blob: 4e957f3614c42d6381894769446079894a936eb0 [file] [log] [blame]
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001//===- InstCombineCalls.cpp -----------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitCall and visitInvoke functions.
11//
12//===----------------------------------------------------------------------===//
13
Chandler Carrutha9174582015-01-22 05:25:13 +000014#include "InstCombineInternal.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000015#include "llvm/ADT/APFloat.h"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/None.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000019#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallVector.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000021#include "llvm/ADT/Statistic.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000022#include "llvm/ADT/Twine.h"
David Majnemer15032582015-05-22 03:56:46 +000023#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner7a9e47a2010-01-05 07:32:13 +000024#include "llvm/Analysis/MemoryBuiltins.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000025#include "llvm/Analysis/ValueTracking.h"
26#include "llvm/IR/BasicBlock.h"
Chandler Carruth219b89b2014-03-04 11:01:28 +000027#include "llvm/IR/CallSite.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000028#include "llvm/IR/Constant.h"
29#include "llvm/IR/DataLayout.h"
30#include "llvm/IR/DerivedTypes.h"
31#include "llvm/IR/Function.h"
32#include "llvm/IR/GlobalVariable.h"
33#include "llvm/IR/InstrTypes.h"
34#include "llvm/IR/Instruction.h"
35#include "llvm/IR/Instructions.h"
36#include "llvm/IR/IntrinsicInst.h"
37#include "llvm/IR/Intrinsics.h"
38#include "llvm/IR/LLVMContext.h"
39#include "llvm/IR/Metadata.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000040#include "llvm/IR/PatternMatch.h"
Philip Reames1a1bdb22014-12-02 18:50:36 +000041#include "llvm/IR/Statepoint.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000042#include "llvm/IR/Type.h"
43#include "llvm/IR/Value.h"
44#include "llvm/IR/ValueHandle.h"
45#include "llvm/Support/Casting.h"
46#include "llvm/Support/Debug.h"
Craig Topperb45eabc2017-04-26 16:39:58 +000047#include "llvm/Support/KnownBits.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000048#include "llvm/Support/MathExtras.h"
Chris Lattner6fcd32e2010-12-25 20:37:57 +000049#include "llvm/Transforms/Utils/Local.h"
Chandler Carruthba4c5172015-01-21 11:23:40 +000050#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000051#include <algorithm>
52#include <cassert>
53#include <cstdint>
54#include <cstring>
55#include <vector>
56
Chris Lattner7a9e47a2010-01-05 07:32:13 +000057using namespace llvm;
Michael Ilseman536cc322012-12-13 03:13:36 +000058using namespace PatternMatch;
Chris Lattner7a9e47a2010-01-05 07:32:13 +000059
Chandler Carruth964daaa2014-04-22 02:55:47 +000060#define DEBUG_TYPE "instcombine"
61
Meador Ingee3f2b262012-11-30 04:05:06 +000062STATISTIC(NumSimplified, "Number of library calls simplified");
63
Igor Laevskya9b68722017-02-08 15:21:48 +000064static cl::opt<unsigned> UnfoldElementAtomicMemcpyMaxElements(
Igor Laevsky900ffa32017-02-08 14:32:04 +000065 "unfold-element-atomic-memcpy-max-elements",
66 cl::init(16),
67 cl::desc("Maximum number of elements in atomic memcpy the optimizer is "
68 "allowed to unfold"));
69
Sanjay Patelcd4377c2016-01-20 22:24:38 +000070/// Return the specified type promoted as it would be to pass though a va_arg
71/// area.
Chris Lattner229907c2011-07-18 04:54:35 +000072static Type *getPromotedType(Type *Ty) {
73 if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
Chris Lattner7a9e47a2010-01-05 07:32:13 +000074 if (ITy->getBitWidth() < 32)
75 return Type::getInt32Ty(Ty->getContext());
76 }
77 return Ty;
78}
79
Sanjay Patel368ac5d2016-02-21 17:29:33 +000080/// Return a constant boolean vector that has true elements in all positions
Sanjay Patel24401302016-02-21 17:33:31 +000081/// where the input constant data vector has an element with the sign bit set.
Sanjay Patel368ac5d2016-02-21 17:29:33 +000082static Constant *getNegativeIsTrueBoolVec(ConstantDataVector *V) {
83 SmallVector<Constant *, 32> BoolVec;
84 IntegerType *BoolTy = Type::getInt1Ty(V->getContext());
85 for (unsigned I = 0, E = V->getNumElements(); I != E; ++I) {
86 Constant *Elt = V->getElementAsConstant(I);
87 assert((isa<ConstantInt>(Elt) || isa<ConstantFP>(Elt)) &&
88 "Unexpected constant data vector element type");
89 bool Sign = V->getElementType()->isIntegerTy()
90 ? cast<ConstantInt>(Elt)->isNegative()
91 : cast<ConstantFP>(Elt)->isNegative();
92 BoolVec.push_back(ConstantInt::get(BoolTy, Sign));
93 }
94 return ConstantVector::get(BoolVec);
95}
96
Daniel Neilson3faabbb2017-06-16 14:43:59 +000097Instruction *InstCombiner::SimplifyElementUnorderedAtomicMemCpy(
98 ElementUnorderedAtomicMemCpyInst *AMI) {
Igor Laevsky900ffa32017-02-08 14:32:04 +000099 // Try to unfold this intrinsic into sequence of explicit atomic loads and
100 // stores.
101 // First check that number of elements is compile time constant.
Daniel Neilson3faabbb2017-06-16 14:43:59 +0000102 auto *LengthCI = dyn_cast<ConstantInt>(AMI->getLength());
103 if (!LengthCI)
Igor Laevsky900ffa32017-02-08 14:32:04 +0000104 return nullptr;
105
106 // Check that there are not too many elements.
Daniel Neilson3faabbb2017-06-16 14:43:59 +0000107 uint64_t LengthInBytes = LengthCI->getZExtValue();
108 uint32_t ElementSizeInBytes = AMI->getElementSizeInBytes();
109 uint64_t NumElements = LengthInBytes / ElementSizeInBytes;
Igor Laevsky900ffa32017-02-08 14:32:04 +0000110 if (NumElements >= UnfoldElementAtomicMemcpyMaxElements)
111 return nullptr;
112
Daniel Neilson3faabbb2017-06-16 14:43:59 +0000113 // Only expand if there are elements to copy.
114 if (NumElements > 0) {
115 // Don't unfold into illegal integers
116 uint64_t ElementSizeInBits = ElementSizeInBytes * 8;
117 if (!getDataLayout().isLegalInteger(ElementSizeInBits))
118 return nullptr;
Igor Laevsky900ffa32017-02-08 14:32:04 +0000119
Daniel Neilson3faabbb2017-06-16 14:43:59 +0000120 // Cast source and destination to the correct type. Intrinsic input
121 // arguments are usually represented as i8*. Often operands will be
122 // explicitly casted to i8* and we can just strip those casts instead of
123 // inserting new ones. However it's easier to rely on other InstCombine
124 // rules which will cover trivial cases anyway.
125 Value *Src = AMI->getRawSource();
126 Value *Dst = AMI->getRawDest();
127 Type *ElementPointerType =
128 Type::getIntNPtrTy(AMI->getContext(), ElementSizeInBits,
129 Src->getType()->getPointerAddressSpace());
Igor Laevsky900ffa32017-02-08 14:32:04 +0000130
Daniel Neilson3faabbb2017-06-16 14:43:59 +0000131 Value *SrcCasted = Builder->CreatePointerCast(Src, ElementPointerType,
132 "memcpy_unfold.src_casted");
133 Value *DstCasted = Builder->CreatePointerCast(Dst, ElementPointerType,
134 "memcpy_unfold.dst_casted");
Igor Laevsky900ffa32017-02-08 14:32:04 +0000135
Daniel Neilson3faabbb2017-06-16 14:43:59 +0000136 for (uint64_t i = 0; i < NumElements; ++i) {
137 // Get current element addresses
138 ConstantInt *ElementIdxCI =
139 ConstantInt::get(AMI->getContext(), APInt(64, i));
140 Value *SrcElementAddr =
141 Builder->CreateGEP(SrcCasted, ElementIdxCI, "memcpy_unfold.src_addr");
142 Value *DstElementAddr =
143 Builder->CreateGEP(DstCasted, ElementIdxCI, "memcpy_unfold.dst_addr");
Igor Laevsky900ffa32017-02-08 14:32:04 +0000144
Daniel Neilson3faabbb2017-06-16 14:43:59 +0000145 // Load from the source. Transfer alignment information and mark load as
146 // unordered atomic.
147 LoadInst *Load = Builder->CreateLoad(SrcElementAddr, "memcpy_unfold.val");
148 Load->setOrdering(AtomicOrdering::Unordered);
149 // We know alignment of the first element. It is also guaranteed by the
150 // verifier that element size is less or equal than first element
151 // alignment and both of this values are powers of two. This means that
152 // all subsequent accesses are at least element size aligned.
153 // TODO: We can infer better alignment but there is no evidence that this
154 // will matter.
155 Load->setAlignment(i == 0 ? AMI->getParamAlignment(1)
156 : ElementSizeInBytes);
157 Load->setDebugLoc(AMI->getDebugLoc());
Igor Laevsky900ffa32017-02-08 14:32:04 +0000158
Daniel Neilson3faabbb2017-06-16 14:43:59 +0000159 // Store loaded value via unordered atomic store.
160 StoreInst *Store = Builder->CreateStore(Load, DstElementAddr);
161 Store->setOrdering(AtomicOrdering::Unordered);
162 Store->setAlignment(i == 0 ? AMI->getParamAlignment(0)
163 : ElementSizeInBytes);
164 Store->setDebugLoc(AMI->getDebugLoc());
165 }
Igor Laevsky900ffa32017-02-08 14:32:04 +0000166 }
167
168 // Set the number of elements of the copy to 0, it will be deleted on the
169 // next iteration.
Daniel Neilson3faabbb2017-06-16 14:43:59 +0000170 AMI->setLength(Constant::getNullValue(LengthCI->getType()));
Igor Laevsky900ffa32017-02-08 14:32:04 +0000171 return AMI;
172}
173
Pete Cooper67cf9a72015-11-19 05:56:52 +0000174Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000175 unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), DL, MI, &AC, &DT);
176 unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), DL, MI, &AC, &DT);
Pete Cooper67cf9a72015-11-19 05:56:52 +0000177 unsigned MinAlign = std::min(DstAlign, SrcAlign);
178 unsigned CopyAlign = MI->getAlignment();
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000179
Pete Cooper67cf9a72015-11-19 05:56:52 +0000180 if (CopyAlign < MinAlign) {
181 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), MinAlign, false));
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000182 return MI;
183 }
Jim Grosbach7815f562012-02-03 00:07:04 +0000184
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000185 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
186 // load/store.
Gabor Greif0a136c92010-06-24 13:54:33 +0000187 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getArgOperand(2));
Craig Topperf40110f2014-04-25 05:29:35 +0000188 if (!MemOpLength) return nullptr;
Jim Grosbach7815f562012-02-03 00:07:04 +0000189
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000190 // Source and destination pointer types are always "i8*" for intrinsic. See
191 // if the size is something we can handle with a single primitive load/store.
192 // A single load+store correctly handles overlapping memory in the memmove
193 // case.
Michael Liao69e172a2012-08-15 03:49:59 +0000194 uint64_t Size = MemOpLength->getLimitedValue();
Alp Tokercb402912014-01-24 17:20:08 +0000195 assert(Size && "0-sized memory transferring should be removed already.");
Jim Grosbach7815f562012-02-03 00:07:04 +0000196
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000197 if (Size > 8 || (Size&(Size-1)))
Craig Topperf40110f2014-04-25 05:29:35 +0000198 return nullptr; // If not 1/2/4/8 bytes, exit.
Jim Grosbach7815f562012-02-03 00:07:04 +0000199
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000200 // Use an integer load+store unless we can find something better.
Mon P Wangc576ee92010-04-04 03:10:48 +0000201 unsigned SrcAddrSp =
Gabor Greif0a136c92010-06-24 13:54:33 +0000202 cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
Gabor Greiff3755202010-04-16 15:33:14 +0000203 unsigned DstAddrSp =
Gabor Greif0a136c92010-06-24 13:54:33 +0000204 cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
Mon P Wangc576ee92010-04-04 03:10:48 +0000205
Chris Lattner229907c2011-07-18 04:54:35 +0000206 IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
Mon P Wangc576ee92010-04-04 03:10:48 +0000207 Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
208 Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
Jim Grosbach7815f562012-02-03 00:07:04 +0000209
Mikael Holmen760dc9a2017-03-01 06:45:20 +0000210 // If the memcpy has metadata describing the members, see if we can get the
211 // TBAA tag describing our copy.
Craig Topperf40110f2014-04-25 05:29:35 +0000212 MDNode *CopyMD = nullptr;
Mikael Holmen760dc9a2017-03-01 06:45:20 +0000213 if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) {
214 if (M->getNumOperands() == 3 && M->getOperand(0) &&
215 mdconst::hasa<ConstantInt>(M->getOperand(0)) &&
Craig Topper79ab6432017-07-06 18:39:47 +0000216 mdconst::extract<ConstantInt>(M->getOperand(0))->isZero() &&
Mikael Holmen760dc9a2017-03-01 06:45:20 +0000217 M->getOperand(1) &&
218 mdconst::hasa<ConstantInt>(M->getOperand(1)) &&
219 mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() ==
220 Size &&
221 M->getOperand(2) && isa<MDNode>(M->getOperand(2)))
222 CopyMD = cast<MDNode>(M->getOperand(2));
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000223 }
Jim Grosbach7815f562012-02-03 00:07:04 +0000224
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000225 // If the memcpy/memmove provides better alignment info than we can
226 // infer, use it.
Pete Cooper67cf9a72015-11-19 05:56:52 +0000227 SrcAlign = std::max(SrcAlign, CopyAlign);
228 DstAlign = std::max(DstAlign, CopyAlign);
Jim Grosbach7815f562012-02-03 00:07:04 +0000229
Gabor Greif5f3e6562010-06-25 07:57:14 +0000230 Value *Src = Builder->CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
231 Value *Dest = Builder->CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
Eli Friedman49346012011-05-18 19:57:14 +0000232 LoadInst *L = Builder->CreateLoad(Src, MI->isVolatile());
233 L->setAlignment(SrcAlign);
Dan Gohman3f553c22012-09-13 21:51:01 +0000234 if (CopyMD)
235 L->setMetadata(LLVMContext::MD_tbaa, CopyMD);
Dorit Nuzmanabd15f62016-09-04 07:49:39 +0000236 MDNode *LoopMemParallelMD =
237 MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
238 if (LoopMemParallelMD)
239 L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
Dorit Nuzman7673ba72016-09-04 07:06:00 +0000240
Eli Friedman49346012011-05-18 19:57:14 +0000241 StoreInst *S = Builder->CreateStore(L, Dest, MI->isVolatile());
242 S->setAlignment(DstAlign);
Dan Gohman3f553c22012-09-13 21:51:01 +0000243 if (CopyMD)
244 S->setMetadata(LLVMContext::MD_tbaa, CopyMD);
Dorit Nuzmanabd15f62016-09-04 07:49:39 +0000245 if (LoopMemParallelMD)
246 S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000247
248 // Set the size of the copy to 0, it will be deleted on the next iteration.
Gabor Greif5b1370e2010-06-28 16:50:57 +0000249 MI->setArgOperand(2, Constant::getNullValue(MemOpLength->getType()));
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000250 return MI;
251}
252
253Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000254 unsigned Alignment = getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT);
Pete Cooper67cf9a72015-11-19 05:56:52 +0000255 if (MI->getAlignment() < Alignment) {
256 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
257 Alignment, false));
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000258 return MI;
259 }
Jim Grosbach7815f562012-02-03 00:07:04 +0000260
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000261 // Extract the length and alignment and fill if they are constant.
262 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
263 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
Duncan Sands9dff9be2010-02-15 16:12:20 +0000264 if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
Craig Topperf40110f2014-04-25 05:29:35 +0000265 return nullptr;
Michael Liao69e172a2012-08-15 03:49:59 +0000266 uint64_t Len = LenC->getLimitedValue();
Pete Cooper67cf9a72015-11-19 05:56:52 +0000267 Alignment = MI->getAlignment();
Michael Liao69e172a2012-08-15 03:49:59 +0000268 assert(Len && "0-sized memory setting should be removed already.");
Jim Grosbach7815f562012-02-03 00:07:04 +0000269
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000270 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
271 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
Chris Lattner229907c2011-07-18 04:54:35 +0000272 Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8.
Jim Grosbach7815f562012-02-03 00:07:04 +0000273
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000274 Value *Dest = MI->getDest();
Mon P Wang1991c472010-12-20 01:05:30 +0000275 unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
276 Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
277 Dest = Builder->CreateBitCast(Dest, NewDstPtrTy);
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000278
279 // Alignment 0 is identity for alignment 1 for memset, but not store.
280 if (Alignment == 0) Alignment = 1;
Jim Grosbach7815f562012-02-03 00:07:04 +0000281
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000282 // Extract the fill value and store.
283 uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
Eli Friedman49346012011-05-18 19:57:14 +0000284 StoreInst *S = Builder->CreateStore(ConstantInt::get(ITy, Fill), Dest,
285 MI->isVolatile());
286 S->setAlignment(Alignment);
Jim Grosbach7815f562012-02-03 00:07:04 +0000287
Chris Lattner7a9e47a2010-01-05 07:32:13 +0000288 // Set the size of the copy to 0, it will be deleted on the next iteration.
289 MI->setLength(Constant::getNullValue(LenC->getType()));
290 return MI;
291 }
292
Simon Pilgrim18617d12015-08-05 08:18:00 +0000293 return nullptr;
294}
295
Sanjay Patel6038d3e2016-01-29 23:27:03 +0000296static Value *simplifyX86immShift(const IntrinsicInst &II,
Simon Pilgrimbecd5e82015-08-13 07:39:03 +0000297 InstCombiner::BuilderTy &Builder) {
298 bool LogicalShift = false;
299 bool ShiftLeft = false;
300
301 switch (II.getIntrinsicID()) {
Craig Topperb4173a52016-11-13 07:26:19 +0000302 default: llvm_unreachable("Unexpected intrinsic!");
Simon Pilgrimbecd5e82015-08-13 07:39:03 +0000303 case Intrinsic::x86_sse2_psra_d:
304 case Intrinsic::x86_sse2_psra_w:
305 case Intrinsic::x86_sse2_psrai_d:
306 case Intrinsic::x86_sse2_psrai_w:
307 case Intrinsic::x86_avx2_psra_d:
308 case Intrinsic::x86_avx2_psra_w:
309 case Intrinsic::x86_avx2_psrai_d:
310 case Intrinsic::x86_avx2_psrai_w:
Craig Topper8b831cb2016-11-13 01:51:55 +0000311 case Intrinsic::x86_avx512_psra_q_128:
312 case Intrinsic::x86_avx512_psrai_q_128:
313 case Intrinsic::x86_avx512_psra_q_256:
314 case Intrinsic::x86_avx512_psrai_q_256:
315 case Intrinsic::x86_avx512_psra_d_512:
316 case Intrinsic::x86_avx512_psra_q_512:
317 case Intrinsic::x86_avx512_psra_w_512:
318 case Intrinsic::x86_avx512_psrai_d_512:
319 case Intrinsic::x86_avx512_psrai_q_512:
320 case Intrinsic::x86_avx512_psrai_w_512:
Simon Pilgrimbecd5e82015-08-13 07:39:03 +0000321 LogicalShift = false; ShiftLeft = false;
322 break;
323 case Intrinsic::x86_sse2_psrl_d:
324 case Intrinsic::x86_sse2_psrl_q:
325 case Intrinsic::x86_sse2_psrl_w:
326 case Intrinsic::x86_sse2_psrli_d:
327 case Intrinsic::x86_sse2_psrli_q:
328 case Intrinsic::x86_sse2_psrli_w:
329 case Intrinsic::x86_avx2_psrl_d:
330 case Intrinsic::x86_avx2_psrl_q:
331 case Intrinsic::x86_avx2_psrl_w:
332 case Intrinsic::x86_avx2_psrli_d:
333 case Intrinsic::x86_avx2_psrli_q:
334 case Intrinsic::x86_avx2_psrli_w:
Craig Topper8b831cb2016-11-13 01:51:55 +0000335 case Intrinsic::x86_avx512_psrl_d_512:
336 case Intrinsic::x86_avx512_psrl_q_512:
337 case Intrinsic::x86_avx512_psrl_w_512:
338 case Intrinsic::x86_avx512_psrli_d_512:
339 case Intrinsic::x86_avx512_psrli_q_512:
340 case Intrinsic::x86_avx512_psrli_w_512:
Simon Pilgrimbecd5e82015-08-13 07:39:03 +0000341 LogicalShift = true; ShiftLeft = false;
342 break;
343 case Intrinsic::x86_sse2_psll_d:
344 case Intrinsic::x86_sse2_psll_q:
345 case Intrinsic::x86_sse2_psll_w:
346 case Intrinsic::x86_sse2_pslli_d:
347 case Intrinsic::x86_sse2_pslli_q:
348 case Intrinsic::x86_sse2_pslli_w:
349 case Intrinsic::x86_avx2_psll_d:
350 case Intrinsic::x86_avx2_psll_q:
351 case Intrinsic::x86_avx2_psll_w:
352 case Intrinsic::x86_avx2_pslli_d:
353 case Intrinsic::x86_avx2_pslli_q:
354 case Intrinsic::x86_avx2_pslli_w:
Craig Topper8b831cb2016-11-13 01:51:55 +0000355 case Intrinsic::x86_avx512_psll_d_512:
356 case Intrinsic::x86_avx512_psll_q_512:
357 case Intrinsic::x86_avx512_psll_w_512:
358 case Intrinsic::x86_avx512_pslli_d_512:
359 case Intrinsic::x86_avx512_pslli_q_512:
360 case Intrinsic::x86_avx512_pslli_w_512:
Simon Pilgrimbecd5e82015-08-13 07:39:03 +0000361 LogicalShift = true; ShiftLeft = true;
362 break;
363 }
Simon Pilgrima3a72b42015-08-10 20:21:15 +0000364 assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");
365
Simon Pilgrim3815c162015-08-07 18:22:50 +0000366 // Simplify if count is constant.
367 auto Arg1 = II.getArgOperand(1);
368 auto CAZ = dyn_cast<ConstantAggregateZero>(Arg1);
369 auto CDV = dyn_cast<ConstantDataVector>(Arg1);
370 auto CInt = dyn_cast<ConstantInt>(Arg1);
371 if (!CAZ && !CDV && !CInt)
Simon Pilgrim18617d12015-08-05 08:18:00 +0000372 return nullptr;
Simon Pilgrim3815c162015-08-07 18:22:50 +0000373
374 APInt Count(64, 0);
375 if (CDV) {
376 // SSE2/AVX2 uses all the first 64-bits of the 128-bit vector
377 // operand to compute the shift amount.
378 auto VT = cast<VectorType>(CDV->getType());
379 unsigned BitWidth = VT->getElementType()->getPrimitiveSizeInBits();
380 assert((64 % BitWidth) == 0 && "Unexpected packed shift size");
381 unsigned NumSubElts = 64 / BitWidth;
382
383 // Concatenate the sub-elements to create the 64-bit value.
384 for (unsigned i = 0; i != NumSubElts; ++i) {
385 unsigned SubEltIdx = (NumSubElts - 1) - i;
386 auto SubElt = cast<ConstantInt>(CDV->getElementAsConstant(SubEltIdx));
Craig Topper24e71012017-04-28 03:36:24 +0000387 Count <<= BitWidth;
Simon Pilgrim3815c162015-08-07 18:22:50 +0000388 Count |= SubElt->getValue().zextOrTrunc(64);
389 }
390 }
391 else if (CInt)
392 Count = CInt->getValue();
Simon Pilgrim18617d12015-08-05 08:18:00 +0000393
394 auto Vec = II.getArgOperand(0);
395 auto VT = cast<VectorType>(Vec->getType());
396 auto SVT = VT->getElementType();
Simon Pilgrim3815c162015-08-07 18:22:50 +0000397 unsigned VWidth = VT->getNumElements();
398 unsigned BitWidth = SVT->getPrimitiveSizeInBits();
399
400 // If shift-by-zero then just return the original value.
Craig Topper73ba1c82017-06-07 07:40:37 +0000401 if (Count.isNullValue())
Simon Pilgrim3815c162015-08-07 18:22:50 +0000402 return Vec;
403
Simon Pilgrima3a72b42015-08-10 20:21:15 +0000404 // Handle cases when Shift >= BitWidth.
405 if (Count.uge(BitWidth)) {
406 // If LogicalShift - just return zero.
407 if (LogicalShift)
408 return ConstantAggregateZero::get(VT);
409
410 // If ArithmeticShift - clamp Shift to (BitWidth - 1).
411 Count = APInt(64, BitWidth - 1);
412 }
Simon Pilgrim18617d12015-08-05 08:18:00 +0000413
Simon Pilgrim18617d12015-08-05 08:18:00 +0000414 // Get a constant vector of the same type as the first operand.
Simon Pilgrim3815c162015-08-07 18:22:50 +0000415 auto ShiftAmt = ConstantInt::get(SVT, Count.zextOrTrunc(BitWidth));
416 auto ShiftVec = Builder.CreateVectorSplat(VWidth, ShiftAmt);
Simon Pilgrim18617d12015-08-05 08:18:00 +0000417
418 if (ShiftLeft)
Simon Pilgrim3815c162015-08-07 18:22:50 +0000419 return Builder.CreateShl(Vec, ShiftVec);
Simon Pilgrim18617d12015-08-05 08:18:00 +0000420
Simon Pilgrima3a72b42015-08-10 20:21:15 +0000421 if (LogicalShift)
422 return Builder.CreateLShr(Vec, ShiftVec);
423
424 return Builder.CreateAShr(Vec, ShiftVec);
Simon Pilgrim18617d12015-08-05 08:18:00 +0000425}
426
Simon Pilgrimdb9893f2016-06-07 10:27:15 +0000427// Attempt to simplify AVX2 per-element shift intrinsics to a generic IR shift.
428// Unlike the generic IR shifts, the intrinsics have defined behaviour for out
429// of range shift amounts (logical - set to zero, arithmetic - splat sign bit).
430static Value *simplifyX86varShift(const IntrinsicInst &II,
431 InstCombiner::BuilderTy &Builder) {
432 bool LogicalShift = false;
433 bool ShiftLeft = false;
434
435 switch (II.getIntrinsicID()) {
Craig Topperb4173a52016-11-13 07:26:19 +0000436 default: llvm_unreachable("Unexpected intrinsic!");
Simon Pilgrimdb9893f2016-06-07 10:27:15 +0000437 case Intrinsic::x86_avx2_psrav_d:
438 case Intrinsic::x86_avx2_psrav_d_256:
Craig Topperb4173a52016-11-13 07:26:19 +0000439 case Intrinsic::x86_avx512_psrav_q_128:
440 case Intrinsic::x86_avx512_psrav_q_256:
441 case Intrinsic::x86_avx512_psrav_d_512:
442 case Intrinsic::x86_avx512_psrav_q_512:
Craig Topper1de753f2016-11-18 06:04:33 +0000443 case Intrinsic::x86_avx512_psrav_w_128:
444 case Intrinsic::x86_avx512_psrav_w_256:
445 case Intrinsic::x86_avx512_psrav_w_512:
Simon Pilgrimdb9893f2016-06-07 10:27:15 +0000446 LogicalShift = false;
447 ShiftLeft = false;
448 break;
449 case Intrinsic::x86_avx2_psrlv_d:
450 case Intrinsic::x86_avx2_psrlv_d_256:
451 case Intrinsic::x86_avx2_psrlv_q:
452 case Intrinsic::x86_avx2_psrlv_q_256:
Craig Topperb4173a52016-11-13 07:26:19 +0000453 case Intrinsic::x86_avx512_psrlv_d_512:
454 case Intrinsic::x86_avx512_psrlv_q_512:
Craig Topper1de753f2016-11-18 06:04:33 +0000455 case Intrinsic::x86_avx512_psrlv_w_128:
456 case Intrinsic::x86_avx512_psrlv_w_256:
457 case Intrinsic::x86_avx512_psrlv_w_512:
Simon Pilgrimdb9893f2016-06-07 10:27:15 +0000458 LogicalShift = true;
459 ShiftLeft = false;
460 break;
461 case Intrinsic::x86_avx2_psllv_d:
462 case Intrinsic::x86_avx2_psllv_d_256:
463 case Intrinsic::x86_avx2_psllv_q:
464 case Intrinsic::x86_avx2_psllv_q_256:
Craig Topperb4173a52016-11-13 07:26:19 +0000465 case Intrinsic::x86_avx512_psllv_d_512:
466 case Intrinsic::x86_avx512_psllv_q_512:
Craig Topper1de753f2016-11-18 06:04:33 +0000467 case Intrinsic::x86_avx512_psllv_w_128:
468 case Intrinsic::x86_avx512_psllv_w_256:
469 case Intrinsic::x86_avx512_psllv_w_512:
Simon Pilgrimdb9893f2016-06-07 10:27:15 +0000470 LogicalShift = true;
471 ShiftLeft = true;
472 break;
473 }
474 assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");
475
476 // Simplify if all shift amounts are constant/undef.
477 auto *CShift = dyn_cast<Constant>(II.getArgOperand(1));
478 if (!CShift)
479 return nullptr;
480
481 auto Vec = II.getArgOperand(0);
482 auto VT = cast<VectorType>(II.getType());
483 auto SVT = VT->getVectorElementType();
484 int NumElts = VT->getNumElements();
485 int BitWidth = SVT->getIntegerBitWidth();
486
487 // Collect each element's shift amount.
488 // We also collect special cases: UNDEF = -1, OUT-OF-RANGE = BitWidth.
489 bool AnyOutOfRange = false;
490 SmallVector<int, 8> ShiftAmts;
491 for (int I = 0; I < NumElts; ++I) {
492 auto *CElt = CShift->getAggregateElement(I);
493 if (CElt && isa<UndefValue>(CElt)) {
494 ShiftAmts.push_back(-1);
495 continue;
496 }
497
498 auto *COp = dyn_cast_or_null<ConstantInt>(CElt);
499 if (!COp)
500 return nullptr;
501
502 // Handle out of range shifts.
503 // If LogicalShift - set to BitWidth (special case).
504 // If ArithmeticShift - set to (BitWidth - 1) (sign splat).
505 APInt ShiftVal = COp->getValue();
506 if (ShiftVal.uge(BitWidth)) {
507 AnyOutOfRange = LogicalShift;
508 ShiftAmts.push_back(LogicalShift ? BitWidth : BitWidth - 1);
509 continue;
510 }
511
512 ShiftAmts.push_back((int)ShiftVal.getZExtValue());
513 }
514
515 // If all elements out of range or UNDEF, return vector of zeros/undefs.
516 // ArithmeticShift should only hit this if they are all UNDEF.
517 auto OutOfRange = [&](int Idx) { return (Idx < 0) || (BitWidth <= Idx); };
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000518 if (all_of(ShiftAmts, OutOfRange)) {
Simon Pilgrimdb9893f2016-06-07 10:27:15 +0000519 SmallVector<Constant *, 8> ConstantVec;
520 for (int Idx : ShiftAmts) {
521 if (Idx < 0) {
522 ConstantVec.push_back(UndefValue::get(SVT));
523 } else {
524 assert(LogicalShift && "Logical shift expected");
525 ConstantVec.push_back(ConstantInt::getNullValue(SVT));
526 }
527 }
528 return ConstantVector::get(ConstantVec);
529 }
530
531 // We can't handle only some out of range values with generic logical shifts.
532 if (AnyOutOfRange)
533 return nullptr;
534
535 // Build the shift amount constant vector.
