blob: fc015c72435e102a09f547ff005a4a82fbb2cf6e [file] [log] [blame]
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001//===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SystemZTargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "systemz-lower"
15
16#include "SystemZISelLowering.h"
17#include "SystemZCallingConv.h"
18#include "SystemZConstantPoolValue.h"
19#include "SystemZMachineFunctionInfo.h"
20#include "SystemZTargetMachine.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
Will Dietz981af002013-10-12 00:55:57 +000025#include <cctype>
26
Ulrich Weigand5f613df2013-05-06 16:15:19 +000027using namespace llvm;
28
Richard Sandifordf722a8e302013-10-16 11:10:55 +000029namespace {
30// Represents a sequence for extracting a 0/1 value from an IPM result:
31// (((X ^ XORValue) + AddValue) >> Bit)
32struct IPMConversion {
33 IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit)
34 : XORValue(xorValue), AddValue(addValue), Bit(bit) {}
35
36 int64_t XORValue;
37 int64_t AddValue;
38 unsigned Bit;
39};
Richard Sandifordd420f732013-12-13 15:28:45 +000040
41// Represents information about a comparison.
42struct Comparison {
43 Comparison(SDValue Op0In, SDValue Op1In)
44 : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
45
46 // The operands to the comparison.
47 SDValue Op0, Op1;
48
49 // The opcode that should be used to compare Op0 and Op1.
50 unsigned Opcode;
51
52 // A SystemZICMP value. Only used for integer comparisons.
53 unsigned ICmpType;
54
55 // The mask of CC values that Opcode can produce.
56 unsigned CCValid;
57
58 // The mask of CC values for which the original condition is true.
59 unsigned CCMask;
60};
Richard Sandifordc2312692014-03-06 10:38:30 +000061} // end anonymous namespace
Richard Sandifordf722a8e302013-10-16 11:10:55 +000062
Ulrich Weigand5f613df2013-05-06 16:15:19 +000063// Classify VT as either 32 or 64 bit.
64static bool is32Bit(EVT VT) {
65 switch (VT.getSimpleVT().SimpleTy) {
66 case MVT::i32:
67 return true;
68 case MVT::i64:
69 return false;
70 default:
71 llvm_unreachable("Unsupported type");
72 }
73}
74
75// Return a version of MachineOperand that can be safely used before the
76// final use.
77static MachineOperand earlyUseOperand(MachineOperand Op) {
78 if (Op.isReg())
79 Op.setIsKill(false);
80 return Op;
81}
82
83SystemZTargetLowering::SystemZTargetLowering(SystemZTargetMachine &tm)
84 : TargetLowering(tm, new TargetLoweringObjectFileELF()),
85 Subtarget(*tm.getSubtargetImpl()), TM(tm) {
86 MVT PtrVT = getPointerTy();
87
88 // Set up the register classes.
Richard Sandiford0755c932013-10-01 11:26:28 +000089 if (Subtarget.hasHighWord())
90 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
91 else
92 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
Ulrich Weigand5f613df2013-05-06 16:15:19 +000093 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
94 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
95 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
96 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
97
98 // Compute derived properties from the register classes
99 computeRegisterProperties();
100
101 // Set up special registers.
102 setExceptionPointerRegister(SystemZ::R6D);
103 setExceptionSelectorRegister(SystemZ::R7D);
104 setStackPointerRegisterToSaveRestore(SystemZ::R15D);
105
106 // TODO: It may be better to default to latency-oriented scheduling, however
107 // LLVM's current latency-oriented scheduler can't handle physreg definitions
Richard Sandiford14a44492013-05-22 13:38:45 +0000108 // such as SystemZ has with CC, so set this to the register-pressure
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000109 // scheduler, because it can.
110 setSchedulingPreference(Sched::RegPressure);
111
112 setBooleanContents(ZeroOrOneBooleanContent);
113 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
114
115 // Instructions are strings of 2-byte aligned 2-byte values.
116 setMinFunctionAlignment(2);
117
118 // Handle operations that are handled in a similar way for all types.
119 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
120 I <= MVT::LAST_FP_VALUETYPE;
121 ++I) {
122 MVT VT = MVT::SimpleValueType(I);
123 if (isTypeLegal(VT)) {
Richard Sandifordf722a8e302013-10-16 11:10:55 +0000124 // Lower SET_CC into an IPM-based sequence.
125 setOperationAction(ISD::SETCC, VT, Custom);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000126
127 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
128 setOperationAction(ISD::SELECT, VT, Expand);
129
130 // Lower SELECT_CC and BR_CC into separate comparisons and branches.
131 setOperationAction(ISD::SELECT_CC, VT, Custom);
132 setOperationAction(ISD::BR_CC, VT, Custom);
133 }
134 }
135
136 // Expand jump table branches as address arithmetic followed by an
137 // indirect jump.
138 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
139
140 // Expand BRCOND into a BR_CC (see above).
141 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
142
143 // Handle integer types.
144 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
145 I <= MVT::LAST_INTEGER_VALUETYPE;
146 ++I) {
147 MVT VT = MVT::SimpleValueType(I);
148 if (isTypeLegal(VT)) {
149 // Expand individual DIV and REMs into DIVREMs.
150 setOperationAction(ISD::SDIV, VT, Expand);
151 setOperationAction(ISD::UDIV, VT, Expand);
152 setOperationAction(ISD::SREM, VT, Expand);
153 setOperationAction(ISD::UREM, VT, Expand);
154 setOperationAction(ISD::SDIVREM, VT, Custom);
155 setOperationAction(ISD::UDIVREM, VT, Custom);
156
Richard Sandifordbef3d7a2013-12-10 10:49:34 +0000157 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
158 // stores, putting a serialization instruction after the stores.
159 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom);
160 setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000161
Richard Sandiford41350a52013-12-24 15:18:04 +0000162 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
163 // available, or if the operand is constant.
164 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
165
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000166 // No special instructions for these.
167 setOperationAction(ISD::CTPOP, VT, Expand);
168 setOperationAction(ISD::CTTZ, VT, Expand);
169 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
170 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
171 setOperationAction(ISD::ROTR, VT, Expand);
172
Richard Sandiford7d86e472013-08-21 09:34:56 +0000173 // Use *MUL_LOHI where possible instead of MULH*.
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000174 setOperationAction(ISD::MULHS, VT, Expand);
175 setOperationAction(ISD::MULHU, VT, Expand);
Richard Sandiford7d86e472013-08-21 09:34:56 +0000176 setOperationAction(ISD::SMUL_LOHI, VT, Custom);
177 setOperationAction(ISD::UMUL_LOHI, VT, Custom);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000178
179 // We have instructions for signed but not unsigned FP conversion.
180 setOperationAction(ISD::FP_TO_UINT, VT, Expand);
181 }
182 }
183
184 // Type legalization will convert 8- and 16-bit atomic operations into
185 // forms that operate on i32s (but still keeping the original memory VT).
186 // Lower them into full i32 operations.
187 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom);
188 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom);
189 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
190 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom);
191 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom);
192 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom);
193 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
194 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom);
195 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom);
196 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
197 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
198 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
199
200 // We have instructions for signed but not unsigned FP conversion.
201 // Handle unsigned 32-bit types as signed 64-bit types.
202 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
203 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
204
205 // We have native support for a 64-bit CTLZ, via FLOGR.
206 setOperationAction(ISD::CTLZ, MVT::i32, Promote);
207 setOperationAction(ISD::CTLZ, MVT::i64, Legal);
208
209 // Give LowerOperation the chance to replace 64-bit ORs with subregs.
210 setOperationAction(ISD::OR, MVT::i64, Custom);
211
Richard Sandiford32379b82014-01-13 15:17:53 +0000212 // Give LowerOperation the chance to optimize SIGN_EXTEND sequences.
213 setOperationAction(ISD::SIGN_EXTEND, MVT::i64, Custom);
214
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000215 // FIXME: Can we support these natively?
216 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
217 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
218 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
219
220 // We have native instructions for i8, i16 and i32 extensions, but not i1.
221 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
222 setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
223 setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
224 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
225
226 // Handle the various types of symbolic address.
227 setOperationAction(ISD::ConstantPool, PtrVT, Custom);
228 setOperationAction(ISD::GlobalAddress, PtrVT, Custom);
229 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
230 setOperationAction(ISD::BlockAddress, PtrVT, Custom);
231 setOperationAction(ISD::JumpTable, PtrVT, Custom);
232
233 // We need to handle dynamic allocations specially because of the
234 // 160-byte area at the bottom of the stack.
235 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
236
237 // Use custom expanders so that we can force the function to use
238 // a frame pointer.
239 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom);
240 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
241
Richard Sandiford03481332013-08-23 11:36:42 +0000242 // Handle prefetches with PFD or PFDRL.
243 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
244
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000245 // Handle floating-point types.
246 for (unsigned I = MVT::FIRST_FP_VALUETYPE;
247 I <= MVT::LAST_FP_VALUETYPE;
248 ++I) {
249 MVT VT = MVT::SimpleValueType(I);
250 if (isTypeLegal(VT)) {
251 // We can use FI for FRINT.
252 setOperationAction(ISD::FRINT, VT, Legal);
253
Richard Sandifordaf5f66a2013-08-21 09:04:20 +0000254 // We can use the extended form of FI for other rounding operations.
255 if (Subtarget.hasFPExtension()) {
256 setOperationAction(ISD::FNEARBYINT, VT, Legal);
257 setOperationAction(ISD::FFLOOR, VT, Legal);
258 setOperationAction(ISD::FCEIL, VT, Legal);
259 setOperationAction(ISD::FTRUNC, VT, Legal);
260 setOperationAction(ISD::FROUND, VT, Legal);
261 }
262
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000263 // No special instructions for these.
264 setOperationAction(ISD::FSIN, VT, Expand);
265 setOperationAction(ISD::FCOS, VT, Expand);
266 setOperationAction(ISD::FREM, VT, Expand);
267 }
268 }
269
270 // We have fused multiply-addition for f32 and f64 but not f128.
271 setOperationAction(ISD::FMA, MVT::f32, Legal);
272 setOperationAction(ISD::FMA, MVT::f64, Legal);
273 setOperationAction(ISD::FMA, MVT::f128, Expand);
274
275 // Needed so that we don't try to implement f128 constant loads using
276 // a load-and-extend of a f80 constant (in cases where the constant
277 // would fit in an f80).
278 setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand);
279
280 // Floating-point truncation and stores need to be done separately.
281 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
282 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
283 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
284
285 // We have 64-bit FPR<->GPR moves, but need special handling for
286 // 32-bit forms.
287 setOperationAction(ISD::BITCAST, MVT::i32, Custom);
288 setOperationAction(ISD::BITCAST, MVT::f32, Custom);
289
290 // VASTART and VACOPY need to deal with the SystemZ-specific varargs
291 // structure, but VAEND is a no-op.
292 setOperationAction(ISD::VASTART, MVT::Other, Custom);
293 setOperationAction(ISD::VACOPY, MVT::Other, Custom);
294 setOperationAction(ISD::VAEND, MVT::Other, Expand);
Richard Sandifordd131ff82013-07-08 09:35:23 +0000295
296 // We want to use MVC in preference to even a single load/store pair.
297 MaxStoresPerMemcpy = 0;
298 MaxStoresPerMemcpyOptSize = 0;
Richard Sandiford47660c12013-07-09 09:32:42 +0000299
300 // The main memset sequence is a byte store followed by an MVC.
301 // Two STC or MV..I stores win over that, but the kind of fused stores
302 // generated by target-independent code don't when the byte value is
303 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better
304 // than "STC;MVC". Handle the choice in target-specific code instead.
305 MaxStoresPerMemset = 0;
306 MaxStoresPerMemsetOptSize = 0;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000307}
308
Richard Sandifordabc010b2013-11-06 12:16:02 +0000309EVT SystemZTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
310 if (!VT.isVector())
311 return MVT::i32;
312 return VT.changeVectorElementTypeToInteger();
313}
314
315bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
Stephen Lin73de7bf2013-07-09 18:16:56 +0000316 VT = VT.getScalarType();
317
318 if (!VT.isSimple())
319 return false;
320
321 switch (VT.getSimpleVT().SimpleTy) {
322 case MVT::f32:
323 case MVT::f64:
324 return true;
325 case MVT::f128:
326 return false;
327 default:
328 break;
329 }
330
331 return false;
332}
333
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000334bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
335 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
336 return Imm.isZero() || Imm.isNegZero();
337}
338
Richard Sandiford46af5a22013-05-30 09:45:42 +0000339bool SystemZTargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
Matt Arsenault25793a32014-02-05 23:15:53 +0000340 unsigned,
Richard Sandiford46af5a22013-05-30 09:45:42 +0000341 bool *Fast) const {
342 // Unaligned accesses should never be slower than the expanded version.
343 // We check specifically for aligned accesses in the few cases where
344 // they are required.
345 if (Fast)
346 *Fast = true;
347 return true;
348}
349
Richard Sandiford791bea42013-07-31 12:58:26 +0000350bool SystemZTargetLowering::isLegalAddressingMode(const AddrMode &AM,
351 Type *Ty) const {
352 // Punt on globals for now, although they can be used in limited
353 // RELATIVE LONG cases.
354 if (AM.BaseGV)
355 return false;
356
357 // Require a 20-bit signed offset.
358 if (!isInt<20>(AM.BaseOffs))
359 return false;
360
361 // Indexing is OK but no scale factor can be applied.
362 return AM.Scale == 0 || AM.Scale == 1;
363}
364
Richard Sandiford709bda62013-08-19 12:42:31 +0000365bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
366 if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
367 return false;
368 unsigned FromBits = FromType->getPrimitiveSizeInBits();
369 unsigned ToBits = ToType->getPrimitiveSizeInBits();
370 return FromBits > ToBits;
371}
372
373bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
374 if (!FromVT.isInteger() || !ToVT.isInteger())
375 return false;
376 unsigned FromBits = FromVT.getSizeInBits();
377 unsigned ToBits = ToVT.getSizeInBits();
378 return FromBits > ToBits;
379}
380
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000381//===----------------------------------------------------------------------===//
382// Inline asm support
383//===----------------------------------------------------------------------===//
384
385TargetLowering::ConstraintType
386SystemZTargetLowering::getConstraintType(const std::string &Constraint) const {
387 if (Constraint.size() == 1) {
388 switch (Constraint[0]) {
389 case 'a': // Address register
390 case 'd': // Data register (equivalent to 'r')
391 case 'f': // Floating-point register
Richard Sandiford0755c932013-10-01 11:26:28 +0000392 case 'h': // High-part register
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000393 case 'r': // General-purpose register
394 return C_RegisterClass;
395
396 case 'Q': // Memory with base and unsigned 12-bit displacement
397 case 'R': // Likewise, plus an index
398 case 'S': // Memory with base and signed 20-bit displacement
399 case 'T': // Likewise, plus an index
400 case 'm': // Equivalent to 'T'.
401 return C_Memory;
402
403 case 'I': // Unsigned 8-bit constant
404 case 'J': // Unsigned 12-bit constant
405 case 'K': // Signed 16-bit constant
406 case 'L': // Signed 20-bit displacement (on all targets we support)
407 case 'M': // 0x7fffffff
408 return C_Other;
409
410 default:
411 break;
412 }
413 }
414 return TargetLowering::getConstraintType(Constraint);
415}
416
417TargetLowering::ConstraintWeight SystemZTargetLowering::
418getSingleConstraintMatchWeight(AsmOperandInfo &info,
419 const char *constraint) const {
420 ConstraintWeight weight = CW_Invalid;
421 Value *CallOperandVal = info.CallOperandVal;
422 // If we don't have a value, we can't do a match,
423 // but allow it at the lowest weight.
424 if (CallOperandVal == NULL)
425 return CW_Default;
426 Type *type = CallOperandVal->getType();
427 // Look at the constraint type.
428 switch (*constraint) {
429 default:
430 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
431 break;
432
433 case 'a': // Address register
434 case 'd': // Data register (equivalent to 'r')
Richard Sandiford0755c932013-10-01 11:26:28 +0000435 case 'h': // High-part register
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000436 case 'r': // General-purpose register
437 if (CallOperandVal->getType()->isIntegerTy())
438 weight = CW_Register;
439 break;
440
441 case 'f': // Floating-point register
442 if (type->isFloatingPointTy())
443 weight = CW_Register;
444 break;
445
446 case 'I': // Unsigned 8-bit constant
447 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
448 if (isUInt<8>(C->getZExtValue()))
449 weight = CW_Constant;
450 break;
451
452 case 'J': // Unsigned 12-bit constant
453 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
454 if (isUInt<12>(C->getZExtValue()))
455 weight = CW_Constant;
456 break;
457
458 case 'K': // Signed 16-bit constant
459 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
460 if (isInt<16>(C->getSExtValue()))
461 weight = CW_Constant;
462 break;
463
464 case 'L': // Signed 20-bit displacement (on all targets we support)
465 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
466 if (isInt<20>(C->getSExtValue()))
467 weight = CW_Constant;
468 break;
469
470 case 'M': // 0x7fffffff
471 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
472 if (C->getZExtValue() == 0x7fffffff)
473 weight = CW_Constant;
474 break;
475 }
476 return weight;
477}
478
Richard Sandifordb8204052013-07-12 09:08:12 +0000479// Parse a "{tNNN}" register constraint for which the register type "t"
480// has already been verified. MC is the class associated with "t" and
481// Map maps 0-based register numbers to LLVM register numbers.
482static std::pair<unsigned, const TargetRegisterClass *>
483parseRegisterNumber(const std::string &Constraint,
484 const TargetRegisterClass *RC, const unsigned *Map) {
485 assert(*(Constraint.end()-1) == '}' && "Missing '}'");
486 if (isdigit(Constraint[2])) {
487 std::string Suffix(Constraint.data() + 2, Constraint.size() - 2);
488 unsigned Index = atoi(Suffix.c_str());
489 if (Index < 16 && Map[Index])
490 return std::make_pair(Map[Index], RC);
491 }
492 return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
493}
494
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000495std::pair<unsigned, const TargetRegisterClass *> SystemZTargetLowering::
Chad Rosier295bd432013-06-22 18:37:38 +0000496getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000497 if (Constraint.size() == 1) {
498 // GCC Constraint Letters
499 switch (Constraint[0]) {
500 default: break;
501 case 'd': // Data register (equivalent to 'r')
502 case 'r': // General-purpose register
503 if (VT == MVT::i64)
504 return std::make_pair(0U, &SystemZ::GR64BitRegClass);
505 else if (VT == MVT::i128)
506 return std::make_pair(0U, &SystemZ::GR128BitRegClass);
507 return std::make_pair(0U, &SystemZ::GR32BitRegClass);
508
509 case 'a': // Address register
510 if (VT == MVT::i64)
511 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
512 else if (VT == MVT::i128)
513 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
514 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
515
Richard Sandiford0755c932013-10-01 11:26:28 +0000516 case 'h': // High-part register (an LLVM extension)
517 return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
518
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000519 case 'f': // Floating-point register
520 if (VT == MVT::f64)
521 return std::make_pair(0U, &SystemZ::FP64BitRegClass);
522 else if (VT == MVT::f128)
523 return std::make_pair(0U, &SystemZ::FP128BitRegClass);
524 return std::make_pair(0U, &SystemZ::FP32BitRegClass);
525 }
526 }
Richard Sandifordb8204052013-07-12 09:08:12 +0000527 if (Constraint[0] == '{') {
528 // We need to override the default register parsing for GPRs and FPRs
529 // because the interpretation depends on VT. The internal names of
530 // the registers are also different from the external names
531 // (F0D and F0S instead of F0, etc.).
