blob: b2ff692597830dfb9dce8134cede96d523533f21 [file] [log] [blame]
Artur Pilipenko8fb3d572017-01-25 16:00:44 +00001//===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
2//
Chandler Carruth2946cd72019-01-19 08:50:56 +00003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Artur Pilipenko8fb3d572017-01-25 16:00:44 +00006//
7//===----------------------------------------------------------------------===//
8//
9// The LoopPredication pass tries to convert loop variant range checks to loop
10// invariant by widening checks across loop iterations. For example, it will
11// convert
12//
13// for (i = 0; i < n; i++) {
14// guard(i < len);
15// ...
16// }
17//
18// to
19//
20// for (i = 0; i < n; i++) {
21// guard(n - 1 < len);
22// ...
23// }
24//
25// After this transformation the condition of the guard is loop invariant, so
26// loop-unswitch can later unswitch the loop by this condition which basically
27// predicates the loop by the widened condition:
28//
29// if (n - 1 < len)
30// for (i = 0; i < n; i++) {
31// ...
32// }
33// else
34// deoptimize
35//
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000036// It's tempting to rely on SCEV here, but it has proven to be problematic.
37// Generally the facts SCEV provides about the increment step of add
38// recurrences are true if the backedge of the loop is taken, which implicitly
39// assumes that the guard doesn't fail. Using these facts to optimize the
40// guard results in a circular logic where the guard is optimized under the
41// assumption that it never fails.
42//
43// For example, in the loop below the induction variable will be marked as nuw
44// basing on the guard. Basing on nuw the guard predicate will be considered
45// monotonic. Given a monotonic condition it's tempting to replace the induction
46// variable in the condition with its value on the last iteration. But this
47// transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
48//
49// for (int i = b; i != e; i++)
50// guard(i u< len)
51//
52// One of the ways to reason about this problem is to use an inductive proof
53// approach. Given the loop:
54//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000055// if (B(0)) {
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000056// do {
Artur Pilipenko8aadc642017-10-27 14:46:17 +000057// I = PHI(0, I.INC)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000058// I.INC = I + Step
59// guard(G(I));
Artur Pilipenko8aadc642017-10-27 14:46:17 +000060// } while (B(I));
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000061// }
62//
63// where B(x) and G(x) are predicates that map integers to booleans, we want a
64// loop invariant expression M such the following program has the same semantics
65// as the above:
66//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000067// if (B(0)) {
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000068// do {
Artur Pilipenko8aadc642017-10-27 14:46:17 +000069// I = PHI(0, I.INC)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000070// I.INC = I + Step
Artur Pilipenko8aadc642017-10-27 14:46:17 +000071// guard(G(0) && M);
72// } while (B(I));
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000073// }
74//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000075// One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
Fangrui Songf78650a2018-07-30 19:41:25 +000076//
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000077// Informal proof that the transformation above is correct:
78//
79// By the definition of guards we can rewrite the guard condition to:
Artur Pilipenko8aadc642017-10-27 14:46:17 +000080// G(I) && G(0) && M
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000081//
82// Let's prove that for each iteration of the loop:
Artur Pilipenko8aadc642017-10-27 14:46:17 +000083// G(0) && M => G(I)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000084// And the condition above can be simplified to G(Start) && M.
Fangrui Songf78650a2018-07-30 19:41:25 +000085//
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000086// Induction base.
Artur Pilipenko8aadc642017-10-27 14:46:17 +000087// G(0) && M => G(0)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000088//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000089// Induction step. Assuming G(0) && M => G(I) on the subsequent
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000090// iteration:
91//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000092// B(I) is true because it's the backedge condition.
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000093// G(I) is true because the backedge is guarded by this condition.
94//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000095// So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000096//
97// Note that we can use anything stronger than M, i.e. any condition which
98// implies M.
99//
Anna Thomas7b360432017-12-04 15:11:48 +0000100// When S = 1 (i.e. forward iterating loop), the transformation is supported
101// when:
Artur Pilipenkob4527e12017-10-12 20:40:27 +0000102// * The loop has a single latch with the condition of the form:
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000103// B(X) = latchStart + X <pred> latchLimit,
104// where <pred> is u<, u<=, s<, or s<=.
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000105// * The guard condition is of the form
106// G(X) = guardStart + X u< guardLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000107//
Anna Thomas7b360432017-12-04 15:11:48 +0000108// For the ult latch comparison case M is:
109// forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
110// guardStart + X + 1 u< guardLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000111//
Anna Thomas7b360432017-12-04 15:11:48 +0000112// The only way the antecedent can be true and the consequent can be false is
113// if
114// X == guardLimit - 1 - guardStart
115// (and guardLimit is non-zero, but we won't use this latter fact).
