blob: 164dfc585e33b2d32a83043dc5a9c234387d2c3b [file] [log] [blame]
Sean Silva709c44d2012-12-12 23:44:55 +00001=========================
2Clang Language Extensions
3=========================
4
5.. contents::
6 :local:
Sean Silva13d43fe2013-01-02 21:09:58 +00007 :depth: 1
Sean Silva709c44d2012-12-12 23:44:55 +00008
Sean Silvaf380e0e2013-01-02 21:03:11 +00009.. toctree::
10 :hidden:
11
12 ObjectiveCLiterals
13 BlockLanguageSpec
Michael Gottesman6fd58462013-01-07 22:24:45 +000014 Block-ABI-Apple
DeLesley Hutchinsc51e08c2014-02-18 19:42:01 +000015 AutomaticReferenceCounting
Sean Silvaf380e0e2013-01-02 21:03:11 +000016
Sean Silva709c44d2012-12-12 23:44:55 +000017Introduction
18============
19
20This document describes the language extensions provided by Clang. In addition
21to the language extensions listed here, Clang aims to support a broad range of
22GCC extensions. Please see the `GCC manual
23<http://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html>`_ for more information on
24these extensions.
25
26.. _langext-feature_check:
27
28Feature Checking Macros
29=======================
30
31Language extensions can be very useful, but only if you know you can depend on
32them. In order to allow fine-grain features checks, we support three builtin
33function-like macros. This allows you to directly test for a feature in your
34code without having to resort to something like autoconf or fragile "compiler
35version checks".
36
37``__has_builtin``
38-----------------
39
40This function-like macro takes a single identifier argument that is the name of
41a builtin function. It evaluates to 1 if the builtin is supported or 0 if not.
42It can be used like this:
43
44.. code-block:: c++
45
46 #ifndef __has_builtin // Optional of course.
47 #define __has_builtin(x) 0 // Compatibility with non-clang compilers.
48 #endif
49
50 ...
51 #if __has_builtin(__builtin_trap)
52 __builtin_trap();
53 #else
54 abort();
55 #endif
56 ...
57
58.. _langext-__has_feature-__has_extension:
59
60``__has_feature`` and ``__has_extension``
61-----------------------------------------
62
63These function-like macros take a single identifier argument that is the name
64of a feature. ``__has_feature`` evaluates to 1 if the feature is both
65supported by Clang and standardized in the current language standard or 0 if
66not (but see :ref:`below <langext-has-feature-back-compat>`), while
67``__has_extension`` evaluates to 1 if the feature is supported by Clang in the
68current language (either as a language extension or a standard language
69feature) or 0 if not. They can be used like this:
70
71.. code-block:: c++
72
73 #ifndef __has_feature // Optional of course.
74 #define __has_feature(x) 0 // Compatibility with non-clang compilers.
75 #endif
76 #ifndef __has_extension
77 #define __has_extension __has_feature // Compatibility with pre-3.0 compilers.
78 #endif
79
80 ...
81 #if __has_feature(cxx_rvalue_references)
82 // This code will only be compiled with the -std=c++11 and -std=gnu++11
83 // options, because rvalue references are only standardized in C++11.
84 #endif
85
86 #if __has_extension(cxx_rvalue_references)
87 // This code will be compiled with the -std=c++11, -std=gnu++11, -std=c++98
88 // and -std=gnu++98 options, because rvalue references are supported as a
89 // language extension in C++98.
90 #endif
91
92.. _langext-has-feature-back-compat:
93
Alp Toker958027b2014-07-14 19:42:55 +000094For backward compatibility, ``__has_feature`` can also be used to test
Sean Silva709c44d2012-12-12 23:44:55 +000095for support for non-standardized features, i.e. features not prefixed ``c_``,
96``cxx_`` or ``objc_``.
97
98Another use of ``__has_feature`` is to check for compiler features not related
Sean Silva173d2522013-01-02 13:07:47 +000099to the language standard, such as e.g. :doc:`AddressSanitizer
100<AddressSanitizer>`.
Sean Silva709c44d2012-12-12 23:44:55 +0000101
102If the ``-pedantic-errors`` option is given, ``__has_extension`` is equivalent
103to ``__has_feature``.
104
105The feature tag is described along with the language feature below.
106
107The feature name or extension name can also be specified with a preceding and
108following ``__`` (double underscore) to avoid interference from a macro with
109the same name. For instance, ``__cxx_rvalue_references__`` can be used instead
110of ``cxx_rvalue_references``.
111
Aaron Ballmana0344c52014-11-14 13:44:02 +0000112``__has_cpp_attribute``
Aaron Ballman631bd7b2014-11-14 14:01:55 +0000113-----------------------
Aaron Ballmana0344c52014-11-14 13:44:02 +0000114
115This function-like macro takes a single argument that is the name of a
116C++11-style attribute. The argument can either be a single identifier, or a
117scoped identifier. If the attribute is supported, a nonzero value is returned.
118If the attribute is a standards-based attribute, this macro returns a nonzero
119value based on the year and month in which the attribute was voted into the
120working draft. If the attribute is not supported by the current compliation
121target, this macro evaluates to 0. It can be used like this:
122
123.. code-block:: c++
124
125 #ifndef __has_cpp_attribute // Optional of course.
126 #define __has_cpp_attribute(x) 0 // Compatibility with non-clang compilers.
127 #endif
128
129 ...
130 #if __has_cpp_attribute(clang::fallthrough)
131 #define FALLTHROUGH [[clang::fallthrough]]
132 #else
133 #define FALLTHROUGH
134 #endif
135 ...
136
137The attribute identifier (but not scope) can also be specified with a preceding
138and following ``__`` (double underscore) to avoid interference from a macro with
139the same name. For instance, ``gnu::__const__`` can be used instead of
140``gnu::const``.
141
Sean Silva709c44d2012-12-12 23:44:55 +0000142``__has_attribute``
143-------------------
144
145This function-like macro takes a single identifier argument that is the name of
Aaron Ballman4bfaeba2014-12-05 17:11:49 +0000146a GNU-style attribute. It evaluates to 1 if the attribute is supported by the
147current compilation target, or 0 if not. It can be used like this:
Sean Silva709c44d2012-12-12 23:44:55 +0000148
149.. code-block:: c++
150
151 #ifndef __has_attribute // Optional of course.
152 #define __has_attribute(x) 0 // Compatibility with non-clang compilers.
153 #endif
154
155 ...
156 #if __has_attribute(always_inline)
157 #define ALWAYS_INLINE __attribute__((always_inline))
158 #else
159 #define ALWAYS_INLINE
160 #endif
161 ...
162
163The attribute name can also be specified with a preceding and following ``__``
164(double underscore) to avoid interference from a macro with the same name. For
165instance, ``__always_inline__`` can be used instead of ``always_inline``.
166
Aaron Ballman3c0f9b42014-12-05 15:05:29 +0000167
168``__has_declspec_attribute``
169----------------------------
170
171This function-like macro takes a single identifier argument that is the name of
172an attribute implemented as a Microsoft-style ``__declspec`` attribute. It
173evaluates to 1 if the attribute is supported by the current compilation target,
174or 0 if not. It can be used like this:
175
176.. code-block:: c++
177
178 #ifndef __has_declspec_attribute // Optional of course.
179 #define __has_declspec_attribute(x) 0 // Compatibility with non-clang compilers.
180 #endif
181
182 ...
183 #if __has_declspec_attribute(dllexport)
184 #define DLLEXPORT __declspec(dllexport)
185 #else
186 #define DLLEXPORT
187 #endif
188 ...
189
190The attribute name can also be specified with a preceding and following ``__``
191(double underscore) to avoid interference from a macro with the same name. For
192instance, ``__dllexport__`` can be used instead of ``dllexport``.
193
Yunzhong Gaoa8c45c92014-04-12 02:25:32 +0000194``__is_identifier``
195-------------------
196
197This function-like macro takes a single identifier argument that might be either
198a reserved word or a regular identifier. It evaluates to 1 if the argument is just
199a regular identifier and not a reserved word, in the sense that it can then be
200used as the name of a user-defined function or variable. Otherwise it evaluates
201to 0. It can be used like this:
202
203.. code-block:: c++
204
205 ...
206 #ifdef __is_identifier // Compatibility with non-clang compilers.
207 #if __is_identifier(__wchar_t)
208 typedef wchar_t __wchar_t;
209 #endif
210 #endif
211
212 __wchar_t WideCharacter;
213 ...
Aaron Ballmana4bb4b92014-01-09 23:11:13 +0000214
Sean Silva709c44d2012-12-12 23:44:55 +0000215Include File Checking Macros
216============================
217
218Not all developments systems have the same include files. The
219:ref:`langext-__has_include` and :ref:`langext-__has_include_next` macros allow
220you to check for the existence of an include file before doing a possibly
Dmitri Gribenko764ea242013-01-17 17:04:54 +0000221failing ``#include`` directive. Include file checking macros must be used
222as expressions in ``#if`` or ``#elif`` preprocessing directives.
Sean Silva709c44d2012-12-12 23:44:55 +0000223
224.. _langext-__has_include:
225
226``__has_include``
227-----------------
228
229This function-like macro takes a single file name string argument that is the
230name of an include file. It evaluates to 1 if the file can be found using the
231include paths, or 0 otherwise:
232
233.. code-block:: c++
234
235 // Note the two possible file name string formats.
236 #if __has_include("myinclude.h") && __has_include(<stdint.h>)
237 # include "myinclude.h"
238 #endif
239
Richard Smithccfc9ff2013-07-11 00:27:05 +0000240To test for this feature, use ``#if defined(__has_include)``:
241
242.. code-block:: c++
243
Sean Silva709c44d2012-12-12 23:44:55 +0000244 // To avoid problem with non-clang compilers not having this macro.
Richard Smithccfc9ff2013-07-11 00:27:05 +0000245 #if defined(__has_include)
246 #if __has_include("myinclude.h")
Sean Silva709c44d2012-12-12 23:44:55 +0000247 # include "myinclude.h"
248 #endif
Richard Smithccfc9ff2013-07-11 00:27:05 +0000249 #endif
Sean Silva709c44d2012-12-12 23:44:55 +0000250
251.. _langext-__has_include_next:
252
253``__has_include_next``
254----------------------
255
256This function-like macro takes a single file name string argument that is the
257name of an include file. It is like ``__has_include`` except that it looks for
258the second instance of the given file found in the include paths. It evaluates
259to 1 if the second instance of the file can be found using the include paths,
260or 0 otherwise:
261
262.. code-block:: c++
263
264 // Note the two possible file name string formats.
265 #if __has_include_next("myinclude.h") && __has_include_next(<stdint.h>)
266 # include_next "myinclude.h"
267 #endif
268
269 // To avoid problem with non-clang compilers not having this macro.
Richard Smithccfc9ff2013-07-11 00:27:05 +0000270 #if defined(__has_include_next)
271 #if __has_include_next("myinclude.h")
Sean Silva709c44d2012-12-12 23:44:55 +0000272 # include_next "myinclude.h"
273 #endif
Richard Smithccfc9ff2013-07-11 00:27:05 +0000274 #endif
Sean Silva709c44d2012-12-12 23:44:55 +0000275
276Note that ``__has_include_next``, like the GNU extension ``#include_next``
277directive, is intended for use in headers only, and will issue a warning if
278used in the top-level compilation file. A warning will also be issued if an
279absolute path is used in the file argument.
280
281``__has_warning``
282-----------------
283
284This function-like macro takes a string literal that represents a command line
285option for a warning and returns true if that is a valid warning option.
286
287.. code-block:: c++
288
289 #if __has_warning("-Wformat")
290 ...
291 #endif
292
293Builtin Macros
294==============
295
296``__BASE_FILE__``
297 Defined to a string that contains the name of the main input file passed to
298 Clang.
299
300``__COUNTER__``
301 Defined to an integer value that starts at zero and is incremented each time
302 the ``__COUNTER__`` macro is expanded.
303
304``__INCLUDE_LEVEL__``
305 Defined to an integral value that is the include depth of the file currently
306 being translated. For the main file, this value is zero.
307
308``__TIMESTAMP__``
309 Defined to the date and time of the last modification of the current source
310 file.
311
312``__clang__``
313 Defined when compiling with Clang
314
315``__clang_major__``
316 Defined to the major marketing version number of Clang (e.g., the 2 in
317 2.0.1). Note that marketing version numbers should not be used to check for
318 language features, as different vendors use different numbering schemes.
319 Instead, use the :ref:`langext-feature_check`.
320
321``__clang_minor__``
322 Defined to the minor version number of Clang (e.g., the 0 in 2.0.1). Note
323 that marketing version numbers should not be used to check for language
324 features, as different vendors use different numbering schemes. Instead, use
325 the :ref:`langext-feature_check`.
