl<const Use *> *UndefUsesToFix) {
Jingyue Wu13755602016-03-20 20:59:20 +0000387 Type *NewPtrType =
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000388 I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
Jingyue Wu13755602016-03-20 20:59:20 +0000389
390 if (I->getOpcode() == Instruction::AddrSpaceCast) {
391 Value *Src = I->getOperand(0);
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000392 // Because `I` is flat, the source address space must be specific.
Jingyue Wu13755602016-03-20 20:59:20 +0000393 // Therefore, the inferred address space must be the source space, according
394 // to our algorithm.
395 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
396 if (Src->getType() != NewPtrType)
397 return new BitCastInst(Src, NewPtrType);
398 return Src;
399 }
400
401 // Computes the converted pointer operands.
402 SmallVector<Value *, 4> NewPointerOperands;
403 for (const Use &OperandUse : I->operands()) {
404 if (!OperandUse.get()->getType()->isPointerTy())
405 NewPointerOperands.push_back(nullptr);
406 else
407 NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef(
Matt Arsenault850657a2017-01-31 01:10:58 +0000408 OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix));
Jingyue Wu13755602016-03-20 20:59:20 +0000409 }
410
411 switch (I->getOpcode()) {
412 case Instruction::BitCast:
413 return new BitCastInst(NewPointerOperands[0], NewPtrType);
414 case Instruction::PHI: {
415 assert(I->getType()->isPointerTy());
416 PHINode *PHI = cast<PHINode>(I);
417 PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
418 for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
419 unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
420 NewPHI->addIncoming(NewPointerOperands[OperandNo],
421 PHI->getIncomingBlock(Index));
422 }
423 return NewPHI;
424 }
425 case Instruction::GetElementPtr: {
426 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
427 GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000428 GEP->getSourceElementType(), NewPointerOperands[0],
429 SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end()));
Jingyue Wu13755602016-03-20 20:59:20 +0000430 NewGEP->setIsInBounds(GEP->isInBounds());
431 return NewGEP;
432 }
Matt Arsenaultbdd59e62017-02-01 00:08:53 +0000433 case Instruction::Select: {
434 assert(I->getType()->isPointerTy());
435 return SelectInst::Create(I->getOperand(0), NewPointerOperands[1],
436 NewPointerOperands[2], "", nullptr, I);
437 }
Jingyue Wu13755602016-03-20 20:59:20 +0000438 default:
439 llvm_unreachable("Unexpected opcode");
440 }
441}
442
443// Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
444// constant expression `CE` with its operands replaced as specified in
445// ValueWithNewAddrSpace.
446static Value *cloneConstantExprWithNewAddressSpace(
Matt Arsenault850657a2017-01-31 01:10:58 +0000447 ConstantExpr *CE, unsigned NewAddrSpace,
448 const ValueToValueMapTy &ValueWithNewAddrSpace) {
Jingyue Wu13755602016-03-20 20:59:20 +0000449 Type *TargetType =
Matt Arsenault850657a2017-01-31 01:10:58 +0000450 CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
Jingyue Wu13755602016-03-20 20:59:20 +0000451
452 if (CE->getOpcode() == Instruction::AddrSpaceCast) {
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000453 // Because CE is flat, the source address space must be specific.
Jingyue Wu13755602016-03-20 20:59:20 +0000454 // Therefore, the inferred address space must be the source space according
455 // to our algorithm.
456 assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
457 NewAddrSpace);
458 return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
459 }
460
Matt Arsenaultc18b6772017-02-17 00:32:19 +0000461 if (CE->getOpcode() == Instruction::BitCast) {
462 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0)))
463 return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType);
464 return ConstantExpr::getAddrSpaceCast(CE, TargetType);
465 }
466
Matt Arsenault30083602017-02-02 03:37:22 +0000467 if (CE->getOpcode() == Instruction::Select) {
468 Constant *Src0 = CE->getOperand(1);
469 Constant *Src1 = CE->getOperand(2);
470 if (Src0->getType()->getPointerAddressSpace() ==
471 Src1->getType()->getPointerAddressSpace()) {
472
473 return ConstantExpr::getSelect(
474 CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType),
475 ConstantExpr::getAddrSpaceCast(Src1, TargetType));
476 }
477 }
478
Jingyue Wu13755602016-03-20 20:59:20 +0000479 // Computes the operands of the new constant expression.