536 SmallVector<Constant *, 8> ShiftVecAmts;
537 for (int Idx : ShiftAmts) {
538 if (Idx < 0)
539 ShiftVecAmts.push_back(UndefValue::get(SVT));
540 else
541 ShiftVecAmts.push_back(ConstantInt::get(SVT, Idx));
542 }
543 auto ShiftVec = ConstantVector::get(ShiftVecAmts);
544
545 if (ShiftLeft)
546 return Builder.CreateShl(Vec, ShiftVec);
547
548 if (LogicalShift)
549 return Builder.CreateLShr(Vec, ShiftVec);
550
551 return Builder.CreateAShr(Vec, ShiftVec);
552}
553
Simon Pilgrimf6f3a3612017-01-23 15:22:59 +0000554static Value *simplifyX86muldq(const IntrinsicInst &II,
555 InstCombiner::BuilderTy &Builder) {
Simon Pilgrima50a93f2017-01-20 18:20:30 +0000556 Value *Arg0 = II.getArgOperand(0);
557 Value *Arg1 = II.getArgOperand(1);
558 Type *ResTy = II.getType();
Simon Pilgrimf6f3a3612017-01-23 15:22:59 +0000559 assert(Arg0->getType()->getScalarSizeInBits() == 32 &&
560 Arg1->getType()->getScalarSizeInBits() == 32 &&
561 ResTy->getScalarSizeInBits() == 64 && "Unexpected muldq/muludq types");
Simon Pilgrima50a93f2017-01-20 18:20:30 +0000562
Simon Pilgrimbb13fda2017-01-23 12:07:32 +0000563 // muldq/muludq(undef, undef) -> zero (matches generic mul behavior)
Simon Pilgrim78f86302017-01-24 11:07:41 +0000564 if (isa<UndefValue>(Arg0) || isa<UndefValue>(Arg1))
Simon Pilgrimbb13fda2017-01-23 12:07:32 +0000565 return ConstantAggregateZero::get(ResTy);
Simon Pilgrima50a93f2017-01-20 18:20:30 +0000566
Simon Pilgrimf6f3a3612017-01-23 15:22:59 +0000567 // Constant folding.
568 // PMULDQ = (mul(vXi64 sext(shuffle<0,2,..>(Arg0)),
569 // vXi64 sext(shuffle<0,2,..>(Arg1))))
570 // PMULUDQ = (mul(vXi64 zext(shuffle<0,2,..>(Arg0)),
571 // vXi64 zext(shuffle<0,2,..>(Arg1))))
572 if (!isa<Constant>(Arg0) || !isa<Constant>(Arg1))
573 return nullptr;
574
575 unsigned NumElts = ResTy->getVectorNumElements();
576 assert(Arg0->getType()->getVectorNumElements() == (2 * NumElts) &&
577 Arg1->getType()->getVectorNumElements() == (2 * NumElts) &&
578 "Unexpected muldq/muludq types");
579
580 unsigned IntrinsicID = II.getIntrinsicID();
581 bool IsSigned = (Intrinsic::x86_sse41_pmuldq == IntrinsicID ||
582 Intrinsic::x86_avx2_pmul_dq == IntrinsicID ||
583 Intrinsic::x86_avx512_pmul_dq_512 == IntrinsicID);
584
585 SmallVector<unsigned, 16> ShuffleMask;
586 for (unsigned i = 0; i != NumElts; ++i)
587 ShuffleMask.push_back(i * 2);
588
589 auto *LHS = Builder.CreateShuffleVector(Arg0, Arg0, ShuffleMask);
590 auto *RHS = Builder.CreateShuffleVector(Arg1, Arg1, ShuffleMask);
591
592 if (IsSigned) {
593 LHS = Builder.CreateSExt(LHS, ResTy);
594 RHS = Builder.CreateSExt(RHS, ResTy);
595 } else {
596 LHS = Builder.CreateZExt(LHS, ResTy);
597 RHS = Builder.CreateZExt(RHS, ResTy);
598 }
599
600 return Builder.CreateMul(LHS, RHS);
Simon Pilgrima50a93f2017-01-20 18:20:30 +0000601}
602
Simon Pilgrim6f6b2792017-01-25 14:37:24 +0000603static Value *simplifyX86pack(IntrinsicInst &II, InstCombiner &IC,
604 InstCombiner::BuilderTy &Builder, bool IsSigned) {
605 Value *Arg0 = II.getArgOperand(0);
606 Value *Arg1 = II.getArgOperand(1);
607 Type *ResTy = II.getType();
608
609 // Fast all undef handling.
610 if (isa<UndefValue>(Arg0) && isa<UndefValue>(Arg1))
611 return UndefValue::get(ResTy);
612
613 Type *ArgTy = Arg0->getType();
614 unsigned NumLanes = ResTy->getPrimitiveSizeInBits() / 128;
615 unsigned NumDstElts = ResTy->getVectorNumElements();
616 unsigned NumSrcElts = ArgTy->getVectorNumElements();
617 assert(NumDstElts == (2 * NumSrcElts) && "Unexpected packing types");
618
619 unsigned NumDstEltsPerLane = NumDstElts / NumLanes;
620 unsigned NumSrcEltsPerLane = NumSrcElts / NumLanes;
621 unsigned DstScalarSizeInBits = ResTy->getScalarSizeInBits();
622 assert(ArgTy->getScalarSizeInBits() == (2 * DstScalarSizeInBits) &&
623 "Unexpected packing types");
624
625 // Constant folding.
626 auto *Cst0 = dyn_cast<Constant>(Arg0);
627 auto *Cst1 = dyn_cast<Constant>(Arg1);
628 if (!Cst0 || !Cst1)
629 return nullptr;
630
631 SmallVector<Constant *, 32> Vals;
632 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
633 for (unsigned Elt = 0; Elt != NumDstEltsPerLane; ++Elt) {
634 unsigned SrcIdx = Lane * NumSrcEltsPerLane + Elt % NumSrcEltsPerLane;
635 auto *Cst = (Elt >= NumSrcEltsPerLane) ? Cst1 : Cst0;
636 auto *COp = Cst->getAggregateElement(SrcIdx);
637 if (COp && isa<UndefValue>(COp)) {
638 Vals.push_back(UndefValue::get(ResTy->getScalarType()));
639 continue;
640 }
641
642 auto *CInt = dyn_cast_or_null<ConstantInt>(COp);
643 if (!CInt)
644 return nullptr;
645
646 APInt Val = CInt->getValue();
647 assert(Val.getBitWidth() == ArgTy->getScalarSizeInBits() &&
648 "Unexpected constant bitwidth");
649
650 if (IsSigned) {
651 // PACKSS: Truncate signed value with signed saturation.
652 // Source values less than dst minint are saturated to minint.
653 // Source values greater than dst maxint are saturated to maxint.
654 if (Val.isSignedIntN(DstScalarSizeInBits))
655 Val = Val.trunc(DstScalarSizeInBits);
656 else if (Val.isNegative())
657 Val = APInt::getSignedMinValue(DstScalarSizeInBits);
658 else
659 Val = APInt::getSignedMaxValue(DstScalarSizeInBits);
660 } else {
661 // PACKUS: Truncate signed value with unsigned saturation.
662 // Source values less than zero are saturated to zero.
663 // Source values greater than dst maxuint are saturated to maxuint.
664 if (Val.isIntN(DstScalarSizeInBits))
665 Val = Val.trunc(DstScalarSizeInBits);
666 else if (Val.isNegative())
667 Val = APInt::getNullValue(DstScalarSizeInBits);
668 else
669 Val = APInt::getAllOnesValue(DstScalarSizeInBits);
670 }
671
672 Vals.push_back(ConstantInt::get(ResTy->getScalarType(), Val));
673 }
674 }
675
676 return ConstantVector::get(Vals);
677}
678
Simon Pilgrim91e3ac82016-06-07 08:18:35 +0000679static Value *simplifyX86movmsk(const IntrinsicInst &II,
680 InstCombiner::BuilderTy &Builder) {
681 Value *Arg = II.getArgOperand(0);
682 Type *ResTy = II.getType();
683 Type *ArgTy = Arg->getType();
684
685 // movmsk(undef) -> zero as we must ensure the upper bits are zero.
686 if (isa<UndefValue>(Arg))
687 return Constant::getNullValue(ResTy);
688
689 // We can't easily peek through x86_mmx types.
690 if (!ArgTy->isVectorTy())
691 return nullptr;
692
693 auto *C = dyn_cast<Constant>(Arg);
694 if (!C)
695 return nullptr;
696
697 // Extract signbits of the vector input and pack into integer result.
698 APInt Result(ResTy->getPrimitiveSizeInBits(), 0);
699 for (unsigned I = 0, E = ArgTy->getVectorNumElements(); I != E; ++I) {
700 auto *COp = C->getAggregateElement(I);
701 if (!COp)
702 return nullptr;
703 if (isa<UndefValue>(COp))
704 continue;
705
706 auto *CInt = dyn_cast<ConstantInt>(COp);
707 auto *CFp = dyn_cast<ConstantFP>(COp);
708 if (!CInt && !CFp)
709 return nullptr;
710
711 if ((CInt && CInt->isNegative()) || (CFp && CFp->isNegative()))
712 Result.setBit(I);
713 }
714
715 return Constant::getIntegerValue(ResTy, Result);
716}
717
Sanjay Patel6038d3e2016-01-29 23:27:03 +0000718static Value *simplifyX86insertps(const IntrinsicInst &II,
Sanjay Patelc86867c2015-04-16 17:52:13 +0000719 InstCombiner::BuilderTy &Builder) {
Sanjay Patel03c03f52016-01-28 00:03:16 +0000720 auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2));
721 if (!CInt)
722 return nullptr;
Simon Pilgrim54fcd622015-07-25 20:41:00 +0000723
Sanjay Patel03c03f52016-01-28 00:03:16 +0000724 VectorType *VecTy = cast<VectorType>(II.getType());
725 assert(VecTy->getNumElements() == 4 && "insertps with wrong vector type");
Sanjay Patelc86867c2015-04-16 17:52:13 +0000726
Sanjay Patel03c03f52016-01-28 00:03:16 +0000727 // The immediate permute control byte looks like this:
728 // [3:0] - zero mask for each 32-bit lane
729 // [5:4] - select one 32-bit destination lane
730 // [7:6] - select one 32-bit source lane
Sanjay Patelc86867c2015-04-16 17:52:13 +0000731
Sanjay Patel03c03f52016-01-28 00:03:16 +0000732 uint8_t Imm = CInt->getZExtValue();
733 uint8_t ZMask = Imm & 0xf;
734 uint8_t DestLane = (Imm >> 4) & 0x3;
735 uint8_t SourceLane = (Imm >> 6) & 0x3;
Sanjay Patelc1d20a32015-04-25 20:55:25 +0000736
Sanjay Patel03c03f52016-01-28 00:03:16 +0000737 ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy);
Sanjay Patelc86867c2015-04-16 17:52:13 +0000738
Sanjay Patel03c03f52016-01-28 00:03:16 +0000739 // If all zero mask bits are set, this was just a weird way to
740 // generate a zero vector.
741 if (ZMask == 0xf)
742 return ZeroVector;
Sanjay Patelc1d20a32015-04-25 20:55:25 +0000743
Sanjay Patel03c03f52016-01-28 00:03:16 +0000744 // Initialize by passing all of the first source bits through.
Craig Topper99d1eab2016-06-12 00:41:19 +0000745 uint32_t ShuffleMask[4] = { 0, 1, 2, 3 };
Sanjay Patelc1d20a32015-04-25 20:55:25 +0000746
Sanjay Patel03c03f52016-01-28 00:03:16 +0000747 // We may replace the second operand with the zero vector.
748 Value *V1 = II.getArgOperand(1);
749
750 if (ZMask) {
751 // If the zero mask is being used with a single input or the zero mask
752 // overrides the destination lane, this is a shuffle with the zero vector.
753 if ((II.getArgOperand(0) == II.getArgOperand(1)) ||
754 (ZMask & (1 << DestLane))) {
755 V1 = ZeroVector;
756 // We may still move 32-bits of the first source vector from one lane
757 // to another.
758 ShuffleMask[DestLane] = SourceLane;
759 // The zero mask may override the previous insert operation.
760 for (unsigned i = 0; i < 4; ++i)
761 if ((ZMask >> i) & 0x1)
762 ShuffleMask[i] = i + 4;
Sanjay Patelc1d20a32015-04-25 20:55:25 +0000763 } else {
Sanjay Patel03c03f52016-01-28 00:03:16 +0000764 // TODO: Model this case as 2 shuffles or a 'logical and' plus shuffle?
765 return nullptr;
Sanjay Patelc1d20a32015-04-25 20:55:25 +0000766 }
Sanjay Patel03c03f52016-01-28 00:03:16 +0000767 } else {
768 // Replace the selected destination lane with the selected source lane.
769 ShuffleMask[DestLane] = SourceLane + 4;
Sanjay Patelc86867c2015-04-16 17:52:13 +0000770 }
Sanjay Patel03c03f52016-01-28 00:03:16 +0000771
772 return Builder.CreateShuffleVector(II.getArgOperand(0), V1, ShuffleMask);
Sanjay Patelc86867c2015-04-16 17:52:13 +0000773}
774
Simon Pilgrim216b1bf2015-10-17 11:40:05 +0000775/// Attempt to simplify SSE4A EXTRQ/EXTRQI instructions using constant folding
776/// or conversion to a shuffle vector.
Sanjay Patel6038d3e2016-01-29 23:27:03 +0000777static Value *simplifyX86extrq(IntrinsicInst &II, Value *Op0,
Simon Pilgrim216b1bf2015-10-17 11:40:05 +0000778 ConstantInt *CILength, ConstantInt *CIIndex,
779 InstCombiner::BuilderTy &Builder) {
780 auto LowConstantHighUndef = [&](uint64_t Val) {
781 Type *IntTy64 = Type::getInt64Ty(II.getContext());
782 Constant *Args[] = {ConstantInt::get(IntTy64, Val),
783 UndefValue::get(IntTy64)};
784 return ConstantVector::get(Args);
785 };
786
787 // See if we're dealing with constant values.
788 Constant *C0 = dyn_cast<Constant>(Op0);
789 ConstantInt *CI0 =
Andrea Di Biagio8df5b9c2016-09-07 12:03:03 +0000790 C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0))
Simon Pilgrim216b1bf2015-10-17 11:40:05 +0000791 : nullptr;
792
793 // Attempt to constant fold.
794 if (CILength && CIIndex) {
795 // From AMD documentation: "The bit index and field length are each six
796 // bits in length other bits of the field are ignored."
797 APInt APIndex = CIIndex->getValue().zextOrTrunc(6);
798 APInt APLength = CILength->getValue().zextOrTrunc(6);
799
800 unsigned Index = APIndex.getZExtValue();
801
802 // From AMD documentation: "a value of zero in the field length is
803 // defined as length of 64".
804 unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
805
806 // From AMD documentation: "If the sum of the bit index + length field
807 // is greater than 64, the results are undefined".
808 unsigned End = Index + Length;
809
810 // Note that both field index and field length are 8-bit quantities.
811 // Since variables 'Index' and 'Length' are unsigned values
812 // obtained from zero-extending field index and field length
813 // respectively, their sum should never wrap around.
814 if (End > 64)
815 return UndefValue::get(II.getType());
816
817 // If we are inserting whole bytes, we can convert this to a shuffle.
818 // Lowering can recognize EXTRQI shuffle masks.
819 if ((Length % 8) == 0 && (Index % 8) == 0) {
820 // Convert bit indices to byte indices.
821 Length /= 8;
822 Index /= 8;
823
824 Type *IntTy8 = Type::getInt8Ty(II.getContext());
825 Type *IntTy32 = Type::getInt32Ty(II.getContext());
826 VectorType *ShufTy = VectorType::get(IntTy8, 16);
827
828 SmallVector<Constant *, 16> ShuffleMask;
829 for (int i = 0; i != (int)Length; ++i)
830 ShuffleMask.push_back(
831 Constant::getIntegerValue(IntTy32, APInt(32, i + Index)));
832 for (int i = Length; i != 8; ++i)
833 ShuffleMask.push_back(
834 Constant::getIntegerValue(IntTy32, APInt(32, i + 16)));
835 for (int i = 8; i != 16; ++i)
836 ShuffleMask.push_back(UndefValue::get(IntTy32));
837
838 Value *SV = Builder.CreateShuffleVector(
839 Builder.CreateBitCast(Op0, ShufTy),
840 ConstantAggregateZero::get(ShufTy), ConstantVector::get(ShuffleMask));
841 return Builder.CreateBitCast(SV, II.getType());
842 }
843
844 // Constant Fold - shift Index'th bit to lowest position and mask off
845 // Length bits.
846 if (CI0) {
847 APInt Elt = CI0->getValue();
Craig Topperfc947bc2017-04-18 17:14:21 +0000848 Elt.lshrInPlace(Index);
849 Elt = Elt.zextOrTrunc(Length);
Simon Pilgrim216b1bf2015-10-17 11:40:05 +0000850 return LowConstantHighUndef(Elt.getZExtValue());
851 }
852
853 // If we were an EXTRQ call, we'll save registers if we convert to EXTRQI.
854 if (II.getIntrinsicID() == Intrinsic::x86_sse4a_extrq) {
855 Value *Args[] = {Op0, CILength, CIIndex};
Sanjay Patelaf674fb2015-12-14 17:24:23 +0000856 Module *M = II.getModule();
Simon Pilgrim216b1bf2015-10-17 11:40:05 +0000857 Value *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_extrqi);
858 return Builder.CreateCall(F, Args);
859 }
860 }
861
862 // Constant Fold - extraction from zero is always {zero, undef}.
Craig Topperca2c8762017-07-06 18:39:49 +0000863 if (CI0 && CI0->isZero())
Simon Pilgrim216b1bf2015-10-17 11:40:05 +0000864 return LowConstantHighUndef(0);
865
866 return nullptr;
867}
868
869/// Attempt to simplify SSE4A INSERTQ/INSERTQI instructions using constant
870/// folding or conversion to a shuffle vector.
Sanjay Patel6038d3e2016-01-29 23:27:03 +0000871static Value *simplifyX86insertq(IntrinsicInst &II, Value *Op0, Value *Op1,
Simon Pilgrim216b1bf2015-10-17 11:40:05 +0000872 APInt APLength, APInt APIndex,
873 InstCombiner::BuilderTy &Builder) {
Simon Pilgrim216b1bf2015-10-17 11:40:05 +0000874 // From AMD documentation: "The bit index and field length are each six bits
875 // in length other bits of the field are ignored."
876 APIndex = APIndex.zextOrTrunc(6);
877 APLength = APLength.zextOrTrunc(6);
878
879 // Attempt to constant fold.
880 unsigned Index = APIndex.getZExtValue();
881
882 // From AMD documentation: "a value of zero in the field length is
883 // defined as length of 64".
884 unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
885
886 // From AMD documentation: "If the sum of the bit index + length field
887 // is greater than 64, the results are undefined".
888 unsigned End = Index + Length;
889
890 // Note that both field index and field length are 8-bit quantities.
891 // Since variables 'Index' and 'Length' are unsigned values
892 // obtained from zero-extending field index and field length
893 // respectively, their sum should never wrap around.
894 if (End > 64)
895 return UndefValue::get(II.getType());
896
897 // If we are inserting whole bytes, we can convert this to a shuffle.
898 // Lowering can recognize INSERTQI shuffle masks.
899 if ((Length % 8) == 0 && (Index % 8) == 0) {
900 // Convert bit indices to byte indices.
901 Length /= 8;
902 Index /= 8;
903
904 Type *IntTy8 = Type::getInt8Ty(II.getContext());
905 Type *IntTy32 = Type::getInt32Ty(II.getContext());
906 VectorType *ShufTy = VectorType::get(IntTy8, 16);
907
908 SmallVector<Constant *, 16> ShuffleMask;
909 for (int i = 0; i != (int)Index; ++i)
910 ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i)));
911 for (int i = 0; i != (int)Length; ++i)
912 ShuffleMask.push_back(
913 Constant::getIntegerValue(IntTy32, APInt(32, i + 16)));
914 for (int i = Index + Length; i != 8; ++i)
915 ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i)));
916 for (int i = 8; i != 16; ++i)
917 ShuffleMask.push_back(UndefValue::get(IntTy32));
918
919 Value *SV = Builder.CreateShuffleVector(Builder.CreateBitCast(Op0, ShufTy),
920 Builder.CreateBitCast(Op1, ShufTy),
921 ConstantVector::get(ShuffleMask));
922 return Builder.CreateBitCast(SV, II.getType());
923 }
924
925 // See if we're dealing with constant values.
926 Constant *C0 = dyn_cast<Constant>(Op0);
927 Constant *C1 = dyn_cast<Constant>(Op1);
928 ConstantInt *CI00 =
Andrea Di Biagiof3fd3162016-09-07 12:47:53 +0000929 C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0))
Simon Pilgrim216b1bf2015-10-17 11:40:05 +0000930 : nullptr;
931 ConstantInt *CI10 =
Andrea Di Biagiof3fd3162016-09-07 12:47:53 +0000932 C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0))
Simon Pilgrim216b1bf2015-10-17 11:40:05 +0000933 : nullptr;
934
935 // Constant Fold - insert bottom Length bits starting at the Index'th bit.
936 if (CI00 && CI10) {
937 APInt V00 = CI00->getValue();
938 APInt V10 = CI10->getValue();
939 APInt Mask = APInt::getLowBitsSet(64, Length).shl(Index);
940 V00 = V00 & ~Mask;
941 V10 = V10.zextOrTrunc(Length).zextOrTrunc(64).shl(Index);
942 APInt Val = V00 | V10;
943 Type *IntTy64 = Type::getInt64Ty(II.getContext());
944 Constant *Args[] = {ConstantInt::get(IntTy64, Val.getZExtValue()),
945 UndefValue::get(IntTy64)};
946 return ConstantVector::get(Args);
947 }
948
949 // If we were an INSERTQ call, we'll save demanded elements if we convert to
950 // INSERTQI.
951 if (II.getIntrinsicID() == Intrinsic::x86_sse4a_insertq) {
952 Type *IntTy8 = Type::getInt8Ty(II.getContext());
953 Constant *CILength = ConstantInt::get(IntTy8, Length, false);
954 Constant *CIIndex = ConstantInt::get(IntTy8, Index, false);
955
956 Value *Args[] = {Op0, Op1, CILength, CIIndex};
Sanjay Patelaf674fb2015-12-14 17:24:23 +0000957 Module *M = II.getModule();
Simon Pilgrim216b1bf2015-10-17 11:40:05 +0000958 Value *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_insertqi);
959 return Builder.CreateCall(F, Args);
960 }
961
962 return nullptr;
963}
964
Simon Pilgrimc0c56e72016-04-24 17:00:34 +0000965/// Attempt to convert pshufb* to shufflevector if the mask is constant.
966static Value *simplifyX86pshufb(const IntrinsicInst &II,
967 InstCombiner::BuilderTy &Builder) {
Simon Pilgrimbf60cc42016-04-29 21:34:54 +0000968 Constant *V = dyn_cast<Constant>(II.getArgOperand(1));
969 if (!V)
970 return nullptr;
971
Simon Pilgrime5e8c2f2016-05-01 19:26:21 +0000972 auto *VecTy = cast<VectorType>(II.getType());
973 auto *MaskEltTy = Type::getInt32Ty(II.getContext());
974 unsigned NumElts = VecTy->getNumElements();
Craig Topper9a63d7a2016-12-11 00:23:50 +0000975 assert((NumElts == 16 || NumElts == 32 || NumElts == 64) &&
Simon Pilgrimc0c56e72016-04-24 17:00:34 +0000976 "Unexpected number of elements in shuffle mask!");
Simon Pilgrimbf60cc42016-04-29 21:34:54 +0000977
Simon Pilgrime5e8c2f2016-05-01 19:26:21 +0000978 // Construct a shuffle mask from constant integers or UNDEFs.
Craig Topper9a63d7a2016-12-11 00:23:50 +0000979 Constant *Indexes[64] = {nullptr};
Simon Pilgrimc0c56e72016-04-24 17:00:34 +0000980
Simon Pilgrimbf60cc42016-04-29 21:34:54 +0000981 // Each byte in the shuffle control mask forms an index to permute the
982 // corresponding byte in the destination operand.
983 for (unsigned I = 0; I < NumElts; ++I) {
984 Constant *COp = V->getAggregateElement(I);
Simon Pilgrime5e8c2f2016-05-01 19:26:21 +0000985 if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
Simon Pilgrimbf60cc42016-04-29 21:34:54 +0000986 return nullptr;
Simon Pilgrimc0c56e72016-04-24 17:00:34 +0000987
Simon Pilgrime5e8c2f2016-05-01 19:26:21 +0000988 if (isa<UndefValue>(COp)) {
989 Indexes[I] = UndefValue::get(MaskEltTy);
990 continue;
991 }
992
Simon Pilgrimbf60cc42016-04-29 21:34:54 +0000993 int8_t Index = cast<ConstantInt>(COp)->getValue().getZExtValue();
994
995 // If the most significant bit (bit[7]) of each byte of the shuffle
996 // control mask is set, then zero is written in the result byte.
997 // The zero vector is in the right-hand side of the resulting
998 // shufflevector.
999
Simon Pilgrime5e8c2f2016-05-01 19:26:21 +00001000 // The value of each index for the high 128-bit lane is the least
1001 // significant 4 bits of the respective shuffle control byte.
1002 Index = ((Index < 0) ? NumElts : Index & 0x0F) + (I & 0xF0);
1003 Indexes[I] = ConstantInt::get(MaskEltTy, Index);
Simon Pilgrimbf60cc42016-04-29 21:34:54 +00001004 }
Simon Pilgrimc0c56e72016-04-24 17:00:34 +00001005
Simon Pilgrime5e8c2f2016-05-01 19:26:21 +00001006 auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts));
Simon Pilgrimc0c56e72016-04-24 17:00:34 +00001007 auto V1 = II.getArgOperand(0);
Simon Pilgrime5e8c2f2016-05-01 19:26:21 +00001008 auto V2 = Constant::getNullValue(VecTy);
Simon Pilgrimc0c56e72016-04-24 17:00:34 +00001009 return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
1010}
1011
Simon Pilgrim2f6097d2016-04-24 17:23:46 +00001012/// Attempt to convert vpermilvar* to shufflevector if the mask is constant.
1013static Value *simplifyX86vpermilvar(const IntrinsicInst &II,
1014 InstCombiner::BuilderTy &Builder) {
Simon Pilgrim640f9962016-04-30 07:23:30 +00001015 Constant *V = dyn_cast<Constant>(II.getArgOperand(1));
1016 if (!V)
1017 return nullptr;
Simon Pilgrim2f6097d2016-04-24 17:23:46 +00001018
Craig Topper58917f32016-12-11 01:59:36 +00001019 auto *VecTy = cast<VectorType>(II.getType());
Simon Pilgrimeeacc402016-05-01 20:22:42 +00001020 auto *MaskEltTy = Type::getInt32Ty(II.getContext());
Craig Topper58917f32016-12-11 01:59:36 +00001021 unsigned NumElts = VecTy->getVectorNumElements();
1022 bool IsPD = VecTy->getScalarType()->isDoubleTy();
1023 unsigned NumLaneElts = IsPD ? 2 : 4;
1024 assert(NumElts == 16 || NumElts == 8 || NumElts == 4 || NumElts == 2);
Simon Pilgrim2f6097d2016-04-24 17:23:46 +00001025
Simon Pilgrimeeacc402016-05-01 20:22:42 +00001026 // Construct a shuffle mask from constant integers or UNDEFs.
Craig Topper58917f32016-12-11 01:59:36 +00001027 Constant *Indexes[16] = {nullptr};
Simon Pilgrim640f9962016-04-30 07:23:30 +00001028
1029 // The intrinsics only read one or two bits, clear the rest.
Simon Pilgrimeeacc402016-05-01 20:22:42 +00001030 for (unsigned I = 0; I < NumElts; ++I) {
Simon Pilgrim640f9962016-04-30 07:23:30 +00001031 Constant *COp = V->getAggregateElement(I);
Simon Pilgrimeeacc402016-05-01 20:22:42 +00001032 if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
Simon Pilgrim640f9962016-04-30 07:23:30 +00001033 return nullptr;
1034
Simon Pilgrimeeacc402016-05-01 20:22:42 +00001035 if (isa<UndefValue>(COp)) {
1036 Indexes[I] = UndefValue::get(MaskEltTy);
1037 continue;
1038 }
1039
1040 APInt Index = cast<ConstantInt>(COp)->getValue();
1041 Index = Index.zextOrTrunc(32).getLoBits(2);
Simon Pilgrim640f9962016-04-30 07:23:30 +00001042
1043 // The PD variants uses bit 1 to select per-lane element index, so
1044 // shift down to convert to generic shuffle mask index.
Craig Topper58917f32016-12-11 01:59:36 +00001045 if (IsPD)
Craig Topperfc947bc2017-04-18 17:14:21 +00001046 Index.lshrInPlace(1);
Simon Pilgrimeeacc402016-05-01 20:22:42 +00001047
1048 // The _256 variants are a bit trickier since the mask bits always index
1049 // into the corresponding 128 half. In order to convert to a generic
1050 // shuffle, we have to make that explicit.
Craig Topper58917f32016-12-11 01:59:36 +00001051 Index += APInt(32, (I / NumLaneElts) * NumLaneElts);
Simon Pilgrimeeacc402016-05-01 20:22:42 +00001052
1053 Indexes[I] = ConstantInt::get(MaskEltTy, Index);
Simon Pilgrim2f6097d2016-04-24 17:23:46 +00001054 }
1055
Simon Pilgrimeeacc402016-05-01 20:22:42 +00001056 auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts));
Simon Pilgrim2f6097d2016-04-24 17:23:46 +00001057 auto V1 = II.getArgOperand(0);
1058 auto V2 = UndefValue::get(V1->getType());
1059 return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
1060}
1061
Simon Pilgrim8cddf8b2016-05-01 16:41:22 +00001062/// Attempt to convert vpermd/vpermps to shufflevector if the mask is constant.
1063static Value *simplifyX86vpermv(const IntrinsicInst &II,
1064 InstCombiner::BuilderTy &Builder) {
1065 auto *V = dyn_cast<Constant>(II.getArgOperand(1));
1066 if (!V)
1067 return nullptr;
1068
Simon Pilgrimca140b12016-05-01 20:43:02 +00001069 auto *VecTy = cast<VectorType>(II.getType());
1070 auto *MaskEltTy = Type::getInt32Ty(II.getContext());
Simon Pilgrim8cddf8b2016-05-01 16:41:22 +00001071 unsigned Size = VecTy->getNumElements();
Craig Toppere3280452016-12-25 23:58:57 +00001072 assert((Size == 4 || Size == 8 || Size == 16 || Size == 32 || Size == 64) &&
1073 "Unexpected shuffle mask size");
Simon Pilgrim8cddf8b2016-05-01 16:41:22 +00001074
Simon Pilgrimca140b12016-05-01 20:43:02 +00001075 // Construct a shuffle mask from constant integers or UNDEFs.
Craig Toppere3280452016-12-25 23:58:57 +00001076 Constant *Indexes[64] = {nullptr};
Simon Pilgrim8cddf8b2016-05-01 16:41:22 +00001077
1078 for (unsigned I = 0; I < Size; ++I) {
1079 Constant *COp = V->getAggregateElement(I);
Simon Pilgrimca140b12016-05-01 20:43:02 +00001080 if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
Simon Pilgrim8cddf8b2016-05-01 16:41:22 +00001081 return nullptr;
1082
Simon Pilgrimca140b12016-05-01 20:43:02 +00001083 if (isa<UndefValue>(COp)) {
1084 Indexes[I] = UndefValue::get(MaskEltTy);
1085 continue;
1086 }
1087
Craig Toppere3280452016-12-25 23:58:57 +00001088 uint32_t Index = cast<ConstantInt>(COp)->getZExtValue();
1089 Index &= Size - 1;
Simon Pilgrimca140b12016-05-01 20:43:02 +00001090 Indexes[I] = ConstantInt::get(MaskEltTy, Index);
Simon Pilgrim8cddf8b2016-05-01 16:41:22 +00001091 }
1092
Simon Pilgrimca140b12016-05-01 20:43:02 +00001093 auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, Size));
Simon Pilgrim8cddf8b2016-05-01 16:41:22 +00001094 auto V1 = II.getArgOperand(0);
1095 auto V2 = UndefValue::get(VecTy);
1096 return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
1097}
1098
Sanjay Patelccf5f242015-03-20 21:47:56 +00001099/// The shuffle mask for a perm2*128 selects any two halves of two 256-bit
1100/// source vectors, unless a zero bit is set. If a zero bit is set,
1101/// then ignore that half of the mask and clear that half of the vector.