326
327``__clang_patchlevel__``
328 Defined to the marketing patch level of Clang (e.g., the 1 in 2.0.1).
329
330``__clang_version__``
331 Defined to a string that captures the Clang marketing version, including the
332 Subversion tag or revision number, e.g., "``1.5 (trunk 102332)``".
333
334.. _langext-vectors:
335
336Vectors and Extended Vectors
337============================
338
339Supports the GCC, OpenCL, AltiVec and NEON vector extensions.
340
341OpenCL vector types are created using ``ext_vector_type`` attribute. It
342support for ``V.xyzw`` syntax and other tidbits as seen in OpenCL. An example
343is:
344
345.. code-block:: c++
346
347 typedef float float4 __attribute__((ext_vector_type(4)));
348 typedef float float2 __attribute__((ext_vector_type(2)));
349
350 float4 foo(float2 a, float2 b) {
351 float4 c;
352 c.xz = a;
353 c.yw = b;
354 return c;
355 }
356
357Query for this feature with ``__has_extension(attribute_ext_vector_type)``.
358
359Giving ``-faltivec`` option to clang enables support for AltiVec vector syntax
360and functions. For example:
361
362.. code-block:: c++
363
364 vector float foo(vector int a) {
365 vector int b;
366 b = vec_add(a, a) + a;
367 return (vector float)b;
368 }
369
370NEON vector types are created using ``neon_vector_type`` and
371``neon_polyvector_type`` attributes. For example:
372
373.. code-block:: c++
374
375 typedef __attribute__((neon_vector_type(8))) int8_t int8x8_t;
376 typedef __attribute__((neon_polyvector_type(16))) poly8_t poly8x16_t;
377
378 int8x8_t foo(int8x8_t a) {
379 int8x8_t v;
380 v = a;
381 return v;
382 }
383
384Vector Literals
385---------------
386
387Vector literals can be used to create vectors from a set of scalars, or
388vectors. Either parentheses or braces form can be used. In the parentheses
389form the number of literal values specified must be one, i.e. referring to a
390scalar value, or must match the size of the vector type being created. If a
391single scalar literal value is specified, the scalar literal value will be
392replicated to all the components of the vector type. In the brackets form any
393number of literals can be specified. For example:
394
395.. code-block:: c++
396
397 typedef int v4si __attribute__((__vector_size__(16)));
398 typedef float float4 __attribute__((ext_vector_type(4)));
399 typedef float float2 __attribute__((ext_vector_type(2)));
400
401 v4si vsi = (v4si){1, 2, 3, 4};
402 float4 vf = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
403 vector int vi1 = (vector int)(1); // vi1 will be (1, 1, 1, 1).
404 vector int vi2 = (vector int){1}; // vi2 will be (1, 0, 0, 0).
405 vector int vi3 = (vector int)(1, 2); // error
406 vector int vi4 = (vector int){1, 2}; // vi4 will be (1, 2, 0, 0).
407 vector int vi5 = (vector int)(1, 2, 3, 4);
408 float4 vf = (float4)((float2)(1.0f, 2.0f), (float2)(3.0f, 4.0f));
409
410Vector Operations
411-----------------
412
413The table below shows the support for each operation by vector extension. A
414dash indicates that an operation is not accepted according to a corresponding
415specification.
416
Anton Yartsev94e46f32014-09-03 17:59:21 +0000417============================== ======= ======= ======= =======
Nick Lewycky00a5d212015-08-10 19:54:11 +0000418 Operator OpenCL AltiVec GCC NEON
Anton Yartsev94e46f32014-09-03 17:59:21 +0000419============================== ======= ======= ======= =======
420[] yes yes yes --
421unary operators +, -- yes yes yes --
422++, -- -- yes yes yes --
423+,--,*,/,% yes yes yes --
424bitwise operators &,|,^,~ yes yes yes --
425>>,<< yes yes yes --
426!, &&, || yes -- -- --
427==, !=, >, <, >=, <= yes yes -- --
428= yes yes yes yes
429:? yes -- -- --
430sizeof yes yes yes yes
431C-style cast yes yes yes no
432reinterpret_cast yes no yes no
433static_cast yes no yes no
434const_cast no no no no
435============================== ======= ======= ======= =======
Sean Silva709c44d2012-12-12 23:44:55 +0000436
Anton Yartsev94e46f32014-09-03 17:59:21 +0000437See also :ref:`langext-__builtin_shufflevector`, :ref:`langext-__builtin_convertvector`.
Sean Silva709c44d2012-12-12 23:44:55 +0000438
439Messages on ``deprecated`` and ``unavailable`` Attributes
440=========================================================
441
442An optional string message can be added to the ``deprecated`` and
443``unavailable`` attributes. For example:
444
445.. code-block:: c++
446
447 void explode(void) __attribute__((deprecated("extremely unsafe, use 'combust' instead!!!")));
448
449If the deprecated or unavailable declaration is used, the message will be
450incorporated into the appropriate diagnostic:
451
George Burgess IV61e43272016-06-21 00:16:23 +0000452.. code-block:: none
Sean Silva709c44d2012-12-12 23:44:55 +0000453
454 harmless.c:4:3: warning: 'explode' is deprecated: extremely unsafe, use 'combust' instead!!!
455 [-Wdeprecated-declarations]
456 explode();
457 ^
458
459Query for this feature with
460``__has_extension(attribute_deprecated_with_message)`` and
461``__has_extension(attribute_unavailable_with_message)``.
462
463Attributes on Enumerators
464=========================
465
466Clang allows attributes to be written on individual enumerators. This allows
467enumerators to be deprecated, made unavailable, etc. The attribute must appear
468after the enumerator name and before any initializer, like so:
469
470.. code-block:: c++
471
472 enum OperationMode {
473 OM_Invalid,
474 OM_Normal,
475 OM_Terrified __attribute__((deprecated)),
476 OM_AbortOnError __attribute__((deprecated)) = 4
477 };
478
479Attributes on the ``enum`` declaration do not apply to individual enumerators.
480
481Query for this feature with ``__has_extension(enumerator_attributes)``.
482
483'User-Specified' System Frameworks
484==================================
485
486Clang provides a mechanism by which frameworks can be built in such a way that
487they will always be treated as being "system frameworks", even if they are not
488present in a system framework directory. This can be useful to system
489framework developers who want to be able to test building other applications
490with development builds of their framework, including the manner in which the
491compiler changes warning behavior for system headers.
492
493Framework developers can opt-in to this mechanism by creating a
494"``.system_framework``" file at the top-level of their framework. That is, the
495framework should have contents like:
496
497.. code-block:: none
498
499 .../TestFramework.framework
500 .../TestFramework.framework/.system_framework
501 .../TestFramework.framework/Headers
502 .../TestFramework.framework/Headers/TestFramework.h
503 ...
504
505Clang will treat the presence of this file as an indicator that the framework
506should be treated as a system framework, regardless of how it was found in the
507framework search path. For consistency, we recommend that such files never be
508included in installed versions of the framework.
509
Sean Silva709c44d2012-12-12 23:44:55 +0000510Checks for Standard Language Features
511=====================================
512
513The ``__has_feature`` macro can be used to query if certain standard language
514features are enabled. The ``__has_extension`` macro can be used to query if
515language features are available as an extension when compiling for a standard
516which does not provide them. The features which can be tested are listed here.
517
Richard Smith38af8562014-11-12 21:16:38 +0000518Since Clang 3.4, the C++ SD-6 feature test macros are also supported.
519These are macros with names of the form ``__cpp_<feature_name>``, and are
520intended to be a portable way to query the supported features of the compiler.
521See `the C++ status page <http://clang.llvm.org/cxx_status.html#ts>`_ for
522information on the version of SD-6 supported by each Clang release, and the
523macros provided by that revision of the recommendations.
524
Sean Silva709c44d2012-12-12 23:44:55 +0000525C++98
526-----
527
528The features listed below are part of the C++98 standard. These features are
529enabled by default when compiling C++ code.
530
531C++ exceptions
532^^^^^^^^^^^^^^
533
534Use ``__has_feature(cxx_exceptions)`` to determine if C++ exceptions have been
535enabled. For example, compiling code with ``-fno-exceptions`` disables C++
536exceptions.
537
538C++ RTTI
539^^^^^^^^
540
541Use ``__has_feature(cxx_rtti)`` to determine if C++ RTTI has been enabled. For
542example, compiling code with ``-fno-rtti`` disables the use of RTTI.
543
544C++11
545-----
546
547The features listed below are part of the C++11 standard. As a result, all
548these features are enabled with the ``-std=c++11`` or ``-std=gnu++11`` option
549when compiling C++ code.
550
551C++11 SFINAE includes access control
552^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
553
554Use ``__has_feature(cxx_access_control_sfinae)`` or
555``__has_extension(cxx_access_control_sfinae)`` to determine whether
556access-control errors (e.g., calling a private constructor) are considered to
557be template argument deduction errors (aka SFINAE errors), per `C++ DR1170
558<http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1170>`_.
559
560C++11 alias templates
561^^^^^^^^^^^^^^^^^^^^^
562
563Use ``__has_feature(cxx_alias_templates)`` or
564``__has_extension(cxx_alias_templates)`` to determine if support for C++11's
565alias declarations and alias templates is enabled.
566
567C++11 alignment specifiers
568^^^^^^^^^^^^^^^^^^^^^^^^^^
569
570Use ``__has_feature(cxx_alignas)`` or ``__has_extension(cxx_alignas)`` to
571determine if support for alignment specifiers using ``alignas`` is enabled.
572
Nico Weber736a9932014-12-03 01:25:49 +0000573Use ``__has_feature(cxx_alignof)`` or ``__has_extension(cxx_alignof)`` to
574determine if support for the ``alignof`` keyword is enabled.
575
Sean Silva709c44d2012-12-12 23:44:55 +0000576C++11 attributes
577^^^^^^^^^^^^^^^^
578
579Use ``__has_feature(cxx_attributes)`` or ``__has_extension(cxx_attributes)`` to
580determine if support for attribute parsing with C++11's square bracket notation
581is enabled.
582
583C++11 generalized constant expressions
584^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
585
586Use ``__has_feature(cxx_constexpr)`` to determine if support for generalized
587constant expressions (e.g., ``constexpr``) is enabled.
588
589C++11 ``decltype()``
590^^^^^^^^^^^^^^^^^^^^
591
592Use ``__has_feature(cxx_decltype)`` or ``__has_extension(cxx_decltype)`` to
593determine if support for the ``decltype()`` specifier is enabled. C++11's
594``decltype`` does not require type-completeness of a function call expression.
595Use ``__has_feature(cxx_decltype_incomplete_return_types)`` or
596``__has_extension(cxx_decltype_incomplete_return_types)`` to determine if
597support for this feature is enabled.
598
599C++11 default template arguments in function templates
600^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
601
602Use ``__has_feature(cxx_default_function_template_args)`` or
603``__has_extension(cxx_default_function_template_args)`` to determine if support
604for default template arguments in function templates is enabled.
605
606C++11 ``default``\ ed functions
607^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
608
609Use ``__has_feature(cxx_defaulted_functions)`` or
610``__has_extension(cxx_defaulted_functions)`` to determine if support for
611defaulted function definitions (with ``= default``) is enabled.
612
613C++11 delegating constructors
614^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
615
616Use ``__has_feature(cxx_delegating_constructors)`` to determine if support for
617delegating constructors is enabled.
618
619C++11 ``deleted`` functions
620^^^^^^^^^^^^^^^^^^^^^^^^^^^
621
622Use ``__has_feature(cxx_deleted_functions)`` or
623``__has_extension(cxx_deleted_functions)`` to determine if support for deleted
624function definitions (with ``= delete``) is enabled.
625
626C++11 explicit conversion functions
627^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
628
629Use ``__has_feature(cxx_explicit_conversions)`` to determine if support for
630``explicit`` conversion functions is enabled.
631
632C++11 generalized initializers
633^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
634
635Use ``__has_feature(cxx_generalized_initializers)`` to determine if support for
636generalized initializers (using braced lists and ``std::initializer_list``) is
637enabled.
638
639C++11 implicit move constructors/assignment operators
640^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
641
642Use ``__has_feature(cxx_implicit_moves)`` to determine if Clang will implicitly
643generate move constructors and move assignment operators where needed.
644
645C++11 inheriting constructors
646^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
647
648Use ``__has_feature(cxx_inheriting_constructors)`` to determine if support for
Richard Smith25b555a2013-04-19 17:00:31 +0000649inheriting constructors is enabled.
Sean Silva709c44d2012-12-12 23:44:55 +0000650
651C++11 inline namespaces
652^^^^^^^^^^^^^^^^^^^^^^^
653
654Use ``__has_feature(cxx_inline_namespaces)`` or
655``__has_extension(cxx_inline_namespaces)`` to determine if support for inline
656namespaces is enabled.