480 SmallVector<Constant *, 4> NewOperands;
481 for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
482 Constant *Operand = CE->getOperand(Index);
483 // If the address space of `Operand` needs to be modified, the new operand
484 // with the new address space should already be in ValueWithNewAddrSpace
485 // because (1) the constant expressions we consider (i.e. addrspacecast,
486 // bitcast, and getelementptr) do not incur cycles in the data flow graph
487 // and (2) this function is called on constant expressions in postorder.
488 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
489 NewOperands.push_back(cast<Constant>(NewOperand));
490 } else {
491 // Otherwise, reuses the old operand.
492 NewOperands.push_back(Operand);
493 }
494 }
495
496 if (CE->getOpcode() == Instruction::GetElementPtr) {
497 // Needs to specify the source type while constructing a getelementptr
498 // constant expression.
499 return CE->getWithOperands(
Matt Arsenault850657a2017-01-31 01:10:58 +0000500 NewOperands, TargetType, /*OnlyIfReduced=*/false,
501 NewOperands[0]->getType()->getPointerElementType());
Jingyue Wu13755602016-03-20 20:59:20 +0000502 }
503
504 return CE->getWithOperands(NewOperands, TargetType);
505}
506
507// Returns a clone of the value `V`, with its operands replaced as specified in
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000508// ValueWithNewAddrSpace. This function is called on every flat address
Jingyue Wu13755602016-03-20 20:59:20 +0000509// expression whose address space needs to be modified, in postorder.
510//
511// See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix.
Matt Arsenault850657a2017-01-31 01:10:58 +0000512Value *InferAddressSpaces::cloneValueWithNewAddressSpace(
Matt Arsenault42b64782017-01-30 23:02:12 +0000513 Value *V, unsigned NewAddrSpace,
514 const ValueToValueMapTy &ValueWithNewAddrSpace,
515 SmallVectorImpl<const Use *> *UndefUsesToFix) const {
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000516 // All values in Postorder are flat address expressions.
Jingyue Wu13755602016-03-20 20:59:20 +0000517 assert(isAddressExpression(*V) &&
Matt Arsenault42b64782017-01-30 23:02:12 +0000518 V->getType()->getPointerAddressSpace() == FlatAddrSpace);
Jingyue Wu13755602016-03-20 20:59:20 +0000519
520 if (Instruction *I = dyn_cast<Instruction>(V)) {
521 Value *NewV = cloneInstructionWithNewAddressSpace(
Matt Arsenault850657a2017-01-31 01:10:58 +0000522 I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix);
Jingyue Wu13755602016-03-20 20:59:20 +0000523 if (Instruction *NewI = dyn_cast<Instruction>(NewV)) {
524 if (NewI->getParent() == nullptr) {
525 NewI->insertBefore(I);
526 NewI->takeName(I);
527 }
528 }
529 return NewV;
530 }
531
532 return cloneConstantExprWithNewAddressSpace(
Matt Arsenault850657a2017-01-31 01:10:58 +0000533 cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace);
Jingyue Wu13755602016-03-20 20:59:20 +0000534}
535
536// Defines the join operation on the address space lattice (see the file header
537// comments).
Matt Arsenault850657a2017-01-31 01:10:58 +0000538unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1,
539 unsigned AS2) const {
Matt Arsenault42b64782017-01-30 23:02:12 +0000540 if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace)
541 return FlatAddrSpace;
Jingyue Wu13755602016-03-20 20:59:20 +0000542
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000543 if (AS1 == UninitializedAddressSpace)
Jingyue Wu13755602016-03-20 20:59:20 +0000544 return AS2;
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000545 if (AS2 == UninitializedAddressSpace)
Jingyue Wu13755602016-03-20 20:59:20 +0000546 return AS1;
547
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000548 // The join of two different specific address spaces is flat.