532 if (Constraint[1] == 'r') {
533 if (VT == MVT::i32)
534 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
535 SystemZMC::GR32Regs);
536 if (VT == MVT::i128)
537 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
538 SystemZMC::GR128Regs);
539 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
540 SystemZMC::GR64Regs);
541 }
542 if (Constraint[1] == 'f') {
543 if (VT == MVT::f32)
544 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
545 SystemZMC::FP32Regs);
546 if (VT == MVT::f128)
547 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
548 SystemZMC::FP128Regs);
549 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
550 SystemZMC::FP64Regs);
551 }
552 }
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000553 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
554}
555
556void SystemZTargetLowering::
557LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
558 std::vector<SDValue> &Ops,
559 SelectionDAG &DAG) const {
560 // Only support length 1 constraints for now.
561 if (Constraint.length() == 1) {
562 switch (Constraint[0]) {
563 case 'I': // Unsigned 8-bit constant
564 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
565 if (isUInt<8>(C->getZExtValue()))
566 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
567 Op.getValueType()));
568 return;
569
570 case 'J': // Unsigned 12-bit constant
571 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
572 if (isUInt<12>(C->getZExtValue()))
573 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
574 Op.getValueType()));
575 return;
576
577 case 'K': // Signed 16-bit constant
578 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
579 if (isInt<16>(C->getSExtValue()))
580 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
581 Op.getValueType()));
582 return;
583
584 case 'L': // Signed 20-bit displacement (on all targets we support)
585 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
586 if (isInt<20>(C->getSExtValue()))
587 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
588 Op.getValueType()));
589 return;
590
591 case 'M': // 0x7fffffff
592 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
593 if (C->getZExtValue() == 0x7fffffff)
594 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
595 Op.getValueType()));
596 return;
597 }
598 }
599 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
600}
601
602//===----------------------------------------------------------------------===//
603// Calling conventions
604//===----------------------------------------------------------------------===//
605
606#include "SystemZGenCallingConv.inc"
607
Richard Sandiford709bda62013-08-19 12:42:31 +0000608bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
609 Type *ToType) const {
610 return isTruncateFree(FromType, ToType);
611}
612
613bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
614 if (!CI->isTailCall())
615 return false;
616 return true;
617}
618
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000619// Value is a value that has been passed to us in the location described by VA
620// (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining
621// any loads onto Chain.
Andrew Trickef9de2a2013-05-25 02:42:55 +0000622static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL,
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000623 CCValAssign &VA, SDValue Chain,
624 SDValue Value) {
625 // If the argument has been promoted from a smaller type, insert an
626 // assertion to capture this.
627 if (VA.getLocInfo() == CCValAssign::SExt)
628 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
629 DAG.getValueType(VA.getValVT()));
630 else if (VA.getLocInfo() == CCValAssign::ZExt)
631 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
632 DAG.getValueType(VA.getValVT()));
633
634 if (VA.isExtInLoc())
635 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
636 else if (VA.getLocInfo() == CCValAssign::Indirect)
637 Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value,
638 MachinePointerInfo(), false, false, false, 0);
639 else
640 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
641 return Value;
642}
643
644// Value is a value of type VA.getValVT() that we need to copy into
645// the location described by VA. Return a copy of Value converted to
646// VA.getValVT(). The caller is responsible for handling indirect values.
Andrew Trickef9de2a2013-05-25 02:42:55 +0000647static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL,
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000648 CCValAssign &VA, SDValue Value) {
649 switch (VA.getLocInfo()) {
650 case CCValAssign::SExt:
651 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
652 case CCValAssign::ZExt:
653 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
654 case CCValAssign::AExt:
655 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
656 case CCValAssign::Full:
657 return Value;
658 default:
659 llvm_unreachable("Unhandled getLocInfo()");
660 }
661}
662
663SDValue SystemZTargetLowering::
664LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
665 const SmallVectorImpl<ISD::InputArg> &Ins,
Andrew Trickef9de2a2013-05-25 02:42:55 +0000666 SDLoc DL, SelectionDAG &DAG,
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000667 SmallVectorImpl<SDValue> &InVals) const {
668 MachineFunction &MF = DAG.getMachineFunction();
669 MachineFrameInfo *MFI = MF.getFrameInfo();
670 MachineRegisterInfo &MRI = MF.getRegInfo();
671 SystemZMachineFunctionInfo *FuncInfo =
672 MF.getInfo<SystemZMachineFunctionInfo>();
673 const SystemZFrameLowering *TFL =
674 static_cast<const SystemZFrameLowering *>(TM.getFrameLowering());
675
676 // Assign locations to all of the incoming arguments.
677 SmallVector<CCValAssign, 16> ArgLocs;
678 CCState CCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext());
679 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
680
681 unsigned NumFixedGPRs = 0;
682 unsigned NumFixedFPRs = 0;
683 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
684 SDValue ArgValue;
685 CCValAssign &VA = ArgLocs[I];
686 EVT LocVT = VA.getLocVT();
687 if (VA.isRegLoc()) {
688 // Arguments passed in registers
689 const TargetRegisterClass *RC;
690 switch (LocVT.getSimpleVT().SimpleTy) {
691 default:
692 // Integers smaller than i64 should be promoted to i64.
693 llvm_unreachable("Unexpected argument type");
694 case MVT::i32:
695 NumFixedGPRs += 1;
696 RC = &SystemZ::GR32BitRegClass;
697 break;
698 case MVT::i64:
699 NumFixedGPRs += 1;
700 RC = &SystemZ::GR64BitRegClass;
701 break;
702 case MVT::f32:
703 NumFixedFPRs += 1;
704 RC = &SystemZ::FP32BitRegClass;
705 break;
706 case MVT::f64:
707 NumFixedFPRs += 1;
708 RC = &SystemZ::FP64BitRegClass;
709 break;
710 }
711
712 unsigned VReg = MRI.createVirtualRegister(RC);
713 MRI.addLiveIn(VA.getLocReg(), VReg);
714 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
715 } else {
716 assert(VA.isMemLoc() && "Argument not register or memory");
717
718 // Create the frame index object for this incoming parameter.
719 int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8,
720 VA.getLocMemOffset(), true);
721
722 // Create the SelectionDAG nodes corresponding to a load
723 // from this parameter. Unpromoted ints and floats are
724 // passed as right-justified 8-byte values.
725 EVT PtrVT = getPointerTy();
726 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
727 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
728 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4));
729 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
730 MachinePointerInfo::getFixedStack(FI),
731 false, false, false, 0);
732 }
733
734 // Convert the value of the argument register into the value that's
735 // being passed.
736 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
737 }
738
739 if (IsVarArg) {
740 // Save the number of non-varargs registers for later use by va_start, etc.
741 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
742 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
743
744 // Likewise the address (in the form of a frame index) of where the
745 // first stack vararg would be. The 1-byte size here is arbitrary.
746 int64_t StackSize = CCInfo.getNextStackOffset();
747 FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true));
748
749 // ...and a similar frame index for the caller-allocated save area
750 // that will be used to store the incoming registers.
751 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
752 unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true);
753 FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
754
755 // Store the FPR varargs in the reserved frame slots. (We store the
756 // GPRs as part of the prologue.)
757 if (NumFixedFPRs < SystemZ::NumArgFPRs) {
758 SDValue MemOps[SystemZ::NumArgFPRs];
759 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
760 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
761 int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true);
762 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
763 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
764 &SystemZ::FP64BitRegClass);
765 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
766 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
767 MachinePointerInfo::getFixedStack(FI),
768 false, false, 0);
769
770 }
771 // Join the stores, which are independent of one another.
772 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
773 &MemOps[NumFixedFPRs],
774 SystemZ::NumArgFPRs - NumFixedFPRs);
775 }
776 }
777
778 return Chain;
779}
780
Richard Sandiford709bda62013-08-19 12:42:31 +0000781static bool canUseSiblingCall(CCState ArgCCInfo,
782 SmallVectorImpl<CCValAssign> &ArgLocs) {
783 // Punt if there are any indirect or stack arguments, or if the call
784 // needs the call-saved argument register R6.
785 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
786 CCValAssign &VA = ArgLocs[I];
787 if (VA.getLocInfo() == CCValAssign::Indirect)
788 return false;
789 if (!VA.isRegLoc())
790 return false;
791 unsigned Reg = VA.getLocReg();
Richard Sandiford0755c932013-10-01 11:26:28 +0000792 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
Richard Sandiford709bda62013-08-19 12:42:31 +0000793 return false;
794 }
795 return true;
796}
797
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000798SDValue
799SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
800 SmallVectorImpl<SDValue> &InVals) const {
801 SelectionDAG &DAG = CLI.DAG;
Andrew Trickef9de2a2013-05-25 02:42:55 +0000802 SDLoc &DL = CLI.DL;
Craig Topperb94011f2013-07-14 04:42:23 +0000803 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
804 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
805 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000806 SDValue Chain = CLI.Chain;
807 SDValue Callee = CLI.Callee;
Richard Sandiford709bda62013-08-19 12:42:31 +0000808 bool &IsTailCall = CLI.IsTailCall;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000809 CallingConv::ID CallConv = CLI.CallConv;
810 bool IsVarArg = CLI.IsVarArg;
811 MachineFunction &MF = DAG.getMachineFunction();
812 EVT PtrVT = getPointerTy();
813
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000814 // Analyze the operands of the call, assigning locations to each operand.
815 SmallVector<CCValAssign, 16> ArgLocs;
816 CCState ArgCCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext());
817 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
818
Richard Sandiford709bda62013-08-19 12:42:31 +0000819 // We don't support GuaranteedTailCallOpt, only automatically-detected
820 // sibling calls.
821 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs))
822 IsTailCall = false;
823
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000824 // Get a count of how many bytes are to be pushed on the stack.
825 unsigned NumBytes = ArgCCInfo.getNextStackOffset();
826
827 // Mark the start of the call.
Richard Sandiford709bda62013-08-19 12:42:31 +0000828 if (!IsTailCall)
829 Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, PtrVT, true),
830 DL);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000831
832 // Copy argument values to their designated locations.
833 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
834 SmallVector<SDValue, 8> MemOpChains;
835 SDValue StackPtr;
836 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
837 CCValAssign &VA = ArgLocs[I];
838 SDValue ArgValue = OutVals[I];
839
840 if (VA.getLocInfo() == CCValAssign::Indirect) {
841 // Store the argument in a stack slot and pass its address.
842 SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
843 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
844 MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, SpillSlot,
845 MachinePointerInfo::getFixedStack(FI),
846 false, false, 0));
847 ArgValue = SpillSlot;
848 } else
849 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
850
851 if (VA.isRegLoc())
852 // Queue up the argument copies and emit them at the end.
853 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
854 else {
855 assert(VA.isMemLoc() && "Argument not register or memory");
856
857 // Work out the address of the stack slot. Unpromoted ints and
858 // floats are passed as right-justified 8-byte values.
859 if (!StackPtr.getNode())
860 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
861 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
862 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
863 Offset += 4;
864 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
865 DAG.getIntPtrConstant(Offset));
866
867 // Emit the store.
868 MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address,
869 MachinePointerInfo(),
870 false, false, 0));
871 }
872 }
873
874 // Join the stores, which are independent of one another.
875 if (!MemOpChains.empty())
876 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
877 &MemOpChains[0], MemOpChains.size());
878
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000879 // Accept direct calls by converting symbolic call addresses to the
Richard Sandiford709bda62013-08-19 12:42:31 +0000880 // associated Target* opcodes. Force %r1 to be used for indirect
881 // tail calls.
882 SDValue Glue;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000883 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
884 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
885 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
886 } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
887 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
888 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
Richard Sandiford709bda62013-08-19 12:42:31 +0000889 } else if (IsTailCall) {
890 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
891 Glue = Chain.getValue(1);
892 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
893 }
894
895 // Build a sequence of copy-to-reg nodes, chained and glued together.
896 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
897 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
898 RegsToPass[I].second, Glue);
899 Glue = Chain.getValue(1);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000900 }
901
902 // The first call operand is the chain and the second is the target address.
903 SmallVector<SDValue, 8> Ops;
904 Ops.push_back(Chain);
905 Ops.push_back(Callee);
906
907 // Add argument registers to the end of the list so that they are
908 // known live into the call.
909 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
910 Ops.push_back(DAG.getRegister(RegsToPass[I].first,
911 RegsToPass[I].second.getValueType()));
912
913 // Glue the call to the argument copies, if any.
914 if (Glue.getNode())
915 Ops.push_back(Glue);
916
917 // Emit the call.
918 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
Richard Sandiford709bda62013-08-19 12:42:31 +0000919 if (IsTailCall)
920 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, &Ops[0], Ops.size());
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000921 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, &Ops[0], Ops.size());
922 Glue = Chain.getValue(1);
923
924 // Mark the end of the call, which is glued to the call itself.
925 Chain = DAG.getCALLSEQ_END(Chain,
926 DAG.getConstant(NumBytes, PtrVT, true),
927 DAG.getConstant(0, PtrVT, true),
Andrew Trickad6d08a2013-05-29 22:03:55 +0000928 Glue, DL);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000929 Glue = Chain.getValue(1);
930
931 // Assign locations to each value returned by this call.
932 SmallVector<CCValAssign, 16> RetLocs;
933 CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext());
934 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
935
936 // Copy all of the result registers out of their specified physreg.
937 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
938 CCValAssign &VA = RetLocs[I];
939
940 // Copy the value out, gluing the copy to the end of the call sequence.
941 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
942 VA.getLocVT(), Glue);
943 Chain = RetValue.getValue(1);
944 Glue = RetValue.getValue(2);
945
946 // Convert the value of the return register into the value that's
947 // being returned.
948 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
949 }
950
951 return Chain;
952}
953
954SDValue
955SystemZTargetLowering::LowerReturn(SDValue Chain,
956 CallingConv::ID CallConv, bool IsVarArg,
957 const SmallVectorImpl<ISD::OutputArg> &Outs,
958 const SmallVectorImpl<SDValue> &OutVals,
Andrew Trickef9de2a2013-05-25 02:42:55 +0000959 SDLoc DL, SelectionDAG &DAG) const {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000960 MachineFunction &MF = DAG.getMachineFunction();
961
962 // Assign locations to each returned value.
963 SmallVector<CCValAssign, 16> RetLocs;
964 CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext());
965 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
966
967 // Quick exit for void returns
968 if (RetLocs.empty())
969 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
970
971 // Copy the result values into the output registers.
972 SDValue Glue;
973 SmallVector<SDValue, 4> RetOps;
974 RetOps.push_back(Chain);
975 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
976 CCValAssign &VA = RetLocs[I];
977 SDValue RetValue = OutVals[I];
978
979 // Make the return register live on exit.
980 assert(VA.isRegLoc() && "Can only return in registers!");
981
982 // Promote the value as required.
983 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
984
985 // Chain and glue the copies together.
986 unsigned Reg = VA.getLocReg();
987 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
988 Glue = Chain.getValue(1);
989 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
990 }
991
992 // Update chain and glue.
993 RetOps[0] = Chain;
994 if (Glue.getNode())
995 RetOps.push_back(Glue);
996
997 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other,
998 RetOps.data(), RetOps.size());
999}
1000
Richard Sandiford9afe6132013-12-10 10:36:34 +00001001SDValue SystemZTargetLowering::
1002prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL, SelectionDAG &DAG) const {
1003 return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain);
1004}
1005
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001006// CC is a comparison that will be implemented using an integer or
1007// floating-point comparison. Return the condition code mask for
1008// a branch on true. In the integer case, CCMASK_CMP_UO is set for
1009// unsigned comparisons and clear for signed ones. In the floating-point
1010// case, CCMASK_CMP_UO has its normal mask meaning (unordered).
1011static unsigned CCMaskForCondCode(ISD::CondCode CC) {
1012#define CONV(X) \
1013 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
1014 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
1015 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
1016
1017 switch (CC) {
1018 default:
1019 llvm_unreachable("Invalid integer condition!");
1020
1021 CONV(EQ);
1022 CONV(NE);
1023 CONV(GT);
1024 CONV(GE);
1025 CONV(LT);
1026 CONV(LE);
1027
1028 case ISD::SETO: return SystemZ::CCMASK_CMP_O;
1029 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
1030 }
1031#undef CONV
1032}
1033
Richard Sandifordf722a8e302013-10-16 11:10:55 +00001034// Return a sequence for getting a 1 from an IPM result when CC has a
1035// value in CCMask and a 0 when CC has a value in CCValid & ~CCMask.
1036// The handling of CC values outside CCValid doesn't matter.
1037static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) {
1038 // Deal with cases where the result can be taken directly from a bit
1039 // of the IPM result.
1040 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3)))
1041 return IPMConversion(0, 0, SystemZ::IPM_CC);
1042 if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3)))
1043 return IPMConversion(0, 0, SystemZ::IPM_CC + 1);
1044
1045 // Deal with cases where we can add a value to force the sign bit
1046 // to contain the right value. Putting the bit in 31 means we can
1047 // use SRL rather than RISBG(L), and also makes it easier to get a
1048 // 0/-1 value, so it has priority over the other tests below.
1049 //
1050 // These sequences rely on the fact that the upper two bits of the
1051 // IPM result are zero.
1052 uint64_t TopBit = uint64_t(1) << 31;
1053 if (CCMask == (CCValid & SystemZ::CCMASK_0))
1054 return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31);
1055 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1)))
1056 return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31);
1057 if (CCMask == (CCValid & (SystemZ::CCMASK_0
1058 | SystemZ::CCMASK_1
1059 | SystemZ::CCMASK_2)))
1060 return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31);
1061 if (CCMask == (CCValid & SystemZ::CCMASK_3))
1062 return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31);
1063 if (CCMask == (CCValid & (SystemZ::CCMASK_1
1064 | SystemZ::CCMASK_2
1065 | SystemZ::CCMASK_3)))
1066 return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31);
1067
1068 // Next try inverting the value and testing a bit. 0/1 could be
1069 // handled this way too, but we dealt with that case above.
1070 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2)))
1071 return IPMConversion(-1, 0, SystemZ::IPM_CC);
1072
1073 // Handle cases where adding a value forces a non-sign bit to contain
1074 // the right value.
1075 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2)))
1076 return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1);
1077 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3)))
1078 return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1);
1079
Alp Tokercb402912014-01-24 17:20:08 +00001080 // The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are
Richard Sandifordf722a8e302013-10-16 11:10:55 +00001081 // can be done by inverting the low CC bit and applying one of the
1082 // sign-based extractions above.