116// If X == guardLimit - 1 - guardStart then the second half of the antecedent is
117// latchStart + guardLimit - 1 - guardStart u< latchLimit
118// and its negation is
119// latchStart + guardLimit - 1 - guardStart u>= latchLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000120//
Anna Thomas7b360432017-12-04 15:11:48 +0000121// In other words, if
122// latchLimit u<= latchStart + guardLimit - 1 - guardStart
123// then:
124// (the ranges below are written in ConstantRange notation, where [A, B) is the
125// set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000126//
Anna Thomas7b360432017-12-04 15:11:48 +0000127// forall X . guardStart + X u< guardLimit &&
128// latchStart + X u< latchLimit =>
129// guardStart + X + 1 u< guardLimit
130// == forall X . guardStart + X u< guardLimit &&
131// latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
132// guardStart + X + 1 u< guardLimit
133// == forall X . (guardStart + X) in [0, guardLimit) &&
134// (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
135// (guardStart + X + 1) in [0, guardLimit)
136// == forall X . X in [-guardStart, guardLimit - guardStart) &&
137// X in [-latchStart, guardLimit - 1 - guardStart) =>
138// X in [-guardStart - 1, guardLimit - guardStart - 1)
139// == true
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000140//
Anna Thomas7b360432017-12-04 15:11:48 +0000141// So the widened condition is:
142// guardStart u< guardLimit &&
143// latchStart + guardLimit - 1 - guardStart u>= latchLimit
144// Similarly for ule condition the widened condition is:
145// guardStart u< guardLimit &&
146// latchStart + guardLimit - 1 - guardStart u> latchLimit
147// For slt condition the widened condition is:
148// guardStart u< guardLimit &&
149// latchStart + guardLimit - 1 - guardStart s>= latchLimit
150// For sle condition the widened condition is:
151// guardStart u< guardLimit &&
152// latchStart + guardLimit - 1 - guardStart s> latchLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000153//
Anna Thomas7b360432017-12-04 15:11:48 +0000154// When S = -1 (i.e. reverse iterating loop), the transformation is supported
155// when:
156// * The loop has a single latch with the condition of the form:
Serguei Katkovc8016e72018-02-08 10:34:08 +0000157// B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
Anna Thomas7b360432017-12-04 15:11:48 +0000158// * The guard condition is of the form
159// G(X) = X - 1 u< guardLimit
160//
161// For the ugt latch comparison case M is:
162// forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
163//
164// The only way the antecedent can be true and the consequent can be false is if
165// X == 1.
166// If X == 1 then the second half of the antecedent is
167// 1 u> latchLimit, and its negation is latchLimit u>= 1.
168//
169// So the widened condition is:
170// guardStart u< guardLimit && latchLimit u>= 1.
171// Similarly for sgt condition the widened condition is:
172// guardStart u< guardLimit && latchLimit s>= 1.
Serguei Katkovc8016e72018-02-08 10:34:08 +0000173// For uge condition the widened condition is:
174// guardStart u< guardLimit && latchLimit u> 1.
175// For sge condition the widened condition is:
176// guardStart u< guardLimit && latchLimit s> 1.
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000177//===----------------------------------------------------------------------===//
178
179#include "llvm/Transforms/Scalar/LoopPredication.h"
Fedor Sergeevc297e842018-10-17 09:02:54 +0000180#include "llvm/ADT/Statistic.h"
Anna Thomas9b1176b2018-03-22 16:03:59 +0000181#include "llvm/Analysis/BranchProbabilityInfo.h"
Max Kazantsev28298e92018-12-26 08:22:25 +0000182#include "llvm/Analysis/GuardUtils.h"
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000183#include "llvm/Analysis/LoopInfo.h"
184#include "llvm/Analysis/LoopPass.h"
185#include "llvm/Analysis/ScalarEvolution.h"
186#include "llvm/Analysis/ScalarEvolutionExpander.h"
187#include "llvm/Analysis/ScalarEvolutionExpressions.h"
188#include "llvm/IR/Function.h"
189#include "llvm/IR/GlobalValue.h"
190#include "llvm/IR/IntrinsicInst.h"
191#include "llvm/IR/Module.h"
192#include "llvm/IR/PatternMatch.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +0000193#include "llvm/Pass.h"
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000194#include "llvm/Support/Debug.h"
195#include "llvm/Transforms/Scalar.h"
196#include "llvm/Transforms/Utils/LoopUtils.h"
197
198#define DEBUG_TYPE "loop-predication"
199
Fedor Sergeevc297e842018-10-17 09:02:54 +0000200STATISTIC(TotalConsidered, "Number of guards considered");
201STATISTIC(TotalWidened, "Number of checks widened");
202
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000203using namespace llvm;
204
Anna Thomas1d02b132017-11-02 21:21:02 +0000205static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
206 cl::Hidden, cl::init(true));
207
Anna Thomas7b360432017-12-04 15:11:48 +0000208static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
209 cl::Hidden, cl::init(true));
Anna Thomas9b1176b2018-03-22 16:03:59 +0000210
211static cl::opt<bool>
212 SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
213 cl::Hidden, cl::init(false));
214
215// This is the scale factor for the latch probability. We use this during
216// profitability analysis to find other exiting blocks that have a much higher
217// probability of exiting the loop instead of loop exiting via latch.