Sanjay Patel6038d3e2016-01-29 23:27:03 +00001102static Value *simplifyX86vperm2(const IntrinsicInst &II,
Sanjay Patelccf5f242015-03-20 21:47:56 +00001103 InstCombiner::BuilderTy &Builder) {
Sanjay Patel03c03f52016-01-28 00:03:16 +00001104 auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2));
1105 if (!CInt)
1106 return nullptr;
Sanjay Patelccf5f242015-03-20 21:47:56 +00001107
Sanjay Patel03c03f52016-01-28 00:03:16 +00001108 VectorType *VecTy = cast<VectorType>(II.getType());
1109 ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy);
Sanjay Patel43a87fd2015-03-24 20:36:42 +00001110
Sanjay Patel03c03f52016-01-28 00:03:16 +00001111 // The immediate permute control byte looks like this:
1112 // [1:0] - select 128 bits from sources for low half of destination
1113 // [2] - ignore
1114 // [3] - zero low half of destination
1115 // [5:4] - select 128 bits from sources for high half of destination
1116 // [6] - ignore
1117 // [7] - zero high half of destination
Sanjay Patel43a87fd2015-03-24 20:36:42 +00001118
Sanjay Patel03c03f52016-01-28 00:03:16 +00001119 uint8_t Imm = CInt->getZExtValue();
Sanjay Patel43a87fd2015-03-24 20:36:42 +00001120
Sanjay Patel03c03f52016-01-28 00:03:16 +00001121 bool LowHalfZero = Imm & 0x08;
1122 bool HighHalfZero = Imm & 0x80;
Sanjay Patel43a87fd2015-03-24 20:36:42 +00001123
Sanjay Patel03c03f52016-01-28 00:03:16 +00001124 // If both zero mask bits are set, this was just a weird way to
1125 // generate a zero vector.
1126 if (LowHalfZero && HighHalfZero)
1127 return ZeroVector;
Sanjay Patel43a87fd2015-03-24 20:36:42 +00001128
Sanjay Patel03c03f52016-01-28 00:03:16 +00001129 // If 0 or 1 zero mask bits are set, this is a simple shuffle.
1130 unsigned NumElts = VecTy->getNumElements();
1131 unsigned HalfSize = NumElts / 2;
Craig Topper99d1eab2016-06-12 00:41:19 +00001132 SmallVector<uint32_t, 8> ShuffleMask(NumElts);
Simon Pilgrim54fcd622015-07-25 20:41:00 +00001133
Sanjay Patel03c03f52016-01-28 00:03:16 +00001134 // The high bit of the selection field chooses the 1st or 2nd operand.
1135 bool LowInputSelect = Imm & 0x02;
1136 bool HighInputSelect = Imm & 0x20;
Sanjay Patelccf5f242015-03-20 21:47:56 +00001137
Sanjay Patel03c03f52016-01-28 00:03:16 +00001138 // The low bit of the selection field chooses the low or high half
1139 // of the selected operand.
1140 bool LowHalfSelect = Imm & 0x01;
1141 bool HighHalfSelect = Imm & 0x10;
Simon Pilgrim54fcd622015-07-25 20:41:00 +00001142
Sanjay Patel03c03f52016-01-28 00:03:16 +00001143 // Determine which operand(s) are actually in use for this instruction.
1144 Value *V0 = LowInputSelect ? II.getArgOperand(1) : II.getArgOperand(0);
1145 Value *V1 = HighInputSelect ? II.getArgOperand(1) : II.getArgOperand(0);
Simon Pilgrim54fcd622015-07-25 20:41:00 +00001146
Sanjay Patel03c03f52016-01-28 00:03:16 +00001147 // If needed, replace operands based on zero mask.
1148 V0 = LowHalfZero ? ZeroVector : V0;
1149 V1 = HighHalfZero ? ZeroVector : V1;
Sanjay Patelccf5f242015-03-20 21:47:56 +00001150
Sanjay Patel03c03f52016-01-28 00:03:16 +00001151 // Permute low half of result.
1152 unsigned StartIndex = LowHalfSelect ? HalfSize : 0;
1153 for (unsigned i = 0; i < HalfSize; ++i)
1154 ShuffleMask[i] = StartIndex + i;
Sanjay Patel43a87fd2015-03-24 20:36:42 +00001155
Sanjay Patel03c03f52016-01-28 00:03:16 +00001156 // Permute high half of result.
1157 StartIndex = HighHalfSelect ? HalfSize : 0;
1158 StartIndex += NumElts;
1159 for (unsigned i = 0; i < HalfSize; ++i)
1160 ShuffleMask[i + HalfSize] = StartIndex + i;
1161
1162 return Builder.CreateShuffleVector(V0, V1, ShuffleMask);
Sanjay Patelccf5f242015-03-20 21:47:56 +00001163}
1164
Simon Pilgrim1d1c56e22015-10-11 14:38:34 +00001165/// Decode XOP integer vector comparison intrinsics.
Sanjay Patel6038d3e2016-01-29 23:27:03 +00001166static Value *simplifyX86vpcom(const IntrinsicInst &II,
Sanjay Patelf9f5d3c2016-01-29 23:14:58 +00001167 InstCombiner::BuilderTy &Builder,
1168 bool IsSigned) {
Simon Pilgrim1d1c56e22015-10-11 14:38:34 +00001169 if (auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2))) {
1170 uint64_t Imm = CInt->getZExtValue() & 0x7;
1171 VectorType *VecTy = cast<VectorType>(II.getType());
1172 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1173
1174 switch (Imm) {
1175 case 0x0:
1176 Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1177 break;
1178 case 0x1:
1179 Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1180 break;
1181 case 0x2:
1182 Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1183 break;
1184 case 0x3:
1185 Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
1186 break;
1187 case 0x4:
1188 Pred = ICmpInst::ICMP_EQ; break;
1189 case 0x5:
1190 Pred = ICmpInst::ICMP_NE; break;
1191 case 0x6:
1192 return ConstantInt::getSigned(VecTy, 0); // FALSE
1193 case 0x7:
1194 return ConstantInt::getSigned(VecTy, -1); // TRUE
1195 }
1196
Sanjay Patelf9f5d3c2016-01-29 23:14:58 +00001197 if (Value *Cmp = Builder.CreateICmp(Pred, II.getArgOperand(0),
1198 II.getArgOperand(1)))
Simon Pilgrim1d1c56e22015-10-11 14:38:34 +00001199 return Builder.CreateSExtOrTrunc(Cmp, VecTy);
1200 }
1201 return nullptr;
1202}
1203
Craig Toppere3280452016-12-25 23:58:57 +00001204// Emit a select instruction and appropriate bitcasts to help simplify
1205// masked intrinsics.
1206static Value *emitX86MaskSelect(Value *Mask, Value *Op0, Value *Op1,
1207 InstCombiner::BuilderTy &Builder) {
Craig Topper99163632016-12-30 23:06:28 +00001208 unsigned VWidth = Op0->getType()->getVectorNumElements();
1209
1210 // If the mask is all ones we don't need the select. But we need to check
1211 // only the bit thats will be used in case VWidth is less than 8.
1212 if (auto *C = dyn_cast<ConstantInt>(Mask))
1213 if (C->getValue().zextOrTrunc(VWidth).isAllOnesValue())
1214 return Op0;
1215
Craig Toppere3280452016-12-25 23:58:57 +00001216 auto *MaskTy = VectorType::get(Builder.getInt1Ty(),
1217 cast<IntegerType>(Mask->getType())->getBitWidth());
1218 Mask = Builder.CreateBitCast(Mask, MaskTy);
1219
1220 // If we have less than 8 elements, then the starting mask was an i8 and
1221 // we need to extract down to the right number of elements.
Craig Toppere3280452016-12-25 23:58:57 +00001222 if (VWidth < 8) {
1223 uint32_t Indices[4];
1224 for (unsigned i = 0; i != VWidth; ++i)
1225 Indices[i] = i;
1226 Mask = Builder.CreateShuffleVector(Mask, Mask,
1227 makeArrayRef(Indices, VWidth),
1228 "extract");
1229 }
1230
1231 return Builder.CreateSelect(Mask, Op0, Op1);
1232}
1233
Sanjay Patel0069f562016-01-31 16:35:23 +00001234static Value *simplifyMinnumMaxnum(const IntrinsicInst &II) {
1235 Value *Arg0 = II.getArgOperand(0);
1236 Value *Arg1 = II.getArgOperand(1);
1237
1238 // fmin(x, x) -> x
1239 if (Arg0 == Arg1)
1240 return Arg0;
1241
1242 const auto *C1 = dyn_cast<ConstantFP>(Arg1);
1243
1244 // fmin(x, nan) -> x
1245 if (C1 && C1->isNaN())
1246 return Arg0;
1247
1248 // This is the value because if undef were NaN, we would return the other
1249 // value and cannot return a NaN unless both operands are.
1250 //
1251 // fmin(undef, x) -> x
1252 if (isa<UndefValue>(Arg0))
1253 return Arg1;
1254
1255 // fmin(x, undef) -> x
1256 if (isa<UndefValue>(Arg1))
1257 return Arg0;
1258
1259 Value *X = nullptr;
1260 Value *Y = nullptr;
1261 if (II.getIntrinsicID() == Intrinsic::minnum) {
1262 // fmin(x, fmin(x, y)) -> fmin(x, y)
1263 // fmin(y, fmin(x, y)) -> fmin(x, y)
1264 if (match(Arg1, m_FMin(m_Value(X), m_Value(Y)))) {
1265 if (Arg0 == X || Arg0 == Y)
1266 return Arg1;
1267 }
1268
1269 // fmin(fmin(x, y), x) -> fmin(x, y)
1270 // fmin(fmin(x, y), y) -> fmin(x, y)
1271 if (match(Arg0, m_FMin(m_Value(X), m_Value(Y)))) {
1272 if (Arg1 == X || Arg1 == Y)
1273 return Arg0;
1274 }
1275
1276 // TODO: fmin(nnan x, inf) -> x
1277 // TODO: fmin(nnan ninf x, flt_max) -> x
1278 if (C1 && C1->isInfinity()) {
1279 // fmin(x, -inf) -> -inf
1280 if (C1->isNegative())
1281 return Arg1;
1282 }
1283 } else {
1284 assert(II.getIntrinsicID() == Intrinsic::maxnum);
1285 // fmax(x, fmax(x, y)) -> fmax(x, y)
1286 // fmax(y, fmax(x, y)) -> fmax(x, y)
1287 if (match(Arg1, m_FMax(m_Value(X), m_Value(Y)))) {
1288 if (Arg0 == X || Arg0 == Y)
1289 return Arg1;
1290 }
1291
1292 // fmax(fmax(x, y), x) -> fmax(x, y)
1293 // fmax(fmax(x, y), y) -> fmax(x, y)
1294 if (match(Arg0, m_FMax(m_Value(X), m_Value(Y)))) {
1295 if (Arg1 == X || Arg1 == Y)
1296 return Arg0;
1297 }
1298
1299 // TODO: fmax(nnan x, -inf) -> x
1300 // TODO: fmax(nnan ninf x, -flt_max) -> x
1301 if (C1 && C1->isInfinity()) {
1302 // fmax(x, inf) -> inf
1303 if (!C1->isNegative())
1304 return Arg1;
1305 }
1306 }
1307 return nullptr;
1308}
1309
David Majnemer666aa942016-07-14 06:58:42 +00001310static bool maskIsAllOneOrUndef(Value *Mask) {
1311 auto *ConstMask = dyn_cast<Constant>(Mask);
1312 if (!ConstMask)
1313 return false;
1314 if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
1315 return true;
1316 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
1317 ++I) {
1318 if (auto *MaskElt = ConstMask->getAggregateElement(I))
1319 if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
1320 continue;
1321 return false;
1322 }
1323 return true;
1324}
1325
Sanjay Patelb695c552016-02-01 17:00:10 +00001326static Value *simplifyMaskedLoad(const IntrinsicInst &II,
1327 InstCombiner::BuilderTy &Builder) {
David Majnemer666aa942016-07-14 06:58:42 +00001328 // If the mask is all ones or undefs, this is a plain vector load of the 1st
1329 // argument.
1330 if (maskIsAllOneOrUndef(II.getArgOperand(2))) {
Sanjay Patelb695c552016-02-01 17:00:10 +00001331 Value *LoadPtr = II.getArgOperand(0);
1332 unsigned Alignment = cast<ConstantInt>(II.getArgOperand(1))->getZExtValue();
1333 return Builder.CreateAlignedLoad(LoadPtr, Alignment, "unmaskedload");
1334 }
1335
1336 return nullptr;
1337}
1338
Sanjay Patel04f792b2016-02-01 19:39:52 +00001339static Instruction *simplifyMaskedStore(IntrinsicInst &II, InstCombiner &IC) {
1340 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
1341 if (!ConstMask)
1342 return nullptr;
1343
1344 // If the mask is all zeros, this instruction does nothing.
1345 if (ConstMask->isNullValue())
Sanjay Patel4b198802016-02-01 22:23:39 +00001346 return IC.eraseInstFromFunction(II);
Sanjay Patel04f792b2016-02-01 19:39:52 +00001347
1348 // If the mask is all ones, this is a plain vector store of the 1st argument.
1349 if (ConstMask->isAllOnesValue()) {
1350 Value *StorePtr = II.getArgOperand(1);
1351 unsigned Alignment = cast<ConstantInt>(II.getArgOperand(2))->getZExtValue();
1352 return new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment);
1353 }
1354
1355 return nullptr;
1356}
1357
Sanjay Patel103ab7d2016-02-01 22:10:26 +00001358static Instruction *simplifyMaskedGather(IntrinsicInst &II, InstCombiner &IC) {
1359 // If the mask is all zeros, return the "passthru" argument of the gather.
1360 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(2));
1361 if (ConstMask && ConstMask->isNullValue())
Sanjay Patel4b198802016-02-01 22:23:39 +00001362 return IC.replaceInstUsesWith(II, II.getArgOperand(3));
Sanjay Patel103ab7d2016-02-01 22:10:26 +00001363
1364 return nullptr;
1365}
1366
1367static Instruction *simplifyMaskedScatter(IntrinsicInst &II, InstCombiner &IC) {
1368 // If the mask is all zeros, a scatter does nothing.
1369 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
1370 if (ConstMask && ConstMask->isNullValue())
Sanjay Patel4b198802016-02-01 22:23:39 +00001371 return IC.eraseInstFromFunction(II);
Sanjay Patel103ab7d2016-02-01 22:10:26 +00001372
1373 return nullptr;
1374}
1375
Amaury Sechet763c59d2016-08-18 20:43:50 +00001376static Instruction *foldCttzCtlz(IntrinsicInst &II, InstCombiner &IC) {
1377 assert((II.getIntrinsicID() == Intrinsic::cttz ||
1378 II.getIntrinsicID() == Intrinsic::ctlz) &&
1379 "Expected cttz or ctlz intrinsic");
Sanjay Patel8e3ab172016-08-05 22:42:46 +00001380 Value *Op0 = II.getArgOperand(0);
Sanjay Patel8e3ab172016-08-05 22:42:46 +00001381
Craig Topper8205a1a2017-05-24 16:53:07 +00001382 KnownBits Known = IC.computeKnownBits(Op0, 0, &II);
Sanjay Patel8e3ab172016-08-05 22:42:46 +00001383
1384 // Create a mask for bits above (ctlz) or below (cttz) the first known one.
1385 bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz;
Craig Topper8df66c62017-05-12 17:20:30 +00001386 unsigned PossibleZeros = IsTZ ? Known.countMaxTrailingZeros()
1387 : Known.countMaxLeadingZeros();
1388 unsigned DefiniteZeros = IsTZ ? Known.countMinTrailingZeros()
1389 : Known.countMinLeadingZeros();
Sanjay Patel8e3ab172016-08-05 22:42:46 +00001390
1391 // If all bits above (ctlz) or below (cttz) the first known one are known
1392 // zero, this value is constant.
1393 // FIXME: This should be in InstSimplify because we're replacing an
1394 // instruction with a constant.
Craig Topper9474e9b2017-04-27 04:51:25 +00001395 if (PossibleZeros == DefiniteZeros) {
Craig Topper0799ff92017-06-03 18:50:32 +00001396 auto *C = ConstantInt::get(Op0->getType(), DefiniteZeros);
Amaury Sechet763c59d2016-08-18 20:43:50 +00001397 return IC.replaceInstUsesWith(II, C);
1398 }
1399
1400 // If the input to cttz/ctlz is known to be non-zero,
1401 // then change the 'ZeroIsUndef' parameter to 'true'
1402 // because we know the zero behavior can't affect the result.
Craig Topper73ba1c82017-06-07 07:40:37 +00001403 if (!Known.One.isNullValue() ||
Craig Topperd45185f2017-05-26 18:23:57 +00001404 isKnownNonZero(Op0, IC.getDataLayout(), 0, &IC.getAssumptionCache(), &II,
1405 &IC.getDominatorTree())) {
Amaury Sechet763c59d2016-08-18 20:43:50 +00001406 if (!match(II.getArgOperand(1), m_One())) {
1407 II.setOperand(1, IC.Builder->getTrue());
1408 return &II;
1409 }
1410 }
Sanjay Patel8e3ab172016-08-05 22:42:46 +00001411
Craig Topper5b173f22017-06-21 16:32:35 +00001412 // Add range metadata since known bits can't completely reflect what we know.
1413 // TODO: Handle splat vectors.
1414 auto *IT = dyn_cast<IntegerType>(Op0->getType());
1415 if (IT && IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
1416 Metadata *LowAndHigh[] = {
1417 ConstantAsMetadata::get(ConstantInt::get(IT, DefiniteZeros)),
1418 ConstantAsMetadata::get(ConstantInt::get(IT, PossibleZeros + 1))};
1419 II.setMetadata(LLVMContext::MD_range,
1420 MDNode::get(II.getContext(), LowAndHigh));
1421 return &II;
1422 }
1423
1424 return nullptr;
1425}
1426
1427static Instruction *foldCtpop(IntrinsicInst &II, InstCombiner &IC) {
1428 assert(II.getIntrinsicID() == Intrinsic::ctpop &&
1429 "Expected ctpop intrinsic");
1430 Value *Op0 = II.getArgOperand(0);
1431 // FIXME: Try to simplify vectors of integers.
1432 auto *IT = dyn_cast<IntegerType>(Op0->getType());
1433 if (!IT)
1434 return nullptr;
1435
1436 unsigned BitWidth = IT->getBitWidth();
1437 KnownBits Known(BitWidth);
1438 IC.computeKnownBits(Op0, Known, 0, &II);
1439
1440 unsigned MinCount = Known.countMinPopulation();
1441 unsigned MaxCount = Known.countMaxPopulation();
1442
1443 // Add range metadata since known bits can't completely reflect what we know.
1444 if (IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
1445 Metadata *LowAndHigh[] = {
1446 ConstantAsMetadata::get(ConstantInt::get(IT, MinCount)),
1447 ConstantAsMetadata::get(ConstantInt::get(IT, MaxCount + 1))};
1448 II.setMetadata(LLVMContext::MD_range,
1449 MDNode::get(II.getContext(), LowAndHigh));
1450 return &II;
1451 }
1452
Sanjay Patel8e3ab172016-08-05 22:42:46 +00001453 return nullptr;
1454}
1455
Sanjay Patel1ace9932016-02-26 21:04:14 +00001456// TODO: If the x86 backend knew how to convert a bool vector mask back to an
1457// XMM register mask efficiently, we could transform all x86 masked intrinsics
1458// to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
Sanjay Patel98a71502016-02-29 23:16:48 +00001459static Instruction *simplifyX86MaskedLoad(IntrinsicInst &II, InstCombiner &IC) {
1460 Value *Ptr = II.getOperand(0);
1461 Value *Mask = II.getOperand(1);
Sanjay Patel5e5056d2016-04-12 23:16:23 +00001462 Constant *ZeroVec = Constant::getNullValue(II.getType());
Sanjay Patel98a71502016-02-29 23:16:48 +00001463
1464 // Special case a zero mask since that's not a ConstantDataVector.
Sanjay Patel5e5056d2016-04-12 23:16:23 +00001465 // This masked load instruction creates a zero vector.
Sanjay Patel98a71502016-02-29 23:16:48 +00001466 if (isa<ConstantAggregateZero>(Mask))
Sanjay Patel5e5056d2016-04-12 23:16:23 +00001467 return IC.replaceInstUsesWith(II, ZeroVec);
Sanjay Patel98a71502016-02-29 23:16:48 +00001468
1469 auto *ConstMask = dyn_cast<ConstantDataVector>(Mask);
1470 if (!ConstMask)
1471 return nullptr;
1472
1473 // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic
1474 // to allow target-independent optimizations.
1475
1476 // First, cast the x86 intrinsic scalar pointer to a vector pointer to match
1477 // the LLVM intrinsic definition for the pointer argument.
1478 unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace();
1479 PointerType *VecPtrTy = PointerType::get(II.getType(), AddrSpace);
1480 Value *PtrCast = IC.Builder->CreateBitCast(Ptr, VecPtrTy, "castvec");
1481
1482 // Second, convert the x86 XMM integer vector mask to a vector of bools based
1483 // on each element's most significant bit (the sign bit).
1484 Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask);
1485
Sanjay Patel5e5056d2016-04-12 23:16:23 +00001486 // The pass-through vector for an x86 masked load is a zero vector.
1487 CallInst *NewMaskedLoad =
1488 IC.Builder->CreateMaskedLoad(PtrCast, 1, BoolMask, ZeroVec);
Sanjay Patel98a71502016-02-29 23:16:48 +00001489 return IC.replaceInstUsesWith(II, NewMaskedLoad);
1490}
1491
1492// TODO: If the x86 backend knew how to convert a bool vector mask back to an
1493// XMM register mask efficiently, we could transform all x86 masked intrinsics
1494// to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
Sanjay Patel1ace9932016-02-26 21:04:14 +00001495static bool simplifyX86MaskedStore(IntrinsicInst &II, InstCombiner &IC) {
1496 Value *Ptr = II.getOperand(0);
1497 Value *Mask = II.getOperand(1);
1498 Value *Vec = II.getOperand(2);
1499
1500 // Special case a zero mask since that's not a ConstantDataVector:
1501 // this masked store instruction does nothing.
1502 if (isa<ConstantAggregateZero>(Mask)) {
1503 IC.eraseInstFromFunction(II);
1504 return true;
1505 }
1506
Sanjay Patelc4acbae2016-03-12 15:16:59 +00001507 // The SSE2 version is too weird (eg, unaligned but non-temporal) to do
1508 // anything else at this level.
1509 if (II.getIntrinsicID() == Intrinsic::x86_sse2_maskmov_dqu)
1510 return false;
1511
Sanjay Patel1ace9932016-02-26 21:04:14 +00001512 auto *ConstMask = dyn_cast<ConstantDataVector>(Mask);
1513 if (!ConstMask)
1514 return false;
1515
1516 // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic
1517 // to allow target-independent optimizations.
1518
1519 // First, cast the x86 intrinsic scalar pointer to a vector pointer to match
1520 // the LLVM intrinsic definition for the pointer argument.
1521 unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace();
1522 PointerType *VecPtrTy = PointerType::get(Vec->getType(), AddrSpace);
Sanjay Patel1ace9932016-02-26 21:04:14 +00001523 Value *PtrCast = IC.Builder->CreateBitCast(Ptr, VecPtrTy, "castvec");
1524
1525 // Second, convert the x86 XMM integer vector mask to a vector of bools based
1526 // on each element's most significant bit (the sign bit).
1527 Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask);
1528
1529 IC.Builder->CreateMaskedStore(Vec, PtrCast, 1, BoolMask);
1530
1531 // 'Replace uses' doesn't work for stores. Erase the original masked store.
1532 IC.eraseInstFromFunction(II);
1533 return true;
1534}
1535
Matt Arsenaultcdb468c2017-02-27 23:08:49 +00001536// Constant fold llvm.amdgcn.fmed3 intrinsics for standard inputs.
1537//
1538// A single NaN input is folded to minnum, so we rely on that folding for
1539// handling NaNs.
1540static APFloat fmed3AMDGCN(const APFloat &Src0, const APFloat &Src1,
1541 const APFloat &Src2) {
1542 APFloat Max3 = maxnum(maxnum(Src0, Src1), Src2);
1543
1544 APFloat::cmpResult Cmp0 = Max3.compare(Src0);
1545 assert(Cmp0 != APFloat::cmpUnordered && "nans handled separately");
1546 if (Cmp0 == APFloat::cmpEqual)
1547 return maxnum(Src1, Src2);
1548
1549 APFloat::cmpResult Cmp1 = Max3.compare(Src1);
1550 assert(Cmp1 != APFloat::cmpUnordered && "nans handled separately");
1551 if (Cmp1 == APFloat::cmpEqual)
1552 return maxnum(Src0, Src2);
1553
1554 return maxnum(Src0, Src1);
1555}
1556
Arnaud A. de Grandmaison333ef382016-05-10 09:24:49 +00001557// Returns true iff the 2 intrinsics have the same operands, limiting the
1558// comparison to the first NumOperands.
1559static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E,
1560 unsigned NumOperands) {
1561 assert(I.getNumArgOperands() >= NumOperands && "Not enough operands");
1562 assert(E.getNumArgOperands() >= NumOperands && "Not enough operands");
1563 for (unsigned i = 0; i < NumOperands; i++)
1564 if (I.getArgOperand(i) != E.getArgOperand(i))
1565 return false;
1566 return true;
1567}
1568
1569// Remove trivially empty start/end intrinsic ranges, i.e. a start
1570// immediately followed by an end (ignoring debuginfo or other
1571// start/end intrinsics in between). As this handles only the most trivial
1572// cases, tracking the nesting level is not needed:
1573//
1574// call @llvm.foo.start(i1 0) ; &I
1575// call @llvm.foo.start(i1 0)
1576// call @llvm.foo.end(i1 0) ; This one will not be skipped: it will be removed
1577// call @llvm.foo.end(i1 0)
1578static bool removeTriviallyEmptyRange(IntrinsicInst &I, unsigned StartID,
1579 unsigned EndID, InstCombiner &IC) {
1580 assert(I.getIntrinsicID() == StartID &&
1581 "Start intrinsic does not have expected ID");
1582 BasicBlock::iterator BI(I), BE(I.getParent()->end());
1583 for (++BI; BI != BE; ++BI) {
1584 if (auto *E = dyn_cast<IntrinsicInst>(BI)) {
1585 if (isa<DbgInfoIntrinsic>(E) || E->getIntrinsicID() == StartID)
1586 continue;
1587 if (E->getIntrinsicID() == EndID &&
1588 haveSameOperands(I, *E, E->getNumArgOperands())) {
1589 IC.eraseInstFromFunction(*E);
1590 IC.eraseInstFromFunction(I);
1591 return true;
1592 }
1593 }
1594 break;
1595 }
1596
1597 return false;
1598}
1599
Justin Lebar698c31b2017-01-27 00:58:58 +00001600// Convert NVVM intrinsics to target-generic LLVM code where possible.
1601static Instruction *SimplifyNVVMIntrinsic(IntrinsicInst *II, InstCombiner &IC) {
1602 // Each NVVM intrinsic we can simplify can be replaced with one of:
1603 //
1604 // * an LLVM intrinsic,
1605 // * an LLVM cast operation,
1606 // * an LLVM binary operation, or
1607 // * ad-hoc LLVM IR for the particular operation.
1608
1609 // Some transformations are only valid when the module's
1610 // flush-denormals-to-zero (ftz) setting is true/false, whereas other
1611 // transformations are valid regardless of the module's ftz setting.
1612 enum FtzRequirementTy {
1613 FTZ_Any, // Any ftz setting is ok.
1614 FTZ_MustBeOn, // Transformation is valid only if ftz is on.
1615 FTZ_MustBeOff, // Transformation is valid only if ftz is off.
1616 };
1617 // Classes of NVVM intrinsics that can't be replaced one-to-one with a
1618 // target-generic intrinsic, cast op, or binary op but that we can nonetheless
1619 // simplify.
1620 enum SpecialCase {
1621 SPC_Reciprocal,
1622 };
1623
1624 // SimplifyAction is a poor-man's variant (plus an additional flag) that
1625 // represents how to replace an NVVM intrinsic with target-generic LLVM IR.
1626 struct SimplifyAction {
1627 // Invariant: At most one of these Optionals has a value.
1628 Optional<Intrinsic::ID> IID;
1629 Optional<Instruction::CastOps> CastOp;
1630 Optional<Instruction::BinaryOps> BinaryOp;
1631 Optional<SpecialCase> Special;
1632
1633 FtzRequirementTy FtzRequirement = FTZ_Any;
1634
1635 SimplifyAction() = default;
1636
1637 SimplifyAction(Intrinsic::ID IID, FtzRequirementTy FtzReq)
1638 : IID(IID), FtzRequirement(FtzReq) {}
1639
1640 // Cast operations don't have anything to do with FTZ, so we skip that
1641 // argument.
1642 SimplifyAction(Instruction::CastOps CastOp) : CastOp(CastOp) {}
1643
1644 SimplifyAction(Instruction::BinaryOps BinaryOp, FtzRequirementTy FtzReq)
1645 : BinaryOp(BinaryOp), FtzRequirement(FtzReq) {}
1646
1647 SimplifyAction(SpecialCase Special, FtzRequirementTy FtzReq)
1648 : Special(Special), FtzRequirement(FtzReq) {}
1649 };
1650
1651 // Try to generate a SimplifyAction describing how to replace our
1652 // IntrinsicInstr with target-generic LLVM IR.
1653 const SimplifyAction Action = [II]() -> SimplifyAction {
1654 switch (II->getIntrinsicID()) {
1655
1656 // NVVM intrinsics that map directly to LLVM intrinsics.
1657 case Intrinsic::nvvm_ceil_d:
1658 return {Intrinsic::ceil, FTZ_Any};
1659 case Intrinsic::nvvm_ceil_f:
1660 return {Intrinsic::ceil, FTZ_MustBeOff};
1661 case Intrinsic::nvvm_ceil_ftz_f:
1662 return {Intrinsic::ceil, FTZ_MustBeOn};
1663 case Intrinsic::nvvm_fabs_d:
1664 return {Intrinsic::fabs, FTZ_Any};
1665 case Intrinsic::nvvm_fabs_f:
1666 return {Intrinsic::fabs, FTZ_MustBeOff};
1667 case Intrinsic::nvvm_fabs_ftz_f:
1668 return {Intrinsic::fabs, FTZ_MustBeOn};
1669 case Intrinsic::nvvm_floor_d:
1670 return {Intrinsic::floor, FTZ_Any};
1671 case Intrinsic::nvvm_floor_f:
1672 return {Intrinsic::floor, FTZ_MustBeOff};
1673 case Intrinsic::nvvm_floor_ftz_f:
1674 return {Intrinsic::floor, FTZ_MustBeOn};
1675 case Intrinsic::nvvm_fma_rn_d:
1676 return {Intrinsic::fma, FTZ_Any};
1677 case Intrinsic::nvvm_fma_rn_f:
1678 return {Intrinsic::fma, FTZ_MustBeOff};
1679 case Intrinsic::nvvm_fma_rn_ftz_f:
1680 return {Intrinsic::fma, FTZ_MustBeOn};
1681 case Intrinsic::nvvm_fmax_d:
1682 return {Intrinsic::maxnum, FTZ_Any};
1683 case Intrinsic::nvvm_fmax_f:
1684 return {Intrinsic::maxnum, FTZ_MustBeOff};
1685 case Intrinsic::nvvm_fmax_ftz_f:
1686 return {Intrinsic::maxnum, FTZ_MustBeOn};
1687 case Intrinsic::nvvm_fmin_d:
1688 return {Intrinsic::minnum, FTZ_Any};
1689 case Intrinsic::nvvm_fmin_f:
1690 return {Intrinsic::minnum, FTZ_MustBeOff};
1691 case Intrinsic::nvvm_fmin_ftz_f:
1692 return {Intrinsic::minnum, FTZ_MustBeOn};
1693 case Intrinsic::nvvm_round_d:
1694 return {Intrinsic::round, FTZ_Any};
1695 case Intrinsic::nvvm_round_f:
1696 return {Intrinsic::round, FTZ_MustBeOff};
1697 case Intrinsic::nvvm_round_ftz_f:
1698 return {Intrinsic::round, FTZ_MustBeOn};
1699 case Intrinsic::nvvm_sqrt_rn_d:
1700 return {Intrinsic::sqrt, FTZ_Any};
1701 case Intrinsic::nvvm_sqrt_f:
1702 // nvvm_sqrt_f is a special case. For most intrinsics, foo_ftz_f is the
1703 // ftz version, and foo_f is the non-ftz version. But nvvm_sqrt_f adopts
1704 // the ftz-ness of the surrounding code. sqrt_rn_f and sqrt_rn_ftz_f are
1705 // the versions with explicit ftz-ness.