Matt Arsenault42b64782017-01-30 23:02:12 +0000549 return (AS1 == AS2) ? AS1 : FlatAddrSpace;
Jingyue Wu13755602016-03-20 20:59:20 +0000550}
551
Matt Arsenault850657a2017-01-31 01:10:58 +0000552bool InferAddressSpaces::runOnFunction(Function &F) {
Andrew Kaylor87b10dd2016-04-26 23:44:31 +0000553 if (skipFunction(F))
554 return false;
555
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000556 const TargetTransformInfo &TTI =
557 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
Matt Arsenault42b64782017-01-30 23:02:12 +0000558 FlatAddrSpace = TTI.getFlatAddressSpace();
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000559 if (FlatAddrSpace == UninitializedAddressSpace)
Matt Arsenault42b64782017-01-30 23:02:12 +0000560 return false;
561
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000562 // Collects all flat address expressions in postorder.
Matt Arsenault42b64782017-01-30 23:02:12 +0000563 std::vector<Value *> Postorder = collectFlatAddressExpressions(F);
Jingyue Wu13755602016-03-20 20:59:20 +0000564
565 // Runs a data-flow analysis to refine the address spaces of every expression
566 // in Postorder.
567 ValueToAddrSpaceMapTy InferredAddrSpace;
568 inferAddressSpaces(Postorder, &InferredAddrSpace);
569
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000570 // Changes the address spaces of the flat address expressions who are inferred
571 // to point to a specific address space.
Jingyue Wu13755602016-03-20 20:59:20 +0000572 return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, &F);
573}
574
Matt Arsenault850657a2017-01-31 01:10:58 +0000575void InferAddressSpaces::inferAddressSpaces(
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000576 const std::vector<Value *> &Postorder,
577 ValueToAddrSpaceMapTy *InferredAddrSpace) const {
Jingyue Wu13755602016-03-20 20:59:20 +0000578 SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
579 // Initially, all expressions are in the uninitialized address space.
580 for (Value *V : Postorder)
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000581 (*InferredAddrSpace)[V] = UninitializedAddressSpace;
Jingyue Wu13755602016-03-20 20:59:20 +0000582
583 while (!Worklist.empty()) {
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000584 Value *V = Worklist.pop_back_val();
Jingyue Wu13755602016-03-20 20:59:20 +0000585
586 // Tries to update the address space of the stack top according to the
587 // address spaces of its operands.
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000588 DEBUG(dbgs() << "Updating the address space of\n " << *V << '\n');
Jingyue Wu13755602016-03-20 20:59:20 +0000589 Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace);
590 if (!NewAS.hasValue())
591 continue;
592 // If any updates are made, grabs its users to the worklist because
593 // their address spaces can also be possibly updated.
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000594 DEBUG(dbgs() << " to " << NewAS.getValue() << '\n');
Jingyue Wu13755602016-03-20 20:59:20 +0000595 (*InferredAddrSpace)[V] = NewAS.getValue();
596
597 for (Value *User : V->users()) {
598 // Skip if User is already in the worklist.
599 if (Worklist.count(User))
600 continue;
601
602 auto Pos = InferredAddrSpace->find(User);
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000603 // Our algorithm only updates the address spaces of flat address
Jingyue Wu13755602016-03-20 20:59:20 +0000604 // expressions, which are those in InferredAddrSpace.
605 if (Pos == InferredAddrSpace->end())
606 continue;
607
608 // Function updateAddressSpace moves the address space down a lattice
Matt Arsenault850657a2017-01-31 01:10:58 +0000609 // path. Therefore, nothing to do if User is already inferred as flat (the
610 // bottom element in the lattice).