657
658C++11 lambdas
659^^^^^^^^^^^^^
660
661Use ``__has_feature(cxx_lambdas)`` or ``__has_extension(cxx_lambdas)`` to
662determine if support for lambdas is enabled.
663
664C++11 local and unnamed types as template arguments
665^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
666
667Use ``__has_feature(cxx_local_type_template_args)`` or
668``__has_extension(cxx_local_type_template_args)`` to determine if support for
669local and unnamed types as template arguments is enabled.
670
671C++11 noexcept
672^^^^^^^^^^^^^^
673
674Use ``__has_feature(cxx_noexcept)`` or ``__has_extension(cxx_noexcept)`` to
675determine if support for noexcept exception specifications is enabled.
676
677C++11 in-class non-static data member initialization
678^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
679
680Use ``__has_feature(cxx_nonstatic_member_init)`` to determine whether in-class
681initialization of non-static data members is enabled.
682
683C++11 ``nullptr``
684^^^^^^^^^^^^^^^^^
685
686Use ``__has_feature(cxx_nullptr)`` or ``__has_extension(cxx_nullptr)`` to
687determine if support for ``nullptr`` is enabled.
688
689C++11 ``override control``
690^^^^^^^^^^^^^^^^^^^^^^^^^^
691
692Use ``__has_feature(cxx_override_control)`` or
693``__has_extension(cxx_override_control)`` to determine if support for the
694override control keywords is enabled.
695
696C++11 reference-qualified functions
697^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
698
699Use ``__has_feature(cxx_reference_qualified_functions)`` or
700``__has_extension(cxx_reference_qualified_functions)`` to determine if support
701for reference-qualified functions (e.g., member functions with ``&`` or ``&&``
702applied to ``*this``) is enabled.
703
704C++11 range-based ``for`` loop
705^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
706
707Use ``__has_feature(cxx_range_for)`` or ``__has_extension(cxx_range_for)`` to
708determine if support for the range-based for loop is enabled.
709
710C++11 raw string literals
711^^^^^^^^^^^^^^^^^^^^^^^^^
712
713Use ``__has_feature(cxx_raw_string_literals)`` to determine if support for raw
714string literals (e.g., ``R"x(foo\bar)x"``) is enabled.
715
716C++11 rvalue references
717^^^^^^^^^^^^^^^^^^^^^^^
718
719Use ``__has_feature(cxx_rvalue_references)`` or
720``__has_extension(cxx_rvalue_references)`` to determine if support for rvalue
721references is enabled.
722
723C++11 ``static_assert()``
724^^^^^^^^^^^^^^^^^^^^^^^^^
725
726Use ``__has_feature(cxx_static_assert)`` or
727``__has_extension(cxx_static_assert)`` to determine if support for compile-time
728assertions using ``static_assert`` is enabled.
729
Richard Smith25b555a2013-04-19 17:00:31 +0000730C++11 ``thread_local``
731^^^^^^^^^^^^^^^^^^^^^^
732
733Use ``__has_feature(cxx_thread_local)`` to determine if support for
734``thread_local`` variables is enabled.
735
Sean Silva709c44d2012-12-12 23:44:55 +0000736C++11 type inference
737^^^^^^^^^^^^^^^^^^^^
738
739Use ``__has_feature(cxx_auto_type)`` or ``__has_extension(cxx_auto_type)`` to
740determine C++11 type inference is supported using the ``auto`` specifier. If
741this is disabled, ``auto`` will instead be a storage class specifier, as in C
742or C++98.
743
744C++11 strongly typed enumerations
745^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
746
747Use ``__has_feature(cxx_strong_enums)`` or
748``__has_extension(cxx_strong_enums)`` to determine if support for strongly
749typed, scoped enumerations is enabled.
750
751C++11 trailing return type
752^^^^^^^^^^^^^^^^^^^^^^^^^^
753
754Use ``__has_feature(cxx_trailing_return)`` or
755``__has_extension(cxx_trailing_return)`` to determine if support for the
756alternate function declaration syntax with trailing return type is enabled.
757
758C++11 Unicode string literals
759^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
760
761Use ``__has_feature(cxx_unicode_literals)`` to determine if support for Unicode
762string literals is enabled.
763
764C++11 unrestricted unions
765^^^^^^^^^^^^^^^^^^^^^^^^^
766
767Use ``__has_feature(cxx_unrestricted_unions)`` to determine if support for
768unrestricted unions is enabled.
769
770C++11 user-defined literals
771^^^^^^^^^^^^^^^^^^^^^^^^^^^
772
773Use ``__has_feature(cxx_user_literals)`` to determine if support for
774user-defined literals is enabled.
775
776C++11 variadic templates
777^^^^^^^^^^^^^^^^^^^^^^^^
778
779Use ``__has_feature(cxx_variadic_templates)`` or
780``__has_extension(cxx_variadic_templates)`` to determine if support for
781variadic templates is enabled.
782
Richard Smith0a715422013-05-07 19:32:56 +0000783C++1y
784-----
785
786The features listed below are part of the committee draft for the C++1y
787standard. As a result, all these features are enabled with the ``-std=c++1y``
788or ``-std=gnu++1y`` option when compiling C++ code.
789
790C++1y binary literals
791^^^^^^^^^^^^^^^^^^^^^
792
793Use ``__has_feature(cxx_binary_literals)`` or
794``__has_extension(cxx_binary_literals)`` to determine whether
795binary literals (for instance, ``0b10010``) are recognized. Clang supports this
796feature as an extension in all language modes.
797
798C++1y contextual conversions
799^^^^^^^^^^^^^^^^^^^^^^^^^^^^
800
801Use ``__has_feature(cxx_contextual_conversions)`` or
802``__has_extension(cxx_contextual_conversions)`` to determine if the C++1y rules
803are used when performing an implicit conversion for an array bound in a
804*new-expression*, the operand of a *delete-expression*, an integral constant
Richard Smithc0f7b812013-07-24 17:41:31 +0000805expression, or a condition in a ``switch`` statement.
Richard Smith0a715422013-05-07 19:32:56 +0000806
807C++1y decltype(auto)
808^^^^^^^^^^^^^^^^^^^^
809
810Use ``__has_feature(cxx_decltype_auto)`` or
811``__has_extension(cxx_decltype_auto)`` to determine if support
812for the ``decltype(auto)`` placeholder type is enabled.
813
814C++1y default initializers for aggregates
815^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
816
817Use ``__has_feature(cxx_aggregate_nsdmi)`` or
818``__has_extension(cxx_aggregate_nsdmi)`` to determine if support
819for default initializers in aggregate members is enabled.
820
Richard Smith38af8562014-11-12 21:16:38 +0000821C++1y digit separators
822^^^^^^^^^^^^^^^^^^^^^^
823
824Use ``__cpp_digit_separators`` to determine if support for digit separators
825using single quotes (for instance, ``10'000``) is enabled. At this time, there
826is no corresponding ``__has_feature`` name
827
Richard Smith0a715422013-05-07 19:32:56 +0000828C++1y generalized lambda capture
829^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
830
Richard Smith6d540142014-05-09 21:08:59 +0000831Use ``__has_feature(cxx_init_captures)`` or
832``__has_extension(cxx_init_captures)`` to determine if support for
Richard Smith4fb09722013-07-24 17:51:13 +0000833lambda captures with explicit initializers is enabled
Richard Smith0a715422013-05-07 19:32:56 +0000834(for instance, ``[n(0)] { return ++n; }``).
Richard Smith0a715422013-05-07 19:32:56 +0000835
836C++1y generic lambdas
837^^^^^^^^^^^^^^^^^^^^^
838
Richard Smith6d540142014-05-09 21:08:59 +0000839Use ``__has_feature(cxx_generic_lambdas)`` or
840``__has_extension(cxx_generic_lambdas)`` to determine if support for generic
Richard Smith0a715422013-05-07 19:32:56 +0000841(polymorphic) lambdas is enabled
842(for instance, ``[] (auto x) { return x + 1; }``).
Richard Smith0a715422013-05-07 19:32:56 +0000843
844C++1y relaxed constexpr
845^^^^^^^^^^^^^^^^^^^^^^^
846
847Use ``__has_feature(cxx_relaxed_constexpr)`` or
848``__has_extension(cxx_relaxed_constexpr)`` to determine if variable
849declarations, local variable modification, and control flow constructs
850are permitted in ``constexpr`` functions.
Richard Smith0a715422013-05-07 19:32:56 +0000851
852C++1y return type deduction
853^^^^^^^^^^^^^^^^^^^^^^^^^^^
854
855Use ``__has_feature(cxx_return_type_deduction)`` or
856``__has_extension(cxx_return_type_deduction)`` to determine if support
857for return type deduction for functions (using ``auto`` as a return type)
858is enabled.
Richard Smith0a715422013-05-07 19:32:56 +0000859
860C++1y runtime-sized arrays
861^^^^^^^^^^^^^^^^^^^^^^^^^^
862
863Use ``__has_feature(cxx_runtime_array)`` or
864``__has_extension(cxx_runtime_array)`` to determine if support
865for arrays of runtime bound (a restricted form of variable-length arrays)
866is enabled.
867Clang's implementation of this feature is incomplete.
868
869C++1y variable templates
870^^^^^^^^^^^^^^^^^^^^^^^^
871
872Use ``__has_feature(cxx_variable_templates)`` or
873``__has_extension(cxx_variable_templates)`` to determine if support for
874templated variable declarations is enabled.
Richard Smith0a715422013-05-07 19:32:56 +0000875
Sean Silva709c44d2012-12-12 23:44:55 +0000876C11
877---
878
879The features listed below are part of the C11 standard. As a result, all these
880features are enabled with the ``-std=c11`` or ``-std=gnu11`` option when
881compiling C code. Additionally, because these features are all
882backward-compatible, they are available as extensions in all language modes.
883
884C11 alignment specifiers
885^^^^^^^^^^^^^^^^^^^^^^^^
886
887Use ``__has_feature(c_alignas)`` or ``__has_extension(c_alignas)`` to determine
888if support for alignment specifiers using ``_Alignas`` is enabled.
889
Nico Weber736a9932014-12-03 01:25:49 +0000890Use ``__has_feature(c_alignof)`` or ``__has_extension(c_alignof)`` to determine
891if support for the ``_Alignof`` keyword is enabled.
892
Sean Silva709c44d2012-12-12 23:44:55 +0000893C11 atomic operations
894^^^^^^^^^^^^^^^^^^^^^
895
896Use ``__has_feature(c_atomic)`` or ``__has_extension(c_atomic)`` to determine
897if support for atomic types using ``_Atomic`` is enabled. Clang also provides
898:ref:`a set of builtins <langext-__c11_atomic>` which can be used to implement
Hal Finkel6970ac82014-10-03 04:29:40 +0000899the ``<stdatomic.h>`` operations on ``_Atomic`` types. Use
900``__has_include(<stdatomic.h>)`` to determine if C11's ``<stdatomic.h>`` header
901is available.
902
903Clang will use the system's ``<stdatomic.h>`` header when one is available, and
904will otherwise use its own. When using its own, implementations of the atomic
905operations are provided as macros. In the cases where C11 also requires a real
906function, this header provides only the declaration of that function (along
907with a shadowing macro implementation), and you must link to a library which
908provides a definition of the function if you use it instead of the macro.
Sean Silva709c44d2012-12-12 23:44:55 +0000909
910C11 generic selections
911^^^^^^^^^^^^^^^^^^^^^^
912
913Use ``__has_feature(c_generic_selections)`` or
914``__has_extension(c_generic_selections)`` to determine if support for generic
915selections is enabled.
916
917As an extension, the C11 generic selection expression is available in all
918languages supported by Clang. The syntax is the same as that given in the C11
919standard.
920
921In C, type compatibility is decided according to the rules given in the
922appropriate standard, but in C++, which lacks the type compatibility rules used
923in C, types are considered compatible only if they are equivalent.
924
925C11 ``_Static_assert()``
926^^^^^^^^^^^^^^^^^^^^^^^^
927
928Use ``__has_feature(c_static_assert)`` or ``__has_extension(c_static_assert)``
929to determine if support for compile-time assertions using ``_Static_assert`` is
930enabled.
931
Richard Smith25b555a2013-04-19 17:00:31 +0000932C11 ``_Thread_local``
933^^^^^^^^^^^^^^^^^^^^^
934
Ed Schouten401aeba2013-09-14 16:17:20 +0000935Use ``__has_feature(c_thread_local)`` or ``__has_extension(c_thread_local)``
936to determine if support for ``_Thread_local`` variables is enabled.
Richard Smith25b555a2013-04-19 17:00:31 +0000937
Ben Langmuir921f2e62015-03-10 14:39:26 +0000938Modules
939-------
940
941Use ``__has_feature(modules)`` to determine if Modules have been enabled.
942For example, compiling code with ``-fmodules`` enables the use of Modules.