1706 return {Intrinsic::sqrt, FTZ_Any};
1707 case Intrinsic::nvvm_sqrt_rn_f:
1708 return {Intrinsic::sqrt, FTZ_MustBeOff};
1709 case Intrinsic::nvvm_sqrt_rn_ftz_f:
1710 return {Intrinsic::sqrt, FTZ_MustBeOn};
1711 case Intrinsic::nvvm_trunc_d:
1712 return {Intrinsic::trunc, FTZ_Any};
1713 case Intrinsic::nvvm_trunc_f:
1714 return {Intrinsic::trunc, FTZ_MustBeOff};
1715 case Intrinsic::nvvm_trunc_ftz_f:
1716 return {Intrinsic::trunc, FTZ_MustBeOn};
1717
1718 // NVVM intrinsics that map to LLVM cast operations.
1719 //
1720 // Note that llvm's target-generic conversion operators correspond to the rz
1721 // (round to zero) versions of the nvvm conversion intrinsics, even though
1722 // most everything else here uses the rn (round to nearest even) nvvm ops.
1723 case Intrinsic::nvvm_d2i_rz:
1724 case Intrinsic::nvvm_f2i_rz:
1725 case Intrinsic::nvvm_d2ll_rz:
1726 case Intrinsic::nvvm_f2ll_rz:
1727 return {Instruction::FPToSI};
1728 case Intrinsic::nvvm_d2ui_rz:
1729 case Intrinsic::nvvm_f2ui_rz:
1730 case Intrinsic::nvvm_d2ull_rz:
1731 case Intrinsic::nvvm_f2ull_rz:
1732 return {Instruction::FPToUI};
1733 case Intrinsic::nvvm_i2d_rz:
1734 case Intrinsic::nvvm_i2f_rz:
1735 case Intrinsic::nvvm_ll2d_rz:
1736 case Intrinsic::nvvm_ll2f_rz:
1737 return {Instruction::SIToFP};
1738 case Intrinsic::nvvm_ui2d_rz:
1739 case Intrinsic::nvvm_ui2f_rz:
1740 case Intrinsic::nvvm_ull2d_rz:
1741 case Intrinsic::nvvm_ull2f_rz:
1742 return {Instruction::UIToFP};
1743
1744 // NVVM intrinsics that map to LLVM binary ops.
1745 case Intrinsic::nvvm_add_rn_d:
1746 return {Instruction::FAdd, FTZ_Any};
1747 case Intrinsic::nvvm_add_rn_f:
1748 return {Instruction::FAdd, FTZ_MustBeOff};
1749 case Intrinsic::nvvm_add_rn_ftz_f:
1750 return {Instruction::FAdd, FTZ_MustBeOn};
1751 case Intrinsic::nvvm_mul_rn_d:
1752 return {Instruction::FMul, FTZ_Any};
1753 case Intrinsic::nvvm_mul_rn_f:
1754 return {Instruction::FMul, FTZ_MustBeOff};
1755 case Intrinsic::nvvm_mul_rn_ftz_f:
1756 return {Instruction::FMul, FTZ_MustBeOn};
1757 case Intrinsic::nvvm_div_rn_d:
1758 return {Instruction::FDiv, FTZ_Any};
1759 case Intrinsic::nvvm_div_rn_f:
1760 return {Instruction::FDiv, FTZ_MustBeOff};
1761 case Intrinsic::nvvm_div_rn_ftz_f:
1762 return {Instruction::FDiv, FTZ_MustBeOn};
1763
1764 // The remainder of cases are NVVM intrinsics that map to LLVM idioms, but
1765 // need special handling.
1766 //
1767 // We seem to be mising intrinsics for rcp.approx.{ftz.}f32, which is just
1768 // as well.
1769 case Intrinsic::nvvm_rcp_rn_d:
1770 return {SPC_Reciprocal, FTZ_Any};
1771 case Intrinsic::nvvm_rcp_rn_f:
1772 return {SPC_Reciprocal, FTZ_MustBeOff};
1773 case Intrinsic::nvvm_rcp_rn_ftz_f:
1774 return {SPC_Reciprocal, FTZ_MustBeOn};
1775
1776 // We do not currently simplify intrinsics that give an approximate answer.
1777 // These include:
1778 //
1779 // - nvvm_cos_approx_{f,ftz_f}
1780 // - nvvm_ex2_approx_{d,f,ftz_f}
1781 // - nvvm_lg2_approx_{d,f,ftz_f}
1782 // - nvvm_sin_approx_{f,ftz_f}
1783 // - nvvm_sqrt_approx_{f,ftz_f}
1784 // - nvvm_rsqrt_approx_{d,f,ftz_f}
1785 // - nvvm_div_approx_{ftz_d,ftz_f,f}
1786 // - nvvm_rcp_approx_ftz_d
1787 //
1788 // Ideally we'd encode them as e.g. "fast call @llvm.cos", where "fast"
1789 // means that fastmath is enabled in the intrinsic. Unfortunately only
1790 // binary operators (currently) have a fastmath bit in SelectionDAG, so this
1791 // information gets lost and we can't select on it.
1792 //
1793 // TODO: div and rcp are lowered to a binary op, so these we could in theory
1794 // lower them to "fast fdiv".
1795
1796 default:
1797 return {};
1798 }
1799 }();
1800
1801 // If Action.FtzRequirementTy is not satisfied by the module's ftz state, we
1802 // can bail out now. (Notice that in the case that IID is not an NVVM
1803 // intrinsic, we don't have to look up any module metadata, as
1804 // FtzRequirementTy will be FTZ_Any.)
1805 if (Action.FtzRequirement != FTZ_Any) {
1806 bool FtzEnabled =
1807 II->getFunction()->getFnAttribute("nvptx-f32ftz").getValueAsString() ==
1808 "true";
1809
1810 if (FtzEnabled != (Action.FtzRequirement == FTZ_MustBeOn))
1811 return nullptr;
1812 }
1813
1814 // Simplify to target-generic intrinsic.
1815 if (Action.IID) {
1816 SmallVector<Value *, 4> Args(II->arg_operands());
1817 // All the target-generic intrinsics currently of interest to us have one
1818 // type argument, equal to that of the nvvm intrinsic's argument.
Justin Lebare3ac0fb2017-01-27 01:49:39 +00001819 Type *Tys[] = {II->getArgOperand(0)->getType()};
Justin Lebar698c31b2017-01-27 00:58:58 +00001820 return CallInst::Create(
1821 Intrinsic::getDeclaration(II->getModule(), *Action.IID, Tys), Args);
1822 }
1823
1824 // Simplify to target-generic binary op.
1825 if (Action.BinaryOp)
1826 return BinaryOperator::Create(*Action.BinaryOp, II->getArgOperand(0),
1827 II->getArgOperand(1), II->getName());
1828
1829 // Simplify to target-generic cast op.
1830 if (Action.CastOp)
1831 return CastInst::Create(*Action.CastOp, II->getArgOperand(0), II->getType(),
1832 II->getName());
1833
1834 // All that's left are the special cases.
1835 if (!Action.Special)
1836 return nullptr;
1837
1838 switch (*Action.Special) {
1839 case SPC_Reciprocal:
1840 // Simplify reciprocal.
1841 return BinaryOperator::Create(
1842 Instruction::FDiv, ConstantFP::get(II->getArgOperand(0)->getType(), 1),
1843 II->getArgOperand(0), II->getName());
1844 }
Justin Lebar25ebe2d2017-01-27 02:04:07 +00001845 llvm_unreachable("All SpecialCase enumerators should be handled in switch.");
Justin Lebar698c31b2017-01-27 00:58:58 +00001846}
1847
Arnaud A. de Grandmaison333ef382016-05-10 09:24:49 +00001848Instruction *InstCombiner::visitVAStartInst(VAStartInst &I) {
1849 removeTriviallyEmptyRange(I, Intrinsic::vastart, Intrinsic::vaend, *this);
1850 return nullptr;
1851}
1852
1853Instruction *InstCombiner::visitVACopyInst(VACopyInst &I) {
1854 removeTriviallyEmptyRange(I, Intrinsic::vacopy, Intrinsic::vaend, *this);
1855 return nullptr;
1856}
1857
Sanjay Patelcd4377c2016-01-20 22:24:38 +00001858/// CallInst simplification. This mostly only handles folding of intrinsic
1859/// instructions. For normal calls, it allows visitCallSite to do the heavy
1860/// lifting.
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001861Instruction *InstCombiner::visitCallInst(CallInst &CI) {
David Majnemer15032582015-05-22 03:56:46 +00001862 auto Args = CI.arg_operands();
Andrew Kaylor647025f2017-06-09 23:18:11 +00001863 if (Value *V = SimplifyCall(&CI, CI.getCalledValue(), Args.begin(),
1864 Args.end(), SQ.getWithInstruction(&CI)))
Sanjay Patel4b198802016-02-01 22:23:39 +00001865 return replaceInstUsesWith(CI, V);
David Majnemer15032582015-05-22 03:56:46 +00001866
Justin Bogner99798402016-08-05 01:06:44 +00001867 if (isFreeCall(&CI, &TLI))
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001868 return visitFree(CI);
1869
1870 // If the caller function is nounwind, mark the call as nounwind, even if the
1871 // callee isn't.
Sanjay Patel5a470952016-08-11 15:16:06 +00001872 if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) {
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001873 CI.setDoesNotThrow();
1874 return &CI;
1875 }
Jim Grosbach7815f562012-02-03 00:07:04 +00001876
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001877 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
1878 if (!II) return visitCallSite(&CI);
Gabor Greif589a0b92010-06-24 12:58:35 +00001879
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001880 // Intrinsics cannot occur in an invoke, so handle them here instead of in
1881 // visitCallSite.
1882 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
1883 bool Changed = false;
1884
1885 // memmove/cpy/set of zero bytes is a noop.
1886 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
Chris Lattnerc663a672010-10-01 05:51:02 +00001887 if (NumBytes->isNullValue())
Sanjay Patel4b198802016-02-01 22:23:39 +00001888 return eraseInstFromFunction(CI);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001889
1890 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
1891 if (CI->getZExtValue() == 1) {
1892 // Replace the instruction with just byte operations. We would
1893 // transform other cases to loads/stores, but we don't know if
1894 // alignment is sufficient.
1895 }
1896 }
Jim Grosbach7815f562012-02-03 00:07:04 +00001897
Chris Lattnerc663a672010-10-01 05:51:02 +00001898 // No other transformations apply to volatile transfers.
1899 if (MI->isVolatile())
Craig Topperf40110f2014-04-25 05:29:35 +00001900 return nullptr;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001901
1902 // If we have a memmove and the source operation is a constant global,
1903 // then the source and dest pointers can't alias, so we can change this
1904 // into a call to memcpy.
1905 if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
1906 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
1907 if (GVSrc->isConstant()) {
Sanjay Patelaf674fb2015-12-14 17:24:23 +00001908 Module *M = CI.getModule();
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001909 Intrinsic::ID MemCpyID = Intrinsic::memcpy;
Jay Foadb804a2b2011-07-12 14:06:48 +00001910 Type *Tys[3] = { CI.getArgOperand(0)->getType(),
1911 CI.getArgOperand(1)->getType(),
1912 CI.getArgOperand(2)->getType() };
Benjamin Kramere6e19332011-07-14 17:45:39 +00001913 CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001914 Changed = true;
1915 }
1916 }
1917
1918 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
1919 // memmove(x,x,size) -> noop.
1920 if (MTI->getSource() == MTI->getDest())
Sanjay Patel4b198802016-02-01 22:23:39 +00001921 return eraseInstFromFunction(CI);
Eric Christopher7258dcd2010-04-16 23:37:20 +00001922 }
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001923
Eric Christopher7258dcd2010-04-16 23:37:20 +00001924 // If we can determine a pointer alignment that is bigger than currently
1925 // set, update the alignment.
Pete Cooper67cf9a72015-11-19 05:56:52 +00001926 if (isa<MemTransferInst>(MI)) {
1927 if (Instruction *I = SimplifyMemTransfer(MI))
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001928 return I;
1929 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
1930 if (Instruction *I = SimplifyMemSet(MSI))
1931 return I;
1932 }
Gabor Greif590d95e2010-06-24 13:42:49 +00001933
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001934 if (Changed) return II;
1935 }
Jim Grosbach7815f562012-02-03 00:07:04 +00001936
Daniel Neilson3faabbb2017-06-16 14:43:59 +00001937 if (auto *AMI = dyn_cast<ElementUnorderedAtomicMemCpyInst>(II)) {
1938 if (Constant *C = dyn_cast<Constant>(AMI->getLength()))
Igor Laevsky4b317fa2017-02-08 14:23:47 +00001939 if (C->isNullValue())
1940 return eraseInstFromFunction(*AMI);
Igor Laevsky900ffa32017-02-08 14:32:04 +00001941
Daniel Neilson3faabbb2017-06-16 14:43:59 +00001942 if (Instruction *I = SimplifyElementUnorderedAtomicMemCpy(AMI))
Igor Laevsky900ffa32017-02-08 14:32:04 +00001943 return I;
Igor Laevsky4b317fa2017-02-08 14:23:47 +00001944 }
1945
Justin Lebar698c31b2017-01-27 00:58:58 +00001946 if (Instruction *I = SimplifyNVVMIntrinsic(II, *this))
1947 return I;
1948
Sanjay Patel1c600c62016-01-20 16:41:43 +00001949 auto SimplifyDemandedVectorEltsLow = [this](Value *Op, unsigned Width,
1950 unsigned DemandedWidth) {
Simon Pilgrim61116dd2015-09-17 20:32:45 +00001951 APInt UndefElts(Width, 0);
1952 APInt DemandedElts = APInt::getLowBitsSet(Width, DemandedWidth);
1953 return SimplifyDemandedVectorElts(Op, DemandedElts, UndefElts);
1954 };
1955
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001956 switch (II->getIntrinsicID()) {
1957 default: break;
George Burgess IV3f089142016-12-20 23:46:36 +00001958 case Intrinsic::objectsize:
1959 if (ConstantInt *N =
1960 lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/false))
1961 return replaceInstUsesWith(CI, N);
Craig Topperf40110f2014-04-25 05:29:35 +00001962 return nullptr;
George Burgess IV3f089142016-12-20 23:46:36 +00001963
Michael Ilseman536cc322012-12-13 03:13:36 +00001964 case Intrinsic::bswap: {
1965 Value *IIOperand = II->getArgOperand(0);
Craig Topperf40110f2014-04-25 05:29:35 +00001966 Value *X = nullptr;
Michael Ilseman536cc322012-12-13 03:13:36 +00001967
Craig Topper0f746c22017-07-04 06:50:48 +00001968 // TODO should this be in InstSimplify?
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001969 // bswap(bswap(x)) -> x
Michael Ilseman536cc322012-12-13 03:13:36 +00001970 if (match(IIOperand, m_BSwap(m_Value(X))))
Craig Topper0f746c22017-07-04 06:50:48 +00001971 return replaceInstUsesWith(CI, X);
Jim Grosbach7815f562012-02-03 00:07:04 +00001972
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001973 // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
Michael Ilseman536cc322012-12-13 03:13:36 +00001974 if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
1975 unsigned C = X->getType()->getPrimitiveSizeInBits() -
1976 IIOperand->getType()->getPrimitiveSizeInBits();
1977 Value *CV = ConstantInt::get(X->getType(), C);
1978 Value *V = Builder->CreateLShr(X, CV);
1979 return new TruncInst(V, IIOperand->getType());
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001980 }
Chris Lattner7a9e47a2010-01-05 07:32:13 +00001981 break;
Michael Ilseman536cc322012-12-13 03:13:36 +00001982 }
1983
James Molloy2d09c002015-11-12 12:39:41 +00001984 case Intrinsic::bitreverse: {
1985 Value *IIOperand = II->getArgOperand(0);
1986 Value *X = nullptr;
1987
Craig Topper0f746c22017-07-04 06:50:48 +00001988 // TODO should this be in InstSimplify?
James Molloy2d09c002015-11-12 12:39:41 +00001989 // bitreverse(bitreverse(x)) -> x
Simon Pilgrim77c3c5f2017-06-30 18:58:29 +00001990 if (match(IIOperand, m_BitReverse(m_Value(X))))
Sanjay Patel4b198802016-02-01 22:23:39 +00001991 return replaceInstUsesWith(CI, X);
James Molloy2d09c002015-11-12 12:39:41 +00001992 break;
1993 }
1994
Sanjay Patelb695c552016-02-01 17:00:10 +00001995 case Intrinsic::masked_load:
1996 if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II, *Builder))
Sanjay Patel4b198802016-02-01 22:23:39 +00001997 return replaceInstUsesWith(CI, SimplifiedMaskedOp);
Sanjay Patelb695c552016-02-01 17:00:10 +00001998 break;
Sanjay Patel04f792b2016-02-01 19:39:52 +00001999 case Intrinsic::masked_store:
2000 return simplifyMaskedStore(*II, *this);
Sanjay Patel103ab7d2016-02-01 22:10:26 +00002001 case Intrinsic::masked_gather:
2002 return simplifyMaskedGather(*II, *this);
2003 case Intrinsic::masked_scatter:
2004 return simplifyMaskedScatter(*II, *this);
Sanjay Patelb695c552016-02-01 17:00:10 +00002005
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002006 case Intrinsic::powi:
Gabor Greif589a0b92010-06-24 12:58:35 +00002007 if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002008 // powi(x, 0) -> 1.0
2009 if (Power->isZero())
Sanjay Patel4b198802016-02-01 22:23:39 +00002010 return replaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002011 // powi(x, 1) -> x
2012 if (Power->isOne())
Sanjay Patel4b198802016-02-01 22:23:39 +00002013 return replaceInstUsesWith(CI, II->getArgOperand(0));
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002014 // powi(x, -1) -> 1/x
Craig Topper79ab6432017-07-06 18:39:47 +00002015 if (Power->isMinusOne())
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002016 return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
Gabor Greif589a0b92010-06-24 12:58:35 +00002017 II->getArgOperand(0));
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002018 }
2019 break;
Jim Grosbach7815f562012-02-03 00:07:04 +00002020
Sanjay Patel8e3ab172016-08-05 22:42:46 +00002021 case Intrinsic::cttz:
2022 case Intrinsic::ctlz:
Amaury Sechet763c59d2016-08-18 20:43:50 +00002023 if (auto *I = foldCttzCtlz(*II, *this))
2024 return I;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002025 break;
Sanjoy Dasb0984472015-04-08 04:27:22 +00002026
Craig Topper5b173f22017-06-21 16:32:35 +00002027 case Intrinsic::ctpop:
2028 if (auto *I = foldCtpop(*II, *this))
2029 return I;
2030 break;
2031
Nick Lewyckyabe2cc12015-04-13 19:17:37 +00002032 case Intrinsic::uadd_with_overflow:
2033 case Intrinsic::sadd_with_overflow:
2034 case Intrinsic::umul_with_overflow:
2035 case Intrinsic::smul_with_overflow:
Gabor Greif5b1370e2010-06-28 16:50:57 +00002036 if (isa<Constant>(II->getArgOperand(0)) &&
2037 !isa<Constant>(II->getArgOperand(1))) {
Sanjoy Dasb0984472015-04-08 04:27:22 +00002038 // Canonicalize constants into the RHS.
Gabor Greif5b1370e2010-06-28 16:50:57 +00002039 Value *LHS = II->getArgOperand(0);
2040 II->setArgOperand(0, II->getArgOperand(1));
2041 II->setArgOperand(1, LHS);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002042 return II;
2043 }
Justin Bognercd1d5aa2016-08-17 20:30:52 +00002044 LLVM_FALLTHROUGH;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002045
Nick Lewyckyabe2cc12015-04-13 19:17:37 +00002046 case Intrinsic::usub_with_overflow:
2047 case Intrinsic::ssub_with_overflow: {
Sanjoy Dasb0984472015-04-08 04:27:22 +00002048 OverflowCheckFlavor OCF =
2049 IntrinsicIDToOverflowCheckFlavor(II->getIntrinsicID());
2050 assert(OCF != OCF_INVALID && "unexpected!");
Jim Grosbach7815f562012-02-03 00:07:04 +00002051
Sanjoy Dasb0984472015-04-08 04:27:22 +00002052 Value *OperationResult = nullptr;
2053 Constant *OverflowResult = nullptr;
2054 if (OptimizeOverflowCheck(OCF, II->getArgOperand(0), II->getArgOperand(1),
2055 *II, OperationResult, OverflowResult))
2056 return CreateOverflowTuple(II, OperationResult, OverflowResult);
Benjamin Kramera420df22014-07-04 10:22:21 +00002057
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002058 break;
Erik Eckstein096ff7d2014-12-11 08:02:30 +00002059 }
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002060
Matt Arsenaultd6511b42014-10-21 23:00:20 +00002061 case Intrinsic::minnum:
2062 case Intrinsic::maxnum: {
2063 Value *Arg0 = II->getArgOperand(0);
2064 Value *Arg1 = II->getArgOperand(1);
Sanjay Patel0069f562016-01-31 16:35:23 +00002065 // Canonicalize constants to the RHS.
2066 if (isa<ConstantFP>(Arg0) && !isa<ConstantFP>(Arg1)) {
Matt Arsenaultd6511b42014-10-21 23:00:20 +00002067 II->setArgOperand(0, Arg1);
2068 II->setArgOperand(1, Arg0);
2069 return II;
2070 }
Sanjay Patel0069f562016-01-31 16:35:23 +00002071 if (Value *V = simplifyMinnumMaxnum(*II))
Sanjay Patel4b198802016-02-01 22:23:39 +00002072 return replaceInstUsesWith(*II, V);
Matt Arsenaultd6511b42014-10-21 23:00:20 +00002073 break;
2074 }
Matt Arsenault1cc294c2017-01-03 04:32:31 +00002075 case Intrinsic::fmuladd: {
Matt Arsenault92057602017-02-16 18:46:24 +00002076 // Canonicalize fast fmuladd to the separate fmul + fadd.
2077 if (II->hasUnsafeAlgebra()) {
2078 BuilderTy::FastMathFlagGuard Guard(*Builder);
2079 Builder->setFastMathFlags(II->getFastMathFlags());
2080 Value *Mul = Builder->CreateFMul(II->getArgOperand(0),
2081 II->getArgOperand(1));
2082 Value *Add = Builder->CreateFAdd(Mul, II->getArgOperand(2));
2083 Add->takeName(II);
2084 return replaceInstUsesWith(*II, Add);
2085 }
2086
2087 LLVM_FALLTHROUGH;
2088 }
2089 case Intrinsic::fma: {
Matt Arsenault1cc294c2017-01-03 04:32:31 +00002090 Value *Src0 = II->getArgOperand(0);
2091 Value *Src1 = II->getArgOperand(1);
2092
Matt Arsenaultb264c942017-01-03 04:32:35 +00002093 // Canonicalize constants into the RHS.
2094 if (isa<Constant>(Src0) && !isa<Constant>(Src1)) {
2095 II->setArgOperand(0, Src1);
2096 II->setArgOperand(1, Src0);
2097 std::swap(Src0, Src1);
2098 }
2099
2100 Value *LHS = nullptr;
2101 Value *RHS = nullptr;
2102
Matt Arsenault1cc294c2017-01-03 04:32:31 +00002103 // fma fneg(x), fneg(y), z -> fma x, y, z
2104 if (match(Src0, m_FNeg(m_Value(LHS))) &&
2105 match(Src1, m_FNeg(m_Value(RHS)))) {
Matt Arsenault3f509042017-01-10 23:17:52 +00002106 II->setArgOperand(0, LHS);
2107 II->setArgOperand(1, RHS);
2108 return II;
Matt Arsenault1cc294c2017-01-03 04:32:31 +00002109 }
2110
2111 // fma fabs(x), fabs(x), z -> fma x, x, z
2112 if (match(Src0, m_Intrinsic<Intrinsic::fabs>(m_Value(LHS))) &&
2113 match(Src1, m_Intrinsic<Intrinsic::fabs>(m_Value(RHS))) && LHS == RHS) {
Matt Arsenault3f509042017-01-10 23:17:52 +00002114 II->setArgOperand(0, LHS);
2115 II->setArgOperand(1, RHS);
2116 return II;
Matt Arsenault1cc294c2017-01-03 04:32:31 +00002117 }
2118
Matt Arsenaultb264c942017-01-03 04:32:35 +00002119 // fma x, 1, z -> fadd x, z
2120 if (match(Src1, m_FPOne())) {
2121 Instruction *RI = BinaryOperator::CreateFAdd(Src0, II->getArgOperand(2));
2122 RI->copyFastMathFlags(II);
2123 return RI;
2124 }
2125
Matt Arsenault1cc294c2017-01-03 04:32:31 +00002126 break;
2127 }
Matt Arsenault56ff4832017-01-03 22:40:34 +00002128 case Intrinsic::fabs: {
2129 Value *Cond;
2130 Constant *LHS, *RHS;
2131 if (match(II->getArgOperand(0),
2132 m_Select(m_Value(Cond), m_Constant(LHS), m_Constant(RHS)))) {
2133 CallInst *Call0 = Builder->CreateCall(II->getCalledFunction(), {LHS});
2134 CallInst *Call1 = Builder->CreateCall(II->getCalledFunction(), {RHS});
2135 return SelectInst::Create(Cond, Call0, Call1);
2136 }
2137
Matt Arsenault954a6242017-01-23 23:55:08 +00002138 LLVM_FALLTHROUGH;
2139 }
2140 case Intrinsic::ceil:
2141 case Intrinsic::floor:
2142 case Intrinsic::round:
2143 case Intrinsic::nearbyint:
Joerg Sonnenberger28bed102017-03-31 19:58:07 +00002144 case Intrinsic::rint:
Matt Arsenault954a6242017-01-23 23:55:08 +00002145 case Intrinsic::trunc: {
Matt Arsenault72333442017-01-17 00:10:40 +00002146 Value *ExtSrc;
2147 if (match(II->getArgOperand(0), m_FPExt(m_Value(ExtSrc))) &&
2148 II->getArgOperand(0)->hasOneUse()) {
2149 // fabs (fpext x) -> fpext (fabs x)
Matt Arsenault954a6242017-01-23 23:55:08 +00002150 Value *F = Intrinsic::getDeclaration(II->getModule(), II->getIntrinsicID(),
Matt Arsenault72333442017-01-17 00:10:40 +00002151 { ExtSrc->getType() });
2152 CallInst *NewFabs = Builder->CreateCall(F, ExtSrc);
2153 NewFabs->copyFastMathFlags(II);
2154 NewFabs->takeName(II);
2155 return new FPExtInst(NewFabs, II->getType());
2156 }
2157
Matt Arsenault56ff4832017-01-03 22:40:34 +00002158 break;
2159 }
Matt Arsenault3bdd75d2017-01-04 22:49:03 +00002160 case Intrinsic::cos:
2161 case Intrinsic::amdgcn_cos: {
2162 Value *SrcSrc;
2163 Value *Src = II->getArgOperand(0);
2164 if (match(Src, m_FNeg(m_Value(SrcSrc))) ||
2165 match(Src, m_Intrinsic<Intrinsic::fabs>(m_Value(SrcSrc)))) {
2166 // cos(-x) -> cos(x)
2167 // cos(fabs(x)) -> cos(x)
2168 II->setArgOperand(0, SrcSrc);
2169 return II;
2170 }
2171
2172 break;
2173 }
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002174 case Intrinsic::ppc_altivec_lvx:
2175 case Intrinsic::ppc_altivec_lvxl:
Bill Wendlingb902f1d2011-04-13 00:36:11 +00002176 // Turn PPC lvx -> load if the pointer is known aligned.
Daniel Jasperaec2fa32016-12-19 08:22:17 +00002177 if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, &AC,
Justin Bogner99798402016-08-05 01:06:44 +00002178 &DT) >= 16) {
Gabor Greif589a0b92010-06-24 12:58:35 +00002179 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002180 PointerType::getUnqual(II->getType()));
2181 return new LoadInst(Ptr);
2182 }
2183 break;
Bill Schmidt72954782014-11-12 04:19:40 +00002184 case Intrinsic::ppc_vsx_lxvw4x:
2185 case Intrinsic::ppc_vsx_lxvd2x: {
2186 // Turn PPC VSX loads into normal loads.
2187 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
2188 PointerType::getUnqual(II->getType()));
2189 return new LoadInst(Ptr, Twine(""), false, 1);
2190 }
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002191 case Intrinsic::ppc_altivec_stvx:
2192 case Intrinsic::ppc_altivec_stvxl:
2193 // Turn stvx -> store if the pointer is known aligned.
Daniel Jasperaec2fa32016-12-19 08:22:17 +00002194 if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, &AC,
Justin Bogner99798402016-08-05 01:06:44 +00002195 &DT) >= 16) {
Jim Grosbach7815f562012-02-03 00:07:04 +00002196 Type *OpPtrTy =
Gabor Greifa6d75e22010-06-24 15:51:11 +00002197 PointerType::getUnqual(II->getArgOperand(0)->getType());
2198 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
2199 return new StoreInst(II->getArgOperand(0), Ptr);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002200 }
2201 break;
Bill Schmidt72954782014-11-12 04:19:40 +00002202 case Intrinsic::ppc_vsx_stxvw4x:
2203 case Intrinsic::ppc_vsx_stxvd2x: {
2204 // Turn PPC VSX stores into normal stores.
2205 Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(0)->getType());
2206 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
2207 return new StoreInst(II->getArgOperand(0), Ptr, false, 1);
2208 }
Hal Finkel221f4672015-02-26 18:56:03 +00002209 case Intrinsic::ppc_qpx_qvlfs:
2210 // Turn PPC QPX qvlfs -> load if the pointer is known aligned.
Daniel Jasperaec2fa32016-12-19 08:22:17 +00002211 if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, &AC,
Justin Bogner99798402016-08-05 01:06:44 +00002212 &DT) >= 16) {
Hal Finkelf0d68d72015-05-11 06:37:03 +00002213 Type *VTy = VectorType::get(Builder->getFloatTy(),
2214 II->getType()->getVectorNumElements());
Hal Finkel221f4672015-02-26 18:56:03 +00002215 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
Hal Finkelf0d68d72015-05-11 06:37:03 +00002216 PointerType::getUnqual(VTy));
2217 Value *Load = Builder->CreateLoad(Ptr);
2218 return new FPExtInst(Load, II->getType());
Hal Finkel221f4672015-02-26 18:56:03 +00002219 }
2220 break;
2221 case Intrinsic::ppc_qpx_qvlfd:
2222 // Turn PPC QPX qvlfd -> load if the pointer is known aligned.
Daniel Jasperaec2fa32016-12-19 08:22:17 +00002223 if (getOrEnforceKnownAlignment(II->getArgOperand(0), 32, DL, II, &AC,
Justin Bogner99798402016-08-05 01:06:44 +00002224 &DT) >= 32) {
Hal Finkel221f4672015-02-26 18:56:03 +00002225 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
2226 PointerType::getUnqual(II->getType()));
2227 return new LoadInst(Ptr);
2228 }
2229 break;
2230 case Intrinsic::ppc_qpx_qvstfs:
2231 // Turn PPC QPX qvstfs -> store if the pointer is known aligned.
Daniel Jasperaec2fa32016-12-19 08:22:17 +00002232 if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, &AC,
Justin Bogner99798402016-08-05 01:06:44 +00002233 &DT) >= 16) {
Hal Finkelf0d68d72015-05-11 06:37:03 +00002234 Type *VTy = VectorType::get(Builder->getFloatTy(),
2235 II->getArgOperand(0)->getType()->getVectorNumElements());
2236 Value *TOp = Builder->CreateFPTrunc(II->getArgOperand(0), VTy);
2237 Type *OpPtrTy = PointerType::getUnqual(VTy);
Hal Finkel221f4672015-02-26 18:56:03 +00002238 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
Hal Finkelf0d68d72015-05-11 06:37:03 +00002239 return new StoreInst(TOp, Ptr);
Hal Finkel221f4672015-02-26 18:56:03 +00002240 }
2241 break;
2242 case Intrinsic::ppc_qpx_qvstfd:
2243 // Turn PPC QPX qvstfd -> store if the pointer is known aligned.
Daniel Jasperaec2fa32016-12-19 08:22:17 +00002244 if (getOrEnforceKnownAlignment(II->getArgOperand(1), 32, DL, II, &AC,
Justin Bogner99798402016-08-05 01:06:44 +00002245 &DT) >= 32) {
Hal Finkel221f4672015-02-26 18:56:03 +00002246 Type *OpPtrTy =
2247 PointerType::getUnqual(II->getArgOperand(0)->getType());
2248 Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
2249 return new StoreInst(II->getArgOperand(0), Ptr);
2250 }
2251 break;
Simon Pilgrim20c607b2015-09-12 13:39:53 +00002252
Simon Pilgrim20c607b2015-09-12 13:39:53 +00002253 case Intrinsic::x86_vcvtph2ps_128:
2254 case Intrinsic::x86_vcvtph2ps_256: {
2255 auto Arg = II->getArgOperand(0);
2256 auto ArgType = cast<VectorType>(Arg->getType());
2257 auto RetType = cast<VectorType>(II->getType());
2258 unsigned ArgWidth = ArgType->getNumElements();
2259 unsigned RetWidth = RetType->getNumElements();
2260 assert(RetWidth <= ArgWidth && "Unexpected input/return vector widths");
2261 assert(ArgType->isIntOrIntVectorTy() &&
2262 ArgType->getScalarSizeInBits() == 16 &&
2263 "CVTPH2PS input type should be 16-bit integer vector");
2264 assert(RetType->getScalarType()->isFloatTy() &&
2265 "CVTPH2PS output type should be 32-bit float vector");
2266
2267 // Constant folding: Convert to generic half to single conversion.