Matt Arsenault42b64782017-01-30 23:02:12 +0000611 if (Pos->second == FlatAddrSpace)
Jingyue Wu13755602016-03-20 20:59:20 +0000612 continue;
613
614 Worklist.insert(User);
615 }
616 }
617}
618
Matt Arsenault850657a2017-01-31 01:10:58 +0000619Optional<unsigned> InferAddressSpaces::updateAddressSpace(
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000620 const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const {
Jingyue Wu13755602016-03-20 20:59:20 +0000621 assert(InferredAddrSpace.count(&V));
622
623 // The new inferred address space equals the join of the address spaces
624 // of all its pointer operands.
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000625 unsigned NewAS = UninitializedAddressSpace;
Matt Arsenault850657a2017-01-31 01:10:58 +0000626
Matt Arsenault30083602017-02-02 03:37:22 +0000627 const Operator &Op = cast<Operator>(V);
628 if (Op.getOpcode() == Instruction::Select) {
629 Value *Src0 = Op.getOperand(1);
630 Value *Src1 = Op.getOperand(2);
631
632 auto I = InferredAddrSpace.find(Src0);
633 unsigned Src0AS = (I != InferredAddrSpace.end()) ?
634 I->second : Src0->getType()->getPointerAddressSpace();
635
636 auto J = InferredAddrSpace.find(Src1);
637 unsigned Src1AS = (J != InferredAddrSpace.end()) ?
638 J->second : Src1->getType()->getPointerAddressSpace();
639
640 auto *C0 = dyn_cast<Constant>(Src0);
641 auto *C1 = dyn_cast<Constant>(Src1);
642
643 // If one of the inputs is a constant, we may be able to do a constant
644 // addrspacecast of it. Defer inferring the address space until the input
645 // address space is known.
646 if ((C1 && Src0AS == UninitializedAddressSpace) ||
647 (C0 && Src1AS == UninitializedAddressSpace))
648 return None;
649
650 if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS))
651 NewAS = Src1AS;
652 else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS))
653 NewAS = Src0AS;
654 else
655 NewAS = joinAddressSpaces(Src0AS, Src1AS);
656 } else {
657 for (Value *PtrOperand : getPointerOperands(V)) {
658 auto I = InferredAddrSpace.find(PtrOperand);
659 unsigned OperandAS = I != InferredAddrSpace.end() ?
660 I->second : PtrOperand->getType()->getPointerAddressSpace();
661
662 // join(flat, *) = flat. So we can break if NewAS is already flat.
663 NewAS = joinAddressSpaces(NewAS, OperandAS);
664 if (NewAS == FlatAddrSpace)
665 break;
666 }
Jingyue Wu13755602016-03-20 20:59:20 +0000667 }
668
669 unsigned OldAS = InferredAddrSpace.lookup(&V);
Matt Arsenault42b64782017-01-30 23:02:12 +0000670 assert(OldAS != FlatAddrSpace);
Jingyue Wu13755602016-03-20 20:59:20 +0000671 if (OldAS == NewAS)
672 return None;
673 return NewAS;
674}
675
Matt Arsenault6c907a92017-01-31 01:40:38 +0000676/// \p returns true if \p U is the pointer operand of a memory instruction with
677/// a single pointer operand that can have its address space changed by simply
678/// mutating the use to a new value.
679static bool isSimplePointerUseValidToReplace(Use &U) {
680 User *Inst = U.getUser();
681 unsigned OpNo = U.getOperandNo();
682
683 if (auto *LI = dyn_cast<LoadInst>(Inst))
684 return OpNo == LoadInst::getPointerOperandIndex() && !LI->isVolatile();
685
686 if (auto *SI = dyn_cast<StoreInst>(Inst))
687 return OpNo == StoreInst::getPointerOperandIndex() && !SI->isVolatile();
688
689 if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst))
690 return OpNo == AtomicRMWInst::getPointerOperandIndex() && !RMW->isVolatile();
691
692 if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
693 return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() &&
694 !CmpX->isVolatile();
695 }
696
697 return false;
698}
699
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000700/// Update memory intrinsic uses that require more complex processing than
701/// simple memory instructions. Thse require re-mangling and may have multiple
702/// pointer operands.