218// This value should be greater than 1 for a sane profitability check.
219static cl::opt<float> LatchExitProbabilityScale(
220 "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
221 cl::desc("scale factor for the latch probability. Value should be greater "
222 "than 1. Lower values are ignored"));
223
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000224namespace {
225class LoopPredication {
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000226 /// Represents an induction variable check:
227 /// icmp Pred, <induction variable>, <loop invariant limit>
228 struct LoopICmp {
229 ICmpInst::Predicate Pred;
230 const SCEVAddRecExpr *IV;
231 const SCEV *Limit;
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000232 LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
233 const SCEV *Limit)
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000234 : Pred(Pred), IV(IV), Limit(Limit) {}
235 LoopICmp() {}
Anna Thomas68797212017-11-03 14:25:39 +0000236 void dump() {
237 dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
238 << ", Limit = " << *Limit << "\n";
239 }
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000240 };
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000241
242 ScalarEvolution *SE;
Anna Thomas9b1176b2018-03-22 16:03:59 +0000243 BranchProbabilityInfo *BPI;
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000244
245 Loop *L;
246 const DataLayout *DL;
247 BasicBlock *Preheader;
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000248 LoopICmp LatchCheck;
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000249
Anna Thomas68797212017-11-03 14:25:39 +0000250 bool isSupportedStep(const SCEV* Step);
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000251 Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) {
252 return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0),
253 ICI->getOperand(1));
254 }
255 Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
256 Value *RHS);
257
258 Optional<LoopICmp> parseLoopLatchICmp();
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000259
Anna Thomas68797212017-11-03 14:25:39 +0000260 bool CanExpand(const SCEV* S);
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000261 Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder,
262 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
263 Instruction *InsertAt);
264
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000265 Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
266 IRBuilder<> &Builder);
Anna Thomas68797212017-11-03 14:25:39 +0000267 Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
268 LoopICmp RangeCheck,
269 SCEVExpander &Expander,
270 IRBuilder<> &Builder);
Anna Thomas7b360432017-12-04 15:11:48 +0000271 Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,
272 LoopICmp RangeCheck,
273 SCEVExpander &Expander,
274 IRBuilder<> &Builder);
Max Kazantsevca450872019-01-22 10:13:36 +0000275 unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition,
276 SCEVExpander &Expander, IRBuilder<> &Builder);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000277 bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
278
Anna Thomas9b1176b2018-03-22 16:03:59 +0000279 // If the loop always exits through another block in the loop, we should not
280 // predicate based on the latch check. For example, the latch check can be a
281 // very coarse grained check and there can be more fine grained exit checks
282 // within the loop. We identify such unprofitable loops through BPI.
283 bool isLoopProfitableToPredicate();
284
Anna Thomas1d02b132017-11-02 21:21:02 +0000285 // When the IV type is wider than the range operand type, we can still do loop
286 // predication, by generating SCEVs for the range and latch that are of the
287 // same type. We achieve this by generating a SCEV truncate expression for the
288 // latch IV. This is done iff truncation of the IV is a safe operation,
289 // without loss of information.
290 // Another way to achieve this is by generating a wider type SCEV for the
291 // range check operand, however, this needs a more involved check that
292 // operands do not overflow. This can lead to loss of information when the
293 // range operand is of the form: add i32 %offset, %iv. We need to prove that
294 // sext(x + y) is same as sext(x) + sext(y).
295 // This function returns true if we can safely represent the IV type in
296 // the RangeCheckType without loss of information.