943
944More information could be found `here <http://clang.llvm.org/docs/Modules.html>`_.
945
Alp Toker64197b92014-01-18 21:49:02 +0000946Checks for Type Trait Primitives
947================================
948
949Type trait primitives are special builtin constant expressions that can be used
950by the standard C++ library to facilitate or simplify the implementation of
951user-facing type traits in the <type_traits> header.
952
953They are not intended to be used directly by user code because they are
954implementation-defined and subject to change -- as such they're tied closely to
955the supported set of system headers, currently:
956
957* LLVM's own libc++
958* GNU libstdc++
959* The Microsoft standard C++ library
Sean Silva709c44d2012-12-12 23:44:55 +0000960
961Clang supports the `GNU C++ type traits
962<http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html>`_ and a subset of the
963`Microsoft Visual C++ Type traits
Alp Toker64197b92014-01-18 21:49:02 +0000964<http://msdn.microsoft.com/en-us/library/ms177194(v=VS.100).aspx>`_.
965
966Feature detection is supported only for some of the primitives at present. User
967code should not use these checks because they bear no direct relation to the
968actual set of type traits supported by the C++ standard library.
969
970For type trait ``__X``, ``__has_extension(X)`` indicates the presence of the
971type trait primitive in the compiler. A simplistic usage example as might be
972seen in standard C++ headers follows:
Sean Silva709c44d2012-12-12 23:44:55 +0000973
974.. code-block:: c++
975
976 #if __has_extension(is_convertible_to)
977 template<typename From, typename To>
978 struct is_convertible_to {
979 static const bool value = __is_convertible_to(From, To);
980 };
981 #else
Alp Toker64197b92014-01-18 21:49:02 +0000982 // Emulate type trait for compatibility with other compilers.
Sean Silva709c44d2012-12-12 23:44:55 +0000983 #endif
984
Alp Toker64197b92014-01-18 21:49:02 +0000985The following type trait primitives are supported by Clang:
Sean Silva709c44d2012-12-12 23:44:55 +0000986
987* ``__has_nothrow_assign`` (GNU, Microsoft)
988* ``__has_nothrow_copy`` (GNU, Microsoft)
989* ``__has_nothrow_constructor`` (GNU, Microsoft)
990* ``__has_trivial_assign`` (GNU, Microsoft)
991* ``__has_trivial_copy`` (GNU, Microsoft)
992* ``__has_trivial_constructor`` (GNU, Microsoft)
993* ``__has_trivial_destructor`` (GNU, Microsoft)
994* ``__has_virtual_destructor`` (GNU, Microsoft)
995* ``__is_abstract`` (GNU, Microsoft)
996* ``__is_base_of`` (GNU, Microsoft)
997* ``__is_class`` (GNU, Microsoft)
998* ``__is_convertible_to`` (Microsoft)
999* ``__is_empty`` (GNU, Microsoft)
1000* ``__is_enum`` (GNU, Microsoft)
1001* ``__is_interface_class`` (Microsoft)
1002* ``__is_pod`` (GNU, Microsoft)
1003* ``__is_polymorphic`` (GNU, Microsoft)
1004* ``__is_union`` (GNU, Microsoft)
1005* ``__is_literal(type)``: Determines whether the given type is a literal type
1006* ``__is_final``: Determines whether the given type is declared with a
1007 ``final`` class-virt-specifier.
1008* ``__underlying_type(type)``: Retrieves the underlying type for a given
1009 ``enum`` type. This trait is required to implement the C++11 standard
1010 library.
1011* ``__is_trivially_assignable(totype, fromtype)``: Determines whether a value
1012 of type ``totype`` can be assigned to from a value of type ``fromtype`` such
1013 that no non-trivial functions are called as part of that assignment. This
1014 trait is required to implement the C++11 standard library.
1015* ``__is_trivially_constructible(type, argtypes...)``: Determines whether a
1016 value of type ``type`` can be direct-initialized with arguments of types
1017 ``argtypes...`` such that no non-trivial functions are called as part of
1018 that initialization. This trait is required to implement the C++11 standard
1019 library.
David Majnemer55cf2522015-11-14 07:21:35 +00001020* ``__is_destructible`` (MSVC 2013)
1021* ``__is_nothrow_destructible`` (MSVC 2013)
Alp Toker73287bf2014-01-20 00:24:09 +00001022* ``__is_nothrow_assignable`` (MSVC 2013, clang)
1023* ``__is_constructible`` (MSVC 2013, clang)
1024* ``__is_nothrow_constructible`` (MSVC 2013, clang)
David Majnemerb3d96882016-05-23 17:21:55 +00001025* ``__is_assignable`` (MSVC 2015, clang)
Sean Silva709c44d2012-12-12 23:44:55 +00001026
1027Blocks
1028======
1029
1030The syntax and high level language feature description is in
Michael Gottesman6fd58462013-01-07 22:24:45 +00001031:doc:`BlockLanguageSpec<BlockLanguageSpec>`. Implementation and ABI details for
1032the clang implementation are in :doc:`Block-ABI-Apple<Block-ABI-Apple>`.
Sean Silva709c44d2012-12-12 23:44:55 +00001033
1034Query for this feature with ``__has_extension(blocks)``.
1035
1036Objective-C Features
1037====================
1038
1039Related result types
1040--------------------
1041
1042According to Cocoa conventions, Objective-C methods with certain names
1043("``init``", "``alloc``", etc.) always return objects that are an instance of
1044the receiving class's type. Such methods are said to have a "related result
1045type", meaning that a message send to one of these methods will have the same
1046static type as an instance of the receiver class. For example, given the
1047following classes:
1048
1049.. code-block:: objc
1050
1051 @interface NSObject
1052 + (id)alloc;
1053 - (id)init;
1054 @end
1055
1056 @interface NSArray : NSObject
1057 @end
1058
1059and this common initialization pattern
1060
1061.. code-block:: objc
1062
1063 NSArray *array = [[NSArray alloc] init];
1064
1065the type of the expression ``[NSArray alloc]`` is ``NSArray*`` because
1066``alloc`` implicitly has a related result type. Similarly, the type of the
1067expression ``[[NSArray alloc] init]`` is ``NSArray*``, since ``init`` has a
1068related result type and its receiver is known to have the type ``NSArray *``.
1069If neither ``alloc`` nor ``init`` had a related result type, the expressions
1070would have had type ``id``, as declared in the method signature.
1071
1072A method with a related result type can be declared by using the type
1073``instancetype`` as its result type. ``instancetype`` is a contextual keyword
1074that is only permitted in the result type of an Objective-C method, e.g.
1075
1076.. code-block:: objc
1077
1078 @interface A
1079 + (instancetype)constructAnA;
1080 @end
1081
1082The related result type can also be inferred for some methods. To determine
1083whether a method has an inferred related result type, the first word in the
1084camel-case selector (e.g., "``init``" in "``initWithObjects``") is considered,
1085and the method will have a related result type if its return type is compatible
1086with the type of its class and if:
1087
1088* the first word is "``alloc``" or "``new``", and the method is a class method,
1089 or
1090
1091* the first word is "``autorelease``", "``init``", "``retain``", or "``self``",
1092 and the method is an instance method.
1093
1094If a method with a related result type is overridden by a subclass method, the
1095subclass method must also return a type that is compatible with the subclass
1096type. For example:
1097
1098.. code-block:: objc
1099
1100 @interface NSString : NSObject
1101 - (NSUnrelated *)init; // incorrect usage: NSUnrelated is not NSString or a superclass of NSString
1102 @end
1103
1104Related result types only affect the type of a message send or property access
1105via the given method. In all other respects, a method with a related result
1106type is treated the same way as method that returns ``id``.
1107
1108Use ``__has_feature(objc_instancetype)`` to determine whether the
1109``instancetype`` contextual keyword is available.
1110
1111Automatic reference counting
1112----------------------------
1113
Sean Silva173d2522013-01-02 13:07:47 +00001114Clang provides support for :doc:`automated reference counting
1115<AutomaticReferenceCounting>` in Objective-C, which eliminates the need
Sean Silva709c44d2012-12-12 23:44:55 +00001116for manual ``retain``/``release``/``autorelease`` message sends. There are two
1117feature macros associated with automatic reference counting:
1118``__has_feature(objc_arc)`` indicates the availability of automated reference
1119counting in general, while ``__has_feature(objc_arc_weak)`` indicates that
1120automated reference counting also includes support for ``__weak`` pointers to
1121Objective-C objects.
1122
Sean Silva173d2522013-01-02 13:07:47 +00001123.. _objc-fixed-enum:
1124
Sean Silva709c44d2012-12-12 23:44:55 +00001125Enumerations with a fixed underlying type
1126-----------------------------------------
1127
1128Clang provides support for C++11 enumerations with a fixed underlying type
1129within Objective-C. For example, one can write an enumeration type as:
1130
1131.. code-block:: c++
1132
1133 typedef enum : unsigned char { Red, Green, Blue } Color;
1134
1135This specifies that the underlying type, which is used to store the enumeration
1136value, is ``unsigned char``.
1137
1138Use ``__has_feature(objc_fixed_enum)`` to determine whether support for fixed
1139underlying types is available in Objective-C.
1140
1141Interoperability with C++11 lambdas
1142-----------------------------------
1143
1144Clang provides interoperability between C++11 lambdas and blocks-based APIs, by
1145permitting a lambda to be implicitly converted to a block pointer with the
1146corresponding signature. For example, consider an API such as ``NSArray``'s
1147array-sorting method:
1148
1149.. code-block:: objc
1150
1151 - (NSArray *)sortedArrayUsingComparator:(NSComparator)cmptr;
1152
1153``NSComparator`` is simply a typedef for the block pointer ``NSComparisonResult
1154(^)(id, id)``, and parameters of this type are generally provided with block
1155literals as arguments. However, one can also use a C++11 lambda so long as it
1156provides the same signature (in this case, accepting two parameters of type
1157``id`` and returning an ``NSComparisonResult``):
1158
1159.. code-block:: objc
1160
1161 NSArray *array = @[@"string 1", @"string 21", @"string 12", @"String 11",
1162 @"String 02"];
1163 const NSStringCompareOptions comparisonOptions
1164 = NSCaseInsensitiveSearch | NSNumericSearch |
1165 NSWidthInsensitiveSearch | NSForcedOrderingSearch;
1166 NSLocale *currentLocale = [NSLocale currentLocale];
1167 NSArray *sorted
1168 = [array sortedArrayUsingComparator:[=](id s1, id s2) -> NSComparisonResult {
1169 NSRange string1Range = NSMakeRange(0, [s1 length]);
1170 return [s1 compare:s2 options:comparisonOptions
1171 range:string1Range locale:currentLocale];
1172 }];
1173 NSLog(@"sorted: %@", sorted);
1174
1175This code relies on an implicit conversion from the type of the lambda
1176expression (an unnamed, local class type called the *closure type*) to the
1177corresponding block pointer type. The conversion itself is expressed by a
1178conversion operator in that closure type that produces a block pointer with the
1179same signature as the lambda itself, e.g.,
1180
1181.. code-block:: objc
1182
1183 operator NSComparisonResult (^)(id, id)() const;
1184
1185This conversion function returns a new block that simply forwards the two
1186parameters to the lambda object (which it captures by copy), then returns the
1187result. The returned block is first copied (with ``Block_copy``) and then
1188autoreleased. As an optimization, if a lambda expression is immediately
1189converted to a block pointer (as in the first example, above), then the block
1190is not copied and autoreleased: rather, it is given the same lifetime as a
1191block literal written at that point in the program, which avoids the overhead
1192of copying a block to the heap in the common case.
1193
1194The conversion from a lambda to a block pointer is only available in
1195Objective-C++, and not in C++ with blocks, due to its use of Objective-C memory
1196management (autorelease).
1197
1198Object Literals and Subscripting
1199--------------------------------
1200
Sean Silva173d2522013-01-02 13:07:47 +00001201Clang provides support for :doc:`Object Literals and Subscripting
1202<ObjectiveCLiterals>` in Objective-C, which simplifies common Objective-C
Sean Silva709c44d2012-12-12 23:44:55 +00001203programming patterns, makes programs more concise, and improves the safety of
1204container creation. There are several feature macros associated with object
1205literals and subscripting: ``__has_feature(objc_array_literals)`` tests the
1206availability of array literals; ``__has_feature(objc_dictionary_literals)``
1207tests the availability of dictionary literals;
1208``__has_feature(objc_subscripting)`` tests the availability of object
1209subscripting.
1210
1211Objective-C Autosynthesis of Properties
1212---------------------------------------
1213
1214Clang provides support for autosynthesis of declared properties. Using this
1215feature, clang provides default synthesis of those properties not declared
1216@dynamic and not having user provided backing getter and setter methods.