Simon Pilgrim48ffca02015-09-12 14:00:17 +00002268 if (isa<ConstantAggregateZero>(Arg))
Sanjay Patel4b198802016-02-01 22:23:39 +00002269 return replaceInstUsesWith(*II, ConstantAggregateZero::get(RetType));
Simon Pilgrim20c607b2015-09-12 13:39:53 +00002270
Simon Pilgrim48ffca02015-09-12 14:00:17 +00002271 if (isa<ConstantDataVector>(Arg)) {
Simon Pilgrim20c607b2015-09-12 13:39:53 +00002272 auto VectorHalfAsShorts = Arg;
2273 if (RetWidth < ArgWidth) {
Craig Topper99d1eab2016-06-12 00:41:19 +00002274 SmallVector<uint32_t, 8> SubVecMask;
Simon Pilgrim20c607b2015-09-12 13:39:53 +00002275 for (unsigned i = 0; i != RetWidth; ++i)
2276 SubVecMask.push_back((int)i);
2277 VectorHalfAsShorts = Builder->CreateShuffleVector(
2278 Arg, UndefValue::get(ArgType), SubVecMask);
2279 }
2280
2281 auto VectorHalfType =
2282 VectorType::get(Type::getHalfTy(II->getContext()), RetWidth);
2283 auto VectorHalfs =
2284 Builder->CreateBitCast(VectorHalfAsShorts, VectorHalfType);
2285 auto VectorFloats = Builder->CreateFPExt(VectorHalfs, RetType);
Sanjay Patel4b198802016-02-01 22:23:39 +00002286 return replaceInstUsesWith(*II, VectorFloats);
Simon Pilgrim20c607b2015-09-12 13:39:53 +00002287 }
2288
2289 // We only use the lowest lanes of the argument.
Simon Pilgrim996725e2015-09-19 11:41:53 +00002290 if (Value *V = SimplifyDemandedVectorEltsLow(Arg, ArgWidth, RetWidth)) {
Simon Pilgrim20c607b2015-09-12 13:39:53 +00002291 II->setArgOperand(0, V);
2292 return II;
2293 }
2294 break;
2295 }
2296
Chandler Carruthcf414cf2011-01-10 07:19:37 +00002297 case Intrinsic::x86_sse_cvtss2si:
2298 case Intrinsic::x86_sse_cvtss2si64:
2299 case Intrinsic::x86_sse_cvttss2si:
2300 case Intrinsic::x86_sse_cvttss2si64:
2301 case Intrinsic::x86_sse2_cvtsd2si:
2302 case Intrinsic::x86_sse2_cvtsd2si64:
2303 case Intrinsic::x86_sse2_cvttsd2si:
Craig Topperaeaa52c2016-12-14 07:46:12 +00002304 case Intrinsic::x86_sse2_cvttsd2si64:
2305 case Intrinsic::x86_avx512_vcvtss2si32:
2306 case Intrinsic::x86_avx512_vcvtss2si64:
2307 case Intrinsic::x86_avx512_vcvtss2usi32:
2308 case Intrinsic::x86_avx512_vcvtss2usi64:
2309 case Intrinsic::x86_avx512_vcvtsd2si32:
2310 case Intrinsic::x86_avx512_vcvtsd2si64:
2311 case Intrinsic::x86_avx512_vcvtsd2usi32:
2312 case Intrinsic::x86_avx512_vcvtsd2usi64:
2313 case Intrinsic::x86_avx512_cvttss2si:
2314 case Intrinsic::x86_avx512_cvttss2si64:
2315 case Intrinsic::x86_avx512_cvttss2usi:
2316 case Intrinsic::x86_avx512_cvttss2usi64:
2317 case Intrinsic::x86_avx512_cvttsd2si:
2318 case Intrinsic::x86_avx512_cvttsd2si64:
2319 case Intrinsic::x86_avx512_cvttsd2usi:
2320 case Intrinsic::x86_avx512_cvttsd2usi64: {
Chandler Carruthcf414cf2011-01-10 07:19:37 +00002321 // These intrinsics only demand the 0th element of their input vectors. If
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002322 // we can simplify the input based on that, do so now.
Simon Pilgrim996725e2015-09-19 11:41:53 +00002323 Value *Arg = II->getArgOperand(0);
2324 unsigned VWidth = Arg->getType()->getVectorNumElements();
2325 if (Value *V = SimplifyDemandedVectorEltsLow(Arg, VWidth, 1)) {
Gabor Greif5b1370e2010-06-28 16:50:57 +00002326 II->setArgOperand(0, V);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00002327 return II;
2328 }
Simon Pilgrim18617d12015-08-05 08:18:00 +00002329 break;
2330 }
2331
Simon Pilgrim91e3ac82016-06-07 08:18:35 +00002332 case Intrinsic::x86_mmx_pmovmskb:
2333 case Intrinsic::x86_sse_movmsk_ps:
2334 case Intrinsic::x86_sse2_movmsk_pd:
2335 case Intrinsic::x86_sse2_pmovmskb_128:
2336 case Intrinsic::x86_avx_movmsk_pd_256:
2337 case Intrinsic::x86_avx_movmsk_ps_256:
2338 case Intrinsic::x86_avx2_pmovmskb: {
2339 if (Value *V = simplifyX86movmsk(*II, *Builder))
2340 return replaceInstUsesWith(*II, V);
2341 break;
2342 }
2343
Simon Pilgrim471efd22016-02-20 23:17:35 +00002344 case Intrinsic::x86_sse_comieq_ss:
2345 case Intrinsic::x86_sse_comige_ss:
2346 case Intrinsic::x86_sse_comigt_ss:
2347 case Intrinsic::x86_sse_comile_ss:
2348 case Intrinsic::x86_sse_comilt_ss:
2349 case Intrinsic::x86_sse_comineq_ss:
2350 case Intrinsic::x86_sse_ucomieq_ss:
2351 case Intrinsic::x86_sse_ucomige_ss:
2352 case Intrinsic::x86_sse_ucomigt_ss:
2353 case Intrinsic::x86_sse_ucomile_ss:
2354 case Intrinsic::x86_sse_ucomilt_ss:
2355 case Intrinsic::x86_sse_ucomineq_ss:
2356 case Intrinsic::x86_sse2_comieq_sd:
2357 case Intrinsic::x86_sse2_comige_sd:
2358 case Intrinsic::x86_sse2_comigt_sd:
2359 case Intrinsic::x86_sse2_comile_sd:
2360 case Intrinsic::x86_sse2_comilt_sd:
2361 case Intrinsic::x86_sse2_comineq_sd:
2362 case Intrinsic::x86_sse2_ucomieq_sd:
2363 case Intrinsic::x86_sse2_ucomige_sd:
2364 case Intrinsic::x86_sse2_ucomigt_sd:
2365 case Intrinsic::x86_sse2_ucomile_sd:
2366 case Intrinsic::x86_sse2_ucomilt_sd:
Craig Topperd9639532016-12-11 07:42:04 +00002367 case Intrinsic::x86_sse2_ucomineq_sd:
Craig Topperd00db692016-12-31 00:45:06 +00002368 case Intrinsic::x86_avx512_vcomi_ss:
2369 case Intrinsic::x86_avx512_vcomi_sd:
Craig Topperd9639532016-12-11 07:42:04 +00002370 case Intrinsic::x86_avx512_mask_cmp_ss:
2371 case Intrinsic::x86_avx512_mask_cmp_sd: {
Simon Pilgrim471efd22016-02-20 23:17:35 +00002372 // These intrinsics only demand the 0th element of their input vectors. If
2373 // we can simplify the input based on that, do so now.
Simon Pilgrim1c9a9f22016-04-24 17:57:27 +00002374 bool MadeChange = false;
Simon Pilgrim471efd22016-02-20 23:17:35 +00002375 Value *Arg0 = II->getArgOperand(0);
2376 Value *Arg1 = II->getArgOperand(1);
2377 unsigned VWidth = Arg0->getType()->getVectorNumElements();
2378 if (Value *V = SimplifyDemandedVectorEltsLow(Arg0, VWidth, 1)) {
2379 II->setArgOperand(0, V);
Simon Pilgrim1c9a9f22016-04-24 17:57:27 +00002380 MadeChange = true;
Simon Pilgrim471efd22016-02-20 23:17:35 +00002381 }
2382 if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, 1)) {
2383 II->setArgOperand(1, V);
Simon Pilgrim1c9a9f22016-04-24 17:57:27 +00002384 MadeChange = true;
Simon Pilgrim471efd22016-02-20 23:17:35 +00002385 }
Simon Pilgrim1c9a9f22016-04-24 17:57:27 +00002386 if (MadeChange)
2387 return II;
Simon Pilgrim471efd22016-02-20 23:17:35 +00002388 break;
2389 }
Michael Zuckerman16b20d22017-04-16 13:26:08 +00002390 case Intrinsic::x86_avx512_mask_cmp_pd_128:
2391 case Intrinsic::x86_avx512_mask_cmp_pd_256:
2392 case Intrinsic::x86_avx512_mask_cmp_pd_512:
2393 case Intrinsic::x86_avx512_mask_cmp_ps_128:
2394 case Intrinsic::x86_avx512_mask_cmp_ps_256:
2395 case Intrinsic::x86_avx512_mask_cmp_ps_512: {
2396 // Folding cmp(sub(a,b),0) -> cmp(a,b) and cmp(0,sub(a,b)) -> cmp(b,a)
2397 Value *Arg0 = II->getArgOperand(0);
2398 Value *Arg1 = II->getArgOperand(1);
2399 bool Arg0IsZero = match(Arg0, m_Zero());
2400 if (Arg0IsZero)
2401 std::swap(Arg0, Arg1);
2402 Value *A, *B;
2403 // This fold requires only the NINF(not +/- inf) since inf minus
2404 // inf is nan.
2405 // NSZ(No Signed Zeros) is not needed because zeros of any sign are
2406 // equal for both compares.
2407 // NNAN is not needed because nans compare the same for both compares.
2408 // The compare intrinsic uses the above assumptions and therefore
2409 // doesn't require additional flags.
2410 if ((match(Arg0, m_OneUse(m_FSub(m_Value(A), m_Value(B)))) &&
2411 match(Arg1, m_Zero()) &&
2412 cast<Instruction>(Arg0)->getFastMathFlags().noInfs())) {
2413 if (Arg0IsZero)
2414 std::swap(A, B);
2415 II->setArgOperand(0, A);
2416 II->setArgOperand(1, B);
2417 return II;
2418 }
2419 break;
2420 }
Simon Pilgrim471efd22016-02-20 23:17:35 +00002421
Craig Topper020b2282016-12-27 00:23:16 +00002422 case Intrinsic::x86_avx512_mask_add_ps_512:
2423 case Intrinsic::x86_avx512_mask_div_ps_512:
2424 case Intrinsic::x86_avx512_mask_mul_ps_512:
2425 case Intrinsic::x86_avx512_mask_sub_ps_512:
2426 case Intrinsic::x86_avx512_mask_add_pd_512:
2427 case Intrinsic::x86_avx512_mask_div_pd_512:
2428 case Intrinsic::x86_avx512_mask_mul_pd_512:
2429 case Intrinsic::x86_avx512_mask_sub_pd_512:
2430 // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular
2431 // IR operations.
2432 if (auto *R = dyn_cast<ConstantInt>(II->getArgOperand(4))) {
2433 if (R->getValue() == 4) {
2434 Value *Arg0 = II->getArgOperand(0);
2435 Value *Arg1 = II->getArgOperand(1);
2436
2437 Value *V;
2438 switch (II->getIntrinsicID()) {
2439 default: llvm_unreachable("Case stmts out of sync!");
2440 case Intrinsic::x86_avx512_mask_add_ps_512:
2441 case Intrinsic::x86_avx512_mask_add_pd_512:
2442 V = Builder->CreateFAdd(Arg0, Arg1);
2443 break;
2444 case Intrinsic::x86_avx512_mask_sub_ps_512:
2445 case Intrinsic::x86_avx512_mask_sub_pd_512:
2446 V = Builder->CreateFSub(Arg0, Arg1);
2447 break;
2448 case Intrinsic::x86_avx512_mask_mul_ps_512:
2449 case Intrinsic::x86_avx512_mask_mul_pd_512:
2450 V = Builder->CreateFMul(Arg0, Arg1);
2451 break;
2452 case Intrinsic::x86_avx512_mask_div_ps_512:
2453 case Intrinsic::x86_avx512_mask_div_pd_512:
2454 V = Builder->CreateFDiv(Arg0, Arg1);
2455 break;
2456 }
2457
2458 // Create a select for the masking.
2459 V = emitX86MaskSelect(II->getArgOperand(3), V, II->getArgOperand(2),
2460 *Builder);
2461 return replaceInstUsesWith(*II, V);
2462 }
2463 }
2464 break;
2465
Craig Topper790d0fa2016-12-11 07:42:01 +00002466 case Intrinsic::x86_avx512_mask_add_ss_round:
2467 case Intrinsic::x86_avx512_mask_div_ss_round:
2468 case Intrinsic::x86_avx512_mask_mul_ss_round:
2469 case Intrinsic::x86_avx512_mask_sub_ss_round:
Craig Topper790d0fa2016-12-11 07:42:01 +00002470 case Intrinsic::x86_avx512_mask_add_sd_round:
2471 case Intrinsic::x86_avx512_mask_div_sd_round:
2472 case Intrinsic::x86_avx512_mask_mul_sd_round:
2473 case Intrinsic::x86_avx512_mask_sub_sd_round:
Craig Topper7b788ada2016-12-26 06:33:19 +00002474 // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular
2475 // IR operations.
2476 if (auto *R = dyn_cast<ConstantInt>(II->getArgOperand(4))) {
2477 if (R->getValue() == 4) {
Craig Topper7f8540b2016-12-27 01:56:30 +00002478 // Extract the element as scalars.
2479 Value *Arg0 = II->getArgOperand(0);
2480 Value *Arg1 = II->getArgOperand(1);
2481 Value *LHS = Builder->CreateExtractElement(Arg0, (uint64_t)0);
2482 Value *RHS = Builder->CreateExtractElement(Arg1, (uint64_t)0);
Craig Topper7b788ada2016-12-26 06:33:19 +00002483
Craig Topper7f8540b2016-12-27 01:56:30 +00002484 Value *V;
2485 switch (II->getIntrinsicID()) {
2486 default: llvm_unreachable("Case stmts out of sync!");
2487 case Intrinsic::x86_avx512_mask_add_ss_round:
2488 case Intrinsic::x86_avx512_mask_add_sd_round:
2489 V = Builder->CreateFAdd(LHS, RHS);
2490 break;
2491 case Intrinsic::x86_avx512_mask_sub_ss_round:
2492 case Intrinsic::x86_avx512_mask_sub_sd_round:
2493 V = Builder->CreateFSub(LHS, RHS);
2494 break;
2495 case Intrinsic::x86_avx512_mask_mul_ss_round:
2496 case Intrinsic::x86_avx512_mask_mul_sd_round:
2497 V = Builder->CreateFMul(LHS, RHS);
2498 break;
2499 case Intrinsic::x86_avx512_mask_div_ss_round:
2500 case Intrinsic::x86_avx512_mask_div_sd_round:
2501 V = Builder->CreateFDiv(LHS, RHS);
2502 break;
Craig Topper7b788ada2016-12-26 06:33:19 +00002503 }
Craig Topper7f8540b2016-12-27 01:56:30 +00002504
2505 // Handle the masking aspect of the intrinsic.
Craig Topper7f8540b2016-12-27 01:56:30 +00002506 Value *Mask = II->getArgOperand(3);
Craig Topper99163632016-12-30 23:06:28 +00002507 auto *C = dyn_cast<ConstantInt>(Mask);
2508 // We don't need a select if we know the mask bit is a 1.
2509 if (!C || !C->getValue()[0]) {
2510 // Cast the mask to an i1 vector and then extract the lowest element.
2511 auto *MaskTy = VectorType::get(Builder->getInt1Ty(),
Craig Topper7f8540b2016-12-27 01:56:30 +00002512 cast<IntegerType>(Mask->getType())->getBitWidth());
Craig Topper99163632016-12-30 23:06:28 +00002513 Mask = Builder->CreateBitCast(Mask, MaskTy);
2514 Mask = Builder->CreateExtractElement(Mask, (uint64_t)0);
2515 // Extract the lowest element from the passthru operand.
2516 Value *Passthru = Builder->CreateExtractElement(II->getArgOperand(2),
2517 (uint64_t)0);
2518 V = Builder->CreateSelect(Mask, V, Passthru);
2519 }
Craig Topper7f8540b2016-12-27 01:56:30 +00002520
2521 // Insert the result back into the original argument 0.
2522 V = Builder->CreateInsertElement(Arg0, V, (uint64_t)0);
2523
2524 return replaceInstUsesWith(*II, V);
Craig Topper7b788ada2016-12-26 06:33:19 +00002525 }
2526 }
2527 LLVM_FALLTHROUGH;
2528
2529 // X86 scalar intrinsics simplified with SimplifyDemandedVectorElts.
2530 case Intrinsic::x86_avx512_mask_max_ss_round:
2531 case Intrinsic::x86_avx512_mask_min_ss_round:
Craig Topper790d0fa2016-12-11 07:42:01 +00002532 case Intrinsic::x86_avx512_mask_max_sd_round:
Craig Topper268b3ab2016-12-14 06:06:58 +00002533 case Intrinsic::x86_avx512_mask_min_sd_round:
Craig Topperab5f3552016-12-15 03:49:45 +00002534 case Intrinsic::x86_avx512_mask_vfmadd_ss:
2535 case Intrinsic::x86_avx512_mask_vfmadd_sd:
2536 case Intrinsic::x86_avx512_maskz_vfmadd_ss:
2537 case Intrinsic::x86_avx512_maskz_vfmadd_sd:
2538 case Intrinsic::x86_avx512_mask3_vfmadd_ss:
2539 case Intrinsic::x86_avx512_mask3_vfmadd_sd:
2540 case Intrinsic::x86_avx512_mask3_vfmsub_ss:
2541 case Intrinsic::x86_avx512_mask3_vfmsub_sd:
2542 case Intrinsic::x86_avx512_mask3_vfnmsub_ss:
2543 case Intrinsic::x86_avx512_mask3_vfnmsub_sd:
Craig Topperdfd268d2016-12-14 05:43:05 +00002544 case Intrinsic::x86_fma_vfmadd_ss:
2545 case Intrinsic::x86_fma_vfmsub_ss:
2546 case Intrinsic::x86_fma_vfnmadd_ss:
2547 case Intrinsic::x86_fma_vfnmsub_ss:
2548 case Intrinsic::x86_fma_vfmadd_sd:
2549 case Intrinsic::x86_fma_vfmsub_sd:
2550 case Intrinsic::x86_fma_vfnmadd_sd:
2551 case Intrinsic::x86_fma_vfnmsub_sd:
Craig Toppera0372de2016-12-14 03:17:27 +00002552 case Intrinsic::x86_sse_cmp_ss:
2553 case Intrinsic::x86_sse_min_ss:
2554 case Intrinsic::x86_sse_max_ss:
2555 case Intrinsic::x86_sse2_cmp_sd:
2556 case Intrinsic::x86_sse2_min_sd:
2557 case Intrinsic::x86_sse2_max_sd:
Craig Toppereb6a20e2016-12-14 03:17:30 +00002558 case Intrinsic::x86_sse41_round_ss:
2559 case Intrinsic::x86_sse41_round_sd:
Craig Topperac75bca2016-12-13 07:45:45 +00002560 case Intrinsic::x86_xop_vfrcz_ss:
2561 case Intrinsic::x86_xop_vfrcz_sd: {
2562 unsigned VWidth = II->getType()->getVectorNumElements();
2563 APInt UndefElts(VWidth, 0);
2564 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
2565 if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, UndefElts)) {
2566 if (V != II)
2567 return replaceInstUsesWith(*II, V);
2568 return II;
2569 }
2570 break;
2571 }
2572
Simon Pilgrima3a72b42015-08-10 20:21:15 +00002573 // Constant fold ashr( <A x Bi>, Ci ).
Simon Pilgrimbecd5e82015-08-13 07:39:03 +00002574 // Constant fold lshr( <A x Bi>, Ci ).
2575 // Constant fold shl( <A x Bi>, Ci ).
Simon Pilgrima3a72b42015-08-10 20:21:15 +00002576 case Intrinsic::x86_sse2_psrai_d:
2577 case Intrinsic::x86_sse2_psrai_w:
Simon Pilgrima3a72b42015-08-10 20:21:15 +00002578 case Intrinsic::x86_avx2_psrai_d:
2579 case Intrinsic::x86_avx2_psrai_w:
Craig Topper8b831cb2016-11-13 01:51:55 +00002580 case Intrinsic::x86_avx512_psrai_q_128:
2581 case Intrinsic::x86_avx512_psrai_q_256:
2582 case Intrinsic::x86_avx512_psrai_d_512:
2583 case Intrinsic::x86_avx512_psrai_q_512:
2584 case Intrinsic::x86_avx512_psrai_w_512:
Simon Pilgrim18617d12015-08-05 08:18:00 +00002585 case Intrinsic::x86_sse2_psrli_d:
2586 case Intrinsic::x86_sse2_psrli_q:
2587 case Intrinsic::x86_sse2_psrli_w:
Simon Pilgrim18617d12015-08-05 08:18:00 +00002588 case Intrinsic::x86_avx2_psrli_d:
2589 case Intrinsic::x86_avx2_psrli_q:
2590 case Intrinsic::x86_avx2_psrli_w:
Craig Topper8b831cb2016-11-13 01:51:55 +00002591 case Intrinsic::x86_avx512_psrli_d_512:
2592 case Intrinsic::x86_avx512_psrli_q_512:
2593 case Intrinsic::x86_avx512_psrli_w_512:
Michael J. Spencerdee4b2c2014-04-24 00:58:18 +00002594 case Intrinsic::x86_sse2_pslli_d:
2595 case Intrinsic::x86_sse2_pslli_q:
2596 case Intrinsic::x86_sse2_pslli_w:
Simon Pilgrim18617d12015-08-05 08:18:00 +00002597 case Intrinsic::x86_avx2_pslli_d:
2598 case Intrinsic::x86_avx2_pslli_q:
2599 case Intrinsic::x86_avx2_pslli_w:
Craig Topper8b831cb2016-11-13 01:51:55 +00002600 case Intrinsic::x86_avx512_pslli_d_512:
2601 case Intrinsic::x86_avx512_pslli_q_512:
2602 case Intrinsic::x86_avx512_pslli_w_512:
Sanjay Patel6038d3e2016-01-29 23:27:03 +00002603 if (Value *V = simplifyX86immShift(*II, *Builder))
Sanjay Patel4b198802016-02-01 22:23:39 +00002604 return replaceInstUsesWith(*II, V);
Simon Pilgrim18617d12015-08-05 08:18:00 +00002605 break;
2606
Simon Pilgrimbecd5e82015-08-13 07:39:03 +00002607 case Intrinsic::x86_sse2_psra_d:
2608 case Intrinsic::x86_sse2_psra_w:
2609 case Intrinsic::x86_avx2_psra_d:
2610 case Intrinsic::x86_avx2_psra_w:
Craig Topper8b831cb2016-11-13 01:51:55 +00002611 case Intrinsic::x86_avx512_psra_q_128:
2612 case Intrinsic::x86_avx512_psra_q_256:
2613 case Intrinsic::x86_avx512_psra_d_512:
2614 case Intrinsic::x86_avx512_psra_q_512:
2615 case Intrinsic::x86_avx512_psra_w_512:
Simon Pilgrimbecd5e82015-08-13 07:39:03 +00002616 case Intrinsic::x86_sse2_psrl_d:
2617 case Intrinsic::x86_sse2_psrl_q:
2618 case Intrinsic::x86_sse2_psrl_w:
2619 case Intrinsic::x86_avx2_psrl_d:
2620 case Intrinsic::x86_avx2_psrl_q:
2621 case Intrinsic::x86_avx2_psrl_w:
Craig Topper8b831cb2016-11-13 01:51:55 +00002622 case Intrinsic::x86_avx512_psrl_d_512:
2623 case Intrinsic::x86_avx512_psrl_q_512:
2624 case Intrinsic::x86_avx512_psrl_w_512:
Simon Pilgrimbecd5e82015-08-13 07:39:03 +00002625 case Intrinsic::x86_sse2_psll_d:
2626 case Intrinsic::x86_sse2_psll_q:
2627 case Intrinsic::x86_sse2_psll_w:
2628 case Intrinsic::x86_avx2_psll_d:
2629 case Intrinsic::x86_avx2_psll_q:
Craig Topper8b831cb2016-11-13 01:51:55 +00002630 case Intrinsic::x86_avx2_psll_w:
2631 case Intrinsic::x86_avx512_psll_d_512:
2632 case Intrinsic::x86_avx512_psll_q_512:
2633 case Intrinsic::x86_avx512_psll_w_512: {
Sanjay Patel6038d3e2016-01-29 23:27:03 +00002634 if (Value *V = simplifyX86immShift(*II, *Builder))
Sanjay Patel4b198802016-02-01 22:23:39 +00002635 return replaceInstUsesWith(*II, V);
Simon Pilgrimbecd5e82015-08-13 07:39:03 +00002636
2637 // SSE2/AVX2 uses only the first 64-bits of the 128-bit vector
2638 // operand to compute the shift amount.
Simon Pilgrim996725e2015-09-19 11:41:53 +00002639 Value *Arg1 = II->getArgOperand(1);
2640 assert(Arg1->getType()->getPrimitiveSizeInBits() == 128 &&
Simon Pilgrimbecd5e82015-08-13 07:39:03 +00002641 "Unexpected packed shift size");
Simon Pilgrim996725e2015-09-19 11:41:53 +00002642 unsigned VWidth = Arg1->getType()->getVectorNumElements();
Simon Pilgrimbecd5e82015-08-13 07:39:03 +00002643
Simon Pilgrim996725e2015-09-19 11:41:53 +00002644 if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, VWidth / 2)) {
Simon Pilgrimbecd5e82015-08-13 07:39:03 +00002645 II->setArgOperand(1, V);
2646 return II;
2647 }
2648 break;
2649 }
2650
Simon Pilgrimdb9893f2016-06-07 10:27:15 +00002651 case Intrinsic::x86_avx2_psllv_d:
2652 case Intrinsic::x86_avx2_psllv_d_256:
2653 case Intrinsic::x86_avx2_psllv_q:
2654 case Intrinsic::x86_avx2_psllv_q_256:
Craig Topperb4173a52016-11-13 07:26:19 +00002655 case Intrinsic::x86_avx512_psllv_d_512:
2656 case Intrinsic::x86_avx512_psllv_q_512:
Craig Topper1de753f2016-11-18 06:04:33 +00002657 case Intrinsic::x86_avx512_psllv_w_128:
2658 case Intrinsic::x86_avx512_psllv_w_256:
2659 case Intrinsic::x86_avx512_psllv_w_512:
Simon Pilgrimdb9893f2016-06-07 10:27:15 +00002660 case Intrinsic::x86_avx2_psrav_d:
2661 case Intrinsic::x86_avx2_psrav_d_256:
Craig Topperb4173a52016-11-13 07:26:19 +00002662 case Intrinsic::x86_avx512_psrav_q_128:
2663 case Intrinsic::x86_avx512_psrav_q_256:
2664 case Intrinsic::x86_avx512_psrav_d_512:
2665 case Intrinsic::x86_avx512_psrav_q_512:
Craig Topper1de753f2016-11-18 06:04:33 +00002666 case Intrinsic::x86_avx512_psrav_w_128:
2667 case Intrinsic::x86_avx512_psrav_w_256:
2668 case Intrinsic::x86_avx512_psrav_w_512:
Simon Pilgrimdb9893f2016-06-07 10:27:15 +00002669 case Intrinsic::x86_avx2_psrlv_d:
2670 case Intrinsic::x86_avx2_psrlv_d_256:
2671 case Intrinsic::x86_avx2_psrlv_q:
2672 case Intrinsic::x86_avx2_psrlv_q_256:
Craig Topperb4173a52016-11-13 07:26:19 +00002673 case Intrinsic::x86_avx512_psrlv_d_512:
2674 case Intrinsic::x86_avx512_psrlv_q_512:
Craig Topper1de753f2016-11-18 06:04:33 +00002675 case Intrinsic::x86_avx512_psrlv_w_128:
2676 case Intrinsic::x86_avx512_psrlv_w_256:
2677 case Intrinsic::x86_avx512_psrlv_w_512:
Simon Pilgrimdb9893f2016-06-07 10:27:15 +00002678 if (Value *V = simplifyX86varShift(*II, *Builder))
2679 return replaceInstUsesWith(*II, V);
2680 break;
2681
Simon Pilgrimc9cf7fc2016-12-26 23:28:17 +00002682 case Intrinsic::x86_sse2_pmulu_dq:
2683 case Intrinsic::x86_sse41_pmuldq:
2684 case Intrinsic::x86_avx2_pmul_dq:
Craig Topper72f2d4e2016-12-27 05:30:09 +00002685 case Intrinsic::x86_avx2_pmulu_dq:
2686 case Intrinsic::x86_avx512_pmul_dq_512:
2687 case Intrinsic::x86_avx512_pmulu_dq_512: {
Simon Pilgrimf6f3a3612017-01-23 15:22:59 +00002688 if (Value *V = simplifyX86muldq(*II, *Builder))
Simon Pilgrima50a93f2017-01-20 18:20:30 +00002689 return replaceInstUsesWith(*II, V);
2690
Simon Pilgrimc9cf7fc2016-12-26 23:28:17 +00002691 unsigned VWidth = II->getType()->getVectorNumElements();
2692 APInt UndefElts(VWidth, 0);
2693 APInt DemandedElts = APInt::getAllOnesValue(VWidth);
2694 if (Value *V = SimplifyDemandedVectorElts(II, DemandedElts, UndefElts)) {
2695 if (V != II)
2696 return replaceInstUsesWith(*II, V);
2697 return II;
2698 }
2699 break;
2700 }
2701
Simon Pilgrim6f6b2792017-01-25 14:37:24 +00002702 case Intrinsic::x86_sse2_packssdw_128:
2703 case Intrinsic::x86_sse2_packsswb_128:
2704 case Intrinsic::x86_avx2_packssdw:
2705 case Intrinsic::x86_avx2_packsswb:
Craig Topper3731f4d2017-02-16 07:35:23 +00002706 case Intrinsic::x86_avx512_packssdw_512:
2707 case Intrinsic::x86_avx512_packsswb_512:
Simon Pilgrim6f6b2792017-01-25 14:37:24 +00002708 if (Value *V = simplifyX86pack(*II, *this, *Builder, true))
2709 return replaceInstUsesWith(*II, V);
2710 break;
2711
2712 case Intrinsic::x86_sse2_packuswb_128:
2713 case Intrinsic::x86_sse41_packusdw:
2714 case Intrinsic::x86_avx2_packusdw:
2715 case Intrinsic::x86_avx2_packuswb:
Craig Topper3731f4d2017-02-16 07:35:23 +00002716 case Intrinsic::x86_avx512_packusdw_512:
2717 case Intrinsic::x86_avx512_packuswb_512:
Simon Pilgrim6f6b2792017-01-25 14:37:24 +00002718 if (Value *V = simplifyX86pack(*II, *this, *Builder, false))
2719 return replaceInstUsesWith(*II, V);
2720 break;
2721
Craig Topperb6122122017-01-26 05:17:13 +00002722 case Intrinsic::x86_pclmulqdq: {
2723 if (auto *C = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
2724 unsigned Imm = C->getZExtValue();
2725
2726 bool MadeChange = false;
2727 Value *Arg0 = II->getArgOperand(0);
2728 Value *Arg1 = II->getArgOperand(1);
2729 unsigned VWidth = Arg0->getType()->getVectorNumElements();
2730 APInt DemandedElts(VWidth, 0);
2731
2732 APInt UndefElts1(VWidth, 0);
2733 DemandedElts = (Imm & 0x01) ? 2 : 1;
2734 if (Value *V = SimplifyDemandedVectorElts(Arg0, DemandedElts,
2735 UndefElts1)) {
2736 II->setArgOperand(0, V);
2737 MadeChange = true;
2738 }
2739
2740 APInt UndefElts2(VWidth, 0);
2741 DemandedElts = (Imm & 0x10) ? 2 : 1;
2742 if (Value *V = SimplifyDemandedVectorElts(Arg1, DemandedElts,
2743 UndefElts2)) {
2744 II->setArgOperand(1, V);
2745 MadeChange = true;
2746 }
2747
2748 // If both input elements are undef, the result is undef.