1083 if (CCMask == (CCValid & SystemZ::CCMASK_1))
1084 return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31);
1085 if (CCMask == (CCValid & SystemZ::CCMASK_2))
1086 return IPMConversion(1 << SystemZ::IPM_CC,
1087 TopBit - (3 << SystemZ::IPM_CC), 31);
1088 if (CCMask == (CCValid & (SystemZ::CCMASK_0
1089 | SystemZ::CCMASK_1
1090 | SystemZ::CCMASK_3)))
1091 return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31);
1092 if (CCMask == (CCValid & (SystemZ::CCMASK_0
1093 | SystemZ::CCMASK_2
1094 | SystemZ::CCMASK_3)))
1095 return IPMConversion(1 << SystemZ::IPM_CC,
1096 TopBit - (1 << SystemZ::IPM_CC), 31);
1097
1098 llvm_unreachable("Unexpected CC combination");
1099}
1100
Richard Sandifordd420f732013-12-13 15:28:45 +00001101// If C can be converted to a comparison against zero, adjust the operands
Richard Sandiforda0757082013-08-01 10:29:45 +00001102// as necessary.
Richard Sandifordd420f732013-12-13 15:28:45 +00001103static void adjustZeroCmp(SelectionDAG &DAG, Comparison &C) {
1104 if (C.ICmpType == SystemZICMP::UnsignedOnly)
Richard Sandiforda0757082013-08-01 10:29:45 +00001105 return;
1106
Richard Sandifordd420f732013-12-13 15:28:45 +00001107 ConstantSDNode *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
Richard Sandiforda0757082013-08-01 10:29:45 +00001108 if (!ConstOp1)
1109 return;
1110
1111 int64_t Value = ConstOp1->getSExtValue();
Richard Sandifordd420f732013-12-13 15:28:45 +00001112 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
1113 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
1114 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
1115 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
1116 C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
1117 C.Op1 = DAG.getConstant(0, C.Op1.getValueType());
Richard Sandiforda0757082013-08-01 10:29:45 +00001118 }
1119}
1120
Richard Sandifordd420f732013-12-13 15:28:45 +00001121// If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
1122// adjust the operands as necessary.
1123static void adjustSubwordCmp(SelectionDAG &DAG, Comparison &C) {
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001124 // For us to make any changes, it must a comparison between a single-use
1125 // load and a constant.
Richard Sandifordd420f732013-12-13 15:28:45 +00001126 if (!C.Op0.hasOneUse() ||
1127 C.Op0.getOpcode() != ISD::LOAD ||
1128 C.Op1.getOpcode() != ISD::Constant)
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001129 return;
1130
1131 // We must have an 8- or 16-bit load.
Richard Sandifordd420f732013-12-13 15:28:45 +00001132 LoadSDNode *Load = cast<LoadSDNode>(C.Op0);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001133 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
1134 if (NumBits != 8 && NumBits != 16)
1135 return;
1136
1137 // The load must be an extending one and the constant must be within the
1138 // range of the unextended value.
Richard Sandifordd420f732013-12-13 15:28:45 +00001139 ConstantSDNode *ConstOp1 = cast<ConstantSDNode>(C.Op1);
1140 uint64_t Value = ConstOp1->getZExtValue();
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001141 uint64_t Mask = (1 << NumBits) - 1;
1142 if (Load->getExtensionType() == ISD::SEXTLOAD) {
Richard Sandifordd420f732013-12-13 15:28:45 +00001143 // Make sure that ConstOp1 is in range of C.Op0.
1144 int64_t SignedValue = ConstOp1->getSExtValue();
1145 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001146 return;
Richard Sandifordd420f732013-12-13 15:28:45 +00001147 if (C.ICmpType != SystemZICMP::SignedOnly) {
1148 // Unsigned comparison between two sign-extended values is equivalent
1149 // to unsigned comparison between two zero-extended values.
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001150 Value &= Mask;
Richard Sandifordd420f732013-12-13 15:28:45 +00001151 } else if (NumBits == 8) {
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001152 // Try to treat the comparison as unsigned, so that we can use CLI.
1153 // Adjust CCMask and Value as necessary.
Richard Sandifordd420f732013-12-13 15:28:45 +00001154 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001155 // Test whether the high bit of the byte is set.
Richard Sandifordd420f732013-12-13 15:28:45 +00001156 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
1157 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001158 // Test whether the high bit of the byte is clear.
Richard Sandifordd420f732013-12-13 15:28:45 +00001159 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001160 else
1161 // No instruction exists for this combination.
1162 return;
Richard Sandifordd420f732013-12-13 15:28:45 +00001163 C.ICmpType = SystemZICMP::UnsignedOnly;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001164 }
1165 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
1166 if (Value > Mask)
1167 return;
Richard Sandifordd420f732013-12-13 15:28:45 +00001168 assert(C.ICmpType == SystemZICMP::Any &&
1169 "Signedness shouldn't matter here.");
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001170 } else
1171 return;
1172
1173 // Make sure that the first operand is an i32 of the right extension type.
Richard Sandifordd420f732013-12-13 15:28:45 +00001174 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
1175 ISD::SEXTLOAD :
1176 ISD::ZEXTLOAD);
1177 if (C.Op0.getValueType() != MVT::i32 ||
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001178 Load->getExtensionType() != ExtType)
Richard Sandifordd420f732013-12-13 15:28:45 +00001179 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32,
1180 Load->getChain(), Load->getBasePtr(),
1181 Load->getPointerInfo(), Load->getMemoryVT(),
1182 Load->isVolatile(), Load->isNonTemporal(),
1183 Load->getAlignment());
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001184
1185 // Make sure that the second operand is an i32 with the right value.
Richard Sandifordd420f732013-12-13 15:28:45 +00001186 if (C.Op1.getValueType() != MVT::i32 ||
1187 Value != ConstOp1->getZExtValue())
1188 C.Op1 = DAG.getConstant(Value, MVT::i32);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001189}
1190
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001191// Return true if Op is either an unextended load, or a load suitable
1192// for integer register-memory comparisons of type ICmpType.
1193static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
Richard Sandiford24e597b2013-08-23 11:27:19 +00001194 LoadSDNode *Load = dyn_cast<LoadSDNode>(Op.getNode());
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001195 if (Load) {
1196 // There are no instructions to compare a register with a memory byte.
1197 if (Load->getMemoryVT() == MVT::i8)
1198 return false;
1199 // Otherwise decide on extension type.
Richard Sandiford24e597b2013-08-23 11:27:19 +00001200 switch (Load->getExtensionType()) {
1201 case ISD::NON_EXTLOAD:
Richard Sandiford24e597b2013-08-23 11:27:19 +00001202 return true;
1203 case ISD::SEXTLOAD:
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001204 return ICmpType != SystemZICMP::UnsignedOnly;
Richard Sandiford24e597b2013-08-23 11:27:19 +00001205 case ISD::ZEXTLOAD:
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001206 return ICmpType != SystemZICMP::SignedOnly;
Richard Sandiford24e597b2013-08-23 11:27:19 +00001207 default:
1208 break;
1209 }
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001210 }
Richard Sandiford24e597b2013-08-23 11:27:19 +00001211 return false;
1212}
1213
Richard Sandifordd420f732013-12-13 15:28:45 +00001214// Return true if it is better to swap the operands of C.
1215static bool shouldSwapCmpOperands(const Comparison &C) {
Richard Sandiford24e597b2013-08-23 11:27:19 +00001216 // Leave f128 comparisons alone, since they have no memory forms.
Richard Sandifordd420f732013-12-13 15:28:45 +00001217 if (C.Op0.getValueType() == MVT::f128)
Richard Sandiford24e597b2013-08-23 11:27:19 +00001218 return false;
1219
1220 // Always keep a floating-point constant second, since comparisons with
1221 // zero can use LOAD TEST and comparisons with other constants make a
1222 // natural memory operand.
Richard Sandifordd420f732013-12-13 15:28:45 +00001223 if (isa<ConstantFPSDNode>(C.Op1))
Richard Sandiford24e597b2013-08-23 11:27:19 +00001224 return false;
1225
1226 // Never swap comparisons with zero since there are many ways to optimize
1227 // those later.
Richard Sandifordd420f732013-12-13 15:28:45 +00001228 ConstantSDNode *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
1229 if (ConstOp1 && ConstOp1->getZExtValue() == 0)
Richard Sandiford24e597b2013-08-23 11:27:19 +00001230 return false;
1231
Richard Sandiford7b4118a2013-12-06 09:56:50 +00001232 // Also keep natural memory operands second if the loaded value is
1233 // only used here. Several comparisons have memory forms.
Richard Sandifordd420f732013-12-13 15:28:45 +00001234 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
Richard Sandiford7b4118a2013-12-06 09:56:50 +00001235 return false;
1236
Richard Sandiford24e597b2013-08-23 11:27:19 +00001237 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
1238 // In that case we generally prefer the memory to be second.
Richard Sandifordd420f732013-12-13 15:28:45 +00001239 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
Richard Sandiford24e597b2013-08-23 11:27:19 +00001240 // The only exceptions are when the second operand is a constant and
1241 // we can use things like CHHSI.
Richard Sandifordd420f732013-12-13 15:28:45 +00001242 if (!ConstOp1)
Richard Sandiford24e597b2013-08-23 11:27:19 +00001243 return true;
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001244 // The unsigned memory-immediate instructions can handle 16-bit
1245 // unsigned integers.
Richard Sandifordd420f732013-12-13 15:28:45 +00001246 if (C.ICmpType != SystemZICMP::SignedOnly &&
1247 isUInt<16>(ConstOp1->getZExtValue()))
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001248 return false;
1249 // The signed memory-immediate instructions can handle 16-bit
1250 // signed integers.
Richard Sandifordd420f732013-12-13 15:28:45 +00001251 if (C.ICmpType != SystemZICMP::UnsignedOnly &&
1252 isInt<16>(ConstOp1->getSExtValue()))
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001253 return false;
Richard Sandiford24e597b2013-08-23 11:27:19 +00001254 return true;
1255 }
Richard Sandiford7b4118a2013-12-06 09:56:50 +00001256
1257 // Try to promote the use of CGFR and CLGFR.
Richard Sandifordd420f732013-12-13 15:28:45 +00001258 unsigned Opcode0 = C.Op0.getOpcode();
1259 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
Richard Sandiford7b4118a2013-12-06 09:56:50 +00001260 return true;
Richard Sandifordd420f732013-12-13 15:28:45 +00001261 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
Richard Sandiford7b4118a2013-12-06 09:56:50 +00001262 return true;
Richard Sandifordd420f732013-12-13 15:28:45 +00001263 if (C.ICmpType != SystemZICMP::SignedOnly &&
Richard Sandiford7b4118a2013-12-06 09:56:50 +00001264 Opcode0 == ISD::AND &&
Richard Sandifordd420f732013-12-13 15:28:45 +00001265 C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
1266 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
Richard Sandiford7b4118a2013-12-06 09:56:50 +00001267 return true;
1268
Richard Sandiford24e597b2013-08-23 11:27:19 +00001269 return false;
1270}
1271
Richard Sandiford73170f82013-12-11 11:45:08 +00001272// Return a version of comparison CC mask CCMask in which the LT and GT
1273// actions are swapped.
1274static unsigned reverseCCMask(unsigned CCMask) {
1275 return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
1276 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
1277 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
1278 (CCMask & SystemZ::CCMASK_CMP_UO));
1279}
1280
Richard Sandiford0847c452013-12-13 15:50:30 +00001281// Check whether C tests for equality between X and Y and whether X - Y
1282// or Y - X is also computed. In that case it's better to compare the
1283// result of the subtraction against zero.
1284static void adjustForSubtraction(SelectionDAG &DAG, Comparison &C) {
1285 if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
1286 C.CCMask == SystemZ::CCMASK_CMP_NE) {
1287 for (SDNode::use_iterator I = C.Op0->use_begin(), E = C.Op0->use_end();
1288 I != E; ++I) {
1289 SDNode *N = *I;
1290 if (N->getOpcode() == ISD::SUB &&
1291 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
1292 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
1293 C.Op0 = SDValue(N, 0);
1294 C.Op1 = DAG.getConstant(0, N->getValueType(0));
1295 return;
1296 }
1297 }
1298 }
1299}
1300
Richard Sandifordd420f732013-12-13 15:28:45 +00001301// Check whether C compares a floating-point value with zero and if that
1302// floating-point value is also negated. In this case we can use the
1303// negation to set CC, so avoiding separate LOAD AND TEST and
1304// LOAD (NEGATIVE/COMPLEMENT) instructions.
1305static void adjustForFNeg(Comparison &C) {
1306 ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
Richard Sandiford73170f82013-12-11 11:45:08 +00001307 if (C1 && C1->isZero()) {
Richard Sandifordd420f732013-12-13 15:28:45 +00001308 for (SDNode::use_iterator I = C.Op0->use_begin(), E = C.Op0->use_end();
Richard Sandiford73170f82013-12-11 11:45:08 +00001309 I != E; ++I) {
1310 SDNode *N = *I;
1311 if (N->getOpcode() == ISD::FNEG) {
Richard Sandifordd420f732013-12-13 15:28:45 +00001312 C.Op0 = SDValue(N, 0);
1313 C.CCMask = reverseCCMask(C.CCMask);
Richard Sandiford73170f82013-12-11 11:45:08 +00001314 return;
1315 }
1316 }
1317 }
1318}
1319
Richard Sandifordd420f732013-12-13 15:28:45 +00001320// Check whether C compares (shl X, 32) with 0 and whether X is
Richard Sandifordbd2f0e92013-12-13 15:07:39 +00001321// also sign-extended. In that case it is better to test the result
1322// of the sign extension using LTGFR.
1323//
1324// This case is important because InstCombine transforms a comparison
1325// with (sext (trunc X)) into a comparison with (shl X, 32).
Richard Sandifordd420f732013-12-13 15:28:45 +00001326static void adjustForLTGFR(Comparison &C) {
Richard Sandifordbd2f0e92013-12-13 15:07:39 +00001327 // Check for a comparison between (shl X, 32) and 0.
Richard Sandifordd420f732013-12-13 15:28:45 +00001328 if (C.Op0.getOpcode() == ISD::SHL &&
1329 C.Op0.getValueType() == MVT::i64 &&
1330 C.Op1.getOpcode() == ISD::Constant &&
1331 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1332 ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
Richard Sandifordbd2f0e92013-12-13 15:07:39 +00001333 if (C1 && C1->getZExtValue() == 32) {
Richard Sandifordd420f732013-12-13 15:28:45 +00001334 SDValue ShlOp0 = C.Op0.getOperand(0);
Richard Sandifordbd2f0e92013-12-13 15:07:39 +00001335 // See whether X has any SIGN_EXTEND_INREG uses.
1336 for (SDNode::use_iterator I = ShlOp0->use_begin(), E = ShlOp0->use_end();
1337 I != E; ++I) {
1338 SDNode *N = *I;
1339 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
1340 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
Richard Sandifordd420f732013-12-13 15:28:45 +00001341 C.Op0 = SDValue(N, 0);
Richard Sandifordbd2f0e92013-12-13 15:07:39 +00001342 return;
1343 }
1344 }
1345 }
1346 }
1347}
1348
Richard Sandiford83a0b6a2013-12-20 11:56:02 +00001349// If C compares the truncation of an extending load, try to compare
1350// the untruncated value instead. This exposes more opportunities to
1351// reuse CC.
1352static void adjustICmpTruncate(SelectionDAG &DAG, Comparison &C) {
1353 if (C.Op0.getOpcode() == ISD::TRUNCATE &&
1354 C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
1355 C.Op1.getOpcode() == ISD::Constant &&
1356 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1357 LoadSDNode *L = cast<LoadSDNode>(C.Op0.getOperand(0));
1358 if (L->getMemoryVT().getStoreSizeInBits()
1359 <= C.Op0.getValueType().getSizeInBits()) {
1360 unsigned Type = L->getExtensionType();
1361 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
1362 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
1363 C.Op0 = C.Op0.getOperand(0);
1364 C.Op1 = DAG.getConstant(0, C.Op0.getValueType());
1365 }
1366 }
1367 }
1368}
1369
Richard Sandiford030c1652013-09-13 09:09:50 +00001370// Return true if shift operation N has an in-range constant shift value.
1371// Store it in ShiftVal if so.
1372static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
1373 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
1374 if (!Shift)
1375 return false;
1376
1377 uint64_t Amount = Shift->getZExtValue();
1378 if (Amount >= N.getValueType().getSizeInBits())
1379 return false;
1380
1381 ShiftVal = Amount;
1382 return true;
1383}
1384
1385// Check whether an AND with Mask is suitable for a TEST UNDER MASK
1386// instruction and whether the CC value is descriptive enough to handle
1387// a comparison of type Opcode between the AND result and CmpVal.
1388// CCMask says which comparison result is being tested and BitSize is
1389// the number of bits in the operands. If TEST UNDER MASK can be used,
1390// return the corresponding CC mask, otherwise return 0.
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001391static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
1392 uint64_t Mask, uint64_t CmpVal,
1393 unsigned ICmpType) {
Richard Sandiford113c8702013-09-03 15:38:35 +00001394 assert(Mask != 0 && "ANDs with zero should have been removed by now");
1395
Richard Sandiford030c1652013-09-13 09:09:50 +00001396 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
1397 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
1398 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
1399 return 0;
1400
Richard Sandiford113c8702013-09-03 15:38:35 +00001401 // Work out the masks for the lowest and highest bits.
1402 unsigned HighShift = 63 - countLeadingZeros(Mask);
1403 uint64_t High = uint64_t(1) << HighShift;
1404 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
1405
1406 // Signed ordered comparisons are effectively unsigned if the sign
1407 // bit is dropped.
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001408 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
Richard Sandiford113c8702013-09-03 15:38:35 +00001409
1410 // Check for equality comparisons with 0, or the equivalent.
1411 if (CmpVal == 0) {
1412 if (CCMask == SystemZ::CCMASK_CMP_EQ)
1413 return SystemZ::CCMASK_TM_ALL_0;
1414 if (CCMask == SystemZ::CCMASK_CMP_NE)
1415 return SystemZ::CCMASK_TM_SOME_1;
1416 }
1417 if (EffectivelyUnsigned && CmpVal <= Low) {
1418 if (CCMask == SystemZ::CCMASK_CMP_LT)
1419 return SystemZ::CCMASK_TM_ALL_0;
1420 if (CCMask == SystemZ::CCMASK_CMP_GE)
1421 return SystemZ::CCMASK_TM_SOME_1;
1422 }
1423 if (EffectivelyUnsigned && CmpVal < Low) {
1424 if (CCMask == SystemZ::CCMASK_CMP_LE)
1425 return SystemZ::CCMASK_TM_ALL_0;
1426 if (CCMask == SystemZ::CCMASK_CMP_GT)
1427 return SystemZ::CCMASK_TM_SOME_1;
1428 }
1429
1430 // Check for equality comparisons with the mask, or the equivalent.