297 bool isSafeToTruncateWideIVType(Type *RangeCheckType);
298 // Return the loopLatchCheck corresponding to the RangeCheckType if safe to do
299 // so.
300 Optional<LoopICmp> generateLoopLatchCheck(Type *RangeCheckType);
Serguei Katkovebc90312018-02-07 06:53:37 +0000301
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000302public:
Anna Thomas9b1176b2018-03-22 16:03:59 +0000303 LoopPredication(ScalarEvolution *SE, BranchProbabilityInfo *BPI)
304 : SE(SE), BPI(BPI){};
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000305 bool runOnLoop(Loop *L);
306};
307
308class LoopPredicationLegacyPass : public LoopPass {
309public:
310 static char ID;
311 LoopPredicationLegacyPass() : LoopPass(ID) {
312 initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
313 }
314
315 void getAnalysisUsage(AnalysisUsage &AU) const override {
Anna Thomas9b1176b2018-03-22 16:03:59 +0000316 AU.addRequired<BranchProbabilityInfoWrapperPass>();
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000317 getLoopAnalysisUsage(AU);
318 }
319
320 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
321 if (skipLoop(L))
322 return false;
323 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
Anna Thomas9b1176b2018-03-22 16:03:59 +0000324 BranchProbabilityInfo &BPI =
325 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
326 LoopPredication LP(SE, &BPI);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000327 return LP.runOnLoop(L);
328 }
329};
330
331char LoopPredicationLegacyPass::ID = 0;
332} // end namespace llvm
333
334INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
335 "Loop predication", false, false)
Anna Thomas9b1176b2018-03-22 16:03:59 +0000336INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000337INITIALIZE_PASS_DEPENDENCY(LoopPass)
338INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
339 "Loop predication", false, false)
340
341Pass *llvm::createLoopPredicationPass() {
342 return new LoopPredicationLegacyPass();
343}
344
345PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
346 LoopStandardAnalysisResults &AR,
347 LPMUpdater &U) {
Anna Thomas9b1176b2018-03-22 16:03:59 +0000348 const auto &FAM =
349 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
350 Function *F = L.getHeader()->getParent();
351 auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F);
352 LoopPredication LP(&AR.SE, BPI);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000353 if (!LP.runOnLoop(&L))
354 return PreservedAnalyses::all();
355
356 return getLoopPassPreservedAnalyses();
357}
358
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000359Optional<LoopPredication::LoopICmp>
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000360LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
361 Value *RHS) {
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000362 const SCEV *LHSS = SE->getSCEV(LHS);
363 if (isa<SCEVCouldNotCompute>(LHSS))
364 return None;
365 const SCEV *RHSS = SE->getSCEV(RHS);
366 if (isa<SCEVCouldNotCompute>(RHSS))
367 return None;
368
369 // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
370 if (SE->isLoopInvariant(LHSS, L)) {
371 std::swap(LHS, RHS);
372 std::swap(LHSS, RHSS);
373 Pred = ICmpInst::getSwappedPredicate(Pred);
374 }
375
376 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
377 if (!AR || AR->getLoop() != L)
378 return None;
379
380 return LoopICmp(Pred, AR, RHSS);
381}
382
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000383Value *LoopPredication::expandCheck(SCEVExpander &Expander,
384 IRBuilder<> &Builder,
385 ICmpInst::Predicate Pred, const SCEV *LHS,
386 const SCEV *RHS, Instruction *InsertAt) {
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000387 // TODO: we can check isLoopEntryGuardedByCond before emitting the check
Fangrui Songf78650a2018-07-30 19:41:25 +0000388
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000389 Type *Ty = LHS->getType();
390 assert(Ty == RHS->getType() && "expandCheck operands have different types?");
Artur Pilipenkoead69ee2017-10-12 21:21:17 +0000391
392 if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
393 return Builder.getTrue();
394
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000395 Value *LHSV = Expander.expandCodeFor(LHS, Ty, InsertAt);
396 Value *RHSV = Expander.expandCodeFor(RHS, Ty, InsertAt);
397 return Builder.CreateICmp(Pred, LHSV, RHSV);
398}
399
Anna Thomas1d02b132017-11-02 21:21:02 +0000400Optional<LoopPredication::LoopICmp>
401LoopPredication::generateLoopLatchCheck(Type *RangeCheckType) {
402
403 auto *LatchType = LatchCheck.IV->getType();
404 if (RangeCheckType == LatchType)
405 return LatchCheck;
406 // For now, bail out if latch type is narrower than range type.