1217``__has_feature(objc_default_synthesize_properties)`` checks for availability
1218of this feature in version of clang being used.
1219
Jordan Rose32e94892012-12-15 00:37:01 +00001220.. _langext-objc-retain-release:
1221
1222Objective-C retaining behavior attributes
1223-----------------------------------------
1224
1225In Objective-C, functions and methods are generally assumed to follow the
1226`Cocoa Memory Management
1227<http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/MemoryMgmt/Articles/mmRules.html>`_
1228conventions for ownership of object arguments and
1229return values. However, there are exceptions, and so Clang provides attributes
1230to allow these exceptions to be documented. This are used by ARC and the
1231`static analyzer <http://clang-analyzer.llvm.org>`_ Some exceptions may be
Aaron Ballman840cef32014-02-19 15:45:13 +00001232better described using the ``objc_method_family`` attribute instead.
Jordan Rose32e94892012-12-15 00:37:01 +00001233
1234**Usage**: The ``ns_returns_retained``, ``ns_returns_not_retained``,
1235``ns_returns_autoreleased``, ``cf_returns_retained``, and
1236``cf_returns_not_retained`` attributes can be placed on methods and functions
1237that return Objective-C or CoreFoundation objects. They are commonly placed at
1238the end of a function prototype or method declaration:
1239
1240.. code-block:: objc
1241
1242 id foo() __attribute__((ns_returns_retained));
1243
1244 - (NSString *)bar:(int)x __attribute__((ns_returns_retained));
1245
1246The ``*_returns_retained`` attributes specify that the returned object has a +1
1247retain count. The ``*_returns_not_retained`` attributes specify that the return
1248object has a +0 retain count, even if the normal convention for its selector
1249would be +1. ``ns_returns_autoreleased`` specifies that the returned object is
1250+0, but is guaranteed to live at least as long as the next flush of an
1251autorelease pool.
1252
1253**Usage**: The ``ns_consumed`` and ``cf_consumed`` attributes can be placed on
1254an parameter declaration; they specify that the argument is expected to have a
1255+1 retain count, which will be balanced in some way by the function or method.
1256The ``ns_consumes_self`` attribute can only be placed on an Objective-C
1257method; it specifies that the method expects its ``self`` parameter to have a
1258+1 retain count, which it will balance in some way.
1259
1260.. code-block:: objc
1261
1262 void foo(__attribute__((ns_consumed)) NSString *string);
1263
1264 - (void) bar __attribute__((ns_consumes_self));
1265 - (void) baz:(id) __attribute__((ns_consumed)) x;
1266
1267Further examples of these attributes are available in the static analyzer's `list of annotations for analysis
1268<http://clang-analyzer.llvm.org/annotations.html#cocoa_mem>`_.
1269
1270Query for these features with ``__has_attribute(ns_consumed)``,
1271``__has_attribute(ns_returns_retained)``, etc.
1272
1273
Ted Kremenek84342d62013-10-15 04:28:42 +00001274Objective-C++ ABI: protocol-qualifier mangling of parameters
1275------------------------------------------------------------
1276
1277Starting with LLVM 3.4, Clang produces a new mangling for parameters whose
1278type is a qualified-``id`` (e.g., ``id<Foo>``). This mangling allows such
1279parameters to be differentiated from those with the regular unqualified ``id``
1280type.
1281
1282This was a non-backward compatible mangling change to the ABI. This change
1283allows proper overloading, and also prevents mangling conflicts with template
1284parameters of protocol-qualified type.
1285
1286Query the presence of this new mangling with
1287``__has_feature(objc_protocol_qualifier_mangling)``.
1288
Nick Lewycky35a6ef42014-01-11 02:50:57 +00001289.. _langext-overloading:
1290
Sean Silva709c44d2012-12-12 23:44:55 +00001291Initializer lists for complex numbers in C
1292==========================================
1293
1294clang supports an extension which allows the following in C:
1295
1296.. code-block:: c++
1297
1298 #include <math.h>
1299 #include <complex.h>
1300 complex float x = { 1.0f, INFINITY }; // Init to (1, Inf)
1301
1302This construct is useful because there is no way to separately initialize the
1303real and imaginary parts of a complex variable in standard C, given that clang
1304does not support ``_Imaginary``. (Clang also supports the ``__real__`` and
1305``__imag__`` extensions from gcc, which help in some cases, but are not usable
1306in static initializers.)
1307
1308Note that this extension does not allow eliding the braces; the meaning of the
1309following two lines is different:
1310
1311.. code-block:: c++
1312
1313 complex float x[] = { { 1.0f, 1.0f } }; // [0] = (1, 1)
1314 complex float x[] = { 1.0f, 1.0f }; // [0] = (1, 0), [1] = (1, 0)
1315
1316This extension also works in C++ mode, as far as that goes, but does not apply
1317to the C++ ``std::complex``. (In C++11, list initialization allows the same
1318syntax to be used with ``std::complex`` with the same meaning.)
1319
1320Builtin Functions
1321=================
1322
1323Clang supports a number of builtin library functions with the same syntax as
1324GCC, including things like ``__builtin_nan``, ``__builtin_constant_p``,
1325``__builtin_choose_expr``, ``__builtin_types_compatible_p``,
Hal Finkelbcc06082014-09-07 22:58:14 +00001326``__builtin_assume_aligned``, ``__sync_fetch_and_add``, etc. In addition to
1327the GCC builtins, Clang supports a number of builtins that GCC does not, which
1328are listed here.
Sean Silva709c44d2012-12-12 23:44:55 +00001329
1330Please note that Clang does not and will not support all of the GCC builtins
1331for vector operations. Instead of using builtins, you should use the functions
1332defined in target-specific header files like ``<xmmintrin.h>``, which define
1333portable wrappers for these. Many of the Clang versions of these functions are
1334implemented directly in terms of :ref:`extended vector support
1335<langext-vectors>` instead of builtins, in order to reduce the number of
1336builtins that we need to implement.
1337
Hal Finkelbcc06082014-09-07 22:58:14 +00001338``__builtin_assume``
1339------------------------------
1340
1341``__builtin_assume`` is used to provide the optimizer with a boolean
1342invariant that is defined to be true.
1343
1344**Syntax**:
1345
1346.. code-block:: c++
1347
1348 __builtin_assume(bool)
1349
1350**Example of Use**:
1351
1352.. code-block:: c++
1353
1354 int foo(int x) {
1355 __builtin_assume(x != 0);
1356
1357 // The optimizer may short-circuit this check using the invariant.
1358 if (x == 0)
1359 return do_something();
1360
1361 return do_something_else();
1362 }
1363
1364**Description**:
1365
1366The boolean argument to this function is defined to be true. The optimizer may
1367analyze the form of the expression provided as the argument and deduce from
1368that information used to optimize the program. If the condition is violated
1369during execution, the behavior is undefined. The argument itself is never
1370evaluated, so any side effects of the expression will be discarded.
1371
1372Query for this feature with ``__has_builtin(__builtin_assume)``.
1373
Sean Silva709c44d2012-12-12 23:44:55 +00001374``__builtin_readcyclecounter``
1375------------------------------
1376
1377``__builtin_readcyclecounter`` is used to access the cycle counter register (or
1378a similar low-latency, high-accuracy clock) on those targets that support it.
1379
1380**Syntax**:
1381
1382.. code-block:: c++
1383
1384 __builtin_readcyclecounter()
1385
1386**Example of Use**:
1387
1388.. code-block:: c++
1389
1390 unsigned long long t0 = __builtin_readcyclecounter();
1391 do_something();
1392 unsigned long long t1 = __builtin_readcyclecounter();
1393 unsigned long long cycles_to_do_something = t1 - t0; // assuming no overflow
1394
1395**Description**:
1396
1397The ``__builtin_readcyclecounter()`` builtin returns the cycle counter value,
1398which may be either global or process/thread-specific depending on the target.
1399As the backing counters often overflow quickly (on the order of seconds) this
1400should only be used for timing small intervals. When not supported by the
1401target, the return value is always zero. This builtin takes no arguments and
1402produces an unsigned long long result.
1403
Tim Northoverbfe2e5f72013-05-23 19:14:12 +00001404Query for this feature with ``__has_builtin(__builtin_readcyclecounter)``. Note
1405that even if present, its use may depend on run-time privilege or other OS
1406controlled state.
Sean Silva709c44d2012-12-12 23:44:55 +00001407
1408.. _langext-__builtin_shufflevector:
1409
1410``__builtin_shufflevector``
1411---------------------------
1412
1413``__builtin_shufflevector`` is used to express generic vector
1414permutation/shuffle/swizzle operations. This builtin is also very important
1415for the implementation of various target-specific header files like
1416``<xmmintrin.h>``.
1417
1418**Syntax**:
1419
1420.. code-block:: c++
1421
1422 __builtin_shufflevector(vec1, vec2, index1, index2, ...)
1423
1424**Examples**:
1425
1426.. code-block:: c++
1427
Craig Topper50ad5b72013-08-03 17:40:38 +00001428 // identity operation - return 4-element vector v1.
1429 __builtin_shufflevector(v1, v1, 0, 1, 2, 3)
Sean Silva709c44d2012-12-12 23:44:55 +00001430
1431 // "Splat" element 0 of V1 into a 4-element result.
1432 __builtin_shufflevector(V1, V1, 0, 0, 0, 0)
1433
1434 // Reverse 4-element vector V1.
1435 __builtin_shufflevector(V1, V1, 3, 2, 1, 0)
1436
1437 // Concatenate every other element of 4-element vectors V1 and V2.
1438 __builtin_shufflevector(V1, V2, 0, 2, 4, 6)
1439
1440 // Concatenate every other element of 8-element vectors V1 and V2.
1441 __builtin_shufflevector(V1, V2, 0, 2, 4, 6, 8, 10, 12, 14)
1442
Craig Topper50ad5b72013-08-03 17:40:38 +00001443 // Shuffle v1 with some elements being undefined
1444 __builtin_shufflevector(v1, v1, 3, -1, 1, -1)
1445
Sean Silva709c44d2012-12-12 23:44:55 +00001446**Description**:
1447
1448The first two arguments to ``__builtin_shufflevector`` are vectors that have
1449the same element type. The remaining arguments are a list of integers that
1450specify the elements indices of the first two vectors that should be extracted
1451and returned in a new vector. These element indices are numbered sequentially
1452starting with the first vector, continuing into the second vector. Thus, if
1453``vec1`` is a 4-element vector, index 5 would refer to the second element of
Craig Topper50ad5b72013-08-03 17:40:38 +00001454``vec2``. An index of -1 can be used to indicate that the corresponding element
1455in the returned vector is a don't care and can be optimized by the backend.
Sean Silva709c44d2012-12-12 23:44:55 +00001456
1457The result of ``__builtin_shufflevector`` is a vector with the same element
1458type as ``vec1``/``vec2`` but that has an element count equal to the number of
1459indices specified.
1460
1461Query for this feature with ``__has_builtin(__builtin_shufflevector)``.
1462
Anton Yartsev94e46f32014-09-03 17:59:21 +00001463.. _langext-__builtin_convertvector:
1464
Hal Finkelc4d7c822013-09-18 03:29:45 +00001465``__builtin_convertvector``
1466---------------------------
1467
1468``__builtin_convertvector`` is used to express generic vector
1469type-conversion operations. The input vector and the output vector
1470type must have the same number of elements.
1471
1472**Syntax**:
1473
1474.. code-block:: c++
1475
1476 __builtin_convertvector(src_vec, dst_vec_type)
1477
1478**Examples**:
1479
1480.. code-block:: c++
1481
1482 typedef double vector4double __attribute__((__vector_size__(32)));
1483 typedef float vector4float __attribute__((__vector_size__(16)));
1484 typedef short vector4short __attribute__((__vector_size__(8)));
1485 vector4float vf; vector4short vs;
1486
1487 // convert from a vector of 4 floats to a vector of 4 doubles.
1488 __builtin_convertvector(vf, vector4double)
1489 // equivalent to:
1490 (vector4double) { (double) vf[0], (double) vf[1], (double) vf[2], (double) vf[3] }
1491
1492 // convert from a vector of 4 shorts to a vector of 4 floats.
1493 __builtin_convertvector(vs, vector4float)
1494 // equivalent to:
Yunzhong Gao637cb90b2014-09-02 19:24:14 +00001495 (vector4float) { (float) vs[0], (float) vs[1], (float) vs[2], (float) vs[3] }
Hal Finkelc4d7c822013-09-18 03:29:45 +00001496
1497**Description**:
1498
1499The first argument to ``__builtin_convertvector`` is a vector, and the second
1500argument is a vector type with the same number of elements as the first
1501argument.
1502
1503The result of ``__builtin_convertvector`` is a vector with the same element
1504type as the second argument, with a value defined in terms of the action of a
1505C-style cast applied to each element of the first argument.