1431 if (CmpVal == Mask) {
1432 if (CCMask == SystemZ::CCMASK_CMP_EQ)
1433 return SystemZ::CCMASK_TM_ALL_1;
1434 if (CCMask == SystemZ::CCMASK_CMP_NE)
1435 return SystemZ::CCMASK_TM_SOME_0;
1436 }
1437 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
1438 if (CCMask == SystemZ::CCMASK_CMP_GT)
1439 return SystemZ::CCMASK_TM_ALL_1;
1440 if (CCMask == SystemZ::CCMASK_CMP_LE)
1441 return SystemZ::CCMASK_TM_SOME_0;
1442 }
1443 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
1444 if (CCMask == SystemZ::CCMASK_CMP_GE)
1445 return SystemZ::CCMASK_TM_ALL_1;
1446 if (CCMask == SystemZ::CCMASK_CMP_LT)
1447 return SystemZ::CCMASK_TM_SOME_0;
1448 }
1449
1450 // Check for ordered comparisons with the top bit.
1451 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
1452 if (CCMask == SystemZ::CCMASK_CMP_LE)
1453 return SystemZ::CCMASK_TM_MSB_0;
1454 if (CCMask == SystemZ::CCMASK_CMP_GT)
1455 return SystemZ::CCMASK_TM_MSB_1;
1456 }
1457 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
1458 if (CCMask == SystemZ::CCMASK_CMP_LT)
1459 return SystemZ::CCMASK_TM_MSB_0;
1460 if (CCMask == SystemZ::CCMASK_CMP_GE)
1461 return SystemZ::CCMASK_TM_MSB_1;
1462 }
1463
1464 // If there are just two bits, we can do equality checks for Low and High
1465 // as well.
1466 if (Mask == Low + High) {
1467 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
1468 return SystemZ::CCMASK_TM_MIXED_MSB_0;
1469 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
1470 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
1471 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
1472 return SystemZ::CCMASK_TM_MIXED_MSB_1;
1473 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
1474 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
1475 }
1476
1477 // Looks like we've exhausted our options.
1478 return 0;
1479}
1480
Richard Sandifordd420f732013-12-13 15:28:45 +00001481// See whether C can be implemented as a TEST UNDER MASK instruction.
1482// Update the arguments with the TM version if so.
1483static void adjustForTestUnderMask(SelectionDAG &DAG, Comparison &C) {
Richard Sandiford113c8702013-09-03 15:38:35 +00001484 // Check that we have a comparison with a constant.
Richard Sandifordd420f732013-12-13 15:28:45 +00001485 ConstantSDNode *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
1486 if (!ConstOp1)
Richard Sandiford35b9be22013-08-28 10:31:43 +00001487 return;
Richard Sandifordd420f732013-12-13 15:28:45 +00001488 uint64_t CmpVal = ConstOp1->getZExtValue();
Richard Sandiford35b9be22013-08-28 10:31:43 +00001489
1490 // Check whether the nonconstant input is an AND with a constant mask.
Richard Sandifordc3dc4472013-12-13 15:46:55 +00001491 Comparison NewC(C);
1492 uint64_t MaskVal;
1493 ConstantSDNode *Mask = 0;
1494 if (C.Op0.getOpcode() == ISD::AND) {
1495 NewC.Op0 = C.Op0.getOperand(0);
1496 NewC.Op1 = C.Op0.getOperand(1);
1497 Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
1498 if (!Mask)
1499 return;
1500 MaskVal = Mask->getZExtValue();
1501 } else {
1502 // There is no instruction to compare with a 64-bit immediate
1503 // so use TMHH instead if possible. We need an unsigned ordered
1504 // comparison with an i64 immediate.
1505 if (NewC.Op0.getValueType() != MVT::i64 ||
1506 NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
1507 NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
1508 NewC.ICmpType == SystemZICMP::SignedOnly)
1509 return;
1510 // Convert LE and GT comparisons into LT and GE.
1511 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
1512 NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
1513 if (CmpVal == uint64_t(-1))
1514 return;
1515 CmpVal += 1;
1516 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
1517 }
1518 // If the low N bits of Op1 are zero than the low N bits of Op0 can
1519 // be masked off without changing the result.
1520 MaskVal = -(CmpVal & -CmpVal);
1521 NewC.ICmpType = SystemZICMP::UnsignedOnly;
1522 }
Richard Sandiford35b9be22013-08-28 10:31:43 +00001523
Richard Sandiford113c8702013-09-03 15:38:35 +00001524 // Check whether the combination of mask, comparison value and comparison
1525 // type are suitable.
Richard Sandifordc3dc4472013-12-13 15:46:55 +00001526 unsigned BitSize = NewC.Op0.getValueType().getSizeInBits();
Richard Sandiford030c1652013-09-13 09:09:50 +00001527 unsigned NewCCMask, ShiftVal;
Richard Sandifordc3dc4472013-12-13 15:46:55 +00001528 if (NewC.ICmpType != SystemZICMP::SignedOnly &&
1529 NewC.Op0.getOpcode() == ISD::SHL &&
1530 isSimpleShift(NewC.Op0, ShiftVal) &&
1531 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
1532 MaskVal >> ShiftVal,
Richard Sandiford030c1652013-09-13 09:09:50 +00001533 CmpVal >> ShiftVal,
1534 SystemZICMP::Any))) {
Richard Sandifordc3dc4472013-12-13 15:46:55 +00001535 NewC.Op0 = NewC.Op0.getOperand(0);
1536 MaskVal >>= ShiftVal;
1537 } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
1538 NewC.Op0.getOpcode() == ISD::SRL &&
1539 isSimpleShift(NewC.Op0, ShiftVal) &&
1540 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
Richard Sandiford030c1652013-09-13 09:09:50 +00001541 MaskVal << ShiftVal,
1542 CmpVal << ShiftVal,
1543 SystemZICMP::UnsignedOnly))) {
Richard Sandifordc3dc4472013-12-13 15:46:55 +00001544 NewC.Op0 = NewC.Op0.getOperand(0);
1545 MaskVal <<= ShiftVal;
Richard Sandiford030c1652013-09-13 09:09:50 +00001546 } else {
Richard Sandifordc3dc4472013-12-13 15:46:55 +00001547 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
1548 NewC.ICmpType);
Richard Sandiford030c1652013-09-13 09:09:50 +00001549 if (!NewCCMask)
1550 return;
1551 }
Richard Sandiford113c8702013-09-03 15:38:35 +00001552
Richard Sandiford35b9be22013-08-28 10:31:43 +00001553 // Go ahead and make the change.
Richard Sandifordd420f732013-12-13 15:28:45 +00001554 C.Opcode = SystemZISD::TM;
Richard Sandifordc3dc4472013-12-13 15:46:55 +00001555 C.Op0 = NewC.Op0;
1556 if (Mask && Mask->getZExtValue() == MaskVal)
1557 C.Op1 = SDValue(Mask, 0);
1558 else
1559 C.Op1 = DAG.getConstant(MaskVal, C.Op0.getValueType());
Richard Sandifordd420f732013-12-13 15:28:45 +00001560 C.CCValid = SystemZ::CCMASK_TM;
1561 C.CCMask = NewCCMask;
Richard Sandiford35b9be22013-08-28 10:31:43 +00001562}
1563
Richard Sandifordd420f732013-12-13 15:28:45 +00001564// Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
1565static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
1566 ISD::CondCode Cond) {
1567 Comparison C(CmpOp0, CmpOp1);
1568 C.CCMask = CCMaskForCondCode(Cond);
1569 if (C.Op0.getValueType().isFloatingPoint()) {
1570 C.CCValid = SystemZ::CCMASK_FCMP;
1571 C.Opcode = SystemZISD::FCMP;
Richard Sandiford83a0b6a2013-12-20 11:56:02 +00001572 adjustForFNeg(C);
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001573 } else {
Richard Sandifordd420f732013-12-13 15:28:45 +00001574 C.CCValid = SystemZ::CCMASK_ICMP;
1575 C.Opcode = SystemZISD::ICMP;
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001576 // Choose the type of comparison. Equality and inequality tests can
1577 // use either signed or unsigned comparisons. The choice also doesn't
1578 // matter if both sign bits are known to be clear. In those cases we
1579 // want to give the main isel code the freedom to choose whichever
1580 // form fits best.
Richard Sandifordd420f732013-12-13 15:28:45 +00001581 if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
1582 C.CCMask == SystemZ::CCMASK_CMP_NE ||
1583 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
1584 C.ICmpType = SystemZICMP::Any;
1585 else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
1586 C.ICmpType = SystemZICMP::UnsignedOnly;
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001587 else
Richard Sandifordd420f732013-12-13 15:28:45 +00001588 C.ICmpType = SystemZICMP::SignedOnly;
1589 C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
1590 adjustZeroCmp(DAG, C);
1591 adjustSubwordCmp(DAG, C);
Richard Sandiford0847c452013-12-13 15:50:30 +00001592 adjustForSubtraction(DAG, C);
Richard Sandiford83a0b6a2013-12-20 11:56:02 +00001593 adjustForLTGFR(C);
1594 adjustICmpTruncate(DAG, C);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001595 }
1596
Richard Sandifordd420f732013-12-13 15:28:45 +00001597 if (shouldSwapCmpOperands(C)) {
1598 std::swap(C.Op0, C.Op1);
1599 C.CCMask = reverseCCMask(C.CCMask);
Richard Sandiford24e597b2013-08-23 11:27:19 +00001600 }
1601
Richard Sandifordd420f732013-12-13 15:28:45 +00001602 adjustForTestUnderMask(DAG, C);
Richard Sandifordd420f732013-12-13 15:28:45 +00001603 return C;
1604}
1605
1606// Emit the comparison instruction described by C.
1607static SDValue emitCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) {
1608 if (C.Opcode == SystemZISD::ICMP)
1609 return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1,
1610 DAG.getConstant(C.ICmpType, MVT::i32));
1611 if (C.Opcode == SystemZISD::TM) {
1612 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
1613 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
1614 return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1,
1615 DAG.getConstant(RegisterOnly, MVT::i32));
1616 }
1617 return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001618}
1619
Richard Sandiford7d86e472013-08-21 09:34:56 +00001620// Implement a 32-bit *MUL_LOHI operation by extending both operands to
1621// 64 bits. Extend is the extension type to use. Store the high part
1622// in Hi and the low part in Lo.
1623static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL,
1624 unsigned Extend, SDValue Op0, SDValue Op1,
1625 SDValue &Hi, SDValue &Lo) {
1626 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
1627 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
1628 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
1629 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, DAG.getConstant(32, MVT::i64));
1630 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
1631 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
1632}
1633
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001634// Lower a binary operation that produces two VT results, one in each
1635// half of a GR128 pair. Op0 and Op1 are the VT operands to the operation,
1636// Extend extends Op0 to a GR128, and Opcode performs the GR128 operation
1637// on the extended Op0 and (unextended) Op1. Store the even register result
1638// in Even and the odd register result in Odd.
Andrew Trickef9de2a2013-05-25 02:42:55 +00001639static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT,
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001640 unsigned Extend, unsigned Opcode,
1641 SDValue Op0, SDValue Op1,
1642 SDValue &Even, SDValue &Odd) {
1643 SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0);
1644 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped,
1645 SDValue(In128, 0), Op1);
1646 bool Is32Bit = is32Bit(VT);
Richard Sandifordd8163202013-09-13 09:12:44 +00001647 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
1648 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001649}
1650
Richard Sandiford48ef6ab2013-12-06 09:53:09 +00001651// Return an i32 value that is 1 if the CC value produced by Glue is
1652// in the mask CCMask and 0 otherwise. CC is known to have a value
1653// in CCValid, so other values can be ignored.
1654static SDValue emitSETCC(SelectionDAG &DAG, SDLoc DL, SDValue Glue,
1655 unsigned CCValid, unsigned CCMask) {
Richard Sandifordf722a8e302013-10-16 11:10:55 +00001656 IPMConversion Conversion = getIPMConversion(CCValid, CCMask);
1657 SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
1658
1659 if (Conversion.XORValue)
1660 Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result,
1661 DAG.getConstant(Conversion.XORValue, MVT::i32));
1662
1663 if (Conversion.AddValue)
1664 Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result,
1665 DAG.getConstant(Conversion.AddValue, MVT::i32));
1666
1667 // The SHR/AND sequence should get optimized to an RISBG.
1668 Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result,
1669 DAG.getConstant(Conversion.Bit, MVT::i32));
1670 if (Conversion.Bit != 31)
1671 Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result,
1672 DAG.getConstant(1, MVT::i32));
1673 return Result;
1674}
1675
Richard Sandiford48ef6ab2013-12-06 09:53:09 +00001676SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
1677 SelectionDAG &DAG) const {
1678 SDValue CmpOp0 = Op.getOperand(0);
1679 SDValue CmpOp1 = Op.getOperand(1);
1680 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1681 SDLoc DL(Op);
1682
Richard Sandifordd420f732013-12-13 15:28:45 +00001683 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC));
1684 SDValue Glue = emitCmp(DAG, DL, C);
1685 return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
Richard Sandiford48ef6ab2013-12-06 09:53:09 +00001686}
1687
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001688SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
1689 SDValue Chain = Op.getOperand(0);
1690 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1691 SDValue CmpOp0 = Op.getOperand(2);
1692 SDValue CmpOp1 = Op.getOperand(3);
1693 SDValue Dest = Op.getOperand(4);
Andrew Trickef9de2a2013-05-25 02:42:55 +00001694 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001695
Richard Sandifordd420f732013-12-13 15:28:45 +00001696 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC));
1697 SDValue Glue = emitCmp(DAG, DL, C);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001698 return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
Richard Sandifordd420f732013-12-13 15:28:45 +00001699 Chain, DAG.getConstant(C.CCValid, MVT::i32),
1700 DAG.getConstant(C.CCMask, MVT::i32), Dest, Glue);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001701}
1702
Richard Sandiford57485472013-12-13 15:35:00 +00001703// Return true if Pos is CmpOp and Neg is the negative of CmpOp,
1704// allowing Pos and Neg to be wider than CmpOp.
1705static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
1706 return (Neg.getOpcode() == ISD::SUB &&
1707 Neg.getOperand(0).getOpcode() == ISD::Constant &&
1708 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
1709 Neg.getOperand(1) == Pos &&
1710 (Pos == CmpOp ||
1711 (Pos.getOpcode() == ISD::SIGN_EXTEND &&
1712 Pos.getOperand(0) == CmpOp)));
1713}
1714
1715// Return the absolute or negative absolute of Op; IsNegative decides which.
1716static SDValue getAbsolute(SelectionDAG &DAG, SDLoc DL, SDValue Op,
1717 bool IsNegative) {
1718 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
1719 if (IsNegative)
1720 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
1721 DAG.getConstant(0, Op.getValueType()), Op);
1722 return Op;
1723}
1724
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001725SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
1726 SelectionDAG &DAG) const {
1727 SDValue CmpOp0 = Op.getOperand(0);
1728 SDValue CmpOp1 = Op.getOperand(1);
1729 SDValue TrueOp = Op.getOperand(2);
1730 SDValue FalseOp = Op.getOperand(3);
1731 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
Andrew Trickef9de2a2013-05-25 02:42:55 +00001732 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001733
Richard Sandifordd420f732013-12-13 15:28:45 +00001734 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC));
Richard Sandiford57485472013-12-13 15:35:00 +00001735
1736 // Check for absolute and negative-absolute selections, including those
1737 // where the comparison value is sign-extended (for LPGFR and LNGFR).
1738 // This check supplements the one in DAGCombiner.
1739 if (C.Opcode == SystemZISD::ICMP &&
1740 C.CCMask != SystemZ::CCMASK_CMP_EQ &&
1741 C.CCMask != SystemZ::CCMASK_CMP_NE &&
1742 C.Op1.getOpcode() == ISD::Constant &&
1743 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1744 if (isAbsolute(C.Op0, TrueOp, FalseOp))
1745 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
1746 if (isAbsolute(C.Op0, FalseOp, TrueOp))
1747 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
1748 }
1749
Richard Sandifordd420f732013-12-13 15:28:45 +00001750 SDValue Glue = emitCmp(DAG, DL, C);
Richard Sandiford48ef6ab2013-12-06 09:53:09 +00001751
1752 // Special case for handling -1/0 results. The shifts we use here
1753 // should get optimized with the IPM conversion sequence.
1754 ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp);
1755 ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp);
1756 if (TrueC && FalseC) {
1757 int64_t TrueVal = TrueC->getSExtValue();
1758 int64_t FalseVal = FalseC->getSExtValue();
1759 if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) {
1760 // Invert the condition if we want -1 on false.
1761 if (TrueVal == 0)
Richard Sandifordd420f732013-12-13 15:28:45 +00001762 C.CCMask ^= C.CCValid;
1763 SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
Richard Sandiford48ef6ab2013-12-06 09:53:09 +00001764 EVT VT = Op.getValueType();
1765 // Extend the result to VT. Upper bits are ignored.
1766 if (!is32Bit(VT))
1767 Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result);
1768 // Sign-extend from the low bit.
1769 SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, MVT::i32);
1770 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt);
1771 return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt);
1772 }
1773 }
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001774
Richard Sandiford3d768e32013-07-31 12:30:20 +00001775 SmallVector<SDValue, 5> Ops;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001776 Ops.push_back(TrueOp);
1777 Ops.push_back(FalseOp);
Richard Sandifordd420f732013-12-13 15:28:45 +00001778 Ops.push_back(DAG.getConstant(C.CCValid, MVT::i32));
1779 Ops.push_back(DAG.getConstant(C.CCMask, MVT::i32));
Richard Sandiford48ef6ab2013-12-06 09:53:09 +00001780 Ops.push_back(Glue);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001781
1782 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
1783 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, &Ops[0], Ops.size());
1784}
1785
1786SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
1787 SelectionDAG &DAG) const {
Andrew Trickef9de2a2013-05-25 02:42:55 +00001788 SDLoc DL(Node);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001789 const GlobalValue *GV = Node->getGlobal();
1790 int64_t Offset = Node->getOffset();
1791 EVT PtrVT = getPointerTy();
1792 Reloc::Model RM = TM.getRelocationModel();
1793 CodeModel::Model CM = TM.getCodeModel();
1794
1795 SDValue Result;
1796 if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) {
Richard Sandiford54b36912013-09-27 15:14:04 +00001797 // Assign anchors at 1<<12 byte boundaries.
1798 uint64_t Anchor = Offset & ~uint64_t(0xfff);
1799 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
1800 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1801
1802 // The offset can be folded into the address if it is aligned to a halfword.
1803 Offset -= Anchor;
1804 if (Offset != 0 && (Offset & 1) == 0) {
1805 SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
1806 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001807 Offset = 0;
1808 }
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001809 } else {
1810 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
1811 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1812 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
1813 MachinePointerInfo::getGOT(), false, false, false, 0);
1814 }
1815
1816 // If there was a non-zero offset that we didn't fold, create an explicit
1817 // addition for it.