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000703static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV,
704 Value *NewV) {
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000705 IRBuilder<> B(MI);
706 MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa);
707 MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope);
708 MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias);
709
710 if (auto *MSI = dyn_cast<MemSetInst>(MI)) {
711 B.CreateMemSet(NewV, MSI->getValue(),
712 MSI->getLength(), MSI->getAlignment(),
713 false, // isVolatile
714 TBAA, ScopeMD, NoAliasMD);
715 } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) {
716 Value *Src = MTI->getRawSource();
717 Value *Dest = MTI->getRawDest();
718
719 // Be careful in case this is a self-to-self copy.
720 if (Src == OldV)
721 Src = NewV;
722
723 if (Dest == OldV)
724 Dest = NewV;
725
726 if (isa<MemCpyInst>(MTI)) {
727 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
728 B.CreateMemCpy(Dest, Src, MTI->getLength(),
729 MTI->getAlignment(),
730 false, // isVolatile
731 TBAA, TBAAStruct, ScopeMD, NoAliasMD);
732 } else {
733 assert(isa<MemMoveInst>(MTI));
734 B.CreateMemMove(Dest, Src, MTI->getLength(),
735 MTI->getAlignment(),
736 false, // isVolatile
737 TBAA, ScopeMD, NoAliasMD);
738 }
739 } else
740 llvm_unreachable("unhandled MemIntrinsic");
741
742 MI->eraseFromParent();
743 return true;
744}
745
Matt Arsenault72f259b2017-01-31 02:17:32 +0000746// \p returns true if it is OK to change the address space of constant \p C with
747// a ConstantExpr addrspacecast.
748bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const {
Matt Arsenault30083602017-02-02 03:37:22 +0000749 assert(NewAS != UninitializedAddressSpace);
750
Matt Arsenault2a46d812017-01-31 23:48:40 +0000751 unsigned SrcAS = C->getType()->getPointerAddressSpace();
752 if (SrcAS == NewAS || isa<UndefValue>(C))
Matt Arsenault72f259b2017-01-31 02:17:32 +0000753 return true;
754
Matt Arsenault2a46d812017-01-31 23:48:40 +0000755 // Prevent illegal casts between different non-flat address spaces.
756 if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace)
757 return false;
758
759 if (isa<ConstantPointerNull>(C))
Matt Arsenault72f259b2017-01-31 02:17:32 +0000760 return true;
761
762 if (auto *Op = dyn_cast<Operator>(C)) {
763 // If we already have a constant addrspacecast, it should be safe to cast it
764 // off.
765 if (Op->getOpcode() == Instruction::AddrSpaceCast)
766 return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS);
767
768 if (Op->getOpcode() == Instruction::IntToPtr &&
769 Op->getType()->getPointerAddressSpace() == FlatAddrSpace)
770 return true;
771 }
772
773 return false;
774}
775
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000776static Value::use_iterator skipToNextUser(Value::use_iterator I,
777 Value::use_iterator End) {
778 User *CurUser = I->getUser();
779 ++I;
780
781 while (I != End && I->getUser() == CurUser)
782 ++I;
783
784 return I;
785}
786
Matt Arsenault850657a2017-01-31 01:10:58 +0000787bool InferAddressSpaces::rewriteWithNewAddressSpaces(
788 const std::vector<Value *> &Postorder,
789 const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const {
Jingyue Wu13755602016-03-20 20:59:20 +0000790 // For each address expression to be modified, creates a clone of it with its
791 // pointer operands converted to the new address space. Since the pointer
792 // operands are converted, the clone is naturally in the new address space by
793 // construction.
794 ValueToValueMapTy ValueWithNewAddrSpace;
795 SmallVector<const Use *, 32> UndefUsesToFix;
796 for (Value* V : Postorder) {
797 unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
798 if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
799 ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace(
Matt Arsenault850657a2017-01-31 01:10:58 +0000800 V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix);
Jingyue Wu13755602016-03-20 20:59:20 +0000801 }
802 }
803
804 if (ValueWithNewAddrSpace.empty())
805 return false;
806
807 // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace.