407 if (DL->getTypeSizeInBits(LatchType) < DL->getTypeSizeInBits(RangeCheckType))
408 return None;
409 if (!isSafeToTruncateWideIVType(RangeCheckType))
410 return None;
411 // We can now safely identify the truncated version of the IV and limit for
412 // RangeCheckType.
413 LoopICmp NewLatchCheck;
414 NewLatchCheck.Pred = LatchCheck.Pred;
415 NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
416 SE->getTruncateExpr(LatchCheck.IV, RangeCheckType));
417 if (!NewLatchCheck.IV)
418 return None;
419 NewLatchCheck.Limit = SE->getTruncateExpr(LatchCheck.Limit, RangeCheckType);
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000420 LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
421 << "can be represented as range check type:"
422 << *RangeCheckType << "\n");
423 LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
424 LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
Anna Thomas1d02b132017-11-02 21:21:02 +0000425 return NewLatchCheck;
426}
427
Anna Thomas68797212017-11-03 14:25:39 +0000428bool LoopPredication::isSupportedStep(const SCEV* Step) {
Anna Thomas7b360432017-12-04 15:11:48 +0000429 return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
Anna Thomas68797212017-11-03 14:25:39 +0000430}
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000431
Anna Thomas68797212017-11-03 14:25:39 +0000432bool LoopPredication::CanExpand(const SCEV* S) {
433 return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE);
434}
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000435
Anna Thomas68797212017-11-03 14:25:39 +0000436Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
437 LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck,
438 SCEVExpander &Expander, IRBuilder<> &Builder) {
439 auto *Ty = RangeCheck.IV->getType();
440 // Generate the widened condition for the forward loop:
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000441 // guardStart u< guardLimit &&
442 // latchLimit <pred> guardLimit - 1 - guardStart + latchStart
Artur Pilipenkob4527e12017-10-12 20:40:27 +0000443 // where <pred> depends on the latch condition predicate. See the file
444 // header comment for the reasoning.
Anna Thomas68797212017-11-03 14:25:39 +0000445 // guardLimit - guardStart + latchStart - 1
446 const SCEV *GuardStart = RangeCheck.IV->getStart();
447 const SCEV *GuardLimit = RangeCheck.Limit;
448 const SCEV *LatchStart = LatchCheck.IV->getStart();
449 const SCEV *LatchLimit = LatchCheck.Limit;
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000450
451 // guardLimit - guardStart + latchStart - 1
452 const SCEV *RHS =
453 SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
454 SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
Anna Thomas68797212017-11-03 14:25:39 +0000455 if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) ||
456 !CanExpand(LatchLimit) || !CanExpand(RHS)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000457 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000458 return None;
459 }
Serguei Katkov3cb4c342018-02-09 07:59:07 +0000460 auto LimitCheckPred =
461 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
Artur Pilipenkoaab28662017-05-19 14:00:04 +0000462
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000463 LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
464 LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
465 LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000466
Artur Pilipenko0860bfc2017-02-27 15:44:49 +0000467 Instruction *InsertAt = Preheader->getTerminator();
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000468 auto *LimitCheck =
469 expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, RHS, InsertAt);
Anna Thomas68797212017-11-03 14:25:39 +0000470 auto *FirstIterationCheck = expandCheck(Expander, Builder, RangeCheck.Pred,
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000471 GuardStart, GuardLimit, InsertAt);
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000472 return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000473}
Anna Thomas7b360432017-12-04 15:11:48 +0000474
475Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
476 LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck,
477 SCEVExpander &Expander, IRBuilder<> &Builder) {
478 auto *Ty = RangeCheck.IV->getType();
479 const SCEV *GuardStart = RangeCheck.IV->getStart();
480 const SCEV *GuardLimit = RangeCheck.Limit;
481 const SCEV *LatchLimit = LatchCheck.Limit;
482 if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) ||
483 !CanExpand(LatchLimit)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000484 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
Anna Thomas7b360432017-12-04 15:11:48 +0000485 return None;
486 }
487 // The decrement of the latch check IV should be the same as the
488 // rangeCheckIV.
489 auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
490 if (RangeCheck.IV != PostDecLatchCheckIV) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000491 LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
492 << *PostDecLatchCheckIV
493 << " and RangeCheckIV: " << *RangeCheck.IV << "\n");
Anna Thomas7b360432017-12-04 15:11:48 +0000494 return None;
495 }
496
497 // Generate the widened condition for CountDownLoop:
498 // guardStart u< guardLimit &&
499 // latchLimit <pred> 1.