1818 if (Offset != 0)
1819 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
1820 DAG.getConstant(Offset, PtrVT));
1821
1822 return Result;
1823}
1824
1825SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
1826 SelectionDAG &DAG) const {
Andrew Trickef9de2a2013-05-25 02:42:55 +00001827 SDLoc DL(Node);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001828 const GlobalValue *GV = Node->getGlobal();
1829 EVT PtrVT = getPointerTy();
1830 TLSModel::Model model = TM.getTLSModel(GV);
1831
1832 if (model != TLSModel::LocalExec)
1833 llvm_unreachable("only local-exec TLS mode supported");
1834
1835 // The high part of the thread pointer is in access register 0.
1836 SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
1837 DAG.getConstant(0, MVT::i32));
1838 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
1839
1840 // The low part of the thread pointer is in access register 1.
1841 SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
1842 DAG.getConstant(1, MVT::i32));
1843 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
1844
1845 // Merge them into a single 64-bit address.
1846 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
1847 DAG.getConstant(32, PtrVT));
1848 SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
1849
1850 // Get the offset of GA from the thread pointer.
1851 SystemZConstantPoolValue *CPV =
1852 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
1853
1854 // Force the offset into the constant pool and load it from there.
1855 SDValue CPAddr = DAG.getConstantPool(CPV, PtrVT, 8);
1856 SDValue Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(),
1857 CPAddr, MachinePointerInfo::getConstantPool(),
1858 false, false, false, 0);
1859
1860 // Add the base and offset together.
1861 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
1862}
1863
1864SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
1865 SelectionDAG &DAG) const {
Andrew Trickef9de2a2013-05-25 02:42:55 +00001866 SDLoc DL(Node);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001867 const BlockAddress *BA = Node->getBlockAddress();
1868 int64_t Offset = Node->getOffset();
1869 EVT PtrVT = getPointerTy();
1870
1871 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
1872 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1873 return Result;
1874}
1875
1876SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
1877 SelectionDAG &DAG) const {
Andrew Trickef9de2a2013-05-25 02:42:55 +00001878 SDLoc DL(JT);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001879 EVT PtrVT = getPointerTy();
1880 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1881
1882 // Use LARL to load the address of the table.
1883 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1884}
1885
1886SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
1887 SelectionDAG &DAG) const {
Andrew Trickef9de2a2013-05-25 02:42:55 +00001888 SDLoc DL(CP);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001889 EVT PtrVT = getPointerTy();
1890
1891 SDValue Result;
1892 if (CP->isMachineConstantPoolEntry())
1893 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1894 CP->getAlignment());
1895 else
1896 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1897 CP->getAlignment(), CP->getOffset());
1898
1899 // Use LARL to load the address of the constant pool entry.
1900 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1901}
1902
1903SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
1904 SelectionDAG &DAG) const {
Andrew Trickef9de2a2013-05-25 02:42:55 +00001905 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001906 SDValue In = Op.getOperand(0);
1907 EVT InVT = In.getValueType();
1908 EVT ResVT = Op.getValueType();
1909
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001910 if (InVT == MVT::i32 && ResVT == MVT::f32) {
Richard Sandifordf6377fb2013-10-01 14:31:11 +00001911 SDValue In64;
1912 if (Subtarget.hasHighWord()) {
1913 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
1914 MVT::i64);
1915 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
1916 MVT::i64, SDValue(U64, 0), In);
1917 } else {
1918 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
1919 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
1920 DAG.getConstant(32, MVT::i64));
1921 }
1922 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
Richard Sandiford87a44362013-09-30 10:28:35 +00001923 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
Richard Sandifordd8163202013-09-13 09:12:44 +00001924 DL, MVT::f32, Out64);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001925 }
1926 if (InVT == MVT::f32 && ResVT == MVT::i32) {
1927 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
Richard Sandiford87a44362013-09-30 10:28:35 +00001928 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
Richard Sandifordd8163202013-09-13 09:12:44 +00001929 MVT::f64, SDValue(U64, 0), In);
1930 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
Richard Sandifordf6377fb2013-10-01 14:31:11 +00001931 if (Subtarget.hasHighWord())
1932 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
1933 MVT::i32, Out64);
1934 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
1935 DAG.getConstant(32, MVT::i64));
1936 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001937 }
1938 llvm_unreachable("Unexpected bitcast combination");
1939}
1940
1941SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
1942 SelectionDAG &DAG) const {
1943 MachineFunction &MF = DAG.getMachineFunction();
1944 SystemZMachineFunctionInfo *FuncInfo =
1945 MF.getInfo<SystemZMachineFunctionInfo>();
1946 EVT PtrVT = getPointerTy();
1947
1948 SDValue Chain = Op.getOperand(0);
1949 SDValue Addr = Op.getOperand(1);
1950 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
Andrew Trickef9de2a2013-05-25 02:42:55 +00001951 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001952
1953 // The initial values of each field.
1954 const unsigned NumFields = 4;
1955 SDValue Fields[NumFields] = {
1956 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), PtrVT),
1957 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), PtrVT),
1958 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
1959 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
1960 };
1961
1962 // Store each field into its respective slot.
1963 SDValue MemOps[NumFields];
1964 unsigned Offset = 0;
1965 for (unsigned I = 0; I < NumFields; ++I) {
1966 SDValue FieldAddr = Addr;
1967 if (Offset != 0)
1968 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
1969 DAG.getIntPtrConstant(Offset));
1970 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
1971 MachinePointerInfo(SV, Offset),
1972 false, false, 0);
1973 Offset += 8;
1974 }
1975 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps, NumFields);
1976}
1977
1978SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
1979 SelectionDAG &DAG) const {
1980 SDValue Chain = Op.getOperand(0);
1981 SDValue DstPtr = Op.getOperand(1);
1982 SDValue SrcPtr = Op.getOperand(2);
1983 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
1984 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
Andrew Trickef9de2a2013-05-25 02:42:55 +00001985 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001986
1987 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32),
1988 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
1989 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
1990}
1991
1992SDValue SystemZTargetLowering::
1993lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
1994 SDValue Chain = Op.getOperand(0);
1995 SDValue Size = Op.getOperand(1);
Andrew Trickef9de2a2013-05-25 02:42:55 +00001996 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001997
1998 unsigned SPReg = getStackPointerRegisterToSaveRestore();
1999
2000 // Get a reference to the stack pointer.
2001 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
2002
2003 // Get the new stack pointer value.
2004 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, Size);
2005
2006 // Copy the new stack pointer back.
2007 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
2008
2009 // The allocated data lives above the 160 bytes allocated for the standard
2010 // frame, plus any outgoing stack arguments. We don't know how much that
2011 // amounts to yet, so emit a special ADJDYNALLOC placeholder.
2012 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
2013 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
2014
2015 SDValue Ops[2] = { Result, Chain };
2016 return DAG.getMergeValues(Ops, 2, DL);
2017}
2018
Richard Sandiford7d86e472013-08-21 09:34:56 +00002019SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
2020 SelectionDAG &DAG) const {
2021 EVT VT = Op.getValueType();
2022 SDLoc DL(Op);
2023 SDValue Ops[2];
2024 if (is32Bit(VT))
2025 // Just do a normal 64-bit multiplication and extract the results.
2026 // We define this so that it can be used for constant division.
2027 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
2028 Op.getOperand(1), Ops[1], Ops[0]);
2029 else {
2030 // Do a full 128-bit multiplication based on UMUL_LOHI64:
2031 //
2032 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
2033 //
2034 // but using the fact that the upper halves are either all zeros
2035 // or all ones:
2036 //
2037 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
2038 //
2039 // and grouping the right terms together since they are quicker than the
2040 // multiplication:
2041 //
2042 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
2043 SDValue C63 = DAG.getConstant(63, MVT::i64);
2044 SDValue LL = Op.getOperand(0);
2045 SDValue RL = Op.getOperand(1);
2046 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
2047 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
2048 // UMUL_LOHI64 returns the low result in the odd register and the high
2049 // result in the even register. SMUL_LOHI is defined to return the
2050 // low half first, so the results are in reverse order.
2051 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
2052 LL, RL, Ops[1], Ops[0]);
2053 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
2054 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
2055 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
2056 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
2057 }
2058 return DAG.getMergeValues(Ops, 2, DL);
2059}
2060
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002061SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
2062 SelectionDAG &DAG) const {
2063 EVT VT = Op.getValueType();
Andrew Trickef9de2a2013-05-25 02:42:55 +00002064 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002065 SDValue Ops[2];
Richard Sandiford7d86e472013-08-21 09:34:56 +00002066 if (is32Bit(VT))
2067 // Just do a normal 64-bit multiplication and extract the results.
2068 // We define this so that it can be used for constant division.
2069 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
2070 Op.getOperand(1), Ops[1], Ops[0]);
2071 else
2072 // UMUL_LOHI64 returns the low result in the odd register and the high
2073 // result in the even register. UMUL_LOHI is defined to return the
2074 // low half first, so the results are in reverse order.
2075 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
2076 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002077 return DAG.getMergeValues(Ops, 2, DL);
2078}
2079
2080SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
2081 SelectionDAG &DAG) const {
2082 SDValue Op0 = Op.getOperand(0);
2083 SDValue Op1 = Op.getOperand(1);
2084 EVT VT = Op.getValueType();
Andrew Trickef9de2a2013-05-25 02:42:55 +00002085 SDLoc DL(Op);
Richard Sandiforde6e78852013-07-02 15:40:22 +00002086 unsigned Opcode;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002087
2088 // We use DSGF for 32-bit division.
2089 if (is32Bit(VT)) {
2090 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
Richard Sandiforde6e78852013-07-02 15:40:22 +00002091 Opcode = SystemZISD::SDIVREM32;
2092 } else if (DAG.ComputeNumSignBits(Op1) > 32) {
2093 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
2094 Opcode = SystemZISD::SDIVREM32;
2095 } else
2096 Opcode = SystemZISD::SDIVREM64;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002097
2098 // DSG(F) takes a 64-bit dividend, so the even register in the GR128
2099 // input is "don't care". The instruction returns the remainder in
2100 // the even register and the quotient in the odd register.
2101 SDValue Ops[2];
Richard Sandiforde6e78852013-07-02 15:40:22 +00002102 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode,
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002103 Op0, Op1, Ops[1], Ops[0]);
2104 return DAG.getMergeValues(Ops, 2, DL);
2105}
2106
2107SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
2108 SelectionDAG &DAG) const {
2109 EVT VT = Op.getValueType();
Andrew Trickef9de2a2013-05-25 02:42:55 +00002110 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002111
2112 // DL(G) uses a double-width dividend, so we need to clear the even
2113 // register in the GR128 input. The instruction returns the remainder
2114 // in the even register and the quotient in the odd register.
2115 SDValue Ops[2];
2116 if (is32Bit(VT))
2117 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32,
2118 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
2119 else
2120 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64,
2121 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
2122 return DAG.getMergeValues(Ops, 2, DL);
2123}
2124
2125SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
2126 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
2127
2128 // Get the known-zero masks for each operand.
2129 SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
2130 APInt KnownZero[2], KnownOne[2];
2131 DAG.ComputeMaskedBits(Ops[0], KnownZero[0], KnownOne[0]);
2132 DAG.ComputeMaskedBits(Ops[1], KnownZero[1], KnownOne[1]);
2133
2134 // See if the upper 32 bits of one operand and the lower 32 bits of the
2135 // other are known zero. They are the low and high operands respectively.
2136 uint64_t Masks[] = { KnownZero[0].getZExtValue(),
2137 KnownZero[1].getZExtValue() };
2138 unsigned High, Low;
2139 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
2140 High = 1, Low = 0;
2141 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
2142 High = 0, Low = 1;
2143 else
2144 return Op;
2145
2146 SDValue LowOp = Ops[Low];
2147 SDValue HighOp = Ops[High];
2148
2149 // If the high part is a constant, we're better off using IILH.
2150 if (HighOp.getOpcode() == ISD::Constant)
2151 return Op;
2152
2153 // If the low part is a constant that is outside the range of LHI,
2154 // then we're better off using IILF.
2155 if (LowOp.getOpcode() == ISD::Constant) {
2156 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
2157 if (!isInt<16>(Value))
2158 return Op;
2159 }
2160
2161 // Check whether the high part is an AND that doesn't change the
2162 // high 32 bits and just masks out low bits. We can skip it if so.
2163 if (HighOp.getOpcode() == ISD::AND &&
2164 HighOp.getOperand(1).getOpcode() == ISD::Constant) {
Richard Sandifordccc2a7c2013-12-03 11:01:54 +00002165 SDValue HighOp0 = HighOp.getOperand(0);
2166 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
2167 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
2168 HighOp = HighOp0;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002169 }
2170
2171 // Take advantage of the fact that all GR32 operations only change the
2172 // low 32 bits by truncating Low to an i32 and inserting it directly
2173 // using a subreg. The interesting cases are those where the truncation
2174 // can be folded.
Andrew Trickef9de2a2013-05-25 02:42:55 +00002175 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002176 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
Richard Sandiford87a44362013-09-30 10:28:35 +00002177 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
Richard Sandifordd8163202013-09-13 09:12:44 +00002178 MVT::i64, HighOp, Low32);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002179}
2180
Richard Sandiford32379b82014-01-13 15:17:53 +00002181SDValue SystemZTargetLowering::lowerSIGN_EXTEND(SDValue Op,
2182 SelectionDAG &DAG) const {
2183 // Convert (sext (ashr (shl X, C1), C2)) to
2184 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
2185 // cheap as narrower ones.
2186 SDValue N0 = Op.getOperand(0);
2187 EVT VT = Op.getValueType();
2188 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
2189 ConstantSDNode *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2190 SDValue Inner = N0.getOperand(0);
2191 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
2192 ConstantSDNode *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1));
2193 if (ShlAmt) {
2194 unsigned Extra = (VT.getSizeInBits() -
2195 N0.getValueType().getSizeInBits());
2196 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
2197 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
2198 EVT ShiftVT = N0.getOperand(1).getValueType();
2199 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
2200 Inner.getOperand(0));
2201 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
2202 DAG.getConstant(NewShlAmt, ShiftVT));
2203 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
2204 DAG.getConstant(NewSraAmt, ShiftVT));
2205 }
2206 }
2207 }
2208 return SDValue();
2209}
2210
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00002211// Op is an atomic load. Lower it into a normal volatile load.
2212SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
2213 SelectionDAG &DAG) const {
2214 AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode());
2215 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
2216 Node->getChain(), Node->getBasePtr(),
2217 Node->getMemoryVT(), Node->getMemOperand());
2218}
2219
2220// Op is an atomic store. Lower it into a normal volatile store followed
2221// by a serialization.
2222SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
2223 SelectionDAG &DAG) const {
2224 AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode());
2225 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
2226 Node->getBasePtr(), Node->getMemoryVT(),
2227 Node->getMemOperand());
2228 return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other,
2229 Chain), 0);
2230}
2231
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002232// Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first
2233// two into the fullword ATOMIC_LOADW_* operation given by Opcode.
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00002234SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
2235 SelectionDAG &DAG,
2236 unsigned Opcode) const {
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002237 AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode());
2238
2239 // 32-bit operations need no code outside the main loop.
2240 EVT NarrowVT = Node->getMemoryVT();
2241 EVT WideVT = MVT::i32;
2242 if (NarrowVT == WideVT)
2243 return Op;
2244
2245 int64_t BitSize = NarrowVT.getSizeInBits();
2246 SDValue ChainIn = Node->getChain();
2247 SDValue Addr = Node->getBasePtr();
2248 SDValue Src2 = Node->getVal();
2249 MachineMemOperand *MMO = Node->getMemOperand();
Andrew Trickef9de2a2013-05-25 02:42:55 +00002250 SDLoc DL(Node);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002251 EVT PtrVT = Addr.getValueType();
2252
2253 // Convert atomic subtracts of constants into additions.
2254 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
2255 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Src2)) {
2256 Opcode = SystemZISD::ATOMIC_LOADW_ADD;
2257 Src2 = DAG.getConstant(-Const->getSExtValue(), Src2.getValueType());
2258 }
2259
2260 // Get the address of the containing word.
2261 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
2262 DAG.getConstant(-4, PtrVT));
2263
2264 // Get the number of bits that the word must be rotated left in order
2265 // to bring the field to the top bits of a GR32.
2266 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
2267 DAG.getConstant(3, PtrVT));
2268 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
2269
2270 // Get the complementing shift amount, for rotating a field in the top
2271 // bits back to its proper position.
2272 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
2273 DAG.getConstant(0, WideVT), BitShift);
2274
2275 // Extend the source operand to 32 bits and prepare it for the inner loop.
2276 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
2277 // operations require the source to be shifted in advance. (This shift
2278 // can be folded if the source is constant.) For AND and NAND, the lower
2279 // bits must be set, while for other opcodes they should be left clear.
2280 if (Opcode != SystemZISD::ATOMIC_SWAPW)
2281 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
2282 DAG.getConstant(32 - BitSize, WideVT));
2283 if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
2284 Opcode == SystemZISD::ATOMIC_LOADW_NAND)
2285 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
2286 DAG.getConstant(uint32_t(-1) >> BitSize, WideVT));
2287
2288 // Construct the ATOMIC_LOADW_* node.
2289 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
2290 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
2291 DAG.getConstant(BitSize, WideVT) };
2292 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
2293 array_lengthof(Ops),
2294 NarrowVT, MMO);
2295
2296 // Rotate the result of the final CS so that the field is in the lower
2297 // bits of a GR32, then truncate it.
2298 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
2299 DAG.getConstant(BitSize, WideVT));
2300 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
2301
2302 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
2303 return DAG.getMergeValues(RetOps, 2, DL);
2304}
2305
Richard Sandiford41350a52013-12-24 15:18:04 +00002306// Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations
Richard Sandiford002019a2013-12-24 15:22:39 +00002307// into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
Richard Sandiford41350a52013-12-24 15:18:04 +00002308// operations into additions.
2309SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
2310 SelectionDAG &DAG) const {
2311 AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode());
2312 EVT MemVT = Node->getMemoryVT();
2313 if (MemVT == MVT::i32 || MemVT == MVT::i64) {
2314 // A full-width operation.
2315 assert(Op.getValueType() == MemVT && "Mismatched VTs");
2316 SDValue Src2 = Node->getVal();
2317 SDValue NegSrc2;
2318 SDLoc DL(Src2);
2319
2320 if (ConstantSDNode *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
2321 // Use an addition if the operand is constant and either LAA(G) is
2322 // available or the negative value is in the range of A(G)FHI.
2323 int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
2324 if (isInt<32>(Value) || TM.getSubtargetImpl()->hasInterlockedAccess1())
2325 NegSrc2 = DAG.getConstant(Value, MemVT);
2326 } else if (TM.getSubtargetImpl()->hasInterlockedAccess1())
2327 // Use LAA(G) if available.