1506
1507Query for this feature with ``__has_builtin(__builtin_convertvector)``.
1508
Matt Arsenault08087c52016-03-23 22:14:43 +00001509``__builtin_bitreverse``
Aaron Ballmanbcf13da2016-03-24 12:34:44 +00001510------------------------
Matt Arsenault08087c52016-03-23 22:14:43 +00001511
1512* ``__builtin_bitreverse8``
1513* ``__builtin_bitreverse16``
1514* ``__builtin_bitreverse32``
1515* ``__builtin_bitreverse64``
1516
1517**Syntax**:
1518
1519.. code-block:: c++
Aaron Ballmanbcf13da2016-03-24 12:34:44 +00001520
Matt Arsenault08087c52016-03-23 22:14:43 +00001521 __builtin_bitreverse32(x)
1522
1523**Examples**:
1524
1525.. code-block:: c++
Aaron Ballmanbcf13da2016-03-24 12:34:44 +00001526
Matt Arsenault08087c52016-03-23 22:14:43 +00001527 uint8_t rev_x = __builtin_bitreverse8(x);
1528 uint16_t rev_x = __builtin_bitreverse16(x);
1529 uint32_t rev_y = __builtin_bitreverse32(y);
1530 uint64_t rev_z = __builtin_bitreverse64(z);
1531
1532**Description**:
1533
1534The '``__builtin_bitreverse``' family of builtins is used to reverse
1535the bitpattern of an integer value; for example ``0b10110110`` becomes
1536``0b01101101``.
1537
Sean Silva709c44d2012-12-12 23:44:55 +00001538``__builtin_unreachable``
1539-------------------------
1540
1541``__builtin_unreachable`` is used to indicate that a specific point in the
1542program cannot be reached, even if the compiler might otherwise think it can.
1543This is useful to improve optimization and eliminates certain warnings. For
1544example, without the ``__builtin_unreachable`` in the example below, the
1545compiler assumes that the inline asm can fall through and prints a "function
1546declared '``noreturn``' should not return" warning.
1547
1548**Syntax**:
1549
1550.. code-block:: c++
1551
1552 __builtin_unreachable()
1553
1554**Example of use**:
1555
1556.. code-block:: c++
1557
1558 void myabort(void) __attribute__((noreturn));
1559 void myabort(void) {
1560 asm("int3");
1561 __builtin_unreachable();
1562 }
1563
1564**Description**:
1565
1566The ``__builtin_unreachable()`` builtin has completely undefined behavior.
1567Since it has undefined behavior, it is a statement that it is never reached and
1568the optimizer can take advantage of this to produce better code. This builtin
1569takes no arguments and produces a void result.
1570
1571Query for this feature with ``__has_builtin(__builtin_unreachable)``.
1572
Sanjay Patela24296b2015-09-02 20:01:30 +00001573``__builtin_unpredictable``
1574---------------------------
1575
1576``__builtin_unpredictable`` is used to indicate that a branch condition is
1577unpredictable by hardware mechanisms such as branch prediction logic.
1578
1579**Syntax**:
1580
1581.. code-block:: c++
1582
1583 __builtin_unpredictable(long long)
1584
1585**Example of use**:
1586
1587.. code-block:: c++
1588
1589 if (__builtin_unpredictable(x > 0)) {
1590 foo();
1591 }
1592
1593**Description**:
1594
1595The ``__builtin_unpredictable()`` builtin is expected to be used with control
1596flow conditions such as in ``if`` and ``switch`` statements.
1597
1598Query for this feature with ``__has_builtin(__builtin_unpredictable)``.
1599
Sean Silva709c44d2012-12-12 23:44:55 +00001600``__sync_swap``
1601---------------
1602
1603``__sync_swap`` is used to atomically swap integers or pointers in memory.
1604
1605**Syntax**:
1606
1607.. code-block:: c++
1608
1609 type __sync_swap(type *ptr, type value, ...)
1610
1611**Example of Use**:
1612
1613.. code-block:: c++
1614
1615 int old_value = __sync_swap(&value, new_value);
1616
1617**Description**:
1618
1619The ``__sync_swap()`` builtin extends the existing ``__sync_*()`` family of
1620atomic intrinsics to allow code to atomically swap the current value with the
1621new value. More importantly, it helps developers write more efficient and
1622correct code by avoiding expensive loops around
1623``__sync_bool_compare_and_swap()`` or relying on the platform specific
1624implementation details of ``__sync_lock_test_and_set()``. The
1625``__sync_swap()`` builtin is a full barrier.
1626
Richard Smith6cbd65d2013-07-11 02:27:57 +00001627``__builtin_addressof``
1628-----------------------
1629
1630``__builtin_addressof`` performs the functionality of the built-in ``&``
1631operator, ignoring any ``operator&`` overload. This is useful in constant
1632expressions in C++11, where there is no other way to take the address of an
1633object that overloads ``operator&``.
1634
1635**Example of use**:
1636
1637.. code-block:: c++
1638
1639 template<typename T> constexpr T *addressof(T &value) {
1640 return __builtin_addressof(value);
1641 }
1642
Richard Smith760520b2014-06-03 23:27:44 +00001643``__builtin_operator_new`` and ``__builtin_operator_delete``
1644------------------------------------------------------------
1645
1646``__builtin_operator_new`` allocates memory just like a non-placement non-class
1647*new-expression*. This is exactly like directly calling the normal
1648non-placement ``::operator new``, except that it allows certain optimizations
1649that the C++ standard does not permit for a direct function call to
1650``::operator new`` (in particular, removing ``new`` / ``delete`` pairs and
1651merging allocations).
1652
1653Likewise, ``__builtin_operator_delete`` deallocates memory just like a
1654non-class *delete-expression*, and is exactly like directly calling the normal
1655``::operator delete``, except that it permits optimizations. Only the unsized
1656form of ``__builtin_operator_delete`` is currently available.
1657
1658These builtins are intended for use in the implementation of ``std::allocator``
1659and other similar allocation libraries, and are only available in C++.
1660
Michael Gottesmanc5cc9f12013-01-13 04:35:31 +00001661Multiprecision Arithmetic Builtins
1662----------------------------------
1663
1664Clang provides a set of builtins which expose multiprecision arithmetic in a
1665manner amenable to C. They all have the following form:
1666
1667.. code-block:: c
1668
1669 unsigned x = ..., y = ..., carryin = ..., carryout;
1670 unsigned sum = __builtin_addc(x, y, carryin, &carryout);
1671
1672Thus one can form a multiprecision addition chain in the following manner:
1673
1674.. code-block:: c
1675
1676 unsigned *x, *y, *z, carryin=0, carryout;
1677 z[0] = __builtin_addc(x[0], y[0], carryin, &carryout);
1678 carryin = carryout;
1679 z[1] = __builtin_addc(x[1], y[1], carryin, &carryout);
1680 carryin = carryout;
1681 z[2] = __builtin_addc(x[2], y[2], carryin, &carryout);
1682 carryin = carryout;
1683 z[3] = __builtin_addc(x[3], y[3], carryin, &carryout);
1684
1685The complete list of builtins are:
1686
1687.. code-block:: c
1688
Michael Gottesman15343992013-06-18 20:40:40 +00001689 unsigned char __builtin_addcb (unsigned char x, unsigned char y, unsigned char carryin, unsigned char *carryout);
Michael Gottesmanc5cc9f12013-01-13 04:35:31 +00001690 unsigned short __builtin_addcs (unsigned short x, unsigned short y, unsigned short carryin, unsigned short *carryout);
1691 unsigned __builtin_addc (unsigned x, unsigned y, unsigned carryin, unsigned *carryout);
1692 unsigned long __builtin_addcl (unsigned long x, unsigned long y, unsigned long carryin, unsigned long *carryout);
1693 unsigned long long __builtin_addcll(unsigned long long x, unsigned long long y, unsigned long long carryin, unsigned long long *carryout);
Michael Gottesman15343992013-06-18 20:40:40 +00001694 unsigned char __builtin_subcb (unsigned char x, unsigned char y, unsigned char carryin, unsigned char *carryout);
Michael Gottesmanc5cc9f12013-01-13 04:35:31 +00001695 unsigned short __builtin_subcs (unsigned short x, unsigned short y, unsigned short carryin, unsigned short *carryout);
1696 unsigned __builtin_subc (unsigned x, unsigned y, unsigned carryin, unsigned *carryout);
1697 unsigned long __builtin_subcl (unsigned long x, unsigned long y, unsigned long carryin, unsigned long *carryout);
1698 unsigned long long __builtin_subcll(unsigned long long x, unsigned long long y, unsigned long long carryin, unsigned long long *carryout);
1699
Michael Gottesman930ecdb2013-06-20 23:28:10 +00001700Checked Arithmetic Builtins
1701---------------------------
1702
1703Clang provides a set of builtins that implement checked arithmetic for security
1704critical applications in a manner that is fast and easily expressable in C. As
1705an example of their usage:
1706
1707.. code-block:: c
1708
1709 errorcode_t security_critical_application(...) {
1710 unsigned x, y, result;
1711 ...
John McCall03107a42015-10-29 20:48:01 +00001712 if (__builtin_mul_overflow(x, y, &result))
Michael Gottesman930ecdb2013-06-20 23:28:10 +00001713 return kErrorCodeHackers;
1714 ...
1715 use_multiply(result);
1716 ...
1717 }
1718
John McCall03107a42015-10-29 20:48:01 +00001719Clang provides the following checked arithmetic builtins:
Michael Gottesman930ecdb2013-06-20 23:28:10 +00001720
1721.. code-block:: c
1722
John McCall03107a42015-10-29 20:48:01 +00001723 bool __builtin_add_overflow (type1 x, type2 y, type3 *sum);
1724 bool __builtin_sub_overflow (type1 x, type2 y, type3 *diff);
1725 bool __builtin_mul_overflow (type1 x, type2 y, type3 *prod);
Michael Gottesman930ecdb2013-06-20 23:28:10 +00001726 bool __builtin_uadd_overflow (unsigned x, unsigned y, unsigned *sum);
1727 bool __builtin_uaddl_overflow (unsigned long x, unsigned long y, unsigned long *sum);
1728 bool __builtin_uaddll_overflow(unsigned long long x, unsigned long long y, unsigned long long *sum);
1729 bool __builtin_usub_overflow (unsigned x, unsigned y, unsigned *diff);
1730 bool __builtin_usubl_overflow (unsigned long x, unsigned long y, unsigned long *diff);
1731 bool __builtin_usubll_overflow(unsigned long long x, unsigned long long y, unsigned long long *diff);
1732 bool __builtin_umul_overflow (unsigned x, unsigned y, unsigned *prod);
1733 bool __builtin_umull_overflow (unsigned long x, unsigned long y, unsigned long *prod);
1734 bool __builtin_umulll_overflow(unsigned long long x, unsigned long long y, unsigned long long *prod);
1735 bool __builtin_sadd_overflow (int x, int y, int *sum);
1736 bool __builtin_saddl_overflow (long x, long y, long *sum);
1737 bool __builtin_saddll_overflow(long long x, long long y, long long *sum);
1738 bool __builtin_ssub_overflow (int x, int y, int *diff);
1739 bool __builtin_ssubl_overflow (long x, long y, long *diff);
1740 bool __builtin_ssubll_overflow(long long x, long long y, long long *diff);
1741 bool __builtin_smul_overflow (int x, int y, int *prod);
1742 bool __builtin_smull_overflow (long x, long y, long *prod);
1743 bool __builtin_smulll_overflow(long long x, long long y, long long *prod);
1744
John McCall03107a42015-10-29 20:48:01 +00001745Each builtin performs the specified mathematical operation on the
1746first two arguments and stores the result in the third argument. If
1747possible, the result will be equal to mathematically-correct result
1748and the builtin will return 0. Otherwise, the builtin will return
17491 and the result will be equal to the unique value that is equivalent
1750to the mathematically-correct result modulo two raised to the *k*
1751power, where *k* is the number of bits in the result type. The
1752behavior of these builtins is well-defined for all argument values.
1753
1754The first three builtins work generically for operands of any integer type,
1755including boolean types. The operands need not have the same type as each
1756other, or as the result. The other builtins may implicitly promote or
1757convert their operands before performing the operation.
1758
1759Query for this feature with ``__has_builtin(__builtin_add_overflow)``, etc.
Michael Gottesman930ecdb2013-06-20 23:28:10 +00001760
Matt Arsenault2d933982016-02-27 09:06:18 +00001761Floating point builtins
1762---------------------------------------
1763
1764``__builtin_canonicalize``
1765--------------------------
1766
1767.. code-block:: c
1768
1769 double __builtin_canonicalize(double);
1770 float __builtin_canonicalizef(float);
1771 long double__builtin_canonicalizel(long double);
1772
1773Returns the platform specific canonical encoding of a floating point
1774number. This canonicalization is useful for implementing certain
1775numeric primitives such as frexp. See `LLVM canonicalize intrinsic
1776<http://llvm.org/docs/LangRef.html#llvm-canonicalize-intrinsic>`_ for
1777more information on the semantics.