500 // See the header comment for reasoning of the checks.
501 Instruction *InsertAt = Preheader->getTerminator();
Serguei Katkov3cb4c342018-02-09 07:59:07 +0000502 auto LimitCheckPred =
503 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
Anna Thomas7b360432017-12-04 15:11:48 +0000504 auto *FirstIterationCheck = expandCheck(Expander, Builder, ICmpInst::ICMP_ULT,
505 GuardStart, GuardLimit, InsertAt);
506 auto *LimitCheck = expandCheck(Expander, Builder, LimitCheckPred, LatchLimit,
507 SE->getOne(Ty), InsertAt);
508 return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
509}
510
Anna Thomas68797212017-11-03 14:25:39 +0000511/// If ICI can be widened to a loop invariant condition emits the loop
512/// invariant condition in the loop preheader and return it, otherwise
513/// returns None.
514Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
515 SCEVExpander &Expander,
516 IRBuilder<> &Builder) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000517 LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
518 LLVM_DEBUG(ICI->dump());
Anna Thomas68797212017-11-03 14:25:39 +0000519
520 // parseLoopStructure guarantees that the latch condition is:
521 // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
522 // We are looking for the range checks of the form:
523 // i u< guardLimit
524 auto RangeCheck = parseLoopICmp(ICI);
525 if (!RangeCheck) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000526 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000527 return None;
528 }
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000529 LLVM_DEBUG(dbgs() << "Guard check:\n");
530 LLVM_DEBUG(RangeCheck->dump());
Anna Thomas68797212017-11-03 14:25:39 +0000531 if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000532 LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
533 << RangeCheck->Pred << ")!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000534 return None;
535 }
536 auto *RangeCheckIV = RangeCheck->IV;
537 if (!RangeCheckIV->isAffine()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000538 LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000539 return None;
540 }
541 auto *Step = RangeCheckIV->getStepRecurrence(*SE);
542 // We cannot just compare with latch IV step because the latch and range IVs
543 // may have different types.
544 if (!isSupportedStep(Step)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000545 LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000546 return None;
547 }
548 auto *Ty = RangeCheckIV->getType();
549 auto CurrLatchCheckOpt = generateLoopLatchCheck(Ty);
550 if (!CurrLatchCheckOpt) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000551 LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
552 "corresponding to range type: "
553 << *Ty << "\n");
Anna Thomas68797212017-11-03 14:25:39 +0000554 return None;
555 }
556
557 LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
Anna Thomas7b360432017-12-04 15:11:48 +0000558 // At this point, the range and latch step should have the same type, but need
559 // not have the same value (we support both 1 and -1 steps).
560 assert(Step->getType() ==
561 CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
562 "Range and latch steps should be of same type!");
563 if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000564 LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
Anna Thomas7b360432017-12-04 15:11:48 +0000565 return None;
566 }
Anna Thomas68797212017-11-03 14:25:39 +0000567
Anna Thomas7b360432017-12-04 15:11:48 +0000568 if (Step->isOne())
569 return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
570 Expander, Builder);
571 else {
572 assert(Step->isAllOnesValue() && "Step should be -1!");
573 return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
574 Expander, Builder);
575 }
Anna Thomas68797212017-11-03 14:25:39 +0000576}
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000577
Max Kazantsevca450872019-01-22 10:13:36 +0000578unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks,
579 Value *Condition,
580 SCEVExpander &Expander,
581 IRBuilder<> &Builder) {
582 unsigned NumWidened = 0;
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000583 // The guard condition is expected to be in form of:
584 // cond1 && cond2 && cond3 ...
Hiroshi Inoue0909ca12018-01-26 08:15:29 +0000585 // Iterate over subconditions looking for icmp conditions which can be
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000586 // widened across loop iterations. Widening these conditions remember the
587 // resulting list of subconditions in Checks vector.