2328 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, MemVT),
2329 Src2);
2330
2331 if (NegSrc2.getNode())
2332 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
2333 Node->getChain(), Node->getBasePtr(), NegSrc2,
2334 Node->getMemOperand(), Node->getOrdering(),
2335 Node->getSynchScope());
2336
2337 // Use the node as-is.
2338 return Op;
2339 }
2340
2341 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
2342}
2343
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002344// Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation. Lower the first two
2345// into a fullword ATOMIC_CMP_SWAPW operation.
2346SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
2347 SelectionDAG &DAG) const {
2348 AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode());
2349
2350 // We have native support for 32-bit compare and swap.
2351 EVT NarrowVT = Node->getMemoryVT();
2352 EVT WideVT = MVT::i32;
2353 if (NarrowVT == WideVT)
2354 return Op;
2355
2356 int64_t BitSize = NarrowVT.getSizeInBits();
2357 SDValue ChainIn = Node->getOperand(0);
2358 SDValue Addr = Node->getOperand(1);
2359 SDValue CmpVal = Node->getOperand(2);
2360 SDValue SwapVal = Node->getOperand(3);
2361 MachineMemOperand *MMO = Node->getMemOperand();
Andrew Trickef9de2a2013-05-25 02:42:55 +00002362 SDLoc DL(Node);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002363 EVT PtrVT = Addr.getValueType();
2364
2365 // Get the address of the containing word.
2366 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
2367 DAG.getConstant(-4, PtrVT));
2368
2369 // Get the number of bits that the word must be rotated left in order
2370 // to bring the field to the top bits of a GR32.
2371 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
2372 DAG.getConstant(3, PtrVT));
2373 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
2374
2375 // Get the complementing shift amount, for rotating a field in the top
2376 // bits back to its proper position.
2377 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
2378 DAG.getConstant(0, WideVT), BitShift);
2379
2380 // Construct the ATOMIC_CMP_SWAPW node.
2381 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
2382 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
2383 NegBitShift, DAG.getConstant(BitSize, WideVT) };
2384 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
2385 VTList, Ops, array_lengthof(Ops),
2386 NarrowVT, MMO);
2387 return AtomicOp;
2388}
2389
2390SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
2391 SelectionDAG &DAG) const {
2392 MachineFunction &MF = DAG.getMachineFunction();
2393 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
Andrew Trickef9de2a2013-05-25 02:42:55 +00002394 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002395 SystemZ::R15D, Op.getValueType());
2396}
2397
2398SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
2399 SelectionDAG &DAG) const {
2400 MachineFunction &MF = DAG.getMachineFunction();
2401 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
Andrew Trickef9de2a2013-05-25 02:42:55 +00002402 return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op),
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002403 SystemZ::R15D, Op.getOperand(1));
2404}
2405
Richard Sandiford03481332013-08-23 11:36:42 +00002406SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
2407 SelectionDAG &DAG) const {
2408 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
2409 if (!IsData)
2410 // Just preserve the chain.
2411 return Op.getOperand(0);
2412
2413 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2414 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
2415 MemIntrinsicSDNode *Node = cast<MemIntrinsicSDNode>(Op.getNode());
2416 SDValue Ops[] = {
2417 Op.getOperand(0),
2418 DAG.getConstant(Code, MVT::i32),
2419 Op.getOperand(1)
2420 };
2421 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, SDLoc(Op),
2422 Node->getVTList(), Ops, array_lengthof(Ops),
2423 Node->getMemoryVT(), Node->getMemOperand());
2424}
2425
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002426SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
2427 SelectionDAG &DAG) const {
2428 switch (Op.getOpcode()) {
2429 case ISD::BR_CC:
2430 return lowerBR_CC(Op, DAG);
2431 case ISD::SELECT_CC:
2432 return lowerSELECT_CC(Op, DAG);
Richard Sandifordf722a8e302013-10-16 11:10:55 +00002433 case ISD::SETCC:
2434 return lowerSETCC(Op, DAG);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002435 case ISD::GlobalAddress:
2436 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
2437 case ISD::GlobalTLSAddress:
2438 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
2439 case ISD::BlockAddress:
2440 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
2441 case ISD::JumpTable:
2442 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
2443 case ISD::ConstantPool:
2444 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
2445 case ISD::BITCAST:
2446 return lowerBITCAST(Op, DAG);
2447 case ISD::VASTART:
2448 return lowerVASTART(Op, DAG);
2449 case ISD::VACOPY:
2450 return lowerVACOPY(Op, DAG);
2451 case ISD::DYNAMIC_STACKALLOC:
2452 return lowerDYNAMIC_STACKALLOC(Op, DAG);
Richard Sandiford7d86e472013-08-21 09:34:56 +00002453 case ISD::SMUL_LOHI:
2454 return lowerSMUL_LOHI(Op, DAG);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002455 case ISD::UMUL_LOHI:
2456 return lowerUMUL_LOHI(Op, DAG);
2457 case ISD::SDIVREM:
2458 return lowerSDIVREM(Op, DAG);
2459 case ISD::UDIVREM:
2460 return lowerUDIVREM(Op, DAG);
2461 case ISD::OR:
2462 return lowerOR(Op, DAG);
Richard Sandiford32379b82014-01-13 15:17:53 +00002463 case ISD::SIGN_EXTEND:
2464 return lowerSIGN_EXTEND(Op, DAG);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002465 case ISD::ATOMIC_SWAP:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00002466 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
2467 case ISD::ATOMIC_STORE:
2468 return lowerATOMIC_STORE(Op, DAG);
2469 case ISD::ATOMIC_LOAD:
2470 return lowerATOMIC_LOAD(Op, DAG);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002471 case ISD::ATOMIC_LOAD_ADD:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00002472 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002473 case ISD::ATOMIC_LOAD_SUB:
Richard Sandiford41350a52013-12-24 15:18:04 +00002474 return lowerATOMIC_LOAD_SUB(Op, DAG);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002475 case ISD::ATOMIC_LOAD_AND:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00002476 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002477 case ISD::ATOMIC_LOAD_OR:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00002478 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002479 case ISD::ATOMIC_LOAD_XOR:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00002480 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002481 case ISD::ATOMIC_LOAD_NAND:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00002482 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002483 case ISD::ATOMIC_LOAD_MIN:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00002484 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002485 case ISD::ATOMIC_LOAD_MAX:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00002486 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002487 case ISD::ATOMIC_LOAD_UMIN:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00002488 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002489 case ISD::ATOMIC_LOAD_UMAX:
Richard Sandifordbef3d7a2013-12-10 10:49:34 +00002490 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002491 case ISD::ATOMIC_CMP_SWAP:
2492 return lowerATOMIC_CMP_SWAP(Op, DAG);
2493 case ISD::STACKSAVE:
2494 return lowerSTACKSAVE(Op, DAG);
2495 case ISD::STACKRESTORE:
2496 return lowerSTACKRESTORE(Op, DAG);
Richard Sandiford03481332013-08-23 11:36:42 +00002497 case ISD::PREFETCH:
2498 return lowerPREFETCH(Op, DAG);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002499 default:
2500 llvm_unreachable("Unexpected node to lower");
2501 }
2502}
2503
2504const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
2505#define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
2506 switch (Opcode) {
2507 OPCODE(RET_FLAG);
2508 OPCODE(CALL);
Richard Sandiford709bda62013-08-19 12:42:31 +00002509 OPCODE(SIBCALL);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002510 OPCODE(PCREL_WRAPPER);
Richard Sandiford54b36912013-09-27 15:14:04 +00002511 OPCODE(PCREL_OFFSET);
Richard Sandiford57485472013-12-13 15:35:00 +00002512 OPCODE(IABS);
Richard Sandiford5bc670b2013-09-06 11:51:39 +00002513 OPCODE(ICMP);
2514 OPCODE(FCMP);
Richard Sandiford35b9be22013-08-28 10:31:43 +00002515 OPCODE(TM);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002516 OPCODE(BR_CCMASK);
2517 OPCODE(SELECT_CCMASK);
2518 OPCODE(ADJDYNALLOC);
2519 OPCODE(EXTRACT_ACCESS);
2520 OPCODE(UMUL_LOHI64);
2521 OPCODE(SDIVREM64);
2522 OPCODE(UDIVREM32);
2523 OPCODE(UDIVREM64);
Richard Sandifordd131ff82013-07-08 09:35:23 +00002524 OPCODE(MVC);
Richard Sandiford5e318f02013-08-27 09:54:29 +00002525 OPCODE(MVC_LOOP);
Richard Sandiford178273a2013-09-05 10:36:45 +00002526 OPCODE(NC);
2527 OPCODE(NC_LOOP);
2528 OPCODE(OC);
2529 OPCODE(OC_LOOP);
2530 OPCODE(XC);
2531 OPCODE(XC_LOOP);
Richard Sandiford761703a2013-08-12 10:17:33 +00002532 OPCODE(CLC);
Richard Sandiford5e318f02013-08-27 09:54:29 +00002533 OPCODE(CLC_LOOP);
Richard Sandifordca232712013-08-16 11:21:54 +00002534 OPCODE(STRCMP);
Richard Sandifordbb83a502013-08-16 11:29:37 +00002535 OPCODE(STPCPY);
Richard Sandiford0dec06a2013-08-16 11:41:43 +00002536 OPCODE(SEARCH_STRING);
Richard Sandiford564681c2013-08-12 10:28:10 +00002537 OPCODE(IPM);
Richard Sandiford9afe6132013-12-10 10:36:34 +00002538 OPCODE(SERIALIZE);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002539 OPCODE(ATOMIC_SWAPW);
2540 OPCODE(ATOMIC_LOADW_ADD);
2541 OPCODE(ATOMIC_LOADW_SUB);
2542 OPCODE(ATOMIC_LOADW_AND);
2543 OPCODE(ATOMIC_LOADW_OR);
2544 OPCODE(ATOMIC_LOADW_XOR);
2545 OPCODE(ATOMIC_LOADW_NAND);
2546 OPCODE(ATOMIC_LOADW_MIN);
2547 OPCODE(ATOMIC_LOADW_MAX);
2548 OPCODE(ATOMIC_LOADW_UMIN);
2549 OPCODE(ATOMIC_LOADW_UMAX);
2550 OPCODE(ATOMIC_CMP_SWAPW);
Richard Sandiford03481332013-08-23 11:36:42 +00002551 OPCODE(PREFETCH);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002552 }
2553 return NULL;
2554#undef OPCODE
2555}
2556
2557//===----------------------------------------------------------------------===//
2558// Custom insertion
2559//===----------------------------------------------------------------------===//
2560
2561// Create a new basic block after MBB.
2562static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
2563 MachineFunction &MF = *MBB->getParent();
2564 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +00002565 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002566 return NewMBB;
2567}
2568
Richard Sandifordbe133a82013-08-28 09:01:51 +00002569// Split MBB after MI and return the new block (the one that contains
2570// instructions after MI).
2571static MachineBasicBlock *splitBlockAfter(MachineInstr *MI,
2572 MachineBasicBlock *MBB) {
2573 MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
2574 NewMBB->splice(NewMBB->begin(), MBB,
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +00002575 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
Richard Sandifordbe133a82013-08-28 09:01:51 +00002576 NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
2577 return NewMBB;
2578}
2579
Richard Sandiford5e318f02013-08-27 09:54:29 +00002580// Split MBB before MI and return the new block (the one that contains MI).
2581static MachineBasicBlock *splitBlockBefore(MachineInstr *MI,
2582 MachineBasicBlock *MBB) {
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002583 MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
Richard Sandiford5e318f02013-08-27 09:54:29 +00002584 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002585 NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
2586 return NewMBB;
2587}
2588
Richard Sandiford5e318f02013-08-27 09:54:29 +00002589// Force base value Base into a register before MI. Return the register.
2590static unsigned forceReg(MachineInstr *MI, MachineOperand &Base,
2591 const SystemZInstrInfo *TII) {
2592 if (Base.isReg())
2593 return Base.getReg();
2594
2595 MachineBasicBlock *MBB = MI->getParent();
2596 MachineFunction &MF = *MBB->getParent();
2597 MachineRegisterInfo &MRI = MF.getRegInfo();
2598
2599 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
2600 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LA), Reg)
2601 .addOperand(Base).addImm(0).addReg(0);
2602 return Reg;
2603}
2604
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002605// Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
2606MachineBasicBlock *
2607SystemZTargetLowering::emitSelect(MachineInstr *MI,
2608 MachineBasicBlock *MBB) const {
2609 const SystemZInstrInfo *TII = TM.getInstrInfo();
2610
2611 unsigned DestReg = MI->getOperand(0).getReg();
2612 unsigned TrueReg = MI->getOperand(1).getReg();
2613 unsigned FalseReg = MI->getOperand(2).getReg();
Richard Sandiford3d768e32013-07-31 12:30:20 +00002614 unsigned CCValid = MI->getOperand(3).getImm();
2615 unsigned CCMask = MI->getOperand(4).getImm();
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002616 DebugLoc DL = MI->getDebugLoc();
2617
2618 MachineBasicBlock *StartMBB = MBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00002619 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002620 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
2621
2622 // StartMBB:
Richard Sandiford0fb90ab2013-05-28 10:41:11 +00002623 // BRC CCMask, JoinMBB
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002624 // # fallthrough to FalseMBB
2625 MBB = StartMBB;
Richard Sandiford3d768e32013-07-31 12:30:20 +00002626 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2627 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002628 MBB->addSuccessor(JoinMBB);
2629 MBB->addSuccessor(FalseMBB);
2630
2631 // FalseMBB:
2632 // # fallthrough to JoinMBB
2633 MBB = FalseMBB;
2634 MBB->addSuccessor(JoinMBB);
2635
2636 // JoinMBB:
2637 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
2638 // ...
2639 MBB = JoinMBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00002640 BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg)
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002641 .addReg(TrueReg).addMBB(StartMBB)
2642 .addReg(FalseReg).addMBB(FalseMBB);
2643
2644 MI->eraseFromParent();
2645 return JoinMBB;
2646}
2647
Richard Sandifordb86a8342013-06-27 09:27:40 +00002648// Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
2649// StoreOpcode is the store to use and Invert says whether the store should
Richard Sandiforda68e6f52013-07-25 08:57:02 +00002650// happen when the condition is false rather than true. If a STORE ON
2651// CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
Richard Sandifordb86a8342013-06-27 09:27:40 +00002652MachineBasicBlock *
2653SystemZTargetLowering::emitCondStore(MachineInstr *MI,
2654 MachineBasicBlock *MBB,
Richard Sandiforda68e6f52013-07-25 08:57:02 +00002655 unsigned StoreOpcode, unsigned STOCOpcode,
2656 bool Invert) const {
Richard Sandifordb86a8342013-06-27 09:27:40 +00002657 const SystemZInstrInfo *TII = TM.getInstrInfo();
2658
Richard Sandiforda68e6f52013-07-25 08:57:02 +00002659 unsigned SrcReg = MI->getOperand(0).getReg();
2660 MachineOperand Base = MI->getOperand(1);
2661 int64_t Disp = MI->getOperand(2).getImm();
2662 unsigned IndexReg = MI->getOperand(3).getReg();
Richard Sandiford3d768e32013-07-31 12:30:20 +00002663 unsigned CCValid = MI->getOperand(4).getImm();
2664 unsigned CCMask = MI->getOperand(5).getImm();
Richard Sandifordb86a8342013-06-27 09:27:40 +00002665 DebugLoc DL = MI->getDebugLoc();
2666
2667 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
2668
Richard Sandiforda68e6f52013-07-25 08:57:02 +00002669 // Use STOCOpcode if possible. We could use different store patterns in
2670 // order to avoid matching the index register, but the performance trade-offs
2671 // might be more complicated in that case.
2672 if (STOCOpcode && !IndexReg && TM.getSubtargetImpl()->hasLoadStoreOnCond()) {
2673 if (Invert)
Richard Sandiford3d768e32013-07-31 12:30:20 +00002674 CCMask ^= CCValid;
Richard Sandiforda68e6f52013-07-25 08:57:02 +00002675 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
Richard Sandifordfd7f4ae2013-08-01 10:39:40 +00002676 .addReg(SrcReg).addOperand(Base).addImm(Disp)
2677 .addImm(CCValid).addImm(CCMask);
Richard Sandiforda68e6f52013-07-25 08:57:02 +00002678 MI->eraseFromParent();
2679 return MBB;
2680 }
2681
Richard Sandifordb86a8342013-06-27 09:27:40 +00002682 // Get the condition needed to branch around the store.
2683 if (!Invert)
Richard Sandiford3d768e32013-07-31 12:30:20 +00002684 CCMask ^= CCValid;
Richard Sandifordb86a8342013-06-27 09:27:40 +00002685
2686 MachineBasicBlock *StartMBB = MBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00002687 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB);
Richard Sandifordb86a8342013-06-27 09:27:40 +00002688 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
2689
2690 // StartMBB:
2691 // BRC CCMask, JoinMBB
2692 // # fallthrough to FalseMBB
Richard Sandifordb86a8342013-06-27 09:27:40 +00002693 MBB = StartMBB;
Richard Sandiford3d768e32013-07-31 12:30:20 +00002694 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2695 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
Richard Sandifordb86a8342013-06-27 09:27:40 +00002696 MBB->addSuccessor(JoinMBB);
2697 MBB->addSuccessor(FalseMBB);
2698
2699 // FalseMBB:
2700 // store %SrcReg, %Disp(%Index,%Base)
2701 // # fallthrough to JoinMBB
2702 MBB = FalseMBB;
2703 BuildMI(MBB, DL, TII->get(StoreOpcode))
2704 .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg);
2705 MBB->addSuccessor(JoinMBB);
2706
2707 MI->eraseFromParent();
2708 return JoinMBB;
2709}
2710
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002711// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
2712// or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that
2713// performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
2714// BitSize is the width of the field in bits, or 0 if this is a partword
2715// ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
2716// is one of the operands. Invert says whether the field should be
2717// inverted after performing BinOpcode (e.g. for NAND).
2718MachineBasicBlock *
2719SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI,
2720 MachineBasicBlock *MBB,
2721 unsigned BinOpcode,
2722 unsigned BitSize,
2723 bool Invert) const {
2724 const SystemZInstrInfo *TII = TM.getInstrInfo();
2725 MachineFunction &MF = *MBB->getParent();
2726 MachineRegisterInfo &MRI = MF.getRegInfo();
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002727 bool IsSubWord = (BitSize < 32);
2728
2729 // Extract the operands. Base can be a register or a frame index.
2730 // Src2 can be a register or immediate.
2731 unsigned Dest = MI->getOperand(0).getReg();
2732 MachineOperand Base = earlyUseOperand(MI->getOperand(1));
2733 int64_t Disp = MI->getOperand(2).getImm();
2734 MachineOperand Src2 = earlyUseOperand(MI->getOperand(3));
2735 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0);
2736 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
2737 DebugLoc DL = MI->getDebugLoc();
2738 if (IsSubWord)
2739 BitSize = MI->getOperand(6).getImm();
2740
2741 // Subword operations use 32-bit registers.
2742 const TargetRegisterClass *RC = (BitSize <= 32 ?