Matt Arsenaultdb6e9e82017-02-02 00:28:25 +0000808 for (const Use *UndefUse : UndefUsesToFix) {
Jingyue Wu13755602016-03-20 20:59:20 +0000809 User *V = UndefUse->getUser();
810 User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V));
811 unsigned OperandNo = UndefUse->getOperandNo();
812 assert(isa<UndefValue>(NewV->getOperand(OperandNo)));
813 NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get()));
814 }
815
816 // Replaces the uses of the old address expressions with the new ones.
817 for (Value *V : Postorder) {
818 Value *NewV = ValueWithNewAddrSpace.lookup(V);
819 if (NewV == nullptr)
820 continue;
821
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000822 DEBUG(dbgs() << "Replacing the uses of " << *V
823 << "\n with\n " << *NewV << '\n');
824
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000825 Value::use_iterator I, E, Next;
826 for (I = V->use_begin(), E = V->use_end(); I != E; ) {
827 Use &U = *I;
828
829 // Some users may see the same pointer operand in multiple operands. Skip
830 // to the next instruction.
831 I = skipToNextUser(I, E);
832
833 if (isSimplePointerUseValidToReplace(U)) {
Matt Arsenault6c907a92017-01-31 01:40:38 +0000834 // If V is used as the pointer operand of a compatible memory operation,
835 // sets the pointer operand to NewV. This replacement does not change
836 // the element type, so the resultant load/store is still valid.
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000837 U.set(NewV);
838 continue;
839 }
840
841 User *CurUser = U.getUser();
842 // Handle more complex cases like intrinsic that need to be remangled.
843 if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) {
844 if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV))
845 continue;
846 }
847
848 if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) {
849 if (rewriteIntrinsicOperands(II, V, NewV))
850 continue;
851 }
852
853 if (isa<Instruction>(CurUser)) {
Matt Arsenault72f259b2017-01-31 02:17:32 +0000854 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) {
855 // If we can infer that both pointers are in the same addrspace,
856 // transform e.g.
857 // %cmp = icmp eq float* %p, %q
858 // into
859 // %cmp = icmp eq float addrspace(3)* %new_p, %new_q
860
861 unsigned NewAS = NewV->getType()->getPointerAddressSpace();
862 int SrcIdx = U.getOperandNo();
863 int OtherIdx = (SrcIdx == 0) ? 1 : 0;
864 Value *OtherSrc = Cmp->getOperand(OtherIdx);
865
866 if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) {
867 if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) {
868 Cmp->setOperand(OtherIdx, OtherNewV);
869 Cmp->setOperand(SrcIdx, NewV);
870 continue;
871 }
872 }
873
874 // Even if the type mismatches, we can cast the constant.
875 if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) {
876 if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) {
877 Cmp->setOperand(SrcIdx, NewV);
878 Cmp->setOperand(OtherIdx,
879 ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType()));
880 continue;
881 }
882 }
883 }
884
Matt Arsenault850657a2017-01-31 01:10:58 +0000885 // Otherwise, replaces the use with flat(NewV).
Jingyue Wu13755602016-03-20 20:59:20 +0000886 if (Instruction *I = dyn_cast<Instruction>(V)) {
887 BasicBlock::iterator InsertPos = std::next(I->getIterator());
888 while (isa<PHINode>(InsertPos))
889 ++InsertPos;
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000890 U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos));
Jingyue Wu13755602016-03-20 20:59:20 +0000891 } else {
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000892 U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
893 V->getType()));
Jingyue Wu13755602016-03-20 20:59:20 +0000894 }
895 }
896 }
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000897
Jingyue Wu13755602016-03-20 20:59:20 +0000898 if (V->use_empty())
899 RecursivelyDeleteTriviallyDeadInstructions(V);
900 }
901
902 return true;
903}
904
Matt Arsenault850657a2017-01-31 01:10:58 +0000905FunctionPass *llvm::createInferAddressSpacesPass() {
906 return new InferAddressSpaces();
Jingyue Wu13755602016-03-20 20:59:20 +0000907}