Max Kazantsevca450872019-01-22 10:13:36 +0000588 SmallVector<Value *, 4> Worklist(1, Condition);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000589 SmallPtrSet<Value *, 4> Visited;
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000590 do {
591 Value *Condition = Worklist.pop_back_val();
592 if (!Visited.insert(Condition).second)
593 continue;
594
595 Value *LHS, *RHS;
596 using namespace llvm::PatternMatch;
597 if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
598 Worklist.push_back(LHS);
599 Worklist.push_back(RHS);
600 continue;
601 }
602
603 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
604 if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Builder)) {
605 Checks.push_back(NewRangeCheck.getValue());
606 NumWidened++;
607 continue;
608 }
609 }
610
611 // Save the condition as is if we can't widen it
612 Checks.push_back(Condition);
Max Kazantsevca450872019-01-22 10:13:36 +0000613 } while (!Worklist.empty());
614 return NumWidened;
615}
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000616
Max Kazantsevca450872019-01-22 10:13:36 +0000617bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
618 SCEVExpander &Expander) {
619 LLVM_DEBUG(dbgs() << "Processing guard:\n");
620 LLVM_DEBUG(Guard->dump());
621
622 TotalConsidered++;
623 SmallVector<Value *, 4> Checks;
624 IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator()));
625 unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander,
626 Builder);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000627 if (NumWidened == 0)
628 return false;
629
Fedor Sergeevc297e842018-10-17 09:02:54 +0000630 TotalWidened += NumWidened;
631
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000632 // Emit the new guard condition
633 Builder.SetInsertPoint(Guard);
634 Value *LastCheck = nullptr;
635 for (auto *Check : Checks)
636 if (!LastCheck)
637 LastCheck = Check;
638 else
639 LastCheck = Builder.CreateAnd(LastCheck, Check);
640 Guard->setOperand(0, LastCheck);
641
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000642 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000643 return true;
644}
645
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000646Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() {
647 using namespace PatternMatch;
648
649 BasicBlock *LoopLatch = L->getLoopLatch();
650 if (!LoopLatch) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000651 LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000652 return None;
653 }
654
655 ICmpInst::Predicate Pred;
656 Value *LHS, *RHS;
657 BasicBlock *TrueDest, *FalseDest;
658
659 if (!match(LoopLatch->getTerminator(),
660 m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest,
661 FalseDest))) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000662 LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000663 return None;
664 }
665 assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) &&
666 "One of the latch's destinations must be the header");
667 if (TrueDest != L->getHeader())
668 Pred = ICmpInst::getInversePredicate(Pred);
669
670 auto Result = parseLoopICmp(Pred, LHS, RHS);
671 if (!Result) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000672 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000673 return None;
674 }
675
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000676 // Check affine first, so if it's not we don't try to compute the step
677 // recurrence.
678 if (!Result->IV->isAffine()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000679 LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000680 return None;
681 }
682
683 auto *Step = Result->IV->getStepRecurrence(*SE);
Anna Thomas68797212017-11-03 14:25:39 +0000684 if (!isSupportedStep(Step)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000685 LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000686 return None;
687 }
688
Anna Thomas68797212017-11-03 14:25:39 +0000689 auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
Anna Thomas7b360432017-12-04 15:11:48 +0000690 if (Step->isOne()) {
691 return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
692 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
693 } else {
694 assert(Step->isAllOnesValue() && "Step should be -1!");
Serguei Katkovc8016e72018-02-08 10:34:08 +0000695 return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
696 Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
Anna Thomas7b360432017-12-04 15:11:48 +0000697 }
Anna Thomas68797212017-11-03 14:25:39 +0000698 };
699
700 if (IsUnsupportedPredicate(Step, Result->Pred)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000701 LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
702 << ")!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000703 return None;
704 }
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000705 return Result;
706}
707
Anna Thomas1d02b132017-11-02 21:21:02 +0000708// Returns true if its safe to truncate the IV to RangeCheckType.
709bool LoopPredication::isSafeToTruncateWideIVType(Type *RangeCheckType) {
710 if (!EnableIVTruncation)
711 return false;
712 assert(DL->getTypeSizeInBits(LatchCheck.IV->getType()) >
713 DL->getTypeSizeInBits(RangeCheckType) &&
714 "Expected latch check IV type to be larger than range check operand "
715 "type!");
716 // The start and end values of the IV should be known. This is to guarantee
717 // that truncating the wide type will not lose information.
718 auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
719 auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
720 if (!Limit || !Start)
721 return false;
722 // This check makes sure that the IV does not change sign during loop
723 // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
724 // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
725 // IV wraps around, and the truncation of the IV would lose the range of
726 // iterations between 2^32 and 2^64.
727 bool Increasing;
728 if (!SE->isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing))
729 return false;
730 // The active bits should be less than the bits in the RangeCheckType. This
731 // guarantees that truncating the latch check to RangeCheckType is a safe
732 // operation.