2743 &SystemZ::GR32BitRegClass :
2744 &SystemZ::GR64BitRegClass);
2745 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG;
2746 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
2747
2748 // Get the right opcodes for the displacement.
2749 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp);
2750 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
2751 assert(LOpcode && CSOpcode && "Displacement out of range");
2752
2753 // Create virtual registers for temporary results.
2754 unsigned OrigVal = MRI.createVirtualRegister(RC);
2755 unsigned OldVal = MRI.createVirtualRegister(RC);
2756 unsigned NewVal = (BinOpcode || IsSubWord ?
2757 MRI.createVirtualRegister(RC) : Src2.getReg());
2758 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
2759 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
2760
2761 // Insert a basic block for the main loop.
2762 MachineBasicBlock *StartMBB = MBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00002763 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002764 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
2765
2766 // StartMBB:
2767 // ...
2768 // %OrigVal = L Disp(%Base)
2769 // # fall through to LoopMMB
2770 MBB = StartMBB;
2771 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
2772 .addOperand(Base).addImm(Disp).addReg(0);
2773 MBB->addSuccessor(LoopMBB);
2774
2775 // LoopMBB:
2776 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
2777 // %RotatedOldVal = RLL %OldVal, 0(%BitShift)
2778 // %RotatedNewVal = OP %RotatedOldVal, %Src2
2779 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
2780 // %Dest = CS %OldVal, %NewVal, Disp(%Base)
2781 // JNE LoopMBB
2782 // # fall through to DoneMMB
2783 MBB = LoopMBB;
2784 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
2785 .addReg(OrigVal).addMBB(StartMBB)
2786 .addReg(Dest).addMBB(LoopMBB);
2787 if (IsSubWord)
2788 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
2789 .addReg(OldVal).addReg(BitShift).addImm(0);
2790 if (Invert) {
2791 // Perform the operation normally and then invert every bit of the field.
2792 unsigned Tmp = MRI.createVirtualRegister(RC);
2793 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp)
2794 .addReg(RotatedOldVal).addOperand(Src2);
2795 if (BitSize < 32)
2796 // XILF with the upper BitSize bits set.
Richard Sandiford652784e2013-09-25 11:11:53 +00002797 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002798 .addReg(Tmp).addImm(uint32_t(~0 << (32 - BitSize)));
2799 else if (BitSize == 32)
2800 // XILF with every bit set.
Richard Sandiford652784e2013-09-25 11:11:53 +00002801 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002802 .addReg(Tmp).addImm(~uint32_t(0));
2803 else {
2804 // Use LCGR and add -1 to the result, which is more compact than
2805 // an XILF, XILH pair.
2806 unsigned Tmp2 = MRI.createVirtualRegister(RC);
2807 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
2808 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
2809 .addReg(Tmp2).addImm(-1);
2810 }
2811 } else if (BinOpcode)
2812 // A simply binary operation.
2813 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
2814 .addReg(RotatedOldVal).addOperand(Src2);
2815 else if (IsSubWord)
2816 // Use RISBG to rotate Src2 into position and use it to replace the
2817 // field in RotatedOldVal.
2818 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
2819 .addReg(RotatedOldVal).addReg(Src2.getReg())
2820 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
2821 if (IsSubWord)
2822 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
2823 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
2824 BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
2825 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
Richard Sandiford3d768e32013-07-31 12:30:20 +00002826 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2827 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002828 MBB->addSuccessor(LoopMBB);
2829 MBB->addSuccessor(DoneMBB);
2830
2831 MI->eraseFromParent();
2832 return DoneMBB;
2833}
2834
2835// Implement EmitInstrWithCustomInserter for pseudo
2836// ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the
2837// instruction that should be used to compare the current field with the
2838// minimum or maximum value. KeepOldMask is the BRC condition-code mask
2839// for when the current field should be kept. BitSize is the width of
2840// the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
2841MachineBasicBlock *
2842SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI,
2843 MachineBasicBlock *MBB,
2844 unsigned CompareOpcode,
2845 unsigned KeepOldMask,
2846 unsigned BitSize) const {
2847 const SystemZInstrInfo *TII = TM.getInstrInfo();
2848 MachineFunction &MF = *MBB->getParent();
2849 MachineRegisterInfo &MRI = MF.getRegInfo();
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002850 bool IsSubWord = (BitSize < 32);
2851
2852 // Extract the operands. Base can be a register or a frame index.
2853 unsigned Dest = MI->getOperand(0).getReg();
2854 MachineOperand Base = earlyUseOperand(MI->getOperand(1));
2855 int64_t Disp = MI->getOperand(2).getImm();
2856 unsigned Src2 = MI->getOperand(3).getReg();
2857 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0);
2858 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
2859 DebugLoc DL = MI->getDebugLoc();
2860 if (IsSubWord)
2861 BitSize = MI->getOperand(6).getImm();
2862
2863 // Subword operations use 32-bit registers.
2864 const TargetRegisterClass *RC = (BitSize <= 32 ?
2865 &SystemZ::GR32BitRegClass :
2866 &SystemZ::GR64BitRegClass);
2867 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG;
2868 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
2869
2870 // Get the right opcodes for the displacement.
2871 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp);
2872 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
2873 assert(LOpcode && CSOpcode && "Displacement out of range");
2874
2875 // Create virtual registers for temporary results.
2876 unsigned OrigVal = MRI.createVirtualRegister(RC);
2877 unsigned OldVal = MRI.createVirtualRegister(RC);
2878 unsigned NewVal = MRI.createVirtualRegister(RC);
2879 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
2880 unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
2881 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
2882
2883 // Insert 3 basic blocks for the loop.
2884 MachineBasicBlock *StartMBB = MBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00002885 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002886 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
2887 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
2888 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
2889
2890 // StartMBB:
2891 // ...
2892 // %OrigVal = L Disp(%Base)
2893 // # fall through to LoopMMB
2894 MBB = StartMBB;
2895 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
2896 .addOperand(Base).addImm(Disp).addReg(0);
2897 MBB->addSuccessor(LoopMBB);
2898
2899 // LoopMBB:
2900 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
2901 // %RotatedOldVal = RLL %OldVal, 0(%BitShift)
2902 // CompareOpcode %RotatedOldVal, %Src2
Richard Sandiford312425f2013-05-20 14:23:08 +00002903 // BRC KeepOldMask, UpdateMBB
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002904 MBB = LoopMBB;
2905 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
2906 .addReg(OrigVal).addMBB(StartMBB)
2907 .addReg(Dest).addMBB(UpdateMBB);
2908 if (IsSubWord)
2909 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
2910 .addReg(OldVal).addReg(BitShift).addImm(0);
Richard Sandiford8a757bb2013-07-31 12:11:07 +00002911 BuildMI(MBB, DL, TII->get(CompareOpcode))
2912 .addReg(RotatedOldVal).addReg(Src2);
2913 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
Richard Sandiford3d768e32013-07-31 12:30:20 +00002914 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002915 MBB->addSuccessor(UpdateMBB);
2916 MBB->addSuccessor(UseAltMBB);
2917
2918 // UseAltMBB:
2919 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
2920 // # fall through to UpdateMMB
2921 MBB = UseAltMBB;
2922 if (IsSubWord)
2923 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
2924 .addReg(RotatedOldVal).addReg(Src2)
2925 .addImm(32).addImm(31 + BitSize).addImm(0);
2926 MBB->addSuccessor(UpdateMBB);
2927
2928 // UpdateMBB:
2929 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
2930 // [ %RotatedAltVal, UseAltMBB ]
2931 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
2932 // %Dest = CS %OldVal, %NewVal, Disp(%Base)
2933 // JNE LoopMBB
2934 // # fall through to DoneMMB
2935 MBB = UpdateMBB;
2936 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
2937 .addReg(RotatedOldVal).addMBB(LoopMBB)
2938 .addReg(RotatedAltVal).addMBB(UseAltMBB);
2939 if (IsSubWord)
2940 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
2941 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
2942 BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
2943 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
Richard Sandiford3d768e32013-07-31 12:30:20 +00002944 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2945 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002946 MBB->addSuccessor(LoopMBB);
2947 MBB->addSuccessor(DoneMBB);
2948
2949 MI->eraseFromParent();
2950 return DoneMBB;
2951}
2952
2953// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
2954// instruction MI.
2955MachineBasicBlock *
2956SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI,
2957 MachineBasicBlock *MBB) const {
2958 const SystemZInstrInfo *TII = TM.getInstrInfo();
2959 MachineFunction &MF = *MBB->getParent();
2960 MachineRegisterInfo &MRI = MF.getRegInfo();
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002961
2962 // Extract the operands. Base can be a register or a frame index.
2963 unsigned Dest = MI->getOperand(0).getReg();
2964 MachineOperand Base = earlyUseOperand(MI->getOperand(1));
2965 int64_t Disp = MI->getOperand(2).getImm();
2966 unsigned OrigCmpVal = MI->getOperand(3).getReg();
2967 unsigned OrigSwapVal = MI->getOperand(4).getReg();
2968 unsigned BitShift = MI->getOperand(5).getReg();
2969 unsigned NegBitShift = MI->getOperand(6).getReg();
2970 int64_t BitSize = MI->getOperand(7).getImm();
2971 DebugLoc DL = MI->getDebugLoc();
2972
2973 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
2974
2975 // Get the right opcodes for the displacement.
2976 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp);
2977 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
2978 assert(LOpcode && CSOpcode && "Displacement out of range");
2979
2980 // Create virtual registers for temporary results.
2981 unsigned OrigOldVal = MRI.createVirtualRegister(RC);
2982 unsigned OldVal = MRI.createVirtualRegister(RC);
2983 unsigned CmpVal = MRI.createVirtualRegister(RC);
2984 unsigned SwapVal = MRI.createVirtualRegister(RC);
2985 unsigned StoreVal = MRI.createVirtualRegister(RC);
2986 unsigned RetryOldVal = MRI.createVirtualRegister(RC);
2987 unsigned RetryCmpVal = MRI.createVirtualRegister(RC);
2988 unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
2989
2990 // Insert 2 basic blocks for the loop.
2991 MachineBasicBlock *StartMBB = MBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00002992 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002993 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
2994 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB);
2995
2996 // StartMBB:
2997 // ...
2998 // %OrigOldVal = L Disp(%Base)
2999 // # fall through to LoopMMB
3000 MBB = StartMBB;
3001 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
3002 .addOperand(Base).addImm(Disp).addReg(0);
3003 MBB->addSuccessor(LoopMBB);
3004
3005 // LoopMBB:
3006 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
3007 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
3008 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
3009 // %Dest = RLL %OldVal, BitSize(%BitShift)
3010 // ^^ The low BitSize bits contain the field
3011 // of interest.
3012 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
3013 // ^^ Replace the upper 32-BitSize bits of the
3014 // comparison value with those that we loaded,
3015 // so that we can use a full word comparison.
Richard Sandiford8a757bb2013-07-31 12:11:07 +00003016 // CR %Dest, %RetryCmpVal
3017 // JNE DoneMBB
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003018 // # Fall through to SetMBB
3019 MBB = LoopMBB;
3020 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
3021 .addReg(OrigOldVal).addMBB(StartMBB)
3022 .addReg(RetryOldVal).addMBB(SetMBB);
3023 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
3024 .addReg(OrigCmpVal).addMBB(StartMBB)
3025 .addReg(RetryCmpVal).addMBB(SetMBB);
3026 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
3027 .addReg(OrigSwapVal).addMBB(StartMBB)
3028 .addReg(RetrySwapVal).addMBB(SetMBB);
3029 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
3030 .addReg(OldVal).addReg(BitShift).addImm(BitSize);
3031 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
3032 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
Richard Sandiford8a757bb2013-07-31 12:11:07 +00003033 BuildMI(MBB, DL, TII->get(SystemZ::CR))
3034 .addReg(Dest).addReg(RetryCmpVal);
3035 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
Richard Sandiford3d768e32013-07-31 12:30:20 +00003036 .addImm(SystemZ::CCMASK_ICMP)
3037 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003038 MBB->addSuccessor(DoneMBB);
3039 MBB->addSuccessor(SetMBB);
3040
3041 // SetMBB:
3042 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
3043 // ^^ Replace the upper 32-BitSize bits of the new
3044 // value with those that we loaded.
3045 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift)
3046 // ^^ Rotate the new field to its proper position.
3047 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
3048 // JNE LoopMBB
3049 // # fall through to ExitMMB
3050 MBB = SetMBB;
3051 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
3052 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
3053 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
3054 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
3055 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
3056 .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp);
Richard Sandiford3d768e32013-07-31 12:30:20 +00003057 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3058 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003059 MBB->addSuccessor(LoopMBB);
3060 MBB->addSuccessor(DoneMBB);
3061
3062 MI->eraseFromParent();
3063 return DoneMBB;
3064}
3065
3066// Emit an extension from a GR32 or GR64 to a GR128. ClearEven is true
3067// if the high register of the GR128 value must be cleared or false if
Richard Sandiford87a44362013-09-30 10:28:35 +00003068// it's "don't care". SubReg is subreg_l32 when extending a GR32
3069// and subreg_l64 when extending a GR64.
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003070MachineBasicBlock *
3071SystemZTargetLowering::emitExt128(MachineInstr *MI,
3072 MachineBasicBlock *MBB,
3073 bool ClearEven, unsigned SubReg) const {
3074 const SystemZInstrInfo *TII = TM.getInstrInfo();
3075 MachineFunction &MF = *MBB->getParent();
3076 MachineRegisterInfo &MRI = MF.getRegInfo();
3077 DebugLoc DL = MI->getDebugLoc();
3078
3079 unsigned Dest = MI->getOperand(0).getReg();
3080 unsigned Src = MI->getOperand(1).getReg();
3081 unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
3082
3083 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
3084 if (ClearEven) {
3085 unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
3086 unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
3087
3088 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
3089 .addImm(0);
3090 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
Richard Sandiford87a44362013-09-30 10:28:35 +00003091 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003092 In128 = NewIn128;
3093 }
3094 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
3095 .addReg(In128).addReg(Src).addImm(SubReg);
3096
3097 MI->eraseFromParent();
3098 return MBB;
3099}
3100
Richard Sandifordd131ff82013-07-08 09:35:23 +00003101MachineBasicBlock *
Richard Sandiford564681c2013-08-12 10:28:10 +00003102SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI,
3103 MachineBasicBlock *MBB,
3104 unsigned Opcode) const {
Richard Sandifordd131ff82013-07-08 09:35:23 +00003105 const SystemZInstrInfo *TII = TM.getInstrInfo();
Richard Sandiford5e318f02013-08-27 09:54:29 +00003106 MachineFunction &MF = *MBB->getParent();
3107 MachineRegisterInfo &MRI = MF.getRegInfo();
Richard Sandifordd131ff82013-07-08 09:35:23 +00003108 DebugLoc DL = MI->getDebugLoc();
3109
Richard Sandiford5e318f02013-08-27 09:54:29 +00003110 MachineOperand DestBase = earlyUseOperand(MI->getOperand(0));
Richard Sandifordd131ff82013-07-08 09:35:23 +00003111 uint64_t DestDisp = MI->getOperand(1).getImm();
Richard Sandiford5e318f02013-08-27 09:54:29 +00003112 MachineOperand SrcBase = earlyUseOperand(MI->getOperand(2));
Richard Sandifordd131ff82013-07-08 09:35:23 +00003113 uint64_t SrcDisp = MI->getOperand(3).getImm();
3114 uint64_t Length = MI->getOperand(4).getImm();
3115
Richard Sandifordbe133a82013-08-28 09:01:51 +00003116 // When generating more than one CLC, all but the last will need to
3117 // branch to the end when a difference is found.
3118 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
3119 splitBlockAfter(MI, MBB) : 0);
3120
Richard Sandiford5e318f02013-08-27 09:54:29 +00003121 // Check for the loop form, in which operand 5 is the trip count.
3122 if (MI->getNumExplicitOperands() > 5) {
3123 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
3124
3125 uint64_t StartCountReg = MI->getOperand(5).getReg();
3126 uint64_t StartSrcReg = forceReg(MI, SrcBase, TII);
3127 uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg :
3128 forceReg(MI, DestBase, TII));
3129
3130 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
3131 uint64_t ThisSrcReg = MRI.createVirtualRegister(RC);
3132 uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg :
3133 MRI.createVirtualRegister(RC));
3134 uint64_t NextSrcReg = MRI.createVirtualRegister(RC);
3135 uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg :
3136 MRI.createVirtualRegister(RC));
3137
3138 RC = &SystemZ::GR64BitRegClass;
3139 uint64_t ThisCountReg = MRI.createVirtualRegister(RC);
3140 uint64_t NextCountReg = MRI.createVirtualRegister(RC);
3141
3142 MachineBasicBlock *StartMBB = MBB;
3143 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
3144 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
Richard Sandifordbe133a82013-08-28 09:01:51 +00003145 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
Richard Sandiford5e318f02013-08-27 09:54:29 +00003146
3147 // StartMBB:
3148 // # fall through to LoopMMB
3149 MBB->addSuccessor(LoopMBB);
3150
3151 // LoopMBB:
3152 // %ThisDestReg = phi [ %StartDestReg, StartMBB ],
Richard Sandifordbe133a82013-08-28 09:01:51 +00003153 // [ %NextDestReg, NextMBB ]
Richard Sandiford5e318f02013-08-27 09:54:29 +00003154 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
Richard Sandifordbe133a82013-08-28 09:01:51 +00003155 // [ %NextSrcReg, NextMBB ]
Richard Sandiford5e318f02013-08-27 09:54:29 +00003156 // %ThisCountReg = phi [ %StartCountReg, StartMBB ],
Richard Sandifordbe133a82013-08-28 09:01:51 +00003157 // [ %NextCountReg, NextMBB ]
3158 // ( PFD 2, 768+DestDisp(%ThisDestReg) )
Richard Sandiford5e318f02013-08-27 09:54:29 +00003159 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
Richard Sandifordbe133a82013-08-28 09:01:51 +00003160 // ( JLH EndMBB )
3161 //
3162 // The prefetch is used only for MVC. The JLH is used only for CLC.