1778
Richard Smith67d484b2017-01-20 00:57:59 +00001779String builtins
1780---------------
1781
1782Clang provides constant expression evaluation support for builtins forms of
Richard Smith0abb11c2017-01-23 18:17:46 +00001783the following functions from the C standard library ``<string.h>`` header:
Richard Smith67d484b2017-01-20 00:57:59 +00001784
1785* ``memchr``
1786* ``memcmp``
1787* ``strchr``
1788* ``strcmp``
1789* ``strlen``
1790* ``strncmp``
1791* ``wcschr``
1792* ``wcscmp``
1793* ``wcslen``
1794* ``wcsncmp``
1795* ``wmemchr``
1796* ``wmemcmp``
1797
1798In each case, the builtin form has the name of the C library function prefixed
Richard Smith90854c42017-01-20 01:08:15 +00001799by ``__builtin_``. Example:
Richard Smith67d484b2017-01-20 00:57:59 +00001800
1801.. code-block:: c
1802
1803 void *p = __builtin_memchr("foobar", 'b', 5);
1804
1805In addition to the above, one further builtin is provided:
1806
1807.. code-block:: c
1808
1809 char *__builtin_char_memchr(const char *haystack, int needle, size_t size);
1810
1811``__builtin_char_memchr(a, b, c)`` is identical to
1812``(char*)__builtin_memchr(a, b, c)`` except that its use is permitted within
1813constant expressions in C++11 onwards (where a cast from ``void*`` to ``char*``
1814is disallowed in general).
1815
1816Support for constant expression evaluation for the above builtins be detected
1817with ``__has_feature(cxx_constexpr_string_builtins)``.
1818
Sean Silva709c44d2012-12-12 23:44:55 +00001819.. _langext-__c11_atomic:
1820
1821__c11_atomic builtins
1822---------------------
1823
1824Clang provides a set of builtins which are intended to be used to implement
1825C11's ``<stdatomic.h>`` header. These builtins provide the semantics of the
1826``_explicit`` form of the corresponding C11 operation, and are named with a
Hal Finkel6970ac82014-10-03 04:29:40 +00001827``__c11_`` prefix. The supported operations, and the differences from
1828the corresponding C11 operations, are:
Sean Silva709c44d2012-12-12 23:44:55 +00001829
1830* ``__c11_atomic_init``
1831* ``__c11_atomic_thread_fence``
1832* ``__c11_atomic_signal_fence``
Hal Finkel6970ac82014-10-03 04:29:40 +00001833* ``__c11_atomic_is_lock_free`` (The argument is the size of the
Dan Liewfe726862014-10-03 12:36:20 +00001834 ``_Atomic(...)`` object, instead of its address)
Sean Silva709c44d2012-12-12 23:44:55 +00001835* ``__c11_atomic_store``
1836* ``__c11_atomic_load``
1837* ``__c11_atomic_exchange``
1838* ``__c11_atomic_compare_exchange_strong``
1839* ``__c11_atomic_compare_exchange_weak``
1840* ``__c11_atomic_fetch_add``
1841* ``__c11_atomic_fetch_sub``
1842* ``__c11_atomic_fetch_and``
1843* ``__c11_atomic_fetch_or``
1844* ``__c11_atomic_fetch_xor``
1845
Hal Finkel6970ac82014-10-03 04:29:40 +00001846The macros ``__ATOMIC_RELAXED``, ``__ATOMIC_CONSUME``, ``__ATOMIC_ACQUIRE``,
JF Bastiene6ccacf2014-10-10 16:09:48 +00001847``__ATOMIC_RELEASE``, ``__ATOMIC_ACQ_REL``, and ``__ATOMIC_SEQ_CST`` are
Hal Finkel6970ac82014-10-03 04:29:40 +00001848provided, with values corresponding to the enumerators of C11's
1849``memory_order`` enumeration.
1850
James Y Knight81167fb2015-08-05 16:57:36 +00001851(Note that Clang additionally provides GCC-compatible ``__atomic_*``
1852builtins)
1853
Tim Northover6aacd492013-07-16 09:47:53 +00001854Low-level ARM exclusive memory builtins
1855---------------------------------------
1856
1857Clang provides overloaded builtins giving direct access to the three key ARM
1858instructions for implementing atomic operations.
1859
1860.. code-block:: c
Sean Silvaa928c242013-09-09 19:50:40 +00001861
Tim Northover6aacd492013-07-16 09:47:53 +00001862 T __builtin_arm_ldrex(const volatile T *addr);
Tim Northover3acd6bd2014-07-02 12:56:02 +00001863 T __builtin_arm_ldaex(const volatile T *addr);
Tim Northover6aacd492013-07-16 09:47:53 +00001864 int __builtin_arm_strex(T val, volatile T *addr);
Tim Northover3acd6bd2014-07-02 12:56:02 +00001865 int __builtin_arm_stlex(T val, volatile T *addr);
Tim Northover6aacd492013-07-16 09:47:53 +00001866 void __builtin_arm_clrex(void);
1867
1868The types ``T`` currently supported are:
Michael Zolotukhinc3f09ff2015-09-10 23:56:10 +00001869
Tim Northover573cbee2014-05-24 12:52:07 +00001870* Integer types with width at most 64 bits (or 128 bits on AArch64).
Tim Northover6aacd492013-07-16 09:47:53 +00001871* Floating-point types
1872* Pointer types.
1873
1874Note that the compiler does not guarantee it will not insert stores which clear
Tim Northover3acd6bd2014-07-02 12:56:02 +00001875the exclusive monitor in between an ``ldrex`` type operation and its paired
1876``strex``. In practice this is only usually a risk when the extra store is on
1877the same cache line as the variable being modified and Clang will only insert
1878stack stores on its own, so it is best not to use these operations on variables
1879with automatic storage duration.
Tim Northover6aacd492013-07-16 09:47:53 +00001880
1881Also, loads and stores may be implicit in code written between the ``ldrex`` and
1882``strex``. Clang will not necessarily mitigate the effects of these either, so
1883care should be exercised.
1884
1885For these reasons the higher level atomic primitives should be preferred where
1886possible.
1887
Michael Zolotukhin59d72b12015-09-11 02:01:15 +00001888Non-temporal load/store builtins
1889--------------------------------
1890
1891Clang provides overloaded builtins allowing generation of non-temporal memory
1892accesses.
1893
1894.. code-block:: c
1895
1896 T __builtin_nontemporal_load(T *addr);
1897 void __builtin_nontemporal_store(T value, T *addr);
1898
1899The types ``T`` currently supported are:
1900
1901* Integer types.
1902* Floating-point types.
1903* Vector types.
1904
1905Note that the compiler does not guarantee that non-temporal loads or stores
1906will be used.
1907
Gor Nishanov97e3b6d2016-10-03 22:44:48 +00001908C++ Coroutines support builtins
1909--------------------------------
1910
1911.. warning::
1912 This is a work in progress. Compatibility across Clang/LLVM releases is not
1913 guaranteed.
1914
1915Clang provides experimental builtins to support C++ Coroutines as defined by
1916http://wg21.link/P0057. The following four are intended to be used by the
1917standard library to implement `std::experimental::coroutine_handle` type.
1918
1919**Syntax**:
1920
1921.. code-block:: c
1922
1923 void __builtin_coro_resume(void *addr);
1924 void __builtin_coro_destroy(void *addr);
1925 bool __builtin_coro_done(void *addr);
1926 void *__builtin_coro_promise(void *addr, int alignment, bool from_promise)
1927
1928**Example of use**:
1929
1930.. code-block:: c++
1931
1932 template <> struct coroutine_handle<void> {
1933 void resume() const { __builtin_coro_resume(ptr); }
1934 void destroy() const { __builtin_coro_destroy(ptr); }
1935 bool done() const { return __builtin_coro_done(ptr); }
1936 // ...
1937 protected:
1938 void *ptr;
1939 };
1940
1941 template <typename Promise> struct coroutine_handle : coroutine_handle<> {
1942 // ...
1943 Promise &promise() const {
1944 return *reinterpret_cast<Promise *>(
1945 __builtin_coro_promise(ptr, alignof(Promise), /*from-promise=*/false));
1946 }
1947 static coroutine_handle from_promise(Promise &promise) {
1948 coroutine_handle p;
1949 p.ptr = __builtin_coro_promise(&promise, alignof(Promise),
1950 /*from-promise=*/true);
1951 return p;
1952 }
1953 };
1954
1955
1956Other coroutine builtins are either for internal clang use or for use during
1957development of the coroutine feature. See `Coroutines in LLVM
1958<http://llvm.org/docs/Coroutines.html#intrinsics>`_ for
1959more information on their semantics. Note that builtins matching the intrinsics
1960that take token as the first parameter (llvm.coro.begin, llvm.coro.alloc,
1961llvm.coro.free and llvm.coro.suspend) omit the token parameter and fill it to
1962an appropriate value during the emission.
1963
1964**Syntax**:
1965
1966.. code-block:: c
1967
1968 size_t __builtin_coro_size()
1969 void *__builtin_coro_frame()
1970 void *__builtin_coro_free(void *coro_frame)
1971
1972 void *__builtin_coro_id(int align, void *promise, void *fnaddr, void *parts)
1973 bool __builtin_coro_alloc()
1974 void *__builtin_coro_begin(void *memory)
1975 void __builtin_coro_end(void *coro_frame, bool unwind)
1976 char __builtin_coro_suspend(bool final)
1977 bool __builtin_coro_param(void *original, void *copy)
1978
1979Note that there is no builtin matching the `llvm.coro.save` intrinsic. LLVM
1980automatically will insert one if the first argument to `llvm.coro.suspend` is
1981token `none`. If a user calls `__builin_suspend`, clang will insert `token none`
1982as the first argument to the intrinsic.
1983
Sean Silva709c44d2012-12-12 23:44:55 +00001984Non-standard C++11 Attributes
1985=============================
1986
Richard Smithf6d2d3b2013-02-14 00:13:34 +00001987Clang's non-standard C++11 attributes live in the ``clang`` attribute
1988namespace.
Sean Silva709c44d2012-12-12 23:44:55 +00001989
Aaron Ballman68893db2014-02-19 23:21:40 +00001990Clang supports GCC's ``gnu`` attribute namespace. All GCC attributes which
Richard Smithf6d2d3b2013-02-14 00:13:34 +00001991are accepted with the ``__attribute__((foo))`` syntax are also accepted as
1992``[[gnu::foo]]``. This only extends to attributes which are specified by GCC
1993(see the list of `GCC function attributes
1994<http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html>`_, `GCC variable
1995attributes <http://gcc.gnu.org/onlinedocs/gcc/Variable-Attributes.html>`_, and
1996`GCC type attributes
Richard Smithccfc9ff2013-07-11 00:27:05 +00001997<http://gcc.gnu.org/onlinedocs/gcc/Type-Attributes.html>`_). As with the GCC
Richard Smithf6d2d3b2013-02-14 00:13:34 +00001998implementation, these attributes must appertain to the *declarator-id* in a
1999declaration, which means they must go either at the start of the declaration or
2000immediately after the name being declared.
2001
2002For example, this applies the GNU ``unused`` attribute to ``a`` and ``f``, and
2003also applies the GNU ``noreturn`` attribute to ``f``.
2004
2005.. code-block:: c++
2006
2007 [[gnu::unused]] int a, f [[gnu::noreturn]] ();
2008
Sean Silva709c44d2012-12-12 23:44:55 +00002009Target-Specific Extensions
2010==========================
2011
2012Clang supports some language features conditionally on some targets.
2013
Yi Kong4de26fb2014-07-23 09:25:02 +00002014ARM/AArch64 Language Extensions
2015-------------------------------
2016
2017Memory Barrier Intrinsics
2018^^^^^^^^^^^^^^^^^^^^^^^^^
2019Clang implements the ``__dmb``, ``__dsb`` and ``__isb`` intrinsics as defined
2020in the `ARM C Language Extensions Release 2.0
2021<http://infocenter.arm.com/help/topic/com.arm.doc.ihi0053c/IHI0053C_acle_2_0.pdf>`_.
2022Note that these intrinsics are implemented as motion barriers that block
2023reordering of memory accesses and side effect instructions. Other instructions
Sylvestre Ledrube8f3962016-02-14 20:20:58 +00002024like simple arithmetic may be reordered around the intrinsic. If you expect to
Yi Kong4de26fb2014-07-23 09:25:02 +00002025have no reordering at all, use inline assembly instead.