2749 if (UndefElts1[(Imm & 0x01) ? 1 : 0] ||
2750 UndefElts2[(Imm & 0x10) ? 1 : 0])
2751 return replaceInstUsesWith(*II,
2752 ConstantAggregateZero::get(II->getType()));
2753
2754 if (MadeChange)
2755 return II;
2756 }
2757 break;
2758 }
2759
Sanjay Patelc86867c2015-04-16 17:52:13 +00002760 case Intrinsic::x86_sse41_insertps:
Sanjay Patel6038d3e2016-01-29 23:27:03 +00002761 if (Value *V = simplifyX86insertps(*II, *Builder))
Sanjay Patel4b198802016-02-01 22:23:39 +00002762 return replaceInstUsesWith(*II, V);
Sanjay Patelc86867c2015-04-16 17:52:13 +00002763 break;
Simon Pilgrim54fcd622015-07-25 20:41:00 +00002764
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002765 case Intrinsic::x86_sse4a_extrq: {
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002766 Value *Op0 = II->getArgOperand(0);
2767 Value *Op1 = II->getArgOperand(1);
2768 unsigned VWidth0 = Op0->getType()->getVectorNumElements();
2769 unsigned VWidth1 = Op1->getType()->getVectorNumElements();
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002770 assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
2771 Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
2772 VWidth1 == 16 && "Unexpected operand sizes");
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002773
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002774 // See if we're dealing with constant values.
2775 Constant *C1 = dyn_cast<Constant>(Op1);
2776 ConstantInt *CILength =
Andrea Di Biagio8df5b9c2016-09-07 12:03:03 +00002777 C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0))
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002778 : nullptr;
2779 ConstantInt *CIIndex =
Andrea Di Biagio8df5b9c2016-09-07 12:03:03 +00002780 C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1))
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002781 : nullptr;
2782
2783 // Attempt to simplify to a constant, shuffle vector or EXTRQI call.
Sanjay Patel6038d3e2016-01-29 23:27:03 +00002784 if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, *Builder))
Sanjay Patel4b198802016-02-01 22:23:39 +00002785 return replaceInstUsesWith(*II, V);
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002786
2787 // EXTRQ only uses the lowest 64-bits of the first 128-bit vector
2788 // operands and the lowest 16-bits of the second.
Simon Pilgrim1c9a9f22016-04-24 17:57:27 +00002789 bool MadeChange = false;
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002790 if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
2791 II->setArgOperand(0, V);
Simon Pilgrim1c9a9f22016-04-24 17:57:27 +00002792 MadeChange = true;
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002793 }
2794 if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 2)) {
2795 II->setArgOperand(1, V);
Simon Pilgrim1c9a9f22016-04-24 17:57:27 +00002796 MadeChange = true;
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002797 }
Simon Pilgrim1c9a9f22016-04-24 17:57:27 +00002798 if (MadeChange)
2799 return II;
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002800 break;
2801 }
2802
2803 case Intrinsic::x86_sse4a_extrqi: {
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002804 // EXTRQI: Extract Length bits starting from Index. Zero pad the remaining
2805 // bits of the lower 64-bits. The upper 64-bits are undefined.
2806 Value *Op0 = II->getArgOperand(0);
2807 unsigned VWidth = Op0->getType()->getVectorNumElements();
2808 assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
2809 "Unexpected operand size");
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002810
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002811 // See if we're dealing with constant values.
2812 ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(1));
2813 ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(2));
2814
2815 // Attempt to simplify to a constant or shuffle vector.
Sanjay Patel6038d3e2016-01-29 23:27:03 +00002816 if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, *Builder))
Sanjay Patel4b198802016-02-01 22:23:39 +00002817 return replaceInstUsesWith(*II, V);
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002818
2819 // EXTRQI only uses the lowest 64-bits of the first 128-bit vector
2820 // operand.
2821 if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002822 II->setArgOperand(0, V);
2823 return II;
2824 }
2825 break;
2826 }
2827
2828 case Intrinsic::x86_sse4a_insertq: {
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002829 Value *Op0 = II->getArgOperand(0);
2830 Value *Op1 = II->getArgOperand(1);
2831 unsigned VWidth = Op0->getType()->getVectorNumElements();
2832 assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
2833 Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
2834 Op1->getType()->getVectorNumElements() == 2 &&
2835 "Unexpected operand size");
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002836
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002837 // See if we're dealing with constant values.
2838 Constant *C1 = dyn_cast<Constant>(Op1);
2839 ConstantInt *CI11 =
Andrea Di Biagiof3fd3162016-09-07 12:47:53 +00002840 C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1))
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002841 : nullptr;
2842
2843 // Attempt to simplify to a constant, shuffle vector or INSERTQI call.
2844 if (CI11) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00002845 const APInt &V11 = CI11->getValue();
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002846 APInt Len = V11.zextOrTrunc(6);
2847 APInt Idx = V11.lshr(8).zextOrTrunc(6);
Sanjay Patel6038d3e2016-01-29 23:27:03 +00002848 if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, *Builder))
Sanjay Patel4b198802016-02-01 22:23:39 +00002849 return replaceInstUsesWith(*II, V);
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002850 }
2851
2852 // INSERTQ only uses the lowest 64-bits of the first 128-bit vector
2853 // operand.
2854 if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002855 II->setArgOperand(0, V);
2856 return II;
2857 }
2858 break;
2859 }
2860
Filipe Cabecinhas1a805952014-04-24 00:38:14 +00002861 case Intrinsic::x86_sse4a_insertqi: {
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002862 // INSERTQI: Extract lowest Length bits from lower half of second source and
2863 // insert over first source starting at Index bit. The upper 64-bits are
2864 // undefined.
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002865 Value *Op0 = II->getArgOperand(0);
2866 Value *Op1 = II->getArgOperand(1);
2867 unsigned VWidth0 = Op0->getType()->getVectorNumElements();
2868 unsigned VWidth1 = Op1->getType()->getVectorNumElements();
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002869 assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
2870 Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
2871 VWidth1 == 2 && "Unexpected operand sizes");
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002872
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002873 // See if we're dealing with constant values.
2874 ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(2));
2875 ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(3));
2876
2877 // Attempt to simplify to a constant or shuffle vector.
2878 if (CILength && CIIndex) {
2879 APInt Len = CILength->getValue().zextOrTrunc(6);
2880 APInt Idx = CIIndex->getValue().zextOrTrunc(6);
Sanjay Patel6038d3e2016-01-29 23:27:03 +00002881 if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, *Builder))
Sanjay Patel4b198802016-02-01 22:23:39 +00002882 return replaceInstUsesWith(*II, V);
Simon Pilgrim216b1bf2015-10-17 11:40:05 +00002883 }
2884
2885 // INSERTQI only uses the lowest 64-bits of the first two 128-bit vector
2886 // operands.
Simon Pilgrim1c9a9f22016-04-24 17:57:27 +00002887 bool MadeChange = false;
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002888 if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
2889 II->setArgOperand(0, V);
Simon Pilgrim1c9a9f22016-04-24 17:57:27 +00002890 MadeChange = true;
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002891 }
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002892 if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 1)) {
2893 II->setArgOperand(1, V);
Simon Pilgrim1c9a9f22016-04-24 17:57:27 +00002894 MadeChange = true;
Simon Pilgrim61116dd2015-09-17 20:32:45 +00002895 }
Simon Pilgrim1c9a9f22016-04-24 17:57:27 +00002896 if (MadeChange)
2897 return II;
Filipe Cabecinhas1a805952014-04-24 00:38:14 +00002898 break;
2899 }
2900
Filipe Cabecinhas82ac07c2014-05-27 03:42:20 +00002901 case Intrinsic::x86_sse41_pblendvb:
2902 case Intrinsic::x86_sse41_blendvps:
2903 case Intrinsic::x86_sse41_blendvpd:
2904 case Intrinsic::x86_avx_blendv_ps_256:
2905 case Intrinsic::x86_avx_blendv_pd_256:
2906 case Intrinsic::x86_avx2_pblendvb: {
2907 // Convert blendv* to vector selects if the mask is constant.
2908 // This optimization is convoluted because the intrinsic is defined as
2909 // getting a vector of floats or doubles for the ps and pd versions.
2910 // FIXME: That should be changed.
Simon Pilgrim8c049d52015-08-12 08:08:56 +00002911
2912 Value *Op0 = II->getArgOperand(0);
2913 Value *Op1 = II->getArgOperand(1);
Filipe Cabecinhas82ac07c2014-05-27 03:42:20 +00002914 Value *Mask = II->getArgOperand(2);
Simon Pilgrim8c049d52015-08-12 08:08:56 +00002915
2916 // fold (blend A, A, Mask) -> A
2917 if (Op0 == Op1)
Sanjay Patel4b198802016-02-01 22:23:39 +00002918 return replaceInstUsesWith(CI, Op0);
Simon Pilgrim8c049d52015-08-12 08:08:56 +00002919
2920 // Zero Mask - select 1st argument.
Simon Pilgrim93f59f52015-08-12 08:23:36 +00002921 if (isa<ConstantAggregateZero>(Mask))
Sanjay Patel4b198802016-02-01 22:23:39 +00002922 return replaceInstUsesWith(CI, Op0);
Simon Pilgrim8c049d52015-08-12 08:08:56 +00002923
2924 // Constant Mask - select 1st/2nd argument lane based on top bit of mask.
Sanjay Patel368ac5d2016-02-21 17:29:33 +00002925 if (auto *ConstantMask = dyn_cast<ConstantDataVector>(Mask)) {
2926 Constant *NewSelector = getNegativeIsTrueBoolVec(ConstantMask);
Simon Pilgrim8c049d52015-08-12 08:08:56 +00002927 return SelectInst::Create(NewSelector, Op1, Op0, "blendv");
Filipe Cabecinhas82ac07c2014-05-27 03:42:20 +00002928 }
Simon Pilgrim8c049d52015-08-12 08:08:56 +00002929 break;
Filipe Cabecinhas82ac07c2014-05-27 03:42:20 +00002930 }
2931
Andrea Di Biagio0594e2a2015-09-30 16:44:39 +00002932 case Intrinsic::x86_ssse3_pshuf_b_128:
Simon Pilgrimc0c56e72016-04-24 17:00:34 +00002933 case Intrinsic::x86_avx2_pshuf_b:
Simon Pilgrima22c3a12017-01-18 13:44:04 +00002934 case Intrinsic::x86_avx512_pshuf_b_512:
Simon Pilgrimc0c56e72016-04-24 17:00:34 +00002935 if (Value *V = simplifyX86pshufb(*II, *Builder))
2936 return replaceInstUsesWith(*II, V);
2937 break;
Andrea Di Biagio0594e2a2015-09-30 16:44:39 +00002938
Rafael Espindolabad3f772014-04-21 22:06:04 +00002939 case Intrinsic::x86_avx_vpermilvar_ps:
2940 case Intrinsic::x86_avx_vpermilvar_ps_256:
Craig Topper58917f32016-12-11 01:59:36 +00002941 case Intrinsic::x86_avx512_vpermilvar_ps_512:
Rafael Espindolabad3f772014-04-21 22:06:04 +00002942 case Intrinsic::x86_avx_vpermilvar_pd:
Simon Pilgrim2f6097d2016-04-24 17:23:46 +00002943 case Intrinsic::x86_avx_vpermilvar_pd_256:
Simon Pilgrima22c3a12017-01-18 13:44:04 +00002944 case Intrinsic::x86_avx512_vpermilvar_pd_512:
Simon Pilgrim2f6097d2016-04-24 17:23:46 +00002945 if (Value *V = simplifyX86vpermilvar(*II, *Builder))
2946 return replaceInstUsesWith(*II, V);
2947 break;
Rafael Espindolabad3f772014-04-21 22:06:04 +00002948
Simon Pilgrim8cddf8b2016-05-01 16:41:22 +00002949 case Intrinsic::x86_avx2_permd:
2950 case Intrinsic::x86_avx2_permps:
2951 if (Value *V = simplifyX86vpermv(*II, *Builder))
2952 return replaceInstUsesWith(*II, V);
2953 break;
2954
Craig Toppere3280452016-12-25 23:58:57 +00002955 case Intrinsic::x86_avx512_mask_permvar_df_256:
2956 case Intrinsic::x86_avx512_mask_permvar_df_512:
2957 case Intrinsic::x86_avx512_mask_permvar_di_256:
2958 case Intrinsic::x86_avx512_mask_permvar_di_512:
2959 case Intrinsic::x86_avx512_mask_permvar_hi_128:
2960 case Intrinsic::x86_avx512_mask_permvar_hi_256:
2961 case Intrinsic::x86_avx512_mask_permvar_hi_512:
2962 case Intrinsic::x86_avx512_mask_permvar_qi_128:
2963 case Intrinsic::x86_avx512_mask_permvar_qi_256:
2964 case Intrinsic::x86_avx512_mask_permvar_qi_512:
2965 case Intrinsic::x86_avx512_mask_permvar_sf_256:
2966 case Intrinsic::x86_avx512_mask_permvar_sf_512:
2967 case Intrinsic::x86_avx512_mask_permvar_si_256:
2968 case Intrinsic::x86_avx512_mask_permvar_si_512:
2969 if (Value *V = simplifyX86vpermv(*II, *Builder)) {
2970 // We simplified the permuting, now create a select for the masking.
2971 V = emitX86MaskSelect(II->getArgOperand(3), V, II->getArgOperand(2),
2972 *Builder);
2973 return replaceInstUsesWith(*II, V);
2974 }
2975 break;
2976
Sanjay Patelccf5f242015-03-20 21:47:56 +00002977 case Intrinsic::x86_avx_vperm2f128_pd_256:
2978 case Intrinsic::x86_avx_vperm2f128_ps_256:
2979 case Intrinsic::x86_avx_vperm2f128_si_256:
Sanjay Patele304bea2015-03-24 22:39:29 +00002980 case Intrinsic::x86_avx2_vperm2i128:
Sanjay Patel6038d3e2016-01-29 23:27:03 +00002981 if (Value *V = simplifyX86vperm2(*II, *Builder))
Sanjay Patel4b198802016-02-01 22:23:39 +00002982 return replaceInstUsesWith(*II, V);
Sanjay Patelccf5f242015-03-20 21:47:56 +00002983 break;
2984
Sanjay Patel98a71502016-02-29 23:16:48 +00002985 case Intrinsic::x86_avx_maskload_ps:
Sanjay Patel6f2c01f2016-02-29 23:59:00 +00002986 case Intrinsic::x86_avx_maskload_pd:
2987 case Intrinsic::x86_avx_maskload_ps_256:
2988 case Intrinsic::x86_avx_maskload_pd_256:
2989 case Intrinsic::x86_avx2_maskload_d:
2990 case Intrinsic::x86_avx2_maskload_q:
2991 case Intrinsic::x86_avx2_maskload_d_256:
2992 case Intrinsic::x86_avx2_maskload_q_256:
Sanjay Patel98a71502016-02-29 23:16:48 +00002993 if (Instruction *I = simplifyX86MaskedLoad(*II, *this))
2994 return I;
2995 break;
2996
Sanjay Patelc4acbae2016-03-12 15:16:59 +00002997 case Intrinsic::x86_sse2_maskmov_dqu:
Sanjay Patel1ace9932016-02-26 21:04:14 +00002998 case Intrinsic::x86_avx_maskstore_ps:
2999 case Intrinsic::x86_avx_maskstore_pd:
3000 case Intrinsic::x86_avx_maskstore_ps_256:
3001 case Intrinsic::x86_avx_maskstore_pd_256:
Sanjay Patelfc7e7eb2016-02-26 21:51:44 +00003002 case Intrinsic::x86_avx2_maskstore_d:
3003 case Intrinsic::x86_avx2_maskstore_q:
3004 case Intrinsic::x86_avx2_maskstore_d_256:
3005 case Intrinsic::x86_avx2_maskstore_q_256:
Sanjay Patel1ace9932016-02-26 21:04:14 +00003006 if (simplifyX86MaskedStore(*II, *this))
3007 return nullptr;
3008 break;
3009
Simon Pilgrim1d1c56e22015-10-11 14:38:34 +00003010 case Intrinsic::x86_xop_vpcomb:
3011 case Intrinsic::x86_xop_vpcomd:
3012 case Intrinsic::x86_xop_vpcomq:
3013 case Intrinsic::x86_xop_vpcomw:
Sanjay Patel6038d3e2016-01-29 23:27:03 +00003014 if (Value *V = simplifyX86vpcom(*II, *Builder, true))
Sanjay Patel4b198802016-02-01 22:23:39 +00003015 return replaceInstUsesWith(*II, V);
Simon Pilgrim1d1c56e22015-10-11 14:38:34 +00003016 break;
3017
3018 case Intrinsic::x86_xop_vpcomub:
3019 case Intrinsic::x86_xop_vpcomud:
3020 case Intrinsic::x86_xop_vpcomuq:
3021 case Intrinsic::x86_xop_vpcomuw:
Sanjay Patel6038d3e2016-01-29 23:27:03 +00003022 if (Value *V = simplifyX86vpcom(*II, *Builder, false))
Sanjay Patel4b198802016-02-01 22:23:39 +00003023 return replaceInstUsesWith(*II, V);
Simon Pilgrim1d1c56e22015-10-11 14:38:34 +00003024 break;
3025
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003026 case Intrinsic::ppc_altivec_vperm:
3027 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
Bill Schmidta1184632014-06-05 19:46:04 +00003028 // Note that ppc_altivec_vperm has a big-endian bias, so when creating
3029 // a vectorshuffle for little endian, we must undo the transformation
3030 // performed on vec_perm in altivec.h. That is, we must complement
3031 // the permutation mask with respect to 31 and reverse the order of
3032 // V1 and V2.
Chris Lattner0256be92012-01-27 03:08:05 +00003033 if (Constant *Mask = dyn_cast<Constant>(II->getArgOperand(2))) {
3034 assert(Mask->getType()->getVectorNumElements() == 16 &&
3035 "Bad type for intrinsic!");
Jim Grosbach7815f562012-02-03 00:07:04 +00003036
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003037 // Check that all of the elements are integer constants or undefs.
3038 bool AllEltsOk = true;
3039 for (unsigned i = 0; i != 16; ++i) {
Chris Lattner0256be92012-01-27 03:08:05 +00003040 Constant *Elt = Mask->getAggregateElement(i);
Craig Topperf40110f2014-04-25 05:29:35 +00003041 if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003042 AllEltsOk = false;
3043 break;
3044 }
3045 }
Jim Grosbach7815f562012-02-03 00:07:04 +00003046
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003047 if (AllEltsOk) {
3048 // Cast the input vectors to byte vectors.
Gabor Greif3e44ea12010-07-22 10:37:47 +00003049 Value *Op0 = Builder->CreateBitCast(II->getArgOperand(0),
3050 Mask->getType());
3051 Value *Op1 = Builder->CreateBitCast(II->getArgOperand(1),
3052 Mask->getType());
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003053 Value *Result = UndefValue::get(Op0->getType());
Jim Grosbach7815f562012-02-03 00:07:04 +00003054
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003055 // Only extract each element once.
3056 Value *ExtractedElts[32];
3057 memset(ExtractedElts, 0, sizeof(ExtractedElts));
Jim Grosbach7815f562012-02-03 00:07:04 +00003058
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003059 for (unsigned i = 0; i != 16; ++i) {
Chris Lattner0256be92012-01-27 03:08:05 +00003060 if (isa<UndefValue>(Mask->getAggregateElement(i)))
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003061 continue;
Jim Grosbach7815f562012-02-03 00:07:04 +00003062 unsigned Idx =
Chris Lattner0256be92012-01-27 03:08:05 +00003063 cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003064 Idx &= 31; // Match the hardware behavior.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003065 if (DL.isLittleEndian())
Bill Schmidta1184632014-06-05 19:46:04 +00003066 Idx = 31 - Idx;
Jim Grosbach7815f562012-02-03 00:07:04 +00003067
Craig Topperf40110f2014-04-25 05:29:35 +00003068 if (!ExtractedElts[Idx]) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003069 Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0;
3070 Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1;
Jim Grosbach7815f562012-02-03 00:07:04 +00003071 ExtractedElts[Idx] =
Bill Schmidta1184632014-06-05 19:46:04 +00003072 Builder->CreateExtractElement(Idx < 16 ? Op0ToUse : Op1ToUse,
Benjamin Kramer547b6c52011-09-27 20:39:19 +00003073 Builder->getInt32(Idx&15));
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003074 }
Jim Grosbach7815f562012-02-03 00:07:04 +00003075
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003076 // Insert this value into the result vector.
3077 Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
Benjamin Kramer547b6c52011-09-27 20:39:19 +00003078 Builder->getInt32(i));
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003079 }
3080 return CastInst::Create(Instruction::BitCast, Result, CI.getType());
3081 }
3082 }
3083 break;
3084
Bob Wilsona4e231c2010-10-22 21:41:48 +00003085 case Intrinsic::arm_neon_vld1:
3086 case Intrinsic::arm_neon_vld2:
3087 case Intrinsic::arm_neon_vld3:
3088 case Intrinsic::arm_neon_vld4:
3089 case Intrinsic::arm_neon_vld2lane:
3090 case Intrinsic::arm_neon_vld3lane:
3091 case Intrinsic::arm_neon_vld4lane:
3092 case Intrinsic::arm_neon_vst1:
3093 case Intrinsic::arm_neon_vst2:
3094 case Intrinsic::arm_neon_vst3:
3095 case Intrinsic::arm_neon_vst4:
3096 case Intrinsic::arm_neon_vst2lane:
3097 case Intrinsic::arm_neon_vst3lane:
3098 case Intrinsic::arm_neon_vst4lane: {
Justin Bogner99798402016-08-05 01:06:44 +00003099 unsigned MemAlign =
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003100 getKnownAlignment(II->getArgOperand(0), DL, II, &AC, &DT);
Bob Wilsona4e231c2010-10-22 21:41:48 +00003101 unsigned AlignArg = II->getNumArgOperands() - 1;
3102 ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
3103 if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
3104 II->setArgOperand(AlignArg,
3105 ConstantInt::get(Type::getInt32Ty(II->getContext()),
3106 MemAlign, false));
3107 return II;
3108 }
3109 break;
3110 }
3111
Lang Hames3a90fab2012-05-01 00:20:38 +00003112 case Intrinsic::arm_neon_vmulls:
Tim Northover00ed9962014-03-29 10:18:08 +00003113 case Intrinsic::arm_neon_vmullu:
Tim Northover3b0846e2014-05-24 12:50:23 +00003114 case Intrinsic::aarch64_neon_smull:
3115 case Intrinsic::aarch64_neon_umull: {
Lang Hames3a90fab2012-05-01 00:20:38 +00003116 Value *Arg0 = II->getArgOperand(0);
3117 Value *Arg1 = II->getArgOperand(1);
3118
3119 // Handle mul by zero first:
3120 if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
Sanjay Patel4b198802016-02-01 22:23:39 +00003121 return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
Lang Hames3a90fab2012-05-01 00:20:38 +00003122 }
3123
3124 // Check for constant LHS & RHS - in this case we just simplify.
Tim Northover00ed9962014-03-29 10:18:08 +00003125 bool Zext = (II->getIntrinsicID() == Intrinsic::arm_neon_vmullu ||
Tim Northover3b0846e2014-05-24 12:50:23 +00003126 II->getIntrinsicID() == Intrinsic::aarch64_neon_umull);
Lang Hames3a90fab2012-05-01 00:20:38 +00003127 VectorType *NewVT = cast<VectorType>(II->getType());
Benjamin Kramer92040952014-02-13 18:23:24 +00003128 if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
3129 if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
3130 CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext);
3131 CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext);
3132
Sanjay Patel4b198802016-02-01 22:23:39 +00003133 return replaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1));
Lang Hames3a90fab2012-05-01 00:20:38 +00003134 }
3135
Alp Tokercb402912014-01-24 17:20:08 +00003136 // Couldn't simplify - canonicalize constant to the RHS.
Lang Hames3a90fab2012-05-01 00:20:38 +00003137 std::swap(Arg0, Arg1);
3138 }
3139
3140 // Handle mul by one:
Benjamin Kramer92040952014-02-13 18:23:24 +00003141 if (Constant *CV1 = dyn_cast<Constant>(Arg1))
Lang Hames3a90fab2012-05-01 00:20:38 +00003142 if (ConstantInt *Splat =
Benjamin Kramer92040952014-02-13 18:23:24 +00003143 dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
3144 if (Splat->isOne())
3145 return CastInst::CreateIntegerCast(Arg0, II->getType(),
3146 /*isSigned=*/!Zext);
Lang Hames3a90fab2012-05-01 00:20:38 +00003147
3148 break;
3149 }
Matt Arsenaultbef34e22016-01-22 21:30:34 +00003150 case Intrinsic::amdgcn_rcp: {
Matt Arsenault4c7795d2017-03-24 19:04:57 +00003151 Value *Src = II->getArgOperand(0);
3152
3153 // TODO: Move to ConstantFolding/InstSimplify?
3154 if (isa<UndefValue>(Src))
3155 return replaceInstUsesWith(CI, Src);
3156
3157 if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) {
Matt Arsenaulta0050b02014-06-19 01:19:19 +00003158 const APFloat &ArgVal = C->getValueAPF();
3159 APFloat Val(ArgVal.getSemantics(), 1.0);
3160 APFloat::opStatus Status = Val.divide(ArgVal,
3161 APFloat::rmNearestTiesToEven);
3162 // Only do this if it was exact and therefore not dependent on the
3163 // rounding mode.
3164 if (Status == APFloat::opOK)
Sanjay Patel4b198802016-02-01 22:23:39 +00003165 return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(), Val));
Matt Arsenaulta0050b02014-06-19 01:19:19 +00003166 }
3167
3168 break;
3169 }
Matt Arsenault4c7795d2017-03-24 19:04:57 +00003170 case Intrinsic::amdgcn_rsq: {
3171 Value *Src = II->getArgOperand(0);
3172
3173 // TODO: Move to ConstantFolding/InstSimplify?
3174 if (isa<UndefValue>(Src))
3175 return replaceInstUsesWith(CI, Src);
3176 break;
3177 }
Matt Arsenault2fe4fbc2016-03-30 22:28:52 +00003178 case Intrinsic::amdgcn_frexp_mant:
3179 case Intrinsic::amdgcn_frexp_exp: {
Matt Arsenault5cd4f8f2016-03-30 22:28:26 +00003180 Value *Src = II->getArgOperand(0);
3181 if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) {
3182 int Exp;
3183 APFloat Significand = frexp(C->getValueAPF(), Exp,
3184 APFloat::rmNearestTiesToEven);
3185
Matt Arsenault2fe4fbc2016-03-30 22:28:52 +00003186 if (II->getIntrinsicID() == Intrinsic::amdgcn_frexp_mant) {
3187 return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(),
3188 Significand));
3189 }
3190
3191 // Match instruction special case behavior.
3192 if (Exp == APFloat::IEK_NaN || Exp == APFloat::IEK_Inf)
3193 Exp = 0;
3194
3195 return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Exp));
3196 }
3197
3198 if (isa<UndefValue>(Src))
3199 return replaceInstUsesWith(CI, UndefValue::get(II->getType()));
Matt Arsenault5cd4f8f2016-03-30 22:28:26 +00003200
3201 break;
3202 }
Matt Arsenault46a03822016-09-03 07:06:58 +00003203 case Intrinsic::amdgcn_class: {
3204 enum {
3205 S_NAN = 1 << 0, // Signaling NaN
3206 Q_NAN = 1 << 1, // Quiet NaN
3207 N_INFINITY = 1 << 2, // Negative infinity
3208 N_NORMAL = 1 << 3, // Negative normal
3209 N_SUBNORMAL = 1 << 4, // Negative subnormal
3210 N_ZERO = 1 << 5, // Negative zero
3211 P_ZERO = 1 << 6, // Positive zero
3212 P_SUBNORMAL = 1 << 7, // Positive subnormal
3213 P_NORMAL = 1 << 8, // Positive normal
3214 P_INFINITY = 1 << 9 // Positive infinity
3215 };
3216
3217 const uint32_t FullMask = S_NAN | Q_NAN | N_INFINITY | N_NORMAL |
3218 N_SUBNORMAL | N_ZERO | P_ZERO | P_SUBNORMAL | P_NORMAL | P_INFINITY;
3219
3220 Value *Src0 = II->getArgOperand(0);
3221 Value *Src1 = II->getArgOperand(1);
3222 const ConstantInt *CMask = dyn_cast<ConstantInt>(Src1);
3223 if (!CMask) {
3224 if (isa<UndefValue>(Src0))
3225 return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
3226
3227 if (isa<UndefValue>(Src1))
3228 return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), false));
3229 break;
3230 }
3231
3232 uint32_t Mask = CMask->getZExtValue();
3233
3234 // If all tests are made, it doesn't matter what the value is.
3235 if ((Mask & FullMask) == FullMask)
3236 return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), true));
3237
3238 if ((Mask & FullMask) == 0)
3239 return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), false));
3240
3241 if (Mask == (S_NAN | Q_NAN)) {
3242 // Equivalent of isnan. Replace with standard fcmp.
3243 Value *FCmp = Builder->CreateFCmpUNO(Src0, Src0);
3244 FCmp->takeName(II);
3245 return replaceInstUsesWith(*II, FCmp);
3246 }
3247
3248 const ConstantFP *CVal = dyn_cast<ConstantFP>(Src0);
3249 if (!CVal) {
3250 if (isa<UndefValue>(Src0))
3251 return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
3252
3253 // Clamp mask to used bits
3254 if ((Mask & FullMask) != Mask) {
3255 CallInst *NewCall = Builder->CreateCall(II->getCalledFunction(),
3256 { Src0, ConstantInt::get(Src1->getType(), Mask & FullMask) }
3257 );
3258
3259 NewCall->takeName(II);
3260 return replaceInstUsesWith(*II, NewCall);
3261 }
3262
3263 break;
3264 }
3265
3266 const APFloat &Val = CVal->getValueAPF();
3267
3268 bool Result =
3269 ((Mask & S_NAN) && Val.isNaN() && Val.isSignaling()) ||
3270 ((Mask & Q_NAN) && Val.isNaN() && !Val.isSignaling()) ||
3271 ((Mask & N_INFINITY) && Val.isInfinity() && Val.isNegative()) ||
3272 ((Mask & N_NORMAL) && Val.isNormal() && Val.isNegative()) ||
3273 ((Mask & N_SUBNORMAL) && Val.isDenormal() && Val.isNegative()) ||
3274 ((Mask & N_ZERO) && Val.isZero() && Val.isNegative()) ||
3275 ((Mask & P_ZERO) && Val.isZero() && !Val.isNegative()) ||
3276 ((Mask & P_SUBNORMAL) && Val.isDenormal() && !Val.isNegative()) ||
3277 ((Mask & P_NORMAL) && Val.isNormal() && !Val.isNegative()) ||
3278 ((Mask & P_INFINITY) && Val.isInfinity() && !Val.isNegative());
3279
3280 return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), Result));
3281 }
Matt Arsenault1f17c662017-02-22 00:27:34 +00003282 case Intrinsic::amdgcn_cvt_pkrtz: {
3283 Value *Src0 = II->getArgOperand(0);
3284 Value *Src1 = II->getArgOperand(1);
3285 if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) {
3286 if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) {
3287 const fltSemantics &HalfSem
3288 = II->getType()->getScalarType()->getFltSemantics();
3289 bool LosesInfo;
3290 APFloat Val0 = C0->getValueAPF();
3291 APFloat Val1 = C1->getValueAPF();
3292 Val0.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo);
3293 Val1.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo);
3294
3295 Constant *Folded = ConstantVector::get({
3296 ConstantFP::get(II->getContext(), Val0),
3297 ConstantFP::get(II->getContext(), Val1) });
3298 return replaceInstUsesWith(*II, Folded);
3299 }
3300 }
3301
3302 if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1))
3303 return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
3304
3305 break;
3306 }
Matt Arsenaultf5262252017-02-22 23:04:58 +00003307 case Intrinsic::amdgcn_ubfe:
3308 case Intrinsic::amdgcn_sbfe: {
3309 // Decompose simple cases into standard shifts.