3163 MBB = LoopMBB;
3164
3165 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
3166 .addReg(StartDestReg).addMBB(StartMBB)
3167 .addReg(NextDestReg).addMBB(NextMBB);
3168 if (!HaveSingleBase)
3169 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
3170 .addReg(StartSrcReg).addMBB(StartMBB)
3171 .addReg(NextSrcReg).addMBB(NextMBB);
3172 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
3173 .addReg(StartCountReg).addMBB(StartMBB)
3174 .addReg(NextCountReg).addMBB(NextMBB);
3175 if (Opcode == SystemZ::MVC)
3176 BuildMI(MBB, DL, TII->get(SystemZ::PFD))
3177 .addImm(SystemZ::PFD_WRITE)
3178 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
3179 BuildMI(MBB, DL, TII->get(Opcode))
3180 .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
3181 .addReg(ThisSrcReg).addImm(SrcDisp);
3182 if (EndMBB) {
3183 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3184 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
3185 .addMBB(EndMBB);
3186 MBB->addSuccessor(EndMBB);
3187 MBB->addSuccessor(NextMBB);
3188 }
3189
3190 // NextMBB:
Richard Sandiford5e318f02013-08-27 09:54:29 +00003191 // %NextDestReg = LA 256(%ThisDestReg)
3192 // %NextSrcReg = LA 256(%ThisSrcReg)
3193 // %NextCountReg = AGHI %ThisCountReg, -1
3194 // CGHI %NextCountReg, 0
3195 // JLH LoopMBB
3196 // # fall through to DoneMMB
3197 //
3198 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
Richard Sandifordbe133a82013-08-28 09:01:51 +00003199 MBB = NextMBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00003200
Richard Sandiford5e318f02013-08-27 09:54:29 +00003201 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
3202 .addReg(ThisDestReg).addImm(256).addReg(0);
3203 if (!HaveSingleBase)
3204 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
3205 .addReg(ThisSrcReg).addImm(256).addReg(0);
3206 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
3207 .addReg(ThisCountReg).addImm(-1);
3208 BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
3209 .addReg(NextCountReg).addImm(0);
3210 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3211 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
3212 .addMBB(LoopMBB);
3213 MBB->addSuccessor(LoopMBB);
3214 MBB->addSuccessor(DoneMBB);
3215
3216 DestBase = MachineOperand::CreateReg(NextDestReg, false);
3217 SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
3218 Length &= 255;
3219 MBB = DoneMBB;
3220 }
3221 // Handle any remaining bytes with straight-line code.
3222 while (Length > 0) {
3223 uint64_t ThisLength = std::min(Length, uint64_t(256));
3224 // The previous iteration might have created out-of-range displacements.
3225 // Apply them using LAY if so.
3226 if (!isUInt<12>(DestDisp)) {
3227 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
3228 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
3229 .addOperand(DestBase).addImm(DestDisp).addReg(0);
3230 DestBase = MachineOperand::CreateReg(Reg, false);
3231 DestDisp = 0;
3232 }
3233 if (!isUInt<12>(SrcDisp)) {
3234 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
3235 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
3236 .addOperand(SrcBase).addImm(SrcDisp).addReg(0);
3237 SrcBase = MachineOperand::CreateReg(Reg, false);
3238 SrcDisp = 0;
3239 }
3240 BuildMI(*MBB, MI, DL, TII->get(Opcode))
3241 .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength)
3242 .addOperand(SrcBase).addImm(SrcDisp);
3243 DestDisp += ThisLength;
3244 SrcDisp += ThisLength;
3245 Length -= ThisLength;
Richard Sandifordbe133a82013-08-28 09:01:51 +00003246 // If there's another CLC to go, branch to the end if a difference
3247 // was found.
3248 if (EndMBB && Length > 0) {
3249 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
3250 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3251 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
3252 .addMBB(EndMBB);
3253 MBB->addSuccessor(EndMBB);
3254 MBB->addSuccessor(NextMBB);
3255 MBB = NextMBB;
3256 }
3257 }
3258 if (EndMBB) {
3259 MBB->addSuccessor(EndMBB);
3260 MBB = EndMBB;
3261 MBB->addLiveIn(SystemZ::CC);
Richard Sandiford5e318f02013-08-27 09:54:29 +00003262 }
Richard Sandifordd131ff82013-07-08 09:35:23 +00003263
3264 MI->eraseFromParent();
3265 return MBB;
3266}
3267
Richard Sandifordca232712013-08-16 11:21:54 +00003268// Decompose string pseudo-instruction MI into a loop that continually performs
3269// Opcode until CC != 3.
3270MachineBasicBlock *
3271SystemZTargetLowering::emitStringWrapper(MachineInstr *MI,
3272 MachineBasicBlock *MBB,
3273 unsigned Opcode) const {
3274 const SystemZInstrInfo *TII = TM.getInstrInfo();
3275 MachineFunction &MF = *MBB->getParent();
3276 MachineRegisterInfo &MRI = MF.getRegInfo();
3277 DebugLoc DL = MI->getDebugLoc();
3278
3279 uint64_t End1Reg = MI->getOperand(0).getReg();
3280 uint64_t Start1Reg = MI->getOperand(1).getReg();
3281 uint64_t Start2Reg = MI->getOperand(2).getReg();
3282 uint64_t CharReg = MI->getOperand(3).getReg();
3283
3284 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
3285 uint64_t This1Reg = MRI.createVirtualRegister(RC);
3286 uint64_t This2Reg = MRI.createVirtualRegister(RC);
3287 uint64_t End2Reg = MRI.createVirtualRegister(RC);
3288
3289 MachineBasicBlock *StartMBB = MBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00003290 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
Richard Sandifordca232712013-08-16 11:21:54 +00003291 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
3292
3293 // StartMBB:
Richard Sandifordca232712013-08-16 11:21:54 +00003294 // # fall through to LoopMMB
Richard Sandifordca232712013-08-16 11:21:54 +00003295 MBB->addSuccessor(LoopMBB);
3296
3297 // LoopMBB:
3298 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
3299 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
Richard Sandiford7789b082013-09-30 08:48:38 +00003300 // R0L = %CharReg
3301 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
Richard Sandifordca232712013-08-16 11:21:54 +00003302 // JO LoopMBB
3303 // # fall through to DoneMMB
Richard Sandiford6f6d5512013-08-20 09:38:48 +00003304 //
Richard Sandiford7789b082013-09-30 08:48:38 +00003305 // The load of R0L can be hoisted by post-RA LICM.
Richard Sandifordca232712013-08-16 11:21:54 +00003306 MBB = LoopMBB;
Richard Sandifordca232712013-08-16 11:21:54 +00003307
3308 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
3309 .addReg(Start1Reg).addMBB(StartMBB)
3310 .addReg(End1Reg).addMBB(LoopMBB);
3311 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
3312 .addReg(Start2Reg).addMBB(StartMBB)
3313 .addReg(End2Reg).addMBB(LoopMBB);
Richard Sandiford7789b082013-09-30 08:48:38 +00003314 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
Richard Sandifordca232712013-08-16 11:21:54 +00003315 BuildMI(MBB, DL, TII->get(Opcode))
3316 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
3317 .addReg(This1Reg).addReg(This2Reg);
3318 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3319 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
3320 MBB->addSuccessor(LoopMBB);
3321 MBB->addSuccessor(DoneMBB);
3322
3323 DoneMBB->addLiveIn(SystemZ::CC);
3324
3325 MI->eraseFromParent();
3326 return DoneMBB;
3327}
3328
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003329MachineBasicBlock *SystemZTargetLowering::
3330EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const {
3331 switch (MI->getOpcode()) {
Richard Sandiford7c5c0ea2013-10-01 13:10:16 +00003332 case SystemZ::Select32Mux:
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003333 case SystemZ::Select32:
3334 case SystemZ::SelectF32:
3335 case SystemZ::Select64:
3336 case SystemZ::SelectF64:
3337 case SystemZ::SelectF128:
3338 return emitSelect(MI, MBB);
3339
Richard Sandiford2896d042013-10-01 14:33:55 +00003340 case SystemZ::CondStore8Mux:
3341 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
3342 case SystemZ::CondStore8MuxInv:
3343 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
3344 case SystemZ::CondStore16Mux:
3345 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
3346 case SystemZ::CondStore16MuxInv:
3347 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00003348 case SystemZ::CondStore8:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00003349 return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
Richard Sandifordb86a8342013-06-27 09:27:40 +00003350 case SystemZ::CondStore8Inv:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00003351 return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00003352 case SystemZ::CondStore16:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00003353 return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
Richard Sandifordb86a8342013-06-27 09:27:40 +00003354 case SystemZ::CondStore16Inv:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00003355 return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00003356 case SystemZ::CondStore32:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00003357 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
Richard Sandifordb86a8342013-06-27 09:27:40 +00003358 case SystemZ::CondStore32Inv:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00003359 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00003360 case SystemZ::CondStore64:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00003361 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
Richard Sandifordb86a8342013-06-27 09:27:40 +00003362 case SystemZ::CondStore64Inv:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00003363 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00003364 case SystemZ::CondStoreF32:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00003365 return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
Richard Sandifordb86a8342013-06-27 09:27:40 +00003366 case SystemZ::CondStoreF32Inv:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00003367 return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00003368 case SystemZ::CondStoreF64:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00003369 return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
Richard Sandifordb86a8342013-06-27 09:27:40 +00003370 case SystemZ::CondStoreF64Inv:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00003371 return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00003372
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003373 case SystemZ::AEXT128_64:
Richard Sandiford87a44362013-09-30 10:28:35 +00003374 return emitExt128(MI, MBB, false, SystemZ::subreg_l64);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003375 case SystemZ::ZEXT128_32:
Richard Sandiford87a44362013-09-30 10:28:35 +00003376 return emitExt128(MI, MBB, true, SystemZ::subreg_l32);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003377 case SystemZ::ZEXT128_64:
Richard Sandiford87a44362013-09-30 10:28:35 +00003378 return emitExt128(MI, MBB, true, SystemZ::subreg_l64);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003379
3380 case SystemZ::ATOMIC_SWAPW:
3381 return emitAtomicLoadBinary(MI, MBB, 0, 0);
3382 case SystemZ::ATOMIC_SWAP_32:
3383 return emitAtomicLoadBinary(MI, MBB, 0, 32);
3384 case SystemZ::ATOMIC_SWAP_64:
3385 return emitAtomicLoadBinary(MI, MBB, 0, 64);
3386
3387 case SystemZ::ATOMIC_LOADW_AR:
3388 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
3389 case SystemZ::ATOMIC_LOADW_AFI:
3390 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
3391 case SystemZ::ATOMIC_LOAD_AR:
3392 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
3393 case SystemZ::ATOMIC_LOAD_AHI:
3394 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
3395 case SystemZ::ATOMIC_LOAD_AFI:
3396 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
3397 case SystemZ::ATOMIC_LOAD_AGR:
3398 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
3399 case SystemZ::ATOMIC_LOAD_AGHI:
3400 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
3401 case SystemZ::ATOMIC_LOAD_AGFI:
3402 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
3403
3404 case SystemZ::ATOMIC_LOADW_SR:
3405 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
3406 case SystemZ::ATOMIC_LOAD_SR:
3407 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
3408 case SystemZ::ATOMIC_LOAD_SGR:
3409 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
3410
3411 case SystemZ::ATOMIC_LOADW_NR:
3412 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
3413 case SystemZ::ATOMIC_LOADW_NILH:
Richard Sandiford652784e2013-09-25 11:11:53 +00003414 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003415 case SystemZ::ATOMIC_LOAD_NR:
3416 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
Richard Sandiford652784e2013-09-25 11:11:53 +00003417 case SystemZ::ATOMIC_LOAD_NILL:
3418 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
3419 case SystemZ::ATOMIC_LOAD_NILH:
3420 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
3421 case SystemZ::ATOMIC_LOAD_NILF:
3422 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003423 case SystemZ::ATOMIC_LOAD_NGR:
3424 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
Richard Sandiford652784e2013-09-25 11:11:53 +00003425 case SystemZ::ATOMIC_LOAD_NILL64:
3426 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
3427 case SystemZ::ATOMIC_LOAD_NILH64:
3428 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
Richard Sandiford70284282013-10-01 14:20:41 +00003429 case SystemZ::ATOMIC_LOAD_NIHL64:
3430 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
3431 case SystemZ::ATOMIC_LOAD_NIHH64:
3432 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
Richard Sandiford652784e2013-09-25 11:11:53 +00003433 case SystemZ::ATOMIC_LOAD_NILF64:
3434 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
Richard Sandiford70284282013-10-01 14:20:41 +00003435 case SystemZ::ATOMIC_LOAD_NIHF64:
3436 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003437
3438 case SystemZ::ATOMIC_LOADW_OR:
3439 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
3440 case SystemZ::ATOMIC_LOADW_OILH:
Richard Sandiford652784e2013-09-25 11:11:53 +00003441 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003442 case SystemZ::ATOMIC_LOAD_OR:
3443 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
Richard Sandiford652784e2013-09-25 11:11:53 +00003444 case SystemZ::ATOMIC_LOAD_OILL:
3445 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
3446 case SystemZ::ATOMIC_LOAD_OILH:
3447 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
3448 case SystemZ::ATOMIC_LOAD_OILF:
3449 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003450 case SystemZ::ATOMIC_LOAD_OGR:
3451 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
Richard Sandiford652784e2013-09-25 11:11:53 +00003452 case SystemZ::ATOMIC_LOAD_OILL64:
3453 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
3454 case SystemZ::ATOMIC_LOAD_OILH64:
3455 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
Richard Sandiford6e96ac62013-10-01 13:22:41 +00003456 case SystemZ::ATOMIC_LOAD_OIHL64:
3457 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
3458 case SystemZ::ATOMIC_LOAD_OIHH64:
3459 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
Richard Sandiford652784e2013-09-25 11:11:53 +00003460 case SystemZ::ATOMIC_LOAD_OILF64:
3461 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
Richard Sandiford6e96ac62013-10-01 13:22:41 +00003462 case SystemZ::ATOMIC_LOAD_OIHF64:
3463 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003464
3465 case SystemZ::ATOMIC_LOADW_XR:
3466 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
3467 case SystemZ::ATOMIC_LOADW_XILF:
Richard Sandiford652784e2013-09-25 11:11:53 +00003468 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003469 case SystemZ::ATOMIC_LOAD_XR:
3470 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
Richard Sandiford652784e2013-09-25 11:11:53 +00003471 case SystemZ::ATOMIC_LOAD_XILF:
3472 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003473 case SystemZ::ATOMIC_LOAD_XGR:
3474 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
Richard Sandiford652784e2013-09-25 11:11:53 +00003475 case SystemZ::ATOMIC_LOAD_XILF64:
3476 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
Richard Sandiford5718dac2013-10-01 14:08:44 +00003477 case SystemZ::ATOMIC_LOAD_XIHF64:
3478 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003479
3480 case SystemZ::ATOMIC_LOADW_NRi:
3481 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
3482 case SystemZ::ATOMIC_LOADW_NILHi:
Richard Sandiford652784e2013-09-25 11:11:53 +00003483 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003484 case SystemZ::ATOMIC_LOAD_NRi:
3485 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
Richard Sandiford652784e2013-09-25 11:11:53 +00003486 case SystemZ::ATOMIC_LOAD_NILLi:
3487 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
3488 case SystemZ::ATOMIC_LOAD_NILHi:
3489 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
3490 case SystemZ::ATOMIC_LOAD_NILFi:
3491 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003492 case SystemZ::ATOMIC_LOAD_NGRi:
3493 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
Richard Sandiford652784e2013-09-25 11:11:53 +00003494 case SystemZ::ATOMIC_LOAD_NILL64i:
3495 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
3496 case SystemZ::ATOMIC_LOAD_NILH64i:
3497 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
Richard Sandiford70284282013-10-01 14:20:41 +00003498 case SystemZ::ATOMIC_LOAD_NIHL64i:
3499 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
3500 case SystemZ::ATOMIC_LOAD_NIHH64i:
3501 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
Richard Sandiford652784e2013-09-25 11:11:53 +00003502 case SystemZ::ATOMIC_LOAD_NILF64i:
3503 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
Richard Sandiford70284282013-10-01 14:20:41 +00003504 case SystemZ::ATOMIC_LOAD_NIHF64i:
3505 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003506
3507 case SystemZ::ATOMIC_LOADW_MIN:
3508 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3509 SystemZ::CCMASK_CMP_LE, 0);
3510 case SystemZ::ATOMIC_LOAD_MIN_32:
3511 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3512 SystemZ::CCMASK_CMP_LE, 32);
3513 case SystemZ::ATOMIC_LOAD_MIN_64:
3514 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
3515 SystemZ::CCMASK_CMP_LE, 64);
3516
3517 case SystemZ::ATOMIC_LOADW_MAX:
3518 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3519 SystemZ::CCMASK_CMP_GE, 0);
3520 case SystemZ::ATOMIC_LOAD_MAX_32:
3521 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3522 SystemZ::CCMASK_CMP_GE, 32);
3523 case SystemZ::ATOMIC_LOAD_MAX_64:
3524 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
3525 SystemZ::CCMASK_CMP_GE, 64);
3526
3527 case SystemZ::ATOMIC_LOADW_UMIN:
3528 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3529 SystemZ::CCMASK_CMP_LE, 0);
3530 case SystemZ::ATOMIC_LOAD_UMIN_32:
3531 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3532 SystemZ::CCMASK_CMP_LE, 32);
3533 case SystemZ::ATOMIC_LOAD_UMIN_64:
3534 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
3535 SystemZ::CCMASK_CMP_LE, 64);
3536
3537 case SystemZ::ATOMIC_LOADW_UMAX:
3538 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3539 SystemZ::CCMASK_CMP_GE, 0);
3540 case SystemZ::ATOMIC_LOAD_UMAX_32:
3541 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3542 SystemZ::CCMASK_CMP_GE, 32);
3543 case SystemZ::ATOMIC_LOAD_UMAX_64:
3544 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
3545 SystemZ::CCMASK_CMP_GE, 64);
3546
3547 case SystemZ::ATOMIC_CMP_SWAPW:
3548 return emitAtomicCmpSwapW(MI, MBB);
Richard Sandiford5e318f02013-08-27 09:54:29 +00003549 case SystemZ::MVCSequence:
3550 case SystemZ::MVCLoop:
Richard Sandiford564681c2013-08-12 10:28:10 +00003551 return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
Richard Sandiford178273a2013-09-05 10:36:45 +00003552 case SystemZ::NCSequence:
3553 case SystemZ::NCLoop:
3554 return emitMemMemWrapper(MI, MBB, SystemZ::NC);
3555 case SystemZ::OCSequence:
3556 case SystemZ::OCLoop:
3557 return emitMemMemWrapper(MI, MBB, SystemZ::OC);
3558 case SystemZ::XCSequence:
3559 case SystemZ::XCLoop:
3560 return emitMemMemWrapper(MI, MBB, SystemZ::XC);
Richard Sandiford5e318f02013-08-27 09:54:29 +00003561 case SystemZ::CLCSequence:
3562 case SystemZ::CLCLoop:
Richard Sandiford564681c2013-08-12 10:28:10 +00003563 return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
Richard Sandifordca232712013-08-16 11:21:54 +00003564 case SystemZ::CLSTLoop:
3565 return emitStringWrapper(MI, MBB, SystemZ::CLST);
Richard Sandifordbb83a502013-08-16 11:29:37 +00003566 case SystemZ::MVSTLoop:
3567 return emitStringWrapper(MI, MBB, SystemZ::MVST);
Richard Sandiford0dec06a2013-08-16 11:41:43 +00003568 case SystemZ::SRSTLoop:
3569 return emitStringWrapper(MI, MBB, SystemZ::SRST);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003570 default:
3571 llvm_unreachable("Unexpected instr type to insert");
3572 }
3573}