2026
Sean Silva709c44d2012-12-12 23:44:55 +00002027X86/X86-64 Language Extensions
2028------------------------------
2029
2030The X86 backend has these language extensions:
2031
David L Kreitzerd8984102016-05-03 20:20:59 +00002032Memory references to specified segments
2033^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sean Silva709c44d2012-12-12 23:44:55 +00002034
2035Annotating a pointer with address space #256 causes it to be code generated
David L Kreitzerd8984102016-05-03 20:20:59 +00002036relative to the X86 GS segment register, address space #257 causes it to be
2037relative to the X86 FS segment, and address space #258 causes it to be
2038relative to the X86 SS segment. Note that this is a very very low-level
Sean Silva709c44d2012-12-12 23:44:55 +00002039feature that should only be used if you know what you're doing (for example in
2040an OS kernel).
2041
2042Here is an example:
2043
2044.. code-block:: c++
2045
2046 #define GS_RELATIVE __attribute__((address_space(256)))
2047 int foo(int GS_RELATIVE *P) {
2048 return *P;
2049 }
2050
2051Which compiles to (on X86-32):
2052
2053.. code-block:: gas
2054
2055 _foo:
2056 movl 4(%esp), %eax
2057 movl %gs:(%eax), %eax
2058 ret
2059
Jordan Rose32e94892012-12-15 00:37:01 +00002060Extensions for Static Analysis
Dmitri Gribenkoace09a22012-12-15 14:25:25 +00002061==============================
Sean Silva709c44d2012-12-12 23:44:55 +00002062
2063Clang supports additional attributes that are useful for documenting program
Jordan Rose32e94892012-12-15 00:37:01 +00002064invariants and rules for static analysis tools, such as the `Clang Static
2065Analyzer <http://clang-analyzer.llvm.org/>`_. These attributes are documented
2066in the analyzer's `list of source-level annotations
2067<http://clang-analyzer.llvm.org/annotations.html>`_.
Sean Silva709c44d2012-12-12 23:44:55 +00002068
Sean Silva709c44d2012-12-12 23:44:55 +00002069
Jordan Rose32e94892012-12-15 00:37:01 +00002070Extensions for Dynamic Analysis
Dmitri Gribenkoace09a22012-12-15 14:25:25 +00002071===============================
Sean Silva709c44d2012-12-12 23:44:55 +00002072
Sean Silva709c44d2012-12-12 23:44:55 +00002073Use ``__has_feature(address_sanitizer)`` to check if the code is being built
Dmitri Gribenkoace09a22012-12-15 14:25:25 +00002074with :doc:`AddressSanitizer`.
Sean Silva709c44d2012-12-12 23:44:55 +00002075
Kostya Serebryany4c0fc992013-02-26 06:58:27 +00002076Use ``__has_feature(thread_sanitizer)`` to check if the code is being built
2077with :doc:`ThreadSanitizer`.
2078
Kostya Serebryany4c0fc992013-02-26 06:58:27 +00002079Use ``__has_feature(memory_sanitizer)`` to check if the code is being built
2080with :doc:`MemorySanitizer`.
Dario Domizioli33c17872014-05-28 14:06:38 +00002081
Peter Collingbournec4122c12015-06-15 21:08:13 +00002082Use ``__has_feature(safe_stack)`` to check if the code is being built
2083with :doc:`SafeStack`.
2084
Dario Domizioli33c17872014-05-28 14:06:38 +00002085
2086Extensions for selectively disabling optimization
2087=================================================
2088
2089Clang provides a mechanism for selectively disabling optimizations in functions
2090and methods.
2091
2092To disable optimizations in a single function definition, the GNU-style or C++11
2093non-standard attribute ``optnone`` can be used.
2094
2095.. code-block:: c++
2096
2097 // The following functions will not be optimized.
2098 // GNU-style attribute
2099 __attribute__((optnone)) int foo() {
2100 // ... code
2101 }
2102 // C++11 attribute
2103 [[clang::optnone]] int bar() {
2104 // ... code
2105 }
2106
2107To facilitate disabling optimization for a range of function definitions, a
2108range-based pragma is provided. Its syntax is ``#pragma clang optimize``
2109followed by ``off`` or ``on``.
2110
2111All function definitions in the region between an ``off`` and the following
2112``on`` will be decorated with the ``optnone`` attribute unless doing so would
2113conflict with explicit attributes already present on the function (e.g. the
2114ones that control inlining).
2115
2116.. code-block:: c++
2117
2118 #pragma clang optimize off
2119 // This function will be decorated with optnone.
2120 int foo() {
2121 // ... code
2122 }
2123
2124 // optnone conflicts with always_inline, so bar() will not be decorated.
2125 __attribute__((always_inline)) int bar() {
2126 // ... code
2127 }
2128 #pragma clang optimize on
2129
2130If no ``on`` is found to close an ``off`` region, the end of the region is the
2131end of the compilation unit.
2132
2133Note that a stray ``#pragma clang optimize on`` does not selectively enable
2134additional optimizations when compiling at low optimization levels. This feature
2135can only be used to selectively disable optimizations.
2136
2137The pragma has an effect on functions only at the point of their definition; for
2138function templates, this means that the state of the pragma at the point of an
2139instantiation is not necessarily relevant. Consider the following example:
2140
2141.. code-block:: c++
2142
2143 template<typename T> T twice(T t) {
2144 return 2 * t;
2145 }
2146
2147 #pragma clang optimize off
2148 template<typename T> T thrice(T t) {
2149 return 3 * t;
2150 }
2151
2152 int container(int a, int b) {
2153 return twice(a) + thrice(b);
2154 }
2155 #pragma clang optimize on
2156
2157In this example, the definition of the template function ``twice`` is outside
2158the pragma region, whereas the definition of ``thrice`` is inside the region.
2159The ``container`` function is also in the region and will not be optimized, but
2160it causes the instantiation of ``twice`` and ``thrice`` with an ``int`` type; of
2161these two instantiations, ``twice`` will be optimized (because its definition
2162was outside the region) and ``thrice`` will not be optimized.
Tyler Nowickidb2668a2014-06-18 00:51:32 +00002163
2164Extensions for loop hint optimizations
2165======================================
2166
2167The ``#pragma clang loop`` directive is used to specify hints for optimizing the
2168subsequent for, while, do-while, or c++11 range-based for loop. The directive
Adam Nemet2de463e2016-06-14 12:04:26 +00002169provides options for vectorization, interleaving, unrolling and
2170distribution. Loop hints can be specified before any loop and will be ignored if
2171the optimization is not safe to apply.
Eli Bendersky778268d2014-06-19 18:12:44 +00002172
2173Vectorization and Interleaving
2174------------------------------
Tyler Nowickidb2668a2014-06-18 00:51:32 +00002175
2176A vectorized loop performs multiple iterations of the original loop
2177in parallel using vector instructions. The instruction set of the target
2178processor determines which vector instructions are available and their vector
2179widths. This restricts the types of loops that can be vectorized. The vectorizer
2180automatically determines if the loop is safe and profitable to vectorize. A
2181vector instruction cost model is used to select the vector width.
2182
2183Interleaving multiple loop iterations allows modern processors to further
2184improve instruction-level parallelism (ILP) using advanced hardware features,
2185such as multiple execution units and out-of-order execution. The vectorizer uses
2186a cost model that depends on the register pressure and generated code size to
2187select the interleaving count.
2188
2189Vectorization is enabled by ``vectorize(enable)`` and interleaving is enabled
2190by ``interleave(enable)``. This is useful when compiling with ``-Os`` to
2191manually enable vectorization or interleaving.
2192
2193.. code-block:: c++
2194
2195 #pragma clang loop vectorize(enable)
2196 #pragma clang loop interleave(enable)
2197 for(...) {
2198 ...
2199 }
2200
2201The vector width is specified by ``vectorize_width(_value_)`` and the interleave
2202count is specified by ``interleave_count(_value_)``, where
2203_value_ is a positive integer. This is useful for specifying the optimal
2204width/count of the set of target architectures supported by your application.
2205
2206.. code-block:: c++
2207
Tyler Nowickidb2668a2014-06-18 00:51:32 +00002208 #pragma clang loop vectorize_width(2)
2209 #pragma clang loop interleave_count(2)
2210 for(...) {
2211 ...
2212 }
2213
2214Specifying a width/count of 1 disables the optimization, and is equivalent to
2215``vectorize(disable)`` or ``interleave(disable)``.
2216
Eli Bendersky778268d2014-06-19 18:12:44 +00002217Loop Unrolling
2218--------------
2219
2220Unrolling a loop reduces the loop control overhead and exposes more
2221opportunities for ILP. Loops can be fully or partially unrolled. Full unrolling
2222eliminates the loop and replaces it with an enumerated sequence of loop
2223iterations. Full unrolling is only possible if the loop trip count is known at
2224compile time. Partial unrolling replicates the loop body within the loop and
2225reduces the trip count.
2226
Mark Heffernan397a98d2015-08-10 17:29:39 +00002227If ``unroll(enable)`` is specified the unroller will attempt to fully unroll the
Mark Heffernan7ccb5e22015-07-13 18:31:37 +00002228loop if the trip count is known at compile time. If the fully unrolled code size
2229is greater than an internal limit the loop will be partially unrolled up to this
Mark Heffernan397a98d2015-08-10 17:29:39 +00002230limit. If the trip count is not known at compile time the loop will be partially
2231unrolled with a heuristically chosen unroll factor.
2232
2233.. code-block:: c++
2234
2235 #pragma clang loop unroll(enable)
2236 for(...) {
2237 ...
2238 }
2239
2240If ``unroll(full)`` is specified the unroller will attempt to fully unroll the
2241loop if the trip count is known at compile time identically to
2242``unroll(enable)``. However, with ``unroll(full)`` the loop will not be unrolled
2243if the loop count is not known at compile time.
Eli Bendersky778268d2014-06-19 18:12:44 +00002244
2245.. code-block:: c++
2246
Mark Heffernan450c2382014-07-23 17:31:31 +00002247 #pragma clang loop unroll(full)
Eli Bendersky778268d2014-06-19 18:12:44 +00002248 for(...) {
2249 ...
2250 }
2251
2252The unroll count can be specified explicitly with ``unroll_count(_value_)`` where
2253_value_ is a positive integer. If this value is greater than the trip count the
2254loop will be fully unrolled. Otherwise the loop is partially unrolled subject
Mark Heffernan397a98d2015-08-10 17:29:39 +00002255to the same code size limit as with ``unroll(enable)``.
Eli Bendersky778268d2014-06-19 18:12:44 +00002256
2257.. code-block:: c++
2258
2259 #pragma clang loop unroll_count(8)
2260 for(...) {
2261 ...
2262 }
2263
2264Unrolling of a loop can be prevented by specifying ``unroll(disable)``.
2265
Adam Nemet2de463e2016-06-14 12:04:26 +00002266Loop Distribution
2267-----------------
2268
2269Loop Distribution allows splitting a loop into multiple loops. This is
2270beneficial for example when the entire loop cannot be vectorized but some of the
2271resulting loops can.
2272
Adam Nemet0c58eb72016-06-14 19:33:16 +00002273If ``distribute(enable))`` is specified and the loop has memory dependencies
Adam Nemet2de463e2016-06-14 12:04:26 +00002274that inhibit vectorization, the compiler will attempt to isolate the offending
2275operations into a new loop. This optimization is not enabled by default, only
2276loops marked with the pragma are considered.
2277
2278.. code-block:: c++
2279
2280 #pragma clang loop distribute(enable)
2281 for (i = 0; i < N; ++i) {
2282 S1: A[i + 1] = A[i] + B[i];
2283 S2: C[i] = D[i] * E[i];
2284 }
2285
2286This loop will be split into two loops between statements S1 and S2. The
2287second loop containing S2 will be vectorized.
2288
2289Loop Distribution is currently not enabled by default in the optimizer because
2290it can hurt performance in some cases. For example, instruction-level
2291parallelism could be reduced by sequentializing the execution of the
2292statements S1 and S2 above.
2293
2294If Loop Distribution is turned on globally with
2295``-mllvm -enable-loop-distribution``, specifying ``distribute(disable)`` can
2296be used the disable it on a per-loop basis.
2297
Eli Bendersky778268d2014-06-19 18:12:44 +00002298Additional Information
2299----------------------
2300
Tyler Nowickidb2668a2014-06-18 00:51:32 +00002301For convenience multiple loop hints can be specified on a single line.
2302
2303.. code-block:: c++
2304
2305 #pragma clang loop vectorize_width(4) interleave_count(8)
2306 for(...) {
2307 ...
2308 }
2309
2310If an optimization cannot be applied any hints that apply to it will be ignored.
2311For example, the hint ``vectorize_width(4)`` is ignored if the loop is not
2312proven safe to vectorize. To identify and diagnose optimization issues use
2313`-Rpass`, `-Rpass-missed`, and `-Rpass-analysis` command line options. See the
2314user guide for details.