3310 Value *Src = II->getArgOperand(0);
3311 if (isa<UndefValue>(Src))
3312 return replaceInstUsesWith(*II, Src);
3313
3314 unsigned Width;
3315 Type *Ty = II->getType();
3316 unsigned IntSize = Ty->getIntegerBitWidth();
3317
3318 ConstantInt *CWidth = dyn_cast<ConstantInt>(II->getArgOperand(2));
3319 if (CWidth) {
3320 Width = CWidth->getZExtValue();
3321 if ((Width & (IntSize - 1)) == 0)
3322 return replaceInstUsesWith(*II, ConstantInt::getNullValue(Ty));
3323
3324 if (Width >= IntSize) {
3325 // Hardware ignores high bits, so remove those.
3326 II->setArgOperand(2, ConstantInt::get(CWidth->getType(),
3327 Width & (IntSize - 1)));
3328 return II;
3329 }
3330 }
3331
3332 unsigned Offset;
3333 ConstantInt *COffset = dyn_cast<ConstantInt>(II->getArgOperand(1));
3334 if (COffset) {
3335 Offset = COffset->getZExtValue();
3336 if (Offset >= IntSize) {
3337 II->setArgOperand(1, ConstantInt::get(COffset->getType(),
3338 Offset & (IntSize - 1)));
3339 return II;
3340 }
3341 }
3342
3343 bool Signed = II->getIntrinsicID() == Intrinsic::amdgcn_sbfe;
3344
3345 // TODO: Also emit sub if only width is constant.
3346 if (!CWidth && COffset && Offset == 0) {
3347 Constant *KSize = ConstantInt::get(COffset->getType(), IntSize);
3348 Value *ShiftVal = Builder->CreateSub(KSize, II->getArgOperand(2));
3349 ShiftVal = Builder->CreateZExt(ShiftVal, II->getType());
3350
3351 Value *Shl = Builder->CreateShl(Src, ShiftVal);
3352 Value *RightShift = Signed ?
3353 Builder->CreateAShr(Shl, ShiftVal) :
3354 Builder->CreateLShr(Shl, ShiftVal);
3355 RightShift->takeName(II);
3356 return replaceInstUsesWith(*II, RightShift);
3357 }
3358
3359 if (!CWidth || !COffset)
3360 break;
3361
3362 // TODO: This allows folding to undef when the hardware has specific
3363 // behavior?
3364 if (Offset + Width < IntSize) {
3365 Value *Shl = Builder->CreateShl(Src, IntSize - Offset - Width);
3366 Value *RightShift = Signed ?
3367 Builder->CreateAShr(Shl, IntSize - Width) :
3368 Builder->CreateLShr(Shl, IntSize - Width);
3369 RightShift->takeName(II);
3370 return replaceInstUsesWith(*II, RightShift);
3371 }
3372
3373 Value *RightShift = Signed ?
3374 Builder->CreateAShr(Src, Offset) :
3375 Builder->CreateLShr(Src, Offset);
3376
3377 RightShift->takeName(II);
3378 return replaceInstUsesWith(*II, RightShift);
3379 }
Matt Arsenaultd4bca1e2017-02-23 00:44:03 +00003380 case Intrinsic::amdgcn_exp:
3381 case Intrinsic::amdgcn_exp_compr: {
3382 ConstantInt *En = dyn_cast<ConstantInt>(II->getArgOperand(1));
3383 if (!En) // Illegal.
3384 break;
3385
3386 unsigned EnBits = En->getZExtValue();
3387 if (EnBits == 0xf)
3388 break; // All inputs enabled.
3389
3390 bool IsCompr = II->getIntrinsicID() == Intrinsic::amdgcn_exp_compr;
3391 bool Changed = false;
3392 for (int I = 0; I < (IsCompr ? 2 : 4); ++I) {
3393 if ((!IsCompr && (EnBits & (1 << I)) == 0) ||
3394 (IsCompr && ((EnBits & (0x3 << (2 * I))) == 0))) {
3395 Value *Src = II->getArgOperand(I + 2);
3396 if (!isa<UndefValue>(Src)) {
3397 II->setArgOperand(I + 2, UndefValue::get(Src->getType()));
3398 Changed = true;
3399 }
3400 }
3401 }
3402
3403 if (Changed)
3404 return II;
3405
3406 break;
Matt Arsenaultcdb468c2017-02-27 23:08:49 +00003407
3408 }
3409 case Intrinsic::amdgcn_fmed3: {
3410 // Note this does not preserve proper sNaN behavior if IEEE-mode is enabled
3411 // for the shader.
3412
3413 Value *Src0 = II->getArgOperand(0);
3414 Value *Src1 = II->getArgOperand(1);
3415 Value *Src2 = II->getArgOperand(2);
3416
3417 bool Swap = false;
3418 // Canonicalize constants to RHS operands.
3419 //
3420 // fmed3(c0, x, c1) -> fmed3(x, c0, c1)
3421 if (isa<Constant>(Src0) && !isa<Constant>(Src1)) {
3422 std::swap(Src0, Src1);
3423 Swap = true;
3424 }
3425
3426 if (isa<Constant>(Src1) && !isa<Constant>(Src2)) {
3427 std::swap(Src1, Src2);
3428 Swap = true;
3429 }
3430
3431 if (isa<Constant>(Src0) && !isa<Constant>(Src1)) {
3432 std::swap(Src0, Src1);
3433 Swap = true;
3434 }
3435
3436 if (Swap) {
3437 II->setArgOperand(0, Src0);
3438 II->setArgOperand(1, Src1);
3439 II->setArgOperand(2, Src2);
3440 return II;
3441 }
3442
3443 if (match(Src2, m_NaN()) || isa<UndefValue>(Src2)) {
3444 CallInst *NewCall = Builder->CreateMinNum(Src0, Src1);
3445 NewCall->copyFastMathFlags(II);
3446 NewCall->takeName(II);
3447 return replaceInstUsesWith(*II, NewCall);
3448 }
3449
3450 if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) {
3451 if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) {
3452 if (const ConstantFP *C2 = dyn_cast<ConstantFP>(Src2)) {
3453 APFloat Result = fmed3AMDGCN(C0->getValueAPF(), C1->getValueAPF(),
3454 C2->getValueAPF());
3455 return replaceInstUsesWith(*II,
3456 ConstantFP::get(Builder->getContext(), Result));
3457 }
3458 }
3459 }
3460
3461 break;
Matt Arsenaultd4bca1e2017-02-23 00:44:03 +00003462 }
Matt Arsenaultd81f5572017-03-13 18:14:02 +00003463 case Intrinsic::amdgcn_icmp:
3464 case Intrinsic::amdgcn_fcmp: {
3465 const ConstantInt *CC = dyn_cast<ConstantInt>(II->getArgOperand(2));
3466 if (!CC)
3467 break;
3468
3469 // Guard against invalid arguments.
3470 int64_t CCVal = CC->getZExtValue();
3471 bool IsInteger = II->getIntrinsicID() == Intrinsic::amdgcn_icmp;
3472 if ((IsInteger && (CCVal < CmpInst::FIRST_ICMP_PREDICATE ||
3473 CCVal > CmpInst::LAST_ICMP_PREDICATE)) ||
3474 (!IsInteger && (CCVal < CmpInst::FIRST_FCMP_PREDICATE ||
3475 CCVal > CmpInst::LAST_FCMP_PREDICATE)))
3476 break;
3477
3478 Value *Src0 = II->getArgOperand(0);
3479 Value *Src1 = II->getArgOperand(1);
3480
3481 if (auto *CSrc0 = dyn_cast<Constant>(Src0)) {
3482 if (auto *CSrc1 = dyn_cast<Constant>(Src1)) {
3483 Constant *CCmp = ConstantExpr::getCompare(CCVal, CSrc0, CSrc1);
Nicolai Haehnle9c661852017-04-24 17:08:43 +00003484 if (CCmp->isNullValue()) {
3485 return replaceInstUsesWith(
3486 *II, ConstantExpr::getSExt(CCmp, II->getType()));
3487 }
3488
3489 // The result of V_ICMP/V_FCMP assembly instructions (which this
3490 // intrinsic exposes) is one bit per thread, masked with the EXEC
3491 // register (which contains the bitmask of live threads). So a
3492 // comparison that always returns true is the same as a read of the
3493 // EXEC register.
3494 Value *NewF = Intrinsic::getDeclaration(
3495 II->getModule(), Intrinsic::read_register, II->getType());
3496 Metadata *MDArgs[] = {MDString::get(II->getContext(), "exec")};
3497 MDNode *MD = MDNode::get(II->getContext(), MDArgs);
3498 Value *Args[] = {MetadataAsValue::get(II->getContext(), MD)};
3499 CallInst *NewCall = Builder->CreateCall(NewF, Args);
3500 NewCall->addAttribute(AttributeList::FunctionIndex,
3501 Attribute::Convergent);
3502 NewCall->takeName(II);
3503 return replaceInstUsesWith(*II, NewCall);
Matt Arsenaultd81f5572017-03-13 18:14:02 +00003504 }
3505
3506 // Canonicalize constants to RHS.
3507 CmpInst::Predicate SwapPred
3508 = CmpInst::getSwappedPredicate(static_cast<CmpInst::Predicate>(CCVal));
3509 II->setArgOperand(0, Src1);
3510 II->setArgOperand(1, Src0);
3511 II->setArgOperand(2, ConstantInt::get(CC->getType(),
3512 static_cast<int>(SwapPred)));
3513 return II;
3514 }
3515
3516 if (CCVal != CmpInst::ICMP_EQ && CCVal != CmpInst::ICMP_NE)
3517 break;
3518
3519 // Canonicalize compare eq with true value to compare != 0
3520 // llvm.amdgcn.icmp(zext (i1 x), 1, eq)
3521 // -> llvm.amdgcn.icmp(zext (i1 x), 0, ne)
3522 // llvm.amdgcn.icmp(sext (i1 x), -1, eq)
3523 // -> llvm.amdgcn.icmp(sext (i1 x), 0, ne)
3524 Value *ExtSrc;
3525 if (CCVal == CmpInst::ICMP_EQ &&
3526 ((match(Src1, m_One()) && match(Src0, m_ZExt(m_Value(ExtSrc)))) ||
3527 (match(Src1, m_AllOnes()) && match(Src0, m_SExt(m_Value(ExtSrc))))) &&
3528 ExtSrc->getType()->isIntegerTy(1)) {
3529 II->setArgOperand(1, ConstantInt::getNullValue(Src1->getType()));
3530 II->setArgOperand(2, ConstantInt::get(CC->getType(), CmpInst::ICMP_NE));
3531 return II;
3532 }
3533
3534 CmpInst::Predicate SrcPred;
3535 Value *SrcLHS;
3536 Value *SrcRHS;
3537
3538 // Fold compare eq/ne with 0 from a compare result as the predicate to the
3539 // intrinsic. The typical use is a wave vote function in the library, which
3540 // will be fed from a user code condition compared with 0. Fold in the
3541 // redundant compare.
3542
3543 // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, ne)
3544 // -> llvm.amdgcn.[if]cmp(a, b, pred)
3545 //
3546 // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, eq)
3547 // -> llvm.amdgcn.[if]cmp(a, b, inv pred)
3548 if (match(Src1, m_Zero()) &&
3549 match(Src0,
3550 m_ZExtOrSExt(m_Cmp(SrcPred, m_Value(SrcLHS), m_Value(SrcRHS))))) {
3551 if (CCVal == CmpInst::ICMP_EQ)
3552 SrcPred = CmpInst::getInversePredicate(SrcPred);
3553
3554 Intrinsic::ID NewIID = CmpInst::isFPPredicate(SrcPred) ?
3555 Intrinsic::amdgcn_fcmp : Intrinsic::amdgcn_icmp;
3556
3557 Value *NewF = Intrinsic::getDeclaration(II->getModule(), NewIID,
3558 SrcLHS->getType());
3559 Value *Args[] = { SrcLHS, SrcRHS,
3560 ConstantInt::get(CC->getType(), SrcPred) };
3561 CallInst *NewCall = Builder->CreateCall(NewF, Args);
3562 NewCall->takeName(II);
3563 return replaceInstUsesWith(*II, NewCall);
3564 }
3565
3566 break;
3567 }
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003568 case Intrinsic::stackrestore: {
3569 // If the save is right next to the restore, remove the restore. This can
3570 // happen when variable allocas are DCE'd.
Gabor Greif589a0b92010-06-24 12:58:35 +00003571 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003572 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
Duncan P. N. Exon Smith9f8aaf22015-10-13 16:59:33 +00003573 if (&*++SS->getIterator() == II)
Sanjay Patel4b198802016-02-01 22:23:39 +00003574 return eraseInstFromFunction(CI);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003575 }
3576 }
Jim Grosbach7815f562012-02-03 00:07:04 +00003577
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003578 // Scan down this block to see if there is another stack restore in the
3579 // same block without an intervening call/alloca.
Duncan P. N. Exon Smith9f8aaf22015-10-13 16:59:33 +00003580 BasicBlock::iterator BI(II);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003581 TerminatorInst *TI = II->getParent()->getTerminator();
3582 bool CannotRemove = false;
3583 for (++BI; &*BI != TI; ++BI) {
Nuno Lopes55fff832012-06-21 15:45:28 +00003584 if (isa<AllocaInst>(BI)) {
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003585 CannotRemove = true;
3586 break;
3587 }
3588 if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
3589 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
3590 // If there is a stackrestore below this one, remove this one.
3591 if (II->getIntrinsicID() == Intrinsic::stackrestore)
Sanjay Patel4b198802016-02-01 22:23:39 +00003592 return eraseInstFromFunction(CI);
Reid Kleckner892ae2e2016-02-27 00:53:54 +00003593
3594 // Bail if we cross over an intrinsic with side effects, such as
3595 // llvm.stacksave, llvm.read_register, or llvm.setjmp.
3596 if (II->mayHaveSideEffects()) {
3597 CannotRemove = true;
3598 break;
3599 }
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003600 } else {
3601 // If we found a non-intrinsic call, we can't remove the stack
3602 // restore.
3603 CannotRemove = true;
3604 break;
3605 }
3606 }
3607 }
Jim Grosbach7815f562012-02-03 00:07:04 +00003608
Bill Wendlingf891bf82011-07-31 06:30:59 +00003609 // If the stack restore is in a return, resume, or unwind block and if there
3610 // are no allocas or calls between the restore and the return, nuke the
3611 // restore.
Bill Wendlingd5d95b02012-02-06 21:16:41 +00003612 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
Sanjay Patel4b198802016-02-01 22:23:39 +00003613 return eraseInstFromFunction(CI);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003614 break;
3615 }
Vitaly Bukaf0500b62016-07-28 22:50:48 +00003616 case Intrinsic::lifetime_start:
Vitaly Buka0ab23cf2016-07-28 22:59:03 +00003617 // Asan needs to poison memory to detect invalid access which is possible
3618 // even for empty lifetime range.
3619 if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress))
3620 break;
3621
Arnaud A. de Grandmaison333ef382016-05-10 09:24:49 +00003622 if (removeTriviallyEmptyRange(*II, Intrinsic::lifetime_start,
3623 Intrinsic::lifetime_end, *this))
3624 return nullptr;
Arnaud A. de Grandmaison849f3bf2015-10-01 14:54:31 +00003625 break;
Hal Finkelf5867a72014-07-25 21:45:17 +00003626 case Intrinsic::assume: {
David Majnemerfcc58112016-04-08 16:37:12 +00003627 Value *IIOperand = II->getArgOperand(0);
3628 // Remove an assume if it is immediately followed by an identical assume.
3629 if (match(II->getNextNode(),
3630 m_Intrinsic<Intrinsic::assume>(m_Specific(IIOperand))))
3631 return eraseInstFromFunction(CI);
3632
Hal Finkelf5867a72014-07-25 21:45:17 +00003633 // Canonicalize assume(a && b) -> assume(a); assume(b);
Hal Finkel74c2f352014-09-07 12:44:26 +00003634 // Note: New assumption intrinsics created here are registered by
3635 // the InstCombineIRInserter object.
David Majnemerfcc58112016-04-08 16:37:12 +00003636 Value *AssumeIntrinsic = II->getCalledValue(), *A, *B;
Hal Finkelf5867a72014-07-25 21:45:17 +00003637 if (match(IIOperand, m_And(m_Value(A), m_Value(B)))) {
3638 Builder->CreateCall(AssumeIntrinsic, A, II->getName());
3639 Builder->CreateCall(AssumeIntrinsic, B, II->getName());
Sanjay Patel4b198802016-02-01 22:23:39 +00003640 return eraseInstFromFunction(*II);
Hal Finkelf5867a72014-07-25 21:45:17 +00003641 }
3642 // assume(!(a || b)) -> assume(!a); assume(!b);
3643 if (match(IIOperand, m_Not(m_Or(m_Value(A), m_Value(B))))) {
Hal Finkel74c2f352014-09-07 12:44:26 +00003644 Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(A),
3645 II->getName());
3646 Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(B),
3647 II->getName());
Sanjay Patel4b198802016-02-01 22:23:39 +00003648 return eraseInstFromFunction(*II);
Hal Finkelf5867a72014-07-25 21:45:17 +00003649 }
Hal Finkel04a15612014-10-04 21:27:06 +00003650
Philip Reames66c6de62014-11-11 23:33:19 +00003651 // assume( (load addr) != null ) -> add 'nonnull' metadata to load
3652 // (if assume is valid at the load)
Sanjay Patelf0d1e7732017-01-03 22:25:31 +00003653 CmpInst::Predicate Pred;
3654 Instruction *LHS;
3655 if (match(IIOperand, m_ICmp(Pred, m_Instruction(LHS), m_Zero())) &&
3656 Pred == ICmpInst::ICMP_NE && LHS->getOpcode() == Instruction::Load &&
3657 LHS->getType()->isPointerTy() &&
3658 isValidAssumeForContext(II, LHS, &DT)) {
3659 MDNode *MD = MDNode::get(II->getContext(), None);
3660 LHS->setMetadata(LLVMContext::MD_nonnull, MD);
3661 return eraseInstFromFunction(*II);
3662
Chandler Carruth24969102015-02-10 08:07:32 +00003663 // TODO: apply nonnull return attributes to calls and invokes
Philip Reames66c6de62014-11-11 23:33:19 +00003664 // TODO: apply range metadata for range check patterns?
3665 }
Sanjay Patelf0d1e7732017-01-03 22:25:31 +00003666
Hal Finkel04a15612014-10-04 21:27:06 +00003667 // If there is a dominating assume with the same condition as this one,
3668 // then this one is redundant, and should be removed.
Craig Topperb45eabc2017-04-26 16:39:58 +00003669 KnownBits Known(1);
3670 computeKnownBits(IIOperand, Known, 0, II);
Craig Topperf0aeee02017-05-05 17:36:09 +00003671 if (Known.isAllOnes())
Sanjay Patel4b198802016-02-01 22:23:39 +00003672 return eraseInstFromFunction(*II);
Hal Finkel04a15612014-10-04 21:27:06 +00003673
Hal Finkel8a9a7832017-01-11 13:24:24 +00003674 // Update the cache of affected values for this assumption (we might be
3675 // here because we just simplified the condition).
3676 AC.updateAffectedValues(II);
Hal Finkelf5867a72014-07-25 21:45:17 +00003677 break;
3678 }
Philip Reames9db26ff2014-12-29 23:27:30 +00003679 case Intrinsic::experimental_gc_relocate: {
3680 // Translate facts known about a pointer before relocating into
3681 // facts about the relocate value, while being careful to
3682 // preserve relocation semantics.
Manuel Jacob83eefa62016-01-05 04:03:00 +00003683 Value *DerivedPtr = cast<GCRelocateInst>(II)->getDerivedPtr();
Philip Reames9db26ff2014-12-29 23:27:30 +00003684
3685 // Remove the relocation if unused, note that this check is required
3686 // to prevent the cases below from looping forever.
3687 if (II->use_empty())
Sanjay Patel4b198802016-02-01 22:23:39 +00003688 return eraseInstFromFunction(*II);
Philip Reames9db26ff2014-12-29 23:27:30 +00003689
3690 // Undef is undef, even after relocation.
3691 // TODO: provide a hook for this in GCStrategy. This is clearly legal for
3692 // most practical collectors, but there was discussion in the review thread
3693 // about whether it was legal for all possible collectors.
Philip Reamesea4d8e82016-02-09 21:09:22 +00003694 if (isa<UndefValue>(DerivedPtr))
3695 // Use undef of gc_relocate's type to replace it.
3696 return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
Philip Reames9db26ff2014-12-29 23:27:30 +00003697
Philip Reamesea4d8e82016-02-09 21:09:22 +00003698 if (auto *PT = dyn_cast<PointerType>(II->getType())) {
3699 // The relocation of null will be null for most any collector.
3700 // TODO: provide a hook for this in GCStrategy. There might be some
3701 // weird collector this property does not hold for.
3702 if (isa<ConstantPointerNull>(DerivedPtr))
3703 // Use null-pointer of gc_relocate's type to replace it.
3704 return replaceInstUsesWith(*II, ConstantPointerNull::get(PT));
Simon Pilgrimc0c56e72016-04-24 17:00:34 +00003705
Philip Reamesea4d8e82016-02-09 21:09:22 +00003706 // isKnownNonNull -> nonnull attribute
Justin Bogner99798402016-08-05 01:06:44 +00003707 if (isKnownNonNullAt(DerivedPtr, II, &DT))
Reid Klecknerb5180542017-03-21 16:57:19 +00003708 II->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
Ramkumar Ramachandra8fcb4982015-02-14 19:37:54 +00003709 }
Philip Reames9db26ff2014-12-29 23:27:30 +00003710
3711 // TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
3712 // Canonicalize on the type from the uses to the defs
Ramkumar Ramachandra8fcb4982015-02-14 19:37:54 +00003713
Philip Reames9db26ff2014-12-29 23:27:30 +00003714 // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
Philip Reamesea4d8e82016-02-09 21:09:22 +00003715 break;
Philip Reames9db26ff2014-12-29 23:27:30 +00003716 }
Artur Pilipenkoe812ca02017-01-25 14:12:12 +00003717
3718 case Intrinsic::experimental_guard: {
Sanjoy Dase0e57952017-02-01 16:34:55 +00003719 // Is this guard followed by another guard?
3720 Instruction *NextInst = II->getNextNode();
3721 Value *NextCond = nullptr;
3722 if (match(NextInst,
3723 m_Intrinsic<Intrinsic::experimental_guard>(m_Value(NextCond)))) {
3724 Value *CurrCond = II->getArgOperand(0);
Artur Pilipenkoe812ca02017-01-25 14:12:12 +00003725
Simon Pilgrim68168d12017-03-30 12:59:53 +00003726 // Remove a guard that it is immediately preceded by an identical guard.
Sanjoy Dase0e57952017-02-01 16:34:55 +00003727 if (CurrCond == NextCond)
3728 return eraseInstFromFunction(*NextInst);
3729
3730 // Otherwise canonicalize guard(a); guard(b) -> guard(a & b).
3731 II->setArgOperand(0, Builder->CreateAnd(CurrCond, NextCond));
3732 return eraseInstFromFunction(*NextInst);
3733 }
Artur Pilipenkoe812ca02017-01-25 14:12:12 +00003734 break;
3735 }
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003736 }
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003737 return visitCallSite(II);
3738}
3739
Davide Italianoaec46172017-01-31 18:09:05 +00003740// Fence instruction simplification
3741Instruction *InstCombiner::visitFenceInst(FenceInst &FI) {
3742 // Remove identical consecutive fences.
3743 if (auto *NFI = dyn_cast<FenceInst>(FI.getNextNode()))
3744 if (FI.isIdenticalTo(NFI))
3745 return eraseInstFromFunction(FI);
3746 return nullptr;
3747}
3748
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003749// InvokeInst simplification
3750//
3751Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
3752 return visitCallSite(&II);
3753}
3754
Sanjay Patelcd4377c2016-01-20 22:24:38 +00003755/// If this cast does not affect the value passed through the varargs area, we
3756/// can eliminate the use of the cast.
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003757static bool isSafeToEliminateVarargsCast(const CallSite CS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003758 const DataLayout &DL,
3759 const CastInst *const CI,
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003760 const int ix) {
3761 if (!CI->isLosslessCast())
3762 return false;
3763
Philip Reames1a1bdb22014-12-02 18:50:36 +00003764 // If this is a GC intrinsic, avoid munging types. We need types for
3765 // statepoint reconstruction in SelectionDAG.
3766 // TODO: This is probably something which should be expanded to all
3767 // intrinsics since the entire point of intrinsics is that
3768 // they are understandable by the optimizer.
3769 if (isStatepoint(CS) || isGCRelocate(CS) || isGCResult(CS))
3770 return false;
3771
Reid Kleckner26af2ca2014-01-28 02:38:36 +00003772 // The size of ByVal or InAlloca arguments is derived from the type, so we
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003773 // can't change to a type with a different size. If the size were
3774 // passed explicitly we could avoid this check.
Reid Kleckner26af2ca2014-01-28 02:38:36 +00003775 if (!CS.isByValOrInAllocaArgument(ix))
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003776 return true;
3777
Jim Grosbach7815f562012-02-03 00:07:04 +00003778 Type* SrcTy =
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003779 cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
Chris Lattner229907c2011-07-18 04:54:35 +00003780 Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003781 if (!SrcTy->isSized() || !DstTy->isSized())
3782 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003783 if (DL.getTypeAllocSize(SrcTy) != DL.getTypeAllocSize(DstTy))
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003784 return false;
3785 return true;
3786}
3787
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003788Instruction *InstCombiner::tryOptimizeCall(CallInst *CI) {
Craig Topperf40110f2014-04-25 05:29:35 +00003789 if (!CI->getCalledFunction()) return nullptr;
Eric Christophera7fb58f2010-03-06 10:50:38 +00003790
Chandler Carruthba4c5172015-01-21 11:23:40 +00003791 auto InstCombineRAUW = [this](Instruction *From, Value *With) {
Sanjay Patel4b198802016-02-01 22:23:39 +00003792 replaceInstUsesWith(*From, With);
Chandler Carruthba4c5172015-01-21 11:23:40 +00003793 };
Justin Bogner99798402016-08-05 01:06:44 +00003794 LibCallSimplifier Simplifier(DL, &TLI, InstCombineRAUW);
Chandler Carruthba4c5172015-01-21 11:23:40 +00003795 if (Value *With = Simplifier.optimizeCall(CI)) {
Meador Ingee3f2b262012-11-30 04:05:06 +00003796 ++NumSimplified;
Sanjay Patel4b198802016-02-01 22:23:39 +00003797 return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With);
Meador Ingee3f2b262012-11-30 04:05:06 +00003798 }
Meador Ingedf796f82012-10-13 16:45:24 +00003799
Craig Topperf40110f2014-04-25 05:29:35 +00003800 return nullptr;
Eric Christophera7fb58f2010-03-06 10:50:38 +00003801}
3802
Sanjay Patel6038d3e2016-01-29 23:27:03 +00003803static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) {
Duncan Sandsa0984362011-09-06 13:37:06 +00003804 // Strip off at most one level of pointer casts, looking for an alloca. This
3805 // is good enough in practice and simpler than handling any number of casts.
3806 Value *Underlying = TrampMem->stripPointerCasts();
3807 if (Underlying != TrampMem &&
Chandler Carruthcdf47882014-03-09 03:16:01 +00003808 (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
Craig Topperf40110f2014-04-25 05:29:35 +00003809 return nullptr;
Duncan Sandsa0984362011-09-06 13:37:06 +00003810 if (!isa<AllocaInst>(Underlying))
Craig Topperf40110f2014-04-25 05:29:35 +00003811 return nullptr;
Duncan Sandsa0984362011-09-06 13:37:06 +00003812
Craig Topperf40110f2014-04-25 05:29:35 +00003813 IntrinsicInst *InitTrampoline = nullptr;
Chandler Carruthcdf47882014-03-09 03:16:01 +00003814 for (User *U : TrampMem->users()) {
3815 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Duncan Sandsa0984362011-09-06 13:37:06 +00003816 if (!II)
Craig Topperf40110f2014-04-25 05:29:35 +00003817 return nullptr;
Duncan Sandsa0984362011-09-06 13:37:06 +00003818 if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
3819 if (InitTrampoline)
3820 // More than one init_trampoline writes to this value. Give up.
Craig Topperf40110f2014-04-25 05:29:35 +00003821 return nullptr;
Duncan Sandsa0984362011-09-06 13:37:06 +00003822 InitTrampoline = II;
3823 continue;
3824 }
3825 if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
3826 // Allow any number of calls to adjust.trampoline.
3827 continue;
Craig Topperf40110f2014-04-25 05:29:35 +00003828 return nullptr;
Duncan Sandsa0984362011-09-06 13:37:06 +00003829 }
3830
3831 // No call to init.trampoline found.
3832 if (!InitTrampoline)
Craig Topperf40110f2014-04-25 05:29:35 +00003833 return nullptr;
Duncan Sandsa0984362011-09-06 13:37:06 +00003834
3835 // Check that the alloca is being used in the expected way.
3836 if (InitTrampoline->getOperand(0) != TrampMem)
Craig Topperf40110f2014-04-25 05:29:35 +00003837 return nullptr;
Duncan Sandsa0984362011-09-06 13:37:06 +00003838
3839 return InitTrampoline;
3840}
3841
Sanjay Patel6038d3e2016-01-29 23:27:03 +00003842static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
Duncan Sandsa0984362011-09-06 13:37:06 +00003843 Value *TrampMem) {
3844 // Visit all the previous instructions in the basic block, and try to find a
3845 // init.trampoline which has a direct path to the adjust.trampoline.
Duncan P. N. Exon Smith9f8aaf22015-10-13 16:59:33 +00003846 for (BasicBlock::iterator I = AdjustTramp->getIterator(),
3847 E = AdjustTramp->getParent()->begin();
3848 I != E;) {
3849 Instruction *Inst = &*--I;
Duncan Sandsa0984362011-09-06 13:37:06 +00003850 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
3851 if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
3852 II->getOperand(0) == TrampMem)
3853 return II;
3854 if (Inst->mayWriteToMemory())
Craig Topperf40110f2014-04-25 05:29:35 +00003855 return nullptr;
Duncan Sandsa0984362011-09-06 13:37:06 +00003856 }
Craig Topperf40110f2014-04-25 05:29:35 +00003857 return nullptr;
Duncan Sandsa0984362011-09-06 13:37:06 +00003858}
3859
3860// Given a call to llvm.adjust.trampoline, find and return the corresponding
3861// call to llvm.init.trampoline if the call to the trampoline can be optimized
3862// to a direct call to a function. Otherwise return NULL.
3863//
Sanjay Patel6038d3e2016-01-29 23:27:03 +00003864static IntrinsicInst *findInitTrampoline(Value *Callee) {
Duncan Sandsa0984362011-09-06 13:37:06 +00003865 Callee = Callee->stripPointerCasts();
3866 IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
3867 if (!AdjustTramp ||
3868 AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
Craig Topperf40110f2014-04-25 05:29:35 +00003869 return nullptr;
Duncan Sandsa0984362011-09-06 13:37:06 +00003870
3871 Value *TrampMem = AdjustTramp->getOperand(0);
3872
Sanjay Patel6038d3e2016-01-29 23:27:03 +00003873 if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem))
Duncan Sandsa0984362011-09-06 13:37:06 +00003874 return IT;
Sanjay Patel6038d3e2016-01-29 23:27:03 +00003875 if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem))
Duncan Sandsa0984362011-09-06 13:37:06 +00003876 return IT;
Craig Topperf40110f2014-04-25 05:29:35 +00003877 return nullptr;
Duncan Sandsa0984362011-09-06 13:37:06 +00003878}
3879
Sanjay Patelcd4377c2016-01-20 22:24:38 +00003880/// Improvements for call and invoke instructions.
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003881Instruction *InstCombiner::visitCallSite(CallSite CS) {
Justin Bogner99798402016-08-05 01:06:44 +00003882 if (isAllocLikeFn(CS.getInstruction(), &TLI))
Nuno Lopes95cc4f32012-07-09 18:38:20 +00003883 return visitAllocSite(*CS.getInstruction());
Nuno Lopesdc6085e2012-06-21 21:25:05 +00003884
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003885 bool Changed = false;
3886
Philip Reamesc25df112015-06-16 20:24:25 +00003887 // Mark any parameters that are known to be non-null with the nonnull
3888 // attribute. This is helpful for inlining calls to functions with null
3889 // checks on their arguments.