733 auto RangeCheckTypeBitSize = DL->getTypeSizeInBits(RangeCheckType);
734 return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
735 Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
736}
737
Anna Thomas9b1176b2018-03-22 16:03:59 +0000738bool LoopPredication::isLoopProfitableToPredicate() {
739 if (SkipProfitabilityChecks || !BPI)
740 return true;
741
742 SmallVector<std::pair<const BasicBlock *, const BasicBlock *>, 8> ExitEdges;
743 L->getExitEdges(ExitEdges);
744 // If there is only one exiting edge in the loop, it is always profitable to
745 // predicate the loop.
746 if (ExitEdges.size() == 1)
747 return true;
748
749 // Calculate the exiting probabilities of all exiting edges from the loop,
750 // starting with the LatchExitProbability.
751 // Heuristic for profitability: If any of the exiting blocks' probability of
752 // exiting the loop is larger than exiting through the latch block, it's not
753 // profitable to predicate the loop.
754 auto *LatchBlock = L->getLoopLatch();
755 assert(LatchBlock && "Should have a single latch at this point!");
756 auto *LatchTerm = LatchBlock->getTerminator();
757 assert(LatchTerm->getNumSuccessors() == 2 &&
758 "expected to be an exiting block with 2 succs!");
759 unsigned LatchBrExitIdx =
760 LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
761 BranchProbability LatchExitProbability =
762 BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx);
763
764 // Protect against degenerate inputs provided by the user. Providing a value
765 // less than one, can invert the definition of profitable loop predication.
766 float ScaleFactor = LatchExitProbabilityScale;
767 if (ScaleFactor < 1) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000768 LLVM_DEBUG(
Anna Thomas9b1176b2018-03-22 16:03:59 +0000769 dbgs()
770 << "Ignored user setting for loop-predication-latch-probability-scale: "
771 << LatchExitProbabilityScale << "\n");
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000772 LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
Anna Thomas9b1176b2018-03-22 16:03:59 +0000773 ScaleFactor = 1.0;
774 }
775 const auto LatchProbabilityThreshold =
776 LatchExitProbability * ScaleFactor;
777
778 for (const auto &ExitEdge : ExitEdges) {
779 BranchProbability ExitingBlockProbability =
780 BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second);
781 // Some exiting edge has higher probability than the latch exiting edge.
782 // No longer profitable to predicate.
783 if (ExitingBlockProbability > LatchProbabilityThreshold)
784 return false;
785 }
786 // Using BPI, we have concluded that the most probable way to exit from the
787 // loop is through the latch (or there's no profile information and all
788 // exits are equally likely).
789 return true;
790}
791
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000792bool LoopPredication::runOnLoop(Loop *Loop) {
793 L = Loop;
794
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000795 LLVM_DEBUG(dbgs() << "Analyzing ");
796 LLVM_DEBUG(L->dump());
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000797
798 Module *M = L->getHeader()->getModule();
799
800 // There is nothing to do if the module doesn't use guards
801 auto *GuardDecl =
802 M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
803 if (!GuardDecl || GuardDecl->use_empty())
804 return false;
805
806 DL = &M->getDataLayout();
807
808 Preheader = L->getLoopPreheader();
809 if (!Preheader)
810 return false;
811
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000812 auto LatchCheckOpt = parseLoopLatchICmp();
813 if (!LatchCheckOpt)
814 return false;
815 LatchCheck = *LatchCheckOpt;
816
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000817 LLVM_DEBUG(dbgs() << "Latch check:\n");
818 LLVM_DEBUG(LatchCheck.dump());
Anna Thomas68797212017-11-03 14:25:39 +0000819
Anna Thomas9b1176b2018-03-22 16:03:59 +0000820 if (!isLoopProfitableToPredicate()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000821 LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
Anna Thomas9b1176b2018-03-22 16:03:59 +0000822 return false;
823 }
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000824 // Collect all the guards into a vector and process later, so as not
825 // to invalidate the instruction iterator.
826 SmallVector<IntrinsicInst *, 4> Guards;
827 for (const auto BB : L->blocks())
828 for (auto &I : *BB)
Max Kazantsev28298e92018-12-26 08:22:25 +0000829 if (isGuard(&I))
830 Guards.push_back(cast<IntrinsicInst>(&I));
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000831
Artur Pilipenko46c4e0a2017-05-19 13:59:34 +0000832 if (Guards.empty())
833 return false;
834
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000835 SCEVExpander Expander(*SE, *DL, "loop-predication");
836
837 bool Changed = false;
838 for (auto *Guard : Guards)
839 Changed |= widenGuardConditions(Guard, Expander);
840
841 return Changed;
842}