Reid Kleckner5fbdd172017-05-31 19:23:09 +00003890 SmallVector<unsigned, 4> ArgNos;
Philip Reamesc25df112015-06-16 20:24:25 +00003891 unsigned ArgNo = 0;
Akira Hatanaka237916b2015-12-02 06:58:49 +00003892
Philip Reamesc25df112015-06-16 20:24:25 +00003893 for (Value *V : CS.args()) {
Sanjay Patelf9f5d3c2016-01-29 23:14:58 +00003894 if (V->getType()->isPointerTy() &&
Reid Klecknerfb502d22017-04-14 20:19:02 +00003895 !CS.paramHasAttr(ArgNo, Attribute::NonNull) &&
Justin Bogner99798402016-08-05 01:06:44 +00003896 isKnownNonNullAt(V, CS.getInstruction(), &DT))
Reid Kleckner5fbdd172017-05-31 19:23:09 +00003897 ArgNos.push_back(ArgNo);
Philip Reamesc25df112015-06-16 20:24:25 +00003898 ArgNo++;
3899 }
Akira Hatanaka237916b2015-12-02 06:58:49 +00003900
Philip Reamesc25df112015-06-16 20:24:25 +00003901 assert(ArgNo == CS.arg_size() && "sanity check");
3902
Reid Kleckner5fbdd172017-05-31 19:23:09 +00003903 if (!ArgNos.empty()) {
Reid Klecknerb5180542017-03-21 16:57:19 +00003904 AttributeList AS = CS.getAttributes();
Akira Hatanaka237916b2015-12-02 06:58:49 +00003905 LLVMContext &Ctx = CS.getInstruction()->getContext();
Reid Kleckner5fbdd172017-05-31 19:23:09 +00003906 AS = AS.addParamAttribute(Ctx, ArgNos,
3907 Attribute::get(Ctx, Attribute::NonNull));
Akira Hatanaka237916b2015-12-02 06:58:49 +00003908 CS.setAttributes(AS);
3909 Changed = true;
3910 }
3911
Chris Lattner73989652010-12-20 08:25:06 +00003912 // If the callee is a pointer to a function, attempt to move any casts to the
3913 // arguments of the call/invoke.
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003914 Value *Callee = CS.getCalledValue();
Chris Lattner73989652010-12-20 08:25:06 +00003915 if (!isa<Function>(Callee) && transformConstExprCastCall(CS))
Craig Topperf40110f2014-04-25 05:29:35 +00003916 return nullptr;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003917
Justin Lebar9d943972016-03-14 20:18:54 +00003918 if (Function *CalleeF = dyn_cast<Function>(Callee)) {
3919 // Remove the convergent attr on calls when the callee is not convergent.
Matt Arsenault802ebcb2016-06-20 19:04:44 +00003920 if (CS.isConvergent() && !CalleeF->isConvergent() &&
3921 !CalleeF->isIntrinsic()) {
Justin Lebar9d943972016-03-14 20:18:54 +00003922 DEBUG(dbgs() << "Removing convergent attr from instr "
3923 << CS.getInstruction() << "\n");
3924 CS.setNotConvergent();
3925 return CS.getInstruction();
3926 }
3927
Chris Lattner846a52e2010-02-01 18:11:34 +00003928 // If the call and callee calling conventions don't match, this call must
3929 // be unreachable, as the call is undefined.
3930 if (CalleeF->getCallingConv() != CS.getCallingConv() &&
3931 // Only do this for calls to a function with a body. A prototype may
3932 // not actually end up matching the implementation's calling conv for a
3933 // variety of reasons (e.g. it may be written in assembly).
3934 !CalleeF->isDeclaration()) {
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003935 Instruction *OldCall = CS.getInstruction();
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003936 new StoreInst(ConstantInt::getTrue(Callee->getContext()),
Jim Grosbach7815f562012-02-03 00:07:04 +00003937 UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003938 OldCall);
Chad Rosiere28ae302012-12-13 00:18:46 +00003939 // If OldCall does not return void then replaceAllUsesWith undef.
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003940 // This allows ValueHandlers and custom metadata to adjust itself.
3941 if (!OldCall->getType()->isVoidTy())
Sanjay Patel4b198802016-02-01 22:23:39 +00003942 replaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
Chris Lattner2cecedf2010-02-01 18:04:58 +00003943 if (isa<CallInst>(OldCall))
Sanjay Patel4b198802016-02-01 22:23:39 +00003944 return eraseInstFromFunction(*OldCall);
Jim Grosbach7815f562012-02-03 00:07:04 +00003945
Chris Lattner2cecedf2010-02-01 18:04:58 +00003946 // We cannot remove an invoke, because it would change the CFG, just
3947 // change the callee to a null pointer.
Gabor Greiffebf6ab2010-03-20 21:00:25 +00003948 cast<InvokeInst>(OldCall)->setCalledFunction(
Chris Lattner2cecedf2010-02-01 18:04:58 +00003949 Constant::getNullValue(CalleeF->getType()));
Craig Topperf40110f2014-04-25 05:29:35 +00003950 return nullptr;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003951 }
Justin Lebar9d943972016-03-14 20:18:54 +00003952 }
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003953
3954 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
Gabor Greif589a0b92010-06-24 12:58:35 +00003955 // If CS does not return void then replaceAllUsesWith undef.
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003956 // This allows ValueHandlers and custom metadata to adjust itself.
3957 if (!CS.getInstruction()->getType()->isVoidTy())
Sanjay Patel4b198802016-02-01 22:23:39 +00003958 replaceInstUsesWith(*CS.getInstruction(),
Eli Friedmanb9ed18f2011-05-18 00:32:01 +00003959 UndefValue::get(CS.getInstruction()->getType()));
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003960
Nuno Lopes771e7bd2012-06-21 23:52:14 +00003961 if (isa<InvokeInst>(CS.getInstruction())) {
3962 // Can't remove an invoke because we cannot change the CFG.
Craig Topperf40110f2014-04-25 05:29:35 +00003963 return nullptr;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003964 }
Nuno Lopes771e7bd2012-06-21 23:52:14 +00003965
3966 // This instruction is not reachable, just remove it. We insert a store to
3967 // undef so that we know that this code is not reachable, despite the fact
3968 // that we can't modify the CFG here.
3969 new StoreInst(ConstantInt::getTrue(Callee->getContext()),
3970 UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
3971 CS.getInstruction());
3972
Sanjay Patel4b198802016-02-01 22:23:39 +00003973 return eraseInstFromFunction(*CS.getInstruction());
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003974 }
3975
Sanjay Patel6038d3e2016-01-29 23:27:03 +00003976 if (IntrinsicInst *II = findInitTrampoline(Callee))
Duncan Sandsa0984362011-09-06 13:37:06 +00003977 return transformCallThroughTrampoline(CS, II);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003978
Chris Lattner229907c2011-07-18 04:54:35 +00003979 PointerType *PTy = cast<PointerType>(Callee->getType());
3980 FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003981 if (FTy->isVarArg()) {
Eli Friedman7534b4682011-11-29 01:18:23 +00003982 int ix = FTy->getNumParams();
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003983 // See if we can optimize any arguments passed through the varargs area of
3984 // the call.
Matt Arsenault5d2e85f2013-06-28 00:25:40 +00003985 for (CallSite::arg_iterator I = CS.arg_begin() + FTy->getNumParams(),
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003986 E = CS.arg_end(); I != E; ++I, ++ix) {
3987 CastInst *CI = dyn_cast<CastInst>(*I);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003988 if (CI && isSafeToEliminateVarargsCast(CS, DL, CI, ix)) {
Chris Lattner7a9e47a2010-01-05 07:32:13 +00003989 *I = CI->getOperand(0);
3990 Changed = true;
3991 }
3992 }
3993 }
3994
3995 if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
3996 // Inline asm calls cannot throw - mark them 'nounwind'.
3997 CS.setDoesNotThrow();
3998 Changed = true;
3999 }
4000
Micah Villmowcdfe20b2012-10-08 16:38:25 +00004001 // Try to optimize the call if possible, we require DataLayout for most of
Eric Christophera7fb58f2010-03-06 10:50:38 +00004002 // this. None of these calls are seen as possibly dead so go ahead and
4003 // delete the instruction now.
4004 if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00004005 Instruction *I = tryOptimizeCall(CI);
Eric Christopher1810d772010-03-06 10:59:25 +00004006 // If we changed something return the result, etc. Otherwise let
4007 // the fallthrough check.
Sanjay Patel4b198802016-02-01 22:23:39 +00004008 if (I) return eraseInstFromFunction(*I);
Eric Christophera7fb58f2010-03-06 10:50:38 +00004009 }
4010
Craig Topperf40110f2014-04-25 05:29:35 +00004011 return Changed ? CS.getInstruction() : nullptr;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004012}
4013
Sanjay Patelcd4377c2016-01-20 22:24:38 +00004014/// If the callee is a constexpr cast of a function, attempt to move the cast to
4015/// the arguments of the call/invoke.
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004016bool InstCombiner::transformConstExprCastCall(CallSite CS) {
Sanjay Patele3c335c2016-08-11 15:21:21 +00004017 auto *Callee = dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
Craig Topperf40110f2014-04-25 05:29:35 +00004018 if (!Callee)
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004019 return false;
Sanjay Patel38ae83d2016-08-11 15:23:56 +00004020
4021 // The prototype of a thunk is a lie. Don't directly call such a function.
David Majnemer4c0a6e92015-01-21 22:32:04 +00004022 if (Callee->hasFnAttribute("thunk"))
4023 return false;
Sanjay Patel38ae83d2016-08-11 15:23:56 +00004024
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004025 Instruction *Caller = CS.getInstruction();
Reid Klecknerb5180542017-03-21 16:57:19 +00004026 const AttributeList &CallerPAL = CS.getAttributes();
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004027
4028 // Okay, this is a cast from a function to a different type. Unless doing so
4029 // would cause a type conversion of one of our arguments, change this call to
4030 // be a direct call with arguments casted to the appropriate types.
4031 //
Chris Lattner229907c2011-07-18 04:54:35 +00004032 FunctionType *FT = Callee->getFunctionType();
4033 Type *OldRetTy = Caller->getType();
4034 Type *NewRetTy = FT->getReturnType();
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004035
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004036 // Check to see if we are changing the return type...
4037 if (OldRetTy != NewRetTy) {
Nick Lewyckya6a17d72014-01-18 22:47:12 +00004038
4039 if (NewRetTy->isStructTy())
4040 return false; // TODO: Handle multiple return values.
4041
David Majnemer9b6b8222015-01-06 08:41:31 +00004042 if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) {
Matt Arsenaulte6952f22013-09-17 21:10:14 +00004043 if (Callee->isDeclaration())
4044 return false; // Cannot transform this return value.
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004045
Matt Arsenaulte6952f22013-09-17 21:10:14 +00004046 if (!Caller->use_empty() &&
4047 // void -> non-void is handled specially
4048 !NewRetTy->isVoidTy())
Frederic Rissc1892e22014-10-23 04:08:42 +00004049 return false; // Cannot transform this return value.
Matt Arsenaulte6952f22013-09-17 21:10:14 +00004050 }
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004051
4052 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
Reid Klecknerb5180542017-03-21 16:57:19 +00004053 AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex);
Pete Cooper2777d8872015-05-06 23:19:56 +00004054 if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy)))
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004055 return false; // Attribute not compatible with transformed value.
4056 }
4057
4058 // If the callsite is an invoke instruction, and the return value is used by
4059 // a PHI node in a successor, we cannot change the return type of the call
4060 // because there is no place to put the cast instruction (without breaking
4061 // the critical edge). Bail out in this case.
4062 if (!Caller->use_empty())
4063 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
Chandler Carruthcdf47882014-03-09 03:16:01 +00004064 for (User *U : II->users())
4065 if (PHINode *PN = dyn_cast<PHINode>(U))
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004066 if (PN->getParent() == II->getNormalDest() ||
4067 PN->getParent() == II->getUnwindDest())
4068 return false;
4069 }
4070
Matt Arsenault5d2e85f2013-06-28 00:25:40 +00004071 unsigned NumActualArgs = CS.arg_size();
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004072 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
4073
David Majnemer9b6b8222015-01-06 08:41:31 +00004074 // Prevent us turning:
4075 // declare void @takes_i32_inalloca(i32* inalloca)
4076 // call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
4077 //
4078 // into:
4079 // call void @takes_i32_inalloca(i32* null)
David Majnemerd61a6fd2015-03-11 18:03:05 +00004080 //
4081 // Similarly, avoid folding away bitcasts of byval calls.
4082 if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
4083 Callee->getAttributes().hasAttrSomewhere(Attribute::ByVal))
David Majnemer9b6b8222015-01-06 08:41:31 +00004084 return false;
4085
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004086 CallSite::arg_iterator AI = CS.arg_begin();
4087 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
Chris Lattner229907c2011-07-18 04:54:35 +00004088 Type *ParamTy = FT->getParamType(i);
4089 Type *ActTy = (*AI)->getType();
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004090
David Majnemer9b6b8222015-01-06 08:41:31 +00004091 if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004092 return false; // Cannot transform this parameter value.
4093
Reid Klecknerf021fab2017-04-13 23:12:13 +00004094 if (AttrBuilder(CallerPAL.getParamAttributes(i))
4095 .overlaps(AttributeFuncs::typeIncompatible(ParamTy)))
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004096 return false; // Attribute not compatible with transformed value.
Jim Grosbach7815f562012-02-03 00:07:04 +00004097
Reid Kleckner26af2ca2014-01-28 02:38:36 +00004098 if (CS.isInAllocaArgument(i))
4099 return false; // Cannot transform to and from inalloca.
4100
Chris Lattner27ca8eb2010-12-20 08:36:38 +00004101 // If the parameter is passed as a byval argument, then we have to have a
4102 // sized type and the sized type has to have the same size as the old type.
Reid Klecknerf021fab2017-04-13 23:12:13 +00004103 if (ParamTy != ActTy && CallerPAL.hasParamAttribute(i, Attribute::ByVal)) {
Chris Lattner229907c2011-07-18 04:54:35 +00004104 PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00004105 if (!ParamPTy || !ParamPTy->getElementType()->isSized())
Chris Lattner27ca8eb2010-12-20 08:36:38 +00004106 return false;
Jim Grosbach7815f562012-02-03 00:07:04 +00004107
Matt Arsenaultfa252722013-09-27 22:18:51 +00004108 Type *CurElTy = ActTy->getPointerElementType();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00004109 if (DL.getTypeAllocSize(CurElTy) !=
4110 DL.getTypeAllocSize(ParamPTy->getElementType()))
Chris Lattner27ca8eb2010-12-20 08:36:38 +00004111 return false;
4112 }
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004113 }
4114
Chris Lattneradf38b32011-02-24 05:10:56 +00004115 if (Callee->isDeclaration()) {
4116 // Do not delete arguments unless we have a function body.
4117 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
4118 return false;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004119
Chris Lattneradf38b32011-02-24 05:10:56 +00004120 // If the callee is just a declaration, don't change the varargsness of the
4121 // call. We don't want to introduce a varargs call where one doesn't
4122 // already exist.
Chris Lattner229907c2011-07-18 04:54:35 +00004123 PointerType *APTy = cast<PointerType>(CS.getCalledValue()->getType());
Chris Lattneradf38b32011-02-24 05:10:56 +00004124 if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
4125 return false;
Jim Grosbache84ae7b2012-02-03 00:00:55 +00004126
4127 // If both the callee and the cast type are varargs, we still have to make
4128 // sure the number of fixed parameters are the same or we have the same
4129 // ABI issues as if we introduce a varargs call.
Jim Grosbach1df8cdc2012-02-03 00:26:07 +00004130 if (FT->isVarArg() &&
4131 cast<FunctionType>(APTy->getElementType())->isVarArg() &&
4132 FT->getNumParams() !=
Jim Grosbache84ae7b2012-02-03 00:00:55 +00004133 cast<FunctionType>(APTy->getElementType())->getNumParams())
4134 return false;
Chris Lattneradf38b32011-02-24 05:10:56 +00004135 }
Jim Grosbach7815f562012-02-03 00:07:04 +00004136
Jim Grosbach0ab54182012-02-03 00:00:50 +00004137 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
Reid Kleckneraa0cec72017-04-19 23:17:47 +00004138 !CallerPAL.isEmpty()) {
Jim Grosbach0ab54182012-02-03 00:00:50 +00004139 // In this case we have more arguments than the new function type, but we
4140 // won't be dropping them. Check that these extra arguments have attributes
4141 // that are compatible with being a vararg call argument.
Reid Kleckneraa0cec72017-04-19 23:17:47 +00004142 unsigned SRetIdx;
4143 if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) &&
4144 SRetIdx > FT->getNumParams())
4145 return false;
4146 }
Jim Grosbach7815f562012-02-03 00:07:04 +00004147
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004148 // Okay, we decided that this is a safe thing to do: go ahead and start
Chris Lattneradf38b32011-02-24 05:10:56 +00004149 // inserting cast instructions as necessary.
Reid Klecknerc3fae792017-04-13 18:11:03 +00004150 SmallVector<Value *, 8> Args;
4151 SmallVector<AttributeSet, 8> ArgAttrs;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004152 Args.reserve(NumActualArgs);
Reid Klecknerc3fae792017-04-13 18:11:03 +00004153 ArgAttrs.reserve(NumActualArgs);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004154
4155 // Get any return attributes.
Reid Klecknerb5180542017-03-21 16:57:19 +00004156 AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004157
4158 // If the return value is not being used, the type may not be compatible
4159 // with the existing attributes. Wipe out any problematic attributes.
Pete Cooper2777d8872015-05-06 23:19:56 +00004160 RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy));
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004161
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004162 AI = CS.arg_begin();
4163 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
Chris Lattner229907c2011-07-18 04:54:35 +00004164 Type *ParamTy = FT->getParamType(i);
Matt Arsenaultcacbb232013-07-30 20:45:05 +00004165
Reid Klecknerc3fae792017-04-13 18:11:03 +00004166 Value *NewArg = *AI;
4167 if ((*AI)->getType() != ParamTy)
4168 NewArg = Builder->CreateBitOrPointerCast(*AI, ParamTy);
4169 Args.push_back(NewArg);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004170
4171 // Add any parameter attributes.
Reid Klecknerf021fab2017-04-13 23:12:13 +00004172 ArgAttrs.push_back(CallerPAL.getParamAttributes(i));
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004173 }
4174
4175 // If the function takes more arguments than the call was taking, add them
4176 // now.
Reid Klecknerc3fae792017-04-13 18:11:03 +00004177 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) {
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004178 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
Reid Klecknerc3fae792017-04-13 18:11:03 +00004179 ArgAttrs.push_back(AttributeSet());
4180 }
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004181
4182 // If we are removing arguments to the function, emit an obnoxious warning.
4183 if (FT->getNumParams() < NumActualArgs) {
Nick Lewycky90053a12012-12-26 22:00:35 +00004184 // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
4185 if (FT->isVarArg()) {
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004186 // Add all of the arguments in their promoted form to the arg list.
4187 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
Chris Lattner229907c2011-07-18 04:54:35 +00004188 Type *PTy = getPromotedType((*AI)->getType());
Reid Klecknerc3fae792017-04-13 18:11:03 +00004189 Value *NewArg = *AI;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004190 if (PTy != (*AI)->getType()) {
4191 // Must promote to pass through va_arg area!
4192 Instruction::CastOps opcode =
4193 CastInst::getCastOpcode(*AI, false, PTy, false);
Reid Klecknerc3fae792017-04-13 18:11:03 +00004194 NewArg = Builder->CreateCast(opcode, *AI, PTy);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004195 }
Reid Klecknerc3fae792017-04-13 18:11:03 +00004196 Args.push_back(NewArg);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004197
4198 // Add any parameter attributes.
Reid Klecknerf021fab2017-04-13 23:12:13 +00004199 ArgAttrs.push_back(CallerPAL.getParamAttributes(i));
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004200 }
4201 }
4202 }
4203
Reid Klecknerc2cb5602017-04-12 00:38:00 +00004204 AttributeSet FnAttrs = CallerPAL.getFnAttributes();
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004205
4206 if (NewRetTy->isVoidTy())
4207 Caller->setName(""); // Void type should not have a name.
4208
Reid Klecknerc3fae792017-04-13 18:11:03 +00004209 assert((ArgAttrs.size() == FT->getNumParams() || FT->isVarArg()) &&
4210 "missing argument attributes");
4211 LLVMContext &Ctx = Callee->getContext();
4212 AttributeList NewCallerPAL = AttributeList::get(
4213 Ctx, FnAttrs, AttributeSet::get(Ctx, RAttrs), ArgAttrs);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004214
Sanjoy Das76293462015-11-25 00:42:19 +00004215 SmallVector<OperandBundleDef, 1> OpBundles;
Sanjoy Dasc521c7b2015-11-25 00:42:24 +00004216 CS.getOperandBundlesAsDefs(OpBundles);
Sanjoy Das76293462015-11-25 00:42:19 +00004217
Reid Kleckner257cb4e2017-04-13 20:26:38 +00004218 CallSite NewCS;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004219 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Reid Kleckner257cb4e2017-04-13 20:26:38 +00004220 NewCS = Builder->CreateInvoke(Callee, II->getNormalDest(),
4221 II->getUnwindDest(), Args, OpBundles);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004222 } else {
Reid Kleckner257cb4e2017-04-13 20:26:38 +00004223 NewCS = Builder->CreateCall(Callee, Args, OpBundles);
4224 cast<CallInst>(NewCS.getInstruction())
4225 ->setTailCallKind(cast<CallInst>(Caller)->getTailCallKind());
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004226 }
Reid Kleckner257cb4e2017-04-13 20:26:38 +00004227 NewCS->takeName(Caller);
4228 NewCS.setCallingConv(CS.getCallingConv());
4229 NewCS.setAttributes(NewCallerPAL);
4230
4231 // Preserve the weight metadata for the new call instruction. The metadata
4232 // is used by SamplePGO to check callsite's hotness.
4233 uint64_t W;
4234 if (Caller->extractProfTotalWeight(W))
4235 NewCS->setProfWeight(W);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004236
4237 // Insert a cast of the return type as necessary.
Reid Kleckner257cb4e2017-04-13 20:26:38 +00004238 Instruction *NC = NewCS.getInstruction();
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004239 Value *NV = NC;
4240 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
4241 if (!NV->getType()->isVoidTy()) {
David Majnemer9b6b8222015-01-06 08:41:31 +00004242 NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy);
Eli Friedman35211c62011-05-27 00:19:40 +00004243 NC->setDebugLoc(Caller->getDebugLoc());
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004244
4245 // If this is an invoke instruction, we should insert it after the first
4246 // non-phi, instruction in the normal successor block.
4247 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Bill Wendling07efd6f2011-08-25 01:08:34 +00004248 BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt();
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004249 InsertNewInstBefore(NC, *I);
4250 } else {
Chris Lattner73989652010-12-20 08:25:06 +00004251 // Otherwise, it's a call, just insert cast right after the call.
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004252 InsertNewInstBefore(NC, *Caller);
4253 }
4254 Worklist.AddUsersToWorkList(*Caller);
4255 } else {
4256 NV = UndefValue::get(Caller->getType());
4257 }
4258 }
4259
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004260 if (!Caller->use_empty())
Sanjay Patel4b198802016-02-01 22:23:39 +00004261 replaceInstUsesWith(*Caller, NV);
Frederic Rissc1892e22014-10-23 04:08:42 +00004262 else if (Caller->hasValueHandle()) {
4263 if (OldRetTy == NV->getType())
4264 ValueHandleBase::ValueIsRAUWd(Caller, NV);
4265 else
4266 // We cannot call ValueIsRAUWd with a different type, and the
4267 // actual tracked value will disappear.
4268 ValueHandleBase::ValueIsDeleted(Caller);
4269 }
Eli Friedmanb9ed18f2011-05-18 00:32:01 +00004270
Sanjay Patel4b198802016-02-01 22:23:39 +00004271 eraseInstFromFunction(*Caller);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004272 return true;
4273}
4274
Sanjay Patelcd4377c2016-01-20 22:24:38 +00004275/// Turn a call to a function created by init_trampoline / adjust_trampoline
4276/// intrinsic pair into a direct call to the underlying function.
Duncan Sandsa0984362011-09-06 13:37:06 +00004277Instruction *
4278InstCombiner::transformCallThroughTrampoline(CallSite CS,
4279 IntrinsicInst *Tramp) {
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004280 Value *Callee = CS.getCalledValue();
Chris Lattner229907c2011-07-18 04:54:35 +00004281 PointerType *PTy = cast<PointerType>(Callee->getType());
4282 FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
Reid Klecknereb9dd5b2017-04-10 23:31:05 +00004283 AttributeList Attrs = CS.getAttributes();
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004284
4285 // If the call already has the 'nest' attribute somewhere then give up -
4286 // otherwise 'nest' would occur twice after splicing in the chain.
Bill Wendling6e95ae82012-12-31 00:49:59 +00004287 if (Attrs.hasAttrSomewhere(Attribute::Nest))
Craig Topperf40110f2014-04-25 05:29:35 +00004288 return nullptr;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004289
Duncan Sandsa0984362011-09-06 13:37:06 +00004290 assert(Tramp &&
4291 "transformCallThroughTrampoline called with incorrect CallSite.");
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004292
Gabor Greif3e44ea12010-07-22 10:37:47 +00004293 Function *NestF =cast<Function>(Tramp->getArgOperand(1)->stripPointerCasts());
Manuel Jacob5f6eaac2016-01-16 20:30:46 +00004294 FunctionType *NestFTy = cast<FunctionType>(NestF->getValueType());
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004295
Reid Klecknereb9dd5b2017-04-10 23:31:05 +00004296 AttributeList NestAttrs = NestF->getAttributes();
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004297 if (!NestAttrs.isEmpty()) {
Reid Klecknerf021fab2017-04-13 23:12:13 +00004298 unsigned NestArgNo = 0;
Craig Topperf40110f2014-04-25 05:29:35 +00004299 Type *NestTy = nullptr;
Reid Klecknerc2cb5602017-04-12 00:38:00 +00004300 AttributeSet NestAttr;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004301
4302 // Look for a parameter marked with the 'nest' attribute.
4303 for (FunctionType::param_iterator I = NestFTy->param_begin(),
Reid Klecknerf021fab2017-04-13 23:12:13 +00004304 E = NestFTy->param_end();
4305 I != E; ++NestArgNo, ++I) {
4306 AttributeSet AS = NestAttrs.getParamAttributes(NestArgNo);
4307 if (AS.hasAttribute(Attribute::Nest)) {
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004308 // Record the parameter type and any other attributes.
4309 NestTy = *I;
Reid Klecknerf021fab2017-04-13 23:12:13 +00004310 NestAttr = AS;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004311 break;
4312 }
Reid Klecknerf021fab2017-04-13 23:12:13 +00004313 }
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004314
4315 if (NestTy) {
4316 Instruction *Caller = CS.getInstruction();
4317 std::vector<Value*> NewArgs;
Reid Kleckner7f720332017-04-13 00:58:09 +00004318 std::vector<AttributeSet> NewArgAttrs;
Matt Arsenault5d2e85f2013-06-28 00:25:40 +00004319 NewArgs.reserve(CS.arg_size() + 1);
Reid Kleckner7f720332017-04-13 00:58:09 +00004320 NewArgAttrs.reserve(CS.arg_size());
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004321
4322 // Insert the nest argument into the call argument list, which may
4323 // mean appending it. Likewise for attributes.
4324
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004325 {
Reid Klecknerf021fab2017-04-13 23:12:13 +00004326 unsigned ArgNo = 0;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004327 CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
4328 do {
Reid Klecknerf021fab2017-04-13 23:12:13 +00004329 if (ArgNo == NestArgNo) {
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004330 // Add the chain argument and attributes.
Gabor Greif589a0b92010-06-24 12:58:35 +00004331 Value *NestVal = Tramp->getArgOperand(2);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004332 if (NestVal->getType() != NestTy)
Eli Friedman41e509a2011-05-18 23:58:37 +00004333 NestVal = Builder->CreateBitCast(NestVal, NestTy, "nest");
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004334 NewArgs.push_back(NestVal);
Reid Kleckner7f720332017-04-13 00:58:09 +00004335 NewArgAttrs.push_back(NestAttr);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004336 }
4337
4338 if (I == E)
4339 break;
4340
4341 // Add the original argument and attributes.
4342 NewArgs.push_back(*I);
Reid Klecknerf021fab2017-04-13 23:12:13 +00004343 NewArgAttrs.push_back(Attrs.getParamAttributes(ArgNo));
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004344
Reid Klecknerf021fab2017-04-13 23:12:13 +00004345 ++ArgNo;
Richard Trieu7a083812016-02-18 22:09:30 +00004346 ++I;
Eugene Zelenkocdc71612016-08-11 17:20:18 +00004347 } while (true);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004348 }
4349
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004350 // The trampoline may have been bitcast to a bogus type (FTy).
4351 // Handle this by synthesizing a new function type, equal to FTy
4352 // with the chain parameter inserted.
4353
Jay Foadb804a2b2011-07-12 14:06:48 +00004354 std::vector<Type*> NewTypes;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004355 NewTypes.reserve(FTy->getNumParams()+1);
4356
4357 // Insert the chain's type into the list of parameter types, which may
4358 // mean appending it.
4359 {
Reid Klecknerf021fab2017-04-13 23:12:13 +00004360 unsigned ArgNo = 0;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004361 FunctionType::param_iterator I = FTy->param_begin(),
4362 E = FTy->param_end();
4363
4364 do {
Reid Klecknerf021fab2017-04-13 23:12:13 +00004365 if (ArgNo == NestArgNo)
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004366 // Add the chain's type.
4367 NewTypes.push_back(NestTy);
4368
4369 if (I == E)
4370 break;
4371
4372 // Add the original type.
4373 NewTypes.push_back(*I);
4374
Reid Klecknerf021fab2017-04-13 23:12:13 +00004375 ++ArgNo;
Richard Trieu7a083812016-02-18 22:09:30 +00004376 ++I;
Eugene Zelenkocdc71612016-08-11 17:20:18 +00004377 } while (true);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004378 }
4379
4380 // Replace the trampoline call with a direct call. Let the generic
4381 // code sort out any function type mismatches.
Jim Grosbach7815f562012-02-03 00:07:04 +00004382 FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004383 FTy->isVarArg());
4384 Constant *NewCallee =
4385 NestF->getType() == PointerType::getUnqual(NewFTy) ?
Jim Grosbach7815f562012-02-03 00:07:04 +00004386 NestF : ConstantExpr::getBitCast(NestF,
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004387 PointerType::getUnqual(NewFTy));
Reid Kleckner7f720332017-04-13 00:58:09 +00004388 AttributeList NewPAL =
4389 AttributeList::get(FTy->getContext(), Attrs.getFnAttributes(),
4390 Attrs.getRetAttributes(), NewArgAttrs);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004391
David Majnemer231a68c2016-04-29 08:07:20 +00004392 SmallVector<OperandBundleDef, 1> OpBundles;
4393 CS.getOperandBundlesAsDefs(OpBundles);
4394
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004395 Instruction *NewCaller;
4396 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
4397 NewCaller = InvokeInst::Create(NewCallee,
4398 II->getNormalDest(), II->getUnwindDest(),
David Majnemer231a68c2016-04-29 08:07:20 +00004399 NewArgs, OpBundles);
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004400 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
4401 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
4402 } else {
David Majnemer231a68c2016-04-29 08:07:20 +00004403 NewCaller = CallInst::Create(NewCallee, NewArgs, OpBundles);
David Majnemerd5648c72016-11-25 22:35:09 +00004404 cast<CallInst>(NewCaller)->setTailCallKind(
4405 cast<CallInst>(Caller)->getTailCallKind());
4406 cast<CallInst>(NewCaller)->setCallingConv(
4407 cast<CallInst>(Caller)->getCallingConv());
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004408 cast<CallInst>(NewCaller)->setAttributes(NewPAL);
4409 }
Eli Friedman49346012011-05-18 19:57:14 +00004410
4411 return NewCaller;
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004412 }
4413 }
4414
4415 // Replace the trampoline call with a direct call. Since there is no 'nest'
4416 // parameter, there is no need to adjust the argument list. Let the generic
4417 // code sort out any function type mismatches.
4418 Constant *NewCallee =
Jim Grosbach7815f562012-02-03 00:07:04 +00004419 NestF->getType() == PTy ? NestF :
Chris Lattner7a9e47a2010-01-05 07:32:13 +00004420 ConstantExpr::getBitCast(NestF, PTy);
4421 CS.setCalledFunction(NewCallee);
4422 return CS.getInstruction();